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Variations in the size and texture of melanoma make the classification procedure 
more complex in a computer-aided diagnostic (CAD) system. The research 
proposes an innovative hybrid deep learning-based layer-fusion and neutrosophic-
set technique for identifying skin lesions. The off-the-shelf networks are examined 
to categorize eight types of skin lesions using transfer learning on International 
Skin Imaging Collaboration (ISIC) 2019 skin lesion datasets. The top two networks, 
which are GoogleNet and DarkNet, achieved an accuracy of 77.41 and 82.42%, 
respectively. The proposed method works in two successive stages: first, boosting 
the classification accuracy of the trained networks individually. A suggested 
feature fusion methodology is applied to enrich the extracted features’ descriptive 
power, which promotes the accuracy to 79.2 and 84.5%, respectively. The second 
stage explores how to combine these networks for further improvement. The 
error-correcting output codes (ECOC) paradigm is utilized for constructing a set 
of well-trained true and false support vector machine (SVM) classifiers via fused 
DarkNet and GoogleNet feature maps, respectively. The ECOC’s coding matrices 
are designed to train each true classifier and its opponent in a one-versus-
other fashion. Consequently, contradictions between true and false classifiers in 
terms of their classification scores create an ambiguity zone quantified by the 
indeterminacy set. Recent neutrosophic techniques resolve this ambiguity to tilt 
the balance toward the correct skin cancer class. As a result, the classification 
score is increased to 85.74%, outperforming the recent proposals by an obvious 
step. The trained models alongside the implementation of the proposed single-
valued neutrosophic sets (SVNSs) will be  publicly available for aiding relevant 
research fields.
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1. Introduction

Skin cancer is common throughout the world, and it is responsible for many fatalities each 
year (1). Because it is such an aggressive disease, early discovery is critical to preserve lives. Skin 
cancer cases are increasing in both developed and developing countries. Skin cancer cases 
increased to 1.2 million in 2020, and according to the World Health Organization (WHO), there 
will be  approximately 2.2 million cancer cases by 2025 (2). Early tumor detection and 
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classification of malignant and benign tumors, in contrast, have a 
considerable effect on survival (3). According to recent research, early 
diagnosis raised 5-year survival rates to 91% (4). This is exacerbated 
by a global shortage of radiologists and doctors capable of interpreting 
screening data, particularly in rural areas and developing nations (5). 
Humanoid resources and technologies to give quick patient care by 
using screening, diagnosis, and treatment are vital because time is a 
major factor in saving lives (6).

However, due to the presence of noise, artifacts, and complicated 
structures, tumor detection takes time and is often difficult for 
radiologists who review medical pictures. Furthermore, an increasing 
count of lesions adds to the radiologist’s workload, which frequently 
leads to tumor misdiagnosis and can lead to poor tumor detection 
performance. When compared to the human eye, dermoscopy is a 
common skin imaging technique that has been utilized for building 
benchmark datasets to improve melanoma diagnosis (7). Few forms 
of skin cancer are included in the majority of these small datasets, and 
there may not be many images in any class. In addition, three crucial 
factors reduce the accuracy of automated melanoma detection using 
dermoscopy images. First, while skin lesions are divided into various 
groups, their characteristics, such as size, texture, color, and form, are 
quite similar, making classification difficult. Second, melanoma and 
non-melanoma lesions have a significant relationship. The 
environment, which includes hair, veins, and illumination, is the third 
factor (8). When the number of images required to train a deep 
convolutional neural network (DCNN) is insufficient, conventional 
augmentation is widely used. However, publicly available skin cancer 
databases are severely unbalanced, with an unfair instance count for 
each class. For technological research, ISIC created the ISIC Archive, 
a global library of dermoscopy images.1

The proposed study spots the light on that unfairness to fairly 
augment leaked-instance classes. In the medical area, transfer learning 
(TL) is critical for improving diagnosis performance, particularly 
while dealing with the multifaceted properties of skin cancer images. 
Scholars have recently become interested in fine-tuned TL networks 
with pre-trained weights for performing complex classification tasks 
with substantial interpretation performance. The proposed study 
adopts TL to fine-tune the well-known deep networks for investigating 
the top ones in the skin cancer classification task. Image processing 
and machine learning approaches may be useful for detection and 
diagnosis, but they frequently result in false-positive and false-
negative cases (9). There are several deep learning procedures 
obtainable right now, but not all of them have been tested for their 
effectiveness in identifying skin cancer. Such algorithms extract 
essential distinguishing features from images without the need for 
manual human intervention, allowing for fully automatic mass 
segmentation, discovery, and organization. When the number of 
images required to train a deep convolutional neural network 
(DCNN) is insufficient, the augmentation technique can be applied to 
have a sufficient number of images.

Several studies created binary or multiclass skin cancer 
classification models, but they were unable to determine which model 
was best. Individual models have been used for binary and multiclass 
skin cancer classification, with varying degrees of success, including 

1 https://www.isic-archive.com, viewed on 6 October 2022.

CNN-PA (10), EfficentNet (11), MobileNet (12), VGGNET (13), 
AlexNet (14), GoogleNet (15), and LCNET (16). A model selection 
experiment must be  carried out to fairly assess which model is 
preferable for the same dataset and number of classes. In the first 
planned experiment, five models have been examined to determine 
which offers a more useful option and a more reliable decision. The 
accuracy of each model has been independently increased by utilizing 
the feature fusion method to further construct the two superior 
models. The two best models for the second planned experiment are 
produced by using such models.

In the study, ensemble models outperformed individual deep 
learners in performance ratios, while dermatologists’ diagnosis 
accuracy classification outperformed both. A machine learning 
technique called ensemble combines the judgments of multiple 
individual learners to improve classification accuracy (17). It is 
anticipated that the ensemble model will improve classification 
accuracy since it draws on the diversity of the individual models to 
form a collective judgment. In many articles, researchers employed 
different ensemble models to determine which combination was best. 
In Ref. (18), GoogleNet, AlexNet, and VGGNet were combined to 
achieve the desired outcome, while in Ref. (19), GoogleNet, AlexNet, 
and VGGNet were combined to achieve various outcomes. It was 
unclear why certain combinations of models would produce outcomes 
with higher accuracy, and what if choosing a different combination 
would produce the best outcome? Depending on the outcome of the 
first planned experiment, the top two models, DarkNet and 
GoogleNet, have been fused in the second proposed experiment to 
obtain a suitable fusion selection rather than a random one.

Neutrosophic approaches have recently been proposed by 
researchers to improve classification performance. An intelligent 
neutrosophic diagnostic method for cardiotocography data was 
suggested by the authors in Ref. (20). These techniques demonstrate 
that some lesions can be  neutrosophically categorized even when 
individual or combination models fail to yield the desired 
classification. A brand-new method for multiclass skin cancer 
categorization was created. According to experimental findings, 
adding the single-valued neutrosophic sets (SVNSs) to the combined 
deep learners for feature fusion methodology (FFM) results in 
increased skin cancer classification accuracy. The findings indicate 
that the suggested models perform better than the multiclass skin 
cancer classification models that have recently been created.

The following contributions are made to this research work:

 • To deal with over-fitting difficulties, the skin lesion dataset is 
categorized tacitly into eight classes in terms of the number of 
their instances which is rich and poor clusters. Various spatial 
data augmentation methods are applied to the poor cluster to 
balance the dataset on the fly in the training phase.

 • To find the superior net model for the ISIC 2019 dataset, 
pre-trained networks such as DarkNet, AlexNet, GoogleNet, 
XceptionNet, and DenseNet are examined using transfer learning.

 • After extensive research, a feature fusion methodology is 
suggested for the top two models. The fusion is carried for 
enriching the feature descriptive supremacy by fusing different 
feature maps from various network layers.

 • To exploit the individual descriptive power for each net fused 
feature, a set of true and false classifiers is designed and trained 
via the ECOC scheme.
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 • Each true classifier and its opponent may disagree with the 
classification result, which establishes an ambiguity. This 
ambiguity is quantified by an indeterminacy set and resolved by 
the SVNSs to further investigate the robustness.

Furthermore, it is worth noting that the work is made generally 
where it is applicable for boosting any individual classifiers and 
resolving their contradictions and dependably that no pre-processing 
of the images or lesion segmentation has been done.

The rest of this article is organized as follows: Section 2 provides 
the materials and methods. Section 3 describes the experimental 
results. A discussion is presented in Section 4. The conclusion of this 
article and future studies are presented in Section 5.

Figure 1 depicts the whole categorization process as a series of 
blocks. The original ISIC 2019 skin cancer dataset is represented by 
block (1). A dataset has been supplemented using data augmentation 
methods on a pre-processed dataset (2). Experimenting with a variety 
of pre-trained models and choosing the most accurate model for use 
with an updated dataset yields suggested GoogleNet and DarkNet 
models (3). After a suggested model was selected, a feature fusion 
method was applied based on accuracy comparison (4). The ECOC’s 
coding matrices are designed to train each classifier and its opponent 
in one-versus-another fashion (5) and (6) the final model was assessed 
using SVNSs to get superior accuracy.

2. Materials and equipment

Several artificial intelligence-based techniques have been 
developed to automate the classification process, which includes 
standard phases, such as pre-processing, feature extraction, 
segmentation, and classification. Many classification methods rely 
heavily on constructed feature sets, which have limited generalizability 
for dermoscopic skin pictures due to a lack of biological pattern 
knowledge (21). Because of their closeness in size, shape, and colors, 
lesions have a strong visual likeness and are highly linked, resulting in 

poor feature information (22). Handmade, feature-based methods are, 
therefore, useless for skin classification. Deep networks are more 
effective in calculating specific features to do precise lesion 
categorization than shallow networks. Convolutional neural networks 
(CNNs) are widely used for medical image processing and 
categorization. Authors in Ref. (10) made the first breakthrough in 
using DCNN for skin cancer. To make a binary classification between 
the two fatal skin tumors, malignant and nevus, the network was 
likened to 21 board-certified medicinal professionals. Specialists 
testified that the envisioned network could accurately detect skin 
cancer. The dataset of 1,29,450 clinical images, including 3,374 
dermoscopic images, was processed using the InceptionV3 
architecture pre-trained on ImageNet. The scientists demonstrated 
that a deep neural network-based solution outperformed clinical 
professionals in terms of dermoscopy picture categorization accuracy 
over a large dataset. It is demonstrated that artificial intelligence can 
diagnose skin cancer with a level of competency comparable to 
dermatologists by CNN, which behaves equally well on both jobs as 
all verified experts. Gessert et  al. (11) demonstrated a multiclass 
classification job utilizing an ensemble model created from Efficient 
Nets, SENet, and ResNeXt WSL on the ISIC 2019 dataset. The authors 
employed a cropping method on photographs to deal with the 
multiple models’ input resolutions. For unbalanced datasets, a loss-
balancing method was also employed. Authors in Ref. (12) suggested 
a new CNN architecture for skin lesion categorization that consists of 
several tracts. A CNN has been retrained for multi-resolution input 
after it had been trained on a single resolution. Transfer learning is 
used to train seven classes of the HAM10000 dataset using a 
pre-trained MobileNet model. A categorical accuracy of 83.1% is 
reported, as well as precision, recall, and F1 scores of 89, 83, and 83%, 
respectively. (13) The importance of dermoscopy skin cancer images 
being classified as malignant or benign to detect melanoma was 
emphasized. The authors evaluated the ISIC archive dataset; the 
proposed solution achieved an accuracy of 81.3%, a precision of 
79.74%, and a recall of 78.66% using transfer learning and the 
VGGNet convolutional neural network. This technique, however, was 

FIGURE 1

Full technique of skin cancer categorization described in this article.
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limited to a binary classification of skin cancer. When classifying skin 
cancer into three groups, Harangi et  al. (14) looked at how an 
ensemble of deep CNNs may be utilized to increase the accuracy of 
individual models. The GoogleNet, AlexNet, ResNet, and VGGNet 
models’ respective accuracy rates were 84.2, 84.88, 82.88, and 81.38%. 
The best accuracy, 83.8%, was again reached by the combination of the 
GoogleNet, AlexNet, and VGGNet models. In addition, the recall rates 
for each of their models were 59.2, 51.8, 52.0, and 43.4%, respectively. 
Authors in Ref. (17) conducted a comprehensive analysis of seven 
distinct deep learning-based approaches for skin cancer. On the ISIC-
2018 challenge dataset, experiments were conducted on neural 
networks such as PNASNet-5-Large, InceptionResNetV2, SENet154, 
and InceptionV4. The PNASNet-5-Large model has the highest 
accuracy at 76%. The authors in Ref. (15) obtained 99.03% accuracy, 
99.81% recall, 98.7% precision, and a 99.25% F-score by proposing a 
deep pre-trained model of unclassified skin cancer images. The 
authors do not mention deleting some data from the dataset. The 
authors retrained the last layers of the proposed model on a small 
number of foot skin images. Furthermore, adding a new class to the 
eight classes makes it nine instead of eight, which makes the results 
comparison not applicable. A previous study in dermoscopic 
computer-aided classification has not only failed to obtain improved 
accuracy for skin cancer classification but also lacks generality. 
Unfortunately, much of the earlier research did not use large datasets, 
which are essential for deep learning models to perform well. In this 
study, the suggested strategy uses extremely accurate and efficient 
pre-trained models trained on a large ISIC 2019 dataset to obtain an 
exceptionally high accuracy for skin cancer classification.

2.1. Dataset

The most frequently used dataset in this field of research has been 
the ISIC 2019, which was employed.

The dataset is available at https://challenge.isic-archive.com/
data#2016. ISIC 2019 dataset is one of the most difficult to classify into 
eight groups due to an uneven number of photographs in each class. The 
most difficult difficulty is detecting outliers or other “out of distribution” 
diagnosis confidence. The dataset was divided into three parts: training, 
validation, and testing, with the training portion comprising 80% of the 
dataset and the validation and testing portions each comprising 10%. 
The description of the dataset is summarized as follows:

The total number of images 25,331, dimension 256 × 256, color 
carding RGB, melanoma (MEL) 4,522, melanocytic nevus (NV) 
12,875, basal cell carcinoma (BCC) 3,323, actinic keratosis (AK) 867, 
benign keratosis (BKL) 2,624, dermatofibroma (DF) 239, vascular 
lesion (VASC) 253, and squamous cell carcinoma (SCC) 628.

The validation/test set was used to validate the model on data it 
had never seen before, and the training set was used to train it.

2.2. Data augmentation

Deep learning models are data-hungry and generalize effectively 
when fed a large amount of data. Rotation, flip, random crop, modify 
brightness, adjust contrast, pixel jitter, aspect ratio, random shear, 
zoom, vertical and horizontal shift, and flip are utilized for data 
augmentation. Data augmentation is a method of artificially increasing 

the quantity of data available by adding slightly changed copies of 
existing training data rather than having to obtain new data. The 
training dataset size is intentionally increased, or the model is 
protected from over-fitting from the start, by either data warping or 
oversampling; in addition, it is used to improve the diversity of the 
data by slightly modifying copies of already existing data or creating 
synthetic data from existing data (23).

To augment it fairly, the ISIC 2019 dataset was tacitly divided into 
two sets, rich and poor. The rich set comprises “BCC,” “BKL,” “MEL,” 
and “NV” cancer classes with 23,344 instances in total. In contrast, the 
poor set involves “AK,” “DF,” “SCC,” and “VASC” classes with 1987 
instances in total. Thus, the rich set occupies 92.16% of the dataset 
compared to the poor set which occupies 7.84%. Applying 
augmentation parameters to poor set classes to alleviate the imbalance 
in the training dataset while not applying augmentation to rich set 
classes. The poor set augmentation process is conducted on the fly 
(online augmentation) for the sake of saving resources and time for 
labeling at the expense of increasing training time.

3. Methods

The proposed model has two main experiments as follows: the 
first experiment used the augmented data for five different models for 
both Dag and Series Networks. A variety of topologies, including 
AlexNet, XceptionNet, DarkNet, DenseNet, and GoogleNet, 
were assessed.

Compared to each other, GoogleNet and DarkNet fared better 
than the rest of them. Applying transfer learning for each net will 
improve the accuracy as illustrated in Section 3.1. The second 
experiment applied to feature fusion for both GoogleNet and DarkNet 
through multi-SVM using ECOC is illustrated in Section 3.2.

3.1. Ranking trained models afterward 
transfer learning

To employ transfer learning, an algorithm is trained on one set of 
data and then applied to another set of data, which is referred to as a 
task linked to the original job.

To enhance generalization in another situation, domain 
adaptation and transfer learning are terms used to describe the 
phenomenon. Transfer learning is an exceptionally good technique in 
deep networks because of the immense resources needed and the vast 
quantity of pictures. Due to a tiny number of pictures, these data sets 
cannot be used to train deep neural networks from the beginning 
because of their lack of variety. This issue may have been solved 
through transfer learning (24).

The imageNet (25) pre-trained models for classifying 1,000 
objects are transferred to classify eight classes via transfer learning. 
There are three processes involved in achieving transfer learning. First, 
the last learnable layer for each net is altered one by one to classify 
eight skin classes. Second, it freezes the initial layers’ weights and 
biases to preserve their generalization extraction capability. Finally, by 
increasing the weights and biases learn rate factors, it speeds up the 
learning process for the deeper layers. Figure 2 illustrates the process 
of training and testing the picked-up networks to determine their 
classification accuracy.
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3.2. Feature fusion methodology (FFM)

The deepest (top) layer feature maps have the most abstract 
features that describe each class more semantically and contextually. 
While going backward for previous layers alleviates that description, 
it becomes higher resolution and may represent some abstracted 

features better. Applying the thought for enriching the feature 
descriptive supremacy via fusing different feature maps from various 
network layers will improve the accuracy for each net. In this study, 
the fusion is conducted for both trained networks (GoogleNet and 
DarkNet) at two levels, as follows:

 1. GoogleNet’s inception4e is fused with inception5a feature map 
activations to form the first-level fusion. Furthermore, 
DarkNet’s Conv17 is fused with Conv18 feature map activations 
to spawn its first-level fusion.

 2. GoogleNet’s resultant fused features are re-fused with inception5b 
activations, whereas the first-level fused DarkNet features are 
re-fused with Conv19 activations, resulting in the second-level 
fused features for both networks. The activation of a layer is 
determined after training ends to obtain its feature maps, and the 
earlier feature maps are downsampled in a bilinear interpolation 
fashion to permit the concatenation process for fusion. The 
proposed feature fusion schemes are presented in Figures 3A,B 
for GoogleNet and DarkNet, respectively.

3.3. T-distributed stochastic neighbor 
embedding

For huge datasets, t-distributed stochastic neighbor embedding 
(t-SNE) has become the effective standard for visualizing high-
dimensional datasets across a wide range of biomedical data.

Using this technique to have a more clear visualization for each 
class will provide more clearance to researchers. T-SNE includes, but 

FIGURE 2

Flowchart of training and testing scheme to rank examined 
networks, according to their classification accuracy.

A B

FIGURE 3

Proposed feature fusion scheme for (A) GoogleNet and (B) DarkNet.
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A

B

FIGURE 4

Visualizing extracted features before (left) and after (right) fusion using t-SNE for GoogleNet and DarkNet, respectively, best viewed in color. 
(A) GoogleNet  and (B) DarkNet.

is not limited to, computer security, music analysis, cancer biology, 
and Bioinformatics. Similar to SNE, t-SNE chooses two different 
similarity measures between pairs of points for the high-dimensional 
information and the two-dimensional embedding. The goal of this 
step is to create a two-dimensional embedding that minimizes the KL 
divergence between the vector of similarities between points in pairs 
over the full dataset and the similarities between points in the 
encoding. The nonconvex optimization issue is solved using T-SNE 
using gradient descent with random initialization. Figures  4A,B 
visualizes the extracted features for both GoogleNet and DarkNet, 
respectively, before and after fusion using t-SNE. The fused features 
have a better similarity representation for instances belonging to the 
same class.

3.4. Error-correcting output codes (ECOC) 
model

An error-correcting output code (26) is utilized to simplify the 
multiclass classification task to binary ones. The simplification is usually 
conducted to train each learner in one of the two coding schemes which 
are one-versus-all (OvA) or one-versus-one (OvO). The desired training 
scheme is designed in a coding matrix (CM) that formulates how binary 
learner L considers class C in the training process.

The rows of the designed CM represent the classes while the 
columns are the learners. The filled values in each (i,j) matrix cell are 
altered between three values 0, 1, and − 1 representing that:

 • An assigned value 1 marks all jth Class instances Cj as a positive 
class for the training of ith binary learner Li.

 • An assigned value −1 marks all jth Class instances Cj as a negative 
class for the training of ith binary learner Li.

 • An assigned value 0 discards all jth Class instances Cj for the 
training of ith binary learner Li.

Table 1 shows the true and false multi-SVM learners for eight 
classes. The true and false SVM learners for eight classes are shown in 
Table 2.

These characteristics were classified using the multiclass SVM. To 
categorize fresh photographs, the multiclass SVM that was developed 
during the training phase may be used (test set). The ISIC 2019 test set 
was classified using the stored classifier, and the similarity score was 
calculated for each picture with various classifications.

3.5. Contradiction resolving using 
neutrosophic

Figure 5 presents the feature fusion for GoogleNet and DarkNet 
and neutrosophic. Algorithm 1 states the main steps in the experiment 
as a pseudo-code.

3.6. Single-valued neutrosophic sets 
(SVNSs)

From a philosophical perspective, Ref. (27) extended the fuzzy set 
(28), the IFS, and the interval-valued IFS (29, 30) by introducing the 
neutrosophic set (31, 32). Authors in Ref. (33) used study data from 
Al-Bayrouni Hospital to categorize breast cancer. The used data were 
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skewed and contains missing and anomalous numbers, so inverse 
Lagrangian interpolation and neutrosophic logic were used to rectify 
and analyze the data before formulating a two-kernel support vector 
machine algorithm. The proposed technique outperforms the 
traditional support vector machine algorithm since it is linearly 
orthogonal by neutrosophic logic and was trained on the data. This 
approach, which is based on inverse Lagrangian interpolation, 
correlates the inputs to determine how much each input belongs to 
each class. Authors in Ref. (34) include the idea of interval-valued 
Fermatean neutrosophic, Pythagorean neutrosophic, single-valued 
neutrosophic, and bipolar neutrosophic graphs. Many sorts of 
interval-valued Fermatean neutrosophic graphs as well as additional 
varieties of these graphs were described. This novel graph type was 
utilized in a situation involving decision-making. In addition, the 
interval-valued Fermatean neutrosophic number, interval-valued 
Fermatean triangle, and interval-valued Fermatean trapezoidal 
neutrosophic number were introduced. Authors in Ref. (35) analyzed 
interval-valued pentapartitioned neutrosophic graph features such as 
cut vertex, bridge, and degree, which are researched and thoroughly 
analyzed using relevant instances for making use of the suggested 
interval value. A decision-making technique called pentapartitioned 
neutrosophic graphs has been created and applied in a real-world 
scenario with numerical examples. In addition, the developed notions 
can be expanded to include isomorphic and regularity properties 
in the suggested graph topologies. Regular and irregular interval-
valued pentapartitioned neutrosophic graphs, interval-valued 
pentapartitioned neutrosophic intersection graphs, interval-valued 
pentapartitioned neutrosophic hypergraphs, and other variations are 
all possible extensions of the interval-valued pentapartitioned 
neutrosophic graph. It is possible to model networks, telephony, 
image processing, computer networks, and expert systems using the 
interval-valued pentapartitioned neutrosophic graph.

Although new in principle, using neutrosophic sets in actual issues 
proved challenging, especially owing to the non-standard interval across 
which membership functions might take on values]-0,1+ [.

Three functions describe the membership of a neutrosophic set A 
in a universal set X: the truth function T(x), the indeterminacy 
function I(x), and the falsity function F(x). If X is a real standard or 
non-standard subset of]-0,1+ [, then T(x), I(x), and F(x) are all 
functions in X such that T(x):X→]-0,1+ [, I(x):X→]-0,1+ [, and 
F(x):X→]-0,1+ [. As a result, T(x), I(x), and F(x) may all add up to any 
value, therefore -0 ≤ supT(x) + supI(x) + supF(x) ≤ 3 + .

3.6.1. Single-valued neutrosophic sets, DarkNet, 
and GoogleNet (SVNSs–DarkNet–GoogleNet)

SVNSs–DarkNet–GoogleNet is a suggested framework for dealing 
with uncertainty in skin cancer data that combines the approximate ideas 
provided by DarkNet and GoogleNet with the indeterminacy ideas of 
SVNSs. The SVNSs–DarkNet–GoogleNet is approachable postprocessing 
for uncertainty in DarkNet–GoogleNet model predictions that draw on 
neutrosophic ideas for multiple classes. The SVNSs–DarkNet–GoogleNet 
framework is used to assess the performance metrics, including accuracy, 
sensitivity, precision, and F1 score.

To forecast the scaling values of output classes, SVNSs–DarkNet–
GoogleNet is constructed from two separate DarkNet–GoogleNet and 
they are trained using the same characteristics as input vectors. The 
DarkNet forecasts correct membership as true (T) decisions, whereas 
the GoogleNet forecasts incorrect ones as false (F). As shown in T
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Algorithm 1, the conclusion of such classification is defined by 
SVNSs-TIF values, which are generated by the uncertainty border 
zone used to compute indeterminacy values (I).

To anticipate the opposite target value (code-word/on-hot-
encoding), false GoogleNet is trained differently from true DarkNet. 
The number of distinct categories in the output is proportional to the 
length of the code-words. For example, if the true values are greater 
than the false values of the k^th bit of the code-word representing the 
k^th class is set to 1 and the rest of the bits are set to 0, then the k^th 
bit of the code-word representing the k^th The class will be set to 0, 
and the rest of the bits will be set to 1 if the false values are greater than 
the true values.

Binary predictions for multiple classifications in the SVNSs–
DarkNet–GoogleNet model are very sensitive to the genuine 
membership code-word, as shown in Step 3 of the method shown in 
Algorithm 1. When a conflict arises between two possible outcomes, 
a code-word of 0 or several bits in the same code-word each equaling 
1 in Step 3 (27–28) is employed to make a call.

If the expected value of the genuine DarkNet–GoogleNet is high, 
then the predicted value of the false membership DarkNet should 
be low, and vice versa. Due to their inconsistency, a zone of ambiguity 
has emerged. In line (1) of the SVNS definition, we  see that the 
difference between the true and false membership values may be used 
as a rough approximation of the indeterminacy membership value. If 
there is not much of a disparity between them, then the uncertainty 
will be large, and vice versa.

4. Results

The training phase was conducted on an i7 10th generation 
machine @2.6GHz using NVIDIA GeForce GTX 1060 Ti GPU. An 
x64-bit MATLAB 2021-b was employed to perform the program. 
The performance of the proposed model was evaluated using four 
quantitative measures, accuracy, sensitivity, precision, and F1 
score (36). These measures are computed as follows:

 
Accuracy

tr tr

tr fls fls tr

pos neg

pos pos neg neg

=
+

+ + +
 

(1)

 
Sensitivity Recal or true positive rate

tr

tr fls

pos

pos neg
( ) =

+
 

(2)

 
Precision positive predictive value

tr

tr fls

pos

pos pos
( ) =

+
 

(3)

 
F score

Precision Sensitivity

Precision Sensitivity
1 2= ×

×
+  

(4)

TABLE 2 Designed coding matrices for (a) multi-SVM true and (b) false learners. Where learner li is directed to deal with class cj as corresponding 
assigned values.

True L1 L2 L3 L4 L5 L6 L7 L8 False L1 L2 L3 L4 L5 L6 L7 L8

C1 1 −1 −1 −1 −1 −1 −1 −1 C1 −1 1 1 1 1 1 1 1

C2 −1 1 −1 −1 −1 −1 −1 −1 C2 1 −1 1 1 1 1 1 1

C3 −1 −1 1 −1 −1 −1 −1 −1 C3 1 1 −1 1 1 1 1 1

C4 −1 −1 −1 1 −1 −1 −1 −1 C4 1 1 1 −1 1 1 1 1

C5 −1 −1 −1 −1 1 −1 −1 −1 C5 1 1 1 1 −1 1 1 1

C6 −1 −1 −1 −1 −1 1 −1 −1 C6 1 1 1 1 1 −1 1 1

C7 −1 −1 −1 −1 −1 −1 1 −1 C7 1 1 1 1 1 1 −1 1

C8 −1 −1 −1 −1 −1 −1 −1 1 C8 1 1 1 1 1 1 1 -1

(a) (b)

FIGURE 5

Proposed work’s overall scheme utilizes neutrosophic to resolve the feature fusion GoogleNet and DarkNet.
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Algorithm 1 The pseudo-code of the proposed SVNSs.

Input: ISIC 2019 dataset, Trained DarkNet, and GoogleNet

Output SVNSs, framework performance measurements based on the estimated classes of instances.

Step 1:
Pre-process step

1. construct fused features of all dataset instances according to the proposed FFM

Step 2: Apply classification phase

2. train true and false classifiers via ECOC and design coding matrices

3. classify test set fused features for eight true classifiers

4. for i = 1; i < = total number of test instances

5. for t = 1; t < = total number of classes Cn

6. compute similarity score SS (i, t)

7. get the highest SS (i, t)

9. output the class name (label)

10. save true scores matrix T

11. classify test set fused features for 8 false classifiers

12. for i = 1; i < = total number of test instances

13. for t = 1; t < = total number of classes n

14. compute similarity score SS (i, t)

15. get the lowest SS (i, t)

16. output the corresponding class name (label)

17. save false scores matrix F

END

Step 3: SVNSs characterization phase

18. Construct indeterminacy I, code-word CW, and crisp CR matrices

19. for i = 1; i < = total number of test instances

20. for k = 1; k < = total number of classes n

21. calculate indeterminacy membership value by 1 | |I T Fi i i
k k k= − −

22. if T Fi i
k k> , CW i

k = 1 else CW i
k =0

23. 

2

3

T I F
CR

i i i
i k k k
k

 + − − =   
 

END

END

24. Resolving ambiguity

25. for each code-word i in CW

26. if only one-bit code-word (no ambiguity)

27. if all code-word k of all classes output = 0, then corresponding max 1
1:

I i
kk n
=

= and the rest = 0

28. if two classes or more have bit-code = 1, then corresponding max 1
1:

CRi
kk n
=

= and the rest = 0

Step 4: Evaluation step

1. find SVNSs class of unknown image

2. construct a confusion matrix

3. compute accuracy rate, precision, sensitivity, and f1-score

Return SVNSs classes of an unknown image

Return accuracy rate, precision, and f1-score for the SVNSs-model
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This is referred to as true positive ( trpso ), false positive ( flspos ), 
true negative ( trneg ), and false negative ( flsneg ).

Unlike traditional approaches to updating parameters in gradient 
descent, SGD requires a single record at a time. However, because of its 
dependence on forward and backward propagation for each record, 
SGD is sluggish to converge. The road to a global minimum gets 
cluttered with noise. For the trained models that utilized an adaptive 
moment estimation (ADAM) solver, the training was conducted with 
an initial learning rate of 0.00003 and a square gradient decay factor of 
0.99. While for  stochastic gradient descent with momentum (SGDM) 
solver, the training was conducted with an initial learning rate of  
0.00100 for the initial learning rate with a 0.1 Learning rate drop factor.

Table 3 illustrates the result of the first experiment, trained DAG 
and Series Networks Parameters and Accuracy in individual use to 
show the superior for each net, respectively.

The easiest technique to enhance deep neural network efficiency is to 
increase the network capacity or depth. The depth corresponds to the 
number of network layers (levels). To train deeper models, a vast amount 
of labeled data was necessary. In this manner, there are two negatives to 
be considered. To begin, there are a lot of variables to consider.

When a small, labeled dataset is utilized for training, these values may 
lead to architectural overfitting. The second problem is that utilizing a 
network with several hidden layers increases the computing cost.

Figures  6A,B shows results for the second experiment, the 
confusion matrix (8×8) for the target class feature map for both 
DarkNet and GoogleNet, respectively.

An unfamiliar picture is one with a score of less than the value 
required for its classification as a similar image. This experiment used 
25,331 photographs in total. The proposed model was trained and 
validated employing 80% of the ISIC 2019 dataset, which equates to 
20,256 photographs, and 10% of the dataset, which equates to 
2,531 images.

Figure 7 shows the confusion matrix (8×8) for the target class 
feature map for combined fused and neutrosophic.

4.1. Overall results of (SVNSs–DarkNet–
GoogleNet)

DarkNet–GoogleNet is done at this stage. True values are 
computed from the DarkNet, and false values are computed from 
GoogleNet. To make better-informed judgments in the uncertainty 
boundary zone, the SVNS characterization procedure calculates 
the indeterminacy values of the projected classes based on the 
SVNS definition. Algorithm 1 shows how the anticipated 

categorization of dataset samples is evaluated based on true (T), 
false (F), and indeterminacy (I) membership values, shows the 
code-word of all classes, and the crisp values of the eight 
test images.

Scaled values for T, I, and F membership are shown in Table 4. 
Using line (18) from Step  3  in Algorithm 1, we  estimate the 
membership values of T and F for the two classes using DarkNet 
and GoogleNet and the membership values of I  for the eight 
classes. Line (19) in Step  3 uses the code-words presented in 
Algorithm 1 to provide a binary classification of each class in the 
skin cancer dataset. The new examples of first and second image 
binary classification results are shown in Algorithm 1, where seven 
code-words are equivalent to zero, and one class is equivalent to 
one. From images 3 and 4, we have more than one class code-word 
that is equivalent to one, so we apply the equation of crisp value to 
select the max crisp value in Step 3 in line. (20) In Algorithm 1, 
from images 5 and 6 in Table 4, we have all code-words equivalent 
to zero, so we selected the max indeterminacy value from Step 3 in. 
line (21) In Algorithm 1, from Table 4 for eight images, SVNSs 
predicted eight true classes and zero false classes, DarkNet 
predicted only three true classes and five false classes, and 
GoogleNet predicted six true classes and two false classes. Table 5 
shows the SVNS classification under eight classes. Figure 6 presents 
the feature fusion for GoogleNet and DarkNet and neutrosophic. 
Algorithm 1 states the main steps in the experiment as a 
pseudo-code.

Table 6 shows the overall results for (I) the original model and (II) 
FFM and (III) combined FFM with neutrosophic experiments. Table 7 
shows the average performance to show the impact of the 
two experiments.

5. Discussion

The purpose of this study is to create a diagnostic tool that divides 
skin lesion photographs into multiple classes. We rigorously evaluate a 
variety of DL models on the same dataset, the freely accessible ISIC 2019 
database, to acquire a consistent set of measures for their performance 
because the training/testing dataset has an impact on the findings. The 
obvious imbalance in the training dataset affects how well the DL 
models perform; a set of spatial augmentation for the small instances 
classes was carried out tacitly as a remedy. The transfer learning is 
applied with the pre-trained GoogleNet, Xception, DarkNet, DenseNet, 
and AlexNet to exploit their efficient generalization and shorten training 
time. The trained models are ranked to pick the top two models for 

TABLE 3 Trained network parameters and their classification accuracy.

Parameters
Input size

Mini-batch 
size

Solver
Number of 
iterations

Classification 
accuracy %Network

AlexNet (37) [227,227,3] 227 ADAM 2,580 71.13

GoogleNet (38) [224,224,3] 114 SGDM 2,900 77.41

DenseNet (39) [224,224,3] 64 SGDM 3,043 73.44

XceptionNet (40) [299,299,3] 20 SGDM 22,727 74.29

DarkNet (41) [256,256,3] 114 ADAM 7,965 82.42
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A

B

FIGURE 6

Confusion matrix (8 × 8) for the DarkNet and GoogleNet experiment (left) before and (right) after applying the proposed FFM. (A) GoogleNet  and 
(B) DarkNet.

FIGURE 7

Resultant confusion matrix after contradiction resolving via SVNSs experiment.
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further improvements. A simple yet efficient feature fusion methodology 
is applied to boost the individual model’s performance. In addition, 
we show that using a neutrosophic environment to combine the boosted 
individuals maximizes classification performance, as evidenced by 

improvements in the collection of measurements (accuracy, precision, 
recall, and F-score).

The accuracy of the pre-trained models is listed in Table  3. 
We use the same procedure for each pre-trained model as shown in 

TABLE 4 Single-valued neutrosophic sets.

Classes SVNS AK BCC BKL DF MEL NV SCC VASC

Image 1

TRUE 6.27E-09 1.38E-07 4.45E-05 2.8E-06 0.007004 0.983134 2.04E-06 3.44E-06

FALSE 0.999827 0.99999 0.998686 0.999999 0.974136 0.004948 0.999997 0.999897

Code-Word 0 0 0 0 0 1 0 0

Indeterminacy 0.000173 1.04E-05 0.001358 4.11E-06 0.032868 0.021814 5.02E-06 0.000107

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.333333 0.985457 0.333333 0.333333

Image 2

TRUE 1.5E-09 0.002268 1.14E-05 2.82E-07 0.991507 3.46E-07 4.74E-07 7.79E-07

FALSE 0.999998 0.999967 0.998741 0.999854 0.032554 0.991417 0.999699 0.999431

Code-Word 0 0 0 0 1 0 0 0

Indeterminacy 2.39E-06 0.002301 0.001271 0.000146 0.041047 0.008583 0.000301 0.00057

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.972635 0.333333 0.333333 0.333333

Image 3

TRUE 2.79E-08 1.04E-07 1.85E-06 5.24E-05 0.91627 0.431186 2.52E-06 3.94E-08

FALSE 0.999978 0.999988 0.998547 0.999833 0.686364 0.301565 0.99951 1

Code-Word 0 0 0 0 1 1 0 0

Indeterminacy 2.17E-05 1.25E-05 0.001455 0.000219 0.770094 0.870379 0.000492 3.94E-08

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.486604 0.419747 0.333333 0.333333

Image 4

TRUE 1.79E-07 3.5E-09 5.21E-08 4.74E-05 0.730593 0.750079 5.19E-07 3.58E-08

FALSE 0.999598 0.998762 0.996136 0.999917 0.304397 0.431489 0.99994 0.999985

Code-Word 0 0 0 0 1 1 0 0

Indeterminacy 0.000402 0.001238 0.003864 0.00013 0.573804 0.68141 6.06E-05 1.47E-05

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.617464 0.545727 0.333333 0.333333

Image 5

TRUE 5.67E-07 0.00043 0.000133 3.69E-09 0.004654 0.858638 5.46E-05 9.5E-05

FALSE 0.999527 0.99961 0.996572 0.999958 0.00835 0.97419 0.999923 0.998474

Code-Word 0 0 0 0 0 0 0 0

Indeterminacy 0.000473 0.00082 0.00356 4.22E-05 0.996304 0.884448 0.000131 0.001621

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

Image 6

TRUE 1.24E-09 0.21793 0.131226 0.002955 0.015759 6.38E-06 0.005419 5.97E-07

FALSE 0.999643 0.996873 0.895743 0.997799 0.995986 0.934151 0.781645 1

Code-Word 0 0 0 0 0 0 0 0

Indeterminacy 0.000357 0.221057 0.235483 0.005155 0.019774 0.065856 0.223774 5.97E-07

Crisp Value 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333

Image 7 TRUE 2.88374E-05 4.33938E-07 0.13733686 0.00021989 0.03810337 0.41384637 0.00015349 5.45065E-06

FALSE 0.99969565 0.99934214 0.42656824 0.94402712 0.97042959 0.76180088 0.99688428 0.99993538

Code-Word 0 0 0 0 0 0 0 0

Indeterminacy 0.00033317 0.00065829 0.71076862 0.05619277 0.06767378 0.65204548 0.00326921 7.00621E-05

Crisp Value 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333

Image 8 TRUE 1.66308E-06 0.81519597 1.80939E-09 2.78238E-10 0.96386611 3.09955E-07 6.69544E-06 9.52509E-07

FALSE 0.99988746 0.03310882 0.98594981 0.99999880 0.77315056 0.99997746 0.99433112 0.99966990

Code-Word 0 1 0 0 1 0 0 0

Indeterminacy 0.00011419 0.21791284 0.01405018 1.19237E-06 0.80928444 2.28405E-05 0.00567557 0.00033104

Crisp Value 0.33333333 0.85472477 0.33333333 0.33333333 0.46047703 0.33333333 0.33333333 0.33333333

The bold values are illustrate the value that the code will use to distinguish between the eight classes to determine one of them, either crisp value or indeterminacy.
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Figure 3. There are three processes involved in achieving transfer 
learning: altering the last learnable layer, freezing the initial layers, 
and accelerating the learning process for the deeper layers. The 
accuracy for the Xception, AlexNet, and DenseNet models stays the 
same and does not increase with the number of epochs 
approximately 0.74, 0.71, and 0.73 correspondingly as stated in 
Table 3.

After a few epochs, the loss function reaches a minimum and stays 
there, indicating that the model has stopped learning. Furthermore, as 
more epochs are added, both GoogleNet and DarkNet’s accuracy 
improves, yielding converged accuracy values of 0.77 and 0.82, 
respectively. Table 6 also includes the additional measures (precision, 
recall, and F-score). DarkNet, which has a value of 0.75, and GoogleNet, 
which has a value of 0.7, both produce the highest precision. DarkNet 
has the highest recall, followed by GoogleNet with values of 0.74 and 
0.64, respectively. Finally, DarkNet has the greatest F-score when 
compared to GoogleNet, with a value of 0.84. These findings 
demonstrate that GoogleNet and DarkNet perform similarly on this 
database in terms of accuracy and F-score, with GoogleNet having a 
higher overall precision. As a result, DarkNet is the skin cancer detection 
model with the highest overall efficiency. Figure  4 is a qualitative 
visualization via the t-SNE to echo the proposed FMM efficiency.

The ECOC flexibility scheme eases implementing the proposed 
classification ensemble method as explained in Subsection 2.3.4. That 
flexibility appears obviously in the designed coding matrices in Table 2 
which construct the true and false classifiers for DarkNet and 
GoogleNet, respectively. The disagreement between each true classifier 
and its opponent about an instance classification class creates 
ambiguity. The proposed scheme adopts the SVNSs to resolve that 

TABLE 6 Overall results of combined fused and neutrosophic experiments for eight classes.

Class
VASC SCC NV MEL DF BKL BCC AKIEC

Metric/Model

Precision (%)

GoogleNet

Original 

Model
84.0 53.5 84.6 68.4 63.6 65.2 73.6 63.5

Second level 

Fusion
91.3 56.5 86.0 72.3 63.2 67.1 75.4 57.4

Sensitivity (%)

Original 

Model
84.0 36.5 89.7 63.7 58.3 55.7 84.0 37.9

Second level 

Fusion
84.0 41.3 91.1 65.9 50.0 60.7 84.0 40.2

F1-score (%)

Original 

Model
91.2 69.1 85.5 77.1 77.6 76.4 82.6 76.8

Second level 

Fusion
95.3 71.6 87.0 80.0 77.2 77.9 83.8 72.1

Precision (%)

DarkNet Original 

Model
79.3 65.1 88.1 78.5 72.0 75.4 78.4 64.6

Second level 

Fusion
83.3 68.0 90.8 75.4 85.0 78.7 82.7 69.0

Sensitivity (%)

Original 

Model
92.0 44.4 92.0 67.9 75.0 71.4 87.3 60.9

Second level 

Fusion
80.0 54.0 91.6 76.8 70.8 74.8 89.5 56.3

F1-score (%)

Original 

Model
88.3 78.3 88.8 84.3 83.5 83.9 86.0 77.7

Second level 

Fusion
90.8 80.4 90.9 82.6 91.7 86.2 88.9 80.9

SVNSs-DarkNet-GoogleNet Precision (%) 88.5 72.9 89.8 78.9 100.0 80.0 83.6 78.5

Sensitivity (%) 92.0 55.6 94.1 75.4 70.8 70.2 91.9 58.6

F1-score (%) 84 93.8 83.8 90.7 85.0 99.9 86.9 89.6

TABLE 5 SVNSS classification of eight classes.

Image 
#

DarkNet GoogleNet SVNS State 
True

Image 1 NV NV NV NV

Image 2 MEL MEL MEL MEL

Image 3 MEL NV MEL MEL

Image 4 NV MEL MEL MEL

Image 5 NV MEL MEL MEL

Image 6 BCC SCC BKL BKL

Image 7 NV BKL BKL BKL

Image 8 MEL BCC BCC BCC
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ambiguity to tilt the balance toward the correct skin class as listed in 
Algorithm 1. Moreover, Table  4 shows a practical application of 
Algorithm 1 on a sample from the test set with and without 
classification results agreement.

Table 8 recapitulates the comparative study between the proposed 
study and the recent other two related studies using the same dataset 
and the same number of classes.

6. Conclusion

Numerous studies have been conducted on the classification of 
skin cancer, but most of them were not successful in extending their 
research to the high-performance classification of various classes of 
skin cancer. The proposal investigates leveraging the classification 
accuracy in two successive stages: first, boosting the classification 
accuracy of the trained networks individually. A proposed feature 
fusion methodology is applied to enrich the extracted features’ 
descriptive power, which raises the accuracy by approximately 2%. 
The second stage explores how to combine the top two networks for 
further improvement. A set of true and false classifiers is built via the 
ECOC scheme, utilizing the fused features of the top two networks. 
Each true classifier and its opponent may disagree with the 
classification result, which establishes a contradiction. This 
contradiction is quantified by an indeterminacy set and resolved by 
the single-valued neutrosophic sets, which add 1.2% accuracy. The 

proposed study is generic and applicable to various classification tasks, 
and the extensive experiments conducted divulge its superiority and 
efficiency. In further research, the classification accuracy maybe 
improved using a preprocessing data purification technique to remove 
occlusions and hair from dataset instances.
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