
CD34 positive cells as endothelial
progenitor cells in biology and
medicine

Mehdi Hassanpour1,2, Amankeldi A. Salybekov1,2,3,
Shuzo Kobayashi1,3 and Takayuki Asahara1,2*
1Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura,
Kanagawa, Japan, 2Center for Cell Therapy and Regenerative Medicine, Shonan Kamakura General
Hospital, Kamakura, Kanagawa, Japan, 3Kidney Disease and Transplant Center, Shonan Kamakura General
Hospital, Kamakura, Kanagawa, Japan

CD34 is a cell surface antigen expressed in numerous stem/progenitor cells
including hematopoietic stem cells (HSCs) and endothelial progenitor cells
(EPCs), which are known to be rich sources of EPCs. Therefore, regenerative
therapy using CD34+ cells has attracted interest for application in patients with
various vascular, ischemic, and inflammatory diseases. CD34+ cells have recently
been reported to improve therapeutic angiogenesis in a variety of diseases.
Mechanistically, CD34+ cells are involved in both direct incorporation into the
expanding vasculature and paracrine activity through angiogenesis, anti-
inflammatory, immunomodulatory, and anti-apoptosis/fibrosis roles, which
support the developing microvasculature. Preclinical, pilot, and clinical trials
have well documented a track record of safety, practicality, and validity of
CD34+ cell therapy in various diseases. However, the clinical application of
CD34+ cell therapy has triggered scientific debates and controversies in last
decade. This review covers all preexisting scientific literature and prepares an
overview of the comprehensive biology of CD34+ cells as well as the preclinical/
clinical details of CD34+ cell therapy for regenerative medicine.
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1 Introduction

The CD34 surface marker is a sialomucin transmembrane protein composed of the
haematopoietic progenitor cells (HPCs) antigen, podocalyxin, and endoglycan, which is a
marker of vascular endothelial cells (ECs), HPCs, and endothelial progenitor cells (EPC)
(Nielsen and McNagny, 2008). Definitely, using this cell marker allowed phenotyping and
separation of circulating EPCs, which incorporate into ischemic areas and facilitate
vasculogenesis (Asahara et al., 1997). Following the recognition of EPCs in peripheral
blood (PB)-derived CD34+ cells (Asahara et al., 1997; Shi et al., 1998), EPC biology has been
developed for years. Based on the initial hypothesis of hemangioblast, a natural origin of
hematopoietic and endothelial lineages in embryogenesis, the identification of EPCs used cell
surface markers of hematopoietic stem cells (HSCs) or HPCs, such as CD34, CD133,
VEGFR-2, CXCR4, CD105, etc., in human (Risau et al., 1988; Pardanaud et al., 1989; Flamme
and Risau, 1992). Most of early research phase exploited CD34+ or CD133+ cell in human
bone marrow (BM), PB or cord blood (CB) mononuclear cells (MNCs) and showed its
commitment into endothelial lineage in vitro and its incorporation into ECs in
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neoangiogenesis in vivo (Murohara et al., 2000a; Gehling et al., 2000;
Peichev et al., 2000; Quirici et al., 2001a; Kocher et al., 2001;
Friedrich et al., 2006). These outcomes were backed up by the
indisputable human clinical reports, indicating the incorporation of
cells derived from CD34+ cells into the human vascular networks, in
aortas of radiation syndrome patients (Suzuki et al., 2003), skin and
gut from hematologic malignancy recipients (Jiang et al., 2004) and
various cancer patients (Peters et al., 2005). Nevertheless, more than
2 decades of advances from the initial identification of EPCs, CD34+

or CD133+ cells are still pivoted as representative EPC-enriched cells
for scientific EPC biology studies and therapeutical applications in
clinical researches. As discussed later, the populations in circulation
unintentionally comprehend both hematopoietic and non-
hematopoietic lineage cell-derived EPCs (Figure 1).

CD34+ populations have been the subject of far-reaching
investigations and have been believed to have potential
applications in regenerative therapy because of their unique
regenerative properties (Velagapudi et al., 2019). In addition to
the safety, feasibility, and potential efficacy of CD34+ EPC therapy
demonstrated in the previous outcomes, as EPCs, CD34+ cells
naturally have the capacity for self-renewal, making them a
highly valuable source of stem cells in clinical settings and
suggesting an important role for EPCs in therapeutic
neovascularization. This may provide a reasonable justification
for transplanting purified CD34+ EPCs in garden variety of
disease. Based on the scientific and medical progress in recent
EPC biology, CD34+ cells are reviewed in terms of progenitor
biology for vasculogenesis, paracrine functions for angiogenesis
and anti-inflammation, potency to differentiate into ECs or
transdifferentiate, and therapeutic development in ischemic and
inflammatory diseases (Figure 2).

2 CD34+ cell as a progenitor for ECs

The fact that the phenotype and function of EPCs must be
discussed in terms of their cultured phenotype, “EPCs ex vivo,”
has been viewed as an issue in the previous studies (Figure 2).
Biologically, primary immature cells differentiating into ECs in
the living organism should be referred as EPCs. However, many
discussions have come to the conclusion that EPC biology is
based on studies on differentiated cells into ECs in culture ex vivo,
as is unavoidable in the progress of biological research. We must
consider whether these debates about EPCs ex vivo are eventually
aimed at “EPCs in vivo” cell biology. In this respect, we explain
EPC biology in terms of its in vivo origin. One can distinguish two
types of circulating EPCs in vivo, hematopoietic lineage cell-
derived EPCs (hEPCs) and non-hematopoietic lineage cells-
derived EPCs (non-hEPCs) (Asahara et al., 2011). hEPCs are
cells derived from HSCs or HPCs mainly derived from the BM
and upon stimulation capable of circulating as blood cells,
represented for example by colony-forming (CF)-EPCs, non-
CF-EPCs as differentiating EPCs in short-term culture,
myeloid EPCs, lymphatic EPCs, angiogenic cells, etc. Non-
hEPCs are neither likely derived from HSCs nor HPCs and
can be isolated as EC phenotype ex vivo in adhesive long-term
cell cultures from blood or tissue samples. Non-hEPCs supposed
to mobilize from resident EPCs in organ blood vessels. Resident
EPCs are considered as endothelial colony forming cell (ECFC)-
producing cells (Patel et al., 2013a; Lin et al., 2013; Alphonse
et al., 2014; Green et al., 2017a), and have been identified in mice
such as endothelial stem cells or endovascular progenitors (Patel
et al., 2017; Wakabayashi et al., 2018), despite the fact that this
has not yet been defined in human terms.

FIGURE 1
The concept of different CD34+ EPC types and their characteristics.
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2.1 CD34+ cells as non-hEPCs

Non-hEPC is almost unified to one kind of endothelial
outgrowth cells (EOCs). EOCs-produced from PB ex vivo
reported initially by Lin et al. (2000). The concept of adhesive
endothelial lineage cell stages using the original culture
conditions disclosed clonal colony-forming units of outgrowth
ECs cultured from MNCs or blood vessel ECs by Ingram and
Yoder et al. (Ingram et al., 2004; Ingram et al., 2005a). These
proliferative endothelial lineage cells were termed ECFC, also
known in the literature as EOCs or late EPCs. ECFCs do not likely
represent the primary “EPC in vivo” phenotype found in our
body but rather reflect an EC phenotype emerging from cultured
cells (Lin et al., 2000) or vessel wall ECs (Figure 1) (Ingram et al.,
2005b). Questions regarding the definition of the primary EPC
underlying the ECFC phenotype and in vivo origin are still
missing. Initially, ECFCs were identified from the long-term
culture of PB (Lin et al., 2000; Hur et al., 2004) or CB-MNCs
(Ingram et al., 2004). These were followed by publication of
Smadja et al. and Delorme et al., showing ECFCs can be derived
from CD34+ cells or CD146+/CD34+/CD45+/CD133+ or CD177+

cells (Delorme et al., 2005; Smadja et al., 2005; Lee et al., 2013;
Boisson-Vidal et al., 2018). Additional studies by Case et al. and
Timmermans et al. revealed that CD34+/CD45− cells could give
rise to ECFCs but not a hematopoietic colony (Case et al., 2007;
Timmermans et al., 2007). A later publication by Tura et al.
confirmed CD34+/CD146+/CD133− cells are the source of ECFC
precursor cells (Tura et al., 2013). They also claimed ECFC
precursors might not be derived from BM, because BM-MNCs

did not contain CD34+/CD146+/CD133− cells and did not give
rise to any ECFC colony. This discussion was partly supported by
a recent publication using fluorescence in situ hybridization
analysis of ECFCs derived from allogenic BM transplant
patients (Fujisawa et al., 2019). The findings about the
fraction of ECFC-producing cells in vivo are somewhat
contradicting between the publications regarding
CD45 positivity and CD133 positivity, while CD34 positivity
is agreed by common consent.

ECFCs have been successfully isolated from not only CB and PB
but also from fat tissue (Lin et al., 2013), placenta (Patel et al.,
2013b), lungs (Alphonse et al., 2014) and saphenous vein (Green
et al., 2017b); these results imply that ECFCs may derived from
tissue resident vasculature progenitors. Recent reports indicate a
candidate of ECFC origin locates in ECs of blood vessels (Salybekov
et al., 2022). The mechanism of non-hEPC mobilization into
circulation and physiological functions in kinetics are not
defined yet.

Although the proof of BM-derived ECFCs is not approved by the
former reports, there are several publication demonstrating that a
pluripotent stem cell known as “very small embryonic-like stem cell”
(VSEL) is a lineage-negative, CD34+, CD133+ and CD45− cell with
very small size (<6 µm length) located in BM, and differentiate into
ECFC-like ECs in human (Havens et al., 2014; Guerin et al., 2015;
Lahlil et al., 2018; Domingues et al., 2022). Also other reports
disclosed VSELs derived from cord blood CD34+ cell
differentiated into ECFCs ex vivo (Lahlil et al., 2018) (Domingues
et al., 2022). We need further insights and discussions regarding the
origin of ECFCs.

FIGURE 2
Vasculogenic, angiogenic, and anti-inflammatory mechanisms of CD34+ cells.
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2.2 CD34+ cells as hEPCs

Postnatal EPCs was thought closely related to that of HSC
populations, both being isolated by cell surface antigens,
including CD34, CD133, VEGFR-2, CXCR4, CD105, etc., in
human, or c-Kit, Sca-1, Flk-1, etc., in mouse (Peichev et al., 2000;
Quirici et al., 2001b; Eggermann et al., 2003; Handgretinger et al.,
2003; Alessandri et al., 2004). However, the identification of an exact
primary hEPC phenotype was missing, mainly due to the lack of a
definitive assay system capable of determining and distinguishing an
EPC unambiguously from an HSC.

The initially developed culture assays and colonies
(Murohara et al., 2000b; Kalka et al., 2000; Hill et al., 2003)
grouped multifarious EPCs into single qualitative class: “adhesive
cultured EPCs”, without any hierarchy or proper identification of
unwanted cells, while the colonies detected by Hill’s colony assay
(Hill et al., 2003) turned out to consist of not colony-forming
EPCs, but mainly other hematopoietic cells (Hur et al., 2007;
Rohde et al., 2007). Later, an improved EPC-colony forming
assay (EPC-CFA) was developed, challenging the field’s
traditional views and opening the door to illustrating the
developmental hierarchy of hEPCs (Masuda et al., 2011).

2.2.1 Colony forming hEPCs
The EPC-CFA enables the description and discrimination of

two different forms of EPC-CFUs derived from a single cell; small
cell-sized EPCs as “primitive CF-EPCs”, which are probably
derived from more immature/proliferative EPCs, and large
cell-sized EPCs as “definitive CF-EPCs”, which have more
tendency to differentiation and functional participation in
neovasculogenesis-related process (Table 1). The definitive CF-
EPCs are more talented to differentiate into a non-colonizing,
large cell-sized EPC phenotype, parallel to classical EPC culture-
derived EPCs (Dimmeler et al., 2001; Vasa et al., 2001) and are
considered as newly emerging EPCs, leaving the colony-forming
EPCs niche (Figure 1). Masuda et al. demonstrated that
approximately 22.0% of a single CB-CD133+ gave rise to
primitive or definitive EPC colonies (16.8% or 5.2%,
respectively) in EPC-CFA. This assay can further be combined
with an HPC colony assay to elucidate the rationale of a possible
“bloodline” between EPCs and HPCs. EPC-CFA along with HPC-
CFA, opens the door for additional visions into the origin and
characteristics of hematopoiesis and neovasculogenesis in the

adult (Masuda et al., 2011). An only CB-CD133+ cell could
produce both EPC and HPC colonies at a rate of 36.3% after
particular culture conditioning for 7 days.

2.2.2 Myeloid and Lymphoid hEPCs
Several former publications claimed that myeloid early EPCs

like myeloid angiogenic cells (MACs) and circulating angiogenic
cells (CACs) should not be involved in the EPC category, because
they were not committing into totally differentiated ECs but
functioning as myeloid cells to deliver angiogenic mediators
(Medina et al., 2017). As this partly agreeable, myeloid EPCs
are not only MACs or CACs but also progenitor cells that
differentiate into ECs of blood vessel in tumors and
regenerative tissues. Bailey et al. described common myeloid
progenitors (CMPs) and granulocyte/macrophage progenitors
(GMPs) could differentiate into functional ECs by 1.3% and
0.8%, respectively (Bailey et al., 2004; Bailey et al., 2006),
followed by Romangnani et al. showed that CD14+/CD34low

MNCs with stem cell phenotypic and functional features
represent the major source of circulating EPCs with high
vasculogenic property (Romagnani et al., 2005). Furthermore,
the research flow of myeloid EPCs is extended to lymphatic EPCs,
which are derived from myeloid cells. The concept of lymphatic
vessel development has recently been revised by evidence rising
from both mouse and human studies for the critical role of
lymphatic EPCs (LEPCs) (Ran and Wilber, 2017; Ran and
Volk-Draper, 2020). Adult LEPCs have been found to be
derived from wide variety of ancestors, including HSC (Jiang
et al., 2008), MSC (Conrad et al., 2009), ADSC (Yang et al., 2015),
and myeloid stem or progenitor cells (Lee et al., 2010), with the
myeloid lineage gaining popularity as the primary source
(Maruyama et al., 2005; Zumsteg et al., 2009; Li et al., 2014).
BM-derived immature myeloid cells recruit to inflamed and
ischemic sites (Maruyama et al., 2005) and tumors (Allavena
et al., 2008; Pollard, 2008), where they help to develop vasculature
(Schoppmann et al., 2006; Ding et al., 2012). One of the
compelling lines of evidence for myeloid EPCs is the ability to
differentiate from primary blood monocytes under in vitro
conditions, demonstrating de novo property of lymphatic
phenotype expressing such as VEGFR3 and LYVE-1,
endothelial-specific phenotype, and functional behaviors
limited to vasculature cells (Van’t Hull et al., 2014; Tan et al.,
2014), concurrent with the loss or reduction of stem, myeloid,

TABLE 1 Phenotypes of CD34+ EPCs.

Phenotype Assay Flow cytometry antigens

Positive Negative

non-hematopoietic EPCs ECFCs ex-vivo identified in ECFC culture assay CD34/CD31/CD144 (CD133+/−) CD45/CD14/
CD41a

hematopoietic EPCs colony forming EPCs identified by EPC-CFA assay CD34/CD133 CD14

Myeloid EPCs EC culture differentiation from CMP or GMP CD34/CD38/CD117/Tie2 CD10/CD135

Lymphoid EPCs VEGFR3/LYVE-1 expressing EC differentiation from
myeloid cells

CD34/CD38/VEGF-R3/CD11b

EPCs, Endothelial progenitor cells; ECFCs, Endothelial colony-forming cells.
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and hematopoietic markers (Salven et al., 2003; Nguyen et al.,
2009).

3 CD34+ cells as commanders for
angiogenesis and anti-inflammation

3.1 EPC-derived angiogenic proteins

EPCs are thought to release autocrine elements for their
nutritional support, as well as paracrine factors to develop
vasculature and repair of impaired vessels (Figure 2). In vivo
EPCs, isolated as CD34+ from PB or BM, have been reported to
secrete numerous angiogenic elements, such as vascular endothelial
growth factor (VEGF), hepatic growth factor (HGF), insulin growth
factor-1 (IGF-1), interleukin-8 (IL-8), fibroblast growth factor (FGF)
(Majka et al., 2001; Jarajapu et al., 2014) angiopoietin-1, platelet-
derived growth factor (PDGF) (Fang et al., 2020), etc. Ex vivo EPCs
such as early EPCs as well as ECFCs also represented a similar
finding to express a large number of angiogenic factors although the

level of VEGF and IL-8 were higher in early EPCs than ECFCs
(Table 2) (Cheng et al., 2013).

3.2 EPC-derived anti-inflammatory proteins

Collaborative factors with the capacity to promote both
immunomodulation and anti-inflammation, such as TGF-β, IL-
10, IL-4, IL-6, PGE2, M-CSF, G-CSF, adenosine, etc., have been
investigated for years and reported to be expressed by properly
stimulated hematopoietic lineage cells (Motz and Coukos, 2011;
Rivera and Bergers, 2015). This co-creative property inherently
applies to EPCs in regenerative tissues. EPCs secrete multiple
factors for both anti-inflammation and immunosuppression, such
as VEGF (Jarajapu et al., 2014), PGE2 (Carneiro et al., 2019), TGF-β
(Acosta et al., 2019), IL-4, IL-6 (Kado et al., 2018), IL-10 (Zullo et al.,
2015) and G-CSF (Wen et al., 2019; Alwjwaj et al., 2021; Yan et al.,
2022). Especially, IL-10 and TGF-β are expressed and play a key role
in immunomodulation and anti-inflammation in CD34+ cells from
PB or BM (Majka et al., 2001; Ratajczak et al., 2013; Jarajapu et al.,

TABLE 2 Angiogenesis and anti-inflammatory proteins secreted by EPCs.

Secreted proteins Type of EPCs Effects Ref

VEGF ECFCs ↓ inflammation Jarajapu et al. (2014)

HGF ECFCs ↓ inflammation Majka et al. (2001), Jarajapu et al.
(2014)

↑ immunosuppression

IGF-1 ECFCs ↑anti-inflammatory response Majka et al. (2001)

Ang-1 ECFCs ↑ anti-inflammatory response Majka et al. (2001)

PDGF ECFCs ↓ inflammation Fang et al. (2020)

↑ immunosuppression

FGF ECFCs ↓ inflammation Majka et al. (2001)

PGE2 ECFCs ↓platelets translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to
collagen

Carneiro et al. (2019)

IL-4 Colony forming
EPCs

↑ immunosuppression and anti-inflammatory response Kado et al. (2018)

IL-6 Colony forming
EPCs

↑angiogenesis and immunosuppression Kado et al. (2018)

IL-8 Myeloid EPCs ↑ angiogenic response Cheng et al. (2013)

IL-10 ECFCs ↑ immunosuppression Zullo et al. (2015)

↑ anti-inflammatory response

TGF-β Colony forming
EPCs

↓pro-inflammatory cytokine Acosta et al. (2019)

↑ anti-inflammatory response

↑immunosuppression

M-CSF ECFCs ↑ immunosuppression Alwjwaj et al. (2021)

↓inflammation

G-CSF Colony forming
EPCs

↑ immunosuppression Wen et al. (2019)

↑ anti-inflammatory response
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2014). IL-10 is a strong anti-inflammatory and immunoregulatory
cytokine with a variety of direct and indirect effects on innate and
adaptive immunity through the induction of M2 macrophages and
Treg polarization (Mosser and Zhang, 2008). In acute myocardial
infarction (MI) models, IL-10 suppresses in vivo inflammatory
responses, which contributes to improved myocardial recovery.
TGF-β1 is a multifunctional cytokine involved in a variety of
essential activities, such as embryonic evolution, cellular
development, wound recovery, and immunomodulation, which
contributes to the anti-inflammatory feedback by encouraging the
proliferation of Tregs and inhibiting the differentiation of Th cells
(Mantel and Schmidt-Weber, 2011).

3.3 EPC-derived miRNAs in extracellular
vesicles

MicroRNAs (miRNAs) are a class of non-coding RNAs and have
critical functions in the modification of gene expression. Most of them
are transcribed from DNA into primary miRNAs, modified into initial
miRNAs, and ultimately made into mature miRNAs (Mohr and Mott,
2015). Seminal study showed that CD34+ EPC secreted extracellular
vesicles (EVs) and activated an angiogenic program in ECs through
horizontal mRNA transfer (Table 3) (Deregibus et al., 2007; Sahoo et al.,
2011; Xu et al., 2020; Xiong et al., 2022).

3.3.1 Cardiovascular diseases
Cardiovascular diseases are based on pathological process of

ischemia caused by circulatory insufficiency and inflammation
induced by hematopoietic cell invasion, requiring angiogenic
and anti-inflammatory microenvironment for tissue recovery.
Preclinical studies have shown that EVs derived from CD34+

have superior therapeutic effects on various ischemic diseases
(Sahoo et al., 2011; Bitzer et al., 2012; Mathiyalagan et al.,
2017). Sahoo et al. have shown pro-angiogenic activity of EVs
from conditioned media of mobilized human CD34+ cells (CD34+-
EVs) possibly through miR-126 and 130a (Sahoo et al., 2011).
According to Mathiyalagan and colleagues, silencing miR-126-3p
in CD34+-EVs derived from G-CSF mobilized PB-MNCs
eliminated their angiogenic behavior and other constructive
activities in vitro as well as in vivo. In addition, infusion of
CD34+-EVs improved miR-126-3p levels in mouse ischemic
limbs while having no impact on endogenous miR-126-3p
synthesis, implying a horizontal transfer of efficient miR-126-3p
to the ischemia site (Mathiyalagan et al., 2017). Dellet et al.
documented highly expressed miRs identified in EVs produced
by CD31+/CD34+/CD146+ ECFC and ECFC obtained from
umbilical cord blood (UCB)-MNCs, including miR-10a/b, miR-
21-5p, miR-30a-5p, miR-126-5p, miR151a-3p, let-7 families, etc.
(Dellett et al., 2017). However, EPC-EVs works for anti-
inflammatory effect on microenvironment of ischemia tissues as

TABLE 3 Angiogenesis and anti-inflammatory EV-miRs secreted by EPCs.

Secreted miRs Type of
EPCs

Mechanisms Effects Ref

miR-126 and miR-130a ECFCs ↓SPRED-1, VCAM, MCP1 ↑angiogenesis Sahoo et al. (2011)

↓inflammation and oxidative
stress

miR-221-3p Colony
forming EPCs

↑ VEGF, CD31 Ki67 ↑angiogenesis Xu et al. (2020)

↓AGE-RAGE signaling pathway ↓inflammatory response

miR-30d-5p Colony
forming EPCs

↑M2 macrophages, CCL17, CCL22, VEGF, FGF21, NRF2,
and HO-1

↑angiogenesis and
immunosuppression

Xiong et al. (2022)

↓ M1 macrophages, IL-1β and TNF-α ↓inflammatory response

miR-126-3p ECFCs ↓SPRED-1 ↑angiogenesis Mathiyalagan et al.
(2017)

↑VEGF, ANG1, ANG2, MMP9, TSP1

10a/b, miR-21-5p, miR-30a-5p, miR-
126-5p, let-7 families, miR151a-3p

ECFCs ↑SERPINB, TPM2, FOXD1, MMP1, MIR 1974,
TMEM200A, DSE, TMEM154, TPM2, FBLN2

↑angiogenesis and anti-
inflammation

Dellett et al. (2017)

↓ ALDH1A1, ITM2A, CRYAB, SULF1, AIF1L, CCL2, BGN,
EDN, ACVRL1

miR-218-5p and miR-363-3p ECFCs ↑ CD31, VEFGR2 ↑angiogenesis and anti-
inflammation

Ke et al. (2021)

↓ Vimentin, α-SMA by targeting p53/JMY-mediated cell
apoptosis and mesenchymal-endothelial transition

miR-21-5p ECFCs ↑syndecan-1 ↑ anti-inflammatory response Zhang et al. (2021)

↓RUNX1, heparanase-1 ↓ apoptosis and oxidative
stress response

miR-486-5p ECFCs ↑Akt phosphorylation ↓inflammatory response Viñas et al. (2016)

↓ PTEN

AGEs, advanced glycation end-products; RAGE, advanced glycation end-product receptor.
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well. Later, Venkat et al. reported that EVs derived from
CD133+EPC administration increased miR-126 levels while
decreasing in MCP-1 and VCAM1, leading to decreased cardiac
inflammation and oxidative stress after stroke in T2DM mice
(Venkat et al., 2021). Also, BM-ECFC-derived EVs mitigate
atherosclerosis, inflammation response, and atherosclerosis-
related endothelial dysfunction in the experimental mice DM
models (Bai et al., 2020). Ke et al. also reported that PB-EPC-
EVs including miR-363-3p and miR-218-5p have cardioprotective
effects on MI damage by targeting JMY-related apoptosis and
mesenchymal-endothelial transition (Ke et al., 2021). Zhuo et al.
realized that Rab27a deletion (as one of the major genes involved
in EV biogenesis) weakened the therapeutic functionality of EPCs
in MI conditions. Mechanistically, Rab27a deletion inhibits the
PI3K/cyclinD1/Akt/FoxO3a pathway and reduces EV secretion in
CD34+/VEGFR-2+ EPCs (Zhou et al., 2021). In turn, it is worth
noting that suppression of PI3K/Akt induces inflammatory
cascades (Schabbauer et al., 2004; Zhao et al., 2019). Therefore,
it could be concluded that EV knockouts in EPCs initiate the
inflammation process, which is another reason for the anti-
inflammatory properties of intact EPCs for CVDs.

3.3.2 Acute lung injury/acute respiratory distress
syndrome

Acute lung injury/acute respiratory distress syndrome (ALI/
ARDS) mortality rate is approximately 40% and mostly caused by
sepsis, pneumonia, severe traumas, etc. (Dushianthan et al.,
2011). Initial reports showed that BM derived CD31+/Flk1+/
CD34+-EV infusion significantly decreased LPS-induced lung
inflammatory process, representing convincing anti-
inflammatory effects of these cells. The histologic analysis of
CD34+-EVs injected group revealed restricted edema, neutrophil
recruitment, and cytokines/chemokines level reduction in the
bronchoalveolar lavage (BAL) (Wu et al., 2018). From a
mechanistic viewpoint, miR-126 is abundant in CB-EPC-EVs,
and upregulation of miR-126-3p may target PIK3R2, whereas
upregulation of miR-126-5p prevents HMGB1 from acting as an
inflammatory alarmin and VEGF- from acting as a permeability
factor (Zhou et al., 2019). EPC-EVs has constructive functions to
improve ALI/ARDS consequences, and additional investigations
are mandatory to outline the best EV delivery method to
damaged tissue.

3.3.3 Sepsis
Sepsis is systemic inflammatory condition provoked by

pathogens causing in tissue/organ malfunction. Recently,
reports have underlined that EPC therapy has advantageous
effects on sepsis models (Fan et al., 2014; Sun et al., 2020).
Fan et al. demonstrated that CB-CD34+/KDR+ cells and SDF-
1α administration synergistically improve septic animal survival
through overexpression of miR-126 and -125b, key miRs in
preservation of EC functionalities (Fan et al., 2014).
Following, they revealed that the main EPC defensive effects
on the microvascular after sepsis emergence occur through
exosomes-mediated transfer of miRs like miR-126-3p and
miR-126-5p (Zhou et al., 2018). Mechanistically, Zhang et al.
suggested that EPCs mitigated sepsis-induced kidney injury by
secreting miR-21-5p-containing exosomes through the silencing

of RUNX1 (Zhang et al., 2021). EPC-EVs miR-126-3p and 5p
suppress damage-associated molecular patterns (DAMP)-
stimulated HMGB1 and vascular cell adhesion molecule 1
(VCAM1), however blockage of miR-126-3p and 5p by miR-
126-3p/5p inhibitors troubled the valuable functions of EPC-
exosomes. Therefore, EPC-EVs prevent unfavorable septic
problems through miR-1263p/5p delivery (Zhou et al., 2018).

4 Pre-clinical proof of concept for
CD34+ cell therapy

Hereby, we highlight a small portion of the numerous animal
investigations that have been conducted to examine the regenerative
application of CD34+ EPC therapy for hypoxic organ regeneration
(Table 4).

4.1 Hindlimb ischemia

According to studies, CB-CD34+ EPCs concentrated in the
regenerating muscles and improved vasculogenesis and in a
murine hindlimb ischemia model, leading to enhanced limb
salvage and hemodynamic recovery (Murohara et al., 2000a;
Schatteman et al., 2000; Madeddu et al., 2004). Collectively,
CD34+ EPCs efficiently improve blood flow and vasculogenesis in
the hindlimb ischemic models.

4.2 Myocardial infarction

According to data from a mouse model of experimental acute
myocardial infarction (AMI), human CD34+ cells imbedded in
the hypoxic/ischemic region and shifted toward cardiomyocytes
and ECs, which related to improved heart utility (Kawamoto
et al., 2006). Shalaby et al. compared the efficacy of human CB-
CD34+ and CB-MSCs for the regenerate of heart tissue by
stimulation of neoangiogenesis. They reported that the CD34+-
treated group notably reduced the infarct zone and the amplitude
of the T-wave and increased VEGF, Ang-1, HIF-1α, and Tie-2
levels compared to the MSC-treated subjects, suggesting the
supremacy of CD34+ therapy vs. MSCs in the induction of
regenerative pothential (Shalaby et al., 2016). Supportively,
human CD34+ cells increased angiogenesis and reduced pro-
inflammatory cytokines in the infarct zones, leading to improved
cardiac function in a rat AMI model (Kim et al., 2016). Moreover,
Kawamoto et al. found that PB-derived CD34+ EPCs improved
regional wall motion, fractional shortening, left ventricle ejection
fraction (LVEF), and myocardial neovascularization (Kawamoto
et al., 2001). Also, in another study, they showed that CD34+

EPCs increased capillary density and decreased the fibrosis rate of
the infarct area in the experimental AMI model (Kawamoto et al.,
2003). Supportively, Yeh et al. reported that human G-CSF
mobilized PB-CD34+ cells increased angiogenesis through
migration and retention into the myocardium and trans-
differentiation into ECs in ischemic tissues (Yeh et al., 2003).
Furthermore, transplanting of PB-CD34+ cells reduce structural
changes in the infarct zone and eliminates any signs of
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inflammatory cell recruitment seen in the transplantation of total
MNCs in a rat MI model (Kawamoto et al., 2006). Also,
myocardial injection of BM-CD34+ cells improved the vascular
network and fractional shortening in the macaque MI model,
supporting the efficacy of CD34+ cells in a large animal model of
MI (Yoshioka et al., 2005). Taken together, records from
preclinical studies propose that CD34+ cells differentiate into
ECs, integrate into vascular system, and secrete angiogenic
factors, promoting vascular regeneration in the
microcirculation and improving myocardial perfusion in
ischemia-induced tissue damage.

4.3 Renal failure

The effectiveness of CD34+ EPC therapy on the protection of
CKD (chronic kidney disease) renal function has only been
documented in a small number of experimental investigations.
Two previous experimental studies using small and large
preclinical experiments of CKD revealed that renal CD34+ EPC
therapy considerably refurbished kidney function. In detail,
Sangidorj et al. demonstrated that the administration of BM-
CD34+ EPCs immunologically trafficked in the injured kidney
site and postponed the collapse of kidney function aside from

TABLE 4 Preclinical studies of CD34+ cell therapy.

Authors Condition CD34+

cell
source

Dosage Delivery
route

Experimental
model

Outcomes Ref

Murohara et al. hindlimb ischemia CB 3 × 106 Intramuscular Mouse Increased vasculogenesis Murohara et al.
(2000a)

Madeddu et al. hindlimb ischemia CB 1 × 103 Intramuscular Mouse Increased vasculogenesis and
myogenesis, decrease EC apoptosis and
interstitial fibrosis, enhanced limb
salvage and hemodynamic recovery

Madeddu et al.
(2004)

Mathiyalagan
et al.

hindlimb ischemia PB 5 × 106/kg Intramuscular Mouse Increased angiogenesis Mathiyalagan
et al. (2017)

Kawamoto
et al.

AMI PB 5 × 105/kg Intramyocardial Rat Increased vasculogenesis and
cardiomyogenesis, reduced structural
changes in the infarct zone, reduced
inflammatory response, and improved
cardiac function

Kawamoto et al.
(2006)

Shalaby et al. AMI CB 2 × 106 Intravenous Rat Increased angiogenesis, reduced infarct
zone and the amplitude of the T-wave

Shalaby et al.
(2016)

Kocher et al. AMI BM 2 × 106 Intravenous Rat increased angiogenesis, reduced
inflammatory response, decreased
infarct size, collagen deposition,
cardiomyocyte apoptosis, and
improved cardiac function

Kocher et al.
(2001)

Kawamoto
et al.

AMI PB 1×106 Intravenous Rat improved regional wall motion, FS,
LVEF, and myocardial
neovascularization

Kawamoto et al.
(2001)

Kawamoto
et al.

AMI PB 1×105 Intramyocardial Rat increased capillary density, decreased
the fibrosis rate

Kawamoto et al.
(2003)

Yeh et al. AMI PB 2.5 × 106 Intraventricular Mouse increased angiogenesis and
cardiomyogenesis

Yeh et al. (2003)

Yoshioka et al. AMI BM 0.5-2 × 106 Intramyocardial Macaques increased angiogenesis and FS Yoshioka et al.
(2005)

Taguchi et al. cerebral ischemia CB 5 × 105 Intravenous Mice improved neovascularization and
neurogenesis

Taguchi et al.
(2004)

Shyu et al. chronic stroke PB 2 × 105 Intracerebral Rat Improved vasculature, neurogenesis,
and locomotor activity

Shyu et al.
(2006)

Tsuji et al. neonatal stroke CB 1 × 105 Intravenous Mice increased blood flow, decreased loss of
ipsilateral hemispheric volume

Tsuji et al.
(2014)

Chang et al. hypoxic-ischemic
injury-induced
cerebral palsy

CB 1×105 Intracerebral Mice Decreased pathological brain injury,
improves neurobehavioral status

Chang et al.
(2021)

Ogawa et al. chronic stroke PB 1×104 Intracarotidal Mice improved neuromuscular function,
spatial learning ability and escape
reaction, and sensorimotor skills

Ogawa et al.
(2022)
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reduced proteinuria. As well, angiogenic molecules were increased
and proinflammatory cytokines and adhesion molecules were
decreased, resulting in functional and structural renal
preservation in a mouse model of chronic renal failure (Sangidorj
et al., 2010). In a large animal model, Chade et al. reported that
intrarenal autologous PB-derived KDR+/CD34+ EPC injection
preserved microvascular architecture and function and
diminished microvascular remodeling in an experimental stenotic
kidney, showing renoprotective effects of CD34+ EPC in a pig model
of chronic renal artery stenosis (Chade et al., 2009). Also, Ohtake
et al. reported the effectiveness of G-CSF mobilized human CD34+

therapy in a mice experimental model of ischemic/reperfusion acute
kidney injury (AKI), which drastically upgraded renal function and
repaired loss of peritubular capillaries because of ischemic condition
(Ohtake et al., 2018a). Mechanistically, Vinas et al. reported that
delivery of ECFC exosomes reduces ischemic kidney injury via
transfer of miR-486-5p through targeting PTEN signaling
pathway (Viñas et al., 2016). Recently, Huang et al. demonstrated
that PB-CD34+ EPC therapy excellently inhibits CKD progression
and kidney homeostasis deterioration by means of improvement of
neoangiogenesis, blood stream, and potent anti-oxidative, anti-
inflammatory, and anti-apoptosis/fibrosis capacities in a rat
model (Huang et al., 2015). Taken together, the present
knowledge regarding CD34+ therapy for kidney-related diseases
supports CD34+ as a promising therapeutic intervention for
preserving kidney functions in renovascular disease.

4.4 Inflammatory conditions

As above mentioned, CD34+ cells supply anti-inflammatory factors
via paracrine activities. Comparing the cardioprotective effects of MSCs
and CD34+ cells, Shalaby et al. demonstrated that CB-CD34+ cell
therapy significantly decreased recruitment of inflammatory cells
and increased angiogenic factors compared to the MSCs-treated
group, which discloses the superiority of CD34+ therapy over MSCs
in therapeutic potential (Shalaby et al., 2016). Of note, CB-derived
CD133+/CD34+ stem/progenitors exhibit elevated amount ofmigratory
(CXCR4)- and adhesive (LFA-1)-related antigens, allowing them to
migrate and home to inflammatory areas that express higher levels of
SDF-1α, a CXCR4 ligand (Das et al., 2009). Furthermore, CD34+ cell
therapy reduces the secretion of inflammatory factors, namely TNF-α,
IL-1, IL-6, and NOS2A in the lesion context while overexpression of IL-
10. Moreover, human CB-CD34+ therapy mitigates NF-κB signaling
pathway in dermal fibroblasts by increasing IL-10, providing novel
mechanistic evidence of CD34+ cell-mediated anti-inflammatory
response in a mouse model of wound healing. It worth noting that
IL-10 binds to NF-κB and inhibits transcriptional function of this
pathway (Kanji et al., 2014). Also, it has been shown that CD34+ cells
enhanced epicardial and coronary microcirculation via paracrine
activity–mediated angiogenic response and secretion of anti-
inflammatory factors (Mackie and Losordo, 2011).

4.5 Cerebrovascular disease

Regarding the therapeutic effects of CD34+ cells in cerebral
ischemia, Taguchi et al. have clarified that CB-derived CD34+ cells

ameliorated angiogenesis and neurogenesis rates (Taguchi et al.,
2004). Of note, injections of PB-derived CD34+ cells developed
vasculature, neurogenesis, and locomotor activity in a chronic stroke
rat experiment (Shyu et al., 2006). Supportively, Tsuji and colleagues
reported that CB-CD34+ cells increased blood stream to the
ischemic zone and decreased missing of ipsilateral hemisphere
volume in a neonatal stroke model (Tsuji et al., 2014). Also, CB-
CD34+ cells alleviates pathological brain injury and improves the
neurobehavioral status in a cerebral palsy model (Chang et al., 2021).
More recently, Ogawa et al. illustrated that transplantation of PB-
CD34+ cells improved neurological functions, including grip
strength test (to evaluate neuromuscular function), the water
maze assay (to evaluate the spatial education skill), and the
rotarod test (to evaluate sensorimotor skills) in a murine SCID
chronic stroke model, providing another preclinical proof of the
CD34+ therapy concept in ischemic strokes (Ogawa et al., 2022).

5 Clinical proof of concept for CD34+

cell therapy

As a result of strong preclinical background supporting CD34+

cells’ safety and efficacy as a treatment for injured tissues, clinical
trials are now underway to use their innate abilities in the context of
ischemic disorders (Leuschner et al., 2012). Here, we highlight the
significant turning points of CD34+ cell therapy in clinical trials
(Table 5).

5.1 Chronic limb-threatening ischemia
(CLTI)

For the first time, Tateishi et al. introduced the clinical utility of
PB-CD34+ cells in an ischemic limb setting. Based on their results,
autologous BM-CD34+ therapy ameliorate pain rate and increase
walking distance 7 days after transplantation (Tateishi-Yuyama
et al., 2002).

In a phase I/IIa trial of CLTI, Kawamoto and coworkers
illustrated that G-CSF mobilized CD34+ cell transplantation
enhanced pain grade, pain-free walking distance, toe brachial
pressure index (TBPI), transcutaneous partial pressure of oxygen
(TcPO2), and decreased ulcer size after 3 months of injection
(Kawamoto et al., 2009); Supportively, Kinoshita et al. found that
TBPI and TcPO2 parameters improved significantly 4 years after
treatment, and no major amputations occurred in this period,
indicating the immunity, feasibility, and efficiency of G-CSF
mobilized PB-CD34+ cell transplantation in CLTI individuals
(Kinoshita et al., 2012). Fujita et al. conducted a phase II clinical
trial to determine endpoint selection and timing, which revealed
significant improvements in perfusion pressure, pain grade, TcPO2,
pain-free walking distance, and TBPI (Fujita et al., 2014). Ohtake
et al. reported that G-CSF-mobilized CD34+ therapy increased the
amputation- and CLTI-free survival index in CLTI individuals
without any cell therapy-related side effects (Ohtake et al.,
2018b). Tanaka and colleagues studied five dialysis individuals
having non-healing diabetic feet in a phase I/IIa trial of G-CSF-
mobilized CD34+ therapy. 18 weeks after treatment, all of the
patients’ wounds had healed completely without serious adverse
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TABLE 5 Clinical trials of CD34+ cell therapy.

Authors Condition CD34+

cell
source

Dosage Delivery
route

Phase Outcomes Ref

Tateishi et al. CLTI BM 0.7−2.8 × 109 Intramuscular Pilot Decreased pain rate and increase walking
distance

Tateishi-Yuyama
et al. (2002)

Kawamoto
et al.

CLTI PB 105, 5 × 105, and
106/kg

Intramuscular I/IIa enhanced walking distance, pain rating,
TBPI, TcPO2, decreased ulcer

Kawamoto et al.
(2009)

Kinoshita
et al.

CLTI PB 105, 5 × 105, and
106/kg

Intramuscular I/IIa improved TBPI and TcPO2 Kinoshita et al.
(2012)

Fujita et al. CLTI PB 106/kg Intramuscular II improved pain rate, perfusion pressure,
TcPO2, TBPI and pain-free walking distance

Fujita et al. (2014)

Ohtake et al. CLTI PB 5.44−86.8 × 106 Intramuscular II increased the amputation-free survival index Ohtake et al.
(2018b)

Tanaka et al. CLTI PB 2 × 107 in
20 injections

Intramuscular I/IIa Improved wound healing and vascular
perfusion

Tanaka et al. (2014)

Losordo et al. CLTI PB 1 × 105–1 × 106/kg Intramuscular I/IIa enhanced myogenesis and angiogenesis,
decreased the amputation-free survival rate

Losordo et al. (2012)

Losordo et al. CLTI PB 1 × 105–1 × 106/kg Intramuscular I/IIa improved quality of life and peak walking
distances

Losordo et al.
(2011a)

Fang et al. CLTI PB 105, 5 × 105, and
106/kg

Intramuscular — Increased the amputation-free survival rate,
PPFWT, ulcer healing rate, and SF-
36v2 score, decreased WFPRSS and the
recurrence rate

Fang et al. (2018)

Losordo et al. Refractory
angina

PB 5 × 104, 1 × 105,
and 5 × 105/kg

Intramyocardial I/IIa improved the frequency of angina, exercise
tolerance, and CCS ranking

Losordo et al. (2007)

Losordo et al. Refractory
angina

PB 1 × 105 and 5 ×
105/kg

Intramyocardial II reduced angina frequency, improved exercise
tolerance, angina onset time, and CCS
classification

Losordo et al.
(2011b)

Henry et al. Refractory
angina

PB 1 × 105 and 5 ×
105/kg

Intramyocardial II reduced angina frequency, adverse cardiac
events, and mortality rate

Henry et al. (2016)

Povsic et al. Refractory
angina

PB 1 × 105/kg to
1 × 107

Intramyocardial III improved safety and function Povsic et al. (2016)

Henry et al. Refractory
angina

PB 111 × 106(x�) Intracoronary Pilot improved coronary flow reserve, CCS class,
and life quality, reduced angina

Henry et al. (2022)

Corban et al. Refractory
angina

PB 1 × 105/kg Intracoronary - improved microvascular blood flow and SAQ
scores, decreased CCS class, wilcoxon signed-
rank test and nitroglycerin use

Corban et al. (2022)

Johnson et al. Refractory
angina

PB 1 × 104, 1 × 105, or
5 × 105/kg

Intramyocardial III improved mortality rate, reduced cardiac-
related hospital visits and expenses

Johnson et al. (2020)

Hofmann
et al.

STEMI PB 16 × 106 (x�) Intracoronary - Concentration of transplanted cells in the
border zone myocardium, improved cardiac
regeneration

Hofmann et al.
(2005)

Pasquet et al. AMI PB 143 × 106 (x�) Intramyocardial I increased LVEF and sustained structural and
functional scar repair

Pasquet et al. (2009)

Quyyumi
et al.

STEMI BM 5, 10, or 15 × 106 Intracoronary I improved myocardial perfusion, reduced
infarct size in a cell dose-dependent manner

Quyyumi et al.
(2011)

Quyyumi
et al.

AMI BM 15 × 106 (x�) Intracoronary II increased LVEF, decreased infarct size,
hospitalized days, and mortality in a cell
dose-dependent manner

Quyyumi et al.
(2017)

Poglajen et al. STEMI PB — Trans-
endocardial

- antiarrhythmic benefits Poglajen et al.
(2019)

Banerjee
et al.

acute ischemic
stroke

PB 2.2 × 106 (x�) Intraarterial I improved MRS and NIHSS scores Banerjee et al.
(2014)

(Continued on following page)
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events (Tanaka et al., 2014). According to the initial randomized and
double-blind pilot study regarding CD34+ therapy of CLTI,
autologous G-CSF mobilized CD34+ therapy boosts myogenic
and angiogenic activity while decreasing the amputation-free
survival rate in a dose-dependent trend at 12 months (Losordo
et al., 2012). This finding was later confirmed by a double-blind
randomized pilot trial, which suggested that patients with severe
intermittent claudication receiving autologous G-CSF mobilized
CD34+ therapy experienced improved quality of life and longer
walking distances (Losordo et al., 2011a). Fang et al. evaluated the
long-term efficacy of G-CSFmobilized CD34+ cells in CLTI patients.
Based on their results, CD34+ cells not only increased the
amputation-free survival rate, peak pain-free walking time
(PPFWT), ulcer healing rate, and SF-36v2 score, but also
decreased the Wong-Baker faces pain rating scale and the
recurrence frequency during 5years follow-up period (Fang et al.,
2018).

It is worth noting that since 2017, Japan’s ministry of health
(MHLW) has permitted the G-CSF-mobilized CD34+ cell
transplantation for CLTI patients as an advanced type B medical
treatment. In addition, a multicenter comparative trial of CLTI
subjects aimed at guiding authorization of CD34+ therapy as a novel
regenerative medicine-made merchandise (Identifier:
NCT02501018) was launched in Japan in 2017. The MHLW
designated this regenerative medicine product as an applicable
pharmaceutical composition for Sakigake Strategy in 2018. The
trial was finished inMay 2022 with the concluding data still pending.

5.2 Refractory angina

Coronary microvascular dysfunction leads to angina and poor
outcomes in ischemic coronary artery disease, and no specific
treatment exists. As mentioned above, CD34+ cell transplantation
expands microcirculation and improves symptoms, exercise
tolerance, and mortality in preclinical studies of refractory angina
patients. Nowadays, CD34+ transplantation has been assessed in
several double-blind and randomized trials in these patients. In
phase I/IIa clinical trial using the NOGATM mapping system,
autologous G-CSF mobilized PB-CD34+ therapy improved the
frequency of angina, exercise tolerance, and CCS scale, providing
preliminary evidence of the immunity and bioactivity of CD34+ cell
injection in patients with refractory angina (Losordo et al., 2007).
Furthermore, in a prospective, double-blind, randomized, phase II
study of refractory angina, autologous G-CSF mobilized CD34+

therapy considerably decreased angina frequency and upgraded
exercise endurance, angina onset time, and CCS classification

without any adverse cardiovascular side effects (Losordo et al.,
2011b). A second year of follow-up study shows that autologous
G-CSF mobilized CD34+ cell transplantation diminishes angina
frequency, unwanted heart outcomes, and mortality rates (Henry
et al., 2016). These findings are further validated in phase III of the
randomized, double-blind study, which shows improved immunity
and organ homeostasis in refractory angina patients undergo
autologous G-CSF mobilized CD34+ therapy (Povsic et al., 2016).
Most recently, Henry et al. demonstrated that autologous G-CSF
mobilized CD34+ cells improves coronary flow reserve, CCS class,
and life quality (based on the Seattle Angina Questionnaire (SAQ))
and mitigates angina frequency at 6 months after treatment (Henry
et al., 2022). Supportively, Corban et al. documented that autologous
G-CSF mobilized CD34+ therapy improved microvascular blood
flow and SAQ scores and decreased CCS class, nitroglycerin use, and
Wilcoxon signed-rank test at 6 months of follow-up (Corban et al.,
2022). Johnson et al. reported that autologous G-CSF mobilized
CD34+ therapy for refractory angina patients is associated with an
improved mortality rate and reduced cardiac-related hospitalization
in the year following injection compared to the year prior to
transplantation (Johnson et al., 2020). In a one more general
note, it could be said that CD34+ therapy is immune and could
be a potent operative regenerative approach for microvascular
dysfunction and angina patients.

5.3 Myocardial Infarction

According to Hofmann et al. injected CD34+ cells may
effectively accumulate in the area of ischemia and improve
cardiac regeneration, While a significant portion of the injected-
MNCs cramped in the spleen, liver, and the infarcted myocardium’s
center, providing another proof of the superiority of CD34+ cells
over MNCs (Hofmann et al., 2005). In 2009, Pasquet et al. launched
a pilot study using autologous G-CSF-mobilized PB-CD34+ cells to
treat AMI subjects, which resulted in increased LVEF and sustained
structural/functional scar repair (Pasquet et al., 2009). In a phase I
dose-dependent investigation of subjects with LVEF≤ 50% after
angioplasty for STEMI, Quyyumi et al. found that BM-CD34+ cells
improved myocardial perfusion and reduced infarct size in a dose-
dependent manner (Quyyumi et al., 2011). The PreSERVE-AMI was
the largest randomized phase II trial that used autologous BM-
CD34+ cell transplantation of LV dysfunction post-STEMI. After
12 months, transplanted subjects showed decreased infarct size,
hospitalized days, and mortality compared to the non-treated group
and increased LVEF in a dose-dependent manner,
providing additional proof of the immunity and efficiency of

TABLE 5 (Continued) Clinical trials of CD34+ cell therapy.

Authors Condition CD34+

cell
source

Dosage Delivery
route

Phase Outcomes Ref

Chen et al. MCAI PB 6.6 × 106 (x�) Stereotaxical II improved the NIHSS, ESS, and the ESSmotor
scale

Chen et al. (2014)

Sung et al. ischemic stroke PB 3 × 107 intra-carotid I increased angiogenesis, SDF-1α, the Barthel
index, and CASI

Sung et al. (2018)
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CD34+ therapy in STEMI subjects (Quyyumi et al., 2017). Besides,
Poglajen et al. demonstrated potential antiarrhythmic benefits of
autologous G-CSF mobilized CD34+ cells on ventricular
arrhythmias subjects (Poglajen et al., 2019). These findings
further supported the immunity and efficiency of CD34+ cell
transplantation in STEMI-suffered individuals.

5.4 Cerebrovascular disease

According to the first report of using autologous G-CSF
mobilized CD34+ therapy in acute ischemic stroke patients,
CD34+ cells improved modified rankin score (MRS) and national
institutes of health stroke score (NIHSS) in the 6-month follow-up
(Banerjee et al., 2014). Similarly, Chen et al. showed in a
randomized, single-blind, controlled trial that autologous G-CSF
mobilized CD34+ therapy improved the NIHSS, the European stroke
score (ESS), and the ESS motor score without any serious adverse
events in patients with a MCAI (Chen et al., 2014). Furthermore,
Sung et al. reported that autologous G-CSFmobilized PB-CD34+ cell
transplantation increased angiogenesis, the Barthel index, and
cognitive ability screening instrument score (CASI) at 6-month
follow-up after transplantation without any recurrent stroke or
tumorigenesis (Sung et al., 2018). Based on these findings, a
randomized double-blind study of CD34+ therapy in chronic
ischemic stroke (Identifier: jRCT2052200112) began in 2020 and
is still recruiting subjects.

5.5 Renal failure

Regarding CD34+ clinical trials of kidney disease, in a
randomized controlled study, Yang et al. recently found that
intra-renal transplantation of autologous G-CSF mobilized
CD34+ cells for CKD patients significantly reduced adverse
clinical outcomes (dialysis and death) at 1 year compared to the
control group, but did not improve kidney function (Yang et al.,
2020). Furthermore, according to Lee et al., G-CSF-mobilized
CD34+ transplantation into the right renal artery is 100% safe
and maintains the renal function in a stationary state, suggesting
that CD34+ transplantation could mitigate the collapse of renal
homeostasis in CKD subjects (Lee et al., 2017). Besides, in phase I/II
study, Suzuki and colleagues reported that direct injection of G-CSF-
mobilized CD34+ cells to both renal arteries of a 36 years old AKI
patient significantly improved the serum creatinine level, GFR,
angiogenic-related cytokines, and consequently kidney function
23 weeks after cell therapy without major adverse events (Suzuki
et al., 2021). Therefore, CD34+ cell transplantation could apply
renoprotective effects by improved angiogenesis and anti-
inflammation capability and could be considered a new
therapeutic tool for kidney disorders.

6 Conclusion

Since the discovery of CD34+ population in PB as the EPC-
fortified fraction in 1997, a growing body of preclinical and clinical

studies using CD34+ cells, a naturally occurring microvascular
repair cell, provide undeniable evidence for the immunity and
efficiency of CD34+ EPC treatment. In fact, until now, there has
been no unsuccessful CD34+ cell therapy studies for tissue
regeneration that has failed to provide a piece of evidence for
safety and clinical effect. Remarkably, these reports were carried
out on patients who were at the end of their treatment options.
Despite being given to these seriously ill patients, a single CD34+

cell therapy administration has produced convincing proof that
ischemia can be reversed. Principally, a multicenter trial in CLTI-
suffered individuals was initiated in 2017in Japan with the aim of
guiding authorization of CD34+ therapy as a novel regenerative
medicine-made merchandise, which has been nominated as an
applicable approach for the Sakigake Strategy. In case of
therapeutically approval of this product from now on, it is
anticipated to be a breakthrough for developing signals for
diseases aside from CLTI. Furthermore, in the United States,
the FDA has designated CD34+ cell products as “regenerative
medicine advanced therapy” for refractory angina. If these
studies are completed, approved, and expanded successfully,
CD34+ therapy may result in the world’s first approval of a
regenerative therapeutic approach for CVD and other
vascular-related diseases.
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