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Whether microbes show habitat preferences is a fundamental question in

microbial ecology. If different microbial lineages have distinct traits, those

lineages may occur more frequently in habitats where their traits are

advantageous. Sphingomonas is an ideal bacterial clade in which to investigate

how habitat preference relates to traits because these bacteria inhabit

diverse environments and hosts. Here we downloaded 440 publicly available

Sphingomonas genomes, assigned them to habitats based on isolation source,

and examined their phylogenetic relationships. We sought to address whether:

(1) there is a relationship between Sphingomonas habitat and phylogeny, and (2)

whether there is a phylogenetic correlation between key, genome-based traits

and habitat preference. We hypothesized that Sphingomonas strains from similar

habitats would cluster together in phylogenetic clades, and key traits that improve

fitness in specific environments should correlate with habitat. Genome-based

traits were categorized into the Y-A-S trait-based framework for high growth

yield, resource acquisition, and stress tolerance. We selected 252 high quality

genomes and constructed a phylogenetic tree with 12 well-defined clades based

on an alignment of 404 core genes. Sphingomonas strains from the same habitat

clustered together within the same clades, and strains within clades shared similar

clusters of accessory genes. Additionally, key genome-based trait frequencies

varied across habitats. We conclude that Sphingomonas gene content reflects

habitat preference. This knowledge of how environment and host relate to

phylogeny may also help with future functional predictions about Sphingomonas

and facilitate applications in bioremediation.
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1. Introduction

Bacteria occur in a wide diversity of habitats, but the factors that control habitat
preference are unclear (Fierer and Jackson, 2006; Martiny et al., 2006; Merino et al., 2019).
Given that habitats vary in their abiotic and biotic conditions, different habitats may select
for different organismal traits (Noble and Slatyer, 1977). These traits can be phylogenetically
conserved (Martiny et al., 2013; Dolan et al., 2017; Isobe et al., 2019, 2020), horizontally
transferred (Ochman et al., 2000), and reflect trade-offs underlying life-history strategies.
For environmental microbes, one way to organize these trade-offs is the Y-A-S framework,
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which posits that bacterial life-history strategies are driven
by tradeoffs in resource allocation to growth Yield, resource
Acquisition, and Stress tolerance responses (Malik et al., 2020).
Investigating functional traits related to the Y-A-S strategies has the
potential to yield insights into factors that affect the distributions of
microbial taxa.

Sphingomonas is an excellent bacterial genus to investigate
the distribution of habitat preference traits because it is
found in a wide range of habitats. Within the Proteobacteria
phylum, the Sphingomonas genus contains gram-negative, strictly
aerobic, chemoheterotrophic, yellow-pigmented bacteria that
possess glycosphingolipids in their cell envelope (Yabuuchi et al.,
1990; Balkwill et al., 2006). Sphingomonas species have been isolated
from soils, plant roots, water distribution systems, human samples,
and hospital machines (White et al., 1996; Leys et al., 2004). Some
species cause animal disease, while others are antagonistic toward
phytopathogenic fungi that infect commercially important plants
(White et al., 1996). Additionally, Sphingomonas species have also
been used on the International Space Station to aid the extraction
of rare earth elements (Cockell et al., 2020). On planet Earth,
Sphingomonas serves as biocatalyst for bioremediation and can
be found in soils that are contaminated with pollutants (Leys
et al., 2004). Understanding the distribution of Sphingomonas
is especially important because with appropriate management
strategies, this lineage can be a tool to clean up polluted
environments (Onder Erguven and Demirci, 2019). Furthermore,
Sphingomonas is able to degrade cellulose and hemicellulose and
is therefore involved in organic carbon decomposition (Koskinen
et al., 2000). Hence, the distribution and functional abilities of
Sphingomonas make it an ideal genus for investigating phylogenetic
histories of habitat preference traits.

Despite the potential importance and widespread distribution
of Sphingomonas species, there has not yet been a comprehensive,
in-depth study of the comparative genomics and phylogenetics of
the genus from a trait-based perspective. Most studies thus far
look at the distribution and phylogeny of select genomes from 16S
rRNA perspective, and often do not consider genome-based traits
(Leung et al., 1999; Leys et al., 2004; Asaf et al., 2020). Moreover, the
Sphingomonas genus classification is still evolving; Sphingomonas
has five sub-genus classifications, and although additional strains
continue to be identified, it is difficult to place them into specific
clades (Takeuchi et al., 2001; Jogler et al., 2013; Asaf et al.,
2020). Additionally, some Sphingomonas species have been shown
to improve plant growth during stressful drought and salinity
conditions (Halo et al., 2015; Asaf et al., 2017). Currently, there
are knowledge gaps in the literature with respect to Sphingomonas
phylogenetics, taxonomy, and genome mapping in the context of
stress tolerance and bioremediation (Asaf et al., 2020). Therefore,
it is useful to explore the phylogenomics of Sphingomonas from
a whole-genome and trait-based perspective. Since Sphingomonas
has important bioremediation qualities, understanding the genetics
and distributions of these traits can provide preliminary knowledge
toward harnessing Sphingomonas to rehabilitate natural habitats
(Schmidt et al., 1992).

The knowledge of how environment and host correspond to
traits may also help with future functional predictions. In this
study, we downloaded over 400 available Sphingomonas sequences
from public databases, assigned them to a habitat based on where
they were isolated, and assessed their phylogenetic relationships.

With this information, we sought to address two questions. First,
are there significant relationships between habitat and phylogeny?
Second, do key, genome-based traits demonstrate phylogenetic
clustering and correlate with habitat preference?

We used the genome-based traits as proxies for the Y-A-S life
history categories (Figure 1; Malik et al., 2020). For growth yield, we
investigated the distribution of genes underlying amino acid related
enzymes, lipid biosynthesis proteins, and lipopolysaccharide
biosynthesis proteins. Genes for carbohydrate-active enzymes
(CAZymes) reflected resource acquisition strategies. Finally, for
stress tolerance we explored genes associated with chaperones,
folding catalysts, the prokaryotic defense system, as well as
peptidoglycan biosynthesis and degradation proteins. Collectively,
these traits underlie habitat preference. We hypothesize that
Sphingomonas strains from similar habitats will cluster together in
phylogenetic clades. Furthermore, key traits that improve fitness in
specific environments should correlate with the isolation habitat.
For example, CAZyme genes should be most prevalent in genomes
of Sphingomonas associated with plants, and prokaryotic defense
system genes would be the highest in Sphingomonas genomes
found at locations with a contaminant. Ultimately, our findings will
improve the understanding of Sphingomonas distribution across
habitats, as well as illuminate the link between habitat preference
and life history strategies.

2. Materials and methods

2.1. Library collection and curation

We downloaded 440 publicly available Sphingomonas genomes
from the PATRIC database on 31 July 2020 (Wattam et al., 2014)
and used the metadata for each strain to identify the isolation
source (Table 1). The sequences were categorized by their isolation
source and assigned to one of eight groups based on the strain
description: animal (n = 10), clinical (n = 43), contaminated site
(n = 13), industrial (n = 13), environmental (n = 54), plant (n = 68),
water (n = 34), and other (n = 17; Table 1). More specifically,
strains in the animal category were isolated from living, non-
human sources. Strains in the clinical category came from hospital
settings and included bodily samples from human beings, like
blood. Any strain with the word “contaminated” in the description
was placed in the contaminated site category. The environment
category consisted of strains from abiotic, outdoor sources that
were not water-based, like soils. The industrial category included
samples from bioreactors, mines, and wastewater facilities (which
contained the key phrase “activated sludge” in the description).
Strains isolated from hosts in the plant kingdom were placed in
the plant category; these strains were isolated from different plant
parts such as the seed, root, stem, and leaf. The water category
consisted of strains isolated from a water source and sediments that
did not include “contaminated” in the description. Finally, strains
that could not be assigned to one of the previous 7 distinct groups
were placed in the other category, such as samples from lichens and
dust (Table 1). Genomes with unspecified isolation sources were
removed from our analyses.

Next, we checked the completeness of the genomes against
the Sphingomonadales order using the BUSCO (Benchmarking
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Universal Single Copy Orthologs) v4.1.4 program (Seppey et al.,
2019). Genomes with a BUSCO completeness score of less than 95%
were filtered out. We used the online QUAST (Quality Assessment
Tool for Genome Assemblies) server v5.0.2 to investigate the
quality of the remaining genomes (Gurevich et al., 2013).
We also ran CheckM v1.2.2 against the Sphingomonadales and
Alphaproteobacteria lineages to confirm the completeness of the
remaining genomes and check for contamination (Parks et al.,
2015).

From the initial genome library, 254 high quality Sphingomonas
genome sequences remained for further analysis. These genomes
consisted of 23 complete genomes and 231 fragmented genomes.
All genomes were annotated with Prokka v1.14.6 default
parameters and the Sphingomonas genus tag (Seemann, 2014).
Core and accessory genes were identified with Roary v3.13.0 using a
50% blastp sequence identity, the default core gene identity of 99%,
and a maximum gene cluster of 25,000,000 (Page et al., 2015). For
comparison to the larger subset that included fragmented genomes,
we also used Prokka and Roary to quantify the pangenome for just
the 23 complete genomes (Seemann, 2014; Page et al., 2015).

2.2. Outgroup optimization

Zymomonas, Rhizobium, and Rhodospirillum are three closely
related genera to Sphingomonas (Leys et al., 2004). To select
the best outgroup or combinations of outgroups, we used
Roary core gene counts. Specifically, we compared the core

TABLE 1 Classification descriptions of the isolation sources for
Sphingomonas samples.

Classification Description

Animal Isolation source is from a living, non-human, non-plant
source

Clinical Samples from a hospital that caters toward human beings,
includes blood samples

Contaminated site Any sample that contains “contaminated” in the
description

Environment Isolated from abiotic, outdoor sources, such as soil

Industrial Sources from bioreactors, mines, and wastewater facilities
(contains “activated sludge”)

Plant Samples isolated from the plant kingdom, can come from
seeds, leaves, and roots

Water Any sample from a water source and sediment that does
not contain “contaminated” in the description

Other Samples that do not fit in to the other categories, can be
lichens, dust

TABLE 2 Pangenome analysis for the 252 Sphingomonas genomes.

Gene Description Frequency

Core genes 99% ≤ strains ≤ 100% 444

Soft core genes 95% ≤ strains ≤ 99% 304

Shell genes 15% ≤ strains ≤ 95% 4,070

Cloud genes 0% ≤ strains ≤ 15% 108,998

Total 0% ≤ strains ≤ 100% 113,186

genes of the Sphingomonas-only ingroup to the core genes of
the ingroup with various combinations of outgroups. We also
included Escherichia coli as a distantly related outgroup for further
confirmation (Zhao et al., 2017). We selected Rhodospirillum
centenum SW (GenBank Accession: CP000613) as an outgroup
because it yielded a core gene count that was closest to the
Sphingomonas-only ingroup. Furthermore, previous phylogenetic
analysis (Leys et al., 2004) confirmed that Rhodospirillum is not part
of the ingroup.

2.3. Reference tree visualization

We made a phylogenetic tree with core genes present in
Sphingomonas genomes and the Rhodospirillum outgroup using
methods from Rodriguez and Martiny (2020). In short, we ran
Roary again with the same previously mentioned parameters
for the Sphingomonas ingroup and Rhodospirillum outgroup.
We identified 401 core genes and generated a bootstrapped
maximum likelihood tree of the alignment with RAxML v8.2.12
with the PROTGAMMABLOSUM62 substitution model and 100
rapid bootstrap searches (Stamatakis, 2014). Two of the 254
Sphingomonas sequences were removed from the analyses since
RAxML deemed them identical. Therefore, to minimize bias, we
removed the duplicate sequences and re-ran Roary with the 252
Sphingomonas genomes to generate an alignment of 404 core
genes (Supplementarymaterial). We used the core gene alignment
to construct a phylogenetic tree with RAxML and subsequently
visualized the tree with the iTOL v6.5 interactive tool (Figure 3;
Letunic and Bork, 2019).

2.4. Clade designation

We manually designated phylogenetic clades based on their
divergence from the common ancestor. We marked the first clade
by starting from the most distant, large monophyletic group.
Subsequently, we moved along the tree until we came across
another large, monophyletic group that was interpreted as another
clade. Clades were defined in this manner until we identified a total
of 12. Two strains that resembled an outgroup within two separate
monophyletic clades were not included as part of the clade. We
confirmed the clades and genome clusters by identifying pairwise
average amino acid and nucleotide identities with the Enveomics
tool (Rodriguez-R and Konstantinidis, 2016). Additionally, clades
possessed a bootstrap identity of at least 86.

2.5. Genome-based traits

We quantified the abundances of genome-based traits involved
in high growth yield, resource acquisition, and stress tolerance
strategies. To identify the traits, we used the CAZy (Cantarel
et al., 2009) and KEGG databases (Kanehisa and Goto, 2000). For
CAZymes we determined glycoside hydrolase and carbohydrate
binding module abundances. Specifically we identified cellulase and
glycoside hydrolase genes from Prodigal protein annotations using
dbCAN2, a metaserver based on the CAZy database (Hyatt et al.,
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FIGURE 1

Genome-based trait groupings into the Y-A-S life history strategy framework developed by Malik et al. (2020).

FIGURE 2

Pangenome analysis of 252 Sphingomonas genomes and the Rhodospirillum centenum SW outgroup. (A) Gene presence-absence heatmap where
vertical blue lines represent presence of a gene within rows corresponding to the Sphingomonas genome, and white reflects gene absence. The line
graph underneath indicates the percentage of strains possessing the corresponding gene. (B) Close-up of the gene patterns within a clade shows
how clades contain similar gene clusters.

2010; Zhang et al., 2018). In our analysis, we only selected genes
that were found with all three tools available on dbCAN2: HMMER,
DIAMOND, and Hotpep. Additionally, we used the GhostKOALA
v2.2 automatic annotation server to annotate the remaining genes
based on KEGG Orthology (Kanehisa et al., 2016). We selected
these genome-based traits for further analyses: lipopolysaccharide
biosynthesis proteins (n = 66), lipid biosynthesis proteins (n = 29),
amino acid related enzymes (n = 52), prokaryotic defense system
(n = 77), peptidoglycan biosynthesis and degradation proteins
(n = 34), and finally chaperones and folding catalysts (n = 42).
These genes were grouped into the Y-A-S microbial life history
trait-based framework developed by Malik et al. (2020) based on
their role in growth yield, resource acquisition, and stress tolerance
strategies (Supplementary material). We calculated the average
relative abundance of each trait for each clade and visualized them
with the ggpubr v0.4.0 R package (Kassambara, 2020).

2.6. Statistical analyses

After quantifying gene abundances, we natural log transformed
the gene counts of the genome-based traits. Subsequently, we

confirmed the normality of residuals using histograms and the
Shapiro–Wilk tests, then ran Kruskal–Wallis rank sum tests
to identify differences across habitats. We performed Kruskal–
Wallis tests since not all the functional gene data were normally
distributed. Additionally, we conducted phylogenetic generalized
least squares (PGLS) statistical analyses to test whether there was
an association between the habitat and the genome-based traits,
independent of phylogenetic history (Mundry, 2014). We also used
PGLS statistics to limit statistical bias by confirming if significant
Kruskal–Wallis results were influenced by phylogenetic relatedness.

We used R v4.1.0 to run all the statistical analyses, and specially
incorporated the “nlme,” “geiger,” “phytools,” and “ape” packages
(Revell, 2012; Pennell et al., 2014; Paradis and Schliep, 2019;
Pinheiro et al., 2021). We also used the cor.test function of the
base R “stats” package to calculate the Pearson’s product-moment
correlation to determine whether genome size and gene counts
were correlated (R Core Team, 2021).

Additionally, we ran ANOSIM tests to determine whether
phylogeny was related to habitat preference. Using the “ape”
package in R, we called the tree in R and subsequently used the
“cophenetic” function in the “stats” package to calculate a distance
matrix (Paradis and Schliep, 2019; R Core Team, 2021). Then,
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FIGURE 3

Sphingomonas (A) habitat and (B) phylogenetic tree constructed with 252 Sphingomonas genomes and 404 core genes, separated into 12 clades.
The closely related Rhodospirillum centenum SW was used as the outgroup to identify the core gene alignment and construct the tree. Significant
(p < 0.05) ANOSIM results indicate that Sphingomonas habitat preferences vary across clades.

we used the “anosim” function in the R package “vegan” to run
ANOSIM tests (Oksanen et al., 2020).

3. Results

3.1. Pangenome

We downloaded 440 publicly available Sphingomonas genomes,
selected 252 high-quality genomes, and carefully curated them into
8 habitat categories based on the isolation source. The minimum
N50 value was 17,936 bases and the maximum was 6,205,897 bases.
The minimum GC percent content was 61.98% and the maximum
was 70.01%. We selected genomes with a BUSCO completeness
score of at least 95%. Most of the sequences had a CheckM
completeness score of at least 99% (n = 220) and only 1 genome had
a completeness score under 96.5% with the lowest score of 94.2%.
Additionally, CheckM contamination scores revealed a mode of
0.0, an average score of 1.35, and a maximum score of 13.27
(Supplementary material).

Roary and Prokka pangenome analysis for the 252
Sphingomonas genomes revealed a total of 113,816 genes.
Specifically, there were 444 core genes found in at least 99% of the
genomes, 304 soft core genes found in 95 to 99% of genomes, 4,070
shell genes found in 15 to 95% of genomes, and 108,998 cloud
genes present in less than 15% of genomes (Table 2).

When the Rhodospirillum centenum SW outgroup was included
in the pangenome analysis, there was a total of 115,874 genes with
404 core genes, 321 soft core genes, 4,091 shell genes, and 111,058

cloud genes (Supplementary Table 1; Figure 2). Some of the core
gene functions include but are not limited to those associated
with ribosomes, transcription factors, translation factors, and ATP
synthases.

The pangenome analysis of just the 23 complete Sphingomonas
genomes revealed a total of 33,131 genes comprised of 758 core
genes, 184 soft core genes, 4,452 shell genes, and 27,737 cloud genes
(Supplementary Table 2).

3.2. Phylogenetic tree

Phylogenetic analysis of 252 Sphingomonas sequences with a
R. centenum SW outgroup yielded a phylogenetic tree assembled
from an alignment of 404 core genes (Figure 3). The tree leaves
clustered into 12 clades with a minimum bootstrap value of 86.
After running Enveomics, pairwise comparisons within clades
revealed a minimum average amino acid identity of 33.24% and a
minimum average nucleotide identity of 76.37%.

Significant ANOSIM tests (p < 0.05) showed that
Sphingomonas strains from the same habitat clustered together
based on phylogeny, meaning that taxa within a clade had
similar habitat preferences. For example, clade 7 was mostly
composed of clinical samples that were highly similar to each
other, although it also contained representatives isolated from
other habitats, such as water and the environment. Clade 12
was dominated by strains from contaminated regions (Figure 3;
Supplementary Figure 1). Some known lineages clustered in
specific clades. Clade 2 contained Sphingomonas melonis, which is
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a pathogen of yellow Spanish melon fruits and causes brown spots
(Buonaurio et al., 2002). Clade 3 included Sphingomonas sanguinis,
which causes dry rot of mango (Liu et al., 2018). Sphingomonas
naasensis was found in clade 6 and was first isolated from forest soil
in South Korea (Kim et al., 2014). Clade 7 contained Sphingomonas
koreensis, which was first isolated from natural mineral water
and can be a human pathogen in patients with meningitis (Lee
et al., 2001; Marbjerg et al., 2015). Clade 8 included strains of
Sphingomonas japonica (Supplementary Figure 2) that were
isolated from the red king crab from the Sea of Japan (Romanenko
et al., 2009). Moreover, Sphingomonas strains within the same clade
shared similar clusters of accessory genes (Figure 2B).

3.3. Functional genes

We identified 3,615 unique genes from the KEGG database and
269 CAZymes. A subset of KEGG Orthology genes were chosen
to investigate genome-based habitat preference traits based on
their classification within the Y-A-S framework, specifically for
growth (n = 147) and stress tolerance (n = 153). Genes within
the growth category consisted of many tRNA synthetases, and
several genes in the stress tolerance category were involved with
antitoxins, CRISPR, and binding to antibiotics such as penicillin
(Supplementary material). Kruskal–Wallis rank sum tests on
habitat and genome-based trait counts yielded significant (p < 0.05)
differences for all traits except peptidoglycan biosynthesis and
degradation proteins (Figure 4). Similarly, analysis of variance
tests (ANOVA) on the phylogenetic generalized least squares
(PGLS) models indicated that trait frequencies differed significantly
(p < 0.05) by habitat for all traits except the prokaryotic defense
system.

As expected, there was a significant correlation (p < 0.05)
between genome size and gene counts for most of the traits we
analyzed (Supplementary Figure 3). The largest genome with
6,899,075 bases belonged to a strain isolated from a contaminated
site, and the shortest genome came from the animal classification
with 2,861,323 bases. On average, genomes from contaminated
sites were the largest and those from animals were the smallest
(Supplementary Table 3). Therefore, genomes from contaminated
sites typically had a higher enrichment of genome-based traits,
whereas strains from animals often had the lowest gene enrichment
when compared to the other habitats (Figure 4). The prokaryotic
defense system gene group was highest within contaminated
habitats. Additionally, as we anticipated, CAZyme gene frequencies
were highest in strains from plants. There was also a high
enrichment of chaperones and folding catalysts within genomes
isolated from the clinical habitat; on average, the genome size of
clinical strains was the second largest (Figure 4; Supplementary
Table 3).

We also calculated the relative abundances of the habitat
preference traits for each clade (Supplementary Figure 4). For the
genome-based traits associated with high growth yield, the amino
acid related enzymes and lipopolysaccharide biosynthesis proteins
were the most abundant in clade 11, whereas lipid biosynthesis
proteins were most abundant in clade 12. CAZymes linked to the
resource acquisition strategy were abundant overall, with clades 1
and 3 having the highest relative abundances compared to other

clades. With respect to the genome-based stress tolerance traits,
chaperones and folding catalysts were most abundant in clade 7 and
clade 11 had the highest abundance of genes for the prokaryotic
defense system, as well as peptidoglycan and biosynthesis proteins
(Supplementary Figure 4).

4. Discussion

Using comparative genomics, we investigated the association
between Sphingomonas habitat and phylogeny. Our hypothesis
that Sphingomonas strains from similar habitats would cluster
together in phylogenetic clades was supported as depicted in the
phylogenetic tree with a significant association between habitat and
phylogeny (Figure 3, ANOSIM test p < 0.05). Furthermore, within
clades, strains shared similar accessory genes (Figure 2). Moreover,
we found partial support for the hypothesis that key, genome-based
traits related to fitness in specific environments would correlate
with the isolation habitat (Figure 3). A closer investigation of
functional genes associated with life history strategies revealed
significant differences in gene counts across habitats (Figure 3).
Some of the patterns reflected what we anticipated, while others
did not. Ultimately, these findings bring us one step closer toward
understanding the relationship between habitat preference and
phylogeny.

The phylogenetic tree indicates that there is an association
between Sphingomonas habitat and phylogeny, supporting our
hypothesis that strains from similar habitats are more closely
related (Figure 3). These findings are also supported in other
bacterial systems such as Bifidobacteria, Curtobacterium, and
Xylella fastidiosa (Chase et al., 2018; Rodriguez and Martiny,
2020; Batarseh et al., 2022). It appears that abiotic factors as
well as biological conditions, such as hosts, contribute to the
environmental filtering and evolution of Sphingomonas within each
habitat (Martiny et al., 2006; Kraft et al., 2015).

Although there was a significant association, the match between
habitat and phylogeny was not a perfect. It is possible that our
phylogeny could be improved by incorporating accessory genes.
However, previous research suggests that the phylogeny produced
from an alignment of accessory genes did not substantially differ
from a phylogeny constructed with core genes (Batarseh et al., 2022;
Scales et al., 2022). It is also possible that our 8 habitat categories
(Table 1) may be too broad or too narrow, or perhaps dispersal
between sources influences the evolutionary history (Finlay, 2002).
Most of the environmental samples consisted of soils, while
the plant samples could be separated into root, stem, and leaf
subcategories (Supplementary Figure 5). The rhizosphere consists
of soils in the vicinity of plant roots, and could include lineages
that are selected by both soil and plant properties (Berendsen
et al., 2012). Additionally, dispersal between habitats could bring
together Sphingomonas strains from different sources in the same
location (Finlay, 2002; Albright et al., 2019; Walters et al., 2022).
Dispersal is particularly likely across environment, plant, water,
and contaminated site habitats. Finally, we note that we eliminated
some viable genomes from our analysis because we could not
determine their isolation source. Future studies like ours would
benefit from a standardized approach to metadata reporting about
isolation methods in microbial genomics databases.
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FIGURE 4

Heatmap depicting the enrichment of genome-based traits by habitat. Each heatmap box was calculated by taking the natural log of the average
number of genes within a habitat for a specific trait and dividing it by the natural log of the total gene average in all habitats for the same trait. Traits
are grouped together based on their Y-A-S classification: top green rows are growth traits, the middle blue CAZymes row is a resource acquisition
trait, and the bottom, red rows are stress tolerance traits. Traits with stars indicate significant (Kruskal–Wallis, p < 0.05) differences of natural log
transformed gene counts between habitats.

Since we found that habitat preference is phylogenetically
conserved, we sought to disentangle potential genome-based
traits that underlie habitat preference. Sphingomonas clades share
similar accessory genes (Figure 2), and genome-based trait counts
varied by habitat, together suggesting that adaptation to the local
environment has shaped habitat preference (Figure 4). Strains
from contaminated sites had more genes associated with the
prokaryotic defense system, while clinical strains had higher
averages for chaperones and folding catalysts (Figure 4). It is
possible that in the Y-A-S life history framework, strains from
both of these habitats may depend on stress tolerance strategies
for survival (Figure 1; Malik et al., 2020). Chaperones and folding
catalysts serve as signaling molecules to blood cells to promote
immunity and inflammation (Henderson and Pockley, 2010),
two common processes in clinical settings. Immune responses
are stressful to bacterial infectious agents, and bacterial stress
proteins such as chaperones may even trigger the immune
response of hosts (Henderson et al., 2006). Moreover, compared
to the other habitats, contaminated sites also had more genome-
based traits associated with high growth yield (Figure 4).
Since Sphingomonas can break down pollutants (Schmidt et al.,
1992), it is possible that strains in contaminated habitats
invested in resource use efficiency rather than stress tolerance.
Additionally, we found that Sphingomonas strains isolated from
plant habitats had more CAZymes (Figure 4), which suggests
that they use the resource acquisition strategy to breakdown
complex carbohydrates found in plant material (Hervé et al.,
2010).

For traits that did not differ significantly across habitats, such as
peptidoglycan biosynthesis and degradation proteins, there are two
potential possibilities (Figure 4). These traits may be part of the

core genome and are required by all strains for basic functioning.
Alternatively, there may be finer-scale differences in specific genes
that are not detected because our traits are defined as broad sums of
multiple genes. Moreover, proteins may have overlapping functions
in metabolic pathways, making it difficult to assign them to a single
life history strategy.

Although the genomics field and sequencing technologies have
made tremendous advancement (Heather and Chain, 2016), there
are still challenges with assembling complete genomes. In publicly
available data, there will be differences in the quality of the genomes
since sampling and sequencing methods vary across studies.
Therefore, to mitigate variability, we were very selective with the
Sphingomonas genomes that we decided to investigate further.
Even though we included fragmented genomes, all sequences had
a minimum BUSCO score of 95% from the Sphingomonadales
order (Seppey et al., 2019). Still, fragmented genomes may reduce
the total core gene count in Sphingomonas pangenome analysis
due to missing genes. Therefore, for comparison, we performed
pangenome analysis on the 23 complete Sphingomonas genomes
in our dataset (Supplementary Table 2), revealing 758 core genes.
This analysis indicates that our core gene count of 404 for the genus
is reasonable. As the diversity and frequency of genomes increases,
the number of core genes should decrease.

We investigated the genomic variation and phylogeny of
Sphingomonas across different habitats. Additionally, we used a
trait-based framework to explore differences in genome-based
traits and life history strategies. We found that strains from
similar habitats group together in clades and share accessory
genes. Although our results did not reveal distinct life history
strategies for all habitats, genome-based trait counts varied
by habitat. These findings indicate that Sphingomonas genome
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content reflects habitat preference. Considering the relationships
between habitat, genomics, and phylogeny may help us predict
Sphingomonas habitat preference and better exploit its potential
for bioremediation.
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