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Importance: Sleep disorders are one of the most frequent comorbidities in 
children with autism spectrum disorder (ASD). However, the link between 
neurodevelopmental effects in ASD children with their underlying sleep 
microarchitecture is not well understood. An improved understanding of etiology 
of sleep difficulties and identification of sleep-associated biomarkers for children 
with ASD can improve the accuracy of clinical diagnosis.

Objectives: To investigate whether machine learning models can identify 
biomarkers for children with ASD based on sleep EEG recordings.

Design, setting, and participants: Sleep polysomnogram data were obtained from 
the Nationwide Children’ Health (NCH) Sleep DataBank. Children (ages: 8–16 yrs) 
with 149 autism and 197 age-matched controls without neurodevelopmental 
diagnosis were selected for analysis. An additional independent age-matched 
control group (n = 79) selected from the Childhood Adenotonsillectomy Trial 
(CHAT) was also used to validate the models. Furthermore, an independent 
smaller NCH cohort of younger infants and toddlers (age: 0.5–3 yr.; 38 autism 
and 75 controls) was used for additional validation.

Main outcomes and measures: We computed periodic and non-periodic 
characteristics from sleep EEG recordings: sleep stages, spectral power, sleep 
spindle characteristics, and aperiodic signals. Machine learning models including 
the Logistic Regression (LR) classifier, Support Vector Machine (SVM), and Random 
Forest (RF) model were trained using these features. We determined the autism 
class based on the prediction score of the classifier. The area under the receiver 
operating characteristics curve (AUC), accuracy, sensitivity, and specificity were 
used to evaluate the model performance.

Results: In the NCH study, RF outperformed two other models with a 10-fold 
cross-validated median AUC of 0.95 (interquartile range [IQR], [0.93, 0.98]). The 
LR and SVM models performed comparably across multiple metrics, with median 
AUC 0.80 [0.78, 0.85] and 0.83 [0.79, 0.87], respectively. In the CHAT study, three 
tested models have comparable AUC results: LR: 0.83 [0.76, 0.92], SVM: 0.87 
[0.75, 1.00], and RF: 0.85 [0.75, 1.00]. Sleep spindle density, amplitude, spindle-
slow oscillation (SSO) coupling, aperiodic signal’s spectral slope and intercept, as 
well as the percentage of REM sleep were found to be key discriminative features 
in the predictive models.

Conclusion and relevance: Our results suggest that integration of EEG feature 
engineering and machine learning can identify sleep-based biomarkers for ASD children 
and produce good generalization in independent validation datasets. Microstructural 
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EEG alterations may help reveal underlying pathophysiological mechanisms of autism 
that alter sleep quality and behaviors. Machine learning analysis may reveal new insight 
into the etiology and treatment of sleep difficulties in autism.
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Highlights

 -  Questions: Can a generalizable machine learning methodology 
identify sleep microarchitecture biomarker for children with 
autism spectrum disorder (ASD)?

 -  Findings: Using two public datasets (NCH dataset consisting of 
149 ASD children and 197 age-matched controls (median age: 
11 yr) without neurodevelopmental diagnosis; CHAT dataset 
consisting of 79 age-matched controls only), we extracted sleep 
macro- and microarchitecture features based on sleep EEG 
recordings and trained multiple machine learning models to 
predict the ASD risk for each patient. Our best model achieved a 
median area under the curve (AUC) of 0.93–0.98 in ten-fold, 
stratified cross-validated held-out data classification from the 
NCH dataset, and IQRAUC of 0.75–1.00 from the CHAT dataset. 
As an independent validation, our model showed good 
generalizability in a smaller NCH cohort of younger children 
population (median age: 2 yr., 38 autism and 75 controls).

 -  Meaning: Our results support that machine learning-driven 
model may discriminate ASD from healthy children based on 
identified sleep microarchitecture biomarkers. Future refinement 
of our model may help individualized diagnosis of ASD in 
pediatric practice.

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder characterized by social communicative deficits, restricted and 
repetitive behaviors and interests, and sensory sensitivities. Sleep 
problems or disorders are common, reportedly as high as 80% in ASD 
children, which can have a negative impact on children’s mental and 
physical health (1). Causes of sleep dysfunction in autism are thought 
to be related to biological, medical, behavioral dysfunction and are 
characterized by various sleep disturbances at night (1–3).

Electroencephalography (EEG) has been widely adopted in sleep 
analysis for ASD (4–6). Research has detailed reliable sleep 
macroarchitecture differences in ASD children: less total sleep time, 
decreased sleep efficiency, and decreased rapid-eye-movement (REM) 
sleep percent (7). Despite the high prevalence of sleep dysfunction and 
associated cognitive deficits in ASD children, only a few studies have 
examined the microarchitecture of sleep (8). Sleep microarchitecture 
consists of important periodic and aperiodic activities. Two important 
oscillatory activities include sleep spindles and slow waves during 
non-REM (NREM) sleep. Reduced spindle density has been shown in 
young children with ASD compared to age-matched children with 
developmental delay but without autism. (9) While sleep stages are 

associated with underlying predominant frequency oscillations. Sleep 
EEG signals also contain aperiodic features characterized by the 1/f 
component of power spectrum. Aperiodic signals have been linked to 
cognitive processes across all arousal states (10). Together, periodic 
and aperiodic spectral features exhibit sleep state dependent 
variations, which may reveal functional significance with changes in 
maturation and neurodevelopmental disorders (11).

Machine learning has become increasingly popular in clinical 
diagnosis and biomarker discovery including for children with 
neurodevelopmental disorders (12, 13). In this study, we hypothesized 
that the combination of machine learning and sleep EEG feature 
engineering can predict clinically diagnosed autism in children. 
We  identified important sleep microarchitecture biomarkers that 
distinguish children with ASD and children without 
neurodevelopmental diagnosis, and verified our approach using two 
public datasets based on cross-validation and an additional 
independent dataset. The goal of this study was twofold: to assess the 
utility of overnight EEG as a potential autism diagnostic tool, to better 
understand the sleep changes related to autism beyond parent report 
and measured macroarchitecture changes.

Methods

Study population and cohort

Sleep polysomnogram and demographic data were obtained from 
the Nationwide Children’s Health (NCH) Sleep DataBank. The NCH 
Sleep DataBank is housed within the National Sleep Research 
Resource (NSRR), which consists of 3,984 polysomnography studies 
and over 5.6 million clinical observations on 3,673 unique patients in 
2018–2019. Sleep studies were acquired under standard care at 
NCH. The published polysomnogram files (PSG) contain the patient’s 
physiological signals as well as the technician’s assessment of the sleep 
stages and descriptions of additional irregularities The accompanying 
records of clinical data were extracted from the electronic health 
record., and are separated into encounters, medications, 
measurements, diagnoses, and procedures. The dataset was then 
deposited in the National Sleep Research Resource (NSRR) (14).

A total of 149 children with autism (8–16 years old) and 197 
age-matched controls without neurodevelopmental diagnosis were 
selected in our analysis. Sleep micro-and macroarchitecture undergo 
maturational changes across the lifespan with marked differences in 
infancy and late adolescence as sleep becomes more adultlike. For this 
reason, we chose the period of middle childhood to early adolescence.

Our selection criterion was based on ICD 10 codes present in 
clinical history. ICD 10 codes F84.0 were used to identify autism cases. 
Clinical diagnosis of autism are coded by physicians in the medical 
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record by using the ICD code F84.0. This code encompasses DSMV 
criteria for autism including persistent impairment in reciprocal social 
communication and social interaction, and restricted, repetitive 
patterns of behavior, interests, or activities.

General exclusion criteria were neurological conditions including 
seizure disorder. The matched controls had no evidence of 
neuropsychiatric or neurodevelopmental disorders in ICD codes. ICD 
codes used for exclusion include ADHD, Intellectual Disability, 
Epilepsy, Cerebral Palsy, Global Developmental Delay, Language 
Delay, Motor Delay, and Genetic Syndromes.

Demographic variables (e.g., age at sleep study, gestational age, and 
gender) were further extracted. For independent dataset validation, 
we  selected 79 age-matched patients from the Childhood 
Adenotonsillectomy Trial (CHAT) study, which was initially derived from 
a multi-center treatment trial for children with obstructive sleep apnea 
(15). This trial was a single-blind, randomized controlled trial that 
recruited children with symptoms of Obstructive Sleep Apnea from 
primary care, otolaryngology, and sleep medicine clinics at 7 academic 
sleep centers (Children’s Hospital of Philadelphia, Philadelphia, PA; 
Cincinnati Children’s Medical Center, Cincinnati, OH; Kosair Children’s 
Hospital (KCH), Louisville, KY; Rainbow Babies and Children’s Hospital, 
Cleveland, OH; Children’s Hospital, Boston, MA; Cardinal Glennon 
Children’s Hospital, St. Louis, MO; and Montefiore Medical Center, 
Bronx, NY). Children had baseline and 7 month follow-up 
polysomnographic, cognitive, and behavioral testing and accompanying 
clinical and laboratory evaluations. In the study, patients were randomly 
assigned to early adenotonsillectomy or a strategy of watchful waiting. 
Polysomnographic, cognitive, behavioral, and health outcomes were 
assessed at baseline and at 7 months post treatment. We  included 
participants’ data from the baseline assessment only so that it contained 
all patients who were pre-treated.

However, the CHAT dataset contains no autism patients. 
Furthermore, a smaller independent NCH dataset using younger patients 
(age: 0.5–3 years) was created for validation. The data collection was 
approved by application to NSRR. All human subjects gave consent for 
use of their data. Features for machine learning were extracted from 
dataset csv and edf files. Macroarchitecture features were extracted from 
sleep specialist annotations. The software code that was used to extract 
microarchitecture features from edf files is based on pre-trained classifiers 
https://github.com/raphaelvallat/yasa_classifier (16, 17).

A flowchart of our study is shown in Supplementary eFigure S1 
Demographic statistics of all analyzed data are summarized in 
Table 1.

Sleep macroarchitecture

We used the polysomnogram files to extract the duration of sleep 
stages. Polysomnographic recordings were scored by technologists 
according to the American Academy of Sleep Medicine (AASM) 
criteria (18). The annotation files from the NCH and CHAT databases 
included manually graded sleep stages in 30-s epochs. All studies 
contain overnight recordings divided into epochs with a 30 s window 
size. All experiments employed AASM staging, where NREM3 and 
NREM4 were merged into the N3 stage. The following sleep stage 
features were collected: total sleep time, sleep efficiency, percentage of 
time in each sleep stage (N1, N2, N3, and R), number of REM sleep 
episodes, arousal index, and apnea–hypopnea index. The mean sleep 

recording duration was 10.3 h. The EEG electrode labels were 
consistent with the International 10/20 system, and a total of 7 EEG 
recording channels were measured during sleep studies.

Sleep microarchitecture

Spectral analysis
We processed the EDF files with the MNE-Python toolbox1. Raw 

EEG data was first downsampled to 100 Hz, followed by bandpass 
filtering between 0.1 and 40 Hz. We selected seven EEG channels (two 
frontal F3, F4, two central C3, C4, two occipital O1, O2, and one 
midline central CZ, and used M1 and M2 as respective reference 
electrodes: F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1, and 
CZ-O1) to examine spectral features from bilateral frontal, central, 
and occipital regions. We applied YASA, a Python-based toolbox2 to 
compute sleep-associated EEG features (19). We first computed the 
power spectral density, and then derive the relative power (defined as 
the ratio between the band-specific power and total power) in delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), beta 
(15–30 Hz), and gamma (30–90 Hz) frequency bands. Power Spectral 
Densities (PSD) were estimated by Welch’s estimator that computed 
Fast Fourier Transform for above frequency bands. Each window size 
was one epoch containing one second of data. A 50% overlapping 
Kaiser window was applied to smooth the PSD data over 3 windows.

Spindle characteristics

We used YASA to further detect slow (9–12 Hz) and fast 
(12–15 Hz) spindles. In order to meet the spindle criterion, all three 
parameters must satisfy threshold criteria within the same time 
window: (i) relative sigma power ≥ 0.2, (ii) root mean square ≥ RMS_
mean + 1.5 *RMS_std, and (iii) moving correlation≥0.65. Spindles 
with a duration shorter than 0.5 s or longer than 2 s were discarded. 
Spindles with a duration shorter than 0.5 s or longer than 2 s were 
discarded. Spindles detected within 500 ms of one another on the same 
channel were considered a single spindle.

Spindle detection criteria were derived from default threshold values. 
(19) Next, sleep spindle densities (# per min) as well as discrete peak-to-
peak amplitudes, mean frequencies, and durations for each subject and 
channel were computed. Slow oscillations (SO) are characterized by high 
amplitude oscillations between 0.1 and 1.25 Hz. To characterize spindle-
slow oscillation (SSO) coupling, we used YASA to detect slow waves, and 
then calculated the phase-amplitude coupling across NREM2 and 
NREM3 based on epochs centered around the negative peak of the slow 
waves. A Hilbert transform was applied to extract the instantaneous phase 
angle of SO during maximal spindle amplitude. The mean circular phase 
and mean vector length (MVL) across NREM sleep were determined 
using the Pingouin software package3 (20). The MVL was scaled between 
0 and 1, with 1 indicating that the sleep spindle is occurring at the 
preferential phase of the SO (i.e., its trough), and 0 indicating that the 
spindle is out of phase with SO. Additionally, we detected the phase of SO 

1 https://mne.tools/stable/index.html

2 https://pypi.org/project/yasa/

3 https://pingouinInreviewstats.org/index.html
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where the highest peak of spindle amplitude occurred. The SO trough was 
considered to be the trigger, with the spindle occurring within ±1.2 s.

Aperiodic signals

The EEG power typically decreases with increasing frequencies, 
following a 1/f-like distribution. The aperiodic or 1/f component of 
the power spectrum can be quantified in terms of an intercept and a 
slope–the exponential decrease of power as a function of frequency 
(20, 21). The Fitting Oscillations and One Over f (FOOOF) toolbox4 
was used to assess the spectral slope and the intercept (22).

Machine learning analyses

We used Scikit-Learn’s Python library for the classification 
analysis (23). Three commonly used machine learning models: 
logistic regression (LR), support vector machine (SVM), and 

4 https://fooof-tools.github.io/fooof/index.html

random forest (RF) were tested. In the LR model, we  imposed 
LASSO (Least Absolute Shrinkage and Selection Operator) 
regularization. The hyperparameters in all classifiers were selected 
based on cross-validation among training samples. In model 
assessment, we  used 10-fold stratified cross-validation with 20 
repeats and reported the median performance statistics. The 
predictive performance was assessed in terms of accuracy, 
sensitivity, specificity, and F1 score. Because of sample imbalance 
between positive and negative classes, we used the area under the 
receiver operating characteristic curve (AUC) to determine the 
overall performance.

Feature ranking

We grouped sleep EEG features into four categories: spectral power, 
aperiodic features, microarchitecture, and sleep spindle characteristics. 
Feature ranking was applied to reveal the relative importance of each 
feature. For the linear SVM classifier, the importance of each feature was 
determined by the associated weight. In LR, features were eliminated by 
shrinking the values of the coefficients of redundant features to 0. RF 
feature selection was implemented based on higher splits containing 
larger information gains. Furthermore, each classification analysis was 

TABLE 1 Summary of demographic data from the selected study groups.

Characteristics NCH autism NCH controls CHAT controls Statistics NCH 
vs. NCH

Statistics NCH 
vs. CHAT

Number of subjects 149 197 79 n/a n/a

Age—yr., median [IQR] 11.7 [7.9,14.7] 10.4 [7.2,12.8] 9.2 [8.0,9.9] t-value = 2.3, p = 0.43(t-

test)

t = 5.7, p = 0.73

Male gender (%) 82% 60% 60% Chi = 11.7, p = 0.006 

(chi-squared test)

Chi = 3.6, p = 0.05

Gestational age 32 [31,36] 35 [34,39] unknown t-value = 5.8, p = 1.0 

(t-test)

n/a

Apnea–hypopnea index (AHI) 5.8 [0,8] 6.6 [0,6] 5.9 [0,9] t-value = 1.1, p = 0.3 

(t-test)

t-value =0.09 p = 0.9

Ethnicity

African-American 19% 23% 51%

White 71% 61% 36%

Other 10% 16% 13%

Characteristics Autism infant/toddler NCH infant/toddler Statistics

Number of subjects 38 75 n/a

Age—yr., median [IQR] 2.1 [1.9,2.5] 2.0 [1.5,2.5] t-value = 1.4, p = 0.18 (t-test)

Male gender (%) 74% 63% chi = 1.9, p = 0.16 (chi-squared t-test)

Gestational age 36.5 [36,39] 36.6 [36,39] t-value = 0.16, p = 0.87 (t-test)

Apnea–hypopnea index 

(AHI)

3.6 [0,4] 6 [0,7] t-value = 1.5, p = 0.16 (t-test)

Ethnicity

African-American 21% 22%

White 58% 65%

Other 21% 13%
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rerun by discarding one set of features (i.e., leave-one-feature-set-out) to 
assess the relative performance loss.

Independent data validation

In addition to cross-validation in the NCH dataset, we further 
validated confirmed our method using an independent pediatric 
sleep study (CHAT). As the CHAT study contains no autism data, 
ASD patients from the NCH dataset was used to match with CHAT 
controls. A second validation set was also constructed from the NCH 
study using younger children with autism and normally developing 
children. Machine learning models were generated using these 
separate datasets.

Results

Study population

Table 1 compares demographic sample characteristics of three 
studied datasets. The age of patients from NCH autism, NCH control, 
and CHAT control groups was not significantly different between each 
other. However, there was a higher percentage of males in the NCH 
autism group. This was not very surprising given a ratio of 4:1 male-
to-female predominance in autism26. Gestational age was comparable 
between NCH autism patients and controls, but not available for 
CHAT controls. Obstructive hypopnea was not significantly different 
between groups.

Feature ranking

In feature selection, the LASSO LR features were chosen from 
nonzero coefficients determined by the model. Top features from LR 
include the mean spindle amplitude, spindle density, aperiodic intercept, 
and relative gamma power (Figure 1A). Feature ranking for RF was 
computed as the mean and standard deviation of accumulation of the 
impurity decrease within each tree. Top features from RF included SSO 
coupling strength, spindle density, aperiodic signal slope and intercept, 
relative gamma power, and REM sleep percent (Figure 1B). Similarly, top 
features from SVM included spindle amplitude, density, relative sigma 
power, and aperiodic intercept (Figure  1C). These three different 
methods yielded distinct top discriminating features due to differences 
in underlying nonlinearity and cost function.

We computed four sets of features: (i) hypnogram features of sleep 
staging and arousals; (ii) relative spectral power features; (iii) sleep 
spindle characteristics; and (iv) aperiodic signal characteristics (Table 2). 
For each feature set, relative contribution to performance of model 
classification was assessed. All categories decreased AUC indicating 
broad contribution of features. Exuding Spectral power had least impact 
on LR AUC performance at 0.62 vs. leave out aperiodic signal (0.53), 
macroarchitecture features (0.56), and spindle feature (0.55).

Each model had decreased AUC scores as compared to the AUC 
derived from the “full model.” Specifically, LR trained without spectral 
features resulted in an AUC of 0.62. LR trained without aperiodic 
features yielded an AUC of 0.53, while the AUC statistics without 
microarchitecture and spindle features were 0.56 and 0.52, respectively 
(Supplementary eTable S1).

Model performance

Based on the full feature set, we  trained three machine learning 
models separately and compared their AUC performances. In the NCH 
study, the 10-fold cross-validated AUC statistic varied between 0.80 and 
0.95 (Figure 1C). The LR and SVM classifiers performed comparably 
across multiple metrics, with respective AUC 0.80 and 0.83, while the RF 
achieved a higher AUC of 0.95 (Table  3). Using an external dataset 
controls, the model achieved similar performance. We also tested the best 
model trained from the NCH study on the CHAT controls, and reported 
a true negative(TN) rate of 85% (67/79) and false positive (FP) rate of 15% 
(12/79). In the CHAT study, LR and SVM achieved an AUC between 0.83 
and 0.87. Furthermore, none of the machine learning models were able 
to distinguish CHAT controls and NCH controls 
(Supplementary eTable S2). We also validated used the same methods of 
extracted features and machine learning models to examine a smaller 
younger autism patient population and age-matched controls 
(Supplementary eTable S2). LR showed reduced AUC performance [IQR: 
(0.65, 0.78)], and RF was comparable [IQR: (0.73, 0.99)].

Feature post-hoc analyzes

We identified most discriminative features from classification 
analysis. We found that first, many spectral features differed between 
autism and control groups. In the NCH dataset, the relative gamma, 
beta, sigma, and delta power was significantly different between 
autism and controls. NCH controls had increased relative delta and 
decreased relative gamma, beta, and sigma power (Figure  2A). 
However, the relative theta power (t-test: t-value = 0.8, p = 0.4), and 
alpha (t-value = 1.2, p = 0.2), did not show significant differences 
between NCH autism and controls.

Second, the aperiodic slope and aperiodic intercept were two 
highly ranked non-periodic features. Across EEG recording regions, 
NCH controls exhibited steeper (i.e., more negative) aperiodic slope 
compared to NCH autism patients. For instance, frontal region’s slope 
was -2.3 ± 0.17 (mean ± SD) in controls vs -2.0 ± 0.26 in NCH patients 
(t-test: t-value = 6.8, p = 8 × 10–7); temporal region’s slope was 
-2.5 ± 0.15 in controls vs -2.0 ± 0.31 in NCH patients (t-value = 8.6, 
p = 7 × 10–7); occipital region’s slope was -2.4 ± 0.28  in controls vs 
-1.9 ± 0.3 in NCH patients (t-value = 10.2, p = 3 × 10–7) (Figure 2B).

Third, in NCH controls, SSO coupling was stronger in frontal 
(mean phase-locking value 0.21 vs. 0.19 in patients, t-value = −6.1, 
p = 6 × 10–8) and central/temporal channels (mean 0.2 vs. 0.18  in 
patients, t-value = −6.3, p = 2 × 10–8) using single averaged channel 
comparisons (Figure 2C).

Fourth, decreased REM percent continued to be  consistent 
feature in all autism patients in children and adults. REM percent 
was positively correlated with macroarchitecture features such as 
the total sleep duration and REM cycle #. There was a negative 
correlation between REM percent and NREM stages 1/2 in NCH 
patients. With respect to microarchitecture, REM percent had a 
weak negative correlation with relative spectral power in alpha, 
beta, sigma bands, and a positive correlation with relative delta 
power (Figure 2D).

Finally, CHAT controls showed similar sleep feature patterns as 
NCH controls. In the younger group (NCH infant/toddler vs. autism 
infant/toddler), there were similar patterns in all features except 
relative spectral power. In the young NCH dataset, there were 
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differences in gamma, beta, and sigma power between autism and 
controls. However, unlike older ASD patients, young ASD patients 
showed a decrease in relative gamma, beta, and sigma power 
compared to young controls (Supplementary eFigure S2).

Link to clinical variables

We further examined a subset of ASD population from the NCH 
dataset and divided them into two groups: with and without Intellectual 
Disability (ID): ASDID and ASDw/oID. We found that ASDID showed 
increased EEG arousal count with decreased spindle density and REM 
percent (Figure 2E). SSO coupling was increased in both ASDID and 
ASDw/oID. Comparisons of more features between ASDID and ASDw/
oID are shown in Supplementary eTable S3. Finally, the prediction score 
was different between ASDID and ASDw/oID among NCH autism 
patients (t-value = 6.7, p = 0.0002; RF classifier).

In NCH controls, the peak spindle power occurred close relative 
to the SO trough (8 ms latency), whereas the latency was greater in 
ASDw/oID (20 ms) and ASDID (40 ms). Furthermore, spindle density 
was higher in controls compared to ASD children; EEG arousal was 
higher in ASDID than in ASDw/oID; REM sleep percent was highest 
in controls and lowest in ASDID (Figure 2).

Discussion

Recent years have witnessed a rapid progress in biomarker 
discovery for ASD using various genetic and physiological markers 
(24–26). We combined feature engineering and machine learning 
tools to identify biomarkers for the ASD children population and 
validated the approach in two public datasets. The matched controls 
were a carefully selected group and did not likely contain 
neurodevelopmental diagnosis with the exception of attention-deficit/

A

B

C

FIGURE 1

Comparison of feature selection and cross-validated AUC performance of three machine learning models based on the NCH dataset. In the left 
column of each panel, the importance of individual features was ranked, showing the top 20 features for each classifier. In the right column of each 
panel, the mean ROC curve (dark blue) was shown based on 10-fold cross-validation. Individual folds are multicolored, and shaded area denotes SD. 
(A) LASSO LR. (B) RF. (C) SVM classifier.
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hyperactivity disorder (ADHD). Our results on independent 
validation demonstrated that machine learning achieved good 
generalizability and identified important sleep 
microarchitecture biomarkers.

Among sleep microarchitecture features, sleep spindles are 
consistently linked to cognitive abilities and memory consolidation, 
integrity of thalamocortical circuits, and sleep spindle abnormalities have 
been implicated in individuals with ASD, intellectual disability, and other 
neurodevelopmental disorders (27–29). Furthermore, sleep spindle 
density is linked to pace-making activity of the thalamic reticular nucleus 
and has been found to be stable across childhood; other spindle attributes 
show developmental trajectories throughout maturation (30). Our results 
showed decreased sleep spindle density and decreased SSO coupling in 
ASD children, consistent with the findings in the literature. We also found 
decreased aperiodic signal slope and increased aperiodic intercept during 
overnight sleep in ASD children. The spectral slope is thought to reflect 
the excitation/inhibition (E/I) balance at the synaptic level with more 
negative slopes reflecting enhanced inhibition, whereas the intercept is 
related to overall population spiking activity (31). A decrease in excitation 
during sleep in typical brain development has been associated with 
inhibitory regulation of cortical excitatory neurons via parvalbumin-
positive (PV+) interneurons. The higher E/I ratio as evidenced by 

aperiodic slope flattening seen in ASD patients may confer a less stable 
sleep state, leading to decreased sleep stability and lower likelihood of 
entering REM sleep from NREM stages. NREM and REM total durations 
were negatively correlated in our study. It has been thought that NREM 
and REM are regulated independently of each other but are both under 
homeostatic control. Negative correlation between the two could 
be related to chronic sleep fragmentation in kids with autism, leading to 
NREM being favored at the expense of REM or disruption in the typical 
homeostatic REM sleep pressure which leads to rebound of REM sleep.

Among spectral features, there were specific band power 
differences between younger and older ASD patients. Younger patients 
(1–3 years) exhibited lower gamma power relative to controls, whereas 
older ASD children had increased gamma power relative to their 
age-matched controls. Since increased gamma is associated with 
deficient PV inhibition, it may suggest that early and persistent 
deficiencies of PV inhibition could explain abundance of gamma 
power in older ASD children (32, 33). To date, there is limited 
information regarding the ontology of gamma power in sleep in 
children. Gamma oscillations have been shown to be  expressed 
throughout sleep in the human brain35. In ASD patients, gamma 
power increase during the resting state had been reported, particularly 
among patients with fragile X syndrome (34). Gamma rhythms have 

TABLE 2 Descriptive statistics of features included in the three machine learning models.

Feature group Features Control group 
mean (SD)

ASD group mean 
(SD)

t-test (value of p)

Polysomnogram/Macroarchitecture Duration of Sleep Stage 1(h) 0.25 (0.22) 0.22 (0.21) t = 0.68, p = 0.3

Duration of Sleep Stage 2 (h) 2.8 (1.2) 1.7 (1.5) t = 2.01, p = 0.04

Duration of Sleep Stage 3 (h) 1.7 (0.75) 1.5 (1.1) t = 1.4, p = 0.15

Duration of REM (h) 1.1 (0.58) 0.8 (0.63) t = 4.0. p = 0.00007

Total Sleep Duration (h) 6.7 (2.6) 6.4 (2.3) t = 0.56, p = 0.57

Percentage Sleep Stage 1 40% (3.3%) 43% (4.9%) t = 0.66, p = 0.5

Percentage Sleep Stage 2 48% (22%) 51% (25%) t = 0.8, p = 0.4

Percentage Sleep Stage 3 26% (8.1%) 23% (4.1%) t = 2.1, p = 0.04

Percentage REM 18% (8.2%) 12% (7.6%) t = 5.1, p < 0.0000003

Number of REM Cycle 3.8 (2.5) 3.0 (2.4) t = 2.4, p = 0.01

EEG Arousal Count 35.1 (18) 31.8 (14) t = 0.97, p = 0.3

Spectral features Relative delta power 0.73 (0.08) 0.67 (0.14) t = 3.4, p < 0.000005

Relative theta power 0.14 (0.03) 0.14 (0.03) t = 0.80. p = 0.40

Relative alpha power 0.04 (0.02) 0.05 (0.02) t = 1.17, p = 0.24

Relative beta power 0.04 (0.03) 0.06 (0.04) t = 4.1, p < 0.000005

Relative sigma power 0.03 (0.02) 0.04 (0.04) t = 4.6, p < 0.000005

Relative gamma power 0.01 (0.01) 0.02 (0.04) t = 4.5, p < 0.000005

Spindle/slow wave features Mean spindle duration (s) 0.86 (0.33) 0.87 (0.42) t = 0.22, p = 0.82

Mean spindle frequency (Hz) 12.7 (0.3) 12.7 (0.3) t = 0.96, p = 0.33

Mean spindle amplitude (uV) 1,130 (851) 1,034 (732) t = 0.91, p = 0.36

Spindle density (# per min) 1.3 (0.13) 1.0 (0.02) t = 2.3, p = 0.02

Phase of SSO coupling 0.04 (0.07) 0.04 (0.07) t = 0.42, p = 0.66

Strength of SSO coupling 0.18 (0.01) 0.19 (0.01) t = 1.7, p = 0.08

Aperiodic features Aperiodic signal spectral slope −2.2 (0.26) −2.0 (0.34) t = 2.86, p = 0.004

Aperiodic signal spectral intercept 6.3 (0.78) 6.0 (0.88) t = 2.3, p = 0.05

Spectral, spindle/slow wave features, and aperiodic features were computed from the average of all available EEG channels (F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1, and CZ-O1).
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TABLE 3 Performance [median (IQR)] comparison between three machine learning models based on 10-fold cross-validation.

Model AUC Sensitivity Specificity Accuracy F1

NCH autism (n = 149) vs. NCH controls (n = 197)

SVM 0.80 [0.78,0.85] 0.72 [0.60, 0.88] 0.69 [0.60, 0.80] 0.83 [0.78,0.86] 0.2 [0, 0.3]

RF 0.95 [0.93, 0.98] 0.74 [0.63, 0.90] 0.83 [0.75, 1.00] 0.94 [0.92,0.97] 0.76 [0.67, 0.89]

LR 0.83 [0.79,0.87] 0.93 [0.94,1.0] 0.87 [0.84,0.92] 0.82 [0.77,0.83] 0.52 [0.31,0.60]

NCH autism (n = 149) vs. CHAT controls (n = 79)

SVM 0.87 [0.75,1.00] 0.97 [0.94,1.0] 0.83 [0.72,0.91] 0.83 [0.75,0.91] 0.88 [0.84, 0.94]

RF 0.85 [0.75,1.00] 0.96 [0.93,1.0] 0.86 [0.76,0.98] 0.89 [0.80,0.98] 0.9 [0.84, 0.96]

LR 0.83 [0.76,0.92] 0.93 [0.94,1.0] 0.87 [0.84,0.92] 0.84 [0.81,0.86] 0.89 [0.88, 0.93]

A

D

E

B C

FIGURE 2

Machine learning analyses revealed future relationship within features and between features and clinical variables. (A)  Relative spectral power in delta, 
sigma, beta and gamma frequency bands between NCH autism patients (n= 149) and controls (n= 197). Error bar denotes SEM. (B) Aperiodic slope in 
frontal, centro temporal and occipital leads between NCH autism patients and controls. Error bar denotes SEM. (C) SSO coupling strength in frontal 
and centro temporal leads between NCH autism patients and controls. Error bar denotes SEM. (D)  Correlation between REM percentage with sleep 
macro and micro-architecture features in NCH patients. (E) Comparison of EEG arousal count, average spindle density and REM percentage features 
between controls, ASDID and ASDw/oID.
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been attributed to synchronous activity of cortical PV interneurons. An 
increase in gamma power during sleep may be important for sensitive 
period closure in younger children (35). Early postnatal disruption of 
interneurons has been experimentally shown to cause increased 
cortical network synchrony (36). Therefore, increased gamma power 
may be  associated with a reduced input to interneurons due to 
disrupted early circuit development, which, in turn, may shift E/I 
balance toward excitation and lead to disruptions in the shaping of 
cortical networks.

Overall, sleep microarchitecture features could serve as 
biomarkers of the deviant cortical maturation in autism. Spindle 
and aperiodic abnormalities signal thalamocortical dysfunction. 
Sleep microarchitecture disturbances may interfere with restoration 
of optimal E/I of neuronal homeostasis contributing to 
neurodevelopmental impairments (37). An improved understanding 
of neurophysiology of sleep brain networks may help advance the 
treatment of sleep disorders and underlying ASD pathophysiology.

Limitations of the study

This study has some limitations. Diagnosis of autism and 
exclusion criteria were all based on ICD-10 coding and did not 
include gold standard autism assessments. There was also limited 
clinical and demographic information in the NCH database. The 
overall sample size was still relatively small, and the external 
validation dataset only included a healthy control group. 
Additionally, type-I errors may exist in our machine learning 
analyzes. Our independent validation with CHAT controls used 
the same ASD group as the NCH validation and therefore did not 
allow us to confirm autism group results. Finally, there was a 
degree of selection bias since all children were referred for sleep 
study in most cases due to suspicion of sleep disordered breathing 
at the first place.

Conclusion

Machine learning can identify EEG sleep biomarkers that 
distinguish children with clinically diagnosed autism from typically 
developing controls. Feature ranking revealed important 
discriminative sleep microarchitecture features. Sleep disturbances are 
among the most pronounced challenges faced by ASD children and 
their families; our machine learning models may provide a pragmatic 
next step for clinical intervention.
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