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A primary objective of Air Traffic Flow Management (ATFM) is to ensure the 

orderly flow of aircraft through airspace, while minimizing the impact of delays and 

congestion on airspace users. A fundamental challenge of ATFM is the vulnerability 

of the airspace to changes in weather, which can lower the capacities of different 

regions of airspace. Considering this uncertainty along with the size of the airspace 

system, we arrive at a very complex problem. The development of efficient 

algorithms to solve ATFM problems is an important and active area of research. 

Responding to predictions of bad weather requires the solution of resource allocation 

problems that assign a combination of ground delay and route adjustments to many 

flights. Since there is much uncertainty associated with weather predictions, 

stochastic models are necessary.  

We address some of these problems using integer programming (IP). In 

general, IP models can be difficult to solve. However, if “strong” IP formulations can 



  

be found, then problems can be solved quickly by state of the art IP solvers. We start 

by describing a multi-period stochastic integer program for the single airport 

stochastic dynamic ground holding problem. We then show that the linear 

programming relaxation yields integer optimal solutions. This is a fairly unusual 

property for IP formulations that can significantly reduce the complexity of the 

corresponding problems. The proof is achieved by defining a new class of matrices 

with the Monge property and showing that the formulation presented belongs to this 

class. To further improve computation times, we develop alternative compact 

formulations.  

These formulations are extended to show that they can also be used to model 

different concepts of equity and fairness as well as efficiency. We explore simple 

rationing methods and other heuristics for these problems both to provide fast 

solution times, but also because these methods can embody inherent notions of 

fairness. The initial models address problems that seek to restrict flow into a single 

airport. These are extended to problems where stochastic weather affects en route 

traffic. Strong formulations and efficient solutions are obtained for these problems as 

well.  
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Chapter 1 Introduction 
 

We live in a world dominated by the need for on-time performance. This need is 

countered with unexpected and uncertain events that derail performance. We are then 

left with the question of how best to perform in an environment without perfect 

information. This is a fundamental challenge in Air Traffic Flow Management 

(ATFM) and Ground Delay Programs (GDPs) in particular.  

Here, we give a general overview of Air Traffic Flow Management (ATFM). 

For more specific information, see (Ball et al., 2007), (Vossen, Hoffman and 

Mukherjee, 2011), or (FAA, 2006). The Federal Aviation Administration‟s (FAA) air 

traffic flow management specialists have set a priority on resolving instances in the 

National Airspace System (NAS) where the anticipated demand exceeds capacity. 

Whenever the FAA predicts that the number of flights arriving at an airport within a 

15-minute interval exceeds the capacity of the current runway configuration, FAA 

directives mandate a response. One of the primary limitations on capacity is the finite 

number of airports that can be built and the constrained number of runways at each of 

these airports. One such way that a demand capacity imbalance can occur is by a 

significant increase in the traffic between these airports. This increase in air traffic, 

though, occurs over a long period of time and thus the FAA has more of an 

opportunity to prepare for it. A much more complex situation arises when bad 

weather occurs in airspace. Runway capacity is a limited resource under good 

weather conditions. Poor weather conditions over an extended period of time can 

reduce the existing capacity causing a situation to arise where the number of flights 
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attempting to land during this time exceeds the capacity. The result is that some 

flights must be delayed and the question of which flights should experience delays, 

and how much delay should be assigned to each flight is resolved though a traffic 

flow management initiative. One of the most common such procedures is a GDP. 

These procedures are usually planned in the expectation of bad weather; flights are 

held on the ground before they depart from their origin airports. These are effective 

because delay is shifted from being airborne delay to ground delay, which is both less 

costly and less risky.  

GDPs were initially implemented after the oil crisis of the 1970s and the air 

traffic controller strikes of the 1980s, which made it attractive to reduce airborne 

delays by holding flights on the ground. Since then, they have become a major part of 

the U.S. ATFM strategy. Initially the question of how much delay to assign to each 

flight was handled by a method called Grover-Jack. This is a method for assigning 

flights to arrival slots based on their estimated time of arrival (ETA). It was shown 

that this method can be abused by providing an inaccurate or out of date ETA. These 

methods are precisely what airlines resorted to when they felt they were being treated 

improperly by the Grover Jack methods. This comes from the fact that, if an airline is 

flying into an airport experiencing a GDP, then the airline is penalized for reporting 

delays or cancellations of flights. For example, consider a flight that has an ETA of 

1:00 pm, but because of mechanical difficulties is unable to arrive until 1:30. If the 

flight reports this to the FAA, then they are assigned a slot based on this new ETA of 

1:30 instead of the original ETA of 1:00. Airlines saw this as being penalized for 

being truthful about their delays and cancellations, and this was referred to as the 
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“double penalty”. As a result, this led to inaccurate information relating to arrivals, 

which led to inefficient GDPs.  

Inequitable and inefficient GDPs led to the need to reconsider how GDPs 

were implemented. At the core of this was the need to remove the penalty for 

voluntary submission of timely and accurate flight data. No party involved in air 

traffic management has complete information. The FAA has a published schedule, 

giving them knowledge of the arrivals and departures as well as the status of airborne 

flights. But this schedule is published well in advance of any GDP implementation. 

This means that it does not reflect changes in the departure times of flights due to 

mechanical problems, delays to inbound flights, etc. In order to efficiently implement 

a GDP, the FAA needs active participation from the airlines. On the other hand, 

airlines know information about their flights, and can make adjustments to their own 

schedules around weather reports, but do not have any information about the overall 

demand and capacity at airports. As a result, Collaborative Decision Making (CDM) 

emerged based on the philosophy that an increase in data exchange and collaboration 

between the parties involved will lead to more effective and efficient decisions in 

ATFM. In 1998, CDM procedures were used to plan GDPs, and CDM became the 

official policy of the FAA.  

A primary component of CDM is the ration-by-schedule (RBS) algorithm. 

Unlike the Grover Jack method, where flights were ordered by ETA, RBS allocates 

slots using a priority rule based on published schedules and daily downloads of fresh 

flight data. This can be seen as changing the philosophy from the „first-come-first-

served‟ method of Grover Jack to a „first-scheduled-first-served‟ method. This is seen 
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as a more equitable procedure than Grover Jack as airlines no longer suffer the double 

penalty, and they are not penalized for reporting updated cancellations and delay 

information. Under RBS if an airline reports updated delay information about a flight 

that will be unable to utilize an arrival slot at an airport, that airline keeps control of 

the corresponding arrival slot and has the option of substituting another of its flights 

into that slot. Once the airline has finished the process of cancellations and 

substitutions, a type of inter-airline slot exchange is used to insure full utilization of 

all available slots.  

1.1 Motivation for Problems Studied 

The manner in which RBS is applied in practice for GDP planning involves certain 

added features. There are two sets of flights that are exempt from being assigned 

ground delay. The first set, flights that are airborne at the start of the GDP, obviously 

cannot be assigned ground delay as they have already taken off. The second set of 

exempt flights, though, involves a more complex motivation. An exemption radius is 

set around the airport experiencing the GDP. Flights outside this exemption radius are 

not included in the program, and thus are exempted from any ground delay. Delay is 

assigned only to those flights within the exemption radius. A primary reason for this 

second set of exempt flights is the uncertainty associated with the weather forecasts 

on which the GDP is based. Longer flights must serve their delays several hours in 

advance of their arrival at the airport. If a forecast predicts poor weather at an airport 

and that weather does not materialize, this could result in some longer flights 

receiving what, in hindsight, is unnecessary delay.  
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Once the duration of a GDP is set, one can easily determine the total amount 

of delay that must be distributed among all flights. A basic consequence of exempting 

fights is that the number of flights over which this total delay that is distributed has 

now been reduced. Thus some flights will have no delay (the exempt flights) and 

others will receive more delay than they would without exemptions.  

The fact that predicted poor weather does not always materialize is a large 

factor in the distance based exemptions in RBS. This uncertainty of the weather can 

lead to more general inefficient utilization of the resources at an airport. Consider the 

example where poor weather is expected at an airport and consequently a GDP is 

planned for some set duration. Our knowledge of this bad weather, particularly of 

how long it will last, at best would take the form of a probability distribution. Thus, 

there is a significant possibility that the poor weather will not last for the planned 

GDP duration. If the time is longer than was initially expected, then the GDP can 

simply be extended and appropriate actions can be taken. Conversely, if the poor 

weather clears up earlier than anticipated, then the GDP will be cancelled early and 

the airport capacity will rise back to nominal conditions. However, the ability to take 

advantage of the possible increase in capacity at the airport due to the weather 

clearing up earlier than anticipated depends significantly on the manner in which 

GDPs are planned and controlled.  

Vossen et al. (Vossen et al., 2003), (Vossen and Ball, 2006) showed that RBS 

without exemptions is an allocation method that meets three important metrics of 

equity. First, it minimizes total delay. Second, it lexicographically minimizes the 

vector giving the distribution of flight delays. This means that if D is the maximum 
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number of minutes of delay assigned to any flight, and ai is the number of flights 

receiving i minutes of delay, for i = 0, 1, 2, …, D, then RBS lexicographically 

minimizes (aD, …, a1, a0). Also, for any flight k1, the only way to decrease the 

amount of delay it receives from RBS is to increase the amount of delay given to 

another flight k2 to a value greater than the amount of delay that k1 receives. These 

can be seen as fundamental notions of equity (Young, 1994) applied within the 

ATFM context.  It is also the case that the ATFM community has agreed that RBS 

produces a fair allocation. For these reasons, the “pure” RBS allocation (without any 

exemptions) will be used as the “ideal” allocation in terms of equity in our analysis.  

The attempt to search for efficient solutions in the presence of weather 

uncertainty comes with the repeated question of how to ensure that such a solution 

remains equitable, or even how to define an equitable solution in such situations. 

Assuming the “pure” RBS solution is deemed the most equitable, defining equity 

metrics or objective functions remains a challenge. For example, should one seek to 

minimize the total deviation of all flights from their RBS allocations, or should one 

seek to minimize the maximum deviation of any flight from its RBS allocation? Other 

possibilities also exist.  

There is a close relationship between the work on en route ATFM and the 

work on GDPs. The concern in both areas deals with the situation where demand 

exceeds capacity for an extended period of time. The FAA recently instituted airspace 

flow programs (AFPs) which use many of the GDP constructs to address en route 

congestion problems. AFPs restrict flow through a region of airspace, called a Flow 
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Constrained Area (FCA). With the bad weather occurring at an FCA instead of at an 

airport, flights have an additional option: routing around the FCA.  

1.2 Integer Programming 

 

Many ATFM problems involve discrete choices and thus can be modeled as 

combinatorial optimization problems. These are problems where the set of feasible 

solutions is a discrete set and the goal is to find the best solution in this set. Many 

combinatorial optimization problems have been shown to be NP-Hard, which means 

they are computationally difficult and polynomial time algorithms are unlikely (Garey 

and Johnson, 1979).  

Bertsimas and Stock Patterson proved that the Air Traffic Flow Management 

Problem (TFMP), which considers the release times of aircraft as well as the optimal 

speed adjustments of aircraft while airborne for a network of airports taking into 

account the capacitated airspace, with all capacities equal to 1 is NP-Hard (Bertsimas 

and Stock Patterson, 1998). Much research is then given towards heuristics and 

approximation algorithms for NP-Hard problems. Approximation algorithms produce 

in polynomial time a feasible solution whose objective function is within a guaranteed 

factor of the optimal solution. This factor is called the approximation ratio (Vazirani, 

2001).  

Many combinatorial optimization problems can be formulated as integer 

programming (IP) problems. This formulation allows IP techniques to be used to 

develop algorithms and approximation algorithms. One important technique is the 

linear programming (LP) relaxation. The LP-relaxation of an integer program is a 

relaxation where the integrality constraints on the variables are removed. Linear 
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programming problems have been proven to be solvable in polynomial time. An 

important class of IPs are those with totally unimodular (TU) constraint matrices. A 

matrix is TU if every square sub-matrix of A has determinant +1, -1, or 0. Minimum 

cost network flow problems, for example, have TU constraint matrices (Bertsimas 

and Tsitsiklis, 1997). LPs with TU constraint matrices will have integer optimal 

solutions as long as the right hand side vector is integer. The approximation ratio for 

an LP-relaxation, also called the integrality gap, is the supremum (infimum) of the 

ratio of the optimal integral and fractional solutions if it is a minimization 

(maximization) problem. 

Another important feature of linear programming is duality theory. The dual 

of a linear program is a second linear program that finds a bound on the objective 

function of the original LP. This dual is formulated so that every feasible solution to 

the dual provides a bound on the primal objective function. The weak duality theorem 

says that the optimal objective function value for a minimization problem is always 

an upper bound for its dual. Correspondingly, the optimal objective function value for 

a maximization problem is always a lower bound for its dual. The strong duality 

theorem says that if the primal has a finite optimal, then the dual has a finite optimal 

with an objective function that matches the primal. These theorems can also be used 

to prove when the LP-relaxation of an IP formulation results in an integer solution.  

In general, there can be many alternative formulations for the same IP, i.e. many 

different sets of constraints can define the same set of integer solutions. The strength 

of an IP formulation is a way of measuring how close the polyhedron for the 

constraint matrix is to the convex hull of the integer feasible solutions. Given a set of 
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points X ℝ𝑛 , an inequality is called valid for X if it is satisfied by every member of 

X . Given a valid inequality of the polyhedron X , 0

T x  , the set 

 0:F x X x     is called a face of X , where   and x are both vectors in ℝ𝑛  

and 0  is a scalar. A facet of the polyhedron X  is a face of X  whose dimension is 

one less than the dimension of X . The facets of the convex hull of integer feasible 

solutions become very important because, if a formulation consists of enough facets 

of the convex hull of integer feasible solutions, it may be possible to solve the IPs 

using the LP-relaxation even with a constraint matrix that is not TU.  

One technique used to model uncertainty in IPs is to formulate two-stage 

stochastic IPs. Here, there are two sets of decisions that are being made around some 

uncertain event. The second set of decisions is influenced by the uncertain event, 

while the first is not. In order to formulate the uncertainty, there are generally a set of 

possible scenarios, each with its own probability of occurrence. Ball et al. (Ball et al., 

2003) and Richetta and Odoni (Richetta and Odoni, 1994) both used stochastic IPs to 

handle uncertainty associated with GDPs. 

 See (Bertsimas and Tsitsiklis, 1997), (Wolsey, 1998), or (Birge and 

Louveaux, 1997) for more general information on linear programming, integer 

programming and stochastic programming.  

1.3 IP Approaches to the GDP 

 

The GDP is a well studied problem in aviation research. The problem of assigning 

Ground Delay was first formulated as an IP by Odoni in 1987 (Odoni, 1987). Later, 

Vranas, et al. formulated a model which considered GDPs amongst multiple airports 
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(Vranas, Bertsimas and Odoni, 1994). This model was later extended to the full 

airspace by Bertsimas and Stock-Patterson (Bertsimas and Stock Patterson, 1998). 

These references only considered varying the timing of flights. A later formulation by 

the same authors also considered the option of rerouting aircraft (Bertsimas and Stock 

Patterson, 2000). These were all deterministic models, which do not take into account 

any uncertainty, like that brought about by the weather.  

Richetta and Odoni (Richetta and Odoni, 1994) proposed the first IP model to 

solve stochastic GDPs. In this model, the goal was to minimize the cost of ground 

delay and the expected cost of airborne delay to all flights included in the GDP. 

Classes of flights are considered instead of individual flights. The model assumes that 

the cost of delaying two flights in the same class is equal. The airborne delay is 

assumed to be uniform for all flights. The random variable is assumed to be the 

airport capacity, and in each scenario there is an assumed Airport Arrival Rate 

(AAR), the number of flights the airport can handle for each arrival interval. The 

model returns the number of flights of each class that should receive ground delay 

and the expected number of flights that should receive airborne delay.  

Ball et al. (Ball et al., 2003) then introduced a stochastic formulation which 

was a simplification of the Richetti-Odoni model. The model takes as input an AAR 

distribution, and produces a planned AAR (PAAR) vector, which is the number of 

flights that the airport should schedule to arrive in each time period, given the 

stochastic nature of the weather and the probabilities of different AARs. The authors 

showed that the special structure underlying their problem led to a totally unimodular 

(TU) constraint matrix. By only fixing planned arrival rates, their model allowed 
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individual flight delays to be assigned (later) by CDM processes. Inniss and Ball 

(Innis and Ball, 2004) developed a procedure for deriving the AAR distribution which 

can be used as input in the Ball et al. model.  

Kotynek and Richetta later showed that the Richetta and Odoni model 

(Richetta and Odoni, 1994), could also be used to determine the PAAR vector. They 

also answered some open questions about the Richetta-Odoni model, such as proving 

that its constraint matrix was not TU, but providing sufficient conditions for the IP to 

return integer solutions.  

Both these models operate under the condition of weather uncertainty. Due to 

the excessive costs of airborne holding when compared to that ground holding, both 

papers try to avoid the situation where the airport has more flights seeking to land 

than it has landing slots available in a given time period. These two models though, 

are static-stochastic models, in the sense that once decisions are made on ground and 

airborne delays at the beginning of a GDP, the models do not consider the possibility 

of changing those decisions once the random variable is realized.  

In contrast to the models described above, the first dynamic stochastic IP to 

model GDPs was formulated by Mukherjee and Hansen (Mukherjee and Hansen, 

2007).  This is a multi-stage model which takes into account the possible changes the 

weather can take throughout the duration of the GDP. The model is called dynamic 

because each possible change in weather, brings an opportunity to adjust the amount 

of delay given to flights. It generates a scenario tree to capture all the possible 

changes in weather outcomes. This scenario tree can grow large in size and can make 

the IP computationally inefficient.  
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In (Ball, Hoffman and Mukherjee, 2010), Ball et al. consider the problem of 

maximizing the throughput into the airport. Here, the Ration-by-Distance (RBD) 

algorithm is proposed. This algorithm is based on the principle of assigning longer 

flights to earlier slots. The authors prove that the RBD algorithm minimizes total 

expected delay if the GDP cancels earlier than anticipated, i.e. it allows for operators 

to reduce the amounts of ground delay some flights experience. Thus this model can 

be viewed as a dynamic stochastic model and is different from the static-stochastic 

models of Richetta-Odoni and Ball et al. Unlike the static-stochastic models it 

addresses the possibility of reassigning flights to the newly available slots once there 

is a change in the AAR. In their proof, the authors were able to compare the total 

expected delay of the RBD allocation with that of other allocations and show 

optimality.  

1.4 Contents and Research Contributions 

 

The RBD algorithm maximizes the expected utilization of an airport in the event of 

uncertain capacity increase. However, similar uncertainty affects the decision making 

for the entire airspace. For these areas, the proposal of an algorithm similar to RBD 

that has the same efficiency would be ideal, but may become a daunting task as each 

problem has its own individual assumptions and inputs. Instead, this dissertation 

builds on what the RBD algorithm brings to the table by providing IP formulations 

for the airport problem (treated by RBD) but then enhances these formulations to 

address more general problems. 

 Chapter 2 describes an IP model that minimizes total expected delay in the 

case that a GDP ends earlier than anticipated. Once this model is constructed, the 



 

 13 

 

RBD algorithm is shown to produce an optimal solution for its LP-relaxation. This is 

an important result because the problem is in general a multi-stage stochastic IP. 

Previous work that attempted to model this uncertainty formulated IPs that are larger 

in size, while not as strong. IPs that can be solved by their LP-relaxations are not 

common. One class of such IPs is those with TU constraint matrices. The 

formulations presented in Chapter 2 are shown not to have this property, thus 

belonging to an even smaller class of IPs. Other models which are equivalent in 

strength, but smaller in size are also provided and their performance is compared.  

 Chapter 3 models issues of equity in GDP planning and the potential trade-

offs between equity and efficiency. The RBD solution may seem unfair to some 

airlines, particularly those with many short haul flights. If one considers the “pure” 

RBS allocation as the ideal allocation (perfect equity), then with the exception of a 

few extreme cases, the RBD allocation represents a deviation from this ideal 

allocation. This chapter shows that the IP models presented in Chapter 2 can be 

modified in various ways to address issues concerning equity and fairness. Heuristics 

are also developed which attempt to capture the essence of the RBD algorithm while 

also insuring a limit on the deviation from the most equitable solution. These 

heuristics provide near optimal solutions, with the guarantee of integrality.  

 Chapter 4 considers the problem of severe weather in other areas of airspace. 

The RBD algorithm was originally proposed to maximize airport throughput in the 

event of weather uncertainty. Similar questions are raised when the area of 

uncertainty is an FCA instead of an airport. A model is presented in Chapter 4, which 

builds upon the model from Chapter 2 as well as other models already in literature. 
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This model is then compared to the models in literature and shown to be stronger and 

smaller in size and thus able to handle more flights and a larger set of possible 

weather clearance times.  

 Chapter 5 presents conclusions and future work.  
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Chapter 2 Ground Delay Programs with Weather Uncertainty 
 

A primary objective of ATFM is to ensure the safe and orderly flow of aircraft 

through airspace, while minimizing the impact of delays and congestion on airspace 

users. Much of this delay and congestion is caused by the vulnerability of the airspace 

to changes in the weather, which can lower the capacities of different regions of 

airspace. Combine this uncertainty with the size of the airspace system and the result 

is a very complex system. This makes the development of efficient algorithms to 

solve ATFM problems an important and active area of research. 

Much of the delay in the airspace system is due to bad weather. Weather 

decreases the capacity of arrivals and departures that an airport or a region of airspace 

can handle. These lower capacities cause some of the flights whose route consists of 

the troubled area to experience delays. The increased delay can be served on the 

ground before the flights depart or in the air. When a GDP is instituted at an airport 

with reduced capacities, flights scheduled to arrive at this airport are given a delay in 

minutes to be served before they depart their origin airports. The inputs to these 

GDPs are the airport capacities over some pre-specified time period and the flight 

schedules. The flow of aircraft into the airport is then adjusted to meet the capacities 

for the duration.  

A GDP must be planned several hours in advance. To accomplish this, 

weather forecasts are converted into profiles of AARs for 15 minute periods. These 

are the number of aircraft that can land at a particular airport in a period. This 

partitions each period into arrival slots of equal time length which are then assigned 
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to the flights. Because these capacities are based on the weather forecasts several 

hours in advance, there is a high degree of uncertainty with these capacities. The 

uncertainty can be characterized by using a discrete AAR distribution represented by 

a set of AAR vectors   1 ,..., : 1,...,T

q qA A q Q with probabilities qp  for 1,...,q Q .  

The CDM philosophy considers the allocation of capacity to be an allocation 

of airport arrival slots to airlines instead of an allocation of arrival slots to individual 

flights. This notion of slot ownership is one of the main tenets of the CDM paradigm. 

A general consensus among airlines was reached that RBS was indeed a fair method 

of rationing arrival capacity (Vossen et al., 2003) (Vossen and Ball, 2006). RBS 

orders flights according to increasing scheduled arrival times.  

In (Ball, Hoffman and Mukherjee, 2010), Ball et al. consider the problem of 

maximizing the throughput into the airport. Here, the RBD algorithm is proposed. 

This algorithm is based on the principle of assigning longer flights to earlier slots. 

The authors prove that the RBD algorithm minimizes total expected delay if the GDP 

cancels earlier than anticipated. In their proof, the authors were able to compare the 

total expected delay of the RBD allocation with that of other allocations and are able 

to show optimality. RBD is structurally very similar to RBS. The only difference is 

that flights are ordered by increasing flight length rather than increasing scheduled 

arrival time.  

 

Example 2.1 

To illustrate the differences posed by these two approaches, consider the 

following example of how the RBS and RBD algorithms would allocate flights to 
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slots in a ground delay program. Consider first, Table 2.1, which gives us the relevant 

flight information:  

 

Flight(k) 

 

 

Published 

Arrival Time, arr(k) 

 

Length, len(k) 

 

Published 

Departure Time, dep(k) 

1 4:56 60 3:56 

2 4:57 65 3:52 

3 4:58 75 3:43 

4 4:59 90 3:29 

5 5:00 120 3:00 
Table 2.1: Input Chart for Example 2.1 

 

Suppose that the airport has a reduced number of landing slots, allowing a 

flight to land every five minutes. This amounts to arrival slots being available at 5:00, 

5:05, 5:10, 5:15, 5:20, and later times. This is reduced from a nominal capacity where 

a flight is allowed to land every minute. Since it would be inefficient to allocate a 

flight to an arrival slot later than 5:20 in this GDP, there is only a need to consider 

these five arrival slots. Based on these assumptions, the RBS and RBD allocations are 

given in Figure 2.1, where the red lines are the assignments of the RBS algorithm and 

the blue lines are those of the RBD algorithm:  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: RBS and RBD Solutions to Example 2.1 
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Consider now the controlled departure times of flights under the different 

algorithms and consider how the formulations will perform if the GDP cancels earlier 

than anticipated. Table 2.2 lists the departure times of the flights under the different 

algorithms.  

Flight Length arr(k) RBS Arr RBS Dep RBD Arr RBD Dep 

1 60 4:56 5:00 4:00  5:20 4:20 

2 65 4:57 5:05 4:00 5:15 4:10 

3 75 4:58 5:10 3:55 5:10 3:55 

4 90 4:59 5:15 3:45 5:05 3:35 

5 120 5:00 5:20 3:20 5:00 3:00 

Table 2.2: Arrival and Departure Times for RBS and RBD Algorithms 

 

During GDPs, it is usually the case that the duration of the bad weather (lower 

airport arrival rates) is not known with certainty. If the weather suddenly clears, then 

the GDP will be cancelled. However, it can be difficult to take advantage of a 

capacity increase at an airport since this is done by releasing flights currently on the 

ground and such flights must travel (usually an hour or more) before they can reach 

the destination airport. The efficiency of the RBS and RBD solutions under different 

GDP cancellation times can now be considered. Consider the following GDP 

cancellation times: 3:00, 3:15, 3:30, 3:45, 4:00, 4:15, and 4:30.  

Table 2.3 shows how the formulations perform under the different 

cancellation times, where capacity for the arrival slots in Figure 2.1 is increased to 1 

after the GDP is cancelled (i.e. every slot after the cancellation time has its capacity 

rise to 1), and each column of Table 2.3 measures the total delay if the GDP is 

cancelled at the mentioned time.  

 

If the GDP is cancelled at 3:45, then the following transpires.  
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 By Table 2.2, we can see that Flights 4 and 5 have departed under both 

algorithms. This implies that there can be no change in the originally assigned 

ground delays. Thus the RBS algorithm will assign these flights 16 and 20 

minutes of delay respectively, whereas the RBD solutions will give these 

flights 0 and 6 minutes respectively. Because the GDP was cancelled, Flight 3 

can depart immediately and land at 5:00 under the RBS algorithm, and at 5:01 

under the RBD algorithm because flight 5 is already arriving at 5:00 under the 

RBD algorithm. Flights 1 and 2 do not receive any delay under either 

algorithm in this cancellation time.  

 The total delay for other cancellation times is computed through similar 

measures.  

 3:00 3:15 3:30 3:45 4:00 4:15 4:30 

RBS 0 15 21 38 60 60 60 

RBD 0 0 2 9 32 56 60 
Table 2.3: Total Delay for the RBS and RBD Algorithms 

 

Table 2.3 gives the total delay achieved under each algorithm under various 

cancellation times.  

Although this is a simple example, the RBD solution has equal or less delay 

than the RBS solution in all seven scenarios presented here. This illustrates the result 

of Ball et al., who showed that the RBD solution minimizes the total expected delay if 

a GDP cancels earlier than anticipated (Ball, Hoffman and Mukherjee, 2010). In this 

chapter, this same problem of maximizing expected throughput (i.e. minimizing total 

expected delay) into an airport during a GDP that has an uncertain cancellation time 

is considered. This will be modeled as an integer program with hopes that this IP will 
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allow us to consider more complex problems that address similar issues as allocating 

scarce resources subject to a possible increase in capacity at some later uncertain 

time.  

2.1 Formulation 

 

A general approach to modeling weather uncertainty IPs is to use a multi-stage 

scenario tree that tracks weather changes over time. The scenario tree represents 

points in time and states of nature. For example, the storm might move, get worse, or 

change in forecast. Each node in the scenario tree would represent a decision point in 

time when the decision of how to reassign flights to arrival slots needs to be 

considered, given the updated weather forecast or weather conditions. This sets the 

problem up as a multi-stage stochastic program e.g. as done in (Mukherjee and 

Hansen, 2007).  

In order to achieve a more compact scenario tree, we employ a fairly simple 

model of weather states and decision dynamics. We assume the weather has only two 

possible states: clear and not clear. This is actually generally consistent with how 

GDPs are handled in practice, where a GDP is not cancelled until the weather clears.  

 
Figure 2.2: Two-Stage Structure of Problem 

 

Figure 2.2 shows how this assumption turns the problem from having a multi-

stage scenario tree into one with a two-stage scenario tree. Each node in the far left 
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tree represents the condition of weather at a given time in the day. The assumption of 

weather having only two states changes the structure of the scenario tree from a 

general multi-stage structure to a skewed multi-stage structure. This skewed multi-

stage scenario tree can then be replaced by a two-stage scenario tree by changing the 

random variable from the condition of the weather at a given time period to the time 

when the weather clears. This collapses the scenario tree and allows the problem to be 

formulated as a two-stage stochastic IP instead of as a multi-stage stochastic IP.  

A second assumption is that there is no lag between weather clearance time 

and the time the airport goes back to nominal capacity. The assumption is that this 

happens immediately. This is to mimic the practice of cancelling a GDP, where once 

the GDP is cancelled the capacity at the hosting airport is increased.  

A third assumption is that the possible weather clearance times and the times 

we can change our decision coincide. Thus, we do not change our decisions based on 

changes in the forecast. More generally, we also assume that the distribution does not 

change, e.g. due to a forecast change.  

The input to the model comes from two sources: flight-based input and 

airport-based input. The flight-based input includes a set of flights, Flights, with the 

following provided for each flight k Flights :  

 The stage length of the flight k, len(k) 

 The published arrival time of the flight k, arr(k) 

 The arrival slot that the flight k would receive in the RBS allocation, RBS(k).  

The airport-based input includes:  
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 The maximum duration of the GDP 

 The reduced capacity of the airport, cap1(i) for each initial (stage one) slot i, i.e. 

the number of flights that can land in time period i when the capacity is reduced.  

 There are T possible GDP endings (cancellations). Each cancellation t = 1, …, T, 

has an associated time, ( )t . The GDP end time  t  will be referred to as 

scenario t .  

 The nominal capacity of the airport, cap2(j,t) for each slot j in scenario t. (We 

assume that for each slot j in each scenario t, cap2(j, t) ≥ cap1(j)).  

 A probability pt for each scenario t = 1, …, T.  

Slot i time(i) cap1(i) cap2(j, t) 

1 6:00 1 1 

2 6:01 0 0 

3 6:02 1 1 

4 6:03 0 0 

5 6:04 1 1 

   GDP Cancelled at 6:05 

6 6:05 0 2 

7 6:06 1 2 

8 6:07 0 2 

9 6:08 1 2 

Table 2.4: An Example of Stage One and Stage Two Capacities  

under a Given GDP Cancellation Time 

 

Table 2.4 gives a possible situation where a GDP is cancelled and associated 

capacities. Each of slots 6, 7, 8, and 9 now have their capacity increased to 2. This 

capacity can now be utilized by reducing the ground delay of flights.  
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This problem will be formulated as a two-stage stochastic IP. The slots in 

stage one will be labeled by the set Slots1(i), generally indexed by i. Likewise, the 

slots in scenario t of stage two will be labeled by the set Slots2(j, t), generally indexed 

by j and t. There will also be a time associated with each slot (in stage one or stage 

two). The functions time(i) will indicate the start time of the slot i, and time(j, t) will 

indicate the start time of slot j in scenario t. In a GDP, every flight must initially be 

assigned to a slot, and the first stage models these actions. What follows next is a 

description of this first stage.  

Let xk,i be the binary variable which is one if flight k is initially assigned to the 

arrival slot i. Similarly, the variable xs,i is the integer variable which is the amount of 

unused capacity for slot i. Then the following three constraint sets model the stage 

one restrictions. These constraints are very similar to the model proposed by Odoni 

(Odoni, 1987), where  is the set of integers.  

1

,

( ) ( )

1k i

i Slots
time i arr k

x



 for each flight k      

, , 1

( ) ( )

( )k i s i

k Flights
arr k time i

x x cap i




  for each arrival slot i     (2.2) 

1 1

, 1( ) | |s i

i Slots i Slots

x cap i Flights
 

         (2.3) 

 , 0,1  for all ,  k ix k i 

, ,0,s i s ix x ℤ



Each flight has a scheduled arrival time, arr(k), and constraint set (2.1) 

ensures that each flight is assigned to some arrival slot after its scheduled arrival time. 
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Constraint set (2.2) ensures that no slot is utilized in excess of its capacity during the 

GDP. Constraint set (2.3) ensures that every arrival slot has its demand met by having 

the slack flight supply these slots. This completes stage one of the formulation.  

 

Example 2.2 

Consider the following three flight input for a GDP at an airport with a reduced 

capacity of one flight every three minutes, i.e. time(1) = 7:30, time(2) = 7:33, and 

time(3) = 7:36.  

Flight(k) arr(k) len(k) 

1 7:29 30 

2 7:30 45 

3 7:32 60 
Table 2.5: Input Table for Example 2.2 

 

Under this input, stage one of this IP would be as follows:  

1,1 1,2 1,3

2,1 2,2 2,3

3,2 3,3

1,1 2,1

1,2 2,2 3,2

1,3 2,3 3,3

,1 ,2 ,3

1

1

1

1

1

1

0s s s

x x x

x x x

x x

x x

x x x

x x x

x x x

  

  

 

 

  

  

  

 

What follows next is a presentation of stage two of the formulation. Here, 

some flights have already been given delay, but the amount of delay a flight actually 

experiences is determined by both the slot to which the flight is assigned in stage one 

and the time of weather clearance, ( )t .  

Flight 1 

Flight 2 

Flight 3 

7:30 

7:33 

7:36 

   Slack 

Figure 2.3: An Image of Stage one for Example 2.2 
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Each scenario is constructed as an assignment problem on a bipartite graph. 

Each arc of stage one (k, i) (except those from the slack flight) will become a node in 

every scenario t of stage two. These nodes,  , ,k i t , represent the reallocation 

possibilities that the corresponding stage one arc provides. There are also nodes for 

each slot available in each scenario of stage two. There is also a slack flight  ,ts t  in 

each scenario of stage two to ensure that supply equals demand and a slack slot 

 ,td t  to ensure that nodes  , ,k i t  do not send flow unless the corresponding arc

( , )k i  in stage one receives flow.  

Each stage two node  , ,k i t  representing a stage one arc (k, i) has arcs 

connecting it to the slack slot  ,td t , as well as the possible slots to which it can be 

reallocated. This is the set of non-slack stage two slots that are no earlier than both 

the flight k‟s original arrival time, arr(k), as well as the earliest slot the flight can 

reach by departing immediately at time ( )t  if the flight had not yet departed, or i if 

the flight had already departed by time ( )t . More precisely, the set of stage two slots 

to which flight k can be reassigned under scenario t, assuming it was initially assigned 

to slot i is given by: 

  2( , , ) | ( , ) ( ) and ( , ) min , ( )Feas k i t j Slots time j t arr k time j t i t len k      

In the formulation, there are binary variables, wk,i,j,t, that are one if and only if 

the flight k was initially assigned to slot i in stage one and then the flight k is 

reassigned to slot j in stage two under the scenario that the GDP is cancelled at time t. 

The , ,ts j tw  variables are integer variables that are nonzero if and only if the slot j does 
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not have all its capacity met by the non-slack flights k in scenario t. This means that 

some of the demand of this slot must be met by the slack flight st. The , , ,tk i d tw  

variables are binary variables that are one when the flight k is not initially assigned to 

the slot i. 

Constraint set (2.4) says that each stage two node  , ,k i t  representing the 

stage one arc (k, i) in scenario t must be assigned to a stage two slot in the same 

scenario. Constraint set (2.5) says that in each scenario, t, each stage two slot (j, t) 

must have enough flights assigned to it to meet its capacity in that scenario. These can 

either be a typical flight  , ,k i t  or the slack flight (st, t). Constraint set (2.6) says that 

each stage two slack flight must meet the demand of the stage two slots of that 

scenario that are not met by the flights in that scenario. Constraint set (2.7) says that 

each stage two slack slot, denoted by dt, has a demand equal to the total number of 

arcs in the stage one network minus the number of flights. These constraints make 

stage two into T distinct simple transportation problems. 

Because stage two can be seen as the reallocation stage, it also must be 

ensured that no stage one arc is reallocated unless it is used in stage one. This is 

achieved by the slack slot which is added to each scenario. Every node  , ,k i t
 
will 

have an arc connecting it to the slack slot, but constraint (2.8) will force the flow to 

this slack slot to depend on the flow the corresponding arc received in stage one.  

 

, , , , , ,

( , , )

1
tk i j t k i d t

j Feas k i t

w w


   for each k,i,t     (2.4) 
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1

, , , , , 2

|
( , , )

for each stage-two slot  and scenario 

( , ) 
tk i j t s j t

k Flights i Slots
j Feas k i t

j t

w w cap j t
 



  
      (2.5) 

2 2

, , 2 ( , ) | |
ts j t

j Slots j Slots

w cap j t Flights
 

    for all scenarios t   (2.6) 

1

1

, , ,

,
( , ) :

and ( ) ( )tk i d t

k Flights i Slots

k Flights i Slots
w k i Flights

time i arr k 

  
  

 
    (2.7) 

, , , , 1
tk i d t k iw x   for each (k,i) feasible to stage one and each scenario t  (2.8) 

 , , , , , ,, 0,1  for all ,  ,  ,  
tk i j t k i d tw w k i j t  

, , , ,0,
t ts j t s j tw w ℤ 

 

Example 2.3 

An illustration of stage two for the Example 2.2 is produced in Figure 2.4. The solid 

arcs represent feasible reallocations.  
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Figure 2.4: Example of stage two with two scenarios 
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The objective is to minimize the total expected delay. This can be measured as 

the amount of delay incurred by each flight in each stage two scenario multiplied by 

the probability of that scenario occurring, qt, summed over all flights and all 

scenarios, which can be written as  

  
1 2

, , ,( , ) ( )t k i j t

k Flights i Slots j Slots t Scenarios

p time j t arr k w
   

   
   (2.9)

  

2.2 Proof of Optimality of the RBD Algorithm 

 

The results of (Ball, Hoffman and Mukherjee, 2010) imply that the RBD algorithm 

generates a stage one optimal solution to the IP defined in section 2.3, which we will 

refer to as the Two-Stage Stochastic Dynamic GDP (TSDG). Here, we will show that 

the RBD solution also solves the LP-relaxation of this model. We will do this by 

showing that a solution inspired by the RBD algorithm satisfies conditions on 

optimality given by Linear Programming theory. First, consider the following 

theorem from linear programming.  

 

Theorem (Weak Duality): If X0 is a feasible solution to the primal minimization 

problem, minimize z = C
T
X subject to AX ≥ B, X ≥ 0 and W0 is a feasible solution to 

the dual maximization problem, maximize z = B
T
W subject to A

T
W ≤ C, W ≥ 0, then 

0 0

T TC X B W .  

 

A simple corollary to this theorem is that if X0 and W0 are feasible solutions to 

the primal minimization problem and dual maximization problem respectively, with 
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0 0

T TC X B W , then X0 and W0 are optimal solutions to the primal and the dual 

respectively. (Bertsimas and Tsitsiklis, 1997).  

One obvious fact about this formulation is that stage one and each scenario of 

stage two (when considered independently of one another) is a transportation 

problem. These transportation problems are linked together by constraint set (2.8), 

which prevents the problem from being a large set of disjoint transportation problems. 

However, it is easy to see that this formulation has complete recourse, i.e. for any 

solution feasible to stage one, there exists a feasible solution to stage two (Birge and 

Louveaux, 1997). For example, given a solution to stage one, the only stage two 

constraint set where the variables from stage one appear is in constraint set (2.8). 

These constraints ensure that the nodes  , ,k i t
 
representing the arcs (k, i) of stage 

one in scenario t are not reallocated unless they were used in stage one. Since we 

assume 2 1( , ) ( )cap j t cap j , the solution to stage one immediately provides a feasible 

solution to stage two. For each scenario, once constraint (2.8) is satisfied, the 

remaining nodes that still have supply and demand are the nodes representing stage 

one arcs that receive flow and the stage two slots, as well as the slack flight.   

2.2.1 Stage two Dual Feasible Solution 

 

If the vector x is a solution to stage one, then define wx as the optimal solution to the 

stage two problem generated by x. If a stage one solution is an RBD solution, define 

the vector (x, wx) an RBD-inspired solution. This RBD-inspired solution is used to 

construct a dual solution and show its feasibility.  
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The dual of this LP is:  

 

1 1

1 2

2

1 1

, , 2 ,

2 , 1 , , ,

( ) ( )

max ( , )

( , )
t t

k i s

k Flights i Slots i Slots

k i t j t

t Scenarios k Flights i Slots j Slots

s t d t k i t

j Slots i

u cap i v cap i Flights u

cap j t

cap j t Flights Arcs Flights y

 

 

  

   

 

 
    

 

 
  

 

 
    

 

  

   


1t Scenarios k Flights Slots 

 
 
 
 
 
 
 
  
  

  
  

  

 

subject to  

, , 0k i k i t

t Scenarios

u v y


    for each feasible arc (k, i)   (2.10) 

0s iu v   for each arc (s, i)      (2.11) 

 , , , ( , ) ( )k i t j t tq time j t arr k     for each feasible arc ( ( , , )k i t , (j, t)) (2.12) 

, , , , , 0
tk i t d t k i ty    for each arc ( ( , , )k i t , (dt, t))    (2.13) 

, , 0
tj t s t    for each arc ((st, t), (j, t))      (2.14) 

 

A dual feasible solution will be constructed through spanning trees in each scenario 

of stage two. In order to accomplish this though, the allocation nodes in stage two 

need to be classified into two different types of allocations in a scenario. A similar 

distinction must be made between the different types of slots in stage two. The stage 

two node ( , , )k i t , which represents the stage one arc (k, i) is called a supply 1 node if 

xk, i = 1 in the primal (where k is not the stage one slack flight). Otherwise ( , , )k i t  is 

supply 0 node. A stage two slot (j, t) is a fully used stage two slot if 

, , ,

| ( ) ( )

k i j t

k Flights i time i arr k

w
 

  2 ( , )cap j t  in the primal solution, where k is not the stage one 

slack flight. A stage two slot (j, t) is a partially used stage two slot if 
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, , ,

| ( ) ( )

0k i j t

k Flights i time i arr k

w
 

   and 
, , , 1

| ( ) ( )

( , )k i j t

k Flights i time i arr k

w cap j t
 

   in the primal 

solution. Otherwise (j, t) is an unused stage two slot. Denote the set of fully and 

partially used stage two slots in scenario t by used(t).  

Define an RBD-arc as a stage one arc (k, i) such that xk,i = 1 in the RBD 

solution. Define an RBD-Inspired arc for an RBD arc (k, i) as a stage two arc  

(k, i, j, t) with wk,i,j,t = 1.  

Given a stage one solution, e.g. the RBD solution, there are T disjoint stage 

two transportation problem networks. For an RBD-Inspired solution, define a stage 

two comp as a set of used slots in the scenario t of stage two such that if (j1, t) and  

(j2, t) are in the same comp, then every slot (j’,t) such that 

1 2( , ) ( ', ) ( , )time j t time j t time j t   is a fully used stage two slot. Any feasible 

solution will generate a set of comps, but we are only interested here in those 

generated by an RBD-Inspired solution. Suppose that there are Comps2(t) such comps 

in the scenario t, indexed by βt = 1, …, Comps2(t), and let last(βt) be the latest slot in 

comp βt (i.e. time(last(βt),t) > time(j,t) for all other j in comp βt). Note that all fully or 

partially used stage two slots are in a comp and an unused stage two slot is not in any 

comp. Notice also that a stage two comp can end in a fully or partially used stage two 

slot, but the only place that a partially used stage two slot can be in a comp is at the 

end of that comp. The node ( , , )k i t  representing the stage one arc (k, i) in scenario t is 

in comp βt if the earliest slot that ( , , )k i t  can be reassigned to is in comp βt. This is 

the same as saying that this node is assigned to a slot in this comp.  
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Figure 2.5: Stage Two Comps for a particular Stage One Solution 

A dual feasible solution is defined by constructing trees in each scenario that 

span every node except the node (dt, t). This construction begins by adding the arcs 

connecting the nodes ( , , )k i t  representing the stage one arc (k, i) in scenario t to their 

earliest reallocation slots in this scenario. This connection is made for both the supply 

1 and supply 0 nodes. The arcs connecting the supply 1 nodes ( , , )k i t  to the slot (j, t) 

to which they are reassigned (i.e., such that wk,i,j,t = 1) are also added to the spanning 

tree. This will partition the set of used stage two slots into sets of consecutively used 

slots, or comps. Next, an arc is added connecting the last slot in each comp, (last(βt), 

t), to the slack flight for scenario t, (st, t). The slack flight for each scenario can then 

be set equal to zero and the following stage two dual solution is obtained via the 

complementary slackness conditions.  

 

, 0
ts t   for all scenarios, t.        (2.15) 

 , ( , ) ( ( ))j t t tp time j t time last    if (j, t) is in comp βt   (2.16) 

, 0j t   if (j, t) is an unused slot.       (2.17) 
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 , , ( ( )) ( )k i t t tp time last arr k    if (k, i, t) is in comp βt   (2.18) 

, 0
td t   for all t        (2.19) 

 , , , , ( ) ( ( ))k i t k i t t ty p arr k time last      if (k, i, t) is in comp βt  (2.20) 

 

Next, the feasibility of this stage two dual solution is checked in each constraint of the 

stage two-dual.  

 

Lemma 2.1. The constraint , , , ( ( , ) ( ))k i t j t tp time j t arr k     is satisfied by this 

solution.  

Proof:  

Case 1: (j,t) is an unused or partially used slot:  

Then the above solution implies that , , ( ( , ) ( ))k i t tp time j t arr k    and , 0j t  , 

where ( , , )k i t  is in comp β. Then , , , ( ( , ) ( ))k i t j t tp time j t arr k    . The 

satisfaction of this constraint then depends on the relationship between j and jβ. If j < 

jβ, then this constraint is violated, but it also implies that there is a slot that the node 

( , , )k i t  can be reallocated to that is earlier than any slot in its comp. This is not 

possible if ( , , )k i t  is a supply 1 node since the slot j would then be a used slot and the 

comp would change accordingly.  

 

If ( , , )k i t  is a supply 0 node and the slot i‟ that the flight k is assigned to is before i, 

then ( , ', )k i t  is a supply 1 node. The departure times of ( , ', )k i t  and ( , , )k i t  are 

time(i‟) – len(k) and time(i) – len(k) respectively. Because i‟ is an earlier slot than i, 
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this implies that the departure time of the arc representing ( , ', )k i t  is before that of 

( , , )k i t . In scenarios that are before either (k, i) or (k, i‟) have departed, they can be 

rescheduled to the same set of slots and so the earliest slot that the arc representing 

( , ', )k i t  can be reallocated to will be used by the arc representing ( , , )k i t . In scenarios 

that are after (k, i‟) has departed, ( , , )k i t  will not be able to be rescheduled to slot i‟, 

so ( , ', )k i t  will be in an earlier comp than ( , , )k i t . 

If ( , , )k i t  is a supply 0 node and the slot i‟ that the flight k is assigned to is after i, 

then consider the supply 1 nodes ( ', , )k i t  and ( , ', )k i t  with k’ a longer flight than k 

and i’ later than i. These nodes must exist because the RBD algorithm says that a 

longer flight k’ must use the slot i and hence the flight k will use a later slot i’. The 

departure times of the arcs representing ( ', , )k i t , ( , , )k i t , and ( , ', )k i t  are 

( ) ( ')time i len k , ( ) ( )time i len k , and ( ') ( )time i len k  respectively. Because k‟ is a 

longer flight than k, the departure time of the arc representing ( ', , )k i t  is before that of 

( , , )k i t . Likewise, because i is an earlier slot than i’, the departure time of the arc 

representing ( , , )k i t  is before that of ( , ', )k i t . In scenarios that are before the arcs 

representing ( , , )k i t  and ( , ', )k i t  have departed, they can be rescheduled to the same 

set of slots and so the earliest slot that the arc representing ( , , )k i t  can be reallocated 

to will be used by the arc representing ( , ', )k i t . In scenarios that are after the arc 

representing ( , , )k i t  has departed, the arc representing ( ', , )k i t  will also have departed 

and both will be rescheduled to the slot i (implying that j = i). If the slot j is before jβ, 

then j will be a fully used slot, which contradicts this case. If j ≥ jβ, then

, , , ( ( , ) ( ))k i t j t tq time j t arr k     and this constraint is satisfied.  
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Case 2: (j, t) is a fully used slot:  

Then the stage two dual solution implies that 
1,, , ( ( , ) ( ))

tk i t tp time j t arr k    and 

2,, ( ( , ) ( , ))
tj t tp time j t time j t   . Then  

1, 2,, , , ( ( , ) ( )) ( ( , ) ( , ))
t tk i t j t t tp time j t arr k p time j t time j t       . The validity of this 

constraint then depends on the relationship between 1,t  and 2,t . 2,t  cannot be 

before 1,t  by the definition of a comp (it would imply that (k, i, t) connects to a slot 

earlier than its earliest slot). So 2,t  is a comp that is equal to or after 1,t . This 

implies that 
1, 2,

0
t t

j j   , which implies that , , , ( ( , ) ( ))k i t j t tp time j t arr k    , so 

this constraint is satisfied.  

Q.E.D. 

 

Constraints (2.13) and (2.14) follow immediately from the definition of the stage two 

dual solution. This establishes a dual feasible solution for stage two. Next this stage 

two dual solution will be used to help define a dual solution for stage one. Then the 

remaining dual constraints will be shown to be satisfied by this solution.  

The objective function for the stage two dual can now be simplified with the 

values given to the stage two dual variables. Notice that , 0p t   and , 0
ts t  , so the 

corresponding terms in the stage two dual objective function can be eliminated. Then 
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because , , , ,k i t k i ty   , the terms will cancel in the stage two dual, leaving the stage 

two dual objective function value as: 
2

2 ,( , ) j t

t Scenarios j Slots

cap j t 
 

  
   

  
   

Since  , , ( , ) ( )
tk i t tp time j t arr k    if ( , , )k i t  is in comp t, define 

, , ,k i k i t

t Scenarios

c 


  as the expected delay cost for the allocation (k, i). With these new 

costs, a new stage one assignment problem can be formulated, where an arc (k, i) is 

feasible to this new problem if it is feasible to stage one of the original problem, and 

the cost of the arc (k, i) is ,k ic . Call this new problem the expected stage one problem 

(ESOP): 

ESOP:
1

, ,min ( , ) k i k i

k Flights i Slots

f x w c x
 

    

subject to 

1

, 1k i

i Slots

x


  for each flight k       (2.21) 

, , 1( )k i s i

k Flights

x x cap i


   for each slot i     (2.22) 

1 1

, 1( ) | |s i

i Slots i Slots

x cap i Flights
 

         (2.23) 

 ,

, ,

0,1

0,

k i

s i s i

x

x x



 Z
 

2.2.2 Stage One Monge Matrix 

 

A matrix is Monge if there exists an ordering of the rows and columns such 

that , , , ,i a j b i b j ac c c c    whenever i j  and a b  (Bein et al., 1995). These matrices 
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are named for the 18
th

 century French mathematician Gespard Monge, who first 

discovered them. Table 2.6 provides a small example of a Monge matrix.  

10 17 13 28 23

17 22 16 29 23

24 28 22 34 24

11 13 6 17 7

45 44 32 37 23

 
 
 
 
 
 
  

 

Table 2.6: An example of a Monge matrix 

 

 

Monge matrices have a long history in mathematics and computer science. 

Hoffman (Hoffman, 1963) showed that transportation problems with Monge bi-

adjacency matrices (the adjacency matrix of a bipartite graph) could be solved to 

optimality by the Northwest Corner Method. This is an algorithm for determining 

feasible solutions to the transportation problem that operates by iteratively selecting 

the most “northern” cell in the “west-most” column of the remaining bi-adjacency 

matrix, setting that variable to the highest feasible value, removing those rows and 

columns from consideration and repeating until either there are no remaining rows or 

columns. For the assignment problem, this will yield the diagonal of the matrix as the 

optimal solution. Wilber (Wilber, 1988) showed that dynamic programming 

algorithms can often be solved more rapidly if their underlying weight matrix is 

Monge.  

Consider also the traveling salesman problem (TSP). In this problem, a salesman 

is to visit a set of cities,  1,..., mc c  and return home. The input to the problem is a 

matrix consisting of the distance of the cities from one another; i.e. ( , )i jd c c  
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represents the positive distance between cities ci and cj. The goal of the TSP problem 

is to find an ordering of the cities that minimizes the total distance that the salesman 

will have to travel.  

Although the TSP is NP-Hard, when the distance matrix is Monge, the TSP 

problem can be solved in polynomial time (Burkard, Klinz and Rudiger, 1996).  

  An implicit assumption of the preceding discussion is that the matrices were 

dense and that the graphs were complete (or complete bipartite graphs in the case of 

transportation problems). We now extend the Monge property to a class of sparse 

bipartite graphs and matrices. Define a bipartite graph lower-Monge if the bi-

adjacency matrix of this graph can have its rows and columns ordered such that: 

1. For every row i and each pair of columns a, b with b > a, if (i, a) is defined 

then (i, b) is defined.  

2. If the matrix entries (i, a), (i, b), (j, a), (j, b) are all defined with i < j and  

a < b, then , , , ,i a j b i b j ac c c c    

4 9 7 3

6 1

11 7 1

3

 
 
 
 
 
 
   

 

Table 2.7: An example of a lower-Monge matrix 

 

 

The transportation problem with unit supply (TPUS) is as follows: 

TPUS: , ,min ( ) a i a i

a Rows i Columns

f x c x
 

    

subject to 
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, 1a i

i Columns

x


  for each row a       (2.24) 

,a i i

a Rows

x D


  for each column i      (2.25) 

, {0,1}a ix   

 

Proposition 2.2: If a feasible solution to TPUS with a lower-Monge constraint 

matrix exists, then the Northwest Corner Method finds a feasible solution.  

Proof:  

 

Let G = (R, C, A) be the corresponding bipartite graph for TPUS, where R is the set of 

rows, C is the set of columns and ( , )a i A  if the corresponding element of the cost 

matrix is defined. Then TPUS can be converted into a standard assignment problem 

by formulating a new bipartite graph G’ = (R’, C’, A’), where R’ = R and C’ is 

defined as follows: for each column i in TPUS with demand Di, there are Di nodes:  

1,..., iDi i . An arc ( , )a i  for 1,..., iD   is in A’ if ( , )a i A . Each of the rows in G’ 

has a supply of 1, and each of the columns in D’ has a demand of 1. A feasible 

solution to TPUS will correspond to a perfect matching on G’.  

Hall‟s theorem (Halmos and Vaughan, 1950) states that a bipartite graph 

( , , )G X Y E  has a perfect matching if and only if for every subset S of X, 

( )Adj S S , where Adj(S) denotes the set of vertices adjacent to some vertex in S.  

Let C be the set of columns of the constraint matrix and R the rows. ( )Adj S  

is the number of rows eligible for the set of columns S C . Hall‟s theorem says that 

an assignment with a lower-Monge matrix has a feasible solution if and only if for 
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every subset S of columns, the number of rows eligible for this subset is at least the 

cardinality of S.  

Then the NWC rule orders the columns in an order 0 ,..., mi i  and the sets 

 mi

i iS i
  (this has no relationship to Si in (2.24)). Because the problem is 

assumed to have a feasible solution, ( )Adj S S   for 0,...,m  . This means that 

ai  can be assigned to any of the S  rows and the condition still holds on the 

remaining sets so the procedure can be iterated and the result is a feasible solution.  

Q.E.D.  

 

Proposition 2.3: If a feasible solution exists, the Northwest Corner Method finds 

an optimal solution for TPUS with lower-Monge matrices. 

Proof: 

This proof will be constructed by way of contradiction. Suppose then that no 

solution obtained by the Northwest Corner Method is optimal. Let x̂  be an integer 

optimal solution to this problem. Then x̂  is not obtained by the Northwest Corner 

Method and has a lower objective function value than any Northwest Corner Method 

solution. Let i be the first column such that the row chosen by x̂ , b, is not the row 

that the Northwest Corner Method says to choose, a (i.e. ,
ˆ 1i bx   and ,

ˆ 0i ax  ). Since 

the Northwest Corner Method says that (i, a) should be chosen, this implies that a < 

b. Since this is an equality constrained transportation problem, there must be another 

column, j, which supplies this row a in the solution x̂  (i.e. ,
ˆ 1j ax  ). Then we have 

that (i, b) and (j, a) are both chosen by x̂ . We have already shown why the entry (i, a) 
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is defined. Because we assume the matrix has the lower-Monge property, if an 

element is defined in a row of a matrix, then every element after this column is 

defined. If j < i, then x̂  is the same as the NWC solution, so by assumption i < j. 

Then since we assumed the matrix is lower-Monge, (j, b) is defined. Let x be the 

solution which agrees with x̂  everywhere except in columns i and j. In these 

respective columns, instead choose cells (i, a) and (j, b). Then we have that the 

chosen arcs of x̂  have a sum of , ,i b j ac c . By the lower-Monge property, 

, , , ,i a j b i b j ac c c c   . This says that x has a lower objective function value than x̂ , 

which contradicts that x̂  is an optimal solution.  

Q.E.D.  

We can also define the weak transportation problem with unit supply (WTPUS) as 

follows: 

WTPUS: , ,min ( ) a i a i

a Rows i Columns

f x c x
 

    

subject to 

, 1a i

i Columns

x


  for each row a       (2.26) 

,a i i

a Rows

x D


  for each column i      (2.27) 

, {0,1}a ix   

 

Proposition 2.3a: If a feasible solution exists, the Northwest Corner Method 

finds an optimal solution for WTPUS with lower-Monge matrices and non-

decreasing objective function values. 

Proof: 
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This proof will be constructed by way of contradiction. Suppose then that no 

solution obtained by the Northwest Corner Method is optimal. Let x̂  be an integer 

optimal solution to this problem. Then x̂  is not obtained by the Northwest Corner 

Method and has a lower objective function value than any Northwest Corner Method 

solution. Let i be the first column such that the row chosen by x̂  is not the row that 

the Northwest Corner Method says to choose.  

Case 1: A row is chosen by NWC in column i. Then Proposition 3 applies to this 

case.  

Case 2: The Northwest Corner Method does not select a row in this column. Let a be 

the row chosen by x̂ in column i and let j be the column chosen by NWC in row a. If 

j is unused in x̂  then consider the solution x which agrees with x̂  everywhere except 

in row a, where instead the entry (j, a) is chosen.  Because of the assumption that the 

cost matrix is non-decreasing (from left to right) and the fact that the NWC method 

will always choose a column to the left of the column i, this implies that j < i, and 

consequently , ,j a i ac c . This says that x has a lower objective function value than x̂ , 

which contradicts that x̂ is an optimal solution.  

If j is used in x̂ , then because the NWC says to choose (j, a) we must have that j < i. 

We assumed that i was the first column such that the row chosen by x̂  is not the row 

NWC says to choose. So this case contradicts our assumption.   

Q.E.D.  
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Proposition 2.4:  The bi-adjacency matrix for ESOP is a lower-Monge matrix 

when the flights are ordered by decreasing length and the slots by increasing 

time. 

Proof: 

Property (1) for lower-Monge matrices holds since for each flight, there is a 

scheduled arrival time, arr(k), and the flight can be scheduled to any slot i such that 

time(i) ≥ arr(k), and the flight k cannot be scheduled to any slot i with time(i) < 

arr(i). It needs to be shown that for all cells such that (i, a), (i, b), (j, a), and (j, b) are 

real values, with i < j and a < b, , , , ,i a j b i b j ac c c c   . Since the rows correspond to 

flights of (possibly) different lengths, suppose that i corresponds to a long flight, 

which will referred to as LONG and j corresponds to a short flight, which will be 

referred to as SHORT. Since the columns correspond to time slots, suppose that a 

corresponds to an early slot, which will be referred to as EARLY and b corresponds to 

a late slot, which will be referred to as LATE. To prove that the inequality holds, it 

can be shown to hold in each stage two scenario t. It is clear that, if departure(k, i) 

represents the controlled departure time of the flight k when assigned to slot i, then: 

 departure(LONG, EARLY)  departure(SHORT, EARLY) 

 departure(LONG, EARLY)  departure(LONG, LATE) 

 departure(LONG, EARLY)  departure(SHORT, LATE) 

 departure(LONG, LATE)  departure(SHORT, LATE) 

 departure(SHORT, EARLY)  departure(SHORT, LATE) 

Case 1: ( )t  is before all controlled departure times.  
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Then because neither (LONG, EARLY) nor (LONG, LATE) has departed, they can 

both depart at the same time and be reallocated to the same set of slots in scenario t. 

This means that they will be reassigned to the same slot and thus be in the same 

comp. Likewise (SHORT, EARLY) and (SHORT, LATE) will be in the same comp. 

Hence  

, , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t      .  

 

Case 2: ( )t  is before the controlled departure times of only (SHORT, EARLY), 

(LONG, LATE), and (SHORT, LATE).  

Then (LONG, EARLY) can be reassigned to EARLY, which is a slot to which (LONG, 

LATE) cannot be reassigned, so it is in an equal or earlier comp than (LONG, LATE). 

Once again (SHORT, EARLY) and (SHORT, LATE) will be in the same comp. Hence 

, , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t      . 

 

Case 3: ( )t  is before the controlled departure times of only (LONG, LATE) and 

(SHORT, LATE).  

Then (LONG, EARLY) and (SHORT, EARLY) have both departed and can be 

reassigned to the same slot, EARLY. Similarly neither (LONG, LATE) and (SHORT, 

LATE) have departed and can thus depart at time ( )t . However since SHORT is a 

shorter flight than LONG, (SHORT, LATE) can be reassigned to an earlier slot than 

(LONG, LATE), and thus may be in an earlier comp. Hence 

 , , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t      . 
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Case 4: ( )t  is before the controlled departure times of only (SHORT, EARLY) and 

(SHORT, LATE).  

Then (LONG, EARLY) can be reassigned to EARLY and (LONG, LATE) can be 

reassigned to LATE. Since EARLY is an earlier slot than LATE, (LONG, EARLY) may 

be in an earlier comp than (LONG, LATE). Since neither (SHORT, EARLY) nor 

(SHORT, LATE) have departed, they are eligible for the same slots and will be in the 

same comp. Hence , , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t      . 

 

Case 5: ( )t  is before the controlled departure time of only (SHORT, LATE) 

Then (LONG, EARLY) can be reassigned to EARLY and (LONG, LATE) can be 

reassigned to LATE. Since EARLY is an earlier slot than LATE, (LONG, EARLY) may 

be in an earlier comp than (LONG, LATE). Similarly, (SHORT, EARLY) will have 

departed be eligible for the slot EARLY, whereas (SHORT, LATE) will not.  So 

(SHORT, EARLY) will be in an equal or earlier comp than (SHORT, LATE). Hence 

, , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t       

 

Case 6: ( )t  is before all controlled departure times. 

Then both (LONG, EARLY) and (SHORT, EARLY) will be in the same comp. 

Likewise (LONG, LATE) and (SHORT, LATE) will be in the same comp. Hence  

, , , , , , , ,LONG EARLY t SHORT LATE t LONG LATE t SHORT EARLY t      
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Because the inequality holds in each case, the result follows from summing over all 

scenarios to arrive at the desired inequality. This shows that the expected stage one 

problem has a constraint matrix that is lower-Monge. 

Q.E.D.  

1 4

0 0 3

1 1 1

 
 
 
  

 

Table 2.8: An example of a cost matrix for an ESOP problem.  

 

Corollary 2.5: The Northwest Corner Method provides an optimal solution to 

the expected stage one problem, and this optimal solution is the RBD Solution.  

 

The RBD Algorithm iteratively selects the longest remaining unscheduled 

flight for each slot (in increasing order of slot times). ESOP can be formulated as a 

transportation problem with equality constraints by noting a result from (Vossen and 

Ball, 2006), which states that the same set of slots will be used by any optimal 

solution to the Odoni model of the GDP. ESOP can then be re-stated with capacities 

to match these values. Similarly, ESOP has a non-decreasing objective function as the 

columns go from left to right. This means that Proposition 3 or Proposition 3a imply 

that the Northwest Corner Method will give the optimal solution to ESOP. When the 

Northwest Corner Method is then run on the ESOP, it will give the same arcs as the 

RBD algorithm. Thus this corollary shows that the RBD arcs will solve the expected 

stage one problem. This expected stage one assignment can be viewed as an updated 

primal, where the stage one costs of an arc (k, i) is the expected comp delay, ck, i. An 
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optimal solution to this problem will give a set of stage one arcs that use the earliest 

comps in each scenario in stage two. By LP Duality, there exists a dual feasible 

solution (u, v) to this problem with equal objective function value as the primal. This 

stage one dual can be combined with the stage two dual already obtained (, , y) to 

get a dual solution (u, v, , , y) to the overall problem. 

 

Lemma 2.6: The solution (u, v, , , y) is dual feasible to the overall problem.  

Proof: 

Chapter 2.3.1 shows that (, y) is a feasible dual solution. The fact that (u, v) is the 

optimal dual solution to the expected stage one problem, which contains the 

constraints , , ,k i k i k i t

t Scenarios

u v c 


     and 0s iu v  , shows that the solution (u, v, 

, , y) is a dual feasible solution to the overall problem.  

Q.E.D. 

 

Theorem 2.7: The RBD-Inspired solution is optimal to the overall problem.  

Proof: 

This proof will be constructed by showing that the dual feasible solution (u, v, , , y) 

has an equal objective function value as the RBD-Inspired primal solution. The dual 

objective function is 
, 2 ,

( , ) ( )

( , )k i j t

k i NWC t Scenarios j used t

c cap j t 
  

    

, 2 ,

( , ) ( )

( , )k i j t

k i RBD t Scenarios j used t

c cap j t 
  

     because the NWC arcs are the same as the 

RBD arcs.  
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, , 2 ,

( , ) ( )

( , )k i t j t

k i RBD t Scenarios t Scenarios j used t

cap j t 
   

      by the definition of ck,i 

( , )

2

( )

( ( , ) ( ))

( , ) ( ( , ) ( , ))

t

k i RBD t Scenarios

t

t Scenarios j used t

p time j t arr k

cap j t p time j t time j t





 

 

  



 

 
 by the definition of , ,k i t  and ,j t  

   

     
( , ) ( , )

2 2

( ) ( )

( ( , )) ( ( ))

( , ) ( ( , )) ( , ) ,

t t

k i RBD t Scenarios k i RBD t Scenarios

t t

t Scenarios j used t t Scenarios j used t

p time j t p arr k

cap j t p time j t cap j t p time j t





   

   

   

 

   

   
 

2

( , ) ( )

( ( )) ( , ) ( ( , ))t t

k i RBD t Scenarios t Scenarios j used t

p arr k cap j t p time j t
   

      , because |used(t)| 

= |RBD| and each used stage two slot is used by an RBD arc in each scenario t. 

  2

( )

( ) ( , ) ( ( , ))t t

t Scenarios k Flights j used t

p arr k cap j t p time j t
  

 
   

 
    

2

( )

( ( , ) ( , ) ( ))t

k Flights t Scenarios j used t

p cap j t time j t arr k
  

    , because each flight k uses a 

single slot ( )j used t . 

 

Since this last line is equal to the objective function value for the RBD-Inspired 

solution, the Weak Duality Theorem implies that both the primal and dual solutions 

are optimal.   

Q.E.D.  

 

This shows that the RBD-Inspired solution is an integer optimal solution to 

the LP-relaxation of this integer program. Hence the LP-relaxation solves the IP to 

optimality. 
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2.3 Other Formulations 

 

The previous section shows that the Ground Delay Problem with Weather 

Uncertainty can be solved by an LP. The speed at which these LPs can be solved is 

determined in large part by the size of the formulation. Here these results are 

extended by providing new formulations, which are equal in strength to this 

formulation, but smaller in size. The reduction in size will result in the availability to 

solve larger instances of these and similar problems. 

2.3.1 Flight-Based Formulation 

 

In the initial formulation, which now will be referred to as the Allocation-

Based Formulation, careful attention was paid to the slots where flights were initially 

allocated. This was useful to help determine which initial allocations could be 

reallocated to certain slots and which ones could not. The problem with this 

formulation is that the stage two variables require four subscripts, which causes the 

problem sizes to grow very large very fast. In the next formulation, it will be shown 

that equivalent or nearly equivalent formulations can be obtained with fewer variable 

subscripts and much smaller formulation sizes.  

What is necessary, though, is a set of constraints that ensures that no arc in 

stage one is reallocated to a slot in a scenario of stage two that it cannot actually 

supply. In the Allocation-Based Formulation, this was done through the definition of 

the set Feas(k, i, t). The new formulation will eliminate the subscript i, so the 

corresponding set cannot be defined. Instead, the question of whether an arc (k, i) 
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from stage one can supply the slot j in scenario t will be checked by the function 

last(k, j, t). This records the latest slot, i, in stage one that the flight k can be initially 

allocated to and still be reallocated to the slot j in scenario t of stage two. This 

function will serve the desired purpose because if i = last(k, j, t) then for i’ < i, the arc 

(k, i’) of stage one can also be reallocated to the stage two slot j in scenario t. The 

determination of this function is a simple measure of pre-processing based on two 

cases: 

 If the slot j requires the flight k to have already departed in scenario t, i.e. 

( , ) ( ) ( )time j t len k t  , then last(k, j, t) is the latest stage one slot i such that 

( ) ( ) ( , )arr k time i time j t    

 If the slot j does not require the flight k to have departed in scenario t, then the 

flight k can be initially assigned to any stage one slot i and still be reallocated 

to the slot j in scenario t. Consequentially, last(k, j, t) is the last slot of stage 

one.  

 

Flight-Based Formulation 

  
2

, ,min ( , ) ( , ) ( )t k j t

k Flights j Slots t Scenarios

f x y p time j t arr k y
  

      (2.28) 

subject to 

1

,

|
( ) ( )

1k i

i Slots
time i arr k

x




 k      (2.29) 

, , 1

|
( ) ( )

( )k i s i

k Flights
arr k time i

x x cap i




  i    (2.30) 

1 1

, 1( ) | |s i

i Slots i Slots

x cap i Flights
 

         (2.31) 
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, ,

2|
( , ) ( )

1k j t

j Slots
time j t arr k

y




  for each k, t       (2.32) 

, , , , 2

|
( ) ( , )

( , )k j t s j t

k Flights
arr k time j t

y y cap j t



   for all j, t     (2.33) 

2 2

, , 2 ( , ) | |
ts j t

j Slots j Slots

y cap j t Flights
 

    for all t    (2.34) 

1 2

, , ',

| ' |
( ) ( ) ( ', ) ( )

( ) ( , , ) '

0 

for each flight , stage two slot  and scenario 

k i k j t

i Slots j Slots
arr k time i time j t arr k

time i last k j t j j

x y

k j t

 
 

 

  
    (2.35) 

 0,1

0,

x

y y



 
 

 

Constraints sets (2.29), (2.30), and (2.31), the stage one constraints in this 

formulation are the same as in the Allocation-Based Formulation. The variables , ,k j ty  

represent the reassignment of flight k to slot j in scenario t (These variables have no 

relationship to the variables , ,k i ty  in Chapter 2.3.1). Constraint set (2.32) requires that 

each flight be reallocated to a slot in every scenario. This should be compared to 

constraint set (2.4) in the Allocation-Based Formulation, which says that each arc 

from stage one must be reallocated to some slot in stage two. Constraint set (2.33) 

requires that each slot be used in each scenario (either by an actual flight or by the 

slack flight). This constraint set is similar to constraint set (2.5) in the Allocation-

Based Formulation. Constraint set (2.34) requires that the slack flight must supply 

2

2 ( , )
j Slots

cap j t


   |Flights| slots, where 
2

2 ( , )
j Slots

cap j t


   |Flights| is the number of 

stage two slots that will go unused. This constraint set is similar to constraint set (2.6) 

in the Allocation-Based Formulation. Constraint (2.35) says that for each flight and 
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final slot in each scenario, there needs to be enough initial allocations (supply) to 

support these final allocations (demand). These constraints, which link the variables 

in stage one with those in stage two, ensure that the solution returned by the LP-

relaxation is feasible by guaranteeing that no subset of the slots is ever demanding 

more flights to be allocated to them than can possibly be allocated by the stage one 

variables.  

Notice the difference between the stage two variables in the Allocation-Based 

Formulation and the Flight-Based Formulation. In the Allocation-Based Formulation, 

there were four subscripts corresponding to: the flight, the initial allocation, the final 

allocation, and the scenario. In this new formulation, there are now three subscripts, 

with the subscript representing the initial allocation now removed.  

 This next result compares the strength of the Flight-Based Formulation to that 

of the Allocation-Based Formulation. In order for such a comparison to be made 

though, a model needs to be constructed which consists of variables from both 

formulations. This can be constructed formulating an extension of the LP-relaxation 

of the Allocation-Based Formulation to the variables of the Flight-Based 

Formulation. The strength of the formulations can be done by showing that the Flight-

Based Formulation is a projection of such a formulation.  

 

Theorem 2.8: The LP-Relaxation of the Flight-Based Formulation is a projection 

of an extension of the LP-Relaxation of the Allocation-Based Formulation.  

Proof: 
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To prove this, define the following set WY = {(x, w, y) : (x, w) is feasible to the LP-

relaxation of the Allocation-Based Formulation and 
1

, , , , ,

|
( ) ( )

k j t k i j t

i Slots
time i arr k

y w




  }. The 

projection of WY onto the subspace of (x, y) variables is Y = {(x, y) | there exists a w 

such that (x, w, y) ∈ WY }. Let Y’ be the set of feasible solutions to the Flight-Based 

formulation. Our claim is that Y = Y’. This can be shown using basic set theory on the 

equality of sets.  

 Suppose first that (x, y) ∈ Y. Then 
1

, , , , ,

| ( ) ( )

k j t k i j t

i Slots time i arr k

y w
 

  . Because 

constraint sets (2.29), (2.30), and (2.31) are repeats of constraint sets (2.1), (2.2), and 

(2.3) so they clearly hold.  

 

 

2 2 1

1 2

1

1

, , , , ,

| ( , ) ( ) | ( , ) ( ) | ( ) ( )

, , ,

| ( ) ( ) | ( , ) ( )

, , ,

| ( ) ( )

,

|

1
t

k j t k i j t

j Slots time j t arr k j Slots time j t arr k i Slots time i arr k

k i j t

i Slots time i arr k j Slots time j t arr k

k i p t

i Slots time i arr k

k i

i Slots

y w

w

w

x

     

   

 







 



  

 



( ) ( )

1

time i arr k





 

so constraint (2.32) holds.  

 

1

, , , , , , , , ,

| ( , ) ( ) | ( , ) ( ) | ( ) ( )

1
t tk j t s j t k i j t s j t

k Flights time j t arr k k Flights time j t arr k i Slots time i arr k

y y w w
     

       

so constraint (2.33) holds.  
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2 2 2

, , , , 2 ( , ) | |
t ts j t s j t

j Slots j Slots j Slots

y w cap j t Flights
  

    
  

so constraint (2.34) holds.  

 

1 2 1 2 1

1

, , ', , , , ',

| ' | | ' | |
( ) ( ) ' ( ) ( ) ' ( ) ( )

( ) ( , , ) ( ) ( , , )

, , , ',

|
( )

=k i k j t k i k i j t

i Slots j Slots i Slots j Slots i Slots
time i arr k j j time i arr k j j time i arr k

time i last k j t time i last k j t

k i k i j t

i Slots
time i a

x y x w

x w

    
    

 




 

 

    

1 2

1 2 1

| ' |
( ) ( ) ' ( )

( ) ( , , ) ( ) ( , ', )

, , , ,

| ' | |
( ) ( ) ' ( ) ( )

( ) ( , , ) ( ) ( , , )

i Slots j Slots
time i arr k j j rr k

time i last k j t time i last k j t

k i k i j t

i Slots j Slots i Slots
time i arr k j j time i arr k

time i last k j t time i last k j t

x w

 
 

 

  
  

 

 



  

  

1 2

, , , ,

| ' |
( ) ( ) '

( ) ( , , )

0

k i k i j t

i Slots j Slots
time i arr k j j

time i last k j t

x w
 

 


 
 
 
 
 



 

 

so constraint (2.35) holds.  

This proves that 'Y Y .  

To see that 'Y Y , we need to show that for every (x, y) ∈ Y’, there exists a w such 

that (x, w, y) ∈ WY. To do this, suppose that (x, y) is feasible to the Flight-Based 

Formulation. For a given flight, k, and scenario, t, the amount 
,

| ( ) ( )

k i

i time i arr k

x


  can be 

regarded as the amount of supply to be distributed amongst the stage two slots. 

Similarly, the amount 
, ,

| ( , ) ( )

k j t

j time j t arr k

y


  can be viewed as the amount of demand 

going to the stage two slots. Constraints (2.29) and (2.32) imply that 

, , ,

| ( ) ( ) | ( , ) ( )

1k i k j t

i time i arr k j time j t arr k

x y
 

   , so supply is equal to demand. Then the attempt 

to formulate a solution (x, w) which is feasible to the Allocation-Based Formulation is 
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equivalent to trying to find a feasible means of meeting the demands of the , ,k j ty
 

variables with the given supply of ,k ix  variables, with the additional constraint that an 

,k ix  variable is not allowed to supply a  variable that it cannot be reallocated to. 

This can be formulated as the following LP:  

  

1 2

, , ,min 0

subject to

k i j t

k Flights i Slots j Slots t Scenarios

w
   

   
      (2.36) 

, , , , ,

| ( ) ( )

 

for each flight , stage two slot ,  and scenario 

k i j t k j t

i time i arr k

w y

k j t




    (2.37) 

2

, , , ,

for each flight , stage one slot ,  and scenario 

k i j t k i

j Slots

w x

k i t




    (2.38) 

, , , 0 if ( , , )k i j tw j Feas k i t         (2.39) 

 

 This formulation is a transportation problem with a set of side constraints 

(more specifically certain variables restricted to be zero). Notice though, that the side 

constraints will be implicitly verified by every solution of the Flight-Based 

Formulation since constraint set (2.35) implies that the slot j in scenario t can only be 

supplied by those ,k ix  that can reach it. This is true if and only if j ∈ Feas(k, i, t). This 

implies constraint set (2.39) so these constraints can be omitted from the above 

formulation.  

Let k and t be given and suppose that 1,..., ni i  are the slots receiving flow from 

k in stage one and suppose that 1,..., mj j  are the slots receiving flow from k in stage 

two. Then the m by n transportation matrix for flight k in scenario t can be set up as 

, ,k j ty
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stated above. Suppose that C is a subset of the columns (stage one slots) of this 

problem. Then a lower bound on the number of rows C can be matched to is given by 

|C|, since each stage one slot can be reallocated to itself in each scenario of stage-two. 

Hall‟s theorem provides this as a sufficient condition for the existence of a solution to 

the transportation problem. The solution (x, w, y) would then belong to W and we 

have that 'Y Y .  

Q.E.D 

2.3.2 Queue-Based Formulation 

The Flight-Based Formulation makes use of pre-processing to reduce the number of 

subscripts necessary in stage two, while not losing any of the strength of the original 

formulation. A natural question then arises of whether this pre-processing can be used 

to obtain another formulation that is equally as strong, but still smaller in size.  

 To accomplish this, though, some problem modeling is required that uses 

specific properties of the application context. For instance, the cost of ground 

delaying a flight for one extra slot in the stage two scenario t is 

    1, ,tp time j t time j t  . This cost structure leads to a situation where, the 

objective function value does not depend on specific flight-to-slot assignments, but 

rather only on the set of slots being used. In light of this, it is possible to take 

advantage of a formulation where the subscript indicating flight is also omitted from 

the stage two variables. This leads to a formulation where there are only two 

subscripts on the stage two variables, indicating which slots are used in each scenario.  

 Instead of formulating stage two as an assignment problem in each scenario as 

the Allocation-Based Formulation and Flight-Based Formulation do, this formulation 
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will set up a queue of the stage two slots, in each scenario t. Similar to the Allocation-

Based Formulation and the Flight-Based Formulation, there must be a way of 

ensuring that no arc from stage one is reassigned to a slot in a scenario of stage two 

that it cannot reach. This is accomplished by the function ( , , )earliest k i t . It 

determines at which slot the stage one arc (k, i) will enter the scenario t queue. A 

flight k that was assigned to slot i in stage one enters the queue at slot j if 

( , , )earliest k i t  = j and xk,i = 1. Flights can then exit the queue which is done by 

increasing the value of uj,t by 1, or remain in the queue, which means being passed 

from slot j to slot j+1 in scenario t, which is done by increasing the value of zj,t by 1. 

The function ( , , )earliest k i t  can be computed in preprocessing by simply 

noting if the flight k that was initially assigned to slot i has already departed, if it is 

currently serving ground delay, or if its departure time has not yet arrived. Each of 

these conditions is a simple function of the prescheduled arrival time of the flight, the 

length of the flight, and the cancellation time ( )t .  

 If the flight is currently airborne (i.e. time(i) – len(k) ≤ ( )t ) then the earliest 

airport arrival slot that (k, i) can be rescheduled to is the slot for which it had 

already departed, time(i).  

 If the flight is serving ground delay at the time of the GDP cancellation (i.e.

( )t  + len(k) ≥ arr(k) and time(i) – len(k) > ( )t ) then since the GDP has 

been cancelled, this flight may no longer need to serve ground delay subject to 

the reduced capacities at the airport. The earliest airport arrival slot that (k, i) 

can be rescheduled to is then the slot ( )t  + len(k), indicating that the flight 

can depart immediately.  
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 If the flight is currently grounded by not serving ground delay, then the 

prescheduled arrival time for this flight had not yet occurred (i.e. ( )t  + 

len(k) < arr(k)). These flights cannot depart until their prescheduled departure 

time occurs, in which case the earliest airport arrival slot they can be 

rescheduled to is arr(k).  

The notion of an earliest reallocation for each initial allocation and each 

scenario does not necessarily mean that the allocation will be reallocated to this 

arrival slot, in the event that the allocation is used in stage one. The nominal capacity 

limitations must still be respected. In the event that there are more flights attempting 

to use an airport arrival slot than that slot‟s nominal capacity, some of the flights will 

wait on the ground for a later slot. This process continues until all flights have been 

reallocated to a slot. 

  

Queue-Based Formulation 

  
2

,min ( , , , ) ( , ) ( )t j t

k Flights j Slots t Scenarios

f x u v z p time j t arr k u
  

     

subject to 

1

,

|
( ) ( )

1k i

i Slots
time i arr k

x




 k      (2.40) 

, , 1

|
( ) ( )

( )k i s i

k Flights
arr k time i

x x cap i




   for each arrival slot i     (2.41) 

1 1

, 1( ) | |s i

i Slots i Slots

x cap i Flights
 

         (2.42) 

, 1, , ,

( , )| ( , , )

0k i j t j t j t

k i earliest k i t j

x z z u



     for each slot j and scenario t  (2.43) 
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, , 2( )j t j tu v cap t   for each slot j and scenario t    (2.44) 

2 2

, 2 ( , ) | |j t

j Slots j Slots

v cap j t Flights
 

    for each scenario t   (2.45) 

 0,1

, 0, ,

x

u v u v



 Z
 

,j tz  is the number of flights passed from slot j to slot j+1 in scenario t.  

,j tu  is the number of flights that are rescheduled to slot j in scenario t 

,j tv  is nonzero if no flight is rescheduled to slot j in scenario t 

 

Constraint sets (2.40), (2.41), and (2.42) are equal to constraint sets (2.1), 

(2.2), and (2.3) of the Allocation-Based Formulation and constraint sets (2.29), (2.30), 

and (2.31) of the Flight-Based Formulation.  

Constraint set (2.44) is similar to constraint set (2.5) of the Allocation-Based 

Formulation and constraint set (2.33) of the Flight-Based Formulation. It says that 

each slot must be used by a combination of real flights (i.e. uj,t) and the slack flight 

(i.e. vj,t). Constraint set (2.45) is similar to constraint set (2.6) of the Allocation-Based 

Formulation and constraint set (2.34) of the Flight-Based Formulation. It says that the 

number of unused slots must be equal to the total number of slots minus the total 

number of flights.  

Again, notice the difference between the stage two variables in the Allocation-

Based Formulation, the Flight-Based Formulation and the Queue-Based formulation. 

In the Allocation-Based Formulation, there were four subscripts indicating: the flight, 

the initial allocation, the final allocation, and the scenario. In the Flight-Based 



 

 60 

 

Formulation, there were three subscripts indicating: the flight, the final allocation, and 

the scenario. In this new formulation, there are now two subscripts, with the 

subscripts representing the flight and initial allocation now removed.  

 Similar to the Flight-Based Formulation, the strength of this new formulation 

needs to be checked in comparison to the Allocation-Based Formulation. To do this, 

an extension of the LP-relaxation of the Allocation-Based Formulation is constructed 

where variables (u, v, z) representing the Queue-Based Formulation are defined based 

on the Allocation-Based Formulation.  

 

Theorem 2.9: The LP-Relaxation of the Queue-Based Formulation is a 

projection of an extension of the LP-Relaxation of the Allocation-Based 

Formulation.  

Proof: 

To prove this, define the following set WQ = {(x, w, u, v, z) : (x, w) is feasible to the 

LP-relaxation of the Allocation-Based Formulation, 
1

, , , ,

|
( ) ( )

j t k i j t

k Flights i Slots
time i arr k

u w
 



  
 

and 

, , ,tj t s j tv w
 

for each stage two slot j and scenario t. Similarly, 

1, 1,

( , )| ( , , ) (1, )

t t

k i earliest k i t time t

z u


 

 

for all scenarios t and , ,

( , )| ( , , )

( 1, )j t j t

k i earliest k i t j

z z j t u


  

for each stage two slot j > 1 and scenario t}. The projection of W onto the subspace of 

(x, u, v) variables is Q = {(x, u, v, z) | there exists a w such that (x, w, u, v, z) ∈ WQ }. 

Let Q’ be the set of feasible solutions to the Queue-Based Formulation. Our claim is 

that Q = Q’. This can be shown using basic set theory on the equality of sets.  



 

 61 

 

 Suppose first that (x, u, v, z) ∈ Q. Then 
1

, , , ,

| ( ) ( )

j t k i j t

k Flights i Slots time i arr k

u w
  

   . 

Because constraint sets (2.40), (2.41), and (2.42) are repeats of constraint sets (2.1), 

(2.2), and (2.3) so they clearly hold.  

 

1

, , , , , , ,

|
( ) ( )

1
tj t j t k i j t s j t

k Flights i Slots
time i arr k

u v w w
 



      

so constraint (2.44) holds.  

 

2 2 2

, , , 2 ( , ) | |
tj t s j t

j Slots j Slots j Slots

v w cap j t Flights
  

       

so constraint (2.45) holds.  

 

, 1, 1,

( , )| ( , , ) 1

, , 1, 1,

( , )| ( , , ) 1 ( , )| ( , , ) 1

, 1, 1, 1,

( , )| ( , , ) 1

, ,

( , )| ( , , ) 1 ( , )|

0

k i t t

k i earliest k i t

k i k i t t

k i earliest k i t k i earliest k i t

k i t j t t

k i earliest k i t

k i k i

k i earliest k i t k i e

x z u

x x u u

x z z u

x x



 







 

 
    

 



  

 



 



 1, 1, 1, 1,

( , , ) 1

0

j t t j t t

arliest k i t

z u z u 



 
    

 





 

So constraint (2.43) holds.  

 

,

( , )| ( , , )

,

( , )| ( , , )

 1

( , )
( 1, )  1

j t

k i earliest k i t j

j t

k i earliest k i t j

u if j

z j t
z j t u if j





  


 
   






so there are two cases to check if z > 

0.  
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Case 1: j = 1  

Then  

1

1

, 1,

( , )| ( , , ) 1

, , ,1,

( , )| ( , , ) 1

, , ,1,

( , )| ( , , ) 1

1 ( , , )

, ,

( , )| ( , , ) 1

(1, ) k i t

k i earliest k i t

k i k i t

k i earliest k i t k Flights i Slots

k i k i t

k i earliest k i t k Flights
i Slots

Feas k i t

k i k i

k i earliest k i t

z t x u

x w

x w

x w



  

 






 

 

 

 



  

 



 

1

,1,

( , , ) 1

, , ,1,

( , )| ( , , ) 1

0

t

k Flights
i Slots

eariest k i t

k i k i t

k i earliest k i t

x w








  





 

Case 2: j > 1 

 

2 2 1

, , 1, ,

( , )| ( , , )

, 1, ,

( , )| ( , , )

, , , ',

' ( , )| ( , , ) ' '
' '

, , , ,

( , )|

j t k i j t j t

k i earliest k i t j

k i j t j t

k i earliest k i t j

k i k i j t

j Slots k i earliest k i t j j Slots k Flights i Slots
j j j j

k i k i j t

k i earlies

z x z u

x z u

x w

x w









    
 

  

  

 

 





    

( , , )

0
t k i t j



 

 

This proves that 'Q Q .  

To see that 'Q Q , we need to show that for every (x, u, v, z) ∈ Q’, there exists a w 

such that (x, w, u, v, z) ∈ WQ. To do this, suppose that (x, u, v, z) is feasible to the 

Queue-Based Formulation. For a given scenario t, the amount 

1

,

( ) ( )

k i

k Flights i Slots
time i arr k

x
 



   can 

be regarded as the amount of supply to be distributed amongst the stage two slots. 

Similarly, the amount 
2

,j t

j Slots

u


  can be viewed as the amount of demand going to the 

stage two slots. Constraints (2.40) and (2.43) imply that 
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1 2

, ,

( ) ( ) ( , ) ( )

k i j t

k Flights i Slots j Slots
time i arr k time j t arr k

x u Flights
  

 

    , so supply is equal to demand. Then 

the attempt for formulate a solution (x, w) which is feasible to the Allocation-Based 

Formulation is equivalent to trying to find a feasible means of meeting the demands 

of the ,j tu
 
variables with the given supply of ,k ix  variables, with the additional 

constraint that an ,k ix  variable is not allowed to supply a ,j tu  variable that it cannot be 

reallocated to. This can be formulated as the following LP:  

  

1 2

, , ,min 0

subject to

k i j t

k Flights i Slots j Slots t Scenarios

w
   

   
      (2.46) 

1

, , , ,

( ) ( )

 

stage two slot ,  and scenario 

k i j t j t

k Flights i Slots
time i arr k

w u

j t

 


 
      (2.47) 

2

, , , ,

for each flight , stage one slot ,  and scenario 

k i j t k i

j Slots

w x

k i t




    (2.48) 

, , , 0 if ( , , )k i j tw j Feas k i t         (2.49) 

 

 This formulation is a transportation problem with a set of side constraints 

(more specifically certain variables restricted to be zero). Notice though, that the side 

constraints will be implicitly verified by every solution of the Queue-Based 

Formulation since constraint set (2.43) implies that the slot j in scenario t can only be 

supplied by those ,k ix  that can reach it. This is true if and only if j ∈ Feas(k, i, t). This 

implies constraint set (2.49) so these constraints can be omitted from the above 

formulation.  
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Let t be given and suppose that 1 1( , ),..., ( , )n nk i k i  are the arcs receiving flow in 

stage one and suppose that 1,..., mj j  are the slots receiving flow in stage two. Then the 

m by n transportation matrix for scenario t can be set up as stated above. Suppose that 

C is a subset of the columns (stage one arcs receiving flow) of this problem. Then 

each element of C can be mapped to the first unused slot after earliest(k, i, t), a lower 

bound on the number of rows C can be matched to is given by |C|. Hall‟s theorem 

provides this as a sufficient condition for the existence of a solution to the 

transportation problem. The solution (x, w, u, v, z) would then belong to WQ and we 

have that 'Q Q .  

Q.E.D. 

 

In both Theorem 2.8 and Theorem 2.9, the sets WY and WQ were presented 

with added variables to the Allocation-Based Formulation representing those in the 

Flight-Based Formulation and Queue-Based Formulation respectively. Because these 

variables do not change the feasibility of any solutions of the Allocation-Based 

Formulation, Theorem 2.7 will hold on these formulations as well. In particular, any 

solution given by the RBD Algorithm will be optimal in both WY and WQ. Because 

The Flight-Based Formulation and Queue-Based Formulation were shown to 

projections of WY and WQ respectively, this means that there exists a corresponding 

RBD-Inspired optimal solution in each of these formulations as well.  
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2.4 Polyhedral Results 

Knowing now that the LP-relaxation of this IP solves the IP, questions arise as to how 

strong the LP-relaxation actually is. A large class of IPs that have this property are 

those IPs with totally unimodular (TU) constraint matrices. A matrix is TU if every 

square sub-matrix of A has determinant +1, -1, or 0. A natural follow-up question is 

whether or not the constraint matrix for this problem is TU. The next claim addresses 

that question.  

 

Theorem 2.10: For any instance of the Allocation-Based Formulation with at 

least two flights k1, and k2 and two stage one slots i1, and i2, where both k1 and k2 

can be assigned to both i1 and i2, the constraint matrix for this problem is not TU 

and, further, the polyhedron for this formulation can have non-integer extreme 

points.  

 

Example 2.3 

Consider the following example, with all variables between 0 and 1. 
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1 1 1 2 2 1 2 2 1 1 1 2 2 1

2 2 1 1 1 1 2 2 2 1 2 2 2 1 3

1 1 1 2

2 1 2

, , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , ,

, ,

,

min ( , )

                      

subject to

1

t t t

t t

k i k i k i k i k i p t k i p t k i p t

k i p t k i j t k i j t k i j t k i j t s j t

k i k i

k i k

f x w x x x x w w w

w w w w w w

x x

x x

       

     

 


2

1 1 2 1

1 2 2 2

1 1 1 2 2 1 2 2
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1 2 1 2 2 1 2 3

2 1 2 1 1 2 1

,
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, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , ,

, , , , , , ,
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1

1

2

1

1
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t

t

t

i

k i k i

k i k i

k i p t k i p t k i p t k i p t

k i p t k i j t k i j t k i j t

k i p t k i j t k i j t

k i p t k i j t k i

x x

x x

w w w w

w w w w

w w w

w w w



 
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, , , , , , , , , , ,

, , , , , , , , , , , , , ,
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1

1

1

1

t

j t k i j t

k i p t k i j t k i j t k i j t

k i j t k i j t k i j t s j t

k i j t k i j t k i j t k i j t s j t

k i i t k i j t k i

w

w w w w

w w w w

w w w w w

w w w

 
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   
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t
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  

 

 

 

 

 

Stage one: 

 

 

 

 

 
Figure 2.6: Stage one of Example 2.3 

Stage two: 

 

Figure 2.7: Stage two of Example 2.3 

 

An optimal solution to this LP is  
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with all other variables equal to zero. A sufficient condition for a matrix A to be TU 

is if the LP,  max : , ncx Ax b x   , has an integer optimal solution for all integer 

j3  

j2  

j1  

k1,i1 k2,i2 k2,i1 

d2 

s2 

k1,i2 

k1 

k2 

i1 

i2 

k1,i2 
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vectors b.  Because this example returns a non-integer solution with an integer vector 

b, it shows that the constraint matrix for this problem is not TU.  

Q.E.D.  

 

Not only does this example show that the constraint matrix is not TU, it answers a 

second line of questioning, showing that the structure of the corresponding 

polyhedron is not integer. This line of reasoning continues with the question of if 

there exists an inequality which cuts off the above non-integer extreme points. The 

next claim answers that question.  

 

Theorem 2.11: The following inequality is valid for all integer solutions feasible 

to the Allocation-Based Formulation, but are not satisfied by the non-integer 

extreme points of Theorem 10 

1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2, , , , , , , , , , , , , , , , , , , , , , , , 3
t t t tk i p t k i p t k i j t k i j t k i p t k i p t k i j t k i j tw w w w w w w w          

 Proof:  

Since our non-integer solution consists of : 
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




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
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The left hand side (LHS) of these constraints gives:  

1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2, , , , , , , , , , , , , , , , , , , , , , , , 4
t t t tk i p t k i p t k i j t k i j t k i p t k i p t k i j t k i j tw w w w w w w w         

and the right hand side (RHS) of these constraints is 3, so the non-integer solution 

does not satisfy this constraint. 

 

To show that this constraint is valid for the integer solutions, consider the LHS for 

integer solutions.  

1 1 1 1

2 2 2 2

1 2 1 2

2 1 2 1

, , , , 

, , , , 

, , , , 

, , , , 

1

1

1

1

t

t

t

t

k i p t k i

k i p t k i

k i p t k i

k i p t k i

w x

w x

w x

w x

 

 

 

 

 

 

This constraint can be simplified to: 

1 1 2 2 1 2 2 1 1 1 1 2 2 1 1 2 2 2 1 2, , , , , , , , , , , , , , , , 1 1 1 1 3k i k i k i k i k i j t k i j t k i j t k i j tx x x x w w w w            ,  

which further simplifies to  

1 1 2 2 1 2 2 1 1 1 1 2 2 1 1 2 2 2 1 2, , , , , , , , , , , , , , , , 4 3k i k i k i k i k i j t k i j t k i j t k i j tx x x x w w w w         ,  

which can be rewritten as  

1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 2 1 2 2 1, , , , , , , , , , , , , , , , 1k i j t k i j t k i j t k i j t k i k i k i k iw w w w x x x x         . 

 

But 
1 1 1 2, , 1k i k ix x   and 

2 1 2 2, , 1k i k ix x  , so 
1 1 1 2 2 1 1 2 2 2 1 2, , , , , , , , , , , , 1k i j t k i j t k i j t k i j tw w w w     

 

1 1 1, , , k i j tw  and 
2 2 1, , , k i j tw  cannot both be 1 because (j1, t) only has a demand of 1 in the 

example given.  
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1 2 2, , , k i j tw  and 
2 1 2, , , k i j tw  cannot both be 1 because (j2, t) only has a demand of 1 in the 

example given.  

 

If 
1 1 1, , , k i j tw  and 

1 2 2, , , k i j tw  are both 1, then this implies that 
1 1, , , tk i p tw  and 

1 2, , , tk i p tw  are 

both 0, which implies that 
1 1,k ix  and 

1 2,k ix  are both 1. But 
1 1 1 2, , 1k i k ix x  , so this 

cannot happen. 

 

If 
1 1 1, , ,k i j tw  and 

2 1 2, , ,k i j tw  are both 1, then this implies that 
1 1, , ,tk i p tw  and 

2 1, , ,tk i p tw  are both 

0, which implies that 
1 1, k ix  and 

2 1, k ix  are both 1. But 
1 1 2 1, , 1k i k ix x  , so this cannot 

happen.  

 

If 
2 2 1, , ,k i j tw  and 

1 2 2, , ,k i j tw  are both 1, then this implies that 
2 2, , ,tk i p tw  and 

1 2, , ,tk i p tw  are 

both 0, which implies that 
2 2,k ix  and 

1 2,k ix  are both 1. But 
1 2 2 2, , 1k i k ix x  , so this 

cannot happen. 

 

If 
2 2 1, , ,k i j tw  and 

2 1 2, , ,k i j tw  are both 1, then this implies that 
2 2, , ,tk i p tw  and 

2 1, , ,tk i p tw  are 

both 0, which implies that 
2 2,k ix  and 

2 1, k ix  are both 1. But 
2 1 2 2, , 1k i k ix x  , so this 

cannot happen. 

 

 This covers all 6 cases, and no integer solution fails this constraint, hence it is a valid 

inequality. 

Q.E.D.  
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Non-integer extreme points similar to the one listed in Theorem 10 arise in all three 

formulations listed here. These extreme points occur when more than one stage one 

allocation is attempting to be rescheduled to the same stage two slot in some scenario. 

Theorem 11 provides a means to eliminate such extreme points in the Allocation-

Based formulation. The existence of similar cuts for the Flight-Based and Queue-

Based formulations is a topic of further research.  

2.5 Computational Results 

The preceding results show that an integer optimal solution always exists for the total 

expected delay objective function. Thus, the LP-relaxation will solve the IP and fast 

times will result. In order to evaluate the strength of the above formulations more 

generally the objective function was slightly modified. CDM human-in-loop 

experiments and the subsequent widespread use of RBS, led to the general acceptance 

of RBS s an allocation standard. Research has shown that RBS has fundamental 

properties required of a fair allocation method (Vossen et al., 2003) (Vossen and Ball, 

2006). Instead of minimizing the total expected delay, the “pure” RBS solution was 

seen as the “ideal” solution and a term was added to the objective function which 

seeks to minimize the total deviation from RBS. This is done by first computing a 

term cost(k, i) = time(i) – arr(k). The following term is the added to each of the 

objective functions:  

1

min cost( , ) ( , )
k Flights i Slots

k i x k i
 

   
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It is of interest to test the computational performance of IP solvers with this 

new objective function; of particular note is whether or not the LP-relaxation will 

return an integer solution. It is interesting that in all our examples, this was the case.  

A test data set was created such that the expected GDP duration was 4 hours, 

with probabilities of the GDP ending after 60, 120, 180, and 240 minutes. The 

probabilities associated with these end times were 0.1, 0.2, 0.3, and 0.4 respectively.  

The following graphs compare the performance of the three different 

formulations. The experiments were run on a PC with Two quad-core Xeon 

processors, 12GB RAM, and XpressMP 2008A.  

Figure 2.8: Constraint Comparison of the Formulations Presented 

 
 

Figure 2.8 shows that the number of constraints in the Allocation-Based formulation 

grows at a much more rapid pace than either of the other two formulations. Notice 

also that, as the number of flights increases above 100, there is a significant 

difference between the Queue-Based and Flight-Based Formulations.   
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Figure 2.9: Variable Comparison of the Formulations Presented 

  

Figure 2.9 shows the growth in the number of variables as a function of the number of 

flights. Once again, the Allocation-Based Formulation grows at the fastest rate. The 

Flight-Based and Queue-Based formulations had a variable count that was both much 

smaller, but difference eventually became apparent. Again, the Queue-Based 

formulation remained relatively small throughout.  

Figure 2.10: Run Time Comparison of the Formulations Presented 
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Figure 2.10 shows growth in computation time as a function of the number of flights. 

Here, the Queue-Based formulation provides the most efficient run times, often not 

exceeding 5 seconds. This makes the Queue-Based formulation an ideal target of 

investigation for further study.  
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Chapter 3 Models that Trade-off Equity and Efficiency 
 

As discussed in Chapter 1, there are many challenges to effective GDP 

planning. One primary challenge is that of equity. Before the current standard of 

Collaborative Decision Making was adopted, participants felt that GDPs were 

implemented in an inequitable manner. Airlines were reluctant to provide information 

to the FAA because they (correctly) felt providing such information could give a 

much greater benefit to their competition than to the airline providing the 

information. This lack of equity and incentives led to inefficient solution procedures 

and often resulted in more system delay. CDM was initiated to resolve these issues by 

instituting methods that were based on agreed upon standards and allocation 

procedures that provided incentives for participation with accurate timely information 

(Ball et al., 2007), (Vossen et al., 2003), (Vossen and Ball, 2006), (Chang et al., 

2001).  

One of the major CDM components is the ration-by-schedule (RBS) principle, 

which decoupled the information provided by the airlines on a day of operations and 

the resources they received. The RBS principle provides that slots be allocated on a 

first-scheduled-first-served basis, so in a GDP, flights are kept in the order that they 

were originally scheduled. Some flights, though, are exempt from RBS. One set, 

flights that have already taken off, obviously cannot be given ground delay and must 

be exempt. The other set, though, has a more subtle justification.  

Because of the stochastic nature of weather, an air traffic manager is reluctant 

to delay a flight several hours in advance of a storm that may or may not materialize. 
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An overly pessimistic forecast could result in some longer flights being given what, in 

hindsight, is unnecessary delay. To offset this, a distance radius is set from the 

troubled airport, and ground delays are only assigned to flights that originate inside 

that radius. The remaining flights are exempt from this GDP. This second form of 

RBS will be referred to as distance based ration by schedule (DB-RBS) (Ball and 

Lulli, 2004).  

Ball et al. (Ball, Hoffman and Mukherjee, 2010) developed a formal stochastic 

model of GDP‟s to gain a fundamental understanding of how giving preferential 

treatment to long-haul flights improves expected GDP performance. They proposed 

the ration-by-distance algorithm, which allocates flights to arrival time slots using a 

priority scheme based on flight list ordered by decreasing flight length. This 

algorithm is structurally the same as RBS, but with an alternative priority scheme. 

They showed that RBD, under a fairly general model of GDP dynamics, minimizes 

the expected delay (Ball, Hoffman and Mukherjee, 2010). It is easy to see, however, 

that RBD can generate an inequitable distribution of flight delays. To address this 

problem, they proposed a heuristic algorithm, E-RBD, which seeks to balance 

efficiency and equity. In this chapter, some IPs are formulated, which represent the 

stochastic dynamic ground holding problem (SDGDP). It will be shown that this IP 

can more precisely balance efficiency and equity to a larger scale than either RBS, 

RBD or E-RBD. 

3.1 Related Work 

The GDP is a well-studied problem in aviation research. Odoni first proposed an IP 

model for the Ground Holding Problem (Odoni, 1987). Bertsimas and Stock Patterson 
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formulated a model to address issues concerned with congestion in the National 

Airspace System (NAS) (Bertsimas and Stock Patterson, 1998). This model 

minimizes the total ground delay and airborne delay, while ensuring that the 

departure capacities, arrival capacities, sector capacities and time connectivity 

constraints are not violated. Although, the model is for the general ATFM problem, it 

can easily be adapted to represent the Single Airport Ground Holding Problem 

(SAGHP) and Multiple Airport Ground Holding Problem (MAGHP). This model 

allows for adjustments to the timing of flights. A second model by the same authors 

also allowed for route alternatives (Bertsimas and Stock Patterson, 2000). These 

models are deterministic and do not account for the ways that the weather uncertainty 

can play into the planning of a GDP.  

Ball and Lulli (Ball and Lulli, 2004) showed how the decision of which flights 

to include in a GDP affects the performance of that GDP. This is directly related to 

the time that the command center commits to implementing a GDP. Earlier file times 

imply that more flights can be assigned ground delay and thus included in the GDP. 

These file times, though, are also based on less accurate weather forecasts and make it 

more likely that some flights (particularly long flights) will be assigned unnecessary 

delay. On the other hand, later file times include fewer flights in the GDP, which 

make the amount of ground delay per flight greater. As a result they concluded that 

the problem of determining the included set for a GDP should be done based both on 

the average delay assigned to flights and the expected cost of ground delay that is 

unnecessarily assigned.  
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They defined the distance based criteria of exemption, where a circle is drawn 

around the airport experiencing the GDP. Fights that depart from airports inside this 

circle are included in the GDP, while flights that depart from outside the circle are 

exempted (Ball and Lulli, 2004). There are many possible sets of included flights, 

based on how large the radius is set from the airport experiencing the GDP. When we 

refer to DB-RBS, we will be referring to RBS with various exemption radii, as 

defined by Ball and Lulli.  

Vossen et al. (Vossen et al., 2003) provided a justification for why the “pure” 

RBS allocation is deemed as the most equitable. They showed that it is better to 

measure equity relative to RBS rather than to compare simple statistics like the 

average delay of a carrier. They also found that the exemption radius of DB-RBS can 

have a bias towards airlines operating long haul flights. A similar result would hold 

for RBD. Thus, in order to present equitable solutions, it is of interest to minimize 

this deviation from „pure‟ RBS. There are several different ways of minimizing the 

deviation from RBS though: maximum deviation, total deviation, five worse, ten 

worse, etc. The IPs generated in this chapter will take different metrics of equity into 

account in attempt to balance equity and efficiency.  

There are four main papers that studied IP approaches to the stochastic GDPs. 

These are given by Richetta and Odoni (Richetta and Odoni, 1994), Ball et al.(Ball et 

al., 2003), Kotynek and Richetta (Kotnyek and Richetta, 2006) and Mukherjee and 

Hansen (Mukherjee and Hansen, 2007). The first three present static-stochastic 

models, in the sense that decisions are made at the start of a GDP, but cannot be 

adjusted throughout the duration of a GDP as new information becomes available. 
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The last presents a dynamic-stochastic model which prepares to model the uncertainty 

of new information becoming available and making an initial decision that‟s able to 

take advantage of that new information.  

 The first IP approach to stochastic GDPs was given by (Richetta and Odoni, 

1994). This paper seeks to minimize the ground delay and expected airborne delay 

given to flights. This was minimized over a finite set of scenarios of airport capacity 

profiles.  

Ball et al. next studied a stochastic case of GDPs (Ball et al., 2003). In this 

problem, they were concerned with Airport Arrival Rates (AARs), the number of 

flights the airport can receive in a given time period, in an environment where the 

weather is uncertain. The model takes into account an AAR distribution, and 

produces a planned AAR (PAAR) vector, which is the number of flights that the 

airport should schedule to arrive in each time period, given the stochastic nature of 

the weather and the probabilities of different AARs.  

Kotnyek and Richetta then showed that a model first proposed by Richetta and 

Odoni (Richetta and Odoni, 1994) could also be used to produce the PAAR vector 

(Kotnyek and Richetta, 2006). Comparisons were then made between the Ball et al. 

model and the Richetta-Odoni model. The Richetta-Odoni model is larger in size than 

the Ball et al. model, but because its cost function for ground delay is more general, it 

allows for more specific adjustments of the relationship between the costs of airborne 

holding and ground holding. However, the model may still not be compatible with 

CDM processes (Vossen and Ball, 2006).  
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All these models operate under the condition of weather uncertainty. Due to 

the excessive costs of airborne holding when compared to that ground holding, the 

papers try to avoid the situation where an airport has more flights seeking to land than 

it has landing slots available in a given time period. It is also possible to have a larger 

number of available landing slots than flights seeking landing. Such a situation can 

arise when an airport expects bad weather and flights are given more ground delay 

than necessary to offset this weather. In these situations the airport would like to be 

able to re-schedule flights to utilize this unexpected capacity. Because the papers by 

Richetta and Odoni, Ball et al. and Kotnyek and Richetta consider only the static case 

of stochastic ground delay programs, their models do not allow us to adjust the delays 

dynamically as the weather changes.  

Mukherjee and Hansen presented a dynamic stochastic IP formulation for the 

stochastic GDP, which took as part of its input the possible changes the weather can 

take throughout the duration of the GDP (Mukherjee and Hansen, 2007). This 

formulation employed a scenario tree to capture all the possible changes in weather 

outcomes. This scenario tree can grow large in size, which can lead to computational 

challenges. In the work presented here we take advantage of certain problem 

structures to invoke scenario trees of smaller size.  

In (Ball, Hoffman and Mukherjee, 2010), Ball et al. consider the problem of 

maximizing the throughput into the airport. Here, the RBD algorithm is first 

proposed. The authors prove that the RBD algorithm minimizes total expected delay 

if the GDP cancels earlier than anticipated. In their proof, the authors were able to 

compare the total expected delay of the RBD allocation with that of other allocations 
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and are able to show optimality. This algorithm, though, by definition, gives 

preference to airlines operating long flights. By providing a formal basis for 

prioritization based on distance this paper justified the distance based exemptions of 

(Ball and Lulli, 2004). 

3.2 Formulations 

 

We now review and summarize the Queue-Based Formulation from Chapter 2. It 

depends on two sources of input, flight based input and airport based input. For each 

flight k Flights , the following input is provided:  

1. arr(k) – the published arrival time of the flight k 

2. len(k) – the length of the flight k 

3. rbs(k) – where the „pure‟ RBS algorithm would allocate the flight k in a GDP.  

Likewise, the following input is provided for the airport experiencing the GDP:  

4. For each landing slot, i, the reduced capacity of this landing slot, cap1(i). 

5. A list of possible GDP cancellation times, called scenarios, indexed by t = 

1…T. Each scenario, t, has its own corresponding time ( )t . 

6. The nominal capacity of the airport landing slot j, in scenario t, cap2(j,t).   

7. A discrete probability distribution p over the set of cancellation times t = 

1…T.  

8. Each slot has an associated time. If the slot is a stage one slot, i, this is 

represented by time(i), and if it is a stage two slot j in the scenario t, then the 

associated time is represented by time(j, t).  
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 Taking this input into account, the Queue-Based formulation presented in 

Chapter 2 can be stated as follows:  

  
1

min  ( , ) ( )

subject to

t

k Flights i Slots t Scenarios

p time j t arr k
  

  
    (3.1) 

1

,

( ) ( )

1 for each flight k i

i Slots
time i arr k

x k



       (3.2) 

, 1

| ( ) ( )

( ) for each arrival slot .k i

k Flights
arr k time i

x cap i i




      (3.3) 

, 1, , ,

( , )| ( , , )

0 

for each arrival slot  and each scenario 

k i j t j t j t

k i earliest k i t j

x z z u

j t





   
      (3.4) 

, 2 ( ) 

for each arrival slot  and each scenario 

j tu cap j

j t


     (3.5) 

 ,

, , , ,

0,1

, 0, ,

k i

j t j t j t j t

x

u z u z



 
 

 

 The function ( , , )earliest k i t  was defined in Chapter 2.4.2. This is briefly 

described below.  

( ) if ( ) ( ) ( )

if ( ) ( ) ( ) 

( ) ( ) and 
( , , )

( ) ( ) ( )

( ) if ( ) ( ) ( )

time i time i len k t

t len k arr k

t len k
earliest k i t

time i len k t

arr k t len k arr k











 


  



 

 



 



 

Because of possible inequity in a RBD solution Ball et al. proposed E-RBD. 

E-RBD finds an “RBD-like” solution with a maximum allowed deviation from RBS. 
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The efficiency of the solution generated by the E-RBD solution was left as an open 

question. To answer this question, we pose the problem of minimizing the total 

expected delay of all flights in a GDP subject to a set of possible cancellation times, 

each with its own probability. We will refer to this problem as the Two-Stage 

Stochastic Dynamic Ground Delay Program with Maximum Deviation (TSDG -MD). 

It should be noted though that an E-RBD solutions does not depend on any 

probability distribution, while TSDG-MD does.  

To formulate TSDG-MD as an IP, a change only needs to be made to 

constraints (3.2) and (3.3), where the new constraints are  

1

,

( ) ( )
( ) ( )

1k i

i Slots
time i arr k

time i RBS k

x






 

 k      (3.6) 

, 1

( ) ( ) ( )

( )k i

k Flights
arr k time i RBS k

x cap i




  

 i    (3.7) 

These constraints merely place an upper bound on the set of slots to which a 

flight can be initially assigned. If the objective function remains minimizing the total 

expected delay, then this new IP will provide an optimal solution to the TSDG-MD 

problem.  

The TSDG-MD problem, though, is not the only way to find more equitable 

solutions that also seek to minimize total expected delay in a GDP. A second 

consideration would be a weighted objective between total expected delay and total 

deviation from RBS. We will call this problem Two-Stage Stochastic Dynamic 

Ground Delay Program with Weighted Objective (TSDG-WO). This again can be 

modeled by the IP described by (3.2) – (3.5), with the objective function now as:  
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    
1

,

{1.. }

min  ( , )

      1 ( ) ( , ) ( )

k i

i Slots k Flights

k Flights i Slots t T

cost k i x

p t time j t arr k





 

  



 

 

  
   (3.8) 

 

Here, cost(k, i) is the deviation of the stage one assignment of flight k from its 

RBS slot, i.e. cost(k, i) = 0 if time(i) ≤ RBS(k) and cost(k, i) = time(i) – RBS(k) 

otherwise. The parameter γ with 0 ≤ γ ≤ 1, can be varied to adjust the weight given 

to the two objective function components.  

Because both the TSDG-MD and TSDG-WO problems can be modeled by 

modifications of the IP proposed in Chapter 2, these modifications can be combined 

into an IP that seeks to minimize the weighted objective of total expected delay and 

total deviation from the RBS allocation, while placing a maximum limitation on the 

deviation of any flight‟s initial allocation from its pure RBS allocation. We will call 

this problem Two-Stage Stochastic Dynamic Ground Delay Program with Max 

Deviation and Weighted Objective (TSDG-MW). This new IP has the objective 

function of (3.8) and constraints (3.4) – (3.7) together with nonnegative integer 

variable restrictions.  

3.3 Heuristics 

Chapter 2 showed that the IP presented in (3.1) – (3.5) with the objective function of 

minimizing total expected delay has an optimal solution where the stage one solution 

is generated by the RBD algorithm. This result no longer holds if the TSDG-MD or 

TSDG-WO formulations are used. Although the IPs generated here have provided 

fast run times, in a CDM setting, people more readily associate fairness with a basic 
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allocation principle and an allocation method implementing that principle. IP 

solutions are seen as more of a black box, and the understanding behind how the 

solutions are reached is not always understood. Thus it is important to formulate 

heuristics which take advantage of this problem‟s particular structure.  

3.3.1 GreedySlot and GreedyDist 

One heuristic was originally proposed by (Ball, Hoffman and Mukherjee, 2010). Here 

the slots are ordered by their arrival times and the heuristic repeatedly assigns the 

earliest remaining slot to the longest flight that can be allocated to that slot, so long as 

this assignment does not force any flights to violate the maximum deviation 

constraints. Accordingly, this heuristic will be denoted GreedySlot. It can be 

formalized as follows:  

 

 

Similarly, instead of rationing based on the order of the slots, a heuristic can 

be formulated by first sorting the flights by their lengths, and repeatedly assigning the 

 

Figure 3.1: Pseudo code for the GreedySlot Algorithm  
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longest flight to the earliest unused slot that does not cause any other flight to violate 

its maximum deviation constraint. More formally, it can be stated as:  

 

Figure 3.2: Pseudo code for the GreedyDist Algorithm 

 

Example 3.1 

To understand the difference between these two heuristics, consider the following 

example of six flights flying into an airport whose capacity is reduced from 60 flights 

per hour to 12 flights per hour, or one flight per 5 minutes. Suppose that the 

maximum deviation allowed is 5 minutes (one arrival slot). The input is as follows:  

Flight, k arr(k) rbs(k) len(k) dep(k)=arr(k) –  len(k)  
1 5:01  5:05  60 4:01  
2 5:02  5:10  65 3:57  
3 5:03  5:15  75 3:48  
4 5:04  5:20  90 3:34  
5 5:05  5:25  120 3:05  
6  5:06  5:30  150  2:36  

Table 3.1: Input Data for the GreedySlot and GreedyDist algorithms 
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The GreedySlot and GreedyDist algorithms would allocate the flights to slots 

as illustrated in Figure 3.3:  

 
Figure 3.3: Execution of the GreedySlot and GreedyDist algorithms on Example 3.1 

 

 

GreedySlot starts with the earliest slot (5:05) and finds a flight to assign to it. 

The longest available flight for that slot is Flight 5, so this flight is assigned to the 

5:05 time slot. Flights 1, 2, 3, and 4 are iteratively each fixed to slots 5:10, 5:15, 5:20 

and 5:25 because they have reached their maximum deviation. When 5:30 is reached 

Flight 6 is the only feasible flight and it is assigned to 5:30. Similar reasoning 

explains the GreedyDist solution.  

Although both these heuristics provide feasible solutions to the TSDG-MD 

problem, no result currently exists giving conditions under which either is optimal. In 

fact, a simple example can show that neither of these solutions provides a general 

optimal solution to the TSDG-MD problem.  

 

Example 3.2 

Consider the Flight-Based input from Example 3.1, with the addition of 7 possible 

GDP cancellation times and the assumption that at the GDP cancellation, the nominal 
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capacity of 60 flights per hour, or a flight per minute is restored. Consider also the 

two probability distributions that are as follows:  

 

 3:05 3:20 3:35 3:50 4:05 4:20 4:35 

p1 1

2
 

1

4
 

1

8
 

1

16
 

1

32
 

1

64
 

1

64
 

p2 1

64
 

1

64
 

1

32
 

1

16
 

1

8
 

1

4
 

1

2
 

Table 3.2: GDP cancellation times and associated probabilities 

 

With this additional input, the GreedySlot and GreedyDist heuristics can each 

be evaluated for the GDP under the two different probability distributions. They 

performed as follows:  

 p1 p2 

GreedySlot 30.2188 76.625 

GreedyDist 19.875 77.2344 

Table 3.3: Performance of the GreedySlot and GreedyDist algorithms on Example 3.2 

 

Notice that in Example 3.2, under p1, GreedyDist has less total expected delay 

than GreedySlot, thus showing that GreedySlot does not always provide an optimal 

solution to the TSDG-MD problem. Notice also that under p2, GreedySlot has less 

total expected delay than GreedyDist, thus showing that GreedyDist does not always 

provide an optimal solution to the TSDG-MD problem. It should also be noted that in 

Example 3.2, the optimal solution varies with the probability distribution. Under p1, 

GreedyDist returned the optimal solution, while under p2, GreedySlot returned the 

optimal solution.  
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The fact that these solutions do not always provide optimal solutions to the 

TSDG-MD problem does not make them unable to find close to optimal solutions. 

Experiments will show how close to optimal these solutions generated by the 

GreedySlot and GreedyDist heuristics actually are.  

3.3.2 The Infinite Capacity Solution 

In Chapter 3.2, three different means for producing solutions that seek to balance both 

equity and efficiency were provided: TSDG-MD, TSDG-WO, and TSDG-MW. The 

heuristics mentioned so far were constructed to only provide solutions for one of 

those methods. Because all three of these methods provide different approaches to 

this equity/efficiency trade-off, it is of interest to find ways to generate near optimal 

solutions to each of these.  

 All three of these methods were formulated as IPs, and there is a host of 

existing literature on IPs. One IP that has been well studied is the transportation 

problem. In a transportation problem, there are m plants, each with supply si (for i = 1 

to m) and n warehouses each with demand dj (for j = 1 to n). The assumption is that 

i j

i j

s d   because if not, then no feasible solution exists to this problem (demand 

exceeds supply). The cost for transporting a unit from plant i to warehouse j is cij. The 

goal is to minimize total transportation costs. This problem can be formulated as an 

IP as follows, where ijx  represents the amount of units shipped from plant i to 

warehouse j:  

1 1

min

subject to

m n

ij ij

i j

c x
 


        (3.9) 
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 
1

 for  1,...,m
n

ij i

j

x s i


         (3.10) 

 
1

 for  1,...,
m

ij j

i

x d j n


         (3.11) 

0,ij ijx x   

 The transportation problem is known to have a TU constraint matrix. A 

primary consequence of this is that as long as the right hand sides are integer, then the 

optimal solution to the LP-relaxation will be integer.  

 This problem is of practical importance here because stage one of each of the 

three formulations mentioned in Chapter 3.2 is a transportation problem. This implies 

that, since the reduced capacity of every airport arrival slot is given in nonnegative 

integers, any formulation that consists of only these constraints will be guaranteed to 

give back an integer optimal solution to the LP-relaxation, assuming that a feasible 

solution to the problem exists.  

 The challenge becomes how to make optimal decisions about delaying flights 

in the event of the weather becoming clear earlier than anticipated, without the 

constraints dictating that the capacity constraints are not violated when the weather 

clears. One approach to this problem is to assume that the airport will go from a 

reduced capacity setting to an infinite capacity setting, rather than going to a nominal 

capacity setting. Such an assumption implies that at each possible GDP cancellation 

time, every flight will be rerouted to the earliest slot that it can reach. Because the 

assumption is that the slot has infinite capacity, there will be no need to restrict the 

number of flights that can be reallocated to this slot at this cancellation time. The 

earliest slot that a flight can reach at a possible GDP cancellation time is precisely 
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what the function ( , , )earliest k i t , as defined in Chapter 2, measures. Consequently, 

the following formulation will be an infinite capacity solution for the weighted 

objective metric.  

    
1

,

{1.. }

min  ( , )

       1 ( , , ) ( ) ( , )

subject to

k i

i Slots k Flights

t

k Flights i Slots t T

cost k i x

p earliest k i t arr k x k i





 

  



 

 

  
  (3.12) 

,

( )

1 for each flight k i

i a k

x k


        (3.13) 

, 1

| ( )

( ) for each arrival slot .k i

k a k i

x cap i i


      (3.14) 

 

 The different versions of this IP will produce a solution feasible to stage one 

of the IPs. Because each of these is a stochastic IP with complete recourse, there is 

always a feasible stage two solution for each feasible stage one solution. These stage 

two solutions can be produced from the sub-problems that exist in each scenario of 

stage two of the IP. Because the sub-problems have TU constraint matrices and each 

scenario is independent of one another once the stage one solution has been 

determined, determining the efficiency of a stage one solution leaves little work to be 

completed. It should be noted that RBD, RBS, GreedySlot and GreedyDist all 

produce only stage one solutions as well, leaving stage two to be later determined.  

3.4 Experimental Results 

 

The formulations presented in this chapter were tested using data based on GDPs run 

on three different dates at San Francisco International Airport (SFO), La Guardia 

Airport (LGA), Newark International Airport (EWR), and Chicago O‟Hare 
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International Airport (ORD). The experiment was set up with GDPs expected to run 

for a duration of six hours and seven possible weather clearance times. The tests were 

run with three different probability distributions: a uniform distribution, a distribution 

where the probabilities of weather clearance were decreasing, 

1 1 1 1 1 1 1
, , , , , ,

2 4 8 16 32 64 64
p

 
  
 

, and a distribution where the probabilities of weather 

clearance were increasing,
1 1 1 1 1 1 1

, , , , , ,
64 64 32 16 8 4 2

p
 

  
 

.  

The following table represents the nominal and reduced capacity rates used on 

the data sets. These are general representatives of the respective capacities.  

 Nominal Reduced 

SFO 60 30 

LGA 40 30 

ORD 100 72 

EWR 50 33 

Table 3.4: Nominal and Reduced capacities at select US airports 

For TSDG-WO, the experiment was conducted on each day and distribution 

with   ranging from 0 to 1, incrementing by 0.05. To obtain the TSDG-MD results, 

we used an objective function that measured only efficiency and restricted the 

allowed assignments of a flight to only δ slots after its RBS allocated slot, for each 

given  0,1,...,30  . The TSDG-MW formulation was tested with   ranging from 

0 to 1, incrementing by 0.05, as was done with the TSDG-WO formulation. The 

maximum deviations for the TSDG-MW were  0,1,...,30  , as was done with the 

TSDG-MD formulation. All three of the tested formulations give the RBS and RBD 

solutions at extreme parameter values. For instance, if the coefficient for equity is 1 in 

the weighted objective IP, the focus is only on equity. The result will then be the most 
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equitable solution, RBS. On the other hand, if the coefficient for efficiency to 1 in the 

weighted objective IP, the focus is only on efficiency. The result will then be the 

solution that has the least total expected delay, which is an RBD solution.  

The TSDG-MD formulation has similar properties. When the maximum 

deviation, δ, is set equal to 0, flights are not allowed to deviate from their RBS 

allocation, which is the optimal solution in that case. If δ is set to an arbitrarily large 

constant then all stage one assignments are allowed, in which case, the TSDG-MD 

formulation will output the RBD solution.  

One key difference between the TSDG-WO IP and the TSDG-MD problem, 

though, is the fact that the TSDG-WO IP allows one to choose a  small enough that 

it remains close to either the RBD or RBS solution, while still taking into account 

both equity and efficiency. For instance, instead of allowing the weighted objective to 

focus completely on efficiency, similar extreme values can be reached in the 

weighted objective IP when   is 0.999. This helps find a “more equitable” solution 

with the same total expected delay as the RBD solution. Because the TSDG-MD 

problem does not promote or discourage this, similar considerations were made for an 

equity term in the objective function of the TSDG-MD problem. The result is a set of 

solutions that are optimal to the problem under consideration, but which also consider 

total deviation as well.  

For the purposes of understanding the effectiveness of these metrics, they 

were all compared against the way GDPs are currently implemented, DB-RBS, with 

exemption radii set between 80 minutes and 400 minutes, incrementing by 20 

minutes.  
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Figure 3.4: A comparison of the different metrics at EWR 
 

 

There are several things that stand out about Figure 3.4. The most notable thing is the 

amount that the DB-RBS solution deviates from the IP generated solutions as it 

approaches its more efficient points. The three formulations introduced in 3.2 all had 

solutions that dominated the DB-RBS solution (i.e. the solutions had lower costs 

under both objective functions). In the 45 sample airports, days, and probabilities, this 

was a repeated occurrence, with the DB-RBS repeatedly producing solutions that 

were inefficient when the metric of equity is total deviation from RBS. 

Naturally, a second question to ask is how these formulations compare to DB-

RBS under a different metric of equity. Figure 3.5 measures total expected delay 

versus the metric of maximum deviation from RBS (instead of total deviation from 

RBS).  

0

500

1000

1500

2000

2500

3000

3500

3250 3300 3350 3400 3450

To
ta

l D
ev

ia
ti

o
n

 f
ro

m
 R

B
S 

(m
)

Total Expected Delay (m)

LGA Day 1, Uniform Distribution

W-Obj

Max-Dev

W&M

DB-RBS



 

 94 

 

 

Figure 3.5: A comparison with a max deviation metric for equity  
 

Here, notice that DB-RBS received its more efficient solutions by forcing some flights to 

experience staggeringly long amounts of delay. When DB-RBS achieves comparable results 

in terms of maximum deviation, the efficiency is greatly reduced. Also, TSDG-WO IP, 

which is the method that minimized both the total deviation from RBS and total expected 

delay in Figure 3.4 does not perform as well when the metric for equity is changed to 

maximum deviation from RBS.  

An interesting point of both Figure 3.4 and Figure 3.5 is the number of 

solutions generated by TSDG-MW formulations. At its extremes, these solutions are 

equivalent to either the TSDG-MD solutions or the TSDG-WO solutions. However, 

there are a wide range of points that exist between the two solutions; thus offering the 

notion that this TSDG-MW IP may offer the ability to do a very fine grained trade-off 

analysis.  

Because the three formulations tested are all IPs, another important question is 

the run time of these IPs. Figure 3.6 addresses that question. The experiments were 
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run on a PC with Two quad-core Xeon processors, 12GB RAM, and XpressMP 

2008A. 

Figure 3.6: Run Time Comparison of the formulations  

 
 

Figure 3.6 shows that these IPs can be used to solve real time problems 

relatively quickly. The results were similar for the other days, probabilities, and 

airports considered. Many of these solutions were generated by the LP-relaxations of 

the IPs.  

A second set of tests performed was how often the heuristics offered were 

close to the optimal solution. To test the different heuristics, GreedySlot and 

GreedyDist were programmed in C++, while the Infinite Capacity Solution was 

programmed in Xpress. What was of interest was how often these methods were close 

to the optimal solutions and how often they give the actual optimal. Below are the 

results for the infinite capacity heuristic for the three days at SFO.  
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Figure 3.7: Performance of the Infinite Capacity Solution at SFO 

 
 

Figure 3.7 shows that the Infinite Capacity Solution performed reasonably well in 

estimating the optimal solutions. Notice that it returned the optimal solution 33% of 

the time over the three days, three different probability distributions and 21 different 

equity to efficiency ratios at SFO. It was within 1% of optimal on 76% of these cases.  

Next we considered the performance of the GreedySlot and GreedyDist 

heuristics. These heuristics could only be performed on the input given to the E-RBD 

problems, and thus could not take into account considerations for total deviation from 

RBS. Both the GreedySlot and GreedyDist heuristics achieve this level of 

performance without the need for a probability distribution.  
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Figure 3.9: GreedySlot Performance at SFO 

 
 

Figure 3.8: GreedyDist Performance at SFO  
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It should be noted though that Figure 3.8 and Figure 3.9 are a bit misleading 

because the GreedySlot and GreedyDist heuristics only work to generate solutions to 

the TSDG-MD problem, whereas the Infinite Capacity Solution can be used to for all 

the problems mentioned in this chapter. Below is a corresponding graph on the 

Infinite Capacity Solution on the TSDG-MD problems at SFO.  

 

This shows that the Infinite Capacity Solution does a good job in producing feasible 

solutions for the TSDG-MD problem. While these solutions are not optimal as often 

as the GreedySlot or GreedyDist heuristics, they seem to be closer to optimal on a 

more consistent basis, although with GreedySlot and GreedyDist providing solutions 

that are within 1% of optimal in 90 and 91 percent respectively of the cases run, it 

shows that all three heuristics do an admirable job of providing near-optimal 

Figure 3.10: Infinite Capacity Solution on SDGDP-MD at SFO 
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solutions. It should be noted though that the Infinite Capacity Solution requires a 

probability distribution, whereas the GreedySlot and GreedyDist heuristics do not.  
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Chapter 4 En Route ATFM with Weather Uncertainty. 
 

As a general rule, in the U.S. constraints that restrict air traffic flows arising from 

airport runway capacities are much more limiting than those associated with the en 

route airspace. However, the presence of bad weather will cause portions of the 

airspace to decrease in capacity and even temporarily close. With many airports and 

airspace routes already operating at or near capacity limits, this reduction in capacity 

can and often does lead to significant delays. Thus the FAA and the research 

community have been devoting more and more attention to problems associated with 

congested airspace.  

In 2006, the FAA introduced the concept of Airspace Flow Programs (AFPs) 

(FAA, 2006). These initiatives are similar to GDPs, except that they are used to 

restrict flow through a volume of airspace, a Flow Constrained Area (FCA),  instead 

of restricting flow into an airport. In general, flights may be given ground delay, 

reroute options, or airborne delay. Similar to the GDP though, it will be important to 

be able to make these decisions with knowledge that the weather may clear earlier 

than anticipated, thus allowing the AFP to be cancelled early. Our work uses as a 

starting point the model described by Ganji et al. who formulated an AFP planning 

problem as an integer program (Ganji et al., 2009). We refer to this integer program 

as the Ganji model.  

Airspace capacity depends on a complex set of issues, including the workload 

that can be handled by the air traffic controllers and the structure of traffic flows 

through airspace (Mitchell, Polishchuk and Krozel, 2006). For instance, many flights 

do not seek to use the same portions of that sector at the same time. If a sector is long 
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and narrow and has two flights attempting to fly through it at the same time, one 

flying through the top of the sector and one flying through the bottom of the sector. 

While currently sector capacity in a AFP is modeled similar to airport capacity in a 

GDP, the topic of how to define new sector capacity models is an active area of 

research. 

Nilim et al. (Nilim et al., 2001) considered the problem of routing a single 

aircraft around multiple storms with the goal of minimizing time and fuel costs. There 

is a probability associated with each storm and the decision to fly toward the storm or 

around it is dependent on the probability of the prediction that the storm will be 

present. This takes into account the concept that the probabilities will be updated 

throughout the duration of the flight, and the decision of the optimal route to take is 

updated accordingly. The optimal routing strategy is determined using a Markov 

Decision Process and a dynamic programming algorithm. These authors later 

considered extending the model to handle multiple aircraft and multiple storm 

characteristics (Nilim, El Gahoui and Duong, 2003), (Nilim and El Gahoui, 2004). 

The complexity of these extended models, however, limits their ability to be used in 

practice. Our work builds directly on the Ganji model, but also uses concepts from 

these papers.  

In this chapter we assume that the capacities under variant weather conditions 

of the FCA are estimated by some method and provided to our model as input. The 

chapter will then shows that the model for GDPs with weather uncertainty presented 

in Chapter 2 can be extended to a formulation that models AFP with weather 
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uncertainty. Our analysis leads to a strengthening of the Ganji model, producing 

much faster solution times.   

4.1 Problem Description 

 

AFPs were introduced with three possible actions being taken on individual flights – 

ground delay, rerouting, or airborne delay. In practice though, the later option is only 

recommended in extreme conditions. The models considered here have thus focused 

more on ground delay and rerouting, although they can be extended to include other 

options.  

Generally, an AFP is put into effect in a congested area of airspace that has its 

capacity reduced for some period of time due to severe weather. How long this 

weather will last is generally not known. Decisions must thus be made at the start of 

this AFP, which take into account the possible changes in weather and how these 

changes impact the AFP. Although the notion of a „primary route‟, „secondary route‟ 

and „hybrid routes‟ are not currently part of the AFP conceptual framework, they 

represent a basic framework our problem and are consistent with previous work 

(Ganji et al., 2009), (Nilim, El Gahoui and Duong, 2003), (Nilim et al., 2001), (Nilim 

and El Gahoui, 2004). 

  

Figure 4.1: The Impact of an FCA on a Single Flight 



 

 103 

 

 

Figure 4.1 gives an example of the options available to a single flight whose 

scheduled route goes through an FCA. Initially, the flight has two options: wait on the 

ground for some period of time for the ability to fly through the FCA, or depart 

immediately on a (longer) secondary route around the FCA. Each of these decisions 

has a possible recourse action available to it. If the flight is initially scheduled to its 

primary route with some ground delay, then in the event that the weather clears 

earlier than anticipated the possibility exists to reduce the amount of ground delay 

given to this flight. If the flight has already departed on its secondary route, then there 

is a possibility of giving it a shorter route through the FCA via a hybrid route.  This 

option is indicated by the dashed blue line in Figure 4.1. Although Figure 4.1 only 

shows the options for a single flight, similar possibilities exist for every flight whose 

primary route is interrupted by the FCA.  

An initial solution that is too aggressive would send more flights to the flow 

constrained area than the capacity can handle, in expectation that the weather will 

clear before these flights reach the area. This can result in the possibility of large 

amount of airborne delay or rerouting if the weather does not clear early. At the other 

extreme is rerouting more flights than necessary around the flow constrained area, in 

expectation that the weather will stay severe. If the weather does clear earlier than 

anticipated though, these flights will have already started on a path around the FCA 

and will either be forced to stay on this longer route, or to take a hybrid route through 

the FCA that is still longer than the flight‟s preferred initial route.  
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In between these two extremes lies an initial allocation that sends some flights 

on their preferred (primary) routes, other flights on their secondary routes and seeks 

to minimize the total expected delay of all flights involved. In order to compute the 

total expected delay, a probability distribution of how the weather is expected to 

behave over the FCA is necessary. There are many changes the weather can make 

over this time period, and attempting to model all such changes would cause the 

problem to grow to a size that would make the LP (and thus the IP as well) too time 

consuming to solve. Instead, as in Chapter 2, this formulation will focus on a 

simplified forecast of the weather where the assumption is that the weather will clear 

at some time in the future. What is uncertain then is when the weather will clear, 

allowing capacity of the FCA to go back to its normal capacity.  

The problem inputs are:  

 A set of flights, Flights, and data about these flights.  

 For each flight k ∈ Flights, the following is provided:  

o the distance from the FCA, Enr(k),  

o the scheduled departure, Dep(k),  

o the length of time required to travel along its secondary route,
s

kc ,  

o the latest acceptable FCA slot, last(k).  

o a set of possible hybrid routes which would arrive at the FCA at some 

arrival slot j. The information provided for each flight k, slot j is: 

 the time at which the flight must deviate its secondary route in 

order to travel this hybrid route ,

d

k jt ,  
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 the savings offered by the flight k travelling a hybrid route which 

travels through the FCA at slot j, ,

h

k jsv .   

 The maximum duration of the AFP 

 The reduced capacity of the FCA, cap1(i) for each initial slot i.  

 There are T possible AFP endings (cancellations). Each cancellation t = 1, …, T, 

has an associated time, ( )t  and a probability pt. The AFP end time  t  will be 

referred to as scenario t .  

 The nominal capacity of the airport, cap2(j,t) for each slot j in scenario t. (We 

assume that for each slot j in each scenario t, cap2(j, t) ≥ cap1(j).)  

Slot i time(i) cap1(i) cap2(j, t) 

1 6:00 1 1 

2 6:01 0 0 

3 6:02 1 1 

4 6:03 0 0 

5 6:04 1 1 

   AFP Cancelled at 6:05 

6 6:05 0 2 

7 6:06 1 2 

8 6:07 0 2 

9 6:08 1 2 

Table 4.1: An Example of Stage One and Stage Two Capacities  

 

The input to this problem is similar in nature to the problem described in 

Chapter 2. One major difference is the addition of secondary and hybrid routes for 

each flight, each with their associated costs. Table 4.1 illustrates sample cap1 and 
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cap2 vectors. Slots 6, 7, 8, and 9 each revert to their nominal capacity (of 2) starting at 

the storm clearance time ( )t . This extra capacity can be used by reducing the 

ground delay of certain flights (as is done in Chapter 2), or by rerouting a flight from 

its secondary route to a hybrid route through the FCA.  

4.2 The Ganji Model 

 

This chapter builds on the work of Ganji et al. who formulated a two stage stochastic 

IP of this problem. In their model, stage one assigns flights either to their primary 

route with some amount of ground delay, or on a secondary route with no ground 

delay. In order to accomplish this, the binary variables ,

p

k ix  are introduced, where k is 

a flight and i is an FCA arrival slot, which is assumed to be the primary route of each 

flight. The variable ,

p

k ix  is one if the flight k is initially assigned to its primary route 

which would go through the FCA at time i. The model assumes constant flight speed 

so a delay in the arrival time at the FCA also indicates a delay in the departure of the 

flight.  

 There is also a second class of variables in stage one of this model, 
s

kx . These 

are the variables representing a flight being initially assigned to its secondary route. 

Because of the assumption that the secondary routes travel around the weather 

impacted area, i.e. they do not require an FCA slot, flights travelling along their 

secondary route would depart immediately and experience no ground delay. 

Obviously, a flight cannot depart on both its primary and secondary route. Also, the 

capacity of FCA arrival slots must be enforced. Stage one of his formulation can thus 

be shown to be: 
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, 1p s

k i k

i Slots

x x


   for each flight k      (4.1) 

, 1( )p

k i

k Flights

x cap i


  for each FCA arrival slot i     (4.2) 

 , , 0,1p s

k i kx x   

Constraint set (4.1) says that each flight is assigned to exactly one route, either 

a primary route with some ground delay, or a secondary route. Constraint set (4.2) 

says that the number of flights that are initially assigned to an FCA slot i cannot 

exceed the stage one capacity of that slot.  

In stage two of this formulation there is a state corresponding to each possible 

realization of the random variable that gives the time at which severe weather over 

the impacted area may clear. Given that the weather is clear in each scenario, the 

capacity of the FCA is increased to a nominal capacity. This is represented in each 

scenario t by a capacity on each FCA arrival slot j, defined by cap2(j,t). In order to 

take advantage of this increase in capacity, one would like to adjust the ground delay 

and secondary routes given to flights. In each scenario though, we first need to 

account for the changes flights have taken over time. Some flights will have already 

departed on their primary routes and will only be able to continue on their primary 

route. The departure time of some flights will not have come yet, and these flights 

will be able to depart on a primary route when their departure time comes. Some 

flights will be serving ground delay. These flights will also be able to depart 

immediately. Finally, some flights will have already departed on their secondary 

route. These flights will thus be unable to depart on any primary route. However, 

there will be a set of hybrid routes for each flight in each scenario that these flights 



 

 108 

 

may or may not be eligible for. Each of these options is presented in the constraints of 

stage two of this formulation.  

There are three types of stage two variables present in this formulation. The 

first type , ,

p

k j ty  is a binary variable which is one if the flight k is reassigned to its 

primary slot j through the FCA in scenario t. The second type, , ,

h

k j ty  is a binary 

variable which is one if the flight k is reassigned to a hybrid route which enters the 

FCA at slot j. The third type, ,

s

k ty  is a binary variable which is one if the flight k 

remains on its secondary route in scenario t.  

 The stage two constraints of this model can be presented in three sets – those 

dealing with only the stage two primary routes, those dealing with the stage two 

primary and hybrid routes, and those dealing with the stage two primary, secondary 

and hybrid routes. First consider those constraints dealing only with the stage two 

primary routes:  

 

  
, , ,  for all flights , scenarios , 

and 1...max ( ),

p p

k j t k j

k k

y x k t

j t Dep Enr



 
     (4.3) 

Depk and Enrk represent the published departure and en route times for the flight k. 

These constraints restrict flight from be reassigned to a slot that is earlier its 

scheduled FCA arrival time, Depk + Enrk. It also says that a flight cannot be 

reassigned to a slot in scenario t that is before the time it would take for it to depart at 

time ( )t  and travel to the FCA, unless it has already departed.  
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2

, , 1 for all scenarios ,

and all flights  such that ( )

p s

k j t k

j Slots

k

y x t

k Dep t



 




      (4.4) 

If a flight has already departed on its secondary route, then constraint set (4.4) says 

that this flight cannot be rescheduled to any primary route through the FCA. 

 

, , ,  p p s

k j t k i k

i j

y x x


    for all flights k, scenarios t and 2j Slots    (4.5) 

This constraint set prevents a flight from being penalized when the weather clears by 

receiving a later primary slot than it was initially assigned in stage one. The 

secondary routes for a flight also appear in this constraint set because it is possible for 

a flight to be reassigned to a primary route if its secondary route has not yet departed. 

Next, consider the constraints that deal with the stage two primary routes and 

hybrid routes.  

 

, , 0 h

k j ty      for all flights k, scenarios t and j s.t. , ( )d

k jt t    (4.6) 

The constants ,

d

k jt represent the time at which the flight k must depart its secondary 

route in order to arrive at the FCA slot j through its hybrid route. Because this model 

does not allow for pre-emptive hedging, this constraint set says that a flight cannot 

depart its secondary route for a hybrid route if the weather has not yet cleared.  

 

, , 0h

k j ty 
    

for all flights k, scenarios t, and j > last(k)    (4.7) 

This constraint set prevents a flight from being assigned to a FCA slot through its 

hybrid route that is later than it is willing to accept, last(k).  
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, , 0
k k

h

k Dep Enr ty  
     

for all k in flights and t in scenarios    (4.8) 

This constraint prevents flights from being initially assigned to their secondary route, 

but immediately rerouting for a hybrid route, essentially departing on the primary 

route.  

 

, , , , 2 ( )p h

k j t k j t

k Flights k Flights

y y cap j
 

       for all k in flights, t in scenarios  (4.9) 

This enforces the capacity constraints for each FCA arrival slot in each scenario of 

stage two.  

Finally, consider the constraints that deal with the stage two primary, hybrid, and 

secondary routes.  

 

, , ,

h s s

k j t k t ky y x   for all k in flights, t in scenarios, and j in Slots2   (4.10) 

This says that no flight can be reassigned to a secondary or hybrid route in any 

scenario unless it was initially assigned to its secondary route. 

 

2 2

, , , , 1p h s

k j t k j t k

j Slots j Slots

y y y
 

     for all k in flights, t in scenarios  (4.11) 

This says that every flight is reassigned to exactly one of its primary, secondary, or 

hybrid route options in each scenario of stage two. 

 The objective function for this model assigns a stage one cost ,

p

k ic to the 

variable ,

p

k ix , which corresponds to the amount of ground delay the flight k receives 

by being assigned to slot i. There is also a stage one cost 
s

kc  for the variable 
s

kx  which 
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corresponds to the amount of delay a flight receives by travelling on its secondary 

route instead of its non-delayed primary route. The stage one cost of this model is the 

sum of these costs over all flights and stage one slots.  

 The stage two costs for this model represent the expected savings from the 

reassignments. This is done by introducing two new variables, 
3

tz and
4

tz , which are 

respectively defined to be the amount of delay that is saved by flights that are 

reassigned to primary routes and hybrid routes in the scenario t. These variables are 

each multiplied pt, the probability of the scenario t occurring. This objective function 

is modeled as follows:  

 3 4

1 2min t t t

t Scenarios

Z z z p z z


     

where 

1

1 , ,

p p

k i k i

k Flights i Slots

z c x
 

    

2

s s

k k

k Flights

z c x


   

2 2

3

1 , , , , ,

p p s p

t k j k j t k k j t

k Flights j Slots k Flights j Slots

z z c y c s
   

       

2

4

, , ,

h h

t k j k j t

k Flights j Slots

z sv y
 

    

4.3 Strengthening the Ganji Model 

There are many ways to represent a discrete set of integers as the integer solutions to 

a system of linear inequalities. These different formulations are not always equivalent 

in strength. Although each of these formulations will accurately represent the discrete 

set in question, some may also have the property that its extreme points are the 
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members of X. This implies that if we wish to solve an IP and X is our set of feasible 

solutions, then such a formulation will be solved by its LP-relaxation. The strength of 

an IP formulation refers to “how close” the polyhedron for the constraint matrix is to 

the convex hull of integer solutions. Strong formulations play an important role in 

integer programming, as these formulations generally are able to return optimal 

solutions quickly.  

The Ganji model has been shown to solve the problem of stochastic weather 

affecting en route traffic. However, generating these solutions can take large amounts 

of time. We now develop a strengthening of the Ganji model and show that this leads 

to much faster solution times.  

 

Figure 4.2: The AFP is cancelled before the flight k can depart its secondary route.  

 

One situation the Ganji model must be able to represent is given by Figure 

4.2. Here, a flight k is initially assigned to its secondary route, but the cancellation 

time of scenario t is before flight k‟s departure time. This allows the possibility of 

reassigning flight k to its primary route. Of course, this could only be done if there is 

sufficient capacity available. In order to handle the costs associated such a situation, 

the variables , ,

p

k j ts  were introduced to the Ganji model. These variables are one if the 
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flight k was originally assigned to its secondary route and is reassigned to its slot j on 

its primary route in scenario t. The authors ensure that this happens by defining the 

variables as follows,  , , , ,min ,p s p

k j t k k j ts x y . The associated linear constraints that 

were implemented in the model are:  

 

2

, ,

p s

k j t k

j Slots

s x


         (4.12) 

, , , ,

p p

k j t k j ts y          (4.13) 

 

These variables were supposed to only have an impact on the objective 

function, but they can directly affect the solution (to the LP-relaxation) by 

introducing a number of non-integer extreme points to the formulation. This happens 

because 
s

kx  and , ,

p

k j ty  both appear in the constraint 
2

, , 1p s

k j t k

j Slots

y x


  and so the 

following is now a sub-matrix of this formulation: 

 

1 1 0

1 0 1

0 1 1

 
 

 
 
 

 . This matrix has a determinant 2. These submatrices introduce many 

non-integer extreme points to the LP-relaxation of the Ganji model. This means that 

the , ,

p

k j ts  variables, which were supposed to only affect the objective function, in fact 

weaken the formulation. Further, the LP-relaxation often returns optimal solution 

with the variables corresponding to such a submatrix having values of 0.5. Thus, 
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eliminating these submatrices from the formulation could lead to more efficient run 

times.  

Suppose we define a new set of variables to serve the same purpose: the 

binary variable ,

p

k ts  is one if the flight k is assigned to its secondary route in stage one 

and reassigned to its primary route in scenario t of stage two. Consider the following 

equation: 

1 2 2

, , , , , ,0.5
p

s p p h s
k t k k i k j t k j t k

i Slots j Slots j Slots

s x x y y y
  

 
     

 
       (4.14) 

 

Proposition 4.1: For a flight k and a scenario t, the variable 
2

, , ,

p
p

k t k j t

j Slots

s s


  for all 

integer solutions to the Ganji formulation.  

Proof:  

Because of the constraint 
1

, 1s p

k k i

i Slots

x x


  , all integer solutions will have for each 

flight k, either 1s

kx   or 
1

, 1p

k i

i Slots

x


 . Likewise because of the constraint 

2 2

, , , , , 1p h s

k j t k j t k t

j Slots j Slots

y y y
 

    , all integer solutions will have that either 

2

, , 1p

k j t

j Slots

y


  or 
2

, , , 1h s

k j t k t

j Slots

y y


  . There are then 4 cases to consider:  

 

Case 1: 1s

kx   and 
2

, , 1p

k j t

j Slots

y


 .  
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In this case, (4.18) evaluates to , 1
p

k ts  . Since this is the exact case where the 

flight k starts on its secondary route, 1s

kx  , and is rerouted to a primary route,

2

, , 1p

k j t

j Slots

y


 , any integer feasible solution to the Ganji formulation in would also 

have  , , , ,min , 1p s p

k j t k k j ts x y   since 
2

, , 1p

k j t

j Slots

y


  implies that , , 1p

k j ty   for some j ∈ 

Slots2 in the integer solution.  

 

Case 2: 1s

kx   and 
2

, , , 1h s

k j t k t

j Slots

y y


  . 

In this case, the new constraint evaluates to , 0
p

k ts  . This is a case where the 

flight k starts on its secondary route and is either rerouted to a hybrid route or stays on 

its secondary route. This means that any integer feasible solution to the Ganji 

formulation in would have 
2

, , 0p

k j t

j Slots

y


 . This implies that  , , , ,min , 0p s p

k j t k k j ts x y   

since 
2

, , 0p

k j t

j Slots

y


  implies that , , 0p

k j ty   for all j ∈ Slots2 in the integer solution.  

 

Case 3: 
1

, 1p

k i

i Slots

x


  and 
2

, , , 1h s

k j t k t

j Slots

y y


  .  

Since this is a case where the flight starts its primary route and is rerouted to a 

hybrid route or secondary route (something outlawed by the constraint 

, , ,

h s s

k j t k t ky y x  ), this is not a feasible situation for the Ganji formulation.  
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Case 4: 
1

, 1p

k i

i Slots

x


  and
2

, , 1p

k j t

j Slots

y


 .  

In this case, the new constraint evaluates to , 0
p

k ts  . Since this is the case where the 

flight k starts on a primary route and is rerouted to another primary route, any integer 

feasible solution to the Ganji formulation would have  , , , ,min , 0p s p

k j t k k j ts x y   since 

0s

kx  . 

 

Because in all cases, the variables were equal, it follows that the claim is true in 

general.  

Q.E.D. 

The noticeable difference between the ,

p

k ts  variables defined here and the 

, ,

p

k j ts  variables defined in the Ganji formulation is that the new variables have one 

less subscript. This does not present a problem because the only places this variable 

occurs in the formulation are in the objective function and the two constraints 

presented earlier. The objective function coefficient for these variables is 
s

kc , the 

secondary cost of the flight k, which does not depend on the FCA reroute slot j.  

Further, using these new variables, the submatrix of determinant 2 induced by 

constraints (4.12) and (4.13) can be removed from the formulation and replaced with 

an equality constraint. Also, because the only occurrence of the , ,

p

k j ts  is in the 

objective function for the Ganji model, this substitution of the , ,

p

k j ts  with the ,

p

k ts  

variables effectively eliminates the need for either of them in the IP. That is, we 
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initially include ,
ˆs p

k k t

t Scenarios k Flights

c s
 

   in the objective function, but use equation 

(4.14) to eliminate ,
ˆ p

k ts  by adjusting the coefficients of other variables. This builds a 

stronger formulation with fewer variables and no change in the objective function 

value for the integer feasible solutions. 

This new formulation, though, still has submatrices of determinant 2 which 

weaken the LP-relaxation of this IP. The following constraint set represents one such 

submatrix:  

 

1, , ,

p p s

k j t k i k

i j

y x x


   

2, , ,

p p s

k j t k i k

i j

y x x


   

2 2

, , , , 1p h s

k j t k j t k

j Slots j Slots

y y y
 

     

 

These constraints contain the following submatrix:  

1 2, , , , ,

1 1 0

1 0 1

0 1 1

p p p

k i k j t k j tx y y 
 

 
 
 
 
 

 

 

This matrix has a determinant of 2, and allows for non-integer extreme points 

to the Ganji formulation. There are also a large number of variables present in this 

formulation due to the assignment problem set up in stage two. What follows is a new 
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stochastic IP formulation for this problem that eliminates some of these submatrices 

and is more compact.  

4.4 New Formulation 

Before describing a new formulation for the stochastic AFP problem, it is also 

important to briefly describe the formulation presented in Chapter 2 for the stochastic 

dynamic GDP (SDGDP). The AFP problem can be seen as a similar, but more 

complex version of this problem. In SDGDP, one is preparing to assign flights to 

landing slots at an airport that is about to experience a GDP due to severe weather. 

Similar to the AFP, one is uncertain when this severe weather will clear, and thus 

seeks an initial assignment that minimizes the total expected delay over the given 

possible end times.  

Chapter 2 models this problem as a two stage stochastic integer program. 

Stage one gives flights their initial assignments, while stage two models the possible 

cancellation times as scenarios and reallocates flights to newly available airport 

landing slots in each scenario. In stage one, ,k ix  is the binary variable which is one if 

the flight k is initially assigned to the arrival slot i. Then the following constraints 

model stage one:  

 

1

,

( ) ( )

1k i

i Slots
time i arr k

x



     for each flight k      (4.15) 

, 1

( ) ( )

( )k i

k Flights
time i arr k

x cap i




     for each arrival slot i     (4.16) 

 , 0,1k ix   
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Constraints (4.15) say that each flight, k, is assigned to exactly one slot, while 

constraints (4.16) say that the number of flights assigned to a slot, i, cannot exceed its 

stage one capacity, cap1(i).  

Next, consider stage two of this formulation. The Queue-Based Formulation 

presented in Chapter 2 sets up each scenario of stage two as a queue amongst the 

airport arrival slots. Each arc of stage one has its own entry time into the queue in 

each scenario, defined by the function, ( , , )earliest k i t , which determines the earliest 

slot that the arc ( , )k i  can be reallocated to in scenario t of stage two. This function 

can be determined for each arc and each scenario in preprocessing. The airport arrival 

slots in stage two will have an equal or higher capacity than in stage one, but there 

will indeed be a capacity on each slot. Because any number of arcs can have the same 

earliest reallocation for some scenario, the purpose of the queue is to enforce the 

stage two capacity constraints at each arrival slot by allowing for flights to be 

reallocated to a later slot at an associated cost. This allows for the construction of a 

feasible stage two solution, ( , )u z , where ,j tu  is an integer variable whose value 

represents the number of flights that are reallocated to the FCA slot j in scenario t, 

and ,j tz  is an integer variable representing the number of flights that are sent from 

slot j to slot j+1 in scenario t. The stage two constraints are as follows:  

 

, 1, , ,

( , ): ( , , ) ( , )

0k i j t j t j t

k i earliest k i t time j t

x z z u



   
   

for all j, t   (4.17) 

, 2( , )j tu cap j t     for all j, t       (4.18) 
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Constraint set (4.17) sets up a queue in each scenario of stage two. Each of 

these constraints is essentially a flow conservation constraint, where the nodes are 

stage two slots. The flow into the stage two networks are the stage one variables. 

They enter at the stage two queue in each scenario at the arrival slot defined by the 

function ( , , )earliest k i t . The ,j tz  variables represent the flow between the slots and 

the ,j tu  variables represent the flow out of the nodes. There will need to be three 

different variants of this constraint set depending on if j is the first, last or another slot 

in the scenario t. Constraint set (4.18) limits the number of flights that can be 

reallocated to arrival slot j in scenario t, not to exceed the stage two capacity, cap2(j, 

t).  

 

Figure 4.2 gives an example of how constraint set (4.17) would operate on 

two flights with the same earliest, and three slots with a stage two capacity of 1 in this 

scenario. If the stage one solution is x1,1 and x2,3 both set equal to one, then because 

earliest(1, 1, 1) = earliest(2, 3, 1) = 1, both Flight 1 and Flight 2 enter the queue at 

Figure 4.3: Stage Two Queue Example on Two Flights 
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slot 1. Slot 1, however, only has capacity 1, so both flights cannot be assigned to this 

single slot. Instead one flight is assigned to slot 1 and one is passed to the next slot in 

the queue, slot 2. Since slot 2 has a capacity 1, a flight can be assigned here and the 

queue is now empty, leaving slot 3 unused.  

The cost metric which the stochastic GDP seeks to minimize is total expected 

delay. This can be measured by  
2

,( , ) ( ) j t

k Flights j Slots t Scenarios

time j t arr k u
  

   , where 

time(j, t) is the time that the slot j begins in scenario t.  

Here, a new formulation will be presented that reduces the size of the IP while 

also eliminating some of the odd cycles present in the Ganji model. This formulation 

will take the same input as the Ganji model, make the same assumptions and will 

combine the model presented in Chapter 2 with the Ganji formulation.  

 Similar to the Ganji model, we define the variables ,

p

k ix to be binary variables 

which is one if flight k is initially assigned to the arrival slot i on its primary route, 

and 
s

kx  is the binary variable which is one if the flight k is initially assigned to its 

secondary route. Then the following two constraint sets model the stage one 

restrictions. These constraints are very similar to the model proposed by Odoni 

(Odoni, 1987) as well as the stage one constraints in the Ganji model and in Chapter 

2. 

 

1

,

( ) ( ) ( )

1p s

k i k

i Slots
time i Dep k En k

x x


 

   for each flight k     (4.19) 

, 1

( ) ( ) ( )

( )p

k i

k Flights
Dep k Enr k time i

x cap i

 

  for each arrival slot i    (4.20) 
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 , , 0,1p s

k i kx x   

 

 

Each flight has a scheduled time at which it is due in the impacted FCA, 

Dep(k)+Enr(k), and the first constraint set ensures that each flight is either assigned 

to its secondary route or some arrival slot after its scheduled arrival time. Each slot i 

in the FCA has an initial capacity, cap1(i), the number of flights the FCA can handle 

during the reduced capacity during time interval i. The second constraint set 

represents the limit on slot capacity.  

 Stage two of the model can be viewed as a combination of the stage two of the 

Ganji model and the Queue Model presented in Chapter 2. There is a scenario, t, for 

each possible weather clearance time. Similar to the Ganji model, flights could have 

taken off on a primary route or a secondary route. Because the flights that are 

attempting to travel through the FCA are being handled in a manner similar to a GDP, 

constraints similar to those in stage two of the queue model will be simulated to 

handle these flights.  

 The following constraint set sets up a queue in each scenario of stage two 

amongst the primary FCA slots available in that scenario. The function 

( , , )earliest k i t  maps the allocation (k, i) from stage one to the earliest FCA arrival 

slot that it can be reallocated to in scenario t. If ( , , )earliest k i t  = time(j,t), then the 

variable xk,i can enter the scenario t queue at slot j, depending on whether its value is 

nonzero or not. The variable zj,t is the amount that is passed from slot j-1 to slot j in 

scenario t. The following constraint immediately follows:  
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, , 1, , ,

( , , )| ( , , ) ( , ) | ( ) ( ) ( , )

0

for each arrival slot  and each scenario 

p

k i k t j t j t j t

k i t earliest k i t time j t k Dep k Enr k time j t

x s z z u

j t



  

     
  (4.21) 

 

This says that the flights such that ( , , )earliest k i t  = time(j,t) will enter the 

queue at slot j. flights that did not leave the queue at slot j-1 are sent to slot j through 

the variable zj-1,t. Those flights that depart the queue at slot j do so via the variable uj,t. 

Similar to Chapter 2, there will need to be three different versions of this constraint, 

depending on whether the slot j is the first slot (in which case, there is not zj-1,t 

variable), the last slot (in which case, there is no zj,t variable), or an in-between slot.  

 The difference between this constraint and the similar version in the queue 

model presented in Chapter 2 is the addition of the ,

p

k ts  variables. Allocations that 

begin on their secondary route and are rerouted to their primary route are also allowed 

to enter the queue at their originally expected arrival time. This immediately leads to 

a question of how we will ensure not to have similar odd cycles as the Ganji model. 

This can be done with the following constraint set:  

 

2

, , 0h

k j t

j Slots

y


     for all t with ( ) ( )t Dep k       (4.22) 

, 0p

k ts      for all t with ( ) ( )t Dep k        (4.23) 

This will have the desired effect because in scenarios before the departure 

time of the flight ( ) ( )t Dep k  the flight has not yet departed on its secondary route 

which means that it cannot depart the secondary route for a hybrid route. Thus, if

1s

kx  , then , , 1p s

k t k ts y   in such a scenario. Likewise, if 0s

kx  , then , 0p

k ts 
 
in this 
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scenario. In scenarios that are after the departure time of the flight   ( )t Dep k   the 

flight will have already departed on its secondary route and will thus be unable to 

depart on its primary route. Hence , 0p

k ts  . The question of whether or not a flight 

has yet departed on its secondary route does not depend on any information other than 

the input data to the problem, namely the scheduled flight departure times and the 

possible weather clearance times. 

 Based on the arrival time of each flight, Dep(k)+Enr(k), the primary route 

length of each flight, Enr(k), and the set of AFP cancellation times the function 

( , , )earliest k i t , for each stage one allocation (k, i) and each scenario t, can be 

determined as a pre-processing step. The definition of this function will be similar to 

its definitions in Chapters 2 and 3.  

 Some of the arcs in stage one will not be eligible for the queue because they 

will have already departed on their secondary route. In each scenario, t, these flights 

will have the option of rerouting through the FCA on a hybrid route or continuing on 

their secondary route. To model the options available to these flights in stage two, the 

variables , ,

h

k j ty and ,

s

k ty  are introduced, indicating the hybrid and secondary options, 

respectively for the flight k in scenario t.  

 These variables will be handled in a manner similar to the Ganji model. It 

must first be ensured that no flight departs on an ineligible hybrid route. This can be 

accomplished by only defining these variables for the scenarios t which are equal to 

or after the hybrid diversion time for the flight k and FCA arrival slot j.  
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, ,

,

0    for all flights ,  scenarios t

and  s.t. ( )

h

k j t

d

k j

y k

j t t




     (4.24) 

 

Next, because these are recourse actions a flight which has already departed 

on its secondary route can take once the weather clears, it needs to be ensured that the 

only time one of these is used is when the flight was originally assigned to its 

secondary route:  

 

2

, , , ,

h s p s

k j t k t k t k

j Slots

y y s x


    for all flights k and scenarios t   (4.25) 

This has the desired effect because the only recourse options available when a flight 

is initially assigned to its secondary route are the hybrid routes, the primary route or 

staying on the secondary route. The situation where the flight reroutes from its 

secondary route to its primary route in scenario t is handled by the variable ,

p

k ts .  

 The capacities for the stage two FCA slots need to also be respected. There 

are two types of routes that can be allocated trough the FCA in a scenario of stage 

two:  primary routes and hybrid routes. To ensure that no FCA arrival slot‟s capacity 

is violated the following constraint is enforced:  

 

, , , 2 ( ) for each FCA 

arrival slot  and stage two scenario 

h

j t k j t

k Flights

u y cap j

j t



 
     (4.26) 
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It is sometimes better to allow the hybrid routes to use up an FCA slot that 

was previously reserved for a primary route. The purpose for this is that delaying a 

primary route adds a constant amount of time to the objective function, time(j+1,t) – 

time(j), whereas delaying the hybrid route means taking a later hybrid route or staying 

on the secondary route in that scenario. The constraint in the Ganji formulation, 

, , ,

p p s

k j t k i k

i j

y x x


   ensures that no flight assigned to a primary route is given an FCA 

slot in stage two that is later than the slot that it received in stage one. This inherently 

enforces some flights on secondary routes to take later hybrid routes or to remain on 

their secondary routes, which has an adverse effect on the objective function. The 

similar constraint set for this new model would be as follows:   

 

( )

, ',

( , , ) ' |
( ', , ) ( , , )

for each flight , initial slot , and scenario 

time i
p

j t k i

j earliest k i t k Flights
earliest k i t earliest k i t

u x

k i t

 


 
      (4.27) 

 

Constraint set (4.27) ensures that the number of flights that exit the queue 

between the queue entry and exit points (earliest(k, i, t) and i, respectively) for a 

given flight is at least the number of flights that have the same queue entry and exit 

points. This guarantees that each flight leaves the queue by the slot it was initially 

assigned, i. Secondary routes that are switched to their primary routes could also be 

assigned to these slots, but because these flights are entered into the queue, they 

receive no priority over originally scheduled primary routes. Thus, in post-processing, 

when the decision of which flight leaves the queue is made, the no-preemption rule 
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can be applied and the flight with originally scheduled to its primary route can be 

chosen to leave the queue.  

As stated above, (4.27) will create many additional constraints. However 

many constraints will be redundant and can eliminated.  

Finally, we have ,

p

k ix , 
s

kx , , ,

h

k j ty , ,

p

k ts  and ,

s

k ty   {0, 1}. ,j tu  and ,j tz ≥ 0 and 

are integer. We call this the Queue based En Route (Q-EN).  

4.5 Formulation Comparison 

 

There are a number of different ways this new formulation can be compared to the 

Ganji model, but some key areas where they differ will be presented here. The first 

difference is in the size of the formulations. Below are two graphs showing how each 

formulation grows when given the same sample problems as input. To better contrast 

the differences, a logarithmic scale was used instead of a linear scale:  

  

Figure 4.4: Variable Comparison of the Formulations of Q-EN and Ganji 
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Figure 4.5: Constraint Comparison of the Formulations of Q-EN and Ganji 

 

Next the different formulations were compared in execution time. The 

experiments were run on a PC with Two quad-core Xeon processors, 12GB RAM, 

and XpressMP 2008A. The following two graphs analyze the differences here:  

 

 

Figure 4.6: IP Run Time Comparison of the Q-EN and Ganji Formulations 
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Figure 4.7: LP Run Time Comparison of the Q-EN and Ganji Formulations 

 

Because the LP-relaxation of a minimization IP is minimizing over a larger set 

of values, the objective function value of the LP-relaxation provides a lower bound on 

the objective function value of the IP. How close this LP-relaxation is to the IP 

solution is a good indicator of the strength of the formulation. The following two 

graphs provide insight into this.  
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Figure 4.8: The Percentage of error in the LP-relaxations 

 

From the above tables we can see that the new formulation smaller, faster, and 

returns an LP-relaxation, which is closer to the integer optimal solution.  

When the results are compared with the Ganji model with the change in the 

,

p

k ts  variables, the run time for the Ganji model is greatly improved, as is the 

difference between the IP and LP solutions. What remains large in the improved 

Ganji model would be the number of variables and constraints which would make the 

model much more difficult to run on larger instances of airspace congestion.  

Also, as noted by the instances where the LP-relaxation is not equal to the IP 

solution, there are still fractional extreme points in this new model. Many of these 

will come from instances where two nonadjacent arcs in stage one have the same 

earliest reallocation in stage two. It remains to be seen if this new model can be 

strengthened to guarantee that the LP-relaxation of the IP will always give an integer 

optimal solution.  
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Chapter 5 Conclusions and Future Work 
 

Chapter 2 described three models to solve the stochastic dynamic GDP and shows 

that the LP-relaxation of these models solve the IP. This extends the work of Ball et 

al. (Ball, Hoffman and Mukherjee, 2010), who showed that the RBD Algorithm 

minimizes the expected delay of a ground delay program when the cancellation times 

are uncertain, and provides a basis for comparison to other problems that look at 

planning around uncertainty. The proof that the LP-relaxations of these formulations 

solve the IP utilizes Monge matrices. Although the Monge property was not used in 

the proof, a property which is closely related, lower-Monge, did apply.  

The polyhedron for the stochastic dynamic GDP models were shown to be 

non-integer in general, and a class of valid inequalities were provided to improve the 

strength of the formulation. A question remains of how strong these cuts are. Also 

what, if any, are some of the other non-integer extreme points? What patterns in 

objective functions exist so as to make these non-integer extreme points optimal? 

These questions are important, not only for more understanding of the two-stage 

stochastic dynamic ground delay problem, but also as we seek to gain understanding 

of some of the formulations presented in Chapter 3.  

Although several assumptions were made on the formulation of the stochastic 

GDP that apply to the ways GDPs are implemented in practice, a question does arise 

of how many similar problems could be formulated in a related manner. There is a 

large class of resource allocation problems which attempt to assign a resource whose 

capacity has been temporarily reduced with an uncertain time of capacity increase. 
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Because this general problem class matches some of the basic assumptions of the 

stochastic dynamic GDP, it is natural to seek to understand how many problems in 

this larger class of problems could be formulated by similar stochastic integer 

programs. 

Chapter 3 extends the Queue-Based Formulation from Chapter 2 to a setting 

where equity/efficiency trade-offs are modeled. The formulations also give solutions 

that are comparable in both equity and efficiency to other rationing principles in the 

literature such as RBD and RBS. While all the formulations presented had their 

benefits, the formulation which included a constraint limiting maximum deviation 

from RBS, with a weighted objective means of minimizing total deviation from RBS 

and total expected delay was able to provide solutions that looked good under a 

number of different equity metrics while remaining efficient. Because these new 

formulations had ether a different objective function, or a limitation on the set slots to 

which a flight can be assigned, the lower-Monge results no longer holds. As a result, 

it is an open question of whether there exists an extension of the result in Chapter 2 to 

a larger class of problems which includes those presented in Chapter 3.  

Finally, one of the formulations presented in Chapter 2 was used to strengthen 

the model presented by Ganji et al. (Ganji et al., 2009), which seeks to maximize 

throughput through a volume of the airspace system where a capacity-demand 

imbalance is expected usually due to adverse weather. The new formulation was both 

stronger and more compact than the Ganji model. These properties led to much 

improved computation time and the solution of larger problem instances.  
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Glossary 
 

Airport Arrival Rates (AARs) 

Airspace Flow Program (AFP) 

Air Traffic Flow Management (ATFM) 

Collaborative Decision Making (CDM) 

Expected Time of Arrival (ETA) 

Federal Aviation Administration‟s (FAA) 

Flow Constrained Area (FCA) 

Ground Delay Programs (GDPs) 

Instrument Flight Rules (IFR) 

Integer Programming (IP) 

Multiple Airport Ground Holding Problem (MAGHP) 

National Airspace System (NAS) 

Planned AAR (PAAR) 

Ration-By-Schedule (RBS) 

Ration-by-Distance (RBD) 

Single Airport Ground Holding Problem (SAGHP) 

Stochastic Dynamic Ground Delay Problem (SDGDP) 

Totally Unimodular (TU) 

Traffic Flow Management Rerouting Problem (TFMRP) 

Visual Flight Rules (VFR) 
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