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The human brain is divided into various anatomical regions that control and coordinate 
unique functions. The prefrontal cortex (PFC) is a large brain region that comprises a 
range of neuronal and non-neuronal cell types, sharing extensive interconnections 
with subcortical areas, and plays a critical role in cognition and memory. A timely 
appearance of distinct cell types through embryonic development is crucial for an 
anatomically perfect and functional brain. Direct tracing of cell fate development 
in the human brain is not possible, but single-cell transcriptome sequencing 
(scRNA-seq) datasets provide the opportunity to dissect cellular heterogeneity 
and its molecular regulators. Here, using scRNA-seq data of human PFC from fetal 
stages, we elucidate distinct transient cell states during PFC development and their 
underlying gene regulatory circuitry. We further identified that distinct intermediate 
cell states consist of specific gene regulatory modules essential to reach terminal fate 
using discrete developmental paths. Moreover, using in silico gene knock-out and 
over-expression analysis, we validated crucial gene regulatory components during 
the lineage specification of oligodendrocyte progenitor cells. Our study illustrates 
unique intermediate states and specific gene interaction networks that warrant 
further investigation for their functional contribution to typical brain development 
and discusses how this knowledge can be harvested for therapeutic intervention in 
challenging neurodevelopmental disorders.
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1. Introduction

The human brain consists of billions of cells across diverse anatomical yet functionally 
interconnected regions (Mu et al., 2019). The cerebral cortex is the largest structure in the human 
brain and is responsible for perception, cognition, and memory-related functions (Cadwell et al., 
2019). In the course of evolution, the human cerebral cortex has expanded markedly by more than 
three times than other closest higher organisms (Yeo et al., 2011; Eze et al., 2021). Cortical 
expansion underlies the proliferation and upsurge of cellular heterogeneity in specific cortical 
layers during distinct periods of gestational development (Kriegstein et al., 2006).

The enormous diversity of brain cell types with precise context comes from a pool of neural 
stem cells (NSCs; Fan et al., 2018; Yang et al., 2022). This progenitor pool of NSCs is known to have 
several subtypes that are identified in the developing brain from early to late gestation as the cortex 
matures (Eze et al., 2021) such that they primarily give rise to neurons in early gestation weeks, but 
as it transforms later in the second trimester, they majorly generate the glial cell populations of the 
cortex (Fan et al., 2018; Eze et al., 2021).
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Neural stem cells in the cortex undergo state transitions in a highly 
asynchronous fashion to progress towards a specific lineage. During 
this process, cells undergo several metastable transient states, and 
characterizing these states is essential to better understand the key steps 
of cell fate determination during cortical development and how their 
disruption may predispose to certain neurodevelopmental disorders 
(Del-Valle-Anton and Borrell, 2022; Singh et al., 2022). This knowledge 
can be further harnessed for developing targeted therapy approaches.

The single-cell RNA sequencing (scRNA-seq) approach has enabled 
the investigation of the dynamics of cellular diversity during brain 
development at an unprecedented scale (Jeong and Tiwari, 2018; Luecken 
and Theis, 2019). Studies have begun to use the derived knowledge to 
advance our understanding of lineage relationships (Mayer et al., 2018; 
Velmeshev et al., 2021). However, much of what is known about cortical 
development and its regulatory framework has been examined in 
non-human model systems. Consequently, we  do not yet fully 
understand the intermediate cell transition states and their regulatory 
gene networks during human brain development (Fleck et al., 2022). It 
is possible to use advanced computational approaches to reconstruct the 
developmental trajectories from single-cell transcriptomics (scRNA-seq) 
datasets (Fletcher et al., 2018). The construction of the lineage trajectories 
takes advantage of the fact that developmentally related cells tend to share 
similar transcriptomic profiles. Consequently, lineage approaches can 
be used to order cells along differentiation trajectories and to study cell 
fate decisions (Luecken and Theis, 2019). Recent algorithms that model 
the dynamics of biological processes use the time-series or even snapshot 
scRNA-seq data to place the cells in the temporal order of lineage 
development using their gene expression profiles and also identify the 
intermediate states which are more plastic in nature and important for 
fate switches (Maclean, 2022). Hence, using state-of-the-art algorithms 
of lineage evolution and identifying their high-confidence regulatory 
genetic drivers is an efficient method for selecting novel candidates 
contributing toward fate transitions.

In this study, we  used publicly available scRNA-seq datasets 
comprising early to late stages of human PFC development to decipher 
the distinct transient states during the specification of various cell fates 
and their underlying gene regulatory circuitry. We further reveal that 
distinct intermediate cell states can reach the same terminal fate using 
discrete developmental paths. We  identified the differential 
transcriptomic feature of these cell states and further validated key 
regulators of these features during oligodendrocyte progenitor cells 
(OPCs) lineage specification, using in silico perturbation analysis. 
Furthermore, we  highlight novel gene interaction networks that 
warrant further investigation in experimental models for their role in 
cell fate development, maturation, and overall brain functions.

2. Methods

2.1. Selection and processing of scRNA-seq 
datasets

There are several single-cell datasets available for the developing 
human brain with a greater number of cells but none of them covers 
a range of embryonic days. We attempted to combine the dataset, but 
owing to several variabilities related to the origin of the lab, sequencing 
techniques, and platforms, it was better to use a single dataset, and 
therefore, we selected the data from Zhong et al. (2018). The data 

gathered involved a smart-seq-based scRNA-seq dataset with 2,309 
cells and an average of 2,654 detected genes per cell. Furthermore, it 
covers a wide range of developmental stages despite a low number of 
cells having good gene coverage. Notably, we used another dataset 
from gestation week (GW) 25 with 15,811 cells for human PFC and 
validated our findings (Bhaduri et al., 2021), which is from the 10X 
chromium platform with v3 chemistry.

Single-cell data analysis and pre-processing, including data 
normalization and dimension reduction, were performed using Seurat 
version ‘4.3.0’ (Hao et al., 2021) in R. First, count matrices of gene 
expression were imported to Seurat, and following the assessment of 
QC metrics of datasets, only cells expressing at least 750 genes with 
expression in at least three cells were taken for further analysis. Here, 
cells with only a maximum of 10% mitochondrial genes were included. 
The UMI counts were then normalized for each cell by the total 
expression, multiplied by 10,000, and log-transformed. Then, the 
top 2,000 highly variable features were selected, and data scaling was 
performed before principal component analysis (PCA) on the first 
significant 20 PCs based on the elbow of standard deviations of PCs. 
Finally, cell dimensionality reduction was performed through UMAP 
and cell clusters were annotated into cell types based on markers 
(Supplementary Table S1) from the source paper in addition to the 
current updated literature which mostly aligned with the source dataset.

Seurat data was then converted to the python-based format of cell 
rank (Lange et al., 2022) using SeuratDisk v ‘0.0.0.9020,’ which is an 
interface for HDF5-Based Single-Cell File Formats. These h5ad files 
were imported into Scanpy and used for cell rank as well as PAGA in 
downstream analysis.

2.2. Computation of fate probabilities

Initially, to estimate cell–cell transition possibilities, we  used 
CellRank (Lange et al., 2022) and computed initial and terminal states 
and the fate probabilities of the cell for reaching the terminal states. 
We  used the CytoTRACE kernel of CellRank to reconstruct the 
cellular trajectory based on cell similarity analysis (Herring et al., 
2022). This kernel bypasses the need to define a root cell for 
pseudotime calculations and predicted the cellular plasticity states 
based on transcriptional diversity (Shen et al., 2021). CytoTRACE 
algorithm further feeds this calculated pseudotime into another kernel 
to calculate a KNN graph where edges indicate the direction of 
increasing pseudotime and point into the direction of increasing 
differentiation state. Furthermore, a transition matrix was constructed 
based on the pseudotemporal ordering and KNN graph, and it was 
projected onto a UMAP plot. We used the original force-directed 
layout to plot cells, colored by cell-type clusters.

2.3. PAGA method for fate connectivities

To relate the clusters of cells that might be  developmentally 
related to one another, we quantified the connectivity of cell clusters 
using the partitioned approximate graph abstraction (PAGA) 
method (Wolf et al., 2019). It is based on the Scanpy (Wolf et al., 
2018) package and constructs a k-nearest neighbor graph of cells 
where partitions are a group of connected cells at a certain resolution 
via the Leiden method. We used the clustering resolution of 0.4–0.6, 
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and the PAGA graph was acquired by combining a node with each 
partition and linking each node by weighted edges that characterize 
a statistical measure of connectivity between the nodes or PAGA 
partitions (Yu et al., 2021). PAGA discarded false edges with low 
weights and revealed the denoised topology of the global data at the 
selected resolution. The nodes that did not connect in the PAGA 
graph are cells that do not have any significant connections at all. 
The PAGA nodes were then arranged in a desired path as per the 
observed significance, and cells were ordered in that path to trace 
gene expression changes along the trajectories. We used differential 
expression analysis from Scanpy to calculate the highly significant 
gene in one node in comparison to the rest of the node or 
PAGA partitions.

2.4. Gene perturbations

We used the iQcell platform (Heydari et  al., 2022) v.1.1.0 to 
investigate the gene regulatory networks. It is a program to understand, 
simulate, and further analyze workable logical gene regulatory 
networks from scRNA-seq data, which uses gene expression datasets 
along with their pseudotime profile to infer gene interactions and their 
regulatory features. Gene regulatory networks allow the simulation of 
hypotheses leading developmental programs and also infer the 
direction of regulation, i.e., positive or negative regulation of gene 
pairs in a network. In the network, genes were placed in a hierarchy 
as per their expression densities in pseudotime. iQcell requires a 
discrete form of input for the mRNA levels as on/off, and we used 
k-means clustering for the discretization of gene expression levels as 
default. Before running the simulations, we defined the initial state of 
the simulation through iQcell, which found the initial cell states, i.e., 
cell genotype from the discretized expression with early pseudo-time 
value by averaging the state of each gene over the cells.

3. Results

We began by using a publicly available dataset that covers 
gestation week (GW) 8–26 to span key developmental stages with 
good coverage for distinct cell types (Zhong et al., 2018). The cells 
were clustered into major cortical cell types using the marker set from 
the literature (Supplementary Table S1) which matched with the 
source dataset for broad cell-type classification. The developmental 
stages were separated into early (8–13 GW), mid (16–19 GW), and 
late (23–26 GW) stages (Figure 1A). These developmental stages were 
then revalidated for the proportion of major cell types and then 
investigated for genetic lineage drivers of the cell state transitions in 
early, mid, and late stages toward a specific fate.

3.1. Distinct lineage transition paths at 
early, mid, and late gestation times

Biological systems exist in a dynamic state during development 
with active cell-fate transitions. Computational algorithms can infer 
the developmental trajectory and predict cell fate by the sequential 
ordering of cells using their transcriptomic profiles. For such time-
based ordering of transcriptomic states in cortical cells, we selected 

cells that originate within the cortex, while microglia and interneurons, 
the cell types that have a separate origin and majorly migrate to the 
cortex, were removed as mentioned previously (Nowakowski et al., 
2017; Zhong et al., 2018; Bhaduri et al., 2021).

Then, we used the CellRank method to infer the cell state dynamics 
in the early, mid, and late stages of gestation. CellRank uses similarity-
based trajectory inference with directional information to create 
probabilistic trajectories in cell fate directions. We  identified the 
probable terminal fates (macrostate) and the calculated probability of 
each cell to achieve the terminal fates. Subsequently, we created a global 
map of fate potentials in the form of initial, terminal, and intermediate 
cell states of the system and assigned each cell the probability of 
reaching each terminal macrostate (Figure 1B). At early gestation, most 
of the cells were arranged in vRG (ventricular radial glia) to IP 
(intermediate progenitor) axis, and few cells could be seen toward 
immature cortical plate (CP) neurons from IP as well as vRG. Overall, 
it is clear that most of the cells at early embryonic development are in 
the center, indicating less committed or plastic states. However, the 
cells in mid-gestation showed more density on the axis of vRG to 
mature CP neurons. Interestingly, as we moved to the late gestation 
stages, we observed the emergence of additional terminal states, i.e., 
glial population, and interestingly, here the cellular fate probabilities 
diverged toward the neuronal as well as oligodendrocyte lineage. 
Moreover, there were many immature cells and/or progenitors from 
both neuronal and glial lineage which were clustered toward the center.

3.2. Fate connectivities provide multiple 
lineage transition paths toward a terminal 
cell fate

We then wanted to identify the lineage-specific genes toward 
neuronal or glial fates and therefore compared the fate probabilities to 
uncover lineage-specific gene expression patterns and putative lineage 
drivers. Given that CellRank provided the terminal states and lineage 
drivers by automated computation of fate probabilities and does not 
need manual identification of root cell population within CyTOtrace 
kernel, we questioned if we could find overlapping lineage drivers in 
transient states through a topology-preserving map of single cells. 
Therefore, we used partition-based graph abstraction (PAGA) which 
constructs a simplified representation of the developmental trajectory 
using a graph-based approach, through similarities and differences 
between cells based on their gene expression profiles, and then 
simplifies the graph into a set of clusters or partitions that correspond 
to distinct cell types. Thus, we achieved the discrete cell types and 
continuous cell transitions toward these cell types, where both the 
continuous and disconnected nature of biological cell types are 
preserved at multiple resolutions (Figures 1C–E). Here, each node 
represents a cell type and edges measure the strength of connectivity 
between nodes or the similarity of cell types.

PAGA explores the complex trajectory structure with multiple 
branching in a general graph form for all embryonic stages 
(Figures 1C–E), where we identified the root cells and terminal fates 
(clusters) by specific markers (Supplementary Figures S1–S4). Namely, 
the root cell was selected using the expression of marker genes for 
radial glia (PAX6, SOX2; Supplementary Figures S1–S3) and defined 
the PAGA path as the transitions toward IP (EOMES; Figure 1C; 
Supplementary Figures S1–S3), different neuronal cells (NEUROD1, 
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FIGURE 1

(A) Schematic outline of various steps of analysis: The scRNAseq dataset was processed for QC analysis and cluster identification with known cell type 
markers. Developmental stages were separated into early (8–13 GW), mid- (16–19 GW), and late (23–26 GW) stages and then terminal fates and their 
intermediate states were analyzed using CellRank and PAGA, resulting in lineage-specific novel genes. Gene regulatory network (GRN) and perturbation 
analysis were performed using the iQcell platform; (B) Summarized fate probabilities toward all terminal states. In this representation, uncommitted 
progenitors and immature cells can be seen near the center and committed cells are placed near one edge; (C–E) PAGA graphs show cell clusters in 
which only terminal major cell states are named while the rest of the cells are arranged in a graph connected with weighted edges for their nature. The 
PAGA graphs capture the proximity of progenitors and strong connections within neuronal clusters and then glial clusters; (C) PAGA graphs (left) and 
gene changes along PAGA paths (right) at early embryonic brain development; (D) PAGA graphs (left) and gene changes along PAGA paths (right) at 
mid-stage embryonic brain development; (E) PAGA graphs (left) and gene changes along PAGA paths (right) at late-stage embryonic brain development.
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BCL11B, and SATB2; Figures 1C,D; Supplementary Figures S1–S3), 
or OPCs (OLIG1 and PDGFRA; Figure 1E; Supplementary Figure S4). 
The sequence of transition paths to cell fates is mentioned in 
Supplementary Table S2. IP and Neuron1 path in early stages, 
Neuron3 path in mid-stages and OPC1 in late stages show a smooth 
transition of gene expression profiles. Interestingly, these states 
contain several transient intermediate cell states, i.e., the PAGA 
connecting cell clusters which can transition from the root RG cells to 
the terminal fates, and are of major interest being connected to 
separate fates with discrete gene expression profiles.

3.3. Transition state-specific gene sets at 
early, mid, and late gestation times

We next performed a hierarchical clustering of all identified 
terminal and intermediate cellular states with their variable gene 
features in the early, mid, and late stages of gestation 
(Supplementary Figure S5; Figure 2A). As evident in early stages, most 
cells showed gene expression profile in plastic states in RG and IP states 
and then transition to the neurons (Supplementary Figure S5A). 
Furthermore, the later stages showed discrete patterns of cell type 
(Supplementary Figure S5B; Figure 2C), which is indicative of increased 
neuronal differentiation. Neurogenesis began early in development and 
declines during late embryonic development, while gliogenesis was 
observed in post-mid-embryonic stages and continues in parallel to 
neuronal maturation and synapse formation till the postnatal stages. 
We constructed a diffusion pseudotime from PAGA which validates the 
OPC lineage evolving at a later pseudotime point and hence our choice 
of root and terminal cell clusters (Figure 2B). Here, we paid special 
attention to OPCs as there are still critical gaps in understanding lineage 
drivers of OPC fate switches. We identified top lineage-specific genes 
for OPC from CellRank and PAGA algorithms and validated top lineage 
drivers by plotting the distribution of log odds for OPCs versus other 
cell fates per cell across cell types together on a Seurat clustering global 
map. Log-odds ratio confirmed the lineage specificity by comparison of 
OPC markers genes (Figure 2C) and neuronal genes (Figure 2D). The 
pre-OPC lineage genes (Figure 2E) were also validated by log-odds 
ratio. In addition, we confirmed their expression in a pseudotime plot 
for lineage specificity and identified targets of some novel transcription 
factors using specificity in pseudotime (Supplementary Figure S6). 
Therefore, these gene are the ideal candidates the ideal candidates for 
investigating their regulatory effect on OPC lineage commitment 
and progression.

3.4. Perturbation analysis reveals a role for 
distinct gene interactions in the lineage 
trajectory of OPCs

We employed the iQcell platform to construct novel gene 
regulatory networks (GRN) and subsequently investigated the effects 
of perturbing gene expression states and their effect on cell fates in late 
embryonic stage scRNAseq data of PFC. In addition, we validated the 
similar GRNs and perturbation effects in a larger dataset (>15,000 
cells) of late embryonic (GW25) PFC.

The first essential step in iQCELL methodology was to calculate 
gene correlations which later contribute to GRN identifications but 

scRNA-seq datasets suffer from false negative reads of mRNA or 
dropout effect that impacts genes with low copy numbers and 
consequently the gene correlations. Therefore, iQcell uses the Markov 
Affinity-based Graph Imputation of Cells (MAGIC) algorithm to correct 
the data for dropout effects and takes advantage of the higher numbers 
of genes to infer gene network relations (Van Dijk et al., 2018). MAGIC 
simply computed the affinities between neighbor cells and applied it to 
recover the undercounted values of individual gene expression.

After data imputation, we  identified the interesting genes for 
GRN inference in two ways: first, by automated selection plus overlap 
with PAGA genes and CellRank lineage drivers which mostly aligned 
with our selection of genes containing OPC lineage genes 
(Supplementary Figures S6, S7A), and second, by manually curating 
to keep only transcription factors in top candidates (Figure 3A). In a 
functional GRN created by iQcell, interactions are not necessarily 
biophysically direct rather they capture the consequence of 
regulatory relations.

The iQcell filtered the number of gene interactions through 
binarization of the gene expression counts clustering into expressed and 
non-expressed states (Figure  3A; Supplementary Figure S7A) and 
formed a gene interaction hierarchy. The resulting directional network 
served as the foundation for inferring executable GRNs (Figure 3B; 
Supplementary Figure S7B). We then identified the initial cell states of 
interacting genes for simulating the perturbations (Figure  3C; 
Supplementary Figure S7C). Initial states were based on 
interaction networks and regulatory profiles (Figures  3B,C; 
Supplementary Figures S7B,C), which show ideal OPC profiles for 
known transcriptional regulators. Moreover, neuronal genes were 
observed to be  blocking the OPC lineage genes and vice versa 
(Supplementary Figure S7C). Here, the gene interaction networks were 
assigned the signs (+/−) based on Pearson correlation. Positive means 
genes are positively regulating each other and negative means one can 
repress the other. iQcell uses discrete expression levels of genes; therefore, 
the expression levels of mRNA counts were converted to on/off levels. 
Although the GRNs here essentially did not show direct modulation, it 
is interesting to observe how few genes (FIBIN, OLIG2, PMP2, and 
BCAN) show unidirectional regulation having a single interacting 
effector gene while other genes in a superior hierarchy such as OLIG1, 
EGFR, and PCDH15 show more than one effector of the regulation 
(Supplementary Figure S7C). PAX6 showed autoregulation, which is 
known to be essential for controlling the balance between neurogenesis 
and neural stem cell self-renewal (Supplementary Figure S7).

It is further important to consider that these predictive regulatory 
interactions are based on the temporal gene expression in the lineage, and 
not all of these predicted genes are transcription factors. Nevertheless, 
we validated the nature of these interactions in a larger scRNAseq dataset 
containing 15,811 cells with a total of ~19,000 genes 
(Supplementary Figure S7D). Here, we could observe some filtering of 
these interactions and additional negative regulators but there is still 
retention of interaction patterns between important OPC genes. Then, 
we focused on our selected TF candidates and their interactions with 
established OPC lineage regulators in the larger dataset. Expression for 
these was validated in PAGA-based OPC clusters 
(Supplementary Figure S8). The resulting TF regulatory networks are 
quite discrete, where we  observed OLIG2 regulating different genes 
including NKX2-2, which has been implicated in oligodendrocyte 
differentiation, and it further appears to regulate OLIG1 and SOX10. 
Furthermore, the negative regulation of NEUROD1 is expected in OPC 
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FIGURE 2

(A) Cellular state-specific top gene sets at late gestation time: Hierarchical clustering of identified PAGA clusters and their top genes in terminal and 
transition cell states for late gestation cortical cells. Fraction of cell numbers is represented in percentage (%), indicated by the circle size and mean 
expression intensity from low (white color) to high (red); (B) Diffusion pseudotime (dpt_pseudotime) plot for PAGA clusters (upper panel), which is then 
annotated into the PAGA cluster annotations (middle) and then the original cluster annotations from the initial dataset (bottom panel). All annotations 
show great alignment and confirm the accuracy of diffusion pseudotime. The dpt_pseudotime panel shows the radial glia lineage in dark blue, then 
neuronal in light blue, and later OPC lineage in red; (C–E) Validation of top lineage drivers by plotting the distribution of log odds for OPCs versus other 
cell fates per cell across cell types. Log-odds ratio confirmed the lineage specificity by comparison of OPC markers genes (C), neuronal genes (D), and 
the pre-OPC lineage genes.
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lineage, but it is interesting to notice the negative regulation of NEUROD1 
by SOX8 along with PAX6, where PAX6 appears to be  positively 
regulating SOX8 (Figure 3C). We performed the simulations for normal, 
gene overexpression (OE) and knockout (KO) conditions and performed 
the Principal Component Analysis (PCA) to observe any differences 
(Figure 3D). Based on the role of regulatory genes as observed in GRNs, 
we simulated the normal OPC profile with the absence of PAX6, SOX8, 
and NEUROD1 and the presence of the rest of the TFs (Figure 3E, where 
the blue circle indicates the gene on and gray indicates off and similarly, 
their state in perturbation type) and performed the sequential 
perturbations for these TFs to analyze the attractor state that represents 
the long-term behavior of simulations linked to biological phenotypes.

The principal component analysis of simulated profiles for normal 
and perturbed conditions shows huge variation in cell states, as well as 
a developing trajectory in the pseudo time for perturbed KO states 
(Figure 3D). Gene perturbation effects showed that the overexpression 
of genes does not largely affect the fate (Figure 3F) or expression state 
of other genes but knock out does (Figure 3G). The knockout of OLIG2 
affected all analyzed gene expression states related to OPC lineage as 
they are downstream in GRN, while OLIG1 KO caused the absence of 
SOX10 and PRRX1 as well as NKX2-2, which is upstream to OLIG1. 
Similarly, NR0B1 KO affected the SIRT2 expression state. We also 
found that FIBIN, OLIG2, PMP2, BCAN, and SCRG1 have important 
roles in regulating the lineage but not in deciding the fate as shown in 
the knockout analysis of all selected genes (Supplementary Figure S7E). 
These perturbation states provide interesting observations for gene 
interactions that might affect how OPCs develop into oligodendrocytes 
and affect their maturation and placement in the brain.

4. Discussion

The cerebral cortex is strikingly enlarged in humans and known 
to be  responsible for our mental abilities such as intelligence, 
cognition, and perception (Reillo et  al., 2011; Yeo et  al., 2011). 
Constituent cortical cell types are generated during embryonic brain 
development through a series of neurogenic and gliogenic processes 
(Eze et al., 2021). However, the molecular regulatory sequence of the 
events underlying these developmental processes is less well 
understood. Therefore, characterizing the cellular and molecular 
heterogeneity of the human cortex is essential to understand its 
functional regulations and understand how its disruption may 
contribute to the emergence of neurodevelopmental disorders.

Cortical cell types express varying transcription factor combinations 
at distinct phases of development (Singh et al., 2022). These transcription 
factors (TFs) are critical to specify correct signals and driving the 
development of distinct neural cell types in the brain. Here, using single-
cell transcriptomic datasets of the developing prefrontal cortex from 
GW8-26 (Zhong et al., 2018) and late gestation stage (GW25) (Bhaduri 
et al., 2021), we characterized and validated the molecular regulatory 
features of cell fate transitions at early, mid, and late stages of embryonic 
brain development. It is known that cell fate decisions are stochastic and 
more so at the early embryonic development, and at the later time points, 
more deterministic fates are made as they arise from more committed 
precursors and a complex regulatory network of TFs, specific to each 
state. Nonetheless, this transcriptomic complexity almost certainly 
exceeded several-fold through several transient transcriptomic cell states 
that exist during development. Understanding cortical development, 

hence, necessitates characterizing these transient cell states. It has been 
proposed that these transient cellular states are more plastic in nature and 
able to undergo specific changes in core gene regulatory programs and 
enable the specification or conversion into various cell fates (Goldman 
and Poss, 2020). This is also relevant to illustrate how cortical stem cells 
can be directed to specific cell fates for disease modeling or treatment. 
Hence, we  calculated the fate probabilities for each cell using the 
CellRank algorithm on the scRNAseq dataset and ordered the cells in 
initial, terminal, and intermediate states, taking into account the gradual 
and stochastic nature of cellular fate decisions. Single-cell transcriptomics 
(scRNA-seq) has advanced our knowledge concerning cellular 
heterogeneity and discrete regulatory networks. scRNA-seq captures a 
snapshot of sequenced cells at one timepoint, but those individual cells 
can represent a reasonably wide range of dynamic stages or cell states; 
therefore, it is more practical to arrange them in the temporal order of 
cell states to infer the trajectory of cell fate transition and identify the 
intermediate transient states crucial for cell-type specification (MacLean 
et al., 2018). Consequently, we analyzed the gene expression dynamics 
with respect to different fates and identified the most prominent 
regulators of cell fate decisions. Given the terminal states, we computed 
the probability of how likely a cell will transition toward any of these 
terminal states and plotted the computed fate probabilities in the force-
directed embedding. To understand the cell transition paths in depth, 
we used the PAGA program and characterized that neural stem cells can 
reach a cell fate using distinct intermediate states making them traverse 
a distinct molecular path that might be regulated through a variety of 
intrinsic and extrinsic signals. By analyzing the gene expression dynamics 
along each path, it is clearer to see the gradual dynamics of a cell fate and 
assess the correct or more feasible path with defined genetic circuitry.

The majority of the neuronal cells develop during embryonic brain 
development, and there is little evidence and still an undergoing debate 
that neurons are generated in the adult brain. Most of the proliferating 
cells in the adult brain have oligodendroglial lineage origin that can still 
proliferate, differentiate, and mature into oligodendrocytes later in the 
adult brain (Kuhn et al., 2019). In the late stage of embryonic brain 
development, a spike in gliogenesis and OPC lineage has been detected 
in abundance during the second trimester of embryonic brain 
development. Analysis of transcriptional processes has revealed a 
distinct period of OPC generation in mouse and human embryonic 
development. Thus, to analyze human cortex-specific regulation of 
OPC lineage, we explored the regulatory features of certain pre-OPC 
lineage genes, that were inferred from lineage analysis and already 
known in OPCs to likely affect the development and maturation 
(Huang et al., 2020). We used the iQcell platform (Heydari et al., 2022) 
to infer the gene regulatory network and analyze the effect of gene 
manipulations on cellular dynamics. These genes were selected as top 
overlapping features from CellRank (Lange et al., 2022) and PAGA 
(Wolf et al., 2019) intermediate states as lineage drivers. iQcell modeled 
the gene interactions as Boolean logic function and then simulated the 
effect of gene knockout or overexpression as a result of normalizing 
their level from pseudo time levels. It was evident that only certain 
factors have a role in lineage commitment while the rest are important 
in a hierarchical manner for different functions during the 
differentiation and maturation of OPCs. Overexpression of these genes 
does not show huge changes and as expected neuronal perturbations 
do not affect the glial cells and vice versa. Although, initially, the low 
cell number and especially low cell number per developmental stage 
tend to affect the analysis outcomes, still the most prominent features 
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FIGURE 3

(A) Initial smoothed binarized gene expression states for neuronal and OPC genes (expression density). Gene expression values are binarized by 
clustering, then averaged over a pseudo-time window, and thereafter sorted based on transition points from early to late. Red means high expression 
and blue means low expression; (B) the set of all possible gene–gene interactions, filtered by interaction hierarchy and mutual information. Positive 
and negative interactions are represented by blue and red edges, respectively. Edge width represents the relative amount of mutual information of the 
interaction. (C) The provisional GRN for OPC lineage genes shows the direction of gene regulation for selected candidates. The GRN is obtained by 
constraining the possible interactions both to follow the in vivo data progression when executed as a logical network and maximize the mutual 
information between gene pairs. Positive and negative interactions are represented by blue and red edges, respectively. (D) Upper panel: The PCA plot 
of the binarized scRNA-seq data color-coded with the pseudo-time values attributed to each cell. The binarization is performed by clustering the 
scRNA-seq expressions into expressed or not expressed levels; lower panel: The PCA plot of the simulated developmental trajectories is overlaid on 
the binarized scRNA-seq. The detected attractor is colored red. The simulated data are color coded by the value of the average simulation step 
(average distance to the attractor of simulation); (E) Expression states of the GRN model steady-state attractor. Genes that are expressed (1) and not 
expressed (0) are represented with blue and gray circles, respectively; (F) Expression states of the model attractors under sequential overexpression 
(OE) perturbations; (G) Expression states of the model attractors under knock-out (KO) perturbations.
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are well captured. Furthermore, we ruled out the major concern of low 
cell numbers and revalidated our observations using a stage-specific 
higher read and cell number dataset of GW25 with 15,811 cells for 
OPC lineage GRN identifications and gene perturbation effects.

Along with the characteristic OPC genes, we observed contributions 
of the novel SOX group TFs toward the OPC lineage, such as SOX8 
repressing the neurogenic genes for OPC fate switches and SOX10 
being a downstream effector of OLIG1. SOX10 has been widely studied 
in promoting oligodendrocyte differentiation in humans (García-León 
et al., 2018) as well as in other species (Takada et al., 2010; Hornig et al., 
2013), but the role of SOX8 in OPC cell lineage is not well-defined (Stolt 
et  al., 2005; Wang et  al., 2014). OLIG1 and OLIG2 mediated the 
regulation of certain important TFs such as NR0B1 and PRRX1, and 
their downstream effectors is an interesting avenue to be explored in 
OPC maintenance or differentiation to oligodendrocytes. Overall, 
we established these sequential GRNs in two scRNA-seq datasets and 
also identified novel TF regulatory networks. We  validated that 
scRNA-seq has the power to identify lineage drivers and that iQcell can 
filter genes that are not significant in lineage commitment while still 
having other roles. Therefore, these genes should be investigated for 
their regulatory roles in future experimental studies.
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