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Optic flow and Wide Field Integration (WFI) have shown potential for appli-

cation to autonomous navigation of Unmanned Air Vehicles (UAVs). In this study

the application of these same methods to other tasks, namely station-keeping and

wind rejection, is examined. Theory surrounding optic flow, WFI and wind gust

modeling is examined to provide a theoretical background. A controller based on a

H∞ bounded formulation of the well known Linear Quadratic Regulator in designed

to both mitigate wind disturbances and station-keep. The performance of this con-

troller is assessed via simulation to determine both performance and trade-offs in

implementation such as the method for optic flow calculation. Furthermore, flight

tests are performed to examine the real world effectiveness of the controller. Finally,

conclusions about potential improvement to implementation are drawn.
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Chapter 1

Introduction

In recent years military operations have seen two new developments. First, is

the widespread use of unmanned aerial vehicles (UAVs) for surveillance and in some

cases even as strike aircraft. Secondly, in recent conflicts urban warfare has com-

prised a major portion of military operations. When considered together these two

developments make the desire for UAVs capable of urban navigation seem obvious.

However, the urban flight arena presents a number of challenges for autonomous

operation of UAVs. The most obvious being the close proximity of obstacles many

of which, such as power lines, are small and hard to detect. An additional effect

of the close proximity of obstacles, is the requirement for high accuracy proxim-

ity measurements. GPS is not sufficient under these conditions due to the lack of

knowledge of obstacle positions, accuracy issues and update rates. Furthermore,

wind becomes a bigger issue due to airflows being forced between buildings and

restriction on vehicle size imposed by urban clutter.

1.1 Goals and Motivation

This study was embarked upon with three goals in mind. First, was to develop

a control strategy that could station-keep, or hold in place, a small flying vehicle

without relying only on off-board sensing equipment. Secondly, was to ensure that
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(a) (b)

Figure 1.1: (a) The ”balance strategy” [36] tries to center the vehicle by equalizing

the optic flow measurements on the right and left. When offset the closer

obstacle, here a wall, will produce more optic flow. (b) The Focus of

Expansion(FoE) occurs in the direction of travel and can be identified

by the divergent node shape

such a controller would be robust under windy conditions that might be encountered

in an urban environment. Lastly, accomplish the previous two tasks by sensing

apparent motion of stationary objects induced by vehicle motion, called optic flow.

Optic flow sensing has shown promise in urban navigation for obstacle detection and

avoidance. If this same paradigm could be adapted to provide both station-keeping

and wind rejection then the need for different sensors and thus increased payload

and power requirements could be eliminated.

1.2 Urban Navigation Using Optic Flow

Optic flow can be defined as the motion of static objects perceived by a moving

observer and encodes information concerning both the velocity of the observer as
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well as the proximity the objects. In nature, the visual systems of insects rely heavily

on optic flow [3, 9]. Whether using the compound insect eye or a man-made camera

optic flow is calculated by monitoring changes in luminosity patterns with time.

The result of optic flow calculation can be seen as a velocity field that describes the

relative motion of surrounding obstacles.

Different studies conducted using optic flow employ algorithms to extract in-

formation from optic flow and preform feedback. One of the most common strategies

is called ”balance strategy” or ”centering strategy” [36]. This method attempts to

equalize distance from obstacles by equalizing the optic flow measurements on the

left and right of the vehicle (see Figure 1.1a). This strategy has been investigated

in a number of studies including [18, 36, 44, 48, 7, 39]. One disadvantage of the

”balance strategy” is corruption of measurements due to vechicle rotation. Various

methods have been employed to counter this including breaking robot motion into

translation and rotation phases [36, 39], counter-rotation of the camera [7] and using

measurement of the rotation to subtract this component of optic flow [48]. Another

method uses a feature of the optic flow field known as the Focus of Expansion(FoE)

to determine the direction of travel of the vehicle. The FoE is simply the point of

divergence in the optic flow velocity field the corresponds to the pointing direction

of the velocity vector as shown in Figure 1.1b. In these strategies the FoE is used to

determine the direction of travel and distinguish when the motion of the vehicle is

likely to cause a collision using the surrounding optic flow. This method in various

incarnations was used in the studies [13, 36, 42, 46]. Both of these methodologies

have demonstrated the ability to use optic flow to navigate simple environments
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such as straight and bent corridors.

More recent work by the Autonoumous Vehicles Lab at University of Maryland

[25, 22, 5, 27] suggested a more formal approach to extraction of data from optic

flow. Here a method, called Wide-Field Integration (WFI), involved integration

over the optic flow field weighted by patterns designed to extract vehicle data. In

addition to providing a more formal framework WFI also drew inspiration from the

structure of the insect brain. An alternative interpretation of the WFI process,

is a decomposition of the optic flow field into its components along the directions

defined by the weighting functions [27]. This decomposition along specific directions

is analogous to specialized neurons in insects known as tangential cells. These

tangential cells are sensitive to specific patterns in optic flow and will exhibit stronger

responses as the observed optic flow becomes closer to the preferred pattern [10, 32,

28, 3]. Work involving simulation and experiments has demonstrated the ability

of WFI to perform the tasks previously accomplished using the ”balance strategy”

or FoE methods [21, 20, 19, 5, 24, 26]. Furthermore, simulation and experimental

work by Hyslop [27, 28, 26] suggested the viability of WFI methods for more complex

environments including simulated urban scenarios. Furthermore, Hyslop proposes

a framework for selection of linearly optimal vehicle state-extraction patterns along

with a method of reducing these patterns to a set that maps directly from output to

input thus, reducing the number of integrations required for feedback to the number

of vehicle inputs.

In addition to the use of optic flow to detect and avoid obstacles, some studies

have been performed on odometry, or measurement of distance traveled, using optic
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flow. This is of particular interest since position, or distance, measurements are

required for station-keeping. Experiments by Weber [48] involving a ground robot

using the ”balance strategy” in a straight corridor showed integrating optic flow to

give distance traveled yielded a standard deviation that was approximately 3.6% of

the mean measured distance. This suggests that integrated optic flow could give a

somewhat precise measure of distance traversed. A similar study by McCarthy [35]

showed for a 2.5 meter corridor showed between 0.03-0.13 meter standard deviation

of approximately 1.2-5.2%. A preliminary investigation into underwater optic flow

based station-keeping [37] where optic flow calculated position was compared to

actual position for a series of discrete displacements of a target object showed a

average error of 5.5%.

Another development in optic flow research that is discussed in [14, 13], is

the development of dedicated sensors for optic flow acquisition. These sensors have

a mass of about 5 grams and operate at speeds up to 1.4 KHz. Furthermore,

optic flow can be detected at up to rates of 20 rad/s and in low contrast situations.

Additionally, another sensor by Harrison [16], consisting of radially distributed optic

flow sensors, was able to detect imminent collisions approximately 0.1-0.4 seconds

before contact using only 140 µW of power. Other efforts towards optic flow based

sensors are covered in [29, 43].
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1.3 Station-Keeping in Robotics

While numerous methods can be imagined for implementation of station-

keeping on robotic platforms, here only GPS and computer vision based methods

will be discussed. Many studies have been performed for using control based on

GPS positioning [40]. However, for urban operations accuracy is important. A

comparison of GPS techniques in shows the only GPS technology with sub-meter

accuracy is Carrier Phase Differential GPS (CPDGPS) which is accurate within

4-6 centimeters[40, 47]. However, CPDGPS does have a number of disadvantages

including the need for a reference GPS station. The need for this station also lim-

its the range of operation to about 10-15 kilometers (6.2-9.3 miles). Additionally,

CPDGPS is somewhat expensive costing around $20,000-30,000 and requires com-

plicated calibration procedures [40].

Waslander in his study [47] simulated CPDGPS on a small quadrotor with

realistic error models along with a suite of other sensors including a full inertial

measurement unit(IMU), magnetometer and sonar height senors. Additionally, wind

disturbances were simulated. The resultant simulations had the vehicle remain

within 0.4 meters under 2-7 m/s winds using a combination of an Extended Kalman

Filter and PID controller. With a wind estimation model the error was reduced to 0.1

meters. However, although this study shows good results it employs computationally

expensive methods such as the Extended Kalman Filter and a wind estimation model

which may not be practical on a small on-board processing unit.

In addition to GPS based positioning, computer vision is another method
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that is commonly used for underwater vehicles. However, these methods are often

computationally expensive to implement. Thus with the limited payload of UAVs

the feasibility of these methods is questionable. One method designed to eliminate

estimate drift [34] required thousands of single board computers to perform the

calculation to station-keep an underwater vehicle with a loop closure rate of 30Hz.

This however is extreme, another study [30] using image registration techniques

required only a two computers to archive similar closure rates at the cost of estimate

drift.

1.4 Overview of this Study

Towards the purpose of meeting the goals of section 1.1 design of WFI sens-

ing scheme and control strategy was pursued. WFI basis functions were chosen to

extract vehicle states about the operating condition. Using these measurements,

a H∞ bounded Output Linear Quadratic Regulator (LQR) designed specifically

for wind-like disturbances was implemented. Additionally, a nonlinear, error sig-

nal integration scheme was employed to account for errors otherwise introduced by

the vehicle rotational kinematics. Simulation was used to examine controller per-

formance with respect to different optic flow calculation algorithms, disturbances

types and evaluate the effectiveness of the nonlinear integration scheme. Further-

more, flight testing of a vehicle was performed under both still-air and gust-like

conditions to quantify real-life performance of the control scheme. Metrics such as

position estimate error and integrator drift rate are presented to provide a measure
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of the controller performance. Finally, results are discussed and conclusions drawn

as to the performance of the controller and future work to be performed in this area.
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Chapter 2

Optic Flow

In this Chapter the theory associated with optic flow will be examined. Also,

the work of Humbert [25] and the framework for control feedback known as Wide-

Field Integration (WFI) will be explained. Additionally, explanation of the WFI

weighting patterns selected this study will be discussed. Furthermore, optic flow

calculation algorithms are discussed. Finally, limitations of optic flow are addressed.

2.1 Background

Optic flow can intuitively be defined as the apparent motion of surroundings

as seen by a moving object. More technically, it is the apparent motion of objects

in the inertial frame as observed in a moving frame. Mathematically, optic flow can

be seen as the projection of the apparent motion of surroundings onto a body-fixed

viewing surface (usually a sphere) as shown in Figure 2.1. The general form of

optical flow on the sphere was derived in [31]. However, this study is only concerned

with optic flow in the yaw, or azimuth, plane a simpler representation can be used.

Such a representation was given by [25].

Q̇ = −ψ̇ +
1

d(γ)
(u sin γ − v cos γ) (2.1)
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Figure 2.1: Optic flow projects object motion onto the tangent space of the unit

sphere

where ψ̇ is the vehicle yaw rate, d(γ) is the distance to surrounding objects as

a function of γ the body frame azimuth angle, and finally u and v are the body

frame longitudinal and lateral velocities. Examination, of (2.1) reveals a couple

of properties of optic flow. First, that optic flow encodes velocities in a manner

that is inversely proportional to distance. This can be seen geometrically in Figure

2.2 where the angle swept out by the farther away green object is smaller that the

closer red object. Secondly, it can be noted that in general the different motions ψ̇,

u and v will create different patterns of optic flow. In the case of rotation (ψ̇) the

pattern is clearly a constant function. While, in the cases of the translations (u and

v) the patterns are much less well defined due to the division by d(γ). However,

(2.1) does suggest patterns resembling sine and cosine waves. Figure 2.3 shows this

more clearly; optic flow will be zero along the axis of translation and maximum on

the axis perpendicular to the translation. If this is then parameterized in terms of

the body frame azimuth angle, γ, defined earlier in (2.1) then the patterns recovered

10



Figure 2.2: Optic flow due to translation is inversely proportional to distance. Note

δγ is larger for the closer object

Forward Motion

Lateral Motion

Figure 2.3: Forward and Lateral motion result in Sine and Cosine like shapes
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bear resemblance to sine and cosine functions with period 2π for the body velocities

u and v respectively.

2.2 Wide-Field Integration

WFI in general involves a number of weighted integrations over a large collec-

tion of distributed sensors. In the case of camera based optic flow these sensors are

single image pixels. These integrations form a decomposition of the optic flow signal

into components along a basis of a subspace of L2, the space of square integrable

functions or second Lebesgue space. More mathematically, let Φ = {φk}, k = 1, 2...n

be N elements of the function space basis to be projected onto. Also, assume φk ∈ L2

and Q̇ ∈ L2. Then the projection of Q̇ onto any of these bases can be calculated as

a dot product on L2 [22].

projφkQ̇ =
1

π

∫ 2π

0

Q̇φkdγ (2.2)

In the discrete case with m samples this becomes:

projφkQ̇ =
δγ

π

m
∑

i=0

Q̇(γi)φk(γi) (2.3)

Thus, WFI depends largely on picking a set of basis functions Φ that will extract

the states of the system in a meaningful manner. From the observations made about

(2.1) above it seems likely that a constant function along with the 2π period sine and

cosine will extract the state velocities. This suggests that a subset the Fourier basis

of sines and cosines defined as F = {1/2} ∪ {cosnπ} ∪ {sinnπ} where n = 1, 2...∞

would be a good choice of Φ. This choice of Φ has been used in many studies such
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as [22, 24, 5]. Here the zero-th and first order harmonics denoted, a0, a1 and b1

where a and b denote sine and cosine respectively, are used.

2.3 Calculating Optic Flow

Numerous methods for calculating optic flow exist. During the course of this

study two different methods of calculating optic flow from images were considered.

The first is the so called Gradient Method which measures optic flow in a single

direction, In the case of the work done here this was in a azimuthal ring around

the vehicle. The Gradient Method relies on the assumption that pixel intensity is

conserved between image frames. This results in the following constraint equation

[45]

∂I

∂x
dx+

∂I

∂t
= 0 (2.4)

where I is pixel intensity, x is the pixel position and t is time. Solving (2.4) for the

pixel shift dx gives the following equation

∂I
∂t
∂I
∂x

= dx. (2.5)

Once dx is solved for using (2.5) the camera field of view and direction can be

used to formulate the optic flow measurements. The second method was the Lucas-

Kanade Method which is a measures optic flow in both the azimuth and elevation

directions. This method generally is less noisy than the above Gradient Method [41].

In addition it was found by Barron in his comparison of 2-D optic flow methods,

[2], that Lucas-Kanade was one of the most reliable methods tested. Additionally,
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a comparative study by Weber [48] showed Lucas-Kanade produced the best results

for both corridor centering and odometry. The calculation of optic flow using Lucas-

Kanade is complex and will not be given here but is available in [33].

2.4 Limitations of Optic Flow

Optic flow theoretically provides a number useful properties for use in control

feedback. However, in practice a couple of issues can arise. The first is the need for

image contrast. If the surroundings imaged have poor contrast, such as the case of a

room with all white walls, the calculated optic flow will be likewise poor due to the

uniformity of the image pixels. Second, is the need for relatively constant brightness

between frames. As previously, stated the assumption of intensity conservation is

used in optic flow calculation thus this is a direct violation of this assumption.

Finally, the image capture rate must be high enough for pixel shifts to be ”small”

between successive frames.
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Chapter 3

Vehicle Dynamics

Two different flying vehicles where utilized during this study. The first was a

E-sky Honeybee hobby helicopter and the second was the X-UFO Quadrotor MAV

made by Ascending Technologies GmbH (see Figure 3.1). The linearized dynamics

about hover for each vehicle is presented in this section. Additionally, the effects

of wind on vehicle dynamics are considered. Finally, the derivation of the sensor

output equation is presented.

3.1 Linear Dynamics about Hover

Dynamical models of both vehicles were obtained using linear system identi-

fication which are covered in [6] and [15]. Additionally, the full dynamics of each

system was reduced via inner loop control of the non-planar system states using

onboard avionics along with a ViconTM visual positioning system [5, 23]. This al-

lowed examination of a smaller set of states and thus a simpler design problem. The

reduced dynamics as presented in the papers above are as follows. The helicopter

dynamics are
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δyaw

















, (3.1)
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(a) X-UFO Quadrotor MAV (b) E-Sky R©Honeybee

Figure 3.1: Images of the two vehicles studied

Table 3.1: Stability Derivative Values

Derivative Helicopter Quadrotor

Xu -.5219 -.2203

Yv -.4799 -.2291

Nr -.8937 0

Nδyaw/Ψδyaw 37.09 4.79

and the quadrotor dynamics are

















u̇

v̇

ψ̇

















=

















Xu 0 0

0 Yv 0

0 0 0
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v

ψ

















+

















0 −g 0

g 0 0

0 0 Ψδyaw

































φref

θref

δyaw

















. (3.2)

where the states u, v, ψ and r are perturbation states about hover for the body

longitudinal and lateral velocities, yaw angle and yaw rate respectively. In addition,

the inputs φref , θref and δyaw are the longitudinal and lateral reference angles for

the inner loop control and the vehicle yaw input respectively.
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The stability relevant derivatives obtained from the system identifications

[15, 6] are shown in Table 3.1. Examination of the two models in equations (3.1)

and (3.2) shows the only difference in structure between the two models is the ro-

tational dynamics. This lack of a yaw rate term results form two issues. First, the

high resposiveness of the vechicle allows for rotational dynamics to evovle quickly.

Second, the size of the flight arena used in the system identification was too small

for the more aggresive manuvers require to extract these terms [15].

Since the objective of this study is station-keeping the kinematic equations

also need to accounted for. In the planar case this becomes an elementary rotation

about the yaw-axis by the yaw angle ψ. Thus defining the state vector

x = [x, y, ψ, u, v, r]T (3.3)

and using the standard form for a linear system

ẋ = Ax +Bu (3.4)

the A and B matrices can augmented to include the kinematics for the helicopter

and quadrotor respectively.

A =









































0 0 0 cosψ − sinψ 0

0 0 0 sinψ cosψ 0

0 0 0 0 0 1

0 0 0 Xu 0 0

0 0 0 0 Yv 0

0 0 0 0 0 Nr









































, B =









































0 0 0

0 0 0

0 0 0

0 −g 0

g 0 0

0 0 Nδyaw









































(3.5)
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Figure 3.2: Wind acts as a increment to the velocity

A =
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(3.6)

3.2 Wind Effects

Additionally, it was necessary to include wind disturbances in the dynamical

modeling of the vehicles. Dynamically, wind acts as a perturbation of velocity [38].

This can be seen intuitively as in the absence of wind the airflow acts move equal and

opposite to the vehicle velocity. Thus as shown in Figure 3.2 the effective velocity

can be given by

veff = v − g (3.7)

where v = [u, v, r]T is the vector of vehicle velocities and g is the wind, or gust,

velocity. Applying this to the linearized equations of motion as in the following

example using the longitudinal velocity dynamics from above [11, 38] the modified
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equations can be obtained.

u̇ = Xu(u− gu)− gδlong (3.8)

This can be shown to be equivalent to extracting the aerodynamic stability deriva-

tives from the state dynamics, or A, matrix and negating them to form a disturbance

matrix, here denoted D. The modified state equation is given below.

ẋ = Ax+Bu+Dg (3.9)

and the D matrix can be given by

D =









































0 0 0

0 0 0

0 0 0

−Xu 0 0

0 −Yv 0

0 0 −Nr









































(3.10)

Note here that for the quadrotor the derivative Nr = 0 thus this model is insufficient

to simulate rotational disturbances on the vehicle. For this reason the helicopter

was used for simulation in lieu of the quadrotor vehicle.

3.3 Output Equation

The final part of the dynamics is the output equation. As was noted in Chapter

2 optic flow has a direct dependence on the shape of the surrounding environment,

represented as d(γ). For the purpose of this study the environment shape was taken
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(a)

Figure 3.3: A circular environment can be defined by the radius and the polar po-

sition of the vehicle

to be a circle. Earlier, work [5, 24, 25] has used a hallway like shape of two parallel

walls. However these were focused on forward-flight rather than hover for which a

more room-like shape is more practical. For the case of the circle the environment

distance function can be given by

d(γ) = −d0 sin(γ + γ0) +
√

d2 − d20 cos
2(γ + γ0) (3.11)

d0 =
√

x2 + y2, γ0 = tan−1 x

y

where x,y and ψ are the Cartesian position and orientation respectively and d is the

radius. Using this distance function it is possible to numerically calculate the Fourier

(WFI) coefficients that will be used for feedback control. Analytical solutions were

not able to be obtained due to the complexity of the distance function. However,

numerically calculating the partial derivatives of the WFI outputs can be used to

form the output equation. First, the optic flow about some reference condition
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denoted x∗, in this case for hover (x∗ = 0), is calculated by substituting into (2.1)

and the environment distance equation d(γ).

Q̇(x∗, γ) = −ψ̇∗ + 1
d(γ,x∗)

(u∗ sin γ − v∗ cos γ)

x∗ = [x∗, y∗, ψ∗, u∗, v∗, ψ̇∗]T
(3.12)

Next, each entry in x∗ is perturbed individually by a small amount, here denoted

δxi. Then, the difference caused by each perturbation is calculated as follows

δQ̇i =
Q̇(x∗ + δxi, γ)− Q̇(x∗, γ)

δxi
, (3.13)

where i is used to denote that the i-th state was perturbed. From here the change

to the ouput, here the Fourier coefficients a0, a1 and b1, can be calculated.

∂a0
∂xi

= 1
2π

∫ 2π

0
δQ̇idγ

∂a1
∂xi

= 1
π

∫ 2π

0
cos(jγ)δQ̇idγ

∂b1
∂xi

= 1
π

∫ 2π

0
sin(jγ)δQ̇idγ

(3.14)

where j denotes the frequency of the Fourier coefficient. From these partial deriva-

tives the observation, or C, matrix can be constructed as follows

C =

















∂b1
∂x1

∂b1
∂x2

· · · ∂b1
∂xn

∂a1
∂x1

∂b1
∂x2

· · · ∂a1
∂xn

∂a0
∂x1

∂b1
∂x2

· · · ∂a0
∂xn

















(3.15)

For this environment distance function d(γ) , given in 3.11, the C matrix takes the

form

C =

















0 0 0 cu 0 0

0 0 0 0 cv 0

0 0 0 0 0 cr

















(3.16)
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where cu, cv and cr are constants of proportionality and the output equation is given

as shown.

y = Cx, y = [b1, a1, a0]
T (3.17)
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Chapter 4

Control Design

In developing control methodologies for station-keeping with wind distur-

bances, a number of methods were tried. However, the control strategy that was

implemented was a modified version of a multi-variable ”proportional plus integral”

(PI) controller. This controller was chosen due to the requirement of position feed-

back in station-keeping. Proportional feedback of velocity would only result in a

constant velocity in presence of a constant wind. However, with a integral position

feedback term a constant position is maintained. This intuitively makes sense as

the position feedback provides a stiffness while the velocity feedback only damping.

This compensation scheme was designed similar to the standard multi-variable

PI controller except a non-linear correction was employed to correct for the error

introduced by rotation of the vehicle. This error arises because any non-zero vehicle

orientation will cause the inertial and body frames to not be aligned and thus optic

flow, which is measured in the moving body frame, when integrated will produce

an error. As such without correction, the position estimates would be inaccurate in

presence of any rotation due to this integration in a moving frame. The following is

a brief description of the corrected state integration methodology.
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4.1 Integration Scheme

The state integration strategy in general relies on three assumptions in order

to work

Assumptions

1. A measurement of the body yaw angle (ψ) is available, possibly from integra-

tion of a measurement of ψ̇

2. Measurements proportional to the body velocities (u, v) are available

3. The body velocity measurements are proportional to each other by a known

constant (ie. cv/cu from (3.16) is known).

4. The vehicle can be assumed to act in the azimuthal plane, possibly due to

inner loop control.

The first assumption is necessary to correct for the rotation of the body frame. The

second is required for the standard PI feedback. The third assumption is required

to ensure the velocities measurements have the same scale and thus avoid errors.

As can be seen form the output equation presented in Chapter 3 in equation (3.16),

these requirements are met since uncoupled measurements of these quantities exist.

With these assumptions the following procedure can be implemented to esti-

mate the position and attitude form the velocity and rate measurements.

Non-Linear Integration Scheme

1. Scale the velocity measurements to the same size using the constant from

Assumption 3
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Figure 4.1: Signal Integration: signal integration is carried out by first using the yaw

angle measurement (here y3) to construct matrices to convert between

the inertial and body frames. The velocity measurements y1 and y2

are then scaled (if needed) and integrated in the inertial frame to get a

position which is converted to the body frame for feedback.

2. Convert the body velocity measurements into inertial velocity estimates via

rotation matrix constructed from the yaw angle from Assumption 1 (denoted

as RFB)

3. Integrate the resulting inertial velocity to update the inertial position estimates

4. Convert the inertial position into the body frame using the inverse rotation

matrix (denoted RBF ) for feedback

The above process, is merely a conversion into the internal frame before the inte-

gration so that it is done in a non-moving frame. The conversion back to the body

frame at the end is carried out since the input will be entering into the equations

for the body velocities. A diagram of this process is provided in Figure 4.1. As a
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result of this process the system observation, or C, matrix is effectively augmented

as follows

Ceff =









































cv 0 0 0 0 0

0 cv 0 0 0 0

0 0 1 0 0 0

0 0 0 cv 0 0

0 0 0 0 cv 0

0 0 0 0 0 cr









































(4.1)

where cv and cr are the nominal velocity measurement proportionality constant and

yaw rate proportionality constant. Note that the assumed knowledge (see Assump-

tion 1) of ψ is reflected in the matrix. This C matrix is used to design the feedback

gain matrix.

4.2 Gain Matrix Selection

The final step in design of the control strategy was choice of feedback gains.

The gain matrix used for feedback of the state estimates and WFI measurements

was designed using a modified version of output Linear Quadratic Regulator (LQR)

presented in [12] which imposes anH∞ robustness criterion. The robustness criterion

can be seen in the form of the cost function for this formulation. For a system of

the following form,

ẋ = Ax+Bu+Dd, y = Cx , (4.2)
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which is the same form previously given for wind disturbed systems in Chapter 3

(see (3.9)), the cost function is given by

J =

∫

∞

0
‖z(t)‖2dt

∫

∞

0
‖d(t)‖2dt

=

∫

∞

0
(xTQx+ uTRu)dt
∫

∞

0
(dTd)dt

≤ µ. (4.3)

here d is the wind disturbance and µ is a positive constant. Looking at (4.3) it

can be seen that µ can be taken to be the L2 gain between the LQR cost and the

disturbance. Recalling that the induced norm of a process on L2 signals is the ∞-

norm [49] this can be seen as a bound on the supremum of the transfer function

between the LQR cost and the disturbance. Thus, this formulation can be looked

at as a H∞ bounded LQR. The solution to this problem is given by an iteration on

the following Algebraic Ricatti Equation(ARE) and matrix equations.

PnA + ATPn +Q+
1

µ2
PnDD

TPn− PnBR−1BTPn + LTnR
−1Ln = 0 (4.4)

Kn+1 = R−1(BTPn + Ln)C
T (CCT )−1 (4.5)

Ln+1 = RKn+1C − BTPn, L0 = 0 (4.6)

The terminal condition of the iteration is convergence of the L matrix. It is im-

portant to note here that (4.5) is calculated using the right inverse of C which will

reconstruct the states from the outputs provided that (A,C) is observable. If the C

matrix is invertible as in (4.1) then this iteration becomes deterministic with L = 0

being the convergent value of L and only (4.4) and (4.5) have to be solved.

For design of the R and Q weighting matrices Bryson’s Method [4] was used.

Thus R and Q can be given by
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R = diag{ ρ

u2i,max
} (4.7)

Q = diag{ 1

x2i,max
} (4.8)

where ρ is a constant specifying the relative cost of input with respect to the state

error, ui,max are the maximum input values and xi,max are the maximum desired

excursions of the states. For the design of feedback gain matrices for the two vehicles

studied here (see Chapter 3) the gain matrices obtained from this process had the

following forms. For the helicopter the matrix was structured as

K =

















0 Ky 0 0 Kv 0

Kx 0 0 Ku 0 0

0 0 Kψ 0 0 Kr

















(4.9)

and for the quadrotor the matrix took the form

K =

















0 Ky 0 0 Kv 0

Kx 0 0 Ku 0 0

0 0 Kψ 0 0 0

















(4.10)

which reflects the difference in dynamical structure discussed in Chapter 3. The

nominal gain values are given in Table 4.1.
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Table 4.1: Nominal Gain Values

(a) Helicopter

Gain Value

Kx -5.4017

Ky 5.2639

Kψ 3.3425

Ku -3.6954

Kv 3.6143

Kr 0.7517

(b) Quadrotor

Gain Value

Kx -14.6473

Ky 16.5788

Kψ 3.3333

Ku -7.8352

Kv 8.4936

Kr 0.0000

4.3 Comparison to Multi-variable PI Control

As discussed at the begin of this section, this methodology does bear resem-

blance to a MIMO PI regulator. The general form of this regulator can be expressed

as [1]:









ẋ

ż









=









Ax+Bu

Cx









(4.11)

u = −Kpx− kiz (4.12)

where Kp is the standard gain matrix and ki is a scalar. Looking at this formulation

there are two differences between the LQR methodology implemented here and PI

control:
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1. the LQR formulation has a non-linear ż equation for the position terms ż =

RFB(ψ)Cx

2. the control equation is non-linear for the positions in the LQR case and uses

a matrix in place of ki (u = −Kpx−KiRBF (ψ)z)

Note here that the RBF and RFB matrices only act on the position states. Looking

at items 1 and 2 the LQR method can be seen to be a adaptation on PI control

for the system in question. Largely, the differences come from taking into account

the difference in the inertial and body frame coordinates. Additionally, the LQR

formulation allows for coupling in the integral feedback term which, while not used

for this system, allows for better compensation if states are somehow coupled.
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Chapter 5

Simulation

As a preliminary examination of controller performance simulation was used.

Additionally, simulation allowed investigation of variables such as effect of different

wind disturbances and optic flow algorithms that were not easily replicated in ex-

periment. For simulation a custom software package AVLsim was used. In order

to extend the capabilities of AVLsim to meet the needs of this study modifications

such as implementing wind disturbance models were made. This Chapter discusses

the AVLsim capabilities and the specific implementation used in this study. Addi-

tionally, formulation of wind models are presented. Furthermore, the structure of

simulation trials are discussed. Finally, results are presented and conclusions drawn.

5.1 Simulation Description

AVLsim allows simulation of a single vehicle in a 3-D graphical environment.

Additionally, simulation of sensors onboard the vehicle such as including cameras

and distance sensors in included. Optic flow simulation is carried out by rendering

one or more of these virtual camera images to computer memory and then calculating

optic flow using these images. This optic flow is processed with WFI algorithm

from Chapter 2 and then the extracted coefficients are used for feedback. For the

simulations run in this study, a ring of twelve cameras in the body azimuth plane was
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Figure 5.1: Vehicle Camera Configuration: Cameras are configured in the azimuth

plane. Here xb and yb are the body forward and right axes.

Figure 5.2: Screen Capture from Simulation
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used. This was chosen to simulate a panoramic view of the environment surrounding

the vehicle given by the parabolic mirror on the quadrotor vehicle used in flight

testing [5]. These cameras were constrained to move and rotate with the vehicle. A

diagram of this camera configuration, with six cameras instead of twelve, is shown

in Figure 5.1. Optic flow was calculated, along with WFI coefficients, at a rate of

55 Hz, which is comparable to the vehicle acquisition rates [5]. Optic flow as noted

in Chapter 2 was calculated using two different methods. The first was the so called

Gradient Method and the second was the Lucas-Kanade algorithm. The Gradient

Method was implement using custom code while the Lucas-Kanade algorithm used is

available in the open-source Intel R©OpenCV library. Dynamical simulation of vehicle

dynamics was carried out using the helicopter model given in Chapter 3. This model

was integrated using a fourth order Runge-Kutta scheme with a constant time-step.

The dynamics were integrated at 110 Hz, or twice the rate of optic flow capture. This

rate was separated by more than an order of magnitude from the nominal closed-

loop dynamics and thus was adequate to capture the system dynamics. Due to the

noise associated with Gradient Method scaling of the gain matrix was necessary

to ensure stability. The constant of this scaling was tuned manually until a near

optimum value was obtained. Additionally, a low-pass filter was implemented to

lessen the noise on the measurements gotten form WFI. For comparability this filter

was left on in the Lucas-Kanade case so that any time delay introduced by the filter

would be experienced in both test cases.
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5.2 Wind Models

Wind gusts in the simulation were generated using two different methods.

First, was the Von Karman power spectrum density(PSD). This was chosen due to

its common use in designing aircraft for gust-worthiness [17, 8]. The Von Karman

PSD can be given by

S(Ω) = σ2
w

l

Ω

1 + 8
3
(1.339lΩ2)

[1 + (1.339lΩ2)]11/6
(5.1)

where S is the PSD and l, σw and Ω are the turbulence scale, root-mean square

amplitude and frequency respectively. Selection of values for L and σw are chosen

based on the design altitude of the vehicle h and the wind magnitude at 20ft altitude

g20 using the following equations [47, 8]

l

h
=

1

(0.177 + 0.000823h)1.2
(5.2)

σw
g20

=
.1

(0.177 + 0.000823h)0.4
(5.3)

Since the Von Karman PSD is not a function of Ω2, building a linear shaping filter

is not possible. However, it can be closely approximated using the following linear

shaping filter [17].

gi
η

=
σw

√
ν

π
√

Φη

(1 + 2.187νs)(1 + 0.1833νs)(1 + 0.021νs)

1 + 1.339νs)(1 + 1.118νs)(1 + 0.1277νs)(1 + 0.0146νs)
(5.4)

where η is a white noise input, gi is the wind velocity output indirection i, Φη if

the PSD of the white noise and ν = l/V where V is the velocity of the turbulence

relative to the vehicle. Instead of the usual convention of assuming the turbulence
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Figure 5.3: The Four Point Model is used to calculate rotational winds on fixed wing

aircraft

generated by the Von Karman PSD is stationary with the aircraft moving across it,

this study assumed that the turbulence was moving at V = 1m/s relative to the

vehicle thus effectively making g(x) in (5.4) into g(t). This was done because this

study was concerned with vehicles about hover and thus a stationary wind profile

is not realistic. A similar method was applied in [47].

The second wind model used was a first order white noise driven, Gauss-

Markov process generated signal as used in [12]. The Gauss-Markov process can be

given by

ġi =
−1

τ
gi + ζω (5.5)

where gi is the wind gust affecting state i, τ is the autocorrelation time, ζ a constant

and ω unit white noise. Values for this process were τ = 3.2 and ζ was scaled to

match the mean to that of the Von-Karman PSD. To calculate the rotational wind
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Table 5.1: Simulation Test Cases

Gradient Method Lucas-Kanade

Corrected Uncorrected Corrected Uncorrected

Von-Karman PSD 1 2 5 6

Guass-Markov 3 4 7 8

a modified version of the Four Point Model, which is commonly used for fixed wing

aircraft, was used. This model takes the wind at four points on the aircraft and

uses these to approximate the rotational wind components. One point is the center

of gravity and the other three are placed on each wing and the tail. This is shown

in Figure 5.3. This study was only concerned with the yaw direction of wind which

is given by [11]

gr =
1

LT
(gv,0 − gv,3) +

1

LW
(gu,1 − gu,2) (5.6)

where gu,i, gv,i and gr,i are the longitudinal, lateral and yaw rotational gusts at point

i respectively. However since this simulation is of a rotorcraft, the second term is

dropped due to the lack of wings. As such, the rotational wind is calculated as

gr =
1

LT
(gv,0 − gv,3) (5.7)
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Table 5.2: Timing of Events in Simulation Trials

Time (sec.) Event

0 Simulation start

0.2 Vehicle control turned on

1 Wind disturbance begins

26 Wind disturbance ends

30 Simulation end

5.3 Test Cases

In addition to simulating the vehicle under two different wind disturbances

and using two separate optic flow algorithms, in order to show the advantage of

using the correction for the body-inertial frame, given in Chapter 4, simulations

were performed with this correction included and omitted. The combination of

these three pairs of conditions lead to eight separate configurations for simulation.

These are shown in Table 5.1 and will be presented in the order given therein.

For each of the eight test cases 100 trials in the simulation were performed

to accurately capture the variations caused by the random wind. The environment

for the simulation was chosen as a circular room twelve meters across. The walls of

the room were textured using realistic outdoor imagery. Each simulation trail was

30 seconds long. The vehicle was started in the center of the room with no initial

motion. For the first 0.2 seconds all control was disabled to allow for multiple camera

frames to be processed into optic flow and thus avoid any large estimates that might
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Figure 5.4: Characteristic Simulation Trajectories: 1-meter bound shown for scale

and does not reflect environment size

result during the first few frames. Beginning at 1 seconds, the wind disturbance was

applied to the vehicle lasting for 25 seconds. Following this the vehicle was given

the remaining 4 seconds to attempt to return to the starting position. This run

structure is shown in Table 5.2. Trajectories of two trials are shown in Figure 5.4

one for each optic flow algorithm. A one meter bound is plotted to show scale and

does not reflect the room size.

5.4 Simulation Results

For each case three separate histograms are presented here. The first shows

the error in the final position of the vehicle relative to its starting position. The

second shows the maximum distance from the starting position during the trial.

Last, is a histogram of the mean wind velocity for each trial. The dashed red line

shows the mean of each data set.
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Figure 5.5: Runs 1/2. Gradient Method with/without Correction under Von-

Karman PSD Disturbance
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Figure 5.6: Runs 3/4. Gradient Method with/without Correction under Gauss-

Markov Disturbance
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Figure 5.7: Runs 5/6. Lucas-Kanade with/without Correction under Von-Karman

PSD Disturbance
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Figure 5.8: Runs 7/8. Lucas-Kanade with/without Correction under Gauss-Markov

Disturbance
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The histograms of simulation results reveal a number of trends. First, the

Gauss-Markov disturbance has a smaller variance than the Von-Karman PSD distur-

bance. Despite this, the results for both disturbances center around similar values.

However, the increased variance of the Von-Karman PSD disturbance does result

in higher variance in the error as might be expected. Furthermore, in general the

Lucas-Kanade algorithm preforms significantly better than the Gradient Method in

terms of final position errors and and to a lesser extent maximum error. Looking

at the results for the Gradient Method it can be seen that while the it kept the

vehicle in an the general area of the origin this area was significantly bigger than

was accomplished by Lucas-Kanade. Furthermore, Gradient Method exhibited less

of the returning response that was seen with Lucas-Kanade. Any benefit gained

through the body-inertial frame correction is not apparent from the histograms.

Looking at the means presented in Table 5.3 of each run of trials the improve-

ment from the correction can be seen more clearly. Comparison of all four pairs of

uncorrected and corrected runs shows that in each case a improvement is seen in

the final position error (Table 5.3a). Additionally, the final error is slightly smaller

in all cases for the Von-Karman PSD disturbance. The maximum error, in Table

5.3b, shows little improvement and with the corrected case being worse for the case

of Lucas-Kanade under the Gauss-Markov disturbance. Finally, Table 5.3c shows

the mean of the wind magnitudes across the different runs which are all similar for

each disturbance type which suggests comparability of results.

Reduction of this data further by taking the ratio between the uncorrected and

corrected means gives an mean percent improvement for the correction. Which as
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Table 5.3: Mean Values for Trial Data

(a) Final Position Error Means

Gradient Method Lucas-Kanade

Corrected Uncorrected Corrected Uncorrected

Von-Karman PSD 0.4710 0.5335 0.01389 0.03548

Gauss-Markov 0.3950 0.3965 0.01519 0.01711

(b) Max Position Error Means

Gradient Method Lucas-Kanade

Corrected Uncorrected Corrected Uncorrected

Von-Karman PSD 0.7930 0.8096 0.4894 0.4838

Gauss-Markov 0.6236 0.6495 0.3695 0.3679

(c) Mean Wind Means

Gradient Method Lucas-Kanade

Corrected Uncorrected Corrected Uncorrected

Von-Karman PSD 3.137 2.995 3.181 3.113

Gauss-Markov 3.007 3.052 3.032 3.035
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Table 5.4: Percent Improvement Due to Correction

(a) Final Position Error

Gradient Method Lucas-Kanade

Von-Karman PSD 13.3% 155%

Gauss-Markov 0.37% 12.6%

(b) Max Position Error

Gradient Method Lucas-Kanade

Von-Karman PSD 2.1% -1.1%

Gauss-Markov 4.2% 0.4%

can be seem in Table 5.4a the correction shows between a 0.37% and 155% improve-

ment over the uncorrected case. On average this results in a 45.3% improvement.

However, this quantity is skewed due to the large improvement under Lucas-Kanade

and the Von-Karman disturbance. For the maximum error, shown in Table 5.4b,

no trend in improvement is seen. This suggests that the correction has little effect

on the ultimate bound between the wind and maximum position error but rather

provides the controller with a more accurate estimate of the position error thus

allowing a better return behavior in the vehicle.

Examination of the state estimate for the two different optic flow algorithms

gives insight into the difference in final position errors. Looking at Figure 5.9 it

can be seen that the Gradient Method does capture the features of the position to
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Figure 5.9: Comparison of Position Estimates Accuracy
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Figure 5.10: Comparision of Yaw Wind Components

some degree but, the accumulation of drift causes inaccuracy over time. Meanwhile,

Lucas-Kanade accurately represents the position though the estimate, due to the

limitation of optic flow, is only proportional and here has been rescaled to the match

the scale of the position. This data reflects the treads presented in the histograms

in figures 5.5, 5.6, 5.7 and 5.8. Furthermore, examination of the difference in the

rotational component of the wind for the two disturbance types (see Figure 5.10)

shows a much larger amplitude in the case of the Von-Karman PSD. This larger

wind causes larger rotations of the vehicle thus the correction is accounting for

larger discrepances.

5.5 Conclusions from Simulation

A couple of conclusions can be drawn from the simulation data above. The first

is that the Gradient Method is not well suited for station-keeping and may be in-
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sufficient to accomplish the goals of this study. However, a more accurate algorithm

such as Lucas-Kanade appears to be able to met realistic performance requirements

in both station-keeping and wind rejection. Second, is that the correction for the

inertial and body frame discrepancies does show a significant improvement over

the uncorrected case. However, the size of this improvement may be too small to

warrant implementation over the simpler uncorrected case in realistic applications.
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Chapter 6

Flight Testing

In addition to simulation, flight testing was performed to demonstrate the real-

world performance of the control methodology. This testing was performed using

the quadrotor vehicle presented in Chapter 3. The Gradient Method discussed

in Chapter 2 was used for sensing. While this algorithm showed shortcomings in

simulation results (see Chapter 5) performance measures were obtained. Three

separate tests were performed for station-keeping, discrete gust disturbances and

sustained gust disturbances. In this Chapter the procedure and results of this testing

is presented. Additionally, conclusions are drawn as to the performance and overall

usability of the proposed control algorithm presented in Chapter 4.

6.1 Sensors and Instrumentation

For the purposes of flight testing the quadrotor vehicle (see Chapter 3) was

employed. This vehicle was equipped with a camera to obtain optic flow measure-

ments. In order to get a panoramic view of the surroundings a panoramic mirror

was used. Optic flow calculations were performed by sampling rings of pixels out of

the resulting image and averaging the resulting optic flow between them (see Figure

6.1). This optic flow was transmitted to a ground station which performed control

calculations using LABVEIWTM .
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Figure 6.1: Optic flow was calculated using rings of pixels extracted from the image

of a parabolic mirror. The results across these rings were averaged to

obtain a more accurate measurement.

(a) Vicon Camera (b) Vicon Markers

Figure 6.2: Vicon Camera and Markers
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In addition to optic flow measurements a visual positioning system manufac-

tured by ViconTM was employed. This system was used both to record vehicle

position and orientation as well as providing the heading of the vehicle for feedback

control. Vicon’s positioning system works by using multiple high speed cameras

equipped with strobe lights of a specific wavelength. The cameras monitor the po-

sition of retro-reflective markers by monitoring the reflection on the strobe lights.

From these reflections the position of markers can be triangulated. The measure-

ments are accurate to less than a millimeter and measurements are taken at 350Hz.

The cameras and markers are shown in Figure 6.2.

6.2 Vehicle Control

Vehicle control was handled off-board the vehicle. Measurements from the

on-board camera were transmitted to a ground-station via a bluetooth connection.

Additionally, this computer would receive data from the ViconTM positioning sys-

tem. Using a LABVIEWTM program the ground-station would calculate the control

inputs and transmit these via bluetooth back to the vehicle. During takeoff and trial

setup the vehicle would be controlled using a PID-controller and data supplied by

the positioning system. Additionally, joystick input was used to set the position to

be held. Once the trial pressing and holding a button on the joystick would switch to

the optic-flow based control. Under this mode the optic flow data would be used for

feedback with the heading angle being provided by the positioning system. While

this mode was engaged joystick inputs were ignored.
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(a) Testing Environment (b) 36-inch drum fan used to intro-

duce gust disturbances

Figure 6.3: Flight Testing Environment

6.3 Environment and Wind Gusts

The vehicle operated in a roughly circular environment approximately two

meters in radius will walls textured in a random barcode. This pattern was chosen

to give good optic flow. However, any image with good contrast and spatial variation

should perform similarly. Wind gusts were supplied using a 36 inch drum fan shown

in Figure 6.3. During wind gust testing the section of wall in from of the fan would be

removed and replaced to start and stop the gust applied to the vehicle. This section

of wall was left untextured to avoid introducing optic flow when it was removed.

Additionally, this wall was fitted with ViconTM position markers so that the timing

of the gust would be available in the recorded data. A diagram of the environment

layout is given in Figure 6.3.

In order to examine the qualities of the airflow supplied by the fan a LaCross

Technology R©EU-3010U handheld anemometer (see Figure 6.6) was used to sample
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Figure 6.4: Flow Velocity Sampling Grid: Inside the fan radius the grid was Carte-

sian while outside and angular grid was used.
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Figure 6.5: Gust Fan Flow: (a) Flow field and sampling grid (b) Profiles of wind

magnitude at four distances

Figure 6.6: Anemometer used to measure fan flow

53



flow velocities throughout the flow field. Due to the rotational symmetry of the fan

flow the sampling grid used stated at the centerline of the fan and extended laterally

to the edge of the fan. From the edge of the fan the grid was then extended in an

angular fashion to capture any spreading of the flow with distance. Figure 6.4 shows

the design of the sampling grid. At each point on the grid the outward and lateral

wind flow was measured to give the direction and magnitude of the wind. In many

cases measurements were periodic in time and a central value was taken. Due to

the limitations of the anemometer the direction (sign) of the flow is not captured.

While this is not problematic for the outward flow the lateral flow direction could

likely vary. For the results shown in Figure 6.5 the direction has been assumed to be

outward from the fan centerline. Even with this assumption it is possible to see the

flow is relatively laminar. Moreover, an angular spread between 10 and 20 degrees

can be noted. Additionally, the magnitude profiles plot in Figure 6.5 show that close

to the fan the flow has a central low velocity region with very strong lobes towards

the edge of the fan. Furthermore, the as distance increases these lobes diminish and

the central velocity increases to produce a more Gaussian like profile. Additionally,

the flow near the center of the profile is approximately 10-15 ft/s (3-4.6 m/s or

6.8-10.2 mph). While this velocity is faster than the 3 m/s used in simulation (see

Chapter 5) it does not vary greatly.
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6.4 Station-Keeping Testing

The first type of testing undertaken was under still-air conditions. This had

two purposes. First, to establish a baseline behavior for the vehicle under optic flow

control. Second, was to characterize the integral term drift present in the algorithm

implementation.

In each individual trial the vehicle would initially operate under ViconTM

supplied position control. Once the vehicle was in the air and settled the optic

flow control was engaged. Ideally, this control would hold the same position as the

ViconTM control however due to the discontinuity of this control switch in practice

the vehicle would attempt to hold another position. Thus, there was a period of

time where the vehicle attempts to reach this position. This position was taken to

be the first sharp change in direction exhibited by the vehicle. This will be referred

to as the settling point. Following this the vehicle was flown under optic flow control

until conditions warranted ending the trail (ie. wall collisions, insufficient battery

charge, etc.).

Results for ten trails are presented in Figure 6.7. The results are presented in

two plots. The first gives the distance from the settling point throughout the trial

run. Additionally, a linear regression line is plotted to show the average drift rate

of the run. The time of the settling point is also marked. The second plot shows

the vehicle trajectory. Additionally, the environment walls (black) and bounds of

collision (dashed red) are approximated.

Examining the results presented in Figure 6.7 a couple of qualitative state-
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Figure 6.7: Trails 1-3: Station-Keeping Testing
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Figure 6.7: Trails 4-6: Station-Keeping Testing
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Figure 6.7: Trails 7-9: Station-Keeping Testing
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Figure 6.7: Trail 10: Station-Keeping Testing

Trial Mean Drift Max Disp. Trial Length Max Drift

— meters/sec meters seconds meters/sec

01 0.00631 1.237 118.95 0.0104
02 0.01632 1.121 41.20 0.0272
03 0.01485 1.902 99.96 0.0190
04 0.00544 1.284 155.99 0.0082
05 0.01103 1.193 63.97 0.0186
06 0.00347 1.161 43.14 0.0269
07 0.01043 1.266 89.87 0.0141
08 0.01417 1.138 52.86 0.0215
09 0.01427 2.281 99.30 0.0230
10 0.01143 1.681 106.40 0.0158

Max 0.01632 2.281 155.99 0.0272
Min 0.00347 1.121 41.20 0.0082
Mean 0.01077 1.426 87.16 0.0184
Median 0.01123 1.252 94.59 0.0188

Table 6.1: Statistics For Station-Keeping Trials
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ments can be made. First, the trajectory plots show clearly that the vehicle exhibits

station-keeping behavior. Secondly from the displacement plots, the integration drift

can be observed. A more quantitative analysis is presented in Table 6.1. Here the

mean drift for each trial, as quantified by slope of the trend lines in Figure 6.7,

is presented along with the maximum displacement from the settling point, trail

length and maximum drift calculated by dividing the maximum displacement by

trail length. Additionally, the maximum, minimum, mean and median across all

ten trails are shown. The results presented in Table 6.1 shown the mean drift across

all trials to be approximates 1.1 cm/sec while the mean maximum drift is approxi-

mately 1.8 cm/sec. Drift at these rates results in the vehicle moving 1 meter in 90.9

and 55.6 seconds respectively or roughly a minute and a half and a minute. Looking

at the worst case shown in maximum of the maximum drift results in 36.8 seconds

to drift a meter.

6.5 Discrete Gust Testing

The first type of wind testing performed involved introduction of short dura-

tion, or discrete, wind disturbances. A discrete gust, though not completely realistic,

allows for a more simplistic examination of the gust response of the vehicle [17]. The

main goal of these tests was to characterize the ability of the vehicle to detect and

respond to gust disturbances.

Each individual trail of testing consisted of a number of stages. First, the

vehicle would takeoff using position control provided by the ViconTM system. Once
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the vehicle was in position the optic flow based control would be engaged. As

discussed in Section 6.4 after switching of controllers the vehicle would move to a

new position. After the vehicle is allowed to settle in this position the untextured

section of wall covering the fan was removed starting the discrete gust. This gust

would last approximately 2-3 seconds before the wall was replaced. Then the vehicle

would exhibit a returning behavior. Once the vehicle had returned, its motion was

then characterized by a turn in the direction of the drift. The position of this turn

was considered to be the point of return. In Figure 6.8 the results of fifteen trials

are presented. In the trajectory plots the black and red circles represent the ideal

environment walls and collision bounds for the testing however these are approx-

imate. The green lines and arrow show the idealized wind bounds and direction.

The trajectory (blue) is plotted between the time of the optic flow control being

engaged and disengaged. Additionally, the wind start, wind end and return points

are marked. In the displacement plots the displacement from the wind start position

in the direction of the wind disturbance is shown. Only the wind direction is shown

to attempt to exclude any effects of drift. Finally, the wind start, wind stop and

return times are plotted.

Results presented in the plots in Figure 6.8 reveal a couple trends. First, that

the vehicle shows a returning type behavior in all trials. Additionally, in about a

third trails the point of return in very close to the starting position. A quantitative

analysis of each trial along with statistics across all fifteen trails are presented in

Table 6.2. The first two columns show the vehicle return error and maximum error

in meters from the ”wind on” point. The third column shows the return error as
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Figure 6.8: Trials 1-3: Discrete Gust Testing
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Figure 6.8: Trails 4-6: Discrete Gust Testing
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Figure 6.8: Trails 7-9: Discrete Gust Testing
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Figure 6.8: Trails 10-12: Discrete Gust Testing
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Figure 6.8: Trails 13-15: Discrete Gust Testing
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Trial Return Error Max Error % Error

— meters meters percent

01 -0.1248 0.9887 12.6
02 0.0667 1.1360 5.8
03 0.3905 1.4380 27.7
04 0.1572 1.0140 15.5
05 -0.3298 1.0460 31.5
06 -0.0706 1.6090 4.4
07 0.3365 1.8690 18.0
08 -0.0961 1.7060 5.6
09 0.0321 1.6120 2.0
10 0.0272 1.9380 1.4
11 -0.4207 1.5740 26.7
12 -0.3197 1.6840 19.0
13 0.1981 1.7550 11.3
14 0.3211 1.6110 19.9
15 0.8200 2.4310 33.7

Max 0.8200 2.4310 33.7
Min 0.0272 0.9887 1.4
Mean 0.2474 1.5608 15.7
Median 0.1981 1.6110 15.5

Table 6.2: Statistics For Discrete Gust Trials
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a percentage of the maximum error. Additionally, the minimum, maximum, mean

and median are given for each quantity. From the mean values presented in Table

6.2 show the vehicle being displaced approximately 1.56 meters and returning within

about a quarter meter or about 15.7% of the maximum displacement.

6.6 Sustained Gust Testing

In addition to discrete gust disturbances longer disturbances were examined.

This allowed quantification of the boundedness of the vehicle position to the wind

disturbance. These trials are largely identical to the discrete gusts trial with the

exception that the wind was allow to remain on until the vehicle settled at a constant

displacement. This resulted in gust disturbances that lasted approximately 5-10

seconds. The results for the trials in Figure 6.9 are presented in the same fashion

as the discrete gust trials.

The plots shown in Figure 6.9 reveal behavior similar to the discrete gust

trials. However, a few additional observations can be made. First, in the presence

of constant disturbance the vehicle settles at a more or less constant displacement

from the starting position, averaging about 2 meters. Furthermore, the return error

con be seen to be somewhat larger that in the discrete trials. The statistics on the

return and maximum errors is presented in Table 6.3. Observation of the mean

values here shows both a larger return and maximum displacement than in the

discrete case with the return error more than doubling while the maximum error

increases by about a third. This results in a percent error of approximately 30% or
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Figure 6.9: Trials 1-3: Sustained Gust Testing
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Figure 6.9: Trails 4-6: Sustained Gust Testing
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Figure 6.9: Trails 7-9: Sustained Gust Testing
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Figure 6.9: Trail 10: Sustained Gust Testing

almost twice that of the discrete case.

6.7 Comparison to Simulation

As a final step, simulations matching the conditions of the station-keeping

trials were performed to understand the causes of drift. In this testing the quadrotor

was started at various positions in a circular room of the same size as used in flight

tests. This positions included the center of the room and two positions at 50% of

the radius. Additionally, gains were matched as closely as possible to the flight

testing gains. Exact matching was not possible due to the two implementations

of the Gradient Method yielded optic flow outputs of differing sizes. Whether this

difference is caused by differences in implementation or extraneous factors, such

as image quality, was not determined. Results were collected for two gain matrix

scaling factors. The first was 1/1000 which was comparable to the actual scaling

between the two Gradient Method implementations. The second was 1/200 which
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Trial Return Error Max Error % Error

— meters meters percent

01 0.0295 1.211 2.4
02 0.3917 1.218 32.2
03 1.0230 1.789 57.5
04 -0.1543 1.609 9.5
05 -0.0947 2.571 3.7
06 0.6747 1.848 36.5
07 0.5176 2.409 21.5
08 1.6540 2.827 58.5
09 1.7770 2.721 65.3
10 0.2405 1.842 13.1

Max 1.7770 2.827 65.3
Min 0.0295 1.211 2.4
Mean 0.6557 2.005 30.0
Median 0.4546 1.845 26.9

Table 6.3: Statistics For Sustained Gust Trials

was chosen to allow the noise on the optic flow signal, which was less in simulation

versus flight testing, to have more effect on the vehicle. These results are presented

in figures 6.10 and 6.11. Each figure shows three trials at different positions in the

environment. Each trial is presented in two plots. The first shows distance from the

starting position along with a linear regression to show the drift rate, as in Figure

6.7. The second the trajectory of the vehicle. Additionally, the second plot shows a

inset with the position in the room displayed.

The trails shown in Figure 6.10 show both a tendency for sudden ”jumps” in

motion of the vehicle. This is alos seen in some of the flight tests (see Figure 6.7).

Also, a tendency for an initial jump, as seen in flight tests, appears in the trails

though it is small in all cases. However, with the exception on the first trial, aside

from the initial jump, little drift is seen. However, in the higher gain trails shown in
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Figure 6.10: Trials for Gain Scale Factor 1/1000
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Figure 6.11: Trials for Gain Matrix Scale Factor 1/200
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Figure 6.11, drift can be seen both in the form of discrete jumps as seem in the prior

trials and in a more continuous fashion. These results suggest that the drift and

presence of discrete jumps in motion result from the Gradient Method generated

optic flow. Additionally, the initial change in position may be at least partially due

to this algorithm. It should be noted, when Lucas-Kanade was simulated under

these conditions no vehicle motion resulted.

6.8 Conclusions

Based on the simulation results presented in Chapter 5 it was concluded that

the use of optic flow calculated using Gradient Method was likely insufficient for

station-keeping purposes. Additionally, it was seen that Gradient method gave

much poorer results than optic flow provided by the Lucas-Kanade algorithm. Here

using the Gradient Method algorithm, the vehicle still showed a returning response

when subjected to wind disturbances with a 15.7% and 30% error in the discrete

and sustained gust trials. Furthermore, station-keeping trial showed and average

drift rate of about 1.1 cm/sec or 90.9 seconds per meter. While, both the return

error and drift results are large compared to what might be practically usable they

are relatively close with only a separation of an order of magnitude or less. This

fact along with the large separation in the return error showed between the two

optic flow algorithms in the simulation results suggests that with a better optic flow

algorithm, such as Lucas-Kanade, resonable proformance is likely achievable.
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Chapter 7

Conclusions and Future Work Recommendations

As stated in Section 1.1 the goal of this study was to examine the possibility

of a optic flow based controller for station-keeping and wind rejection. Towards this

end theory surrounding both optic flow and wind simulation was examined. Addi-

tionally, a modified robust LQR with integral feedback was designed. Finally, the

performance of this controller was testing using both simulation and flight testing.

7.1 Conclusions

Examination of the results from the testing performed leads to a number of

conclusions both about the performance of this specific controller and the use of

optic flow for the purposes of station-keeping and wind rejection. First, high noise

optic flow algorithms such as Gradient Method are not sufficient to achieve the goals

of this study. In both simulation and flight testing the Gradient Method, while suf-

ficient to show both station-keeping and wind response behaviors, resulted in too

much error to be practically usable. Second, more robust optic flow algorithms such

as Lucas-Kanade are likely to show significantly better performance than simplistic

methods. Based on the large differences in the simulation results between Gradient

Method and Lucas-Kanade it is expected that a similar trend of improvement would

be seen in hardware implementation. Third, the effect of rotational kinematics on
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integration error is significant especially if large rotational wind components are

present. Based on the simulation results, the larger rotational wind of the Von-

Karman PSD caused a large improvement when using the correction for rotation

kinematics suggesting the error introduced due to this was large. Fourth, the con-

troller proposed in Chapter 4 is likely sufficient to achieve the goals of this study

given accurate measurements. The large difference between Lucas-Kanade and Gra-

dient Method performance suggests that noise in measurement is the limiting factor

in controller performance thus with low-noise measurements the controller should

exhibit adequate performance. Fifth, drift is a significant problem but will likely

improve with better optic flow algorithms. Flight testing showed drift to be sig-

nificant, while simulation showed significant drift only for Gradient Method thus a

significant improvement is expected with better algorithms.

7.2 Limitations of the Proposed Controller

While these proposed method does offer a station-keeping methodology that is

cheap relative to GPS methods and computationally inexpensive when compared to

computer vision (see Chapter 1), it is not without limitations. One of the foremost is

imposed by integrator drift. Since drift is present this effectively limits the duration

for which the station-keeping is viable. Thus, a pilot is required to periodically reset

the hold position. Furthermore, optic flow and WFI only provide relative measures

of velocity and thus position, when integrated. While it is sufficient for feedback

that these measures are merely proportional to actual values, actual distances are
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unavailable. Additionally, the body-inertial frame correction requires an accurate

measure of heading. Here perfect knowledge was assume and significant improve-

ment was shown. However, the only way to capture heading from optic flow while

in hover is integration. If the drift of this integration is large then another sensor,

such as a magnetometer may be required for implementation. Finally, in the current

implementation only the planar states are controlled. Thus either expansion of the

controller to the full state case or having an inner-loop controller to control these

states is necessary.

7.3 Recommendations for Future Work

Based on the conclusions of this research three areas are seen in which future

work should proceed. First, as can be noted in many of the conclusions better

optic flow algorithms are expected to show significant improvement, thus better al-

gorithms should be examined. Results of such testing should provide insight into

the quality of optic flow, and thus computation cost, required for adequate perfor-

mance. Second, testing should be performed under more realistic wind conditions.

As shown in simulation in chapter 5 the type of wind disturbance had a sizable effect

on performance thus for thoroughness realistic wind disturbances should be exam-

ined. Third, examination of methods to reduce integration drift should be examined.

This could potentially allow implementation with simpler optic flow algorithms thus

reducing computation requirements.
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