

ABSTRACT

Title of Document: LONG-TERM INFORMATION

PRESERVATION AND ACCESS

 Sang Chul Song, Doctor of Philosophy, 2010

Directed By: Professor Joseph F. JaJa, Department of

Electrical and Computer Engineering

An unprecedented amount of information encompassing almost every facet of

human activities across the world is generated daily in the form of zeros and ones,

and that is often the only form in which such information is recorded. A good fraction

of this information needs to be preserved for periods of time ranging from a few years

to centuries. Consequently, the problem of preserving digital information over a long-

term has attracted the attention of many organizations, including libraries,

government agencies, scientific communities, and individual researchers. In this

dissertation, we address three issues that are critical to ensure long-term information

preservation and access.

The first concerns the core requirement of how to guarantee the integrity of

preserved contents. Digital information is in general very fragile because of the many

ways errors can be introduced, such as errors introduced because of hardware and

media degradation, hardware and software malfunction, operational errors, security

breaches, and malicious alterations. To address this problem, we develop a new

approach based on efficient and rigorous cryptographic techniques, which will

guarantee the integrity of preserved contents with extremely high probability even in

the presence of malicious attacks. Our prototype implementation of this approach has

been deployed and actively used in the past years in several organizations, including

the San Diego Super Computer Center, the Chronopolis Consortium, North Carolina

State University, and more recently the Government Printing Office.

Second, we consider another crucial component in any preservation system –

searching and locating information. The ever-growing size of a long-term archive and

the temporality of each preserved item introduce a new set of challenges to providing

a fast retrieval of content based on a temporal query. The widely-used cataloguing

scheme has serious scalability problems. The standard full-text search approach has

serious limitations since it does not deal appropriately with the temporal dimension,

and, in particular, is incapable of performing relevancy scoring according to the

temporal context. To address these problems, we introduce two types of indexing

schemes – a location indexing scheme, and a full-text search indexing scheme. Our

location indexing scheme provides optimal operations for inserting and locating a

specific version of a preserved item given an item ID and a time point, and our full-

text search indexing scheme efficiently handles the scalability problem, supporting

relevancy scoring within the temporal context at the same time.

Finally, we address the problem of organizing inter-related data, so that future

accesses and data exploration can be quickly performed. We, in particular, consider

web contents, where we combine a link-analysis scheme with a graph partitioning

scheme to put together more closely related contents in the same standard web

archive container. We conduct experiments that simulate random browsing of

preserved contents, and show that our data organization scheme greatly minimizes the

number of containers needed to be accessed for a random browsing session.

Our schemes have been tested against real-world data of significant scale, and

validated through extensive empirical evaluations.

LONG-TERM INFORMATION PRESERVATION AND ACCESS

By

Sang Chul Song

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Joseph F. JaJa, Chair/Advisor
Professor Jimmy Lin
Professor Gang Qu
Professor Amitabh Varshney
Professor Donald Yeung

© Copyright by
Sang Chul Song

2010

 ii

Dedication

To Hyesook, Minjoo, Emily,

and my parents…

 iii

Acknowledgements

Although it is only my name that appears on the cover of this dissertation, I am

indebted to so many people around me. First and foremost, I would not be able to

express my gratitude eloquently enough toward my advisor, Dr. Joseph F. JaJa. I

must acknowledge that I have been incredibly fortunate to have him as my mentor.

His encouragement, supervision, support and patience throughout the last five years

have enabled me to develop an understanding of the subject.

I would like to thank the members of my dissertation examining committee, Dr.

Jimmy Lin, Dr. Gang Qu, Dr. Amitabh Varshney, and Dr. Donald Yeung. They all

happily agreed to serve on the committee, and kindly spent their time examining the

dissertation and providing valuable advices and suggestions to improve it.

I have been incredibly lucky to have such wonderful group members. Mike

Smorul has been a great office mate whose vast knowledge about the Linux system

administration and Java programming has always been a dependable resource. I

especially thank Jusub Kim who introduced me to my advisor five years ago. I

enjoyed working with Muluwork Geremew on digital file formats. I have also had the

pleasure to associate with Jing Wu, Zheng Wei, and Chi Cui.

I am grateful that I have met so many wonderful fellow Korean graduate students

at Maryland: Younggu Kim, Seung-Jong Baek, Dong Hun Park, and Soo Bum Lee

have provided me with valuable life advices and guidance in hard times. I have had a

pleasure to know Joon-Hyuk Yoo, Sunghyun Chun, Dongwoon Hahn, Jaehwan Lee,

Woochul Jeon, Seokjin Kim, Youngho Cho, Zaeill Kim, Sang-Kyo Han, Eunmi Kim,

 iv

Kwangsik Choi, Taek-Il Oh, Jin Seock Ma, Young Wook Kim, Keunmin Ryu, Hojin

Kee, Inseok Choi, Kyunjin Yoo, Woomyung Park, Sukhyun Song, Jookyung Lee,

Sungwoo Park, Hyung Tae Lee, Sung Jun Yoon, In Keun Cho, Jonghyun Choi,

Jeongho Jeon, Kyowon Kim and Kangmook Lim, Eunyoung Seo, Ginnah Lee and

Hyunsoo Kim. I especially thank Il-Chul Yoon and Minkyung Cho - We all hated

brainteasers and tricky algorithm questions, but I still thank them for bringing us

together during the hardest time of my life.

Above all, I am deeply indebted to my family. My parents have always been the

essential component of my life. Their unconditional love, support, encouragement,

and sacrifice have made who I am now. I also thank my elder sister, Mi-Yeon Song,

and her family who have always stood by me and helped me in countless ways. My

parents-in-law have been truly patient and supportive even though they had not been

able to see their loving daughter for several years.

My deepest thanks must go to my beautiful wife and our precious kids. I know

Hyesook would have become a greater scholar than I am now, but she selflessly and

successfully turned herself into an even more respectable person – a caring wife and

wise mother. Her love, endurance and support have undeniably been the vital source

of the happiness in our family. I thank my two daughters, Minjoo and Emily, for

being cute, smart and healthy. They have been, and will be, the greatest reason and

motivation for every important step I take in my life. I know that they will soon rock

the world, or better yet, they will become as beautiful and clever as their mom.

 v

Table of Contents

Dedication .. ii

Acknowledgements .. iii

Table of Contents .. v

List of Tables .. ix

List of Figures .. x

Chapter 1 Introduction... 1

1.1 Background ... 2

1.2 Fragility of Digital Information .. 4

1.3 Information Discovery and Delivery .. 5

1.4 Data Layout ... 7

1.5 Contributions .. 8

1.6 Dissertation Outline .. 11

Chapter 2 Ensuring Long Term Integrity of Digital Information 12

2.1 Overview ... 12

2.2 Related Work .. 13

2.2.1 Basic Techniques ... 13

2.2.2 Techniques for Digital Archives .. 16

2.3 Our Approach ... 20

2.3.1 Constructing Integrity Tokens and Witness Values 22

2.3.2 Updating Integrity Information .. 27

2.4 Putting the Ideas Together – the ACE Tool .. 29

 vi

2.4.1 ACE Components .. 29

2.4.2 ACE Workflow .. 30

2.4.3 ACE Preliminary Performance Evaluation .. 33

2.5 Conclusion .. 35

Chapter 3 Full-text Search Approach for Time-evolving Data 36

3.1 Overview ... 36

3.2 Related Work .. 39

3.3 Model .. 41

3.4 Our Approach ... 43

3.4.1 Analytical Model ... 46

3.4.2 Temporal Relevance and Scoring .. 52

3.5 Empirical Evaluation .. 55

3.5.1 Datasets Used ... 56

3.5.2 Evaluation Methodology .. 57

3.5.3 Empirical Results on Total Number of Postings .. 59

3.5.4 Empirical Results on Average Number of Postings Examined for a Typical

Query Load ... 62

3.5.5 Empirical Evaluation of Ranked Search Results 64

3.6 Conclusion .. 67

Chapter 4 Physical Location Index for Time Evolving Data 68

4.1 Overview ... 68

4.2 Related Work .. 70

4.2.1 Location Index for Web Archives .. 70

 vii

4.2.2 Persistent Data Structures .. 72

4.3 Our Indexing Goal .. 74

4.4 Our Strategy – Persistent Indexing Structure for Archives (PISA) 75

4.4.1 Persistent Indexing Structure for Archives (PISA) 76

4.4.2 Operations in PISA .. 78

4.5 Performance Analysis ... 88

4.5.1 Query Time .. 89

4.5.2 Insert Time ... 90

4.5.3 Space .. 92

4.5.4 Performance Comparison ... 94

4.6 Summary ... 94

Chapter 5 Optimizing Data Layout for Web Contents for Fast Access 96

5.1 Overview ... 96

5.2 Related Work .. 97

5.2.1 Archival Storage .. 98

5.2.2 Graph Partitioning Techniques .. 99

5.2.3 Link Analysis Technique – PageRank ... 101

5.3 Our Method ... 104

5.3.1 Edge Weight ... 105

5.3.2 Graph Partitioning .. 106

5.4 Experimental Evaluation of Our Scheme ... 108

5.4.1 Edge-Cut .. 112

5.4.2 Simulation .. 113

 viii

5.5 Conclusion .. 118

Chapter 6 Concluding Remarks and Future Work ... 120

Appendix A PISA: Parameters and Invariants ... 124

A.1 Parameter Conditions ... 124

A.2 Determining Parameter Values .. 127

Appendix B Proofs of E[X] and E[Y] .. 128

 ix

List of Tables

Table 2.1: ACE Performance .. 34

Table 3.1: Datasets .. 57

Table 3.2: Time Window Sizes ... 60

Table 4.1: PISA Parameters .. 82

Table 4.2: PISA Variables .. 82

Table 4.3: Performance Comparison (Cells with the best performance are shaded) .. 94

Table 5.1: The Two Datasets Used for Evaluating Our Method 109

Table 5.2: Edge-Cut Results ... 112

Table 5.3: Simulation Parameters ... 113

 x

List of Figures

Figure 2.1: Merkle Tree .. 25

Figure 2.2: ACE Architecture ... 30

Figure 3.1: Document Versions with Validity Time Intervals 42

Figure 3.2: Structure of Our Proposed Temporally-augmented Inverted Index. 46

Figure 3.3: Illustration of Parameters X and Y ... 48

Figure 3.4: Illustration of Values of λi, μi and δi ... 49

Figure 3.5: Wikipedia: E[X], E[Y] and E[X]+E[Y] ... 51

Figure 3.6: Library of Congress: E[X], E[Y], and E[X]+E[Y] 52

Figure 3.7: Temporally-anchored Queries .. 53

Figure 3.8: Virtual Time Windows ... 58

Figure 3.9: Wikipedia: Total Number of Postings .. 60

Figure 3.10: Library of Congress: Total Number of Postings 61

Figure 3.11: Wikipedia: Average Number of Postings Examined 63

Figure 3.12: Library of Congress: Average Number of Postings Examined 63

Figure 3.13: Wikipedia: Relative Recall and Kendall’s τ ... 65

Figure 3.14: Library of Congress: Relative Recall and Kendall’s τ 66

Figure 4.1: Blocks and Entries in PISA .. 77

Figure 4.2: PISA Example .. 78

Figure 4.3: URLTIMEQUERY Operation ... 79

Figure 4.4: URLTIMESPANQUERY Operation .. 80

Figure 4.5: TIMESLICEQUERY Operation .. 81

Figure 4.6: PISA Block (Live entries clustered together for illustrative purpose) 82

 xi

Figure 4.7: INSERT Procedure ... 84

Figure 4.8: BLOCKINSERT Procedure .. 84

Figure 4.9: VERSIONSPLIT Procedure.. 85

Figure 4.10: KEYSPLIT Procedure ... 85

Figure 4.11: INSERT Z, X, and Z ... 86

Figure 4.12: KEYSPLIT after Inserting T ... 87

Figure 4.13: INSERT S, S, and S .. 87

Figure 4.14: VERSIONSPLIT after INSERT(S, 11/1/2007, ∞) ... 88

Figure 5.1: Conventional Allocation of Pages to Containers 110

Figure 5.2: Container Construction Based on Graph Partitioning with or without

EdgeRank (Line 3) ... 111

Figure 5.3: Histogram of Number of Inter-Container Hops for UMIACS Web Graph

 ... 115

Figure 5.4: Histogram of Number of Distinct Containers Accessed for UMIACS Web

Graph ... 115

Figure 5.5: Histogram of Number of Inter-Container Hops for Stanford Web Graph

 ... 116

Figure 5.6: Histogram of Number of Distinct Containers Accessed for Stanford Web

Graph ... 116

Figure 5.7: Average Number of Inter-Container Hops ... 117

Figure 5.8: Average Number of Distinct Containers .. 118

Figure B.1: Illustration of Values of λi, μi and δi .. 129

 1

Chapter 1

Introduction

Preservation of digital information is widely recognized as a critical emerging

issue that will soon confront most organizations, including government agencies,

libraries and museums, and scientific communities. As a consequence, these

organizations along with individual researchers have recently started to give

considerable attention to the problems that need to be resolved to address long-term

preservation and access of digital information. Their studies have identified major

challenges regarding institutional and business models, technology infrastructure, and

social and legal frameworks. Focusing on the technology component, good

summaries of the main technology challenges are presented in [26,27,70]. As a result,

a significant number of initiatives have been set up to develop prototypes to address

some of the challenges. These initiatives include the Internet Archive [34], the

National Library of Australia’s Pandora project [62], the Stanford University

Libraries’ Lots of Copies Keep Stuff Safe (LOCKSS) project [47], the

Transcontinental Persistent Archive Prototype (TPAP) [56], the Universal Virtual

Computer [45], the Electronic Records Archives program at the National Archives

[76], the Library of Congress’ National Digital Information Infrastructure and

Preservation Program (NDIIP) [76], and the International Internet Preservation

Consortium (IIPC) [32].

 2

In this chapter, we provide an overall background and present a summary of

some of the major technical challenges involved in digital preservation. We end the

chapter with an overview of the main contributions of this dissertation.

1.1 Background

In the era of digital information, the efforts to preserve the human knowledge

have broadened to also include documents, images, audio, video, social networking,

and their inter-relationships in their digital form. An unprecedented amount of

information encompassing almost every facet of human activities across the world

exists in digital form, and is also growing at an extremely fast pace. Moreover, the

digital representation is often the only form in which such information is recorded. It

has become evident that the traditional archiving process of physical artifacts is

extremely lacking to manage the preservation of digital information. Clearly, novel

methodologies are needed to curate, store, preserve, and access this new type of

information on a long-term basis.

There is a generally common agreement that the long term preservation of digital

information requires systematic methodologies to address the following requirements

[33].

• Encapsulation of information regarding content, structure, context,

provenance, and access within each digital object to enable the long-term

maintenance and lifecycle management of the digital object.

 3

• Efficient management of technology evolution, both hardware and software,

and the appropriate handling of technology obsolescence (for example, format

obsolescence).

• Efficient risk management and disaster recovery mechanisms either from

technology degradation and failure, or natural disasters such as fires, floods,

and hurricanes, or human-induced operational errors, or security failures and

breaches.

• Efficient proactive mechanisms to ensure the authenticity and integrity of

content, context, and structure of archived information throughout the

preservation period.

• Ability for information discovery and content access and presentation, with an

automatic enforcement of authorization and IP rights, throughout the lifecycle

of each object.

• Scalability in terms of ingestion rate, capacity and processing power to

manage and preserve large scale heterogeneous collections of complex objects,

and the speed at which users can discover and retrieve information.

• Ability to accommodate possible changes over time in organizational

structures and stewardships, relocation, and repurposing.

Meeting the above requirements, however, inevitably involves a number of

technical challenges. They are due in part to the large amount of important digital

information generated on a daily basis, the fast pace of technology evolution (and the

corresponding format changes), the relative fragility of digital information and

computing infrastructure (centralized vs. distributed, or federated), the temporality of

 4

each preserved item, and the complex relationship among the preserved items. Some

of the issues are explained in more detail in the following sections.

1.2 Fragility of Digital Information

Digital information is extremely fragile and susceptible to various threats – much

more so than paper records or physical artifacts [70]. Even in a perfect world with no

malicious attacks, there exist no digital media that allow for “permanent” recording.

Various media technologies degrade over time, potentially causing random bit errors,

yet no precise timeline is usually given for data deterioration, either. For example,

Bairavasundaram, et al [2] reports that disk drive failures contributed 400,000

instances of data corruption over a period of 41 months in 1.53 millions of disk drives.

Moreover, technology changes involving systems and software may render old

contents inaccessible. There can also be malicious security attacks, altering or

destroying digital contents without being immediately detected. Accidental

operational errors cannot be overlooked either. Permanent loss of data can also occur

due to natural hazards and disasters such as fires, floods, and hurricanes.

We note that most of the archive’s holdings may be accessed infrequently, and

hence several cycles of technology evolution may occur, thereby causing corrupted

files to go undetected until it is too late to retrieve the initial content. Two additional

factors complicate this problem further. First, an object will typically be subjected to

a number of transformations during its lifetime, including those migrative

transformations due to format obsolescence. These transformations may alter the

object in unintended ways. Second, all current integrity checking mechanisms are

 5

based on some type of cryptographic techniques, most of which are likely to become

less immune to potential attacks over time, and hence they will need to be replaced

with stronger techniques when this occurs. As a consequence, a thorough approach to

ensure the integrity of a long-term archive has to also be able to address these two

factors.

Efforts to preserve the integrity of the objects have actively been made since the

introduction of magnetic tapes in 1950s. As a result, many techniques have been

introduced, ranging from simple binary checksums to more complicated public-key-

based digital signatures. However, none of these techniques seems to offer a general

approach that is scalable, cost-effective, and can efficiently manage the integrity of

digital objects over the lifetime of the archive. In particular, none of the existing

techniques is capable of proactively monitoring and detecting any alterations,

including malicious ones, to the data in a cost effective way.

1.3 Information Discovery and Delivery

Another critical component of long-term preservation is to allow users to find

and explore information contained in an archive within a temporal context. In essence,

the key purpose of long-term preservation is to pass the current knowledge to future

generations. It is, thus, vital for any preservation system to provide an effective way

of finding and accessing the relevant contents as needed by future users.

Unfortunately, this is a highly non-trivial problem, due to the large, ever-growing

size, and evolving archived data, the temporality of the preserved items, and more

importantly, the hard-to-predict access modes that future users would expect.

 6

Preservation systems that solely rely on a relational database with well defined

schemas may allow their users to find information easily using well-structured

queries. However, fitting every type of digital objects into a fixed set of schemas is

simply impossible, especially that future usage may require completely new ways to

search and access the archived data. We clearly need a more general and flexible

framework to enable effective information discovery and delivery of the preserved

data.

A popular access scheme for digital libraries is through a pre-defined metadata

catalog format such as MARC [48]. In this scheme, searches are performed on the

predefined set of metadata fields. However, it has at least three serious deficiencies.

First, it has a scalability problem. For example, as of today, the Minerva project of the

Library of Congress [54] was able to catalog only about 2,300 sites among 30,000

archived sites in the September 11 collection. Next, the classification hierarchy

currently in use for the catalog-based scheme is likely to evolve over time. Updating

existing records according to a new hierarchy will be extremely expensive for large

archives. Finally, and most importantly, the catalog scheme significantly restricts

users’ accessibility, greatly limiting the effective information discovery process.

Users who want to find documents that contain a rare term will have a hard time

locating the right documents unless the rare term was successfully captured in a

metadata field, which is unlikely in most cases.

A much more flexible scheme is full-text search. In order to more effectively

support full-text search over a conventional “static” collection, a substantial amount

of work has been developed through the traditional information retrieval field,

 7

resulting in particular in extremely effective web search engine technologies.

However, the direct application of the search engine techniques is not suitable for

long-term archives, due to the temporality of preserved items. Queries with temporal

constraints will need to look up the entire index, which will grow in size as the

archive grows over time. Furthermore, relevancy scoring is performed against the

entire holdings. This renders the conventional full-text search scheme inefficient for

handling queries within a temporal context.

We are not aware of any prior work that incorporates the temporal dimension in

an integral way for full-text search including temporal scoring. In fact, most of the

published papers seem to take the ‘search-all-then-filter’ approach, which is

inherently inefficient, and focus on improving the search performance by reducing the

search space using a number of augmented data structures.

1.4 Data Layout

Organizing items to be preserved in storage should receive careful attention so as

to support quick access and retrieval. This is analogous to arranging physical items in

a grocery shop – if items that are likely to be purchased together are placed closely,

customers will be able to more efficiently find them. Similarly in a digital archive, in

order to support quick access, we must take into account users’ expected access

patterns when organizing information in storage; yet, it is almost impossible to

predict such patterns during data preparation and ingestion.

A possible approach is through data mining. That is, the access log can be

analyzed to discover the group of items that are more likely to be accessed together.

 8

However, not only does this approach require the information about past accesses, the

newly ingested data may also be completely of different types, making data mining

techniques inappropriate.

A better approach can be based on inter-related items. Indeed, many types of

digital information are inter-related. Web pages are hyperlinked to one another,

scholarly papers cite one another, and computer program files include/link one

another. In many cases, these relationships are explicitly expressed and easy to grasp

too. This scheme relies only on the inter-relationships among the newly ingested data,

and thus is independent of the current size of the archive. Under the assumption that

these inter-related items are more likely to be accessed closely in time, organizing the

more closely related items together can help improve the performance of handling the

future access requests.

Although the second approach may be more appealing for inter-related data,

there are two issues that need to be addressed. First, we need to validate the

assumption that more related items will be accessed more closely in time. Second, we

need to come up with a good way to find groups of related items, and develop good

layout schemes to place related items as close to each other as possible.

1.5 Contributions

In this dissertation, we consider the topic of long-term preservation and access of

digital information. We particularly focus on three critical issues: ensuring the

integrity of the preserved data over the long term, retrieving relevant information

within a temporal context, and optimizing the layout of archived contents.

 9

Briefly, our main contributions include the following.

• A methodology that proactively ensures the integrity of the preserved

contents on a long-term basis, in an efficient and rigorous fashion.

• A methodology that enables fast and effective discovery and delivery of

preserved information through the full-text search with temporal constraints.

• A methodology that organizes inter-related data such that future navigation

through the preserved data can be efficiently performed

Our integrity checking scheme detects any alterations in an archive including

malicious ones. More specifically, we introduce efficient and rigorous cryptographic

techniques and related procedures to periodically audit the integrity of the various

objects held in the preservation system, which, with high probability, will be able to

discover any changes made to any preserved item in the system, including changes

introduced by a malicious user. Our methodology also allows a party independent of

the archive to audit any object in the archive and certify its integrity with extremely

high probability, as long as a small size of cryptographic information is kept intact.

The current implementation of our scheme, Audit Control Environment (ACE), has

been deployed in multiple sites across the country, including the University of

Maryland, San Diego Super Computer Center, National Center of Atmospheric

Research, and North Carolina State University. For the past two years, it has been

actively monitoring 20TB of data managed by the Chronopolis Consortium.

Collections include the California Digital Library’s Web-at-Risk collection, the

collection from InterUniversity Consortium for Political and Social Research, and

 10

also the collections from the Scripps Institution of Oceanography–Geological Data

Center and North Carolina Geospatial Data Archiving Project.

Our second major contribution concerns the development of a new methodology

for temporal information retrieval. More specifically, we are interested in a full-text

search index that returns a list of (document ID, time) pairs given a search phrase and

a time constraint. We introduce an approach based on time windows, where a

separate inverted index is built for each time window. We empirically prove how our

index organization substantially limits the search space while allowing the efficient

and scalable computation of the relevance scores relative to the state of the archive as

it existed during the time constraint

The final major contribution concerns the problem of how to place inter-related

data in storage to optimize access time. We particularly consider a web archive since

web objects serve as an excellent example of complex digital information, possessing

both spatial and temporal inter-relationship. Note that the techniques and

methodologies developed for web objects may be extended to other forms of digital

objects without much difficulty. More specifically, we address the problem of how to

organize the web objects so that we will be able to navigate through the linking

structure of the web objects as effectively as possible. In our approach, we utilize a

link analysis scheme and a graph partitioning heuristics to determine which web

objects should be placed together in the same container. Our methodology is very

general and can be used to optimize different browsing patterns. We perform

simulations on multiple real-world data to illustrate the performance of our scheme

 11

and compare it to the common scheme currently used to organize web objects into

web containers.

1.6 Dissertation Outline

This rest of the dissertation is organized as follows. We start with the long-term

integrity issue in Chapter 2, where we introduce our approach based on simple, yet

rigorous cryptographic techniques. In Chapters 3 and 4, we examine the information

discovery and delivery for a long-term archive. In particular, we introduce a novel

full-text indexing scheme for time-evolving data in Chapter 3, followed by an optimal

persistent data structure that can return the location information of a corresponding

data item for an arbitrary temporal query in Chapter 4. In Chapter 5, we present a

methodology that analyzes inter-relationships among objects to be preserved to better

layout them on storage in such a way as to optimize future access performance. We

conclude in Chapter 6.

 12

Chapter 2

Ensuring Long Term Integrity of Digital

Information

In this chapter, we address the core requirement of ensuring integrity of

information in a long-term preservation system. Our approach, based on rigorous

cryptographic techniques, involves the generation of a small-size integrity token for

each object, some cryptographic summary information, and a framework that enables

cost-effective regular and periodic auditing of the archive’s holdings depending on

the policy set by the archive.

2.1 Overview

One of the most challenging problems in digital preservation is how to ensure the

integrity of each object of the archive’s holdings throughout the lifetime of the object.

Digital information is, in general, very fragile due to many potential risks ranging

from hardware and software failures to major technology changes rendering current

software and hardware unusable, to the ever-growing number of computer and

networking security breaches.

A number of bit-level integrity checking techniques tailored for storage systems

have been described in the literature [65,66,72]. However, these techniques fall short

of the requirements of a long-term digital archive. Other techniques have been

developed specifically for digital archives, including those that appeared in

 13

[14,46,85,47], but none seems to offer a general approach that is applicable to the

different emerging architectures for digital archives (including centralized, peer to

peer, and distributed archives) and that is capable of proactively monitoring and

detecting any alterations to the data in a cost effective way.

The main focus of our study, therefore, is the development of a rigorous

methodology to certify the integrity of any object in the archive’s holdings, and detect

any alterations, including malicious alterations. More specifically, we introduce

efficient cryptographic techniques and related procedures to periodically audit the

integrity of the various objects held in the archive, which will be able, with high

probability, to discover any changes made to any object in the archive, including

changes introduced by a malicious user. In fact, our methodology allows a party

independent of the archive to audit any object in the archive and certify its integrity

with extremely high probability, as long as around 100 KB/year of cryptographic

information is kept intact.

2.2 Related Work

In this section, we describe some of the most common strategies used to ensure

data integrity starting with the basic techniques for bit streams stored on various types

of media or transmitted over a network.

2.2.1 Basic Techniques

Data residing on storage systems or being transmitted across a network can get

corrupted due to media, hardware, or software failures. Disk errors, for example, are

 14

not uncommon, and data on disk can get corrupted silently without being detected

because a faulty disk controller causes misdirected writes [72]. This type of errors

remains undetected because most storage software expects the media to function

properly or fail explicitly rather than mis-operate at any point during its life time. The

integrity of data can also get compromised because of software bugs. For example,

data read from a storage device can get corrupted due to a faulty device driver or a

buggy file system which can cause data to become inaccessible [72]. Moreover, data

integrity can be violated because of accidental use or operational errors. Unintended

user’s activity might cause the integrity to be broken. For instance, deletion of a file

might lead to a malfunction of specific application/system software that depends on

the accidentally deleted file. As a result of this action, integrity violations may occur.

The simplest technique for implementing integrity checks is to use some form of

replication such as mirroring. The integrity verification can then be made by

comparing the replicas against each other. This method can easily detect a change in

the stored data only if the modification is not carried out in all the replicas and no

errors are introduced during data movement. While maintaining at least one copy of a

replica is inevitably necessary to recover from all types of potential data corruptions,

performing constant bit-by-bit replica comparisons to detect integrity violation for

every object in an archive is an expensive operation that is prone to errors and that

cannot counter malicious alterations.

A well-known approach used in RAID storage is based on coding techniques, the

simplest of which is parity checking [65]. The parity across the RAID array is

computed using the XOR logical function. The parity value is stored together with the

 15

data on the same disk array or on a different array dedicated to the parity itself. When

the disk containing the data or the parity fails, the data or parity can sometimes be

recovered using the remaining disk and performing the XOR operation. The XOR

parity is a very special type of erasure codes, which can be much more powerful

([66] explains erasure codes well). They all involve expanding the data using some

types of algebraic operations in such a way that some errors may be detected and

corrected. While these techniques are critical in maintaining some level of bit-level

integrity on storage systems, they are not designed to support high-level data integrity

since decoding will be required every time the data accessed, and they entail a

significant expansion of the data. Moreover, since only certain errors can be corrected,

they still require that a “master copy” be stored in some kind of a back-up system or a

“dark archive”.

A widely used method is based on cryptographic hashing (also called checksum)

techniques. In this approach, a checksum of the bit-stream is computed and is stored

persistently either with the data or separately. The checksum is calculated using a

cryptographic hash algorithm. In general, a cryptographic hash algorithm takes an

input of arbitrary length and converts it into a single fixed-size value known as a

digest or hash value. A critical property of cryptographic hash algorithms is that they

are based on one-way functions, that is, given the hash value of a bit-stream A, it is

computationally infeasible to find a different bit-stream B that has the same hash

value [37,50]. Assuming that the hash values are correct, data integrity can be verified

by comparing the stored hash value with a newly computed hash from the data.

Although no known hash function has been proven to be truly one-way, the most

 16

common hash functions in use include MD5, SHA-1, SHA-256, and RIPEMD-160,

all of which seem to work well in practice (in spite of the recent attacks that

illustrated how to break MD5 [81] and SHA-1 [80]). The major problem with this

scheme is that it cannot detect malicious alterations since the hash function used by

an archive is usually well-known, and hence an intruder or a malicious user within the

archive can change an object and the corresponding hash value so that they still match.

2.2.2 Techniques for Digital Archives

We now describe some of the most notable methods that have been suggested for

integrity verification for digital archives.

The most popular and, perhaps, the most important method for addressing

integrity checking of digital archives is to compute a hash for each object in the

archive and store the hashes in a separate, secure, and reliable registry (the hash could

in addition be stored with the object as well). Integrity auditing involves periodic

sampling of the content of the archive, computing the hash of each object, and

comparing the computed hash with the stored hash value of the object. While such a

scheme may be sufficient for small, centralized archives, it has two serious

shortcomings relative to our stated goals. The first is that a malicious user within the

archive or an external intruder can modify both an object and its corresponding hash

value (since the hash function is known), in which case there will be no way to detect

such an error. The second shortcoming is the fact that the whole scheme depends on

ensuring the integrity of all the hash values, which will grow linearly with the number

of objects in the archive. Even in the absence of malicious alterations, this is a non-

 17

trivial problem for large archives over the long term, especially because the hashing

schemes themselves will inevitably change over time in which case we have to track

the particular hashing scheme used at any specific time. In the method that we will

propose, we only need to ensure the integrity of a single hash value per day,

independent of the number of objects in the archive, which is a substantially easier

problem to manage.

Another approach uses a combination of replication and hashing. In this

approach, each digital object is replicated over a number of repositories. Integrity

checking can be performed by computing the hash of each copy locally, and sending

all the hashes to an auditor. A majority vote enables the auditor to discover the faulty

copies, if any. This is the primary integrity scheme used in LOCKSS [47], which is a

peer-to-peer replication system for archiving electronic journals in which each

participating library collects its own copy of the journals of interest. LOCKSS uses a

peer-to-peer inter-cache protocol (LCAP) which is a cache auditing protocol. It runs

LCAP continuously among all the caches to detect and correct any damage to cached

contents. The process is similar to opinion polls in which all the caches vote. When a

storage peer in LOCKSS calls for an audit of a digital object, each peer that owns a

replica computes the corresponding hash value and sends back the value to the audit

initiator. If the computed digest agrees with the overwhelming majority of the replies,

then the object is believed to be intact. If the digest disagrees with the overwhelming

majority, the object is believed to be tampered with, and the copy is discarded while a

new copy is fetched from the publisher or one of the caches with the right copy. As

such, LOCKSS is the only scheme described in this sub-section which handles both

 18

detection and correction simultaneously. However, this approach depends crucially

on the assumption that there are many replicas for each object. While this assumption

may be reasonable for archiving electronic journals at different libraries, many of the

current archives do not use the peer-to-peer infrastructure, or create many replicas of

each archival object. A replica voting approach can be expensive, requiring a

significant communication overhead. In general, achievement of consensus among

distributed nodes that do not trust each other (and some of which may be faulty) is a

difficult problem that has been studied extensively in the distributed computing

literature. In fact, as reported in [19], about 50 malicious nodes could abuse the

LOCKSS protocol to prevent a network of 1000 nodes from auditing their contents.

We note that additional set of defenses [19] including admission control, de-

synchronization, and redundancy can be used to counter such an attack but clearly

this makes the scheme significantly more complicated and costly.

Another possible approach is to make use of digital signatures [11] based on

public key cryptography. In essence, such a scheme involves a private–public key pair

for performing signing/verification operations, and a supporting public-key

infrastructure. The basic premise is that the private key is only known to the owner,

and the public key is widely available. A message signed by a private key can be

verified using the corresponding public key. The digital signature technology takes

direct advantage of this property. The digital object is signed using the private key

(note that the signature depends on the digital object and the private key), and

anybody can verify the signature using the corresponding public key. If the

verification process succeeds, the digital object is considered intact (and the identity

 19

of the author of the signature verified). Hence, a possible approach to preserving the

integrity of digital archives would be to sign each digital object using a private key

only known to the archive. However, the certificates (public keys signed by a widely

trusted certificate authority) have a finite life with a fixed expiration date. Hence, we

need to have a trusted and reliable method to track the various public keys used over

time. In general, this is a difficult problem that can be solved using sophisticated

techniques based on Byzantine agreement protocols [42] and threshold cryptography

[10], which shed serious doubts on its practicality in a production environment. Also,

should the private key of the archive be compromised, the whole archive becomes at

risk. This implies that a malicious user within the archive or an intruder, who gets

access to the private key, can easily compromise the contents of the whole archive.

Another potential problem with this scheme is its complete dependence on a third

party, such as certificate authorities, which may or may not exist over time.

We now introduce the time-stamping technique, which provides an alternative

approach to the digital signature scheme outlined above. A time stamp of a digital

object D at time T is a record that can be used any time in the future (later than T) to

verify that D existed at time T. The record typically contains a time indicator (date

and time) and a guarantee (that depends on the time-stamping service) that D existed

in exactly this form at time T. One way to implement time stamping is through a

Time Stamping Authority (TSA) that attaches a time designation to the object (or its

hash) and signs it using the private key of the TSA. The British Library [14] uses this

strategy through an independent TSA. With the usage of the public key of the TSA,

any alteration to any object, malicious or otherwise, can be detected, which in fact

 20

achieves one of our major objectives. However, the verification procedure depends

completely on the trustworthiness of a single entity, namely, the TSA. Should the

TSA be compromised or disappear sometime in the future, the whole scheme breaks

down completely. Moreover, this scheme is computationally expensive, and we still

have to deal with the problem of tracking the various public keys used by the TSA

over time.

Another approach to time stamping, which will be used as the basis for our

scheme, makes use of linked (or chained) hashing [21], which amounts to

cryptographically chaining objects together in a certain way such that a temporal

ordering among the objects can be independently verified. In this approach, there is

no need for a fully trusted third party or for tracking certificates over time. In an

attempt to address the problem of tracking public keys in a digital signature scheme,

the linked hashing technique was also suggested to time stamp the public keys [46].

Our scheme directly applies the linked hashing to target objects, thereby eliminating

the necessity of maintaining the public-key infrastructure.

In the next section, we will describe the linked hashing technique as used in our

approach and demonstrate its ability to achieve our goals in a cost-effective way

without depending on a fully trusted archive or a third party.

2.3 Our Approach

As can be seen from the previous section, the previous integrity checking

schemes revolve around the following techniques:

• Majority voting using replicated copies of the object or their hashes.

 21

• Computing and saving a digest (“fingerprint”) for each object, using some

well-known hash functions. The auditing process consists of computing the

digest from the object and comparing it to the saved digest.

• Creating a digital signature of the object and saving it “with the object.” The

auditing process makes use of the public key of either the archive or a third

party depending on the particular scheme used. Either way, the integrity of the

scheme requires a fully trusted third party and the tracking of certificates over

time.

We start by introducing the formal notion of a cryptographic hash function. Such

a function compresses an arbitrarily long bit-string into a fixed length bit-string,

called the hash value, such that the function is easy to compute but it is

computationally infeasible to determine an input string for any given hash value.

More formally, we would like our hash function H to satisfy the following two

properties.

• Pre-image resistance (one-way property): Given any hash value x, it is

computationally infeasible to find any bit-string m such that x = H(m).

• Weak collision resistance: Given any bit-string m, it is computationally

infeasible to determine a different bit-string m' such that H(m) = H(m').

Another property that is sometimes a requirement of cryptographic hash

functions is given here.

• Collision resistance: It is computationally infeasible to determine any two

different strings m and m' such that H(m) = H(m').

 22

These assumptions are the basis for many well-known cryptographic algorithms,

including those used in public-key cryptography (see, for example, [50]).

Unfortunately, none of the available hash functions can be shown to satisfy these

properties. However, several are accepted by the community as reasonably secure and

are currently in widespread use. As noted in Section 2.2, recent study has shown how

to break the schemes based on MD5 and SHA-1, but the actual threat posed by such

study is not clear and, moreover, there are other schemes that remain intact. It is

anticipated that stronger algorithms will be developed over time and, hence, any

auditing strategy for long-term digital archives has to provide mechanisms to

integrate the newer algorithms without compromising the integrity of the objects that

used earlier algorithms.

2.3.1 Constructing Integrity Tokens and Witness Values

The starting point of our approach is a scheme that computes a digest for each

object and stores the corresponding digests in a separate registry. A digest is typically

the result of applying a one-way hash function on the object, but for our purposes, we

will not exclude other techniques for generating digests especially for multimedia

objects. As mentioned earlier, a major problem with this scheme is how to ensure the

integrity of the digest registry over the long term, especially because the registry

grows linearly with the number of objects ingested into the archive. Clearly

“attaching” the digest to the object does not solve this problem either.

One can address this problem by compressing all the digests into a small number

of hash values, which we will call witness values, using collision-resistant, one-way

 23

hash functions. For example, we can generate one witness value per day, which

cryptographically represents all the objects processed during that day, and hence the

total size of all the witness values over a year is quite small (around 100 KB),

independent of the number of objects processed during the year.

Given the small size of the witness values, they can be saved on reliable read-

only media such as newspapers or archival quality optical media, and hence their

integrity can be assured under reasonable assumptions about caring for the media and

refreshing the content often as necessary. However it will be extremely time-

consuming to conduct regular audits on a large scale archive using the witness values

because the auditing of a single object will require the retrieval of the digests of all

the objects processed during a day as well as reading the corresponding witness value

from a reliable medium. We next show how to counter this problem in a cost effective

way.

In order to simplify the presentation, we consider the typical scenario where the

generation of the cryptographic information necessary for integrity auditing is placed

at the end of the ingestion process, just before an object is archived. We organize the

processing of objects into rounds, each of which covers some time interval that is

dynamically determined. The length of the time interval depends on the operation of

the archive, and may correspond to a fixed duration such as a minute or an hour, a

number of objects between a certain minimum and a certain maximum, or may

correspond to the time it takes to process a batch of objects according to the archive’s

schedule. During each round, digests of all the objects being processed can be

 24

compressed using any number of schemes, including, for example, the trivial scheme

of hashing a concatenation of all the digests in a certain order.

A particular class of such schemes is based on the so-called hash linking, which

was introduced to ensure that the relative temporal ordering of the objects processed

during a round is preserved and cannot be altered without changing the final value.

We will make use of the Merkle tree [51], which is one of the most widely used hash

linking schemes. More specifically, the digests of all the objects being processed in a

round form the leaves of a balanced binary tree such that the value stored at each

internal node is the hash value of the concatenated values at the children. A random

digest value may also be inserted into the tree at each level to ensure that the number

of nodes at each level is even (except for the root). The value computed at the root of

the tree is the round hash value, which represents the compressed value of all the

digests (and objects) processed during the round. That is, a change to any of the

objects will result in a different round hash value, and, moreover, it is

computationally infeasible to determine another set of objects (including reordering

the objects) that will yield the same round hash value.

We now define the proof of the digest of an object, represented in a leaf of the

Merkle tree, as the sequence of the hash values of the siblings of all the nodes on the

unique path from that leaf to the root.

 25

o1 o2 o3 o4 o5 o6 o7 o8

h12 h34 h56 h78

h1234 h5678

hR

Shaded values are the proof for o5

Figure 2.1: Merkle Tree

Consider, for example, a round involving eight objects with the digest values h1,

h2, …, h8 (See Figure 2.1 for the corresponding tree). The values of the internal nodes

are given by:

hR = H(h1234||h5678),

h1234 = H(h12||h34), h5678 = H(h56||h78),

h12 = H(h1||h2), h34 = H(h3||h4), h56 = H(h5||h6), h78 = H(h7||h8)

The proof of the object whose digest value is h5 will be the following sequence:

PR5 ={(h6, r), (h78, r), (h1234, l)},

where r designates right sibling and l left sibling.

In general,

PRi = {(hj, r or l) | hj is the sibling of each node

on the unique path from hi to root}

The proof is an essential part of the integrity token that is generated for each

object. In essence, the integrity token consists of the digest, the proof, and a time

 26

stamp of the round. It also includes other information that will be needed over the

long term, which will be briefly described in the next section.

Given the integrity token of an object, we can quickly compute the round hash

value by following the path defined by the proof and performing the

concatenation/hash operations as appropriate. For example, with the above PR5, the

round hash value can be computed from rh = H(h1234 || ((h5 || h6) || h78)). Note that

the length of such a path is logarithmic in the number of objects processed during a

round and, hence, it is quite small relative to the number of objects.

We reiterate the process by compressing the ordered set of round hash values

using one of the hash linking schemes such as Merkle’s tree. The resulting value

serves as a witness value. The granularity of this process can be set dynamically

depending on the archive’s schedule. Here, we assume that all the round hash values

during a day are linked together to generate a witness value. This process can of

course be repeated n times, making n-layers of hash linking trees. In our prototype,

we stopped at n = 2, since the resulting witness values were quite small (less than

100KB a year).

Once determined, the witness values are stored in reliable read-only media. Our

approach depends only on the correctness of the witness values, which is a very

reasonable assumption given the total size of the witness values. Based on this

assumption, we can achieve the following:

• Our scheme can detect an alteration to any digital object in the archive,

malicious or otherwise.

 27

• There is a cost-effective procedure that can periodically audit the contents

of the archive to discover any alteration on any object within a short time

after the alteration was made.

• Any party, independent of the archive, can audit any object in the archive

and assert its integrity based on the witness values.

• No fully trusted third party is needed.

We note that a number of schemes can be used to correct errors once they are

identified by our method, depending on the architecture of the archive. For a

centralized archive with an isolated dark archive, a master copy can be retrieved to

correct the corrupted object. For a federated or peer-to-peer distributed archive, a

certified (by our scheme) remote replica can be used to replace the corrupted object

using a mechanism that will depend on the technical details of the infrastructure.

We will later describe our ACE (Auditing Control Environment) system that

accomplishes all the goals stated above. We next show how our approach can be

adapted to deal with object transformations and updating the hash schemes used by

the archive.

2.3.2 Updating Integrity Information

There are two cases in which the integrity information must be updated. The first

case is when the archive decides to substitute a stronger hash function for one of the

hash functions currently in use because of some recently discovered potential threats.

The second is when the archive decides to apply certain transformations to some of

the objects (because of the possibility of a format becoming outdated, for example).

 28

There is an existing solution to deal with renewing the integrity information for the

first case by re-registering each related object with the old integrity token attached to

it (see, for example, [22]). Such a solution will ensure our ability to verify the

integrity of the object since its ingestion into the archive as articulated in this earlier

study. This process increases the size of the integrity token, but has no impact on the

sizes of the other integrity components.

We now discuss how to renew the integrity information in the case when the

object is subjected to a transformation. A possible solution would be to re-register the

new object by concatenating the hashes of the old and the new form of the object and

an identifier of the transformation, and use the resulting string as if it were the hash of

an object to be registered. However, this scheme could be computationally

demanding and too complicated to be of practical use. We assume that an archive has

to preserve certain (sometimes all) versions of an object which can form an

authenticity chain between the original version and the current version of the object.

The chain may consist of the current version and the original version of the object.

Since a transformation will lead to a new version of the object, and, hence, a new

object with its own identifier (which could be the old identifier concatenated with the

version number), it will participate in a hashing round to obtain its new cryptographic

information using the same method as before. However, in this case, we will include

the unique identifier of the previous version in the authenticity chain in the integrity

token. Note that the integrity of an object should be verified before it is transformed

into a new format to ensure its authenticity at this time of its history. The inclusion of

the identifiers of previous versions in the integrity tokens will enable us to go through

 29

the authenticity chain and establish the integrity of each version as well as the validity

of the corresponding transformation.

2.4 Putting the Ideas Together – the ACE Tool

Making use of the ideas described in the previous section, we presented in [73],

an early implementation of the ACE (Auditing Control Environment) prototype

system. More recently, we released Version 1.0 of ACE, which includes some

refinements to the earlier prototype. Here, we present a brief overview of the ACE

architecture, illustrate its auditing processes, and report on its performance on a large

scale production environment.

2.4.1 ACE Components

ACE consists of two major components: the first, called IMS (Integrity

Management System), is a third-party service provider that generates the integrity

tokens upon request from an archive. A single IMS can simultaneously serve multiple

archives, including multiple nodes of a distributed archive. It also maintains the round

hash values and generates the witness values. In ACE, the integrity tokens contain

several pieces of information in addition to the proof and the time stamp (for example,

the ID of the hash algorithm used, the version number of object, and last time the

object was audited). Also, ACE links consecutive round hash values sequentially. The

second major component is the Audit Manager (AM), which is local to an archive and

functions as a bridging component between the IMS and the archive. In particular, the

AM sends requests to the IMS to generate the integrity tokens for a number of objects,

 30

and once received, the tokens are stored in a local registry. Figure 2.2 shows the

overall ACE architecture of the general case of a distributed archive with dispersed

nodes operating asynchronously.

ACE Integrity Management System
(AIMS)

Audit Manger
(AM)

Archiving
Node

Archiving System Middleware

Audit Manger
(AM)

Archiving
Node

Figure 2.2: ACE Architecture

2.4.2 ACE Workflow

In this subsection, we discuss a typical workflow with ACE, which includes two

major operations: registration and auditing.

2.4.2.1 Registration

For an object to be registered into ACE, the audit manager creates a registration

request and submits it to the IMS. When the IMS issues an integrity token for the

object, the audit manager stores it locally in a special registry for the archive (local

node, if it is a distributed archive). In the meantime, the IMS runs a continuous series

 31

of aggregation rounds. Each round closes either when the round receives the

maximum number of registration requests, or when the maximum amount of time

allocated for a round is reached, whichever comes first. These parameters are

assigned by the IMS administrator. This round interval policy can be also overridden

through a special object registration request, which forces the current round to

immediately close and return an integrity token. Object registration requests received

during a round are aggregated together along with a number of random values

through the Merkel-tree hash-linking. The random values are added as necessary to

ensure a minimum number of hash-linking participants in a round. The resulting

round hash value is managed internally within the IMS, and an integrity token is

issued to each AM who originally sent a registration request.

At the end of each day, the IMS constructs a witness value using the hash round

values of the day, sends it to the participating archives, and stores it in a reliable

medium (the current ACE implementation publishes witnesses to a Google group, and

stores the value on a CD-ROM). These witnesses are cryptographically dependent on

round hash values, which are themselves cryptographically linked to the hashes of the

objects registered during that day.

2.4.2.2 Audit Process

ACE currently performs periodic auditing on the archive’s objects following the

policy set by the manager of the archive. The policy can be set at an object or

collection level. For example, the policy for a certain collection could involve

auditing all the objects in the collection every three months, while the policy set for

another collection could be to audit all the objects in that collection every six months.

 32

A default policy will be set during registration time unless the archive manager sets it

differently. Moreover, the auditing process can be invoked by the archive manager at

any time on any object.

When applied to a specific object O, the auditing process consists of the

following steps:

1. The audit manager computes the hash value of O and retrieves its integrity

token.

2. Making use of the computed hash value of O and the proof contained in the

integrity token, the audit manager computes the round hash value.

3. Making use of the round time stamp contained in the integrity token, the

audit manager requests the corresponding round hash value from the IMS.

4. The audit manager successfully terminates the auditing process if the

computed hash value in Step 1 is equal to the hash value stored in the

integrity token, and the two round hash values computed in Steps 2 and 3

are equal. Otherwise, it sends an error alert to the archive manager.

It is clear that if the two hash values, as well as the two round hash values,

computed through the auditing process are equal, then the object and the integrity

token are intact with a very high probability. A more elaborate process, which will

happen infrequently, will involve the witness values as follows. The audit manager

requests from the IMS the proof for the round hash value. On receiving this request,

the IMS aggregates all the round hash values for the day to determine the proof, and

returns the proof to the audit manager. Making use of the proof, the AM computes the

corresponding witness value of the day and compares it to the value stored on the

 33

read-only media. This elaborate process will ensure the trustworthiness of the IMS. A

failure of this process will automatically invalidate the object under the auditing

process.

We note that the same process can be applied by a party independent of the

archive to verify the integrity of an object. The independent party will request the

integrity token from the archive, and then the round hash value and its proof from the

IMS. Making use of this information, she/he can quickly compute the witness value

of the day on which the object was registered into ACE. She/he can then compare it

with the corresponding witness value stored in the read-only media. Any alterations

introduced by the archive or the IMS will be detected with very high probability.

2.4.3 ACE Preliminary Performance Evaluation

ACE Version 1.0 has been deployed against a variety of collections managed by

the Chronopolis archiving environment. Chronopolis is collaboration between the San

Diego Supercomputer Center (SDSC) / the University of California, San Diego

(UCSD) Libraries, National Center of Atmospheric Research (NCAR), and the

University of Maryland (UMD), which involves a distributed archiving architecture

with three geographic nodes at SDSC, NCAR, and UMD. Chronopolis is currently

managing substantial collections from NDIIPP partners, including the California

Digital Library (CDL) Web-at-Risk collection, the InterUniversity Consortium for

Political and Social Research (ICPSR) collection, and collections from the Scripps

Institution of Oceanography–Geological Data Center (SIO–GDC), and North

Carolina Geospatial Data Archiving Project (NC State). ACE has been operational

 34

during the past year within the Chronopolis environment. The current default ACE

auditing policy is to audit files at the University of Maryland every 30 days. Table 2.1

illustrates the performance of a single audit manager on the collections audited at

UMD, amounting to approximately 6 million files. A large fraction of the time is

spent on accessing the collections across the network.

Table 2.1: ACE Performance

Collection No. of Files Size (GB) Audit Time

CDL 46,762 4,291 20h 32m

SIO-GDC 197,718 815 6h 49m

ICPSR 4,830,625 6,957 122h 48m

NS State 608,424 5,465 32h 14m

During the audit period on the CDL collection, a single audit manager was able

to run at the rate of about 60MB per second on average, almost fully utilizing the file

transfer bandwidth available. For the other collections, where there were more small

files, the audit speed was further limited by the overhead accessing each file. For

example, on the ICPSR collection, the audit manager ran at the rate of 13MB per

second, having to open up each of about 4.8 million files. These results indicate that

the actual time spent by an audit manager to perform the core audit process is

negligible. It is small enough to be effectively hidden by the unavoidable overhead

for accessing the collections. We note that multiple audit managers can be run

concurrently on different collections to increase the performance almost linearly as

necessary.

 35

2.5 Conclusion

In this chapter, we presented a new methodology to address the integrity of long-

term archives using rigorous crypto graphic techniques. Our approach depends only

on the use of hash functions and linking schemes, and is independent of an external

infrastructure such as PKI. The computational requirements of our approach are

minimal and the overall solution can be implemented on any archive architecture. We

built ACE as a complete prototype that executes this strategy and showed its

effectiveness on large collections in Chronopolis. More details about ACE can be

found in [73].

 36

Chapter 3

Full-text Search Approach for Time-evolving Data

A number of emerging large scale applications such as web archiving and time-

stamped web objects generated through information feeds involve time-evolving

objects that can be most effectively explored through search within a temporal

context. We develop in this chapter a new approach to handle the temporal text search

of a time evolving collection of documents. Our approach introduces both a new

indexing organization that substantially limits the search space and an effective

methodology for computing the temporally anchored relevance scores. Moreover, we

develop an analytical model that can be used to determine the temporal granularity of

the indexing organization which minimizes the total number of postings examined

during query evaluation. Our approach is validated through extensive empirical

results generated using two very different and significant datasets.

3.1 Overview

The initial driving application behind this work is the temporal text search over

an archived collection of time-evolving web contents. Currently, many organizations

are building web archives that contain collections of temporal snapshots of web pages

that have been captured by a crawler at a frequency that typically depends on the

dynamic nature of the pages. For example, the Internet Archive [75] has been

capturing significant snapshots of the internet over 15 years. The Internet Archive

 37

currently holds over 4.5 petabytes of data and is growing at the rate of about 100

terabytes per month as of March, 2009 [49]. Other major web archiving efforts

include the Minerva project by the Library of Congress [54], UK Web Archiving

Consortium [78], the National Library of Australia’s Pandora project [62], and the

Web-at-Risk led by the California Digital Library [86]. Given the critical role of the

internet as the main communication and publication medium in our information-based

society, and the ephemeral nature of the web, it is expected that web archiving efforts

will dramatically grow in the future. Other similar collections include multi-versioned

documents generated through collaborative environments and time-stamped objects

generated through various information feeds. It is clear that the exploration of such

continuously growing archives can be substantially simplified through text search

within a temporal context.

We explore in this chapter a new approach to carry out a temporal text search

over a collection of documents that evolve over time. Specifically, given a query that

includes a text and a time span, the goal is to return a ranked list of temporally

relevant documents. That is, the returned documents must have been valid during the

query time span and the relevance scores are computed relative to the state of the

collection as it existed during the query time span. The importance of temporal

relevance can be illustrated with the example of searching for “September 11” during

the month of “May 2001” which, if temporally unconstrained, will return an

overwhelming number of irrelevant results.

 38

We present a new methodology to address this problem and outline the necessary

core algorithms to support it. More specifically, our main contributions include the

following:

• A new indexing organization that substantially limits the search space while

allowing the efficient and scalable computation of the relevance scores

relative to the state of the collection as it existed during the query time span.

• An analytical model that can be used to determine the temporal granularity of

our overall indexing organization which minimizes the total number of

postings examined during query evaluation.

• Extensive empirical evaluation of the overall scheme in terms of its storage

requirement, query evaluation, and ranking of search results using two rich

datasets of sizes 2.8TB (uncompressed) and 5.6TB (gzip-compressed)

respectively.

The rest of the chapter is organized as follows. The next section provides a

summary of related work, while Section 3.3 provides a formal description of our

overall model. We introduce our approach and describe our indexing structure, an

analytical model for capturing the tradeoff between index space and query evaluation

performance, and the computation of the relevance scores in Section 3.4. Section 3.5

describes our two major datasets used for evaluation, and provides a summary of our

empirical evaluation results. We conclude in Section 3.6.

 39

3.2 Related Work

For the most part, text retrieval has been concerned with the present state of the

document collection. The search problem for multi-version documents involves

documents that change over time, and the versions of each document are maintained.

In this case, a query will in general include, in addition to a set of terms, a temporal

component (temporally-anchored query), and hence the search outcome is a ranked

list of document versions satisfying the query temporal constraints.

A common approach to handle temporally-anchored queries is to rely on a post-

process filtering. In this approach, a regular search is processed first ignoring the

temporal component. The search results are then filtered according to the temporal

constraints. This approach suffers from two major drawbacks. The first is that the

search space is the same regardless of the temporal constraints and hence many

documents may need to be filtered out. The second major drawback is more

fundamental – the query-document relevancy scores are determined based on the

entire collection and not on the state of the collection as it existed during the query

time span.

We are not aware of any prior work that incorporates the temporal dimension in

an integral way for full-text search including temporal scoring. In fact, most of the

published papers seem to revolve around the above common approach and focus on

improving the search performance by reducing the search space using a number of

data structures. We next summarize the most relevant prior work.

Anick and Flynn [1] describe a “help-desk” system that supports historical

queries. In their system, upon a request for a past version, starting with the most

 40

current version of the object, the reverse sequence of delta changes preceding the

object are applied back until the view of the request version is reconstructed.

Although access costs for the most recent versions are relatively optimized, the cost

increases as the versions move farther into the past. The help-desk system reduces the

overall space requirement for storing documents, and also minimizes the search space

for the most recent version.

Nørvåg introduced a multi-version document database system, V2 [58] and ITTX

[57], and also DyST [59] with Nybø. In essence, V2 takes the search-and-then-filter

approach discussed earlier, but the filtering can be enhanced by optionally having a

supplementary data structure that maps a document version ID to its corresponding

time period. ITTX reduces the search space by decreasing the index size of V2 – It

replaces term / version mappings of postings in V2 with term / version-range

mappings. However, for given query terms, the entire postings lists still need to be

examined, regardless of the query time span. To alleviate this problem, DyST [59]

improves ITTX by employing an additional temporal index. When a postings list

reaches a certain size, a Time Index+ [41], which is a temporal B+-tree, is created and

the contents of the postings list are migrated to the Time Index+. A major

shortcoming in their approach, however, is that neither ITTX nor DyST considers the

relevance scoring aspect of the search results.

More recently, Berberich et. al. [6] presented a scheme called Time Machine to

handle point queries over temporally versioned document collections. A standard

vocabulary is constructed such that, for each term, a postings list of (document ID,

score, time-frame) is maintained. Since these lists can grow extremely large, they

 41

introduce two techniques – temporal coalescing and sublist materialization. Temporal

coalescing reduces the size of each postings list by merging a sequence of postings

that simultaneously have the same document ID and “similar scores”. This is the

index space reduction technique similar to the one used in ITTX, but Time Machine

differs from ITTX in that it factors in “scores” as one of the merge criteria (In ITTX,

a sequence of postings with the same document ID are merged regardless of scores).

Sublist materialization divides each postings list into several sublists according to

some time intervals depending on each list separately. Although the total index size

increases with sublist materialization, the effective search space for a given query can

be reduced, since the searches are localized to corresponding sublists. While their

scheme allows the relevancy scoring of search results, it has a number of limitations.

First, their scheme assumes that scores are comparable to one another regardless of

validity time information in the postings. This implies that the scores are computed

within the context of the entire history of the collection, regardless of the time

constraints of the queries. Also, the index is built based on the pre-computed score

information for each posting. This implies that the index is bounded to a specific

scoring scheme, making it difficult to adopt another scoring scheme later.

3.3 Model

Following the standard information retrieval terminology, we refer to our objects

generically as documents, which in our case evolve over time. Each version of a

document is identified by the document ID and a validity time interval [ti, tj), which

starts from the time ti that the version was first seen until the time tj a different

 42

version is detected or the document ceases to exist. For example, in web archiving, a

document version is seen or detected at the time the corresponding page is crawled. A

document version in this case refers to a web object together with its validity time

interval. We define a document version to be live at time t if its validity time interval

contains t. In our context, a collection D consists of document versions over discrete

elementary time steps, that is, all time values defining validity time intervals are non-

negative integers and a document version is modified, created, or deleted at only one

of these discrete time steps. The state of the collection during a time interval [tu, tv],

denoted by S[tu, tv], consists of all the document versions in D whose validity time

intervals have a non-empty intersection with [tu, tv]. Figure 3.1 illustrates an example

consisting of seven documents and corresponding document versions over 9 time

steps. An arrow head indicates the endpoint of a validity time interval.

t0 t1 t2 t3 t4 t5 t6 t7 t8

doc1
doc2
doc3
doc4
doc5
doc6
doc7

Figure 3.1: Document Versions with Validity Time Intervals

We assume a query model that consists of a set of terms, possibly connected by

Boolean operators, and a temporal specification defined by the query time span [qs,

qf]. Such queries are called temporally-anchored queries. A query reduces to a point

query when qs=qf. The result of the search is a ranked set of document versions that

 43

have validity time intervals overlapping with the query time span. Document

relevance is determined based on the state of the archive during the query time span.

More specifically, relevance is determined by computing similarity scores between

the query and the document versions in S[qs, qt] using statistics over S[qs, qf] as

needed. For our experimental evaluation, we use two types of scoring functions, one

based on Okapi BM25 [69] and the second based on the KL-divergence smoothed by

Dirichlet priors [88]. Hence a number of statistics pertaining to the state S[qs, qf] will

have to be computed or approximated to determine the similarity scores

corresponding to a query whose query time span is [qs, qf]. In our evaluation, our

data model does not take into consideration the linking relationships among

documents, and therefore, we do not consider link-based scoring schemes, such as

PageRank [7] or HITS [40]. We note that a link-based score of a document version is

dependent only on the linking structure of the collection when the document version

was live, and hence that score is independent of the query time span. Therefore it is

possible to include it in each posting and combine it with the more traditional

document scoring techniques.

3.4 Our Approach

In a standard inverted index, each term is associated with a number of postings.

Each posting consists of the ID of the document that contains the term and some

associated payload necessary for computing query-document scores. In the simplest

case, the payload is the term frequency, but may contain additional information such

as term positions (e.g., for proximity queries). We denote a posting as (di p). To

 44

support temporally-anchored queries, postings must be augmented with temporal

information, which will be denoted as (di [tm, tn) p), where [tm, tn) is the validity time

interval of the document version. There are two straightforward ways to extend the

standard inverted index strategy to handle temporally anchored queries, each of which

has a number of significant limitations.

The first consists of building the inverted index of all the document versions in

the collection D. There are at least four significant problems with this solution. First,

postings lists will grow unbounded and present an efficiency bottleneck since query

evaluation algorithms must traverse the postings to score documents. Second, a large

fraction of the document versions will have to be filtered out when computing the

similarity scores since their validity time intervals may not overlap with the query

time span. Such a process is the basis of the prior work mentioned earlier such as V2,

ITTX, DyST, and Time Machine. For instance, Time Machine adapted this approach

to point queries using postings that contain the scores and introduced a number of

heuristics to improve query performance as they relate to point queries. The third

significant problem with this approach is the fact that no fast scheme for computing

the query-document scores based on the appropriate state of the collection seems to

be possible. Finally, as the collection grows, the indexer will face an incremental

update problem on postings lists, which complicates document ingestion and

processing, which may be interleaved with live querying.

The second straightforward approach consists of building, for each discrete time

step, a separate inverted index for all the document versions that are live at that time

step. A temporally-anchored query can then immediately target the appropriate set of

 45

inverted indexes to compute the query-document scores, assuming global statistics

about the state S[qs, qf] can be evaluated quickly. However, such an approach will in

general incur substantial index storage overhead since a long-lived document version

will appear over many time steps causing the postings of all of its terms to be

replicated many times. In addition, this causes many repeated computations of the

score of a document version and a query, one for each time step at which the

document version is alive.

Our proposed solution allows a more general framework than either of the

methods described above. We establish a number of time windows, denoted as T1, T2,

… Tk. Each time window will contain postings of document versions whose validity

time intervals overlap with or are strictly contained in the time window. That is, for

each Ti, we construct an inverted index corresponding to the document versions in

S[Ti]. Search can thus be localized to one or more appropriate time windows, saving

the retrieval algorithm from having to process most postings. Incremental updating as

the collection grows is dramatically simplified since only the most recent time

window is affected. The indexing of new document versions will affect only the most

recent time window, and once a time window is “closed off” corresponding indexing

structures become immutable.

Within a particular time window, the postings associated with each term might

look something like this: (d1 [t1, t2) p) (d1 [t2, t3) p) (d1 [t3, t4) p)… We note that such

a representation can be compressed substantially since each document ID may occur

multiple times on the same list, and there is no need to store time stamps explicitly

 46

since interval widths can be reconstructed from the beginning of the time window.

For the rest of this chapter, we assume this explicit representation for our postings.

The overall structure of our proposed solution is illustrated in Figure 3.2.

Time Window T1: [t0, t2)

d1[t0, t6)p, d3[t0,tt1)p, …

d2[t0,t8)p, d5[t1,t2)p, …

d2[t0, t8)p, d3[t0,t1)p, d3[t1,t3)p, …

term postings list

w1

w2

w3

Time Window T1: [t2, t4)

d1[t0, t6)p, d7[t3,t4)p, …

d2[t0,t8)p, d5[t2,t6)p, …

d2[t0, t8)p, d3[t1,t3)p, d3[t3,t5)p, …

term postings list

w1

w2

w3

Tk: [tn-2, tn)…
…

…

…

Figure 3.2: Structure of Our Proposed Temporally-augmented Inverted Index.

For our approach to work, we have to establish the existence of appropriate time

windows that enable fast query evaluation using compact indexing. To move toward

this goal, we first present an analytical model that shows the existence of time

windows that achieve an optimal tradeoff between index space and query evaluation

time. We then describe an efficient approach to determine the necessary statistics

required for computing the temporal query-document version scores, which are

evaluated relative to the state of the collection over the time span specified by the

query. The claims made in the next two sections will be evaluated through empirical

results presented in Section 3.5.

3.4.1 Analytical Model

The determination of appropriate time windows involves a tension between two

competing goals. Large time windows result in less index space, since fewer

document versions will live across multiple windows, but at the cost of longer

postings lists and the possibility that many of the postings will have to be filtered out

 47

during query evaluation (because their validity time intervals do not overlap with the

query time span). On the other hand, smaller time windows mean that more document

versions will span possibly many consecutive time windows, resulting in many

duplicate postings across the time windows. Based on this dichotomy, we formulate

an optimization problem and derive an analytical solution that achieves an optimal

tradeoff between these competing goals.

We start by introducing some notation. Let t1, t2, …, tn be the elementary time

steps over which documents in our collection evolve. To simplify our analysis, we

assume that the time steps are equally spaced and that the time windows all have the

same size, say z. We note, however, that our approach is more general, and the

analysis can be carried out incrementally as the collection grows. Without loss of

generality, we also assume that k=n/z is an integer representing the number of time

windows T1, T2, …, and Tk. To handle a query with a time span [qs, qf], we need to

consider the postings associated with the consecutive time windows, say Ti through Tj,

which overlap with [qs, qf]. These postings include two superfluous types of postings

that are not needed for processing the query. The first type pertains to the duplicate

document versions that appear in Ti+1 through Tj. The second pertains to those

document versions whose validity time intervals do not overlap with [qs, qf]. We aim

at determining time windows that minimize the total number of these two types of

document versions. More formally, we define our optimization problem as follows.

Let X be the total number of duplicate document versions that appear in Ti

through Tj , that is, the total number of boundary crossings of validity time intervals

between any pair of consecutive time windows. Let Y be the total number of

 48

document versions that appear in Ti through Tj whose validity time intervals do not

overlap with [qs, qf]. Figure 3.3 illustrates X and Y for a simple example. Note that X

decreases as the time window size increases while Y decreases as the time window

size decreases. Our goal is to come up with a value of z that minimizes the sum X+Y.

T1 T2 T3

t0 t1 t2 t3 t4 t5 t6

T4

t7 t8

Query Time Span : [qs=t3, qf=t7]Window size w=2

X

Y
X: The number of document versions crossing boundaries of T2—T3 or T3—T4
Y: The number of document versions appearing within [t2, t8] but not overlapping with [t3, t7]

Figure 3.3: Illustration of Parameters X and Y

We develop an analytical solution assuming that the query time span [qs, qf] is

selected randomly from among all possible time spans. In Appendix A, we prove the

following results concerning the expected value E[X] of X and the expected value

E[Y] of Y.

Let δi be the number of document versions whose validity time intervals contain

ti and let δ be the average of all the δi’s. Then E[X] can be shown to be given by the

following expression:

∑
−

=

−⋅=
1

1
2

2

)(2][
k

i
iziki

n
zXE δ

We can substitute δ for the individual δi’s to approximate E[X] as follows.

 49

δ
k

kXE
3

)1(][
2−

≈ (1)

For sufficiently large k, E[X] can be further approximated by:

δδ
z

nkXE
33

][=≈

This implies that E[X] is linearly proportional to the number of time windows or

inversely proportional to the window size. Note that the two straightforward

approaches mentioned earlier correspond to k=1 (a global index for all the time steps)

and k=n (an inverted index for each time step). Clearly, for k=1, there are no

duplicate document versions, as predicted by the expression of E[X] for small k. For

k=n, the number of duplicate document versions can be proportional to the number of

time windows since long lived documents may cross a fraction of the time steps.

T1 T2

t0 t1 t2 t3 t4 t5 t6 t7 t8

query time span : [qs=t3, qf=t7]

doc1
doc2
doc3
doc4
doc5
doc6
doc7

document version counted toward Y
document version counted toward X

λ1=3
μ1=3
δ1=2

λ2=1
μ2=2
δ2=4

λ3=1
μ3=2
δ3=5

λ4=1
μ4=1
δ4=6

λ5=2
μ5=2
δ5=5

λ6=2
μ6=2
δ6=5

λ7=2
μ7=2
δ7=5

Figure 3.4: Illustration of Values of λi, μi and δi

To estimate E[Y] we let λi be the number of document versions whose validity

time interval end at ti (that is, a new version is created or document is deleted at ti)

 50

and let µi be the number of document versions whose validity time interval start at ti.

Figure 3.4 illustrates these parameters for an example consisting of seven documents.

Using the average value λ of all the λi’s and the average value µ of all the values

µi’s, E[Y] can be shown to be given by the following expression:

)313(
6

][−+−
+

≈
kk

zzYE µλ (2)

For sufficiently large k, E[Y] can be further approximated by:

zYE ⋅
+

≈
2

][µλ

That is, E[Y] is linearly proportional to the size of the time window. This

expression can be justified intuitively since the larger the time window size, the more

document versions are irrelevant to a random query. For a single time window

covering all the time steps, z=n (k=1) and hence many postings will have to be

filtered out for a random query time span. On the other hand, for z=1 (or equivalently,

k=n), no postings have to be filtered out, consistent with the expression derived for

E[Y].

Given the expressions of E[X] and E[Y], it is easy to minimize our objective

function f(z)=X+Y. One can set the derivative of f(z) to 0 to obtain the value of z that

minimizes f. For sufficiently large k, this value is given by:

)(3
2

µλ
δ
+
⋅= nz

For concreteness, we apply these formulas using parameter values derived from

two large datasets to be introduced in Section 3.5. In Figure 3.5, based on the

approximations given in (1) and (2), we plot the graphs of E[X] and E[Y] and the

 51

graph of E[X]+E[Y] using the statistics (μ=200,223, λ=175,190 and δ=362,299)

derived from the Wikipedia dataset to be introduced in Section 3.5.1. We can see f(z)

is minimized when z is around 7. Similarly, Figure 3.6 plots the graphs corresponding

to the Library of Congress dataset (μ=2,071,661, λ=1,197,155 and δ=10,828,027) also

to be introduced in Section 3.5.1, where the time window size z that minimizes f(z) is

found around 8.

E[X]
E[Y]
E[X]+E[Y]

Figure 3.5: Wikipedia: E[X], E[Y] and E[X]+E[Y]

 52

E[X]
E[Y]
E[X]+E[Y]

Figure 3.6: Library of Congress: E[X], E[Y], and E[X]+E[Y]

We end this section with two comments. The first is that the same type of

analysis can be carried out to determine the average number of postings to be

examined for handling any fixed query text assuming a randomly selected query time

span. The second is that the empirical results to be described in Section 3.5.4 strongly

support the analytical results reported here.

3.4.2 Temporal Relevance and Scoring

We describe our extensions of retrieval algorithms for scoring temporally-

anchored queries. Figure 3.7 illustrates the interaction between temporally-anchored

queries and the indexing structures introduced earlier in this section. Our framework

will have multiple structures, each associated with a time window. In addition, each

time window will contain statistics such as document frequencies, document lengths,

and other metadata, pertaining to the collection state over that time window. The

figure shows the two possible query scenarios: a query (Q1) with an associated time

 53

span that falls within a time window completely, and a query (Q2) with an associated

time span that covers more than one time window. A point query is obviously a

special case of the query time span reduced to a point within a time window.

T1 T2

t0 t1 t2 t3 t4 t5 t6 t7 t8

df(w, T1)
df(n)(w, T1)

…

df(w, T2)
df(n)(w, T2)

…

Q2
Query Time Span : [t3 ~ t7]

Q1
Query Time Span : [t0 ~ t2]

Figure 3.7: Temporally-anchored Queries

Nearly all retrieval algorithms, from simple vector space models to modern

language modeling techniques, rely on three types of statistics: local statistics for

term incidence in documents (in the simplest case, term frequency), global term

statistics (e.g., document frequency, or df), and collection statistics (e.g. the total

number of documents as used in Okapi BM25, or the total number of terms as used in

some language models). Local statistics are contained directly in the postings, while

global term statistics are usually stored in the head nodes of the postings lists.

Collection statistics are typically stored separately. In addition to the above statistics,

many retrieval models also require information on document lengths to be used for

length normalization or smoothing.

In our framework, we will maintain statistics over each time window Ti which

will enable us, not only to compute global term and collections statistics over Ti, but

also to compute statistics over a consecutive set of time windows that include Ti. This

 54

is needed since a query time span may overlap with several consecutive time

windows. To accomplish this, we maintain, for each such statistic, two values – one

computed over all document versions in Ti, and the other computed over the newly

created document versions in Ti. Newly created document versions refer to those

whose validity time intervals have their left endpoints properly inside Ti.

Let us consider for example the document frequency),(iTwdf of a term w

statistic over the time window Ti. We maintain in addition to this value another

statistic, namely the document frequency),()(
i

n Twdf of the term w over the newly

created document versions within the time window Ti. Given a query time span [qs,

qe], we approximate the term document frequency over that query time span by

combining the term document frequencies in time windows i through j overlapping

with [qs, qf] as follows.

∑
+=

+≈
j

il
l

n
iqqS

TwdfTwdfwdf
fs

1

)(
],[

),(),()(

Another example is to approximate the average document length aveL over the

query time span using the following formula.

∑

∑

+=

+=

+

⋅+⋅
≈ j

il
l

n
i

j

il
l

n
avel

n
iavei

qqSave

TNTN

TLTNTLTN
L

es

1

)(

1

)()(

],[

)()(

)()()()(
,

where N(iT) is the number of document versions in time window Ti. Similarly,

all the other global term statistics or collection statistics can be approximated in the

same way.

In the next section, we will present empirical evaluations of the ranked search

results that come from using the above scheme for approximating global statistics and

 55

collection statistics. These results show that, as long as the time windows are not too

large, the ranked search results are very close to those produced by using the exact

statistics for each of the scoring schemes used in Okapi BM25 and KL Divergence

with Dirichlet priors.

3.5 Empirical Evaluation

In this section we provide empirical evaluation of our approach on two

significant datasets to be introduced in the next section. We use the following

performance metrics:

Total number of postings in the indexing structures built for all the time windows.

This metric captures the overall index space requirement. As observed earlier, the

larger the time window, the less the number of duplicate document versions that

appear in consecutive time windows, and hence the smaller the overall index space.

Average number of postings examined for a typical query and a random query

time span, where a typical query load is defined for each dataset. This metric clearly

impacts the query evaluation time. The dependence of this metric on the time window

size is subject to conflicting requirements that are similar to those described in

Section 3.4.1.

Relative recall and Kendall’s τ for the top 100 ranked search results when

compared to the list generated using exact global and collection statistics for Okapi

BM25 and KL Divergence with Dirichlet priors. These two metrics clearly favor

smaller window sizes, with the smallest window size resulting in exact global and

collection statistics.

 56

We will look at each metric separately to try to better understand the nature of its

dependence on the time windows, and then conclude with empirically best time

window sizes that are close to the predicted values of our model developed in Section

3.4.1.

We start by describing the two datasets used, followed by an outline of our

methodology for running the empirical evaluation process. The results corresponding

to each of the metrics above will be described separately in the following sections.

3.5.1 Datasets Used

We use two large-scale datasets – the English Wikipedia revision history from

2001 to 2007, and a dataset given to us by the Library of Congress involving crawls

of selected news and government websites. The English Wikipedia revision history is

a publicly available XML dump created on January 3, 2008. It contains about two

million articles (documents), each of which has one or more revisions (document

versions) during the period. We pre-process the Wikipedia dataset and organize it into

83 monthly snapshots between February 2001 and December 2007. Included in each

snapshot is the most recent revision of each article at the end of the month. The

Library of Congress collection was compiled by the Internet Archive involving

crawls to selected news and government websites during 2003 and 2004. The next

table highlights some of the main features of each collection.

 57

Table 3.1: Datasets

3.5.2 Evaluation Methodology

A straightforward way to conduct the empirical evaluation amounts to building

the inverted indexes for all possible time windows for each of the two datasets. Given

the sizes of the datasets and the numbers of the time steps, this approach is

computationally prohibitive. However, we can generate the same empirical results

using the following substantially more efficient strategy. We build an inverted index

for each elementary time step separately (i.e., time window size is equal to 1) and

collect two separate sets of statistics as required by our approach. For example, for

each term w and each elementary time step it , we compute),(itwdf and

),()(
i

n twdf representing respectively the document frequency of w over all the

document versions that are live at it and over all the newly created document versions

 Wikipedia Library of Congress
Collection

Original Data English Wikipedia XML
dump created on Jan. 3 2008

News, Government, and
Other Sites

Extracted Data
83 monthly snapshots
between Feb. 2001 ~ Dec.
2007

26 weekly snapshots
between Jul. 2004 ~ Dec.
2004

Included in Each
Snapshot

Most recent revision of each
article as of the end of the
month.

Most recent version of each
crawled text web page as of
the end of the week.

Number of Documents 2,077,745 21,455,523
Number of Document

Versions 16,618,497 53,863,195

Average Number of
Versions per Document 8.00 2.51

Average Lifespan of
Document 22.47 months 15.07 weeks

Average Lifespan of
Document Version 2.81 months 6.13 weeks

 58

at it . We can then use this information to generate the experimental results for an

arbitrary time window size as follows.

3.5.2.1 Total Number of Postings

For a target time window size z, we consider a series of virtual time windows

{VT1:[t0~tz), VT2:[tz, t2z), …}, each consisting of z time steps as shown in Figure 3.8.

For each virtual time window, we compute the required statistics, by carefully

combining the statistics of the elementary time steps that fall within the virtual time

window. For example, the document frequency),()(
l

n VTwdf of newly created

document versions for virtual time window VTl in Figure 3.8 can be computed using

the formula ∑
−

−=

=
1

)1(

)()(),(),(
ls

sli
i

n
l

n twdfVTwdf , and the document frequency),(kVTwdf can

be obtained by using the formula ∑
−

+−=
− +=

1

1)1(

)(
)1(),(),(),(

ls

sli
i

n
sll twdftwdfVTwdf .

VT2VT1

Query Time Span

t0 tz t3z
… …

VT3

…t2z
Figure 3.8: Virtual Time Windows

The total number of postings in each virtual time window iVT is simply the sum

),(∑
w

iVTwdf and the overall total number is given by∑∑
i w

iVTwdf),(.

 59

3.5.2.2 Average Number of Postings for a Typical Query

Given a query q[ts, tf] and a target window size z, we can compute the number of

postings that have to be examined using the derived set of statistics for virtual

windows as follows: { }∑∑
∈ =qw

l

j

il
VTwdf),(, where virtual time windows VTi through

VTj overlap with [ts, te] and the outer sum is over all the query terms. Note that this

sum captures all the postings lists that need to be examined when handling the

corresponding query.

3.5.2.3 Ranked Search Results

Given a query q[ts, te] and a target time window size z, our goal is to determine

the top 100 ranked search results obtained by Okapi BM25 and KL Divergence using

the statistics associated with the virtual time windows that overlap [ts, te]. We use the

postings lists associated with each query term at each elementary time step in the

interval [ts, te] but with the global and collection statistics associated with the virtual

time window containing the time step. The corresponding document version IDs and

scores are sorted and merged, and the top 100 document version IDs are those that

would have been returned had we generated the postings lists for the time window

size z (obviously duplicate document versions are eliminated).

3.5.3 Empirical Results on Total Number of Postings

For each dataset, we consider all possible time window sizes that result in

different numbers of time windows. For time window sizes that lead to the same

number of time windows, we consider the largest such time window. Table 3.2 shows

 60

the time window sizes used in our tests, and the corresponding numbers of time

windows for each dataset.

Table 3.2: Time Window Sizes

 Time Window Size (Number of Time Windows)

Wikipedia 1 (83), 2 (42), 3 (28), 4 (21), 5 (17), 6 (14), 7 (12), 8 (11), 9 (10),
10 (9), 11 (8), 12 (7), 14 (6), 17 (5), 21 (4), 28 (3), 42 (2), 83 (1)

Library of
Congress 1 (26), 2 (13), 3 (9), 4 (7), 5 (6), 6 (5), 7 (4), 9 (3), 13 (2), 26 (1)

For each time window size, we sum up the numbers of postings in all the

corresponding time windows. The results from the two datasets are illustrated in

Figures 3.9 and 3.10.

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 10 20 30 40 50 60 70 80

Bi
lli

on
s

Time Window Size

Total Number of Postings in Billions as a Function of Window Size

z Number of Postings
1 9,521,778,564
2 7,272,833,636
3 6,444,546,373
4 6,027,949,478
5 5,809,668,393
6 5,612,492,322
7 5,493,687,409
8 5,523,060,694
9 5,493,595,646

10 5,413,901,336
11 5,318,791,464
12 5,202,322,936
14 5,138,728,058
17 5,088,002,999
21 5,019,126,131
28 4,972,493,893
42 4,925,822,342
83 4,897,913,724

Figure 3.9: Wikipedia: Total Number of Postings

 61

14

24

34

44

54

64

74

84

94

104

0 5 10 15 20 25

Bi
lli

on
s

Time Window Size

Total Number of Postings in Billions as a Function of Window Size

z Number of Postings
1 100,653,421,741
2 58,448,043,399
3 46,309,523,775
4 40,825,153,337
5 39,171,073,411
6 34,160,964,973
7 31,372,008,407
9 26,300,377,695

13 23,472,943,185
26 20,307,851,020

Figure 3.10: Library of Congress: Total Number of Postings

As expected, the larger the time window, the smaller the number of postings

since fewer document versions will cross time window boundaries. However we note

that for our datasets, the reduction in the number of postings becomes relatively small

after z = 11 for the Wikipedia dataset and z = 9 for the Library of Congress dataset.

This fact implies that the storage overhead is small compared to the best possible for

relatively small time windows. For instance, the storage overhead is only around 12%

and 30% for the previously determined ``optimal'' time window sizes of 7 and 8 for

the Wikipedia dataset and the Library of Congress dataset, respectively, compared to

the minimum space required when z = n.

 62

3.5.4 Empirical Results on Average Number of Postings

Examined for a Typical Query Load

Our temporal query load for the Wikipedia dataset is constructed as follows.

Based on the AOL query log made briefly available in 2006 [64], we extract 223 most

frequent multi-term query phrases where the user selected an English Wikipedia

article among the search results. Each query phrase is combined with 100 random

query time spans resulting in a query load of 22,300 temporal queries for each time

window size. Similarly for the Library of Congress dataset, we extract 100 most

frequent multi-term query phrases where the user selected one of the seed websites.

The seed websites are those included in the seed URLs that the Library of Congress

used as an input to the crawler. Again, each query phrase is combined with 100

random query time spans resulting in a query load of 10,000 temporal queries for

each time window.

For each time window size of the two datasets, we compute the average number

of postings examined over all these temporal queries. The results are illustrated in the

next figures.

 63

0.8

1.3

1.8

2.3

2.8

3.3

3.8

0 10 20 30 40 50 60 70 80

M
ill

io
ns

Time Window Size

Average Number of Postings Examined

Figure 3.11: Wikipedia: Average Number of Postings Examined

25

35

45

55

65

75

0 5 10 15 20 25

M
ill

io
ns

Time Window Size

Average Number of Posting Examined

Figure 3.12: Library of Congress: Average Number of Postings Examined

As expected, the relationship between this metric and the time window size

follows more or less the same behavior as the sum X+Y introduced in Section 3.4.1.

In particular, note that the larger the time window the less the number of duplicate

 64

postings, but the more the number of postings that are irrelevant to the given query

time span. Based on the results of these tests, the corresponding best values are z = 6

and z = 9 for the Wikipedia and the Library of Congress datasets respectively, which

are very close to the values (z = 7 and z = 8, respectively) predicted by our analytical

analysis presented in Section 3.4.1.

3.5.5 Empirical Evaluation of Ranked Search Results

Using the same temporal query loads as described in the previous section, we

evaluate the top 100 ranked results obtained by using our approach according to two

measures – Relative Recall and Kendall’s τ – assuming a ground truth list of the top

100 ranked document versions generated by using the same scoring functions with

exact state statistics. Relative Recall is defined as the fraction
100

rn , where nr is the

number of document versions among the 100 returned by our scheme which also

appear on the ground truth list. Kendall’s τ is defined as the fraction

,
4950

discordconcord nn − where nconcord is the number of concordant pairs, and ndiscord is the

number of discordant pairs. A pair (a, b) is concordant if a and b appear in the same

order in the list produced by our scheme and the ground truth list, and is discordant

otherwise. Note that the number of the distinct pairs of 100 elements is 4950.

We compare the ranked search results as a function of time window size. Clearly

the smaller the time window size, the more accurate the statistics are and hence the

better the recall and Kendall’s τ are. In fact, the case when the time window size is

equal to one reduces to computing the exact statistics for any query time span.

 65

Therefore, this case represents the ground truth to which we compare the performance

of any other time window size.

For each dataset, we perform two sets of tests using Okapi BM25 and KL-

divergence smoothed by Dirichlet priors, respectively. From the search results of each

test, we compute Relative Recall and Kendall’s τ for the top 100 ranked search results.

The resulting data is illustrated in the new graphs.

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60 70 80

Time Window Size

Relative Recall (Okapi) Relative Recall (KL) Kendall's τ (Okapi) Kendall's τ (KL)

Figure 3.13: Wikipedia: Relative Recall and Kendall’s τ

 66

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20 25

Time Window Size

Relative Recall (Okapi) Relative Recall (KL) Kendall's τ (Okapi) Kendall's τ (KL)

Figure 3.14: Library of Congress: Relative Recall and Kendall’s τ

From the graph for the Wikipedia dataset the values of Relative Recall and

Kendall’s τ are higher than 0.99 and 0.96 respectively for the “optimal” time window

size of 7 as determined before. Similarly for the Library of Congress dataset, for the

time window size of 8, the values of Relative Recall and Kendall’s τ are higher than

0.97 and 0.85, respectively. This implies that the search results for our “optimal” time

window size are almost the same as those produced using the exact state statistics.

In our datasets, even the largest time window size does not yield search results

that are substantially different than those appearing on the ground truth list (for

instance, Kendall’s τ for time window size 26 in the Library of Congress is almost

0.80). This implies that the use of the statistics of the entire history of our datasets

would give reasonable search results. However, a careful examination of the curves

indicates a definite negative trend as the temporal range increases. Extrapolating these

 67

curves implies a substantial degradation of the search results after the temporal range

moves beyond a certain point.

3.6 Conclusion

In this chapter, we presented a new approach to index a collection of multi-

version documents, which incorporate the temporal dimension in an integral way to

enable the handling of temporally anchored queries. In particular, our approach

introduces the notion of time windows, each of which is organized using standard

structures. We show that the time window size directly affects the search

performance, and provide an analytical model that can be used to derive optimal

values for window sizes. Empirical evaluations on two large-scale real world datasets

provided a strong support for our overall approach. In particular, we show that our

approach effectively supports effective temporal search and the computation of

relevance scoring based on the state of collection as it existed during the query time

span.

 68

Chapter 4

Physical Location Index for Time Evolving Data

In the previous chapter, we examined information retrieval schemes based on

temporally anchored queries. Once the pertinent information is returned, the next step

is to deliver the actual data to the user. In this chapter, we consider the issue of

physically locating the data identified through the information retrieval scheme. In

particular, we introduce a persistent data structure to be used to locate the physical

location of time-evolving data. Our data structure indexes archived temporal contents

such that it can provide fast access to the location of the archived contents for

arbitrary temporal queries. Our scheme supports the insert operation and the most

query types optimally, in terms of both time and space. It provides more compact and

faster operations than the existing location indexing schemes used for web archives,

while being simpler than the existing optimal persistent data structures. To simplify

the presentation, we focus on web archives for the rest of this chapter.

4.1 Overview

When archiving web contents, one predominant storage method is to manage a

smaller number of larger-size containers, each containing a multitude of web objects.

The Internet Archive, the world’s largest web archive, has also been using the

container method, followed by many other web archiving consortiums and libraries.

 69

Their collaborative efforts recently resulted in an international standard of the

container’s internal format, WARC [82].

Although the container method has become popular for its space-efficiency,

easy-manageability, and many existing tools that deal with the container format, a

drawback is the requirement of an external indexing scheme to locate web objects in

the containers. Unlike traditional indexing schemes, a web archive index faces several

additional hurdles due to the fact that archived web contents are temporal objects. As

a consequence, an index must also take into consideration acquisition time in addition

to the URLs. This is in contrast to the index used for web search engines where only

currently available web materials need to be maintained.

In this chapter, we introduce an indexing scheme based on a persistent B+-Tree.

Since long-term archives do not call the delete operation frequently, if ever, we

loosen our requirement such that the delete operation can be sub-optimal. This allows

our scheme to be much more compact and simpler than other optimal persistent data

structures, while supporting the optimal query and insert operations in terms of both

time and space.

In Section 4.2, we discuss current popular methods to index web archives, and

also examine several existing persistent data structures closely related to our scheme,

followed by Section 4.3 where we state our indexing goal. We explain our strategy in

Section 4.4, and the performance analysis is presented in Section 4.5. The

performance analysis is based on a number of assumptions that are justified in

Appendix A.

 70

4.2 Related Work

In this section, we describe existing location indexing schemes for web archives,

followed by examining some of the most notable persistent data structures.

4.2.1 Location Index for Web Archives

Indexing schemes can be divided into two categories: sequential and structured

indexes. The former kind is simple and straightforward in terms of its organization. A

plain file directly on a native file system can hold a sequential index without much

effort. The sequential index usually relies on external sorting and other data

arrangement algorithms before records are written on a final index file. This implies a

batch-mode indexing, where during each batch all the data to be indexed need to be

available. On the other hand, structured schemes are generally more sophisticated and

flexible at the expense of added complexity. Data records are more efficiently

managed, typically using a B-Tree or one of its variants such as B+-Tree. A B-Tree is

a tree data structure where each internal node stores n records of the {key, data} pair

in non-decreasing order, such that key1 ≤ key2 … ≤ keyn. Each internal node also

contains n+1 pointers to its children, and the adjacent keys separate the ranges of

keys in the subtree each pointer points to. That is, all the keys in the first subtree are

smaller than the first key of the parent node, and all the keys in the second subtree are

larger than the first key and smaller than the second key of the parent node, and so on.

In a B+-Tree, in contrast to a B-Tree, all data are stored at the lowest level of the tree;

only keys are stored in interior nodes. For more details on these data structures, we

refer to Bayer and McCreight [4]. The B-Tree and B+-Tree support fast dynamic

 71

insertion and deletion of index entries as well as fast querying. In practice, databases

are often involved as middleware to accommodate structured schemes. As of this

writing, the Wayback Machine [75] from the Internet Archive supports both the file-

based sequential and B+-Tree-based structured indexes. We compare the current

indexing schemes to our scheme when we perform the performance analysis in

Section 4.4.

4.2.1.1 Sequential: File-Based Scheme

The file-based scheme is essentially a sequential indexing scheme. One URL

entry occupies each line containing information such as when the URL was accessed,

the message digest of the content, and the location in the storage (such as a filename

and an offset). To facilitate the query responses, the entries are sorted alphabetically

by the URLs before actually serving as an index. Once sorted, the index can be

queried in)(log2 NO where N is the total number of entries in the index, using a

binary search algorithm, otherwise, it would take)(NO . However, the necessity of

sorting makes this type of indexing structures especially unattractive in cases where a

batch-mode indexing cannot be afforded.

4.2.1.2 Structured: Database-Based Scheme

A popular indexing scheme such as B+-Tree is also widely used in web archives.

For example, the Wayback Machine also optionally provides a database-assisted

indexing scheme. Specifically, it makes use of the B+-Tree data structure

implemented within Berkeley DB. However, to accommodate both the URL and time

indexes, rather than using either the URL or time as a key, the Wayback Machine

 72

concatenates the URL and time, and uses the result as a key. Although this scheme is

very easy to implement, and works well to handle queries with a specific URL and

time, it has significant limitations when it comes to handling time slice or time span

queries. For example, given a specific date or time span, a query to retrieve all the

web pages of interest cannot be handled efficiently using this scheme. Moreover, in

this scheme, the cost for insert operations depends on the total number of entries in

the structure, which keeps ever incrementing as time goes by.

A possible alternative is to set up two indexing structures, one using the URLs as

keys and the second using the crawl times as keys. Two separate searches are

performed on the indexing structures, and the results are then matched to find the

final result. As the archive grows, the time it takes to combine the results of the

separate searchers grows rapidly, and response time will suffer substantially. That is,

if there are V versions and as many as M data in a version, a simple matching

algorithm requires)(MVO × processing time, making the response time

unacceptably slow in many searches.

4.2.2 Persistent Data Structures

Conventional database captures a single state of a collection of data.

Transactional database evolves from one state to the next, but the previous state is

discarded once a transaction commits. “Persistent” (or multi-version) data structures,

on the other hand, concurrently handle multiple versions of data, allowing efficient

access to the previous versions. In this section, we discuss some of the notable

persistent data structures below.

 73

Easton [13] proposed Write-Once B-Tree (WOBT) that has been the basis of

several subsequent persistent data structures [5,12,43,44,79]. WOBT mainly focuses

on implementing an access structure on write-once media such as optical disks.

WOBT allows insert operations only on the current version, but access operations on

any previous versions.

Lomet and Salzberg [43,44] improved WOBT by allowing a time split according

to an arbitrary point of time in the past, rather than the current time only. Although

they manage to maintain good space and time efficiency for certain queries, some

query types such as key history queries are not optimally supported.

Multiversion B+-Tree (MVBT) is developed by Becker, et al [5]. Most notably,

MVBT differentiates itself from others by allowing delete operations too. Even with

the introduction of the delete operations, it maintained time and space complexity at

their optimal level. Further enhancing MVBT, Varman and Verma [79] developed

Multiversion Access Structure (MVAS), using more storage conservative overflow

and underflow policies. For example, they merge sparse siblings after deletes, and

they also avoid creating two blocks in a version split in some cases by copying only

as many live entries as needed from the sibling, instead of all entries. Furthermore,

they achieve the optimality in key-history queries using the access-lists.

Although WOBT, MVBT and MVAS support the insert operation optimally, the

involved overhead is not negligible in terms of both time and space, since they

frequently require splitting an internal node.

 74

4.3 Our Indexing Goal

When a web crawler gathers web objects, they are typically aggregated in

containers, such that each container holds a number of web objects, ranging from

several to hundreds of thousands. With the container method, the number of archived

objects to manage is significantly decreased, and can overcome any practical limits of

the underlying storage system (file system or database). As explained earlier, a

notable standard format of such a container is WARC, which resulted from an

international collaborative effort among many national libraries and archives.

Although an individual container may be self-contained, almost all web archives set

up and manage external indexes that map a URL and crawl time to the ID of the

container and the offset where the corresponding information is archived. Without an

external index, a sequential scan through all ARC files to search for the web

information will take a prohibitive amount of time for any significant size web

archive.

The goal of this chapter is to design an URL indexing scheme that will be able to

execute the following operations as fast as possible, using minimal amount of storage

space at the same time.

• INSERT(e): inserts an entry e into the index. The entry e contains a URL as a key,

the acquisition time, and the location of the archived content in the archive.

• URLTIMEQUERY(url, t): returns the location of the archived content (key=url) that

was acquired most recently but no later than t.

• URLTIMESPANQUERY(url, t1, t2): returns all the locations of the contents (key=url)

that were acquired between time t1~t2.

 75

• TIMESLICEQUERY(t1, t2): returns all the locations of the contents that were

acquired between time t1~t2.

4.4 Our Strategy – Persistent Indexing Structure for

Archives (PISA)

A web archive deals with a massive set of temporal data where each data is

updated frequently. Therefore, we incorporate a persistent data structure that allows

us to access and insert indexing entries very efficiently. We call our data structure

PISA (Persistent Indexing Structure for Archives).

As with many existing persistent (or multi-version) data structures, such as

[5,12,43,44,79], our indexing structure is also rooted in the Write-Only B-Tree [13].

More recently, researchers [5,79] found asymptotically optimal structures that support

multiple versions of data. They showed that their operations such as insert, update,

delete and query can be performed with optimal time and space.

Compared to previous data that these existing schemes handle, in a digital

preservation system, once archived, data are seldom deleted, if ever. Therefore, in

most cases, it is acceptable not to achieve optimal delete operations in an archiving

environment, which allows us to greatly reduce the complexity in the indexing

structure, while maintaining the same or better performance than the existing

persistent data structures. We now discuss our indexing structure in detail.

 76

4.4.1 Persistent Indexing Structure for Archives (PISA)

In this section, we explain how PISA is constructed. Like other persistent data

structures, PISA is also based on a B+-Tree. We start by introducing the terms we use

in the rest of this chapter. In our tree structure, we call internal nodes in the tree

including the root index blocks, while we call leaf nodes data blocks. We call data

items in an index block as index entries, and those in a data block data entries.

Throughout this chapter, we use the term block to mean both index block and data

block, and entry to mean both index entry and data entry, whenever the distinction is

not necessary. Included in each entry is a lifespan, (t1 ~ t2), where we call t1 birth time,

and t2 death time. We call an entry live if its death time is ∞ (i.e. it has not currently

been either updated or deleted), and dead otherwise. Similarly, we call a block live if

at least one of the entries in the block is live, and dead otherwise.

Each index block is composed of a header entry and a series of index entries.

Inside the header entry are the number of all entries in the block, the number of live

entries in the block, the pointer to the previous version, and the key with which the

upper level block indexes the current block. Each index entry contains the index key,

birth time, death time, and a pointer to a block in the child level. We use {key, t_birth,

t_death, ptr} to indicate these four fields.

Similarly, a data block includes a header entry and a series of data entries. The

header entry in a data block contains the same types of information as in the header

entry in an index block. Each data entry is composed of four fields, {key, t_birth,

t_death, loc}, that correspond to the data key (URL), birth time, death time, and the

 77

location where the actual content with the data key resides in the archive. Note that

the location information typically has a container ID (or filename) and an offset.

Figure 4.1 illustrates an example of PISA that has one index block and two data

blocks.

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (index key)

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

…

in
de

x_
en

tr
y

in
de

x_
bl

oc
k

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (index key)

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

…

data_block

data_entry

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (indexed key)

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

…

Figure 4.1: Blocks and Entries in PISA

As in a B+-Tree, the two index keys in two consecutive index entries determine

the range of key values in the entries of the child block that the first entry’s pointer

points to. An example is shown in Figure 4.2 where the data entries (keys: A, B, C, E,

F, L, N, P, S, and V) with the same birth time (7/1/2007) are inserted in an empty

structure. Here, BLOCK 1 is an index block, and BLOCKs 2~4 are data blocks. For

simplicity, an entry has an alphabet letter as a key in Figure 4.1. However, in practice,

either a URL or a hash of a URL serves as a key.

 78

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

 Figure 4.2: PISA Example

4.4.2 Operations in PISA

PISA supports URLTIMEQUERY, URLTIMESPANQUERY, TIMESLICEQUERY and

INSERT optimally. Each of the operations is explained below.

• URLTIMEQUERY

Upon called with a URL and time as input parameters, URLTIMEQUERY returns

the location of the object whose key matches the URL, and lifespan includes the input

time (there is only one such entry or none). For URL k and time t, URLTIMEQUERY

begins the search from the root block of PISA. It ignores the entries whose birth time

is greater than t. Also ignored are entries whose death time precedes t. Among the

surviving entries, it chooses the one with the largest key that is no larger than k. It

follows the pointer in the chosen entry to the child block. It continues performing the

 79

same selection process until it arrives at a data entry that has the location information

for the URL at time t. The pseudo code is shown in Figure 4.3.

 Input
 URL key: URL of a web object
 Timestamp ts: time stamp of the web object

 Return
 data_entry: data entry that contains key at ts
 data_block: data block that contains the above entry

 Procedure URLTIMEQUERY(key, ts)
1: index_entry ie  null
2: index_block ib  ROOT
3: data_block db  null
4: while (true)
5: for (each index_entry ce ∈ ib)
6: if ((ce.t_birth ≤ ts ce.t_death) and (ce.key < key))
7: if ((ie = null) or (ie.key < ce.key))
8: ie  ce
9: if (ie.pointer references leaf)
10: db  ie.pointer
11: break while-loop
12: else
13: ib  ie.pointer
14: for (each data_entry de ∈ db)
15: if ((de.t_death ≥ ts) && (de.key = key))
16: return {de, db}
17: return {null, db}

Figure 4.3: URLTIMEQUERY Operation

• URLTIMESPANQUERY

URLTIMESPANQUERY has three input parameters, a URL, start time, and end time.

It returns all the locations of the objects whose key is the input URL, that were live

during the time span of (t1 ~ t2). It first performs the same steps as URLTIMEQUERY

for time t2. When we find a data block that contains an entry for t2, it backtracks to the

block that may contain the previous version by following the backtracking pointer in

the current block. The backtracking continues until it encounters a block that died

before t1. If any previous versions of the entry at t2 existed since t1, all of these

 80

previous entries can be found in the blocks it encountered during the backtracking.

Figure 4.4 has the pseudo code.

 Input
 URI key : URI of a web object
 Timestamp ts_start: start time stamp of the web object
 Timestamp ts_end: end time stamp of the web object

 Return
 A set of data_entry de’s whose de.key=key and (de.t_birth~de.t_death) overlaps

(ts_start~ts_end)

 Procedure URLTIMESPANQUERY(key, ts_start, ts_end)
1: List E<data_entry>  null
2: data_entry de  null
3: data_block db  null
4: (de, db)  URLTIMEQUERY(key, ts_end)
5: while ((de ≠ null) && (de.t_death > ts_start))
6: E  E {de}
7: db  db.ppv
8: de  FINDENTRYINBLOCK(de, db)
9: return E

Figure 4.4: URLTIMESPANQUERY Operation

• TIMESLICEQUERY

TIMESLICEQUERY returns the locations of all the objects that were alive during

the supplied time span. Starting from the root, the search travels through all the

blocks that were alive at a specific time period, t1~t2. It follows the pointer in an entry

only if one or more of the following three conditions are met. 1) The birth time of the

entry is between t1 and t2. 2) The death time of the entry is between t1 and t2. 3) The

birth time of the entry is before t1 and the death time of the entry is after t2. Upon

arriving at the leaf nodes, the entries that were alive during t1~t2 are returned, using

the same eligibility check above. The pseudo code is shown in Figure 4.5.

 81

 Input
 Timestamp ts_start: start time stamp of the web object
 Timestamp ts_end: end time stamp of the web object

 Return
 A set of data_entry de’s whose (de.t_birth~de.t_death) overlaps (ts_start~ts_end)

 Procedure TIMESLICEQUERY(ts_start, ts_end)
1: List E<data_entry>  null;
2: List B<index_block>  { ROOT }
3:: data_entry de  null
4: data_block db  null
5: index_block ib  null
6: block cb  null
7: for (each index_block ib ∈ B)
8: for (each index_entry ce ∈ ib)
9: if ((ts_start ≤ ce.t_birth < ts_end) or (ts_start ce.t_death ts_end)

 or ((ce.t_birth ts_start) and (ce.t_death > ts_end))
10: cb = ce->pointer
11: if (cb is data block)
12: for (each data_entry de ∈ cb)
13: if ((ts_start ≤ de.t_birth < ts_end) or (ts_start de.t_death ts_end)

 or ((de.t_birth ts_start) and (de.t_death > ts_end))
14: E  E U {de}
15: else /* cb is index block */
16: B = B U {cb}
17: return E

Figure 4.5: TIMESLICEQUERY Operation

• INSERT

INSERT adds a new data entry into PISA. In case that there already exists a

previous entry with the same key, INSERT marks the previous entry dead and adds the

new entry. INSERT is a more involved operation than queries. Before we explain the

INSERT operation, we first define two parameters and three variables in Tables 4.1 and

4.2.

Bmax, and Bmin are configurable parameters depending on the performance and

space needs. Since Bmax is often set to a value equal to the block size of the storage to

achieve the maximum disk-seek performance, one usually has to decide only Bmin.

 82

The value of Bmin has a direct impact on the time and space performance as can be

seen in Section 4.5. However, we cannot use any arbitrary value. We formally discuss

how to determine Bmin and Bmax, considering their impacts on the time and space

performance in Appendix A. In this chapter, we only make one simple assumption:

all parameters are positive integers.

Table 4.1: PISA Parameters

Parameter Description
Bmax

The maximum number of entries that a block can
contain.

Bmin
The minimum number of live entries that a block must
contain.

Table 4.2: PISA Variables
Variable Description

na
The number of all entries that a block currently
contains.

nl
The number of live entries that a block currently
contains.

dead entry
dead entry

…
dead entry
dead entry
live entry
live entry
live entry

…
live entry
live entry

Bmin

Bmax

Bmax - k + 1

nl
na

Figure 4.6: PISA Block (Live entries clustered together for illustrative purpose)

 83

The two variables, na and nl, on the other hand, are defined to simplify the

presentation of the algorithms. Although not strictly necessary, it is assumed that na

and nl are stored in the header of a block to conveniently describe the algorithms.

Figure 4.6 illustrates these parameters and variables.

When a new data entry is inserted, the appropriate data block that the data entry

belongs to is first identified. Once the block is identified, we mark any existing entry

with the same key as dead. If there is an empty slot in the block for the new entry, the

entry is added to the block. If the block is full (na = Bmax), a new block is created,

according to the following rules:

Case 1: nl + 1 ≥ 4 x Bmin

KEYSPLIT: Among the nl live keys, we select a median entry, me, such that 1) no

other live entries are older than me, 2) there are at least Bmin live entries whose key is

smaller than me’s, 3) and there are at least Bmin live entries whose key is no smaller

than me’s. If there is no such median key, we perform VERSIONSPLIT, and restart

KEYSPLIT over the new block spawned from VERSIONSPLIT. Otherwise, we create a

new block, move live entries whose key is no smaller than the median key into the

new block. We also move dead entries that were alive at the birth time of the median

entry into the new block. We INSERT an index entry that points to the new block in the

parent. In case the current block is the root block, we also create the new root block

which points down to the previous root block and the new block.

Case 2: nl + 1 < 4 x Bmin

VERSIONSPLIT: We create a new block. We copy all the nl live keys from the

overflowing block into the new block. We mark the copied entries in the overflowing

 84

block as dead. We set the birth time of the copied entries of the new block the same

as the birth time of the new entry. In case the overflowing block is the root block, we

also create the new root block which points down to the previous root block and the

new block.

The pseudo codes for INSERT and its supplementary functions (KEYSPLIT and

VERSIONSPLIT) are shown in Figures 4.7 ~ 4.10.

 Input
 data_entry de : data entry to insert

 Procedure INSERT(de)
1: data_block db  null
2: db  FINDBLOCK(de.key, de.t_birth)
3: BLOCKINSERT(de, db)

Figure 4.7: INSERT Procedure

 Input
 entry e: (data_ or index_)entry to insert into db
 block b: (data_ or index_)block that de is inserted into

 Procedure BLOCKINSERT(e, b)
1: block newb  null
2: entry newe  ALLOCATEMEMORY()
3: entry olde  FINDENTRYINBLOCK(e, b)
4: if (olde ≠ null)
5: olde.t_death  e.t_birth
6: if (b.na = Bmax)
7: if ((b.nl + 1) ≥ 4*Bmin)
8: newb  KEYSPLIT(e, b)
9: newe.key  newb.ik /* ik: index key of the block */
10: newe.t_birth  e.t_birth
11: else
12: newb  VERSIONSPLIT(e, b)
13: newe.key  b.ik
14: newe.t_birth  b.t_birth
15: newe.t_death  ∞
16: newe.ptr  newb
17: BLOCKINSERT(newe, PARENT(b))
18: else
19: ADDENTRYTOBLOCK(e, b)

Figure 4.8: BLOCKINSERT Procedure

 85

 Input
 entry e : new entry to insert
 block b : block to version-split

 Return
 block : new block resulting from the split

 Procedure VERSIONSPLIT(e, b)
1: entry olde  null
2: entry newe  null
3: block newb  ALLOCATEMEMORY()
4: newb.t_birth  e.t_birth
5: newb.t_death  ∞
6: newb.ppv  b
7: newb.ik  b.ik
8: for (each live entry olde ∈ b) /* olde.t_death > e.t_birth */
9: if (olde.t_death > e.t_birth)
10: newe  DUPLICATEENTRY(olde)
11: olde.t_death  e.t_birth
12: newe.t_birth  e.t_birth
13: ADDENTRYTOBLOCK(newe, newb)
14: ADDENTRYTOBLOCK(e, newb)
15: return newb

Figure 4.9: VERSIONSPLIT Procedure

 Input
 entry e : new entry to insert
 block b : block to key-split

 Return
 block: new block resulting from the split

 Procedure KEYSPLIT(e, b)
1: entry olde  null
2: block oldb  b U {e}
3: entry me  FINDMEDIANKEY(oldb)
4: if (me = null) KEYSPLIT(e, VERSIONSPLIT(null, b))
5: block newb  ALLOCATEMEMORY()
6: newb.t_birth  oldb.t_birth
7: newb.t_death  ∞
8: newb.ppv  b.ppv
9: newb.ik  me.key
10: for (each entry olde ∈ oldb)
11: if (olde.key ≥ me.key)
12: if (olde.t_death = ∞)
13: MOVEENTRY(olde, oldb, newb)
14: else if (olde.t_death > me.t_birth)
15: COPYENTRY(olde, oldb, newb)
16: return newb

Figure 4.10: KEYSPLIT Procedure

 86

For clarity, we illustrate an example of the INSERT operation in Figures 4.11 ~

4.13. In Figure 4.11, no overflowing occurred after inserting three entries (keys: Z, X

and Z) into the previous index we saw earlier in Figure 4.2. Note that the first inserted

Z is marked dead.

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

{Z, 7/1/2007, 8/1/2007}

{X, 7/8/2007, ∞}

{Z, 8/1/2007, ∞}

Figure 4.11: INSERT Z, X, and Z

Figure 4.12 shows a case where another entry with key ‘T’ is inserted into this

index, making the block overflow. Since we have five live entries including the new

entry, if we assume that Bmin is one (thus 4 x Bmin = 4), we fall into Case 1 where a

key split is performed with {V, 7/1/2007, ∞} selected as a median entry.

Before explaining Case 2, we now go back to the original index (Figure 4.2), and

insert three entries with key ‘S’. Again, since there are available slots, no overflowing

occurs. We only mark all the previous entries with the same key ‘S’ as dead (Figure

4.13).

 87

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{X, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

{X, 7/8/2007, ∞}

{Z, 8/1/2007, ∞}

{S, 7/1/2007, ∞}

{T, 8/3/2007, ∞}

{Z, 7/1/2007, 8/1/2007}

Figure 4.12: KEYSPLIT after Inserting T

.

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, 7/8/2007}

{W, 7/1/2007, ∞}

{S, 7/8/2007, 9/1/2007}

{S, 9/1/2007, 10/3/2007}

{S, 10/3/2007, ∞}

Figure 4.13: INSERT S, S, and S

Now we insert another entry with key ‘S’ again, and encounter an overflow.

Since there are not enough live entries to key-split, we now fall into Case 2 where a

version split is performed. Figure 4.14 shows the result of the version split.

 88

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, 11/1/2007}

{S, 11/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, 7/8/2007}

{V, 7/1/2007, 11/1/2007}

{S, 7/8/2007, 9/1/2007}

{S, 9/1/2007, 10/3/2007}

{S, 10/3/2007, 11/1/2007}

{S, 11/1/2007, ∞}

{V, 11/1/2007, ∞}

Figure 4.14: VERSIONSPLIT after INSERT(S, 11/1/2007, ∞)

4.5 Performance Analysis

In this section, we analyze the performance of PISA in terms of the time and

storage space. We first list two invariants we want to maintain all the time throughout

any operations.

Invariant 1: For any live block in PISA, 3 ≤ Bmin ≤ nl ≤ na ≤ Bmax

Invariant 2: For any new block in PISA, 3 ≤ Bmin ≤ nl ≤ na ≤ Bmax - Bmin + 1

As defined earlier in Tables 4.1 and 4.2, Bmin represents the minimum number of

live entries in a block, and Bmax represents the maximum number of entries in a block.

Variables nl and na represent the number of live entries and of all entries in a block,

respectively.

 89

By ‘any new block’ in Invariant 2, we mean any block that is newly created by a

version split or a key split as well as the existing block that a key split has moved its

entries out from. We note that the only case where the number of entries in an

existing block decreases is after a key split, but since we put the existing block for the

key split into the new block category, we need to maintain Invariant 2 for this block,

too.

In this section, we assume that the invariants hold all the time, and analyze the

PISA’s performance under this assumption. This assumption is justified in Appendix

A. From each invariant, the following observations can be made.

Observation 1: From Invariant 1, there are at least Bmin live entries at any point of

time.

Observation 2: From Invariant 2, at least Bmin operations need to be performed on a

new block before an overflow can occur.

4.5.1 Query Time

For URLTIMEQUERY(Key k, Time t), since at least Bmin entries are valid at t in

every block (from Observation 1), we have the same performance boundary as B+-

Tree where each block has at least Bmin entries. Thus, the number of the accessed

blocks is)(log min NO B , where N is the total number of entries (or equivalently, the

total number of the INSERT operations) in PISA. This is the best known lower bound

for any multi-version data structure [71].

For URLTIMESPANQUERY(Key k, StartTime t1, EndTime t2), after we identify the

block and entry with key k that was live at t2, we backtrack to older blocks until we

 90

reach to a block whose death time precedes t1. Supposing that there are R such entries,

we need to backtrack to as many as R-1 older blocks. Therefore, we need to access a

total of))((log min RNO B + blocks. We note that our complexity is sub-optimal for

this particular query type. The optimal bound of))((log
max

min B
RNO B + is not

achieved because all qualifying entries are not clustered together. We note, however,

that Varman and Verma [79] describe a way to achieve the optimal bound with the

access list integration at the expense of the increase in time and space for other

operations such as inserts. The same technique can be adopted in PISA to achieve the

optimal performance.

TIMESLICEQUERY(StartTime t1, EndTime t2) begins the search from the root

block. All the child blocks that are alive during t1~t2 are visited. Again, since at least

Bmin entries are valid at any point of time in every block (from Observation 1), this

type of query is processed optimally.

4.5.2 Insert Time

For INSERT(DataEntry e), we search from the root to locate the appropriate data

block whose key ranges include the key of e. Since there are at least Bmin live entries

in every block, the search takes)(log min MO B time where M is the number of current

live blocks.

After we identify the block, we check whether or not there is a free slot for the

new entry. If there is an available slot, then we add the entry and complete the job.

However, if the block is full, we split the block by creating one or two new blocks

depending on the split type and other conditions explained previously. We then insert

 91

an index entry that points to the new block into the parent block, which may also

overflow. In the worst case, every ancestor block on the path to the root may also

overflow. Since we need to access as many as two blocks each level, the worst case

requires us to visit as many as 1)log2(min +× NB blocks (one added in the end

represents the new root). Therefore, the total time for INSERT is bounded by

)(log min NO B , which is larger than the optimal INSERT complexity of)(log min MO B .

However, we can show that the amortized complexity is still optimal. We

consider Observation 2: at least Bmin operations are needed before an overflow occurs.

Since an overflow adds at most two index entries into the parent block, an overflow

can occur at the parent after at least
2
minB INSERT operations in the child level.

Similarly, the grandparent block can overflow only after at least
2
minB INSERT

operations in the parent block, and so on. That is, at level L (L=1 for data blocks), at

least LB)
2

(min leaf-level INSERT operations need to be performed before an overflow

can occur. Since an overflow requires us to access as many as three blocks in the

same level, one operation contributes to LB)
2

(3 min block accesses at level L.

Therefore, the amortized number of block accesses caused by one INSERT is at most

,
2

6

1
2

3

)
2

(

1

1
2

))1(1(3

)
2

(

1

)
2

(

13
minmin1minmin

min

1min
1

min −
=

−
<+

−

−
=+



















⋅
++

=∑ BBBB
B

BB h

h

h

h

i
i

 92

where h is the height of the tree, or NB minlog . This shows that not only does

INSERT cost a constant complexity after an appropriate block is located, the constant

can be very small (less than
2

6

min −B
) depending on Bmin. Consequently, the

amortized INSERT cost is no more than the time it takes to locate the target block, i.e.,

)(log min MO B . This is asymptotically optimal since this complexity is the same as

that of B+-Tree that only maintains the current version of data.

4.5.3 Space

In order to analyze the space required for PISA after N INSERT operations, we

first examine data blocks first. From Observation 2, we know that there need at least

Bmin INSERT operations before an overflow can occur. Therefore, one INSERT

operation contributes to at most
2
minB blocks (in most cases only one block is created

as a result of a split, however, in some case as many as two blocks can be created). If

we consider the initial block (whose need is explained in Section Appendix A), the

space required for data blocks after N INSERT operations is upper-bounded by

12

min

+
B

N .

The space required by index blocks can be computed as follows. In the first index

level (the parent level of data blocks), at least
2
minB

new data blocks need to be

created before an index block overflows and creates a new index block. We saw in

the previous paragraph that at least
2
minB INSERT operations are required for a new

 93

data block to be created. Therefore, at least a total of 2min)
2

(B operations are required

for a new index block to be created. In other words, one INSERT operation contributes

to at most
2min)

2
(

1
B

 index blocks in the first index level. If we generalize this for all

the other index levels in the tree, we obtain that one INSERT operation contributes to at

most
1min)

2
(

1
+iB

 for the ith index level. Therefore, the maximum number of new index

blocks after N INSERT operations is

)2(
4

21

))2(1(2
2

)
2

(

12

)
2

(minmin

min

log

minmin

min

log

1
minmin

log

1
1min −

<
−

−
×== ∑∑ ==

+ BB
N

B

BB
B

N
BB

N
B

N
N

N

i
i

N

i
i

.

If we also consider an initial index block, there are at most 1
)2(

4

minmin

+
−BB

N

index blocks after N INSERT operations.

To summarize, the maximum number of both data blocks and index blocks

required after N INSERT operations is 2
2

21
)2(

412

minminminmin

+
−

=+
−

++
B

N
BB

N
B

N .

Therefore, PISA has an amortized space bound of

),()(maxmin BNOBNO = which is optimal (we show that Bmin is selected linearly to

Bmax in Appendix A).

 94

4.5.4 Performance Comparison

Based on the numbers that we have so far come up with, we compare the

asymptotic performance complexities of PISA to the existing indexing structures for

web archives. Table 4.3 summarizes the results.

Table 4.3: Performance Comparison (Cells with the best performance are shaded)

File-based
B+-Tree -based

PISA One Merged Tree Two Separated
Trees

URLTIMEQUERY)(log2 NO)(log NO B)(MVO ×)(log NO B
URLTIMESPANQUERY)(log2 RNO +)/)((log BRNO B +)(MNRO ××)/)((log BRNO B +
TIMESLICEQUERY)(NO)(BNO)(log VO B)/)((log BRNO B +
INSERT)(NO)(log NO B)(log NO B)(log MO B
space)(NO)(BNO)(BNO)(BNO
incremental No Yes Yes Yes

N: # of entries. M: # of entries in a version. V: # of versions B: Block size R: # of matching entries

We also note that, compared to other persistent data structures, PISA runs more

efficiently, even for the operations that have the same asymptotic runtime. For

example, PISA has the same asymptotic runtime as WOBT, MVBT and MVAS for

the operations in Table 4.3. However, they all require two new blocks created for

every key split, where as PISA only spawns one block in many cases and two new

blocks in some cases, allowing PISA to run faster in practice, requiring compacter

storage at the same time.

4.6 Summary

In this chapter, we introduced a persistent data structure, called PISA, to be used

as a location index for temporal data. We showed how insert and queries are

 95

performed in PISA. Our performance analysis showed that PISA provides insert and

queries optimally in terms of both time and space, and it also has a lower overhead

than other optimal schemes.

 96

Chapter 5

Optimizing Data Layout for Web Contents for Fast

Access

In Chapters 3 and 4, we discussed information discovery and delivery in a long-

term preservation system, respectively. Once the relevant information is discovered

and delivered, the user begins to navigate around the returned results, following the

hyperlinks in an html, for example. In this chapter, we consider the problem of

storing a linked set of inter-related data into containers in such a way as to minimize

the number of containers accessed during an information browsing session. Our

method makes use of link analysis and optimized graph partitioning to enable faster

browsing of archived web contents in the future.

Our overall methodology is very general and can be used to optimize different

browsing patterns. We include simulation results that illustrate the performance of our

scheme and compare it to the common scheme currently used to organize web objects

into web containers.

5.1 Overview

In web archiving, most web pages tend to be small, and are typically aggregated

into relatively large containers as the objects are accessed during the crawling process.

An emerging standard for such containers is the WARC format [82], which evolved

from the ARC container format developed by the Internet Archive, currently the

 97

world’s largest internet archive. Moreover, many web crawlers and access tools,

Heritrix [55], NutchWAX [60], Wayback [84], WAXToolbar [83] and WERA [87],

assume this format.

Given a set of WARC containers that hold an archived linked set of web objects,

a future browsing process of the archived objects starts with a web object defined by

a seed link, followed by navigation through the linked structure until the desired web

object is found. Our goal is to organize the web objects into containers so as to

minimize the number of containers needed to complete a typical browsing process.

We develop an algorithm that assigns web objects to containers by performing an

initial link analysis on the given linked structure, followed by a partitioning process

that leads to an efficient solution to this problem. We show that our method enables

effective navigation through the archived linked structure and compare its

performance to the dominant scheme in use today.

We start in Section 5.2 by describing the previous work related to our problem,

followed by developing and justifying our method in Section 5.3. We apply our

method to two web site examples and examine the performance gains achieved by our

method in Section 5.4. We conclude in Section 5.5.

5.2 Related Work

We review in this section the possible storage formats for archiving web contents

and a couple of techniques in link analysis and graph partitioning which will form the

core of our method.

 98

5.2.1 Archival Storage

In order to organize and store web objects in an archive, several methods have

been proposed and are currently in use. A straightforward method (such as the one

implemented in [31]) is based on using the local file system where the target web

content is copied object by object to the local file system, maintaining the relative

structure among the objects. For future access, the html tag ‘file’ can replace the

‘http’ tag in the original object. We can then use the local file system for navigation

through the archived web objects. For example, ‘http://www.example.org/index.html’

can be rewritten as ‘file:///archive/2007.08.01/www.example.org/index.html’. It is

relatively easy to set up and run this type of web archiving and the retrieval process is

carried out using local file access mechanisms. However, there are several problems

in using this method for web archiving including its limited scalability to what the

local file system can handle, and the difficulty to preserve the contents over time as

they are tightly coupled to the specific file system. Moreover, this strategy requires

modifications to the original contents, and thus the strict faithfulness to the original

contents cannot be maintained in most cases [27,26,77].

The second approach extracts documents from the hypertext context and

reorganizes them in a different format while setting up different access mechanisms.

For example, a small set of web pages can be converted into a single PDF document.

However, this strategy makes sense mainly for specific objects that were originally

created independently of the web. Although it is possible to maintain the hypertext

structure within the converted documents, for the broader range archiving, this

approach loses the hypertext structure between multiple such documents.

 99

The most popular method currently in use by most web archives, including the

Internet Archive, stores web objects in WARC [82] container files. A WARC file

holds a set of harvested web files, each with its own auxiliary metadata. The size of a

WARC file can vary up to hundreds of megabytes (usually 100~500MB). Typically,

an external indexing server is maintained to provide the mapping between hyperlinks

inside a WARC file and the location of the archived object that the hyperlinks point

to. For example, if, inside a WARC file, there is a web page archived on September

24, 2007 which has an outgoing hyper link with a tag , the indexing server could

return in response to the tag and date something like ‘20070924082031-00007.warc’

and ‘1463539’ which are the WARC file name and the offset in the WARC file,

respectively. In this chapter, we will also assume that web files are placed in such

containers such that a certain upper bound on the size of the container is assumed.

5.2.2 Graph Partitioning Techniques

Web material can be considered as a graph (web graph) where each constituent

web page is represented by a vertex, and each incoming/outgoing link corresponds to

a directed edge. Once represented as a graph, the web graph can be partitioned into

multiple sub-graphs using one of existing graph partitioning techniques. The basic

goal of a minimum edge-cut partitioning is to minimize some defined cost on the

edges connecting the partitions. There are many ways to define the external cost of

graph partitioning but the two notions most widely used are the maximum weight of

the edges between vertices which lie on different partitions, and the total weight of all

 100

the edges connecting distinct partitions. Although the graph partitioning problem is

known to be NP-complete, many heuristic algorithms have been developed which

find very good partitions in practice [8,9,23-25,28,35,39,53,52,67]. However, for our

application, we will require additional constraints, which cannot necessarily be

handled by many of the well-known graph partitioning algorithms. We review here

some of the algorithms that can be used to solve our graph partitioning problem that

will be defined formally in Section 5.3.

Perhaps the best known graph partitioning algorithm is the Kerninghan-Lin

algorithm [39], where the partitioning process starts with an arbitrary partition, and

then proceeds to decrease the external cost by a series of interchanges of subsets of

the partitions repeatedly until no further improvement is possible. To avoid local

optimality, the algorithm is applied repeatedly to obtain a number of locally optimum

partitions among which the best partition is chosen. Although Fiduccia and

Mattheyses [15] later improved the performance of the Kerninghan-Lin algorithm,

their algorithm is considered computationally expensive especially if the graph is

large, which is clearly the case for our application.

In order to cope with large graphs, researchers devised multilevel graph

partitioning schemes [8,9,24,35,67] where the algorithms reduce the size of the graph

(or “coarsen” the graph) by collapsing vertices and edges, partition the resulting

smaller graph, and then “uncoarsen” it to construct a partition for the original graph.

While the multilevel scheme was mainly developed and used to improve the

partitioning performance of a large graph at the expense of worse partition quality

[67], more recent multilevel algorithms, such as in [8,9,24,35], further refine the

 101

partition during the uncoarsening phase, thus obtaining a partition quality that is

comparable or even better than other existing techniques [28]. The Kerninghan-Lin

algorithm is often used as the refinement algorithm.

5.2.3 Link Analysis Technique – PageRank

PageRank [61] is a link analysis algorithm that assigns a numerical weight to

each element of a hyperlinked set of documents, such as web material. Intuitively, a

web page with a higher PageRank should have a higher probability of being visited.

The intuition behind PageRank is that if page u has a link to page v, then page u is

implicitly conferring some importance to page v. In other words, page u can be

thought as voting for page v. The more votes a page receives, the more important it is

considered. However, not every vote counts equally: votes cast by pages that are

themselves “important” weigh more heavily and help other pages become more

“important”.

In the ideal model, the PageRank value for page u, PR(u), can be expressed as:

,)()(∑
∈

=
uIv

vu vPRpuPR

where Iu is the set of pages with links to page u, and Pvu is the probability that a

random surfer visiting page v jumps to page u. Since it is not possible to know the

exact value of Pvu, Pvu is usually set to 1/out_degree(v), that is, all outgoing links

from v are assumed to be equally likely.

However, the ideal model has two problems. The first problem is the presence of

dangling pages that shut the surfer when visited. A solution to the problem is to patch

dangling pages by artificially placing outgoing links from each dangling page to all

 102

the other pages. Each artificial link can be given either equal probability of 1/N (N:

total number of pages), or personalized probability which records a generic surfer’s

preference for each page. The second problem with the ideal model is that the surfer

can get trapped by a cyclic path in the web graph. Brin and Page [7] suggest

enforcing irreducibility by adding a new set of artificial transitions that, with low

probability, jump to all nodes. Mathematically, this corresponds to the following

equation:

,)(1)(∑
∈

+
−

=
uIv

vu vPRpd
N

duPR

where N is the total number of pages, and d is the probability the random surfer

jumps to a random page without a link.

We note that this equation is slightly different from the original PageRank

equation as proposed by Brin and Page [7]. The original equation,

∑
∈

+−=
uIv

vu vPRpdduPR)(1)(, has brought up some confusion since, unlike the

inventors’ claim, the sum of all PageRanks is not one, but N. The above scaled

version, however, leads to ∑ = 1)(vPR , and each PageRank can be thought as a

probability. In the above equation, the parameter d is called the damping factor which

can be set somewhere between 0 and 1. As suggested in [61] and [7], we use d = 0.85

in our work which will be further described in the next section.

If we let G = (V, E) be a web graph, and A the modified adjacency matrix of G

defined by:

 103

,
otherwise ,1

),(if ,1










−

∈+
−

=

N
d

Eij
O
d

N
d

A j
ij

where is the number of out-links from page j.

If we also let P be an N-dimensional column vector of PageRank values, then P

can be expressed by the following matrix equation: P = AP

This is the characteristic equation of the eigensystem whose solution is the

eigenvector corresponding to the eigenvalue of one. Furthermore, A can be

considered as a stochastic matrix that is also irreducible and aperiodic, due to the

modifications we performed earlier to avoid dangling nodes and cyclic paths.

Therefore, by the Ergodic theorem of Markov chains [63], a finite Markov chain

defined by the stochastic transition matrix A has a unique stationary probability

distribution. This implies that, starting with any initial value of P, we can iterate the

application of the matrix A to P, and P will converge to a steady-state probability

vector, which in turn is the eigenvector of A corresponding to the eigenvalue of one.

In practice, a well known mathematical technique called power iteration [20] can be

used to efficiently determine P.

As will be discussed further in the next section, our link analysis technique is

based on the PageRank algorithm. However, unlike the PageRank algorithm that

assigns a weight to each page, we assign a weight to each link, which will then be

used to partition the graph.

 104

5.3 Our Method

As discussed earlier, the most popular storage method for web archiving is to use

containers where each container holds a number of web pages. Typically, web

material is archived using many containers. The primary goal of our work is to

develop techniques to allocate web pages to containers such that each container has as

closely related web pages as possible, thereby minimizing the chances of accessing

many different containers when a user browses through the archived web material.

When web contents are archived in the form of multiple containers, we can view

these containers as a coarsened web graph (or container graph) where the original

nodes within the same container are collapsed together to form a super node, and only

edges between different containers survive with assigned weights as will be explained

next.

In the container graph, Gc=(Vc, Ec), we define the cost of the edge-cut, EC, as

follows:

,∑
∈

=
cEe

ewEC

where we is the weight of edge e.

In order to accomplish our goal, we analyze the link structure within the web

material to be archived to find, for each edge, a good estimate of the probability that

the edge will be taken. Using this estimate as the edge weight, we partition the web

graph in such a way as to minimize EC. The following two subsections discuss our

link analysis and the partitioning technique used to minimize EC.

 105

5.3.1 Edge Weight

Edge weights should represent the relative likelihood of an edge being taken

during a browsing session. In the live web, edges are hyperlinks embedded in web

pages, but in an archive, edges in the web graph can also exist between two

consecutive versions of a web page. In order to assign edge weights, a link analysis is

performed. Before proceeding we note that our scheme will be based on a browsing

pattern similar to what is expected in today’s live web. However it is easy to

accommodate other access patterns within our methodology using a different weight

function on the edges. For example, should browsing of successive versions of a web

page dominate, we will assign heavy weights to the corresponding edges relative to

the remaining edges. Similarly, should the access pattern to sub-domains of sites

dominate, the corresponding edge weights will be assigned high values. For the rest

of this chapter, we are assuming an access pattern similar to the one currently

encountered on the live web.

We start with some simple observations. If a vertex has only one outgoing edge,

this edge will be more likely taken than an edge from another vertex with many out-

links, and thus should be weighed more heavily. A possible simple solution is to

assign edge weights depending on the number of out-links of the source vertex. For

instance, if the source vertex of edge e has k outgoing edges, the weight of 1/k is

given to edge e.

When a personalized vector is not in use, the PageRank algorithm also uses the

same method in assigning edge weights. In this case, the only deciding factor to the

edge weight is the number of the outgoing edges from the source vertex, and thus the

 106

edge weight only represents the local probability of the edge being taken, once the

source vertex is visited. In other words, the edge weight is only locally meaningful,

and thus it is not possible to say that an edge is more likely to be taken than the other

if they belong to different vertices.

For our method, the probability of each vertex being visited is computed first

using the PageRank algorithm. The PageRank value (or steady-state probability) of

each vertex is then divided by the number of outgoing edges from the vertex. We call

this quotient EdgeRank (ER) and assign the same EdgeRank value as the weight to

every edge coming out from the same vertex.

,
)(
)()(

vOD
vPReER =

where vertex v is the source vertex of edge e, and OD(v) is the out-degree of

vertex v.

Note that, because ∑ = 1)(vPR , ∑ =1)(eER too.

Now that we have an edge-weighted graph representing our web contents, the

allocation of web pages to containers is performed using a graph partitioning

algorithm.

5.3.2 Graph Partitioning

As discussed in Section 5.2, there are a number of existing min-cut graph

partitioning heuristics that seem to work well in practice. Although their primary

partitioning criterion is to minimize the cost of the edge-cut, they differ from one

another in input, output, and partitioning parameters. For example, some algorithms

 107

support size-constrained partitioning while others do not. Also, not all algorithms

support weighted vertices and edges. Before proceeding let’s define our graph

partitioning problem more formally.

Web Graph Partitioning Problem: Given a directed web graph G:(V, E) with

weighted nodes (weight of a node is the size of the corresponding page) and weighted

edges, determine a partition V = P1 U P2 U P3 U … U Pn such that,

1. The sum of the weights of the edges that connect any two different partitions is

minimized.

2. For all i’s, |Pi| ≤ K for some fixed K, where |Pi| is the sum of the weights of

the vertices in the partition and K is an upper bound on the size of a container.

The first condition is shared by almost all partitioning algorithms (some require

non-weighted edges), while the second condition, which is the size constraint

imposed to every partition, is supported only by a few partitioning algorithms (such

as [28,36,35]), sometimes with a slight modification.

In this work, we adopt the multilevel graph partitioning algorithm to solve our

problem. The primary reason is that it supports the constraints on the partition size;

moreover, the method is fast, which is important in our case considering the typically

large sizes of web graphs. In particular, we adapt a partitioning technique suggested

by Karypis and Kumar [35] as follows.

Their scheme first computes a maximal matching using a randomized algorithm,

and coarsens the graph by collapsing the matched vertices together. This coarsening

step is repeated until a desired size of the coarsened graph is achieved. Once the

 108

graph is coarsened, the minimum edge-cut bisection is computed using some of

existing algorithms such as spectral bisection [3,68], geometric bisection [53] or

combinatorial methods [16,17,39]. The partitioned graph is then refined and

uncoarsened. The improved Kerninghan-Lin algorithm that was developed by

Karypis and Kumar is applied to this uncoarsening-with-refinement phase.

In particular, we use Metis [79], a partitioning tool that implements the Karypis-

Kumar scheme. Although Metis does not explicitly support the partition size

constraints – our second condition, it does support vertex-weight-based size balancing

among partitions, making the size of all partitions similar. Therefore, based on the

sum of all the vertex weights of the web graph, we pre-compute the necessary number

of partitions before running the partitioning tool, so that the resulting partitions will

meet the second condition.

5.4 Experimental Evaluation of Our Scheme

In order to examine the performance of our algorithm in terms of the number of

containers accessed during a typical browsing session, we consider two datasets. The

first is the web graph of the University of Maryland Institute for Advanced Computer

Studies (UMIACS) web site, located at http://umiacs.umd.edu domain, which we call

the UMIACS web graph. We crawled every web page within five-hop distance (or

depth) under this domain, and constructed the web graph corresponding to this

crawling. The second dataset is the Stanford web graph which was generated from a

crawl of the stanford.edu domain created in September 2002 by the Stanford

WebBase project [29], and is widely used by the web graph analysis community.

 109

Unlike the first dataset, the Stanford web graph has neither the size information of

vertices, nor the actual URLs with which we might have been able to obtain estimates

of the web pages (which undoubtedly have changed since then). Consequently, we

randomly assign vertex sizes using two Gaussian distributions – one for html files, the

other for non-html files. Their parameters are based on the findings from a web

statistics study [30]. In particular, we assumed there are about 18% html objects by

total file size, and the average html file size is 605 KB. This size modeling is not

intended to mimic the actual web object sizes in the Stanford web page. Rather, we

intend to assign some reasonable sizes to run our experiments. Note that the quality of

our method does not depend on the accuracy of the vertex sizes. Table 5.1 describes

these two datasets.

Table 5.1: The Two Datasets Used for Evaluating Our Method

Datasets # Vertices # Edges Total Vertex Weight

UMIACS Web Graph 4579 9732 2.49GB

Stanford Web Graph 281903 2312497 215.82GB

In our experiments, we allocate pages to containers (or WARC files) in three

different ways.

• CONV: Pages are allocated to containers as they are fetched during the

crawling process. Once a container is full, we use a new container (Figure

5.1).

• GP: The graph partitioning technique is applied so as to minimize the

number of edges connecting any two partitions. All the pages belonging

 110

to a partition are allocated to a single container (Line 3 in Figure 5.2 is

omitted).

• ER+GP: The EdgeRank technique is used to assign weights to edges

(Line 3 in Figure 5.2), and the graph is partitioned using a minimum-

weight partitioning algorithm. Again, containers are constructed based on

the resulting partitions. In each case, the damping factor, d = 0.85, is used

in EdgeRank.

 Input
 Seed URLs : {url1, url2, … }
 MAX_CONTAINER_SIZE

 Procedure

1: Enqueue(Q, Seed URLs)
2: i1
3: visited[]  FALSE
4: Ci  new Container()
5: while (Q is non-empty)
6: u  Dequeue(Q)
7: Fetch(u);
8: visited[u] TRUE
9: if (Size(Ci) + Size(u) > MAX_CONTAINER_SIZE)

10: i = i + 1
11: Ci = new Container()
12: Ci = Ci U u
13: for each v ∈ Adj[u]
14: if (visited[u] = FALSE)
15: Enqueue(Q, v)

Figure 5.1: Conventional Allocation of Pages to Containers

Figure 5.1 shows a typical BFS algorithm where a visited node is stored in the

current container as long as the size of the resulting container does not exceed the

predefined value (MAX_CONTAINER_SIZE) (Lines 9~12). A new container is

created if necessary.

 111

In the algorithm shown in Figure 5.2, a web graph is first built (Line 1) using a

BFS-based crawling algorithm similar to the one in Figure 5.1, followed optionally by

computing EdgeRank (Line 3) in order to obtain edge weights in the graph. This

graph is then partitioned into the pre-calculated (Line 2) number (n) of partitions.

This number depends on the total sum of vertex weights (page sizes) in the graph, as

well as the predefined maximum container size (MAX_CONTAINER_SIZE). Once

partitioned, the URLs in each partition are re-visited and packaged in the n containers

(Lines 5~9). In practice, depending on the resource availability, the web objects

downloaded from the previous crawl (Line 1) can be stored and reused in the

packaging process.

 Input
 Seed URLs : {url1, url2, … }
 MAX_CONTAINER_SIZE

 Procedure

1: G  BuildWebGraph(Seed URLs) /* Using BFS */
2: nGetNumberOfContainers(G,MAX_CONTAINER_SIZE)
3: G  EdgeRank(G) /* Optional */
4: {UL1,UL2,…,ULn}  PartitionGraph(G, n)
5: for (1 ≤ i ≤ n)
6: Ci  new Container()
7: for (v ∈ULn)
8: fetch(v)
9: Ci = Ci U v

Figure 5.2: Container Construction Based on Graph Partitioning with or without
EdgeRank (Line 3)

In our simulation, to be discussed in Section 5.4.2, the UMIACS dataset was

partitioned into 25 partitions and the Stanford dataset was partitioned into 2200

partitions, resulting in the size of each partition being between 100MB and 200MB.

 112

5.4.1 Edge-Cut

In order to evaluate the graph partitioning performance, we measure the edge-cut

obtained from the graph partitioning scheme, and compare it to the conventional

breadth-first-search (BFS) partitioning. We defined the cost of an edge-cut earlier as

the sum of the weights of all the external edges between partitions. However, as we

performed the experiments on the two separate datasets with different numbers of

nodes, edges and partitions, we scaled down the cost of the edge-cut to a web graph

with the total edge weight of 100, as follows:

,100
E

ECECscaled
×

= where E is the total edge weights in the web graph.

We begin by considering the case where the web graph has no edge weight (or

equal edge weight). We observe that the edge-cuts generated by the conventional

method were about 70~80 for both datasets while those generated by the graph

partitioning scheme are 12 and 47 for the UMIACS and Stanford datasets respectively.

Using edge weights based on the PageRank technique, the graph partitioning

approach similarly reduces the costs of the edge-cuts relative to the conventional

approach as illustrated in Table 5.2.

 Table 5.2: Edge-Cut Results

Edge-Cut Unweighted Edges Weighted Edges
CONV GP ER+CONV ER+GP

UMIACS
Web Graph 73.87 12.38 62.36 36.03

Stanford
Web Graph 80.50 47.33 63.56 32.20

 113

5.4.2 Simulation

Although the edge-cut figures show favorable results when the partitioning

technique is employed, we additionally ran simulations to further see how much the

partitioning and the EdgeRank will in fact reduce the number of containers necessary

for a random user to browse through the archived web material. In these simulations,

we set a virtual user who randomly walks through links, and counted the number of

containers that the user had to access.

Table 5.3: Simulation Parameters

Parameter Value
Number of Hops 10
Probability of Going Back 30%
Outdegree of Starting Vertex > 5
Policy At Dangling Vertex Go back

Each random walk consists of ten random hops, and at each random hop, each

outgoing link is given an equal probability of being taken. Also, we assume that the

BACK button on a browser is pressed with 30% probability. We base this choice on a

recent browser usage research [38] which shows that hyperlinks are taken 41.7% of

time, followed by other navigation (23.6%) and the back button (18.9%). Since, in

our simulation, we only consider hyperlinks and the back button, we assume that the

back button is pressed about 30% (≈ 18.9 / (41.7 + 18.9)) of the time. Once the

random walk reaches a vertex with no outgoing link (or a dangling), the random walk

goes back to the previous vertex, if any, as if the user presses the BACK button. In

order to avoid the situation where there are no more vertices left to visit soon after the

start of the simulation, we insist that the randomly selected starting vertex has an out-

 114

degree of five or larger. This is achieved through repeating the random selection

process until we find a starting vertex that meets this criterion. Table 5.3 shows our

parameter-value pairs used in the simulations.

In the simulations, we ran the random walk 1000 times over each dataset, where

we monitored both the number of inter-container hops and the number of distinct

containers needed for each random walk. Inter-container hops occur whenever a

different container needs to be accessed. For example, if a random walk switches

back and forth between two containers, A and B, ten times, the number of inter-

container hops will be ten, while the total number of distinct containers is only two.

In a system with no caching policy or a limited memory, the inter-container hops will

serve as a more useful metric because, even if a user requests a previously retrieved

container, the system will always need to retrieve it from storage. However, if a

system can cache enough containers, the total number of distinct containers will make

more sense in assessing the system’s performance. Figures 5.3 and 5.4 show the

histograms of the number of inter-container hops and distinct containers accessed for

the UMIACS web graph, respectively, while Figures 5.5 and 5.6 show the

corresponding histograms for the Stanford web graph. In these histograms, we

categorized 1000 random walks by the number of containers that each random walk

was required to access. The X-axis represents eleven categories (0, 1, …, 10 ; Note

that the total number of hops in each random walk is ten, so there can be at most ten

inter-container hops in worst case), whereas the Y-axis represents the number of

random walks that fall into each category.

 115

Figure 5.3: Histogram of Number of Inter-Container Hops for UMIACS Web Graph

Figure 5.4: Histogram of Number of Distinct Containers Accessed for UMIACS Web

Graph

 116

Figure 5.5: Histogram of Number of Inter-Container Hops for Stanford Web Graph

Figure 5.6: Histogram of Number of Distinct Containers Accessed for Stanford Web

Graph

 117

It can be observed that when the graph partitioning scheme is used, many random

walks only need a single container (thus, zero inter-container hops). Figure 5.7

depicts the average number of inter-container hops during the random walks over the

two web graphs. From the figure, it can be seen that the GP and ER+GP schemes

reduced the average number of inter-container hops from five to one for the UMIACS

web graph. For the Stanford web graph, the GP scheme reduced the number from

seven to five, while ER+GP further reduced the number down to four. The average

number of containers needed is shown in Figure 5.8. Although the improvements are

not as dramatic as the number of inter-container hops, compared to the CONV

scheme, the GP scheme required about 28% and 11% less number of distinct

containers for the UMIACS and Stanford web graph, respectively. The ER+GP

scheme further reduced the numbers 9% and 17% less than those from the GP scheme.

Figure 5.7: Average Number of Inter-Container Hops

 118

Figure 5.8: Average Number of Distinct Containers

In these experiments, based on our assumption about the access pattern discussed

in Section 5.3.1, we only considered the cases where users follow hyperlinks on

pages. We note that the link analysis scheme can be tailored to capture a number of

access patterns by adjusting the weight function appropriately. The corresponding

partitioning technique will optimize the allocation of web pages to containers so that

the average number of containers accessed is minimized.

5.5 Conclusion

In this chapter, we have shown that a graph partitioning scheme for organizing

archive containers significantly reduces the number of containers that need to be

accessed when a user browses through the archived web material. Also shown was a

PageRank-derived technique, called EdgeRank, which can improve this number even

further. The overhead required by this technique is relatively small. For instance, on

 119

our 2 Ghz Intel Core 2 Duo processor, we could fully partition and compute

EdgeRank of a large graph (the Stanford web graph that contains about 300,000

vertices, and 2.3 million edges) within minutes.

 120

Chapter 6

Concluding Remarks and Future Work

In this dissertation, we examined the topic of long-term information preservation

and access from three different perspectives.

 First, we introduced a methodology to ensure the authenticity of the preserved

contents on a long-term basis. Based on efficient and rigorous techniques, our

integrity monitoring scheme detects with high probability any errors in an archive

including those introduced by malicious alterations. Our scheme allows an

independent third-party to audit any object in the archive and certify its integrity, as

long as a small size of cryptographic information is kept intact. The current

implementation of our scheme, ACE, has been deployed in a number of institutions

that are using it to monitor the integrity of their digital holdings.

Second, we developed an information retrieval and content delivery scheme.

Based on the notion of time windows, our information retrieval scheme allows an

efficient handling of full-text search with temporal constraints by minimizing the

search space according to the query time span. It also allows document relevancy

scoring to be based on the temporal context of the query time span. An analytical

model was introduced to determine the best time window size, and validated against

two real-world datasets of significant size. The empirical study strongly supported our

analytical model. For content delivery, we proposed a persistent data structure, called

PISA, to be used as a location index that identifies the location of a document version.

 121

The asymptotic analysis shows that PISA is as good or better at insert and query

operations, compared to existing schemes.

Third, we developed a data layout scheme to organize inter-related data such that

future navigation through the preserved data can be efficiently performed. In

particular, we addressed the problem of how to organize inter-related objects such

that future navigations through the objects can be more efficiently performed. Based

on a graph partitioning technique combined with a graph analysis technique, our

scheme showed significant performance improvement over conventional schemes.

The issues examined in this dissertation represent a small sample of the

challenging problems facing long term preservation. We discuss a few of these below.

In Chapter 2, we examined integrity preservation where the focus was given to

ensuring the bit-level integrity of the preserved data. A promising future direction is

to extend this to categorical integrity preservation, where the actual readability of the

preserved data is also ensured. The categorical integrity preservation will need to also

consider file format obsolescence. We note that we conducted a preliminary study on

the issue of file format obsolescence [18]. While this is a study that we performed

independently of the integrity preservation work, a careful adaptation of such work

may provide a useful component toward the goal. Meanwhile, it will also be

interesting to extend ACE auditing to the cloud computing environment. A possible

deployment scenario of ACE in the cloud will involve storing integrity tokens in the

cloud, extending cloud tools to support retrieval of and validation using the integrity

tokens, and also developing a set of audit services.

 122

In Chapter 3, we assumed that the time windows have the same size in our

analytical model. An interesting future work will be to extend the approach to

dynamic time window sizes. A possible starting point involves a periodic evaluation

for the best time window size over some period of time, say a year or two. We also

assumed uniformly random query time spans when building our analytical model, as

well as when we conducted empirical studies. However, depending on the nature of

the collection, different access patterns may be more reasonable. For instance, one

might expect time point queries to be prevalent for a certain type of collections.

Should we have better knowledge about such access patterns available, we will be

able to obtain a better estimate for the best time window size. Yet another research

area related to information retrieval will be to include the spatial aspect of preserved

contents. Spatial information retrieval or spatial and temporal information retrieval

should generate various interesting and challenging issues that will have a large

number of applications.

We introduced a location index for time-evolving data in Chapter 4, where we

showed asymptotic analysis for the insert and query performance. Although an initial

real-world performance comparison between PISA and B+-Tree has been already

performed in our paper [74], another set of real-world performance comparison

against other multi-version access structures will also be interesting future work.

Experiments on the link-analysis and graph partitioning techniques introduced in

Chapter 5 may be more generally extended to other types of digital objects, not just

web data. More importantly, the scalability of the scheme will need to be given

considerable attention. We expect the collection size to steadily increase in the long-

 123

term, and therefore, the scalability aspect of the graph analysis and partitioning

techniques is a critical problem that needs to be addressed.

 124

Appendix A

PISA: Parameters and Invariants

In Chapter 4, we assumed that Invariant 1 and Invariant 2 always hold under only

one parameter condition: all parameters are positive integers. Since these conditions

are obviously not enough to maintain the invariants, we now look for stronger

conditions that indeed satisfy both invariants, and based on the new conditions, we

show how we can determine parameter values and what implications they have on the

performance.

A.1 Parameter Conditions

We begin by making the first self-evident parameter condition.

Condition 1: Bmin ≥ 3

Now, we show how to maintain Invariant 1: For any live block in PISA, 3 ≤ Bmin

≤ nl ≤ na ≤ Bmax.

First of all, 3 ≤ Bmin holds with Condition 1. Also, since the inequalities nl ≤ na ≤

Bmax are automatically maintained by the definitions of nl and na, we only need to

maintain Bmin ≤ nl.

Note first that there are only two cases for an entry in any existing block to

become dead: 1) an updated entry with the same key is inserted into the block, or 2)

an overflow occurs and a version-split is performed in the block. In the former case,

the number of live entries does not change, since a new live entry always replaces the

 125

dead entry. In the latter case, the overflowing block becomes dead, so we do not have

to deal with it anymore (Invariant 1 concerns only live blocks).

We now examine whether updated blocks (either from key splits or version

splits) satisfy Bmin ≤ nl. By updated blocks, we include both the newly created block

and the original block that a key-split moves entries out from. By the result of a key

split, at least Bmin live blocks remain in the original block, and also at least Bmin live

blocks are moved to the newly created block. Thus, key splits do not violate Bmin ≤ nl.

In case of a version split, the new block after the version split contains the same

number of live entries (plus one new entry that caused the overflow), as the original

block. Thus, as long as the original block maintained Bmin ≤ nl while it was alive, the

inequality still holds for the new block.

Consequently, we only need to make sure that the very initial block satisfies Bmin

≤ nl. One easy way of ensuring this is to have an initial block which we artificially

insert Bmin dummy (but live) entries into in the beginning. Recall that we also took

this initial block into consideration when we counted the number of blocks in the

previous section.

We now look for a condition to maintain Invariant 2: For any new block in PISA,

3 ≤ Bmin ≤ nl ≤ na ≤ (Bmax - Bmin + 1).

Again, 3 ≤ Bmin holds by Condition 1, and nl ≤ na always holds by the definitions

of the variables. Moreover, since a new block is also a live block, and we already saw

that any live block can maintain Bmin ≤ nl with initial dummy entries, we only need to

investigate the last inequality na ≤ (Bmax - Bmin + 1), for an updated block.

 126

In order to evaluate the upper bound of the number of entries (na ≤ Bmax - Bmin +

1), we first look at a key split. Sometimes, a key split is preceded by a version split

when a qualifying median entry cannot be found. However, it is sufficient here to

only consider the key split procedures after a median entry is found. The case with the

version split will be separately discussed later. Just before a key split occurs on block

A, there are Bmax + 1 entries (or less if a version split had to be preceded) in block A

of which at least 4Bmin are alive. After the key split, somewhere between Bmin and

3Bmin live entries are moved out to a new block B. Some qualifying dead entries in

block A are also copied into block B. As a result, block B can have as many as 3Bmin

live entries and Bmax + 1 - 4Bmin dead entries, making a total of Bmax - Bmin + 1 at most.

Therefore, block B clearly maintains the upper bound of na (≤ Bmax - Bmin + 1). As for

block A, the maximum number of entries it can contain after a key split occurs when

only Bmin live entries were moved out and it has the greatest possible number of dead

entries (i.e. Bmax+ 1 - 4Bmin dead entries). Even in this worst case, block A may only

contain 3Bmin + Bmax + 1 - 4Bmin = Bmax - Bmin + 1 entries, clearly maintaining the upper

bound of na.

We now move onto the case of a version split. After a version split on an

overflowing block A, a new block B contains all the previously live entries in the

overflowing block A and the newly inserted entry. Thus, there are nl + 1 entries in the

new block B, which we require to be less than or equal to Bmax - Bmin + 1. Since nl + 1

< 4 x Bmin (the version-split condition), nl + 1 ≤ Bmax - Bmin + 1 holds if 4 x Bmin ≤ Bmax

- Bmin + 1, which can be rewritten as our second condition below.

Condition 2: Bmin ≤ Bmax / 5

 127

To summarize, if the two parameters values (Bmin and Bmax) meet the two

conditions above (Condition 1 and Condition 2), the two invariants (Invariant 1 and

Invariant 2) indeed hold. In the following subsection, we further examine how to

determine the parameter values.

A.2 Determining Parameter Values

In Chapter 4, we analyzed the operation and space performance, where we saw

the time complexity for QUERY and INSERT operations increases logarithmically with

the logarithm base of Bmin. Hence, the larger Bmin we set, the faster these operations

become. Furthermore, we also saw that (2N / (Bmin - 2)) + 2 block spaces are required

for N INSERT operations. Thus, the larger Bmin we set, the less space we will need. As

far as Bmax is concerned, in most cases, we do not have many options but to set it as a

fixed value depending on the physical block size of the underlying storage. Therefore,

it is always better to set Bmin to the greatest value allowed. Clearly, setting Bmin = Bmax

/ 5 gives us the best performance both in time and in space.

 128

Appendix B

Proofs of E[X] and E[Y]

In this appendix, we will provide proofs of the claims made in Section 3.4.1.

regarding the expected values of X and Y, where X is the number of duplicate versions

falling within a set of consecutive time windows that overlap with the query time

span and Y is the number of document versions that have to be filtered out relative to

the same query time span. Our basic assumption is that the query time span [qs, qf] is

selected randomly – that is, each end point is selected randomly from the n time steps

t1, t2, …, tn, the smaller of which will become qs and the other will become qf. Hence,

for two fixed values ts≠tf, [ts, tf] will be selected with probability 2/n2 and a point

query at ts, for any fixed tf, will be selected with probability 1/n2. Also, [ts, tf] spans

across more than one time window with probability of 2z2/n2, and lies within a single

time window with probability of z2/n2. We start by estimating the expected value E[X]

of X, and then derive the expected value E[Y] of Y.

Let δi be the number of document versions whose validity time intervals contain

ti and let δ be the average of all the δi’s. E[X] can be expressed as follows.

∑

∑∑

∑

−

=

−+

−

= +=

−+

−=

+++=

+++=

1

1
2

2

)1()1(

1

1 1
2

2

)1()1(
,

)(2

j)=ifor exist duplicates no that (note)...(2

)...(] through spansquery P[][

k

i
iz

zjziiz

k

i

k

ij

zjziiz
ji

ji

iki
n
z

n
z

TTXE

δ

δδδ

δδδ

We can substitute δ instead of the individual δi’s to approximate E[X] as follows.

 129

δ
k

kXE
3

)1(][
2−

≈

For sufficiently large k, E[X] can be further approximated by:

δδ
z

nkXE
33

][=≈

T1 T2

t0 t1 t2 t3 t4 t5 t6 t7 t8

query time span : [qs=t3, qf=t7]

doc1
doc2
doc3
doc4
doc5
doc6
doc7

document version counted toward Y
document version counted toward X

λ1=3
μ1=3
δ1=2

λ2=1
μ2=2
δ2=4

λ3=1
μ3=2
δ3=5

λ4=1
μ4=1
δ4=6

λ5=2
μ5=2
δ5=5

λ6=2
μ6=2
δ6=5

λ7=2
μ7=2
δ7=5

Figure B.1: Illustration of Values of λi, μi and δi

Estimating E[Y] is a bit harder. Let λi be the number of document versions whose

validity time intervals ends at ti, that is, a new version is created or document is

deleted at ti, and let µi be the number of document versions whose validity time

intervals start at ti. For a randomly selected query time span [ts, tf], the number Ys,f of

document versions whose time intervals do not overlap with [ts, tf] is given by

1)1(121, −+++++++ +++++++= zprzprzprzpzpzpfs fffffssss
Y µµµλλλ ,

where ps (or pf) and rs (rf) are defined respectively as the quotient and remainder

when s (f) is divided by z.

Therefore the expected value of Y is given by:

 130

iji Tfs
i

iTfTs
ji

ji YTYjiTTYE ∈∈∈ ×+×≠= ∑∑ ,,
,

]in query withP[]| through spansquery P[][

∑∑∑
=

∈

−

= +=
∈∈ +=

k

i
Tfs

k

i

k

ij
TfTs iji

Y
n
zY

n
zYE

1
,2

21

1 1
,2

22][

The term
ji TfTsY ∈∈ , and

iTfsY ∈, are also random variables that depend on query time

span [ts, tf], and whose expected values can be shown to be equal to:

∑∑
−

=
−+

=
+∈∈ +=

1

1
)1(

1
,)(1][

z

l
zwp

l

m
zwpTfTs fsji z

YE µλ

∑∑
−

= =
−++∈ 








+⋅
−⋅

⋅+=
1

1 1
)1(,)1(

)(2)(][
z

l

l

m
mzpmzpTfs zz

lzYE
fsi

µλ

Therefore,

∑∑∑∑∑∑∑
=

−

= =
−++

−

= +=

−

=
−+

=
+ 








+
−

⋅+++=
k

i

z

l

l

m
mzpmzp

k

i

k

ij

z

l
mzp

l

m
mzp z

lz
n

z
n

zYE
fsfs

1

1

1 1
)1(2

1

1 1

1

1
)1(

1
2)1(

)()(2)(2][µλµλ

Substituting the average value λ of all the λi’s and the average value µ of all the

values µi’s, E[Y] can be approximated by the following expression:

)313(
6

][−+−
+

≈
kk

zzYE µλ

For sufficiently large k, E[Y] can be further approximated by

zYE ⋅
+

≈
2

][µλ

and the proof for E[Y] is complete.

 131

Bibliography

[1] Anick, P.G. and Flynn, R.A. 1992. Versioning a full-text information retrieval

system. Proceedings of the 15th annual international ACM SIGIR conference on

Research and development in information retrieval (Copenhagen, Denmark,

1992), 98-111.

[2] Bairavasundaram, L.N., Arpaci-Dusseau, A.C. et al. 2008. An analysis of data

corruption in the storage stack. ACM Trans. Storage. 4, 3 (2008), 1–28.

[3] Barnard, S.T. and Simon, H.D. 1993. A Fast Multilevel Implementation of

Recursive Spectral Bisection for Partitioning Unstructured Problems.

Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific

Computing (Norfolk, Virginia, USA, 1993), 711-718.

[4] Bayer, R. and McCreight, E.M. 1972. Organization and Maintenance of Large

Ordered Indexes. Acta informatica. 1, 3 (1972), 173-189.

[5] Becker, B., Gschwind, S. et al. 1996. An Asymptotically Optimal Multiversion

B-tree. The VLDB Journal. 5, 4 (1996), 264-275.

[6] Berberich, K., Bedathur, S. et al. 2007. A time machine for text search.

Proceedings of the 30th annual international ACM SIGIR conference on

Research and development in information retrieval (Amsterdam, The

Netherlands, 2007).

[7] Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web

search engine. Proceedings of the seventh International Conference on World

Wide Web (Brisbane, Australia, 1998), 107-117.

[8] Bui, T.N. and Jones, C. 1993. A heuristic for reducing fill in sparse matrix

 132

factorization. Proceedings of the Sixth SIAM Conference on Parallel Processing

for Scientific Computing (Norfolk, Virginia, USA, 1993), 445–452.

[9] Cheng, C. and Wei, Y.A. 1991. An improved two-way partitioning algorithm

with stable performance. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems. 10, 12 (1991), 1502-1511.

[10] Desmedt, Y.G. and Frankel, Y. 1989. Threshold cryptosystems. CRYPTO '89:

Proceedings on Advances in cryptology (New York, NY, USA, 1989), 307–315.

[11] Diffie, W. and Hellman, M.E. 1976. New Directions in Cryptography. IEEE

Transactions on Information Theory. IT-22, 6 (1976), 644–654.

[12] Driscoll, J.R., Sarnak, N. et al. 1989. Making Data-Structures Persistent. J.

Comput. Syst. Sci. 38, 1 (1989), 86-124.

[13] Easton, M.C. and C 1986. Key-Sequence Data Sets on Indelible Storage. IBM J.

Res. Dev. 30, 3 (1986), 230-241.

[14] Farquhar, A., Martin, S. et al. 2005. Design for the Long Term: Authenticity and

Object Representation. Proceedings of Archiving 2005 (2005), 104–108.

[15] Fiduccia, C.M. and Mattheyses, R.M. 1982. A linear-time heuristic for

improving network partitions. Proceedings of the 19th Conference on Design

Automation (1982), 175-181.

[16] George, A. 1973. Nested dissection of a regular finite element mesh. SIAM

Journal on Numerical Analysis. 10, 2 (1973), 345-363.

[17] George, A. and Liu, J.W. 1981. Computer Solution of Large Sparse Positive

Definite. Prentice Hall Professional Technical Reference.

[18] Geremew, M., Song, S. et al. 2006. Using Scalable and Secure Web

 133

Technologies to Design a Global Format Registry Prototype: Architecture,

Implementation, and Testing. Archiving 2006 (Ottawa, Canada, 2006), 92-95.

[19] Giuli, T.J., Maniatis, P. et al. 2005. Attrition defenses for a peer-to-peer digital

preservation system. ATEC'05: Proceedings of the USENIX Annual Technical

Conference 2005 (Berkeley, CA, USA, 2005), 163–178.

[20] Golub, G.H. and Van Loan, C.F. 1996. Matrix computations. Johns Hopkins

University Press.

[21] Haber, S. and Stornetta, W.S. 1991. How to Time-Stamp a Digital Document.

Journal of Cryptology. 3, 2 (1991), 99-111.

[22] Haber, S. and Kamat, P. 2006. Content Integrity Service for Long-Term Digital

Archives. Proceedings of Archiving 2006 (2006), 159–164.

[23] Hagen, L. and Kahng, A. 1991. Fast spectral methods for ratid cut partitioning

and clustering. Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (Santa Clara, CA, USA, 1991), 10-13.

[24] Hagen, L. and Kahng, A.B. 1992. A new approach to effective circuit clustering.

Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design (Santa Clara, CA, USA, 1992), 422-427.

[25] Heath, M.T. and Raghavan, P. 1995. A Cartesian parallel nested dissection

algorithm. SIAM Journal on Matrix Analysis and Applications. 16, 1 (1995),

235-253.

[26] Hedstrom, M. 2002. It’s About Time: Research Challenges in Digital Archiving

and Long-term Preservation. The National Science Foundation & The Library of

Congress.

 134

[27] Hedstrom, M., Ross, S. et al. 2003. Invest to Save: Report and

Recommendations of the NSF-DELOS Working Group on Digital Archiving

and Preservation.

[28] Hendrickson, B. and Leland, R. 1995. An improved spectral graph partitioning

algorithm for mapping parallel computations. SIAM Journal on Scientific

Computing. 16, 2 (1995), 452-469.

[29] Hirai, J., Raghavan, S. et al. 2000. WebBase: A Repository of Web Pages. The

9th International World Wide Web Conference (WWW9) (Amsterdam, 2000).

[30] How Much Information. http://www.webcitation.org/5SCSQh9n9.

[31] HTTrack. http://www.httrack.com/. Accessed: 06-14-2010.

[32] IIPC: International Internet Preservation Consortium. http://netpreserve.org.

Accessed: 06-14-2010.

[33] JaJa, J., Smorul, M. et al. 2009. Tools and Services for Long-Term Preservation

of Digital Archives. Indo-US Workshop on International Trends in Digital

Preservation (Pune, India, 2009).

[34] Kahle, B. 1997. Preserving the Internet. Scientific American.

[35] Karypis, G. and Kumar, V. 1998. Multilevel k-way partitioning scheme for

irregular graphs. Journal of Parallel and Distributed Computing. 48, 1 (1998),

96-129.

[36] Karypis, G. and Kumar, V. 2007. METIS: A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing

Orderings of Sparse Matrices. Version 5.0pre2.

[37] Kaufman, C., Perlman, R. et al. 2002. Network security: private communication

 135

in a public world. Prentice-Hall, Inc.

[38] Kellar, M., Watters, C. et al. 2006. The impact of task on the usage of web

browser navigation mechanisms. GI '06: Proceedings of Graphics Interface

2006 (Quebec, Canada, 2006), 235-242.

[39] Kernighan, B.W. and Lin, S. 1970. An efficient heuristic procedure for

partitioning graphs. The Bell System Technical journal. 49, 2 (1970), 291-307.

[40] Kleinberg, J.M. 1999. Authoritative Sources in a Hyperlinked Environment.

Journal of the ACM. 46, 5 (1999), 604–632.

[41] Kouramajian, V., Kamel, I. et al. 1994. The time index+: an incremental access

structure for temporal databases. Proceedings of the third international

conference on Information and knowledge management (Gaithersburg,

Maryland, 1994).

[42] Lamport, L., Shostak, R. et al. 1982. The Byzantine Generals Problem. ACM

Trans. Program. Lang. Syst. 4, 3 (1982), 382–401.

[43] Lomet, D. and Salzberg, B. 1989. Access Methods for Multiversion Data.

(1989).

[44] Lomet, D. and Salzberg, B. 1990. The Performance of a Multiversion Access

Method. (1990).

[45] Lorie, R. 2002. The UVC: a Method for Preserving Digital Documents - Proof

of Concept.

[46] Maniatis, P. and Baker, M. 2002. Enabling the Archival Storage of Signed

Documents. FAST '02: Proceedings of the 1st USENIX Conference on File and

Storage Technologies (Berkeley, CA, USA, 2002), 3.

 136

[47] Maniatis, P., Roussopoulos, M. et al. 2005. The LOCKSS peer-to-peer digital

preservation system. ACM Trans. Comput. Syst. 23, 1 (2005), 2-50.

[48] MARC Standards. tp://www.loc.gov/marc/. Accessed: 06-14-2010.

[49] Mearian, L. 2009. The Internet Archive's Wayback Machine gets a new data

center. Computerworld.com.

[50] Menezes, A.J., Vanstone, S.A. et al. 1996. Handbook of Applied Cryptography.

CRC Press, Inc.

[51] Merkle, R.C. 1980. Protocols for Public Key Cryptosystems. IEEE Symposium

on Security and Privacy (1980), 122-134.

[52] Miller, G.L., Teng, S. et al. 1993. Automatic Mesh Partitioning. IMA Volumes in

Mathematics and its Applications: Springer-Verlag. 57-84.

[53] Miller, G.L., Teng, S. et al. 1991. A unified geometric approach to graph

separators. the 32nd Annual Symposium on Foundations of Computer Science

(San Juan, Puerto Rico, 1991), 538-547.

[54] Minerva: Library of Congress Web Archives.

http://lcweb2.loc.gov/diglib/lcwa/html/lcwa-home.html. Accessed: 06-14-2010.

[55] Mohr, G., Kimpton, M. et al. 2004. Introduction to Heritrix, an archival quality

web crawler. 4th International Web Archiving Workshop (Bath, UK, 2004).

[56] Moore, R., Marciano, R. et al. 2003. NARA Persistent Archives: NPACI

Collaboration Project. San Diego Supercomputer Center.

[57] Nørvåg, K. 2003. Space-Efficient Support for Temporal Text Indexing in a

Document Archive Context. Proceedings of the seventh European Conference

on Digital Libraries (Trondheim, Norway, 2003), 511-522.

 137

[58] Nørvåg, K. 2003. V2: a database approach to temporal document management.

Proceedings of the seventh Database Engineering and Applications Symposium

(IDEAS 2003) (Hong Kong, China, 2003), 212-221.

[59] Nørvåg, K. and Nybø, A.O. 2006. DyST: Dynamic and Scalable Temporal Text

Indexing. Proceedings of the Thirteenth International Symposium on Temporal

Representation and Reasoning (2006), 204-211.

[60] NutchWAX. http://archive-access.sourceforge.net/projects/nutchwax/.

Accessed: 06-14-2010.

[61] Page, L., Brin, S. et al. 1999. The PageRank Citation Ranking: Bringing Order

to the Web. Technical Report #SIDL-WP-1999-0120. Stanford University.

[62] Pandora: Australia's Web Archive. http://pandora.nla.gov.au/. Accessed: 06-14-

2010.

[63] Papoulis, A. and Pillai, S.U. 2002. Probability, Random Variables, and

Stochasitic Processes. McGraw-Hill.

[64] Pass, G., Chowdhury, A. et al. 2006. A picture of search. InfoScale '06:

Proceedings of the 1st international conference on Scalable information systems

(New York, NY, USA, 2006), 1.

[65] Patterson, D.A., Gibson, G. et al. 1988. A case for redundant arrays of

inexpensive disks (RAID). SIGMOD '88: Proceedings of the 1988 ACM

SIGMOD international conference on Management of data (New York, NY,

USA, 1988), 109–116.

[66] Plank, J.S. 1997. A Tutorial on Reed-Solomon Coding for Fault-Tolerance in

RAID-like Systems. Software – Practice & Experience. 27, 9 (Sep. 1997), 995-

 138

1012.

[67] Ponnusamy, R., Mansour, N. et al. 1993. Graph contraction and physical

optimization methods: a quality-cost tradeoff for mapping data on parallel

computers. International Conference of Supercomputing (Tokyo, Japan, 1993).

[68] Pothen, A., Simon, H.D. et al. 1990. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications. 11,

3 (1990), 430-452.

[69] Robertson, S., Walker, S. et al. 1995. Okapi at TREC-4. Proceedings of the

Fourth Text REtrieval Conference (TREC-4) (Gaithersburg, Maryland, 1995),

73–96.

[70] Rothenberg, Jeff 1995. Ensuring the Longevity of Digital Documents. Scientific

American. 272, 1 (Jan. 1995), 42--47.

[71] Salzberg, B. and Tsotras, V.J. 1999. Comparison of Access Methods for Time-

Evolving Data. ACM Comput. Surv. 31, 2 (1999), 158-221.

[72] Sivathanu, G., Wright, C.P. et al. 2005. Ensuring data integrity in storage:

techniques and applications. StorageSS '05: Proceedings of the 2005 ACM

workshop on Storage security and survivability (New York, NY, USA, 2005),

26–36.

[73] Song, S. and JaJa, J. 2007. ACE: A Novel Software Platform to Ensure the

Integrity of Long Term Archives. Proceedings of Archiving 2007 (2007), 90–93.

[74] Song, S. and JaJa, J. 2008. Archiving Temporal Web Information: Organization

of Web Contents for Fast Access and Compact Storage. University of Maryland

Institute for Advanced Computer Studies.

 139

[75] The Internet Archive: The Wayback Machine. http://www.archive.org.

Accessed: 06-14-2010.

[76] The National Digital Information Infrastructure and Preservation Program, the

Library of Congress. http://www.digitalpreservation.gov/.

[77] Thibodeau, K. 2002. Overview of Technological Approaches to Digital

Preservation and Challenges in Coming Years. The State of Digital

Preservation: An International Perspective (Washinton, D.C., 2002).

[78] UK Web Archiving Consortium. http://www.webarchive.org.uk/. Accessed: 06-

14-2010.

[79] Varman, P.J. and Verma, R.M. 1997. An Efficient Multiversion Access

Structure. IEEE Trans. Knowl. Data Eng. 9, 3 (1997), 391-409.

[80] Wang, X., Yin, Y.L. et al. 2005. Finding Collisions in the Full SHA-1. CRYPTO

(2005), 17-36.

[81] Wang, X. and Yu, H. 2005. How to Break MD5 and Other Hash Functions.

EUROCRYPT (2005), 19-35.

[82] WARC, Web ARChive file format.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44717. Accessed: 06-

14-2010.

[83] WAXToolBar. http://archive-access.sourceforge.net/projects/waxtoolbar/.

Accessed: 06-14-2010.

[84] Wayback. http://archive-access.sourceforge.net/projects/wayback/. Accessed:

06-14-2010.

[85] Weatherspoon, H., Wells, C. et al. 2003. Naming and Integrity: Self-verifying

 140

Data in Peer-to-Peer Systems. Future Directions in Distributed Computing

(2003), 142-147.

[86] Web-at-Risk. https://wiki.cdlib.org/WebAtRisk/tiki-index.php. Accessed: 06-14-

2010.

[87] WERA. http://archive-access.sourceforge.net/projects/wera/. Accessed: 06-14-

2010.

[88] Zhai, C. and Lafferty, J. 2001. A Study of Smoothing Methods for Language

Models Applied to Ad Hoc Information Retrieval. Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR 2001) (New Orleans, Louisiana, 2001), 334–342.

	Chapter 1 Introduction
	Chapter 2 Ensuring Long Term Integrity of Digital Information
	Chapter 3 Full-text Search Approach for Time-evolving Data
	Chapter 4 Physical Location Index for Time Evolving Data
	Chapter 5 Optimizing Data Layout for Web Contents for Fast Access
	Chapter 6 Concluding Remarks and Future Work

