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An unprecedented amount of information encompassing almost every facet of 

human activities across the world is generated daily in the form of zeros and ones, 

and that is often the only form in which such information is recorded. A good fraction 

of this information needs to be preserved for periods of time ranging from a few years 

to centuries. Consequently, the problem of preserving digital information over a long-

term has attracted the attention of many organizations, including libraries, 

government agencies, scientific communities, and individual researchers. In this 

dissertation, we address three issues that are critical to ensure long-term information 

preservation and access. 

The first concerns the core requirement of how to guarantee the integrity of 

preserved contents. Digital information is in general very fragile because of the many 

ways errors can be introduced, such as errors introduced because of hardware and 

media degradation, hardware and software malfunction, operational errors, security 

breaches, and malicious alterations. To address this problem, we develop a new 



  

approach based on efficient and rigorous cryptographic techniques, which will 

guarantee the integrity of preserved contents with extremely high probability even in 

the presence of malicious attacks. Our prototype implementation of this approach has 

been deployed and actively used in the past years in several organizations, including 

the San Diego Super Computer Center, the Chronopolis Consortium, North Carolina 

State University, and more recently the Government Printing Office. 

Second, we consider another crucial component in any preservation system – 

searching and locating information. The ever-growing size of a long-term archive and 

the temporality of each preserved item introduce a new set of challenges to providing 

a fast retrieval of content based on a temporal query. The widely-used cataloguing 

scheme has serious scalability problems. The standard full-text search approach has 

serious limitations since it does not deal appropriately with the temporal dimension, 

and, in particular, is incapable of performing relevancy scoring according to the 

temporal context. To address these problems, we introduce two types of indexing 

schemes – a location indexing scheme, and a full-text search indexing scheme. Our 

location indexing scheme provides optimal operations for inserting and locating a 

specific version of a preserved item given an item ID and a time point, and our full-

text search indexing scheme efficiently handles the scalability problem, supporting 

relevancy scoring within the temporal context at the same time.  

Finally, we address the problem of organizing inter-related data, so that future 

accesses and data exploration can be quickly performed. We, in particular, consider 

web contents, where we combine a link-analysis scheme with a graph partitioning 

scheme to put together more closely related contents in the same standard web 



  

archive container. We conduct experiments that simulate random browsing of 

preserved contents, and show that our data organization scheme greatly minimizes the 

number of containers needed to be accessed for a random browsing session. 

Our schemes have been tested against real-world data of significant scale, and 

validated through extensive empirical evaluations. 
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Chapter 1 

Introduction 

Preservation of digital information is widely recognized as a critical emerging 

issue that will soon confront most organizations, including government agencies, 

libraries and museums, and scientific communities. As a consequence, these 

organizations along with individual researchers have recently started to give 

considerable attention to the problems that need to be resolved to address long-term 

preservation and access of digital information. Their studies have identified major 

challenges regarding institutional and business models, technology infrastructure, and 

social and legal frameworks. Focusing on the technology component, good 

summaries of the main technology challenges are presented in [26,27,70]. As a result, 

a significant number of initiatives have been set up to develop prototypes to address 

some of the challenges. These initiatives include the Internet Archive [34], the 

National Library of Australia’s Pandora project [62], the Stanford University 

Libraries’ Lots of Copies Keep Stuff Safe (LOCKSS) project [47], the 

Transcontinental Persistent Archive Prototype (TPAP) [56], the Universal Virtual 

Computer [45], the Electronic Records Archives program at the National Archives 

[76], the Library of Congress’ National Digital Information Infrastructure and 

Preservation Program (NDIIP) [76], and the International Internet Preservation 

Consortium (IIPC) [32]. 
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In this chapter, we provide an overall background and present a summary of 

some of the major technical challenges involved in digital preservation. We end the 

chapter with an overview of the main contributions of this dissertation.  

1.1 Background 

In the era of digital information, the efforts to preserve the human knowledge 

have broadened to also include documents, images, audio, video, social networking, 

and their inter-relationships in their digital form. An unprecedented amount of 

information encompassing almost every facet of human activities across the world 

exists in digital form, and is also growing at an extremely fast pace. Moreover, the 

digital representation is often the only form in which such information is recorded. It 

has become evident that the traditional archiving process of physical artifacts is 

extremely lacking to manage the preservation of digital information. Clearly, novel 

methodologies are needed to curate, store, preserve, and access this new type of 

information on a long-term basis. 

There is a generally common agreement that the long term preservation of digital 

information requires systematic methodologies to address the following requirements 

[33]. 

• Encapsulation of information regarding content, structure, context, 

provenance, and access within each digital object to enable the long-term 

maintenance and lifecycle management of the digital object. 



 

 3 
 

• Efficient management of technology evolution, both hardware and software, 

and the appropriate handling of technology obsolescence (for example, format 

obsolescence). 

• Efficient risk management and disaster recovery mechanisms either from 

technology degradation and failure, or natural disasters such as fires, floods, 

and hurricanes, or human-induced operational errors, or security failures and 

breaches. 

• Efficient proactive mechanisms to ensure the authenticity and integrity of 

content, context, and structure of archived information throughout the 

preservation period. 

• Ability for information discovery and content access and presentation, with an 

automatic enforcement of authorization and IP rights, throughout the lifecycle 

of each object. 

• Scalability in terms of ingestion rate, capacity and processing power to 

manage and preserve large scale heterogeneous collections of complex objects, 

and the speed at which users can discover and retrieve information. 

• Ability to accommodate possible changes over time in organizational 

structures and stewardships, relocation, and repurposing. 

Meeting the above requirements, however, inevitably involves a number of 

technical challenges. They are due in part to the large amount of important digital 

information generated on a daily basis, the fast pace of technology evolution (and the 

corresponding format changes), the relative fragility of digital information and 

computing infrastructure (centralized vs. distributed, or federated), the temporality of 
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each preserved item, and the complex relationship among the preserved items. Some 

of the issues are explained in more detail in the following sections. 

1.2 Fragility of Digital Information 

Digital information is extremely fragile and susceptible to various threats – much 

more so than paper records or physical artifacts [70]. Even in a perfect world with no 

malicious attacks, there exist no digital media that allow for “permanent” recording. 

Various media technologies degrade over time, potentially causing random bit errors, 

yet no precise timeline is usually given for data deterioration, either. For example, 

Bairavasundaram, et al [2] reports that disk drive failures contributed 400,000 

instances of data corruption over a period of 41 months in 1.53 millions of disk drives. 

Moreover, technology changes involving systems and software may render old 

contents inaccessible. There can also be malicious security attacks, altering or 

destroying digital contents without being immediately detected. Accidental 

operational errors cannot be overlooked either.  Permanent loss of data can also occur 

due to natural hazards and disasters such as fires, floods, and hurricanes. 

We note that most of the archive’s holdings may be accessed infrequently, and 

hence several cycles of technology evolution may occur, thereby causing corrupted 

files to go undetected until it is too late to retrieve the initial content. Two additional 

factors complicate this problem further. First, an object will typically be subjected to 

a number of transformations during its lifetime, including those migrative 

transformations due to format obsolescence. These transformations may alter the 

object in unintended ways. Second, all current integrity checking mechanisms are 



 

 5 
 

based on some type of cryptographic techniques, most of which are likely to become 

less immune to potential attacks over time, and hence they will need to be replaced 

with stronger techniques when this occurs. As a consequence, a thorough approach to 

ensure the integrity of a long-term archive has to also be able to address these two 

factors. 

Efforts to preserve the integrity of the objects have actively been made since the 

introduction of magnetic tapes in 1950s. As a result, many techniques have been 

introduced, ranging from simple binary checksums to more complicated public-key-

based digital signatures. However, none of these techniques seems to offer a general 

approach that is scalable, cost-effective, and can efficiently manage the integrity of 

digital objects over the lifetime of the archive. In particular, none of the existing 

techniques is capable of proactively monitoring and detecting any alterations, 

including malicious ones, to the data in a cost effective way. 

1.3 Information Discovery and Delivery 

Another critical component of long-term preservation is to allow users to find 

and explore information contained in an archive within a temporal context. In essence, 

the key purpose of long-term preservation is to pass the current knowledge to future 

generations. It is, thus, vital for any preservation system to provide an effective way 

of finding and accessing the relevant contents as needed by future users.  

Unfortunately, this is a highly non-trivial problem, due to the large, ever-growing 

size, and evolving archived data, the temporality of the preserved items, and more 

importantly, the hard-to-predict access modes that future users would expect. 
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Preservation systems that solely rely on a relational database with well defined 

schemas may allow their users to find information easily using well-structured 

queries. However, fitting every type of digital objects into a fixed set of schemas is 

simply impossible, especially that future usage may require completely new ways to 

search and access the archived data. We clearly need a more general and flexible 

framework to enable effective information discovery and delivery of the preserved 

data. 

A popular access scheme for digital libraries is through a pre-defined metadata 

catalog format such as MARC [48]. In this scheme, searches are performed on the 

predefined set of metadata fields. However, it has at least three serious deficiencies. 

First, it has a scalability problem. For example, as of today, the Minerva project of the 

Library of Congress [54] was able to catalog only about 2,300 sites among 30,000 

archived sites in the September 11 collection. Next, the classification hierarchy 

currently in use for the catalog-based scheme is likely to evolve over time. Updating 

existing records according to a new hierarchy will be extremely expensive for large 

archives. Finally, and most importantly, the catalog scheme significantly restricts 

users’ accessibility, greatly limiting the effective information discovery process. 

Users who want to find documents that contain a rare term will have a hard time 

locating the right documents unless the rare term was successfully captured in a 

metadata field, which is unlikely in most cases. 

A much more flexible scheme is full-text search. In order to more effectively 

support full-text search over a conventional “static” collection, a substantial amount 

of work has been developed through the traditional information retrieval field, 
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resulting in particular in extremely effective web search engine technologies. 

However, the direct application of the search engine techniques is not suitable for 

long-term archives, due to the temporality of preserved items. Queries with temporal 

constraints will need to look up the entire index, which will grow in size as the 

archive grows over time. Furthermore, relevancy scoring is performed against the 

entire holdings. This renders the conventional full-text search scheme inefficient for 

handling queries within a temporal context. 

We are not aware of any prior work that incorporates the temporal dimension in 

an integral way for full-text search including temporal scoring. In fact, most of the 

published papers seem to take the ‘search-all-then-filter’ approach, which is 

inherently inefficient, and focus on improving the search performance by reducing the 

search space using a number of augmented data structures. 

1.4 Data Layout 

Organizing items to be preserved in storage should receive careful attention so as 

to support quick access and retrieval. This is analogous to arranging physical items in 

a grocery shop – if items that are likely to be purchased together are placed closely, 

customers will be able to more efficiently find them. Similarly in a digital archive, in 

order to support quick access, we must take into account users’ expected access 

patterns when organizing information in storage; yet, it is almost impossible to 

predict such patterns during data preparation and ingestion. 

A possible approach is through data mining. That is, the access log can be 

analyzed to discover the group of items that are more likely to be accessed together. 



 

 8 
 

However, not only does this approach require the information about past accesses, the 

newly ingested data may also be completely of different types, making data mining 

techniques inappropriate. 

A better approach can be based on inter-related items. Indeed, many types of 

digital information are inter-related. Web pages are hyperlinked to one another, 

scholarly papers cite one another, and computer program files include/link one 

another.  In many cases, these relationships are explicitly expressed and easy to grasp 

too. This scheme relies only on the inter-relationships among the newly ingested data, 

and thus is independent of the current size of the archive. Under the assumption that 

these inter-related items are more likely to be accessed closely in time, organizing the 

more closely related items together can help improve the performance of handling the 

future access requests. 

Although the second approach may be more appealing for inter-related data, 

there are two issues that need to be addressed. First, we need to validate the 

assumption that more related items will be accessed more closely in time. Second, we 

need to come up with a good way to find groups of related items, and develop good 

layout schemes to place related items as close to each other as possible. 

1.5 Contributions 

In this dissertation, we consider the topic of long-term preservation and access of 

digital information. We particularly focus on three critical issues: ensuring the 

integrity of the preserved data over the long term, retrieving relevant information 

within a temporal context, and optimizing the layout of archived contents. 
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Briefly, our main contributions include the following. 

• A methodology that proactively ensures the integrity of the preserved 

contents on a long-term basis, in an efficient and rigorous fashion. 

• A methodology that enables fast and effective discovery and delivery of 

preserved information through the full-text search with temporal constraints. 

• A methodology that organizes inter-related data such that future navigation 

through the preserved data can be efficiently performed 

Our integrity checking scheme detects any alterations in an archive including 

malicious ones. More specifically, we introduce efficient and rigorous cryptographic 

techniques and related procedures to periodically audit the integrity of the various 

objects held in the preservation system, which, with high probability, will be able to 

discover any changes made to any preserved item in the system, including changes 

introduced by a malicious user. Our methodology also allows a party independent of 

the archive to audit any object in the archive and certify its integrity with extremely 

high probability, as long as a small size of cryptographic information is kept intact. 

The current implementation of our scheme, Audit Control Environment (ACE), has 

been deployed in multiple sites across the country, including the University of 

Maryland, San Diego Super Computer Center, National Center of Atmospheric 

Research, and North Carolina State University. For the past two years, it has been 

actively monitoring 20TB of data managed by the Chronopolis Consortium. 

Collections include the California Digital Library’s Web-at-Risk collection, the 

collection from InterUniversity Consortium for Political and Social Research, and 
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also the collections from the Scripps Institution of Oceanography–Geological Data 

Center and North Carolina Geospatial Data Archiving Project. 

Our second major contribution concerns the development of a new methodology 

for temporal information retrieval. More specifically, we are interested in a full-text 

search index that returns a list of (document ID, time) pairs given a search phrase and 

a time constraint. We introduce an approach based on time windows, where a 

separate inverted index is built for each time window. We empirically prove how our 

index organization substantially limits the search space while allowing the efficient 

and scalable computation of the relevance scores relative to the state of the archive as 

it existed during the time constraint 

The final major contribution concerns the problem of how to place inter-related 

data in storage to optimize access time. We particularly consider a web archive since 

web objects serve as an excellent example of complex digital information, possessing 

both spatial and temporal inter-relationship. Note that the techniques and 

methodologies developed for web objects may be extended to other forms of digital 

objects without much difficulty. More specifically, we address the problem of how to 

organize the web objects so that we will be able to navigate through the linking 

structure of the web objects as effectively as possible. In our approach, we utilize a 

link analysis scheme and a graph partitioning heuristics to determine which web 

objects should be placed together in the same container. Our methodology is very 

general and can be used to optimize different browsing patterns. We perform 

simulations on multiple real-world data to illustrate the performance of our scheme 
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and compare it to the common scheme currently used to organize web objects into 

web containers. 

1.6 Dissertation Outline 

This rest of the dissertation is organized as follows. We start with the long-term 

integrity issue in Chapter 2, where we introduce our approach based on simple, yet 

rigorous cryptographic techniques. In Chapters 3 and 4, we examine the information 

discovery and delivery for a long-term archive. In particular, we introduce a novel 

full-text indexing scheme for time-evolving data in Chapter 3, followed by an optimal 

persistent data structure that can return the location information of a corresponding 

data item for an arbitrary temporal query in Chapter 4. In Chapter 5, we present a 

methodology that analyzes inter-relationships among objects to be preserved to better 

layout them on storage in such a way as to optimize future access performance. We 

conclude in Chapter 6. 
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Chapter 2 

Ensuring Long Term Integrity of Digital 

Information 

In this chapter, we address the core requirement of ensuring integrity of 

information in a long-term preservation system. Our approach, based on rigorous 

cryptographic techniques, involves the generation of a small-size integrity token for 

each object, some cryptographic summary information, and a framework that enables 

cost-effective regular and periodic auditing of the archive’s holdings depending on 

the policy set by the archive.  

2.1 Overview 

One of the most challenging problems in digital preservation is how to ensure the 

integrity of each object of the archive’s holdings throughout the lifetime of the object. 

Digital information is, in general, very fragile due to many potential risks ranging 

from hardware and software failures to major technology changes rendering current 

software and hardware unusable, to the ever-growing number of computer and 

networking security breaches. 

A number of bit-level integrity checking techniques tailored for storage systems 

have been described in the literature [65,66,72]. However, these techniques fall short 

of the requirements of a long-term digital archive. Other techniques have been 

developed specifically for digital archives, including those that appeared in 
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[14,46,85,47], but none seems to offer a general approach that is applicable to the 

different emerging architectures for digital archives (including centralized, peer to 

peer, and distributed archives) and that is capable of proactively monitoring and 

detecting any alterations to the data in a cost effective way. 

The main focus of our study, therefore, is the development of a rigorous 

methodology to certify the integrity of any object in the archive’s holdings, and detect 

any alterations, including malicious alterations. More specifically, we introduce 

efficient cryptographic techniques and related procedures to periodically audit the 

integrity of the various objects held in the archive, which will be able, with high 

probability, to discover any changes made to any object in the archive, including 

changes introduced by a malicious user. In fact, our methodology allows a party 

independent of the archive to audit any object in the archive and certify its integrity 

with extremely high probability, as long as around 100 KB/year of cryptographic 

information is kept intact. 

2.2 Related Work 

In this section, we describe some of the most common strategies used to ensure 

data integrity starting with the basic techniques for bit streams stored on various types 

of media or transmitted over a network. 

2.2.1 Basic Techniques 

Data residing on storage systems or being transmitted across a network can get 

corrupted due to media, hardware, or software failures. Disk errors, for example, are 
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not uncommon, and data on disk can get corrupted silently without being detected 

because a faulty disk controller causes misdirected writes [72]. This type of errors 

remains undetected because most storage software expects the media to function 

properly or fail explicitly rather than mis-operate at any point during its life time. The 

integrity of data can also get compromised because of software bugs. For example, 

data read from a storage device can get corrupted due to a faulty device driver or a 

buggy file system which can cause data to become inaccessible [72]. Moreover, data 

integrity can be violated because of accidental use or operational errors. Unintended 

user’s activity might cause the integrity to be broken. For instance, deletion of a file 

might lead to a malfunction of specific application/system software that depends on 

the accidentally deleted file. As a result of this action, integrity violations may occur. 

The simplest technique for implementing integrity checks is to use some form of 

replication such as mirroring. The integrity verification can then be made by 

comparing the replicas against each other. This method can easily detect a change in 

the stored data only if the modification is not carried out in all the replicas and no 

errors are introduced during data movement. While maintaining at least one copy of a 

replica is inevitably necessary to recover from all types of potential data corruptions, 

performing constant bit-by-bit replica comparisons to detect integrity violation for 

every object in an archive is an expensive operation that is prone to errors and that 

cannot counter malicious alterations. 

A well-known approach used in RAID storage is based on coding techniques, the 

simplest of which is parity checking [65]. The parity across the RAID array is 

computed using the XOR logical function. The parity value is stored together with the 
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data on the same disk array or on a different array dedicated to the parity itself. When 

the disk containing the data or the parity fails, the data or parity can sometimes be 

recovered using the remaining disk and performing the XOR operation. The XOR 

parity is a very special type of erasure codes, which can be much more powerful 

([66] explains erasure codes well). They all involve expanding the data using some 

types of algebraic operations in such a way that some errors may be detected and 

corrected. While these techniques are critical in maintaining some level of bit-level 

integrity on storage systems, they are not designed to support high-level data integrity 

since decoding will be required every time the data accessed, and they entail a 

significant expansion of the data. Moreover, since only certain errors can be corrected, 

they still require that a “master copy” be stored in some kind of a back-up system or a 

“dark archive”. 

A widely used method is based on cryptographic hashing (also called checksum) 

techniques. In this approach, a checksum of the bit-stream is computed and is stored 

persistently either with the data or separately. The checksum is calculated using a 

cryptographic hash algorithm. In general, a cryptographic hash algorithm takes an 

input of arbitrary length and converts it into a single fixed-size value known as a 

digest or hash value. A critical property of cryptographic hash algorithms is that they 

are based on one-way functions, that is, given the hash value of a bit-stream A, it is 

computationally infeasible to find a different bit-stream B that has the same hash 

value [37,50]. Assuming that the hash values are correct, data integrity can be verified 

by comparing the stored hash value with a newly computed hash from the data. 

Although no known hash function has been proven to be truly one-way, the most 
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common hash functions in use include MD5, SHA-1, SHA-256, and RIPEMD-160, 

all of which seem to work well in practice (in spite of the recent attacks that 

illustrated how to break MD5 [81] and SHA-1 [80]). The major problem with this 

scheme is that it cannot detect malicious alterations since the hash function used by 

an archive is usually well-known, and hence an intruder or a malicious user within the 

archive can change an object and the corresponding hash value so that they still match. 

2.2.2 Techniques for Digital Archives 

We now describe some of the most notable methods that have been suggested for 

integrity verification for digital archives. 

The most popular and, perhaps, the most important method for addressing 

integrity checking of digital archives is to compute a hash for each object in the 

archive and store the hashes in a separate, secure, and reliable registry (the hash could 

in addition be stored with the object as well). Integrity auditing involves periodic 

sampling of the content of the archive, computing the hash of each object, and 

comparing the computed hash with the stored hash value of the object. While such a 

scheme may be sufficient for small, centralized archives, it has two serious 

shortcomings relative to our stated goals. The first is that a malicious user within the 

archive or an external intruder can modify both an object and its corresponding hash 

value (since the hash function is known), in which case there will be no way to detect 

such an error. The second shortcoming is the fact that the whole scheme depends on 

ensuring the integrity of all the hash values, which will grow linearly with the number 

of objects in the archive. Even in the absence of malicious alterations, this is a non-
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trivial problem for large archives over the long term, especially because the hashing 

schemes themselves will inevitably change over time in which case we have to track 

the particular hashing scheme used at any specific time. In the method that we will 

propose, we only need to ensure the integrity of a single hash value per day, 

independent of the number of objects in the archive, which is a substantially easier 

problem to manage. 

Another approach uses a combination of replication and hashing. In this 

approach, each digital object is replicated over a number of repositories. Integrity 

checking can be performed by computing the hash of each copy locally, and sending 

all the hashes to an auditor. A majority vote enables the auditor to discover the faulty 

copies, if any. This is the primary integrity scheme used in LOCKSS [47], which is a 

peer-to-peer replication system for archiving electronic journals in which each 

participating library collects its own copy of the journals of interest. LOCKSS uses a 

peer-to-peer inter-cache protocol (LCAP) which is a cache auditing protocol. It runs 

LCAP continuously among all the caches to detect and correct any damage to cached 

contents. The process is similar to opinion polls in which all the caches vote. When a 

storage peer in LOCKSS calls for an audit of a digital object, each peer that owns a 

replica computes the corresponding hash value and sends back the value to the audit 

initiator. If the computed digest agrees with the overwhelming majority of the replies, 

then the object is believed to be intact. If the digest disagrees with the overwhelming 

majority, the object is believed to be tampered with, and the copy is discarded while a 

new copy is fetched from the publisher or one of the caches with the right copy. As 

such, LOCKSS is the only scheme described in this sub-section which handles both 



 

 18 
 

detection and correction simultaneously. However, this approach depends crucially 

on the assumption that there are many replicas for each object. While this assumption 

may be reasonable for archiving electronic journals at different libraries, many of the 

current archives do not use the peer-to-peer infrastructure, or create many replicas of 

each archival object. A replica voting approach can be expensive, requiring a 

significant communication overhead. In general, achievement of consensus among 

distributed nodes that do not trust each other (and some of which may be faulty) is a 

difficult problem that has been studied extensively in the distributed computing 

literature. In fact, as reported in [19], about 50 malicious nodes could abuse the 

LOCKSS protocol to prevent a network of 1000 nodes from auditing their contents. 

We note that additional set of defenses [19] including admission control, de-

synchronization, and redundancy can be used to counter such an attack but clearly 

this makes the scheme significantly more complicated and costly. 

Another possible approach is to make use of digital signatures [11] based on 

public key cryptography. In essence, such a scheme involves a private–public key pair 

for performing signing/verification operations, and a supporting public-key 

infrastructure. The basic premise is that the private key is only known to the owner, 

and the public key is widely available. A message signed by a private key can be 

verified using the corresponding public key. The digital signature technology takes 

direct advantage of this property. The digital object is signed using the private key 

(note that the signature depends on the digital object and the private key), and 

anybody can verify the signature using the corresponding public key. If the 

verification process succeeds, the digital object is considered intact (and the identity 
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of the author of the signature verified). Hence, a possible approach to preserving the 

integrity of digital archives would be to sign each digital object using a private key 

only known to the archive. However, the certificates (public keys signed by a widely 

trusted certificate authority) have a finite life with a fixed expiration date. Hence, we 

need to have a trusted and reliable method to track the various public keys used over 

time. In general, this is a difficult problem that can be solved using sophisticated 

techniques based on Byzantine agreement protocols [42] and threshold cryptography 

[10], which shed serious doubts on its practicality in a production environment. Also, 

should the private key of the archive be compromised, the whole archive becomes at 

risk. This implies that a malicious user within the archive or an intruder, who gets 

access to the private key, can easily compromise the contents of the whole archive. 

Another potential problem with this scheme is its complete dependence on a third 

party, such as certificate authorities, which may or may not exist over time. 

We now introduce the time-stamping technique, which provides an alternative 

approach to the digital signature scheme outlined above. A time stamp of a digital 

object D at time T is a record that can be used any time in the future (later than T ) to 

verify that D existed at time T. The record typically contains a time indicator (date 

and time) and a guarantee (that depends on the time-stamping service) that D existed 

in exactly this form at time T. One way to implement time stamping is through a 

Time Stamping Authority (TSA) that attaches a time designation to the object (or its 

hash) and signs it using the private key of the TSA. The British Library [14] uses this 

strategy through an independent TSA. With the usage of the public key of the TSA, 

any alteration to any object, malicious or otherwise, can be detected, which in fact 
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achieves one of our major objectives. However, the verification procedure depends 

completely on the trustworthiness of a single entity, namely, the TSA. Should the 

TSA be compromised or disappear sometime in the future, the whole scheme breaks 

down completely. Moreover, this scheme is computationally expensive, and we still 

have to deal with the problem of tracking the various public keys used by the TSA 

over time. 

Another approach to time stamping, which will be used as the basis for our 

scheme, makes use of linked (or chained) hashing [21], which amounts to 

cryptographically chaining objects together in a certain way such that a temporal 

ordering among the objects can be independently verified. In this approach, there is 

no need for a fully trusted third party or for tracking certificates over time. In an 

attempt to address the problem of tracking public keys in a digital signature scheme, 

the linked hashing technique was also suggested to time stamp the public keys [46]. 

Our scheme directly applies the linked hashing to target objects, thereby eliminating 

the necessity of maintaining the public-key infrastructure. 

In the next section, we will describe the linked hashing technique as used in our 

approach and demonstrate its ability to achieve our goals in a cost-effective way 

without depending on a fully trusted archive or a third party. 

2.3 Our Approach 

As can be seen from the previous section, the previous integrity checking 

schemes revolve around the following techniques: 

• Majority voting using replicated copies of the object or their hashes. 
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• Computing and saving a digest (“fingerprint”) for each object, using some 

well-known hash functions. The auditing process consists of computing the 

digest from the object and comparing it to the saved digest. 

• Creating a digital signature of the object and saving it “with the object.” The 

auditing process makes use of the public key of either the archive or a third 

party depending on the particular scheme used. Either way, the integrity of the 

scheme requires a fully trusted third party and the tracking of certificates over 

time. 

We start by introducing the formal notion of a cryptographic hash function. Such 

a function compresses an arbitrarily long bit-string into a fixed length bit-string, 

called the hash value, such that the function is easy to compute but it is 

computationally infeasible to determine an input string for any given hash value. 

More formally, we would like our hash function H to satisfy the following two 

properties. 

• Pre-image resistance (one-way property): Given any hash value x, it is 

computationally infeasible to find any bit-string m such that x = H(m). 

• Weak collision resistance: Given any bit-string m, it is computationally 

infeasible to determine a different bit-string m' such that H(m) = H(m'). 

Another property that is sometimes a requirement of cryptographic hash 

functions is given here. 

• Collision resistance: It is computationally infeasible to determine any two 

different strings m and m' such that H(m) = H(m'). 
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These assumptions are the basis for many well-known cryptographic algorithms, 

including those used in public-key cryptography (see, for example, [50]). 

Unfortunately, none of the available hash functions can be shown to satisfy these 

properties. However, several are accepted by the community as reasonably secure and 

are currently in widespread use. As noted in Section 2.2, recent study has shown how 

to break the schemes based on MD5 and SHA-1, but the actual threat posed by such 

study is not clear and, moreover, there are other schemes that remain intact. It is 

anticipated that stronger algorithms will be developed over time and, hence, any 

auditing strategy for long-term digital archives has to provide mechanisms to 

integrate the newer algorithms without compromising the integrity of the objects that 

used earlier algorithms. 

2.3.1 Constructing Integrity Tokens and Witness Values 

The starting point of our approach is a scheme that computes a digest for each 

object and stores the corresponding digests in a separate registry. A digest is typically 

the result of applying a one-way hash function on the object, but for our purposes, we 

will not exclude other techniques for generating digests especially for multimedia 

objects. As mentioned earlier, a major problem with this scheme is how to ensure the 

integrity of the digest registry over the long term, especially because the registry 

grows linearly with the number of objects ingested into the archive. Clearly 

“attaching” the digest to the object does not solve this problem either. 

One can address this problem by compressing all the digests into a small number 

of hash values, which we will call witness values, using collision-resistant, one-way 
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hash functions. For example, we can generate one witness value per day, which 

cryptographically represents all the objects processed during that day, and hence the 

total size of all the witness values over a year is quite small (around 100 KB), 

independent of the number of objects processed during the year. 

Given the small size of the witness values, they can be saved on reliable read-

only media such as newspapers or archival quality optical media, and hence their 

integrity can be assured under reasonable assumptions about caring for the media and 

refreshing the content often as necessary. However it will be extremely time-

consuming to conduct regular audits on a large scale archive using the witness values 

because the auditing of a single object will require the retrieval of the digests of all 

the objects processed during a day as well as reading the corresponding witness value 

from a reliable medium. We next show how to counter this problem in a cost effective 

way. 

In order to simplify the presentation, we consider the typical scenario where the 

generation of the cryptographic information necessary for integrity auditing is placed 

at the end of the ingestion process, just before an object is archived. We organize the 

processing of objects into rounds, each of which covers some time interval that is 

dynamically determined. The length of the time interval depends on the operation of 

the archive, and may correspond to a fixed duration such as a minute or an hour, a 

number of objects between a certain minimum and a certain maximum, or may 

correspond to the time it takes to process a batch of objects according to the archive’s 

schedule. During each round, digests of all the objects being processed can be 
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compressed using any number of schemes, including, for example, the trivial scheme 

of hashing a concatenation of all the digests in a certain order.  

A particular class of such schemes is based on the so-called hash linking, which 

was introduced to ensure that the relative temporal ordering of the objects processed 

during a round is preserved and cannot be altered without changing the final value. 

We will make use of the Merkle tree [51], which is one of the most widely used hash 

linking schemes. More specifically, the digests of all the objects being processed in a 

round form the leaves of a balanced binary tree such that the value stored at each 

internal node is the hash value of the concatenated values at the children. A random 

digest value may also be inserted into the tree at each level to ensure that the number 

of nodes at each level is even (except for the root). The value computed at the root of 

the tree is the round hash value, which represents the compressed value of all the 

digests (and objects) processed during the round. That is, a change to any of the 

objects will result in a different round hash value, and, moreover, it is 

computationally infeasible to determine another set of objects (including reordering 

the objects) that will yield the same round hash value. 

We now define the proof of the digest of an object, represented in a leaf of the 

Merkle tree, as the sequence of the hash values of the siblings of all the nodes on the 

unique path from that leaf to the root. 
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o1 o2 o3 o4 o5 o6 o7 o8

h12 h34 h56 h78

h1234 h5678

hR

Shaded values are the proof for o5  

Figure 2.1: Merkle Tree 

 
Consider, for example, a round involving eight objects with the digest values h1, 

h2, …, h8 (See Figure 2.1 for the corresponding tree). The values of the internal nodes 

are given by: 

hR = H(h1234||h5678), 

h1234 = H(h12||h34), h5678 = H(h56||h78), 

h12 = H(h1||h2), h34 = H(h3||h4), h56 = H(h5||h6), h78 = H(h7||h8) 

The proof of the object whose digest value is h5 will be the following sequence: 

PR5 ={(h6, r), (h78, r), (h1234, l)}, 

where r designates right sibling and l left sibling. 

In general, 

PRi = {(hj, r or l) | hj is the sibling of each node  

on the unique path from hi to root} 

The proof is an essential part of the integrity token that is generated for each 

object. In essence, the integrity token consists of the digest, the proof, and a time 
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stamp of the round. It also includes other information that will be needed over the 

long term, which will be briefly described in the next section. 

Given the integrity token of an object, we can quickly compute the round hash 

value by following the path defined by the proof and performing the 

concatenation/hash operations as appropriate. For example, with the above PR5, the 

round hash value can be computed from rh = H( h1234 || ( (h5 || h6) || h78 ) ). Note that 

the length of such a path is logarithmic in the number of objects processed during a 

round and, hence, it is quite small relative to the number of objects. 

We reiterate the process by compressing the ordered set of round hash values 

using one of the hash linking schemes such as Merkle’s tree. The resulting value 

serves as a witness value. The granularity of this process can be set dynamically 

depending on the archive’s schedule. Here, we assume that all the round hash values 

during a day are linked together to generate a witness value. This process can of 

course be repeated n times, making n-layers of hash linking trees. In our prototype, 

we stopped at n = 2, since the resulting witness values were quite small (less than 

100KB a year).  

Once determined, the witness values are stored in reliable read-only media. Our 

approach depends only on the correctness of the witness values, which is a very 

reasonable assumption given the total size of the witness values. Based on this 

assumption, we can achieve the following: 

• Our scheme can detect an alteration to any digital object in the archive, 

malicious or otherwise. 
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• There is a cost-effective procedure that can periodically audit the contents 

of the archive to discover any alteration on any object within a short time 

after the alteration was made. 

• Any party, independent of the archive, can audit any object in the archive 

and assert its integrity based on the witness values. 

• No fully trusted third party is needed. 

We note that a number of schemes can be used to correct errors once they are 

identified by our method, depending on the architecture of the archive. For a 

centralized archive with an isolated dark archive, a master copy can be retrieved to 

correct the corrupted object. For a federated or peer-to-peer distributed archive, a 

certified (by our scheme) remote replica can be used to replace the corrupted object 

using a mechanism that will depend on the technical details of the infrastructure. 

We will later describe our ACE (Auditing Control Environment) system that 

accomplishes all the goals stated above. We next show how our approach can be 

adapted to deal with object transformations and updating the hash schemes used by 

the archive. 

2.3.2 Updating Integrity Information 

There are two cases in which the integrity information must be updated. The first 

case is when the archive decides to substitute a stronger hash function for one of the 

hash functions currently in use because of some recently discovered potential threats. 

The second is when the archive decides to apply certain transformations to some of 

the objects (because of the possibility of a format becoming outdated, for example). 
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There is an existing solution to deal with renewing the integrity information for the 

first case by re-registering each related object with the old integrity token attached to 

it (see, for example, [22]). Such a solution will ensure our ability to verify the 

integrity of the object since its ingestion into the archive as articulated in this earlier 

study. This process increases the size of the integrity token, but has no impact on the 

sizes of the other integrity components. 

We now discuss how to renew the integrity information in the case when the 

object is subjected to a transformation. A possible solution would be to re-register the 

new object by concatenating the hashes of the old and the new form of the object and 

an identifier of the transformation, and use the resulting string as if it were the hash of 

an object to be registered. However, this scheme could be computationally 

demanding and too complicated to be of practical use. We assume that an archive has 

to preserve certain (sometimes all) versions of an object which can form an 

authenticity chain between the original version and the current version of the object. 

The chain may consist of the current version and the original version of the object. 

Since a transformation will lead to a new version of the object, and, hence, a new 

object with its own identifier (which could be the old identifier concatenated with the 

version number), it will participate in a hashing round to obtain its new cryptographic 

information using the same method as before. However, in this case, we will include 

the unique identifier of the previous version in the authenticity chain in the integrity 

token. Note that the integrity of an object should be verified before it is transformed 

into a new format to ensure its authenticity at this time of its history. The inclusion of 

the identifiers of previous versions in the integrity tokens will enable us to go through 
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the authenticity chain and establish the integrity of each version as well as the validity 

of the corresponding transformation. 

2.4 Putting the Ideas Together – the ACE Tool 

Making use of the ideas described in the previous section, we presented in [73], 

an early implementation of the ACE (Auditing Control Environment) prototype 

system. More recently, we released Version 1.0 of ACE, which includes some 

refinements to the earlier prototype. Here, we present a brief overview of the ACE 

architecture, illustrate its auditing processes, and report on its performance on a large 

scale production environment. 

2.4.1  ACE Components 

ACE consists of two major components: the first, called IMS (Integrity 

Management System), is a third-party service provider that generates the integrity 

tokens upon request from an archive. A single IMS can simultaneously serve multiple 

archives, including multiple nodes of a distributed archive. It also maintains the round 

hash values and generates the witness values. In ACE, the integrity tokens contain 

several pieces of information in addition to the proof and the time stamp (for example, 

the ID of the hash algorithm used, the version number of object, and last time the 

object was audited). Also, ACE links consecutive round hash values sequentially. The 

second major component is the Audit Manager (AM), which is local to an archive and 

functions as a bridging component between the IMS and the archive. In particular, the 

AM sends requests to the IMS to generate the integrity tokens for a number of objects, 
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and once received, the tokens are stored in a local registry. Figure 2.2 shows the 

overall ACE architecture of the general case of a distributed archive with dispersed 

nodes operating asynchronously. 

ACE Integrity Management System
(AIMS)

Audit Manger
(AM)

Archiving
Node

Archiving System Middleware

Audit Manger
(AM)

Archiving
Node

 

Figure 2.2: ACE Architecture 

2.4.2 ACE Workflow 

In this subsection, we discuss a typical workflow with ACE, which includes two 

major operations: registration and auditing. 

2.4.2.1 Registration 

For an object to be registered into ACE, the audit manager creates a registration 

request and submits it to the IMS. When the IMS issues an integrity token for the 

object, the audit manager stores it locally in a special registry for the archive (local 

node, if it is a distributed archive). In the meantime, the IMS runs a continuous series 
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of aggregation rounds. Each round closes either when the round receives the 

maximum number of registration requests, or when the maximum amount of time 

allocated for a round is reached, whichever comes first. These parameters are 

assigned by the IMS administrator. This round interval policy can be also overridden 

through a special object registration request, which forces the current round to 

immediately close and return an integrity token. Object registration requests received 

during a round are aggregated together along with a number of random values 

through the Merkel-tree hash-linking. The random values are added as necessary to 

ensure a minimum number of hash-linking participants in a round. The resulting 

round hash value is managed internally within the IMS, and an integrity token is 

issued to each AM who originally sent a registration request. 

At the end of each day, the IMS constructs a witness value using the hash round 

values of the day, sends it to the participating archives, and stores it in a reliable 

medium (the current ACE implementation publishes witnesses to a Google group, and 

stores the value on a CD-ROM). These witnesses are cryptographically dependent on 

round hash values, which are themselves cryptographically linked to the hashes of the 

objects registered during that day. 

2.4.2.2 Audit Process 

ACE currently performs periodic auditing on the archive’s objects following the 

policy set by the manager of the archive. The policy can be set at an object or 

collection level. For example, the policy for a certain collection could involve 

auditing all the objects in the collection every three months, while the policy set for 

another collection could be to audit all the objects in that collection every six months. 



 

 32 
 

A default policy will be set during registration time unless the archive manager sets it 

differently. Moreover, the auditing process can be invoked by the archive manager at 

any time on any object. 

When applied to a specific object O, the auditing process consists of the 

following steps: 

1. The audit manager computes the hash value of O and retrieves its integrity 

token. 

2. Making use of the computed hash value of O and the proof contained in the 

integrity token, the audit manager computes the round hash value. 

3. Making use of the round time stamp contained in the integrity token, the 

audit manager requests the corresponding round hash value from the IMS. 

4.  The audit manager successfully terminates the auditing process if the 

computed hash value in Step 1 is equal to the hash value stored in the 

integrity token, and the two round hash values computed in Steps 2 and 3 

are equal. Otherwise, it sends an error alert to the archive manager. 

It is clear that if the two hash values, as well as the two round hash values, 

computed through the auditing process are equal, then the object and the integrity 

token are intact with a very high probability. A more elaborate process, which will 

happen infrequently, will involve the witness values as follows. The audit manager 

requests from the IMS the proof for the round hash value. On receiving this request, 

the IMS aggregates all the round hash values for the day to determine the proof, and 

returns the proof to the audit manager. Making use of the proof, the AM computes the 

corresponding witness value of the day and compares it to the value stored on the 
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read-only media. This elaborate process will ensure the trustworthiness of the IMS. A 

failure of this process will automatically invalidate the object under the auditing 

process. 

We note that the same process can be applied by a party independent of the 

archive to verify the integrity of an object. The independent party will request the 

integrity token from the archive, and then the round hash value and its proof from the 

IMS. Making use of this information, she/he can quickly compute the witness value 

of the day on which the object was registered into ACE. She/he can then compare it 

with the corresponding witness value stored in the read-only media. Any alterations 

introduced by the archive or the IMS will be detected with very high probability. 

2.4.3 ACE Preliminary Performance Evaluation 

ACE Version 1.0 has been deployed against a variety of collections managed by 

the Chronopolis archiving environment. Chronopolis is collaboration between the San 

Diego Supercomputer Center (SDSC) / the University of California, San Diego 

(UCSD) Libraries, National Center of Atmospheric Research (NCAR), and the 

University of Maryland (UMD), which involves a distributed archiving architecture 

with three geographic nodes at SDSC, NCAR, and UMD. Chronopolis is currently 

managing substantial collections from NDIIPP partners, including the California 

Digital Library (CDL) Web-at-Risk collection, the InterUniversity Consortium for 

Political and Social Research (ICPSR) collection, and collections from the Scripps 

Institution of Oceanography–Geological Data Center (SIO–GDC), and North 

Carolina Geospatial Data Archiving Project (NC State). ACE has been operational 
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during the past year within the Chronopolis environment. The current default ACE 

auditing policy is to audit files at the University of Maryland every 30 days. Table 2.1 

illustrates the performance of a single audit manager on the collections audited at 

UMD, amounting to approximately 6 million files. A large fraction of the time is 

spent on accessing the collections across the network. 

Table 2.1: ACE Performance 

Collection No. of Files Size (GB) Audit Time 

CDL 46,762 4,291 20h 32m 

SIO-GDC 197,718 815 6h 49m 

ICPSR 4,830,625 6,957 122h 48m 

NS State 608,424 5,465 32h 14m 

 

During the audit period on the CDL collection, a single audit manager was able 

to run at the rate of about 60MB per second on average, almost fully utilizing the file 

transfer bandwidth available. For the other collections, where there were more small 

files, the audit speed was further limited by the overhead accessing each file. For 

example, on the ICPSR collection, the audit manager ran at the rate of 13MB per 

second, having to open up each of about 4.8 million files. These results indicate that 

the actual time spent by an audit manager to perform the core audit process is 

negligible. It is small enough to be effectively hidden by the unavoidable overhead 

for accessing the collections. We note that multiple audit managers can be run 

concurrently on different collections to increase the performance almost linearly as 

necessary. 
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2.5 Conclusion 

In this chapter, we presented a new methodology to address the integrity of long-

term archives using rigorous crypto graphic techniques. Our approach depends only 

on the use of hash functions and linking schemes, and is independent of an external 

infrastructure such as PKI. The computational requirements of our approach are 

minimal and the overall solution can be implemented on any archive architecture. We 

built ACE as a complete prototype that executes this strategy and showed its 

effectiveness on large collections in Chronopolis. More details about ACE can be 

found in [73]. 
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Chapter 3 

Full-text Search Approach for Time-evolving Data 

A number of emerging large scale applications such as web archiving and time-

stamped web objects generated through information feeds involve time-evolving 

objects that can be most effectively explored through search within a temporal 

context. We develop in this chapter a new approach to handle the temporal text search 

of a time evolving collection of documents. Our approach introduces both a new 

indexing organization that substantially limits the search space and an effective 

methodology for computing the temporally anchored relevance scores. Moreover, we 

develop an analytical model that can be used to determine the temporal granularity of 

the indexing organization which minimizes the total number of postings examined 

during query evaluation. Our approach is validated through extensive empirical 

results generated using two very different and significant datasets. 

3.1 Overview 

The initial driving application behind this work is the temporal text search over 

an archived collection of time-evolving web contents. Currently, many organizations 

are building web archives that contain collections of temporal snapshots of web pages 

that have been captured by a crawler at a frequency that typically depends on the 

dynamic nature of the pages. For example, the Internet Archive [75] has been 

capturing significant snapshots of the internet over 15 years. The Internet Archive 
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currently holds over 4.5 petabytes of data and is growing at the rate of about 100 

terabytes per month as of March, 2009 [49]. Other major web archiving efforts 

include the Minerva project by the Library of Congress [54], UK Web Archiving 

Consortium [78], the National Library of Australia’s Pandora project [62], and the 

Web-at-Risk led by the California Digital Library [86]. Given the critical role of the 

internet as the main communication and publication medium in our information-based 

society, and the ephemeral nature of the web, it is expected that web archiving efforts 

will dramatically grow in the future. Other similar collections include multi-versioned 

documents generated through collaborative environments and time-stamped objects 

generated through various information feeds. It is clear that the exploration of such 

continuously growing archives can be substantially simplified through text search 

within a temporal context.  

We explore in this chapter a new approach to carry out a temporal text search 

over a collection of documents that evolve over time. Specifically, given a query that 

includes a text and a time span, the goal is to return a ranked list of temporally 

relevant documents. That is, the returned documents must have been valid during the 

query time span and the relevance scores are computed relative to the state of the 

collection as it existed during the query time span. The importance of temporal 

relevance can be illustrated with the example of searching for “September 11” during 

the month of “May 2001” which, if temporally unconstrained, will return an 

overwhelming number of irrelevant results. 
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We present a new methodology to address this problem and outline the necessary 

core algorithms to support it. More specifically, our main contributions include the 

following: 

• A new indexing organization that substantially limits the search space while 

allowing the efficient and scalable computation of the relevance scores 

relative to the state of the collection as it existed during the query time span. 

• An analytical model that can be used to determine the temporal granularity of 

our overall indexing organization which minimizes the total number of 

postings examined during query evaluation. 

• Extensive empirical evaluation of the overall scheme in terms of its storage 

requirement, query evaluation, and ranking of search results using two rich 

datasets of sizes 2.8TB (uncompressed) and 5.6TB (gzip-compressed) 

respectively.  

The rest of the chapter is organized as follows. The next section provides a 

summary of related work, while Section 3.3 provides a formal description of our 

overall model. We introduce our approach and describe our indexing structure, an 

analytical model for capturing the tradeoff between index space and query evaluation 

performance, and the computation of the relevance scores in Section 3.4. Section 3.5 

describes our two major datasets used for evaluation, and provides a summary of our 

empirical evaluation results. We conclude in Section 3.6.  
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3.2 Related Work 

For the most part, text retrieval has been concerned with the present state of the 

document collection. The search problem for multi-version documents involves 

documents that change over time, and the versions of each document are maintained. 

In this case, a query will in general include, in addition to a set of terms, a temporal 

component (temporally-anchored query), and hence the search outcome is a ranked 

list of document versions satisfying the query temporal constraints. 

A common approach to handle temporally-anchored queries is to rely on a post-

process filtering. In this approach, a regular search is processed first ignoring the 

temporal component. The search results are then filtered according to the temporal 

constraints. This approach suffers from two major drawbacks. The first is that the 

search space is the same regardless of the temporal constraints and hence many 

documents may need to be filtered out. The second major drawback is more 

fundamental – the query-document relevancy scores are determined based on the 

entire collection and not on the state of the collection as it existed during the query 

time span.  

We are not aware of any prior work that incorporates the temporal dimension in 

an integral way for full-text search including temporal scoring. In fact, most of the 

published papers seem to revolve around the above common approach and focus on 

improving the search performance by reducing the search space using a number of 

data structures. We next summarize the most relevant prior work. 

Anick and Flynn [1] describe a “help-desk” system that supports historical 

queries. In their system, upon a request for a past version, starting with the most 
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current version of the object, the reverse sequence of delta changes preceding the 

object are applied back until the view of the request version is reconstructed. 

Although access costs for the most recent versions are relatively optimized, the cost 

increases as the versions move farther into the past. The help-desk system reduces the 

overall space requirement for storing documents, and also minimizes the search space 

for the most recent version.  

Nørvåg introduced a multi-version document database system, V2 [58] and ITTX 

[57], and also DyST [59] with Nybø. In essence, V2 takes the search-and-then-filter 

approach discussed earlier, but the filtering can be enhanced by optionally having a 

supplementary data structure that maps a document version ID to its corresponding 

time period. ITTX reduces the search space by decreasing the index size of V2 – It 

replaces term / version mappings of postings in V2 with term / version-range 

mappings. However, for given query terms, the entire postings lists still need to be 

examined, regardless of the query time span. To alleviate this problem, DyST [59] 

improves ITTX by employing an additional temporal index. When a postings list 

reaches a certain size, a Time Index+ [41], which is a temporal B+-tree, is created and 

the contents of the postings list are migrated to the Time Index+. A major 

shortcoming in their approach, however, is that neither ITTX nor DyST considers the 

relevance scoring aspect of the search results.  

More recently, Berberich et. al. [6] presented a scheme called Time Machine to 

handle point queries over temporally versioned document collections. A standard 

vocabulary is constructed such that, for each term, a postings list of (document ID, 

score, time-frame) is maintained. Since these lists can grow extremely large, they 
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introduce two techniques – temporal coalescing and sublist materialization. Temporal 

coalescing reduces the size of each postings list by merging a sequence of postings 

that simultaneously have the same document ID and “similar scores”. This is the 

index space reduction technique similar to the one used in ITTX, but Time Machine 

differs from ITTX in that it factors in “scores” as one of the merge criteria (In ITTX, 

a sequence of postings with the same document ID are merged regardless of scores). 

Sublist materialization divides each postings list into several sublists according to 

some time intervals depending on each list separately. Although the total index size 

increases with sublist materialization, the effective search space for a given query can 

be reduced, since the searches are localized to corresponding sublists. While their 

scheme allows the relevancy scoring of search results, it has a number of limitations. 

First, their scheme assumes that scores are comparable to one another regardless of 

validity time information in the postings. This implies that the scores are computed 

within the context of the entire history of the collection, regardless of the time 

constraints of the queries.  Also, the index is built based on the pre-computed score 

information for each posting. This implies that the index is bounded to a specific 

scoring scheme, making it difficult to adopt another scoring scheme later.  

3.3 Model 

Following the standard information retrieval terminology, we refer to our objects 

generically as documents, which in our case evolve over time. Each version of a 

document is identified by the document ID and a validity time interval [ti, tj), which 

starts from the time ti that the version was first seen until the time tj a different 
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version is detected or the document ceases to exist. For example, in web archiving, a 

document version is seen or detected at the time the corresponding page is crawled. A 

document version in this case refers to a web object together with its validity time 

interval. We define a document version to be live at time t if its validity time interval 

contains t. In our context, a collection D consists of document versions over discrete 

elementary time steps, that is, all time values defining validity time intervals are non-

negative integers and a document version is modified, created, or deleted at only one 

of these discrete time steps. The state of the collection during a time interval [tu, tv], 

denoted by S[tu, tv], consists of all the document versions in D whose validity time 

intervals have a non-empty intersection with [tu, tv]. Figure 3.1 illustrates an example 

consisting of seven documents and corresponding document versions over 9 time 

steps. An arrow head indicates the endpoint of a validity time interval. 

 

t0 t1 t2 t3 t4 t5 t6 t7 t8

doc1
doc2
doc3
doc4
doc5
doc6
doc7

 
Figure 3.1: Document Versions with Validity Time Intervals 

 

We assume a query model that consists of a set of terms, possibly connected by 

Boolean operators, and a temporal specification defined by the query time span [qs, 

qf].  Such queries are called temporally-anchored queries. A query reduces to a point 

query when qs=qf.  The result of the search is a ranked set of document versions that 
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have validity time intervals overlapping with the query time span.  Document 

relevance is determined based on the state of the archive during the query time span. 

More specifically, relevance is determined by computing similarity scores between 

the query and the document versions in S[qs, qt] using statistics over S[qs, qf] as 

needed. For our experimental evaluation, we use two types of scoring functions, one 

based on Okapi BM25 [69] and the second based on the KL-divergence smoothed by 

Dirichlet priors [88]. Hence a number of statistics pertaining to the state S[qs, qf] will 

have to be computed or approximated to determine the  similarity scores 

corresponding to a query whose query time span is  [qs, qf]. In our evaluation, our 

data model does not take into consideration the linking relationships among 

documents, and therefore, we do not consider link-based scoring schemes, such as 

PageRank [7] or HITS [40]. We note that a link-based score of a document version is 

dependent only on the linking structure of the collection when the document version 

was live, and hence that score is independent of the query time span. Therefore it is 

possible to include it in each posting and combine it with the more traditional 

document scoring techniques.  

3.4 Our Approach 

In a standard inverted index, each term is associated with a number of postings. 

Each posting consists of the ID of the document that contains the term and some 

associated payload necessary for computing query-document scores. In the simplest 

case, the payload is the term frequency, but may contain additional information such 

as term positions (e.g., for proximity queries). We denote a posting as (di p). To 
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support temporally-anchored queries, postings must be augmented with temporal 

information, which will be denoted as (di [tm, tn) p), where [tm, tn) is the validity time 

interval of the document version. There are two straightforward ways to extend the 

standard inverted index strategy to handle temporally anchored queries, each of which 

has a number of significant limitations.  

The first consists of building the inverted index of all the document versions in 

the collection D. There are at least four significant problems with this solution. First, 

postings lists will grow unbounded and present an efficiency bottleneck since query 

evaluation algorithms must traverse the postings to score documents. Second, a large 

fraction of the document versions will have to be filtered out when computing the 

similarity scores since their validity time intervals may not overlap with the query 

time span. Such a process is the basis of the prior work mentioned earlier such as V2, 

ITTX, DyST, and Time Machine. For instance, Time Machine adapted this approach 

to point queries using postings that contain the scores and introduced a number of 

heuristics to improve query performance as they relate to point queries. The third 

significant problem with this approach is the fact that no fast scheme for computing 

the query-document scores based on the appropriate state of the collection seems to 

be possible. Finally, as the collection grows, the indexer will face an incremental 

update problem on postings lists, which complicates document ingestion and 

processing, which may be interleaved with live querying. 

The second straightforward approach consists of building, for each discrete time 

step, a separate inverted index for all the document versions that are live at that time 

step. A temporally-anchored query can then immediately target the appropriate set of 
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inverted indexes to compute the query-document scores, assuming global statistics 

about the state S[qs, qf] can be evaluated quickly. However, such an approach will in 

general incur substantial index storage overhead since a long-lived document version 

will appear over many time steps causing the postings of all of its terms to be 

replicated many times. In addition, this causes many repeated computations of the 

score of a document version and a query, one for each time step at which the 

document version is alive. 

Our proposed solution allows a more general framework than either of the 

methods described above. We establish a number of time windows, denoted as T1, T2, 

… Tk. Each time window will contain postings of document versions whose validity 

time intervals overlap with or are strictly contained in the time window. That is, for 

each Ti, we construct an inverted index corresponding to the document versions in 

S[Ti].  Search can thus be localized to one or more appropriate time windows, saving 

the retrieval algorithm from having to process most postings. Incremental updating as 

the collection grows is dramatically simplified since only the most recent time 

window is affected. The indexing of new document versions will affect only the most 

recent time window, and once a time window is “closed off” corresponding indexing 

structures become immutable. 

Within a particular time window, the postings associated with each term might 

look something like this: (d1 [t1, t2) p) (d1 [t2, t3) p) (d1 [t3, t4) p)…  We note that such 

a representation can be compressed substantially since each document ID may occur 

multiple times on the same list, and there is no need to store time stamps explicitly 
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since interval widths can be reconstructed from the beginning of the time window. 

For the rest of this chapter, we assume this explicit representation for our postings. 

The overall structure of our proposed solution is illustrated in Figure 3.2. 

Time Window T1: [t0, t2)

d1[t0, t6)p, d3[t0,tt1)p, …

d2[t0,t8)p, d5[t1,t2)p, …

d2[t0, t8)p, d3[t0,t1)p, d3[t1,t3)p, …

term postings list

w1

w2

w3

Time Window T1: [t2, t4)

d1[t0, t6)p, d7[t3,t4)p, …

d2[t0,t8)p, d5[t2,t6)p, …

d2[t0, t8)p, d3[t1,t3)p, d3[t3,t5)p, …

term postings list

w1

w2

w3

Tk: [tn-2, tn)…
…

…

…

 
Figure 3.2: Structure of Our Proposed Temporally-augmented Inverted Index. 

 
For our approach to work, we have to establish the existence of appropriate time 

windows that enable fast query evaluation using compact indexing. To move toward 

this goal, we first present an analytical model that shows the existence of time 

windows that achieve an optimal tradeoff between index space and query evaluation 

time. We then describe an efficient approach to determine the necessary statistics 

required for computing the temporal query-document version scores, which are 

evaluated relative to the state of the collection over the time span specified by the 

query. The claims made in the next two sections will be evaluated through empirical 

results presented in Section 3.5.  

3.4.1 Analytical Model  

The determination of appropriate time windows involves a tension between two 

competing goals. Large time windows result in less index space, since fewer 

document versions will live across multiple windows, but at the cost of longer 

postings lists and the possibility that many of the postings will have to be filtered out 
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during query evaluation (because their validity time intervals do not overlap with the 

query time span). On the other hand, smaller time windows mean that more document 

versions will span possibly many consecutive time windows, resulting in many 

duplicate postings across the time windows.  Based on this dichotomy, we formulate 

an optimization problem and derive an analytical solution that achieves an optimal 

tradeoff between these competing goals. 

We start by introducing some notation. Let t1, t2, …, tn be the elementary time 

steps over which documents in our collection evolve. To simplify our analysis, we 

assume that the time steps are equally spaced and that the time windows all have the 

same size, say z. We note, however, that our approach is more general, and the 

analysis can be carried out incrementally as the collection grows. Without loss of 

generality, we also assume that k=n/z is an integer representing the number of time 

windows T1, T2, …, and Tk. To handle a query with a time span [qs, qf], we need to 

consider the postings associated with the consecutive time windows, say Ti through Tj, 

which overlap with [qs, qf]. These postings include two superfluous types of postings 

that are not needed for processing the query. The first type pertains to the duplicate 

document versions that appear in Ti+1 through Tj. The second pertains to those 

document versions whose validity time intervals do not overlap with [qs, qf]. We aim 

at determining time windows that minimize the total number of these two types of 

document versions.  More formally, we define our optimization problem as follows. 

Let X be the total number of duplicate document versions that appear in Ti 

through Tj , that is, the total number of boundary crossings of validity time intervals 

between any pair of consecutive time windows. Let Y be the total number of 
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document versions that appear in Ti through Tj whose validity time intervals do not 

overlap with [qs, qf]. Figure 3.3 illustrates X and Y for a simple example. Note that X 

decreases as the time window size increases while Y decreases as the time window 

size decreases. Our goal is to come up with a value of z that minimizes the sum X+Y. 

T1 T2 T3

t0 t1 t2 t3 t4 t5 t6

T4

t7 t8

Query Time Span : [qs=t3, qf=t7]Window size w=2

X

Y
X: The number of document versions crossing boundaries of T2—T3 or T3—T4
Y: The number of document versions appearing within [t2, t8] but not overlapping with [t3, t7]  

Figure 3.3: Illustration of Parameters X and Y 

 
We develop an analytical solution assuming that the query time span [qs, qf] is 

selected randomly from among all possible time spans. In Appendix A, we prove the 

following results concerning the expected value E[X] of X and the expected value 

E[Y] of Y.  

Let δi be the number of document versions whose validity time intervals contain 

ti and let δ be the average of all the δi’s. Then E[X] can be shown to be given by the 

following expression: 
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We can substitute δ for the individual δi’s to approximate E[X] as follows.  
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For sufficiently large k, E[X] can be further approximated by: 
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This implies that E[X] is linearly proportional to the number of time windows or 

inversely proportional to the window size. Note that the two straightforward 

approaches mentioned earlier correspond to k=1 (a global index for all the time steps) 

and k=n (an inverted index for each time step). Clearly, for k=1, there are no 

duplicate document versions, as predicted by the expression of E[X] for small k. For 

k=n, the number of duplicate document versions can be proportional to the number of 

time windows since long lived documents may cross a fraction of the time steps. 

T1 T2

t0 t1 t2 t3 t4 t5 t6 t7 t8

query time span : [qs=t3, qf=t7]

doc1
doc2
doc3
doc4
doc5
doc6
doc7

document version counted toward Y
document version counted toward X

λ1=3
μ1=3
δ1=2

λ2=1
μ2=2
δ2=4

λ3=1
μ3=2
δ3=5

λ4=1
μ4=1
δ4=6

λ5=2
μ5=2
δ5=5

λ6=2
μ6=2
δ6=5

λ7=2
μ7=2
δ7=5  

Figure 3.4: Illustration of Values of λi, μi and δi 

 
To estimate E[Y] we let λi be the number of document versions whose validity 

time interval end at ti (that is, a new version is created or document is deleted at ti) 
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and let µi be the number of document versions whose validity time interval start at ti. 

Figure 3.4 illustrates these parameters for an example consisting of seven documents.  

Using the average value λ of all the λi’s and the average value µ of all the values 

µi’s, E[Y] can be shown to be given by the following expression: 
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For sufficiently large k, E[Y] can be further approximated by: 
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That is, E[Y] is linearly proportional to the size of the time window. This 

expression can be justified intuitively since the larger the time window size, the more 

document versions are irrelevant to a random query. For a single time window 

covering all the time steps, z=n (k=1) and hence many postings will have to be 

filtered out for a random query time span. On the other hand, for z=1 (or equivalently, 

k=n), no postings have to be filtered out, consistent with the expression derived for 

E[Y]. 

Given the expressions of E[X] and E[Y], it is easy to minimize our objective 

function f(z)=X+Y. One can set the derivative of f(z) to 0 to obtain the value of z that 

minimizes f. For sufficiently large k, this value is given by:  
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For concreteness, we apply these formulas using parameter values derived from 

two large datasets to be introduced in Section 3.5. In Figure 3.5, based on the 

approximations given in (1) and (2), we plot the graphs of E[X] and E[Y] and the 
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graph of E[X]+E[Y] using the statistics (μ=200,223, λ=175,190 and δ=362,299) 

derived from the Wikipedia dataset to be introduced in Section 3.5.1. We can see f(z) 

is minimized when z is around 7. Similarly, Figure 3.6 plots the graphs corresponding 

to the Library of Congress dataset (μ=2,071,661, λ=1,197,155 and δ=10,828,027) also 

to be introduced in Section 3.5.1, where the time window size z that minimizes f(z) is 

found around 8. 

E[X]
E[Y]
E[X]+E[Y]

 
Figure 3.5: Wikipedia: E[X], E[Y] and E[X]+E[Y] 
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E[X]
E[Y]
E[X]+E[Y]

 
Figure 3.6: Library of Congress: E[X], E[Y], and E[X]+E[Y] 

 
We end this section with two comments. The first is that the same type of 

analysis can be carried out to determine the average number of postings to be 

examined for handling any fixed query text assuming a randomly selected query time 

span. The second is that the empirical results to be described in Section 3.5.4 strongly 

support the analytical results reported here. 

3.4.2 Temporal Relevance and Scoring  

We describe our extensions of retrieval algorithms for scoring temporally-

anchored queries. Figure 3.7 illustrates the interaction between temporally-anchored 

queries and the indexing structures introduced earlier in this section. Our framework 

will have multiple structures, each associated with a time window. In addition, each 

time window will contain statistics such as document frequencies, document lengths, 

and other metadata, pertaining to the collection state over that time window. The 

figure shows the two possible query scenarios: a query (Q1) with an associated time 
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span that falls within a time window completely, and a query (Q2) with an associated 

time span that covers more than one time window. A point query is obviously a 

special case of the query time span reduced to a point within a time window. 

T1 T2

t0 t1 t2 t3 t4 t5 t6 t7 t8

df(w, T1)
df(n)(w, T1)

…

df(w, T2)
df(n)(w, T2)

…

Q2
Query Time Span : [t3 ~ t7]

Q1
Query Time Span : [t0 ~ t2]  

Figure 3.7: Temporally-anchored Queries 

 
Nearly all retrieval algorithms, from simple vector space models to modern 

language modeling techniques, rely on three types of statistics: local statistics for 

term incidence in documents (in the simplest case, term frequency), global term 

statistics (e.g., document frequency, or df), and collection statistics (e.g. the total 

number of documents as used in Okapi BM25, or the total number of terms as used in 

some language models). Local statistics are contained directly in the postings, while 

global term statistics are usually stored in the head nodes of the postings lists. 

Collection statistics are typically stored separately. In addition to the above statistics, 

many retrieval models also require information on document lengths to be used for 

length normalization or smoothing. 

In our framework, we will maintain statistics over each time window Ti which 

will enable us, not only to compute global term and collections statistics over Ti, but 

also to compute statistics over a consecutive set of time windows that include Ti. This 
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is needed since a query time span may overlap with several consecutive time 

windows. To accomplish this, we maintain, for each such statistic, two values – one 

computed over all document versions in Ti, and the other computed over the newly 

created document versions in Ti. Newly created document versions refer to those 

whose validity time intervals have their left endpoints properly inside Ti. 

Let us consider for example the document frequency ),( iTwdf   of a term w 

statistic over the time window Ti. We maintain in addition to this value another 

statistic, namely the document frequency  ),()(
i

n Twdf    of the term w over the newly 

created document versions within the time window Ti. Given a query time span [qs, 

qe], we approximate the term document frequency over that query time span by 

combining the term document frequencies in time windows i through j overlapping 

with [qs, qf] as follows.  
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Another example is to approximate the average document length aveL   over the 

query time span using the following formula. 
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where N( iT ) is the number of document versions in time window Ti. Similarly, 

all the other global term statistics or collection statistics can be approximated in the 

same way. 

In the next section, we will present empirical evaluations of the ranked search 

results that come from using the above scheme for approximating global statistics and 



 

 55 
 

collection statistics. These results show that, as long as the time windows are not too 

large, the ranked search results are very close to those produced by using the exact 

statistics for each of the scoring schemes used in Okapi BM25 and KL Divergence 

with Dirichlet priors.    

3.5 Empirical Evaluation 

In this section we provide empirical evaluation of our approach on two 

significant datasets to be introduced in the next section. We use the following 

performance metrics: 

Total number of postings in the indexing structures built for all the time windows. 

This metric captures the overall index space requirement. As observed earlier, the 

larger the time window, the less the number of duplicate document versions that 

appear in consecutive time windows, and hence the smaller the overall index space. 

Average number of postings examined for a typical query and a random query 

time span, where a typical query load is defined for each dataset. This metric clearly 

impacts the query evaluation time. The dependence of this metric on the time window 

size is subject to conflicting requirements that are similar to those described in 

Section 3.4.1. 

Relative recall and Kendall’s τ for the top 100 ranked search results when 

compared to the list generated using exact global and collection statistics for Okapi 

BM25 and KL Divergence with Dirichlet priors. These two metrics clearly favor 

smaller window sizes, with the smallest window size resulting in exact global and 

collection statistics. 
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We will look at each metric separately to try to better understand the nature of its 

dependence on the time windows, and then conclude with empirically best time 

window sizes that are close to the predicted values of our model developed in Section 

3.4.1.  

We start by describing the two datasets used, followed by an outline of our 

methodology for running the empirical evaluation process. The results corresponding 

to each of the metrics above will be described separately in the following sections. 

3.5.1 Datasets Used 

We use two large-scale datasets – the English Wikipedia revision history from 

2001 to 2007, and a dataset given to us by the Library of Congress involving crawls 

of selected news and government websites. The English Wikipedia revision history is 

a publicly available XML dump created on January 3, 2008. It contains about two 

million articles (documents), each of which has one or more revisions (document 

versions) during the period. We pre-process the Wikipedia dataset and organize it into 

83 monthly snapshots between February 2001 and December 2007. Included in each 

snapshot is the most recent revision of each article at the end of the month. The 

Library of Congress collection was compiled by the Internet Archive involving 

crawls to selected news and government websites during 2003 and 2004. The next 

table highlights some of the main features of each collection. 
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Table 3.1: Datasets 

 

3.5.2 Evaluation Methodology 

A straightforward way to conduct the empirical evaluation amounts to building 

the inverted indexes for all possible time windows for each of the two datasets. Given 

the sizes of the datasets and the numbers of the time steps, this approach is 

computationally prohibitive. However, we can generate the same empirical results 

using the following substantially more efficient strategy. We build an inverted index 

for each elementary time step separately (i.e., time window size is equal to 1) and 

collect two separate sets of statistics as required by our approach. For example, for 

each term w and each elementary time step it , we compute ),( itwdf and 

),()(
i

n twdf representing respectively the document frequency of w over all the 

document versions that are live at it and over all the newly created document versions 

 Wikipedia Library of Congress 
Collection 

Original Data English Wikipedia XML 
dump created on Jan. 3 2008 

News, Government, and 
Other Sites 

Extracted Data 
83 monthly snapshots 
between Feb. 2001 ~ Dec. 
2007 

26 weekly snapshots 
between Jul. 2004 ~ Dec. 
2004 

Included in Each 
Snapshot 

Most recent revision of each 
article as of the end of the 
month. 

Most recent version of each 
crawled text web page as of 
the end of the week.  

Number of Documents 2,077,745 21,455,523 
Number of Document 

Versions 16,618,497 53,863,195 

Average Number of 
Versions per Document 8.00 2.51 

Average Lifespan of 
Document 22.47 months 15.07 weeks 

Average Lifespan of 
Document Version 2.81 months 6.13 weeks 
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at it . We can then use this information to generate the experimental results for an 

arbitrary time window size as follows.  

3.5.2.1 Total Number of Postings 

For a target time window size z, we consider a series of virtual time windows 

{VT1:[t0~tz), VT2:[tz, t2z), …}, each consisting of z time steps as shown in Figure 3.8. 

For each virtual time window, we compute the required statistics, by carefully 

combining the statistics of the elementary time steps that fall within the virtual time 

window. For example, the document frequency ),()(
l

n VTwdf of newly created 

document versions for virtual time window VTl in Figure 3.8 can be computed using 

the formula ∑
−

−=

=
1

)1(

)()( ),(),(
ls

sli
i

n
l

n twdfVTwdf , and the document frequency ),( kVTwdf can 

be obtained by using the formula ∑
−

+−=
− +=

1

1)1(

)(
)1( ),(),(),(

ls

sli
i

n
sll twdftwdfVTwdf . 

VT2VT1

Query Time Span

t0 tz t3z
… …

VT3

…t2z  
Figure 3.8: Virtual Time Windows 

 
The total number of postings in each virtual time window iVT  is simply the sum 

),(∑
w

iVTwdf   and the overall total number is given by∑∑
i w

iVTwdf ),( . 
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3.5.2.2 Average Number of Postings for a Typical Query 

Given a query q[ts, tf] and a target window size z, we can compute the number of 

postings that have to be examined using the derived set of statistics for virtual 

windows as follows: { }∑∑
∈ =qw

l

j

il
VTwdf ),( , where virtual time windows VTi through 

VTj overlap with [ts, te] and the outer sum is over all the query terms.  Note that this 

sum captures all the postings lists that need to be examined when handling the 

corresponding query.  

3.5.2.3 Ranked Search Results  

Given a query q[ts, te] and a target time window size z,  our goal is to determine 

the top 100 ranked search results obtained by Okapi BM25 and KL Divergence using 

the statistics associated with the virtual time windows that overlap [ts, te]. We use the 

postings lists associated with each query term at each elementary time step in the 

interval [ts, te] but with the global and collection statistics associated with the virtual 

time window containing the time step.  The corresponding document version IDs and 

scores are sorted and merged, and the top 100 document version IDs are those that 

would have been returned had we generated the postings lists for the time window 

size z (obviously duplicate document versions are eliminated). 

3.5.3 Empirical Results on Total Number of Postings 

For each dataset, we consider all possible time window sizes that result in 

different numbers of time windows. For time window sizes that lead to the same 

number of time windows, we consider the largest such time window. Table 3.2 shows 



 

 60 
 

the time window sizes used in our tests, and the corresponding numbers of time 

windows for each dataset.  

Table 3.2: Time Window Sizes 

 Time Window Size (Number of Time Windows) 

Wikipedia 1 (83), 2 (42), 3 (28), 4 (21), 5 (17), 6 (14), 7 (12), 8 (11), 9 (10), 
10 (9), 11 (8), 12 (7), 14 (6), 17 (5), 21 (4), 28 (3), 42 (2), 83 (1) 

Library of 
Congress 1 (26), 2 (13), 3 (9), 4 (7), 5 (6), 6 (5), 7 (4), 9 (3), 13 (2), 26 (1) 

 

For each time window size, we sum up the numbers of postings in all the 

corresponding time windows. The results from the two datasets are illustrated in 

Figures 3.9 and 3.10. 
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Figure 3.9: Wikipedia: Total Number of Postings 
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Figure 3.10: Library of Congress: Total Number of Postings 

 
As expected, the larger the time window, the smaller the number of postings 

since fewer document versions will cross time window boundaries. However we note 

that for our datasets, the reduction in the number of postings becomes relatively small 

after z = 11 for the Wikipedia dataset and z = 9 for the Library of Congress dataset. 

This fact implies that the storage overhead is small compared to the best possible for 

relatively small time windows. For instance, the storage overhead is only around 12% 

and 30% for the previously determined ``optimal'' time window sizes of 7 and 8 for 

the Wikipedia dataset and the Library of Congress dataset, respectively, compared to 

the minimum space required when z = n. 
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3.5.4 Empirical Results on Average Number of Postings 

Examined for a Typical Query Load 

Our temporal query load for the Wikipedia dataset is constructed as follows. 

Based on the AOL query log made briefly available in 2006 [64], we extract 223 most 

frequent multi-term query phrases where the user selected an English Wikipedia 

article among the search results. Each query phrase is combined with 100 random 

query time spans resulting in a query load of 22,300 temporal queries for each time 

window size. Similarly for the Library of Congress dataset, we extract 100 most 

frequent multi-term query phrases where the user selected one of the seed websites. 

The seed websites are those included in the seed URLs that the Library of Congress 

used as an input to the crawler. Again, each query phrase is combined with 100 

random query time spans resulting in a query load of 10,000 temporal queries for 

each time window. 

For each time window size of the two datasets, we compute the average number 

of postings examined over all these temporal queries. The results are illustrated in the 

next figures.  
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Figure 3.11: Wikipedia: Average Number of Postings Examined 
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Figure 3.12: Library of Congress: Average Number of Postings Examined 

 
As expected, the relationship between this metric and the time window size 

follows more or less the same behavior as the sum X+Y introduced in Section 3.4.1. 

In particular, note that the larger the time window the less the number of duplicate 
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postings, but the more the number of postings that are irrelevant to the given query 

time span. Based on the results of these tests, the corresponding best values are z = 6 

and z = 9 for the Wikipedia and the Library of Congress datasets respectively, which 

are very close to the values (z = 7 and z = 8, respectively) predicted by our analytical 

analysis presented in Section 3.4.1. 

3.5.5 Empirical Evaluation of Ranked Search Results  

Using the same temporal query loads as described in the previous section, we 

evaluate the top 100 ranked results obtained by using our approach according to two 

measures – Relative Recall and Kendall’s τ – assuming a ground truth list of the top 

100 ranked document versions generated by using the same scoring functions with 

exact state statistics.  Relative Recall is defined as the fraction 
100

rn , where nr is the 

number of document versions among the 100 returned by our scheme which also 

appear on the ground truth list. Kendall’s τ is defined as the fraction 

,
4950

discordconcord nn − where nconcord is the number of concordant pairs, and ndiscord is the 

number of discordant pairs. A pair (a, b) is concordant if a and b appear in the same 

order in the list produced by our scheme and the ground truth list, and is discordant 

otherwise. Note that the number of the distinct pairs of 100 elements is 4950. 

We compare the ranked search results as a function of time window size. Clearly 

the smaller the time window size, the more accurate the statistics are and hence the 

better the recall and Kendall’s τ are. In fact, the case when the time window size is 

equal to one reduces to computing the exact statistics for any query time span. 
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Therefore, this case represents the ground truth to which we compare the performance 

of any other time window size. 

For each dataset, we perform two sets of tests using Okapi BM25 and KL-

divergence smoothed by Dirichlet priors, respectively. From the search results of each 

test, we compute Relative Recall and Kendall’s τ for the top 100 ranked search results. 

The resulting data is illustrated in the new graphs. 
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Figure 3.13: Wikipedia: Relative Recall and Kendall’s τ 
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Figure 3.14: Library of Congress: Relative Recall and Kendall’s τ 

 
From the graph for the Wikipedia dataset the values of Relative Recall and 

Kendall’s τ are higher than 0.99 and 0.96 respectively for the “optimal” time window 

size of 7 as determined before. Similarly for the Library of Congress dataset, for the 

time window size of 8, the values of Relative Recall and Kendall’s τ are higher than 

0.97 and 0.85, respectively. This implies that the search results for our “optimal” time 

window size are almost the same as those produced using the exact state statistics.  

In our datasets, even the largest time window size does not yield search results 

that are substantially different than those appearing on the ground truth list (for 

instance, Kendall’s τ for time window size 26 in the Library of Congress is almost 

0.80). This implies that the use of the statistics of the entire history of our datasets 

would give reasonable search results. However, a careful examination of the curves 

indicates a definite negative trend as the temporal range increases. Extrapolating these 
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curves implies a substantial degradation of the search results after the temporal range 

moves beyond a certain point.  

3.6 Conclusion 

In this chapter, we presented a new approach to index a collection of multi-

version documents, which incorporate the temporal dimension in an integral way to 

enable the handling of temporally anchored queries. In particular, our approach 

introduces the notion of time windows, each of which is organized using standard 

structures. We show that the time window size directly affects the search 

performance, and provide an analytical model that can be used to derive optimal 

values for window sizes. Empirical evaluations on two large-scale real world datasets 

provided a strong support for our overall approach. In particular, we show that our 

approach effectively supports effective temporal search and the computation of 

relevance scoring based on the state of collection as it existed during the query time 

span. 
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Chapter 4 

Physical Location Index for Time Evolving Data 

In the previous chapter, we examined information retrieval schemes based on 

temporally anchored queries. Once the pertinent information is returned, the next step 

is to deliver the actual data to the user. In this chapter, we consider the issue of 

physically locating the data identified through the information retrieval scheme. In 

particular, we introduce a persistent data structure to be used to locate the physical 

location of time-evolving data. Our data structure indexes archived temporal contents 

such that it can provide fast access to the location of the archived contents for 

arbitrary temporal queries. Our scheme supports the insert operation and the most 

query types optimally, in terms of both time and space. It provides more compact and 

faster operations than the existing location indexing schemes used for web archives, 

while being simpler than the existing optimal persistent data structures. To simplify 

the presentation, we focus on web archives for the rest of this chapter. 

4.1 Overview 

When archiving web contents, one predominant storage method is to manage a 

smaller number of larger-size containers, each containing a multitude of web objects. 

The Internet Archive, the world’s largest web archive, has also been using the 

container method, followed by many other web archiving consortiums and libraries. 
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Their collaborative efforts recently resulted in an international standard of the 

container’s internal format, WARC [82]. 

Although the container method has become popular for its space-efficiency, 

easy-manageability, and many existing tools that deal with the container format, a 

drawback is the requirement of an external indexing scheme to locate web objects in 

the containers. Unlike traditional indexing schemes, a web archive index faces several 

additional hurdles due to the fact that archived web contents are temporal objects. As 

a consequence, an index must also take into consideration acquisition time in addition 

to the URLs. This is in contrast to the index used for web search engines where only 

currently available web materials need to be maintained. 

In this chapter, we introduce an indexing scheme based on a persistent B+-Tree. 

Since long-term archives do not call the delete operation frequently, if ever, we 

loosen our requirement such that the delete operation can be sub-optimal. This allows 

our scheme to be much more compact and simpler than other optimal persistent data 

structures, while supporting the optimal query and insert operations in terms of both 

time and space. 

In Section 4.2, we discuss current popular methods to index web archives, and 

also examine several existing persistent data structures closely related to our scheme, 

followed by Section 4.3 where we state our indexing goal. We explain our strategy in 

Section 4.4, and the performance analysis is presented in Section 4.5. The 

performance analysis is based on a number of assumptions that are justified in 

Appendix A. 
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4.2 Related Work 

In this section, we describe existing location indexing schemes for web archives, 

followed by examining some of the most notable persistent data structures. 

4.2.1 Location Index for Web Archives 

Indexing schemes can be divided into two categories: sequential and structured 

indexes. The former kind is simple and straightforward in terms of its organization. A 

plain file directly on a native file system can hold a sequential index without much 

effort.  The sequential index usually relies on external sorting and other data 

arrangement algorithms before records are written on a final index file. This implies a 

batch-mode indexing, where during each batch all the data to be indexed need to be 

available. On the other hand, structured schemes are generally more sophisticated and 

flexible at the expense of added complexity. Data records are more efficiently 

managed, typically using a B-Tree or one of its variants such as B+-Tree. A B-Tree is 

a tree data structure where each internal node stores n records of the {key, data} pair 

in non-decreasing order, such that key1 ≤ key2 … ≤ keyn. Each internal node also 

contains n+1 pointers to its children, and the adjacent keys separate the ranges of 

keys in the subtree each pointer points to. That is, all the keys in the first subtree are 

smaller than the first key of the parent node, and all the keys in the second subtree are 

larger than the first key and smaller than the second key of the parent node, and so on. 

In a B+-Tree, in contrast to a B-Tree, all data are stored at the lowest level of the tree; 

only keys are stored in interior nodes. For more details on these data structures, we 

refer to Bayer and McCreight [4]. The B-Tree and B+-Tree support fast dynamic 
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insertion and deletion of index entries as well as fast querying. In practice, databases 

are often involved as middleware to accommodate structured schemes. As of this 

writing, the Wayback Machine [75] from the Internet Archive supports both the file-

based sequential and B+-Tree-based structured indexes. We compare the current 

indexing schemes to our scheme when we perform the performance analysis in 

Section 4.4. 

4.2.1.1 Sequential: File-Based Scheme 

The file-based scheme is essentially a sequential indexing scheme. One URL 

entry occupies each line containing information such as when the URL was accessed, 

the message digest of the content, and the location in the storage (such as a filename 

and an offset). To facilitate the query responses, the entries are sorted alphabetically 

by the URLs before actually serving as an index. Once sorted, the index can be 

queried in )(log2 NO  where N is the total number of entries in the index, using a 

binary search algorithm, otherwise, it would take )(NO . However, the necessity of 

sorting makes this type of indexing structures especially unattractive in cases where a 

batch-mode indexing cannot be afforded. 

4.2.1.2 Structured: Database-Based Scheme 

A popular indexing scheme such as B+-Tree is also widely used in web archives. 

For example, the Wayback Machine also optionally provides a database-assisted 

indexing scheme. Specifically, it makes use of the B+-Tree data structure 

implemented within Berkeley DB. However, to accommodate both the URL and time 

indexes, rather than using either the URL or time as a key, the Wayback Machine 
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concatenates the URL and time, and uses the result as a key. Although this scheme is 

very easy to implement, and works well to handle queries with a specific URL and 

time, it has significant limitations when it comes to handling time slice or time span 

queries. For example, given a specific date or time span, a query to retrieve all the 

web pages of interest cannot be handled efficiently using this scheme. Moreover, in 

this scheme, the cost for insert operations depends on the total number of entries in 

the structure, which keeps ever incrementing as time goes by. 

A possible alternative is to set up two indexing structures, one using the URLs as 

keys and the second using the crawl times as keys. Two separate searches are 

performed on the indexing structures, and the results are then matched to find the 

final result. As the archive grows, the time it takes to combine the results of the 

separate searchers grows rapidly, and response time will suffer substantially. That is, 

if there are V versions and as many as M data in a version, a simple matching 

algorithm requires )( MVO ×  processing time, making the response time 

unacceptably slow in many searches. 

4.2.2 Persistent Data Structures 

Conventional database captures a single state of a collection of data.  

Transactional database evolves from one state to the next, but the previous state is 

discarded once a transaction commits. “Persistent” (or multi-version) data structures, 

on the other hand, concurrently handle multiple versions of data, allowing efficient 

access to the previous versions. In this section, we discuss some of the notable 

persistent data structures below. 
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Easton [13] proposed Write-Once B-Tree (WOBT) that has been the basis of 

several subsequent persistent data structures [5,12,43,44,79]. WOBT mainly focuses 

on implementing an access structure on write-once media such as optical disks. 

WOBT allows insert operations only on the current version, but access operations on 

any previous versions. 

Lomet and Salzberg [43,44] improved WOBT by allowing a time split according 

to an arbitrary point of time in the past, rather than the current time only. Although 

they manage to maintain good space and time efficiency for certain queries, some 

query types such as key history queries are not optimally supported. 

Multiversion B+-Tree (MVBT) is developed by Becker, et al [5]. Most notably, 

MVBT differentiates itself from others by allowing delete operations too. Even with 

the introduction of the delete operations, it maintained time and space complexity at 

their optimal level. Further enhancing MVBT, Varman and Verma [79] developed 

Multiversion Access Structure (MVAS), using more storage conservative overflow 

and underflow policies. For example, they merge sparse siblings after deletes, and 

they also avoid creating two blocks in a version split in some cases by copying only 

as many live entries as needed from the sibling, instead of all entries. Furthermore, 

they achieve the optimality in key-history queries using the access-lists. 

Although WOBT, MVBT and MVAS support the insert operation optimally, the 

involved overhead is not negligible in terms of both time and space, since they 

frequently require splitting an internal node. 
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4.3 Our Indexing Goal 

When a web crawler gathers web objects, they are typically aggregated in 

containers, such that each container holds a number of web objects, ranging from 

several to hundreds of thousands. With the container method, the number of archived 

objects to manage is significantly decreased, and can overcome any practical limits of 

the underlying storage system (file system or database).  As explained earlier, a 

notable standard format of such a container is WARC, which resulted from an 

international collaborative effort among many national libraries and archives. 

Although an individual container may be self-contained, almost all web archives set 

up and manage external indexes that map a URL and crawl time to the ID of the 

container and the offset where the corresponding information is archived.  Without an 

external index, a sequential scan through all ARC files to search for the web 

information will take a prohibitive amount of time for any significant size web 

archive. 

The goal of this chapter is to design an URL indexing scheme that will be able to 

execute the following operations as fast as possible, using minimal amount of storage 

space at the same time. 

• INSERT(e): inserts an entry e into the index. The entry e contains a URL as a key, 

the acquisition time, and the location of the archived content in the archive. 

• URLTIMEQUERY(url, t): returns the location of the archived content (key=url) that 

was acquired most recently but no later than t. 

• URLTIMESPANQUERY(url, t1, t2): returns all the locations of the contents (key=url) 

that were acquired between time t1~t2.  
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• TIMESLICEQUERY(t1, t2): returns all the locations of the contents that were 

acquired between time t1~t2.  

4.4 Our Strategy – Persistent Indexing Structure for 

Archives (PISA) 

A web archive deals with a massive set of temporal data where each data is 

updated frequently. Therefore, we incorporate a persistent data structure that allows 

us to access and insert indexing entries very efficiently. We call our data structure 

PISA (Persistent Indexing Structure for Archives). 

As with many existing persistent (or multi-version) data structures, such as 

[5,12,43,44,79], our indexing structure is also rooted in the Write-Only B-Tree [13].  

More recently, researchers [5,79] found asymptotically optimal structures that support 

multiple versions of data.  They showed that their operations such as insert, update, 

delete and query can be performed with optimal time and space. 

Compared to previous data that these existing schemes handle, in a digital 

preservation system, once archived, data are seldom deleted, if ever. Therefore, in 

most cases, it is acceptable not to achieve optimal delete operations in an archiving 

environment, which allows us to greatly reduce the complexity in the indexing 

structure, while maintaining the same or better performance than the existing 

persistent data structures. We now discuss our indexing structure in detail. 
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4.4.1 Persistent Indexing Structure for Archives (PISA) 

In this section, we explain how PISA is constructed. Like other persistent data 

structures, PISA is also based on a B+-Tree. We start by introducing the terms we use 

in the rest of this chapter. In our tree structure, we call internal nodes in the tree 

including the root index blocks, while we call leaf nodes data blocks. We call data 

items in an index block as index entries, and those in a data block data entries. 

Throughout this chapter, we use the term block to mean both index block and data 

block, and entry to mean both index entry and data entry, whenever the distinction is 

not necessary. Included in each entry is a lifespan, (t1 ~ t2), where we call t1 birth time, 

and t2 death time. We call an entry live if its death time is ∞ (i.e. it has not currently 

been either updated or deleted), and dead otherwise. Similarly, we call a block live if 

at least one of the entries in the block is live, and dead otherwise. 

Each index block is composed of a header entry and a series of index entries. 

Inside the header entry are the number of all entries in the block, the number of live 

entries in the block, the pointer to the previous version, and the key with which the 

upper level block indexes the current block. Each index entry contains the index key, 

birth time, death time, and a pointer to a block in the child level. We use {key, t_birth, 

t_death, ptr} to indicate these four fields.  

Similarly, a data block includes a header entry and a series of data entries. The 

header entry in a data block contains the same types of information as in the header 

entry in an index block. Each data entry is composed of four fields, {key, t_birth, 

t_death, loc}, that correspond to the data key (URL), birth time, death time, and the 
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location where the actual content with the data key resides in the archive. Note that 

the location information typically has a container ID (or filename) and an offset.  

Figure 4.1 illustrates an example of PISA that has one index block and two data 

blocks. 

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (index key)

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

{key, t_birth, t_death, ptr}

…

in
de

x_
en

tr
y

in
de

x_
bl

oc
k

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (index key)

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

…

data_block

data_entry

ne (no of entries)

nle (no of live entries)

ppv (ptr to prev. version)

ik (indexed key)

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

{key, t_birth, t_death, loc}

…
 

Figure 4.1: Blocks and Entries in PISA 

 
As in a B+-Tree, the two index keys in two consecutive index entries determine 

the range of key values in the entries of the child block that the first entry’s pointer 

points to. An example is shown in Figure 4.2 where the data entries (keys: A, B, C, E, 

F, L, N, P, S, and V) with the same birth time (7/1/2007) are inserted in an empty 

structure.  Here, BLOCK 1 is an index block, and BLOCKs 2~4 are data blocks. For 

simplicity, an entry has an alphabet letter as a key in Figure 4.1. However, in practice, 

either a URL or a hash of a URL serves as a key.  
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{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

BLOCK 1

BLOCK 2

BLOCK 3

BLOCK 4

 
 Figure 4.2: PISA Example 

 

4.4.2 Operations in PISA 

PISA supports URLTIMEQUERY, URLTIMESPANQUERY, TIMESLICEQUERY and 

INSERT optimally. Each of the operations is explained below. 

• URLTIMEQUERY  

Upon called with a URL and time as input parameters, URLTIMEQUERY returns 

the location of the object whose key matches the URL, and lifespan includes the input 

time (there is only one such entry or none). For URL k and time t, URLTIMEQUERY 

begins the search from the root block of PISA. It ignores the entries whose birth time 

is greater than t. Also ignored are entries whose death time precedes t. Among the 

surviving entries, it chooses the one with the largest key that is no larger than k. It 

follows the pointer in the chosen entry to the child block. It continues performing the 
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same selection process until it arrives at a data entry that has the location information 

for the URL at time t.  The pseudo code is shown in Figure 4.3. 

 Input 
 URL key: URL of a web object 
 Timestamp ts: time stamp of the web object 
  
 Return 
 data_entry: data entry that contains key at ts 
 data_block: data block that contains the above entry 
  
 Procedure URLTIMEQUERY(key, ts) 
1: index_entry ie  null 
2: index_block ib  ROOT 
3: data_block db  null 
4: while ( true ) 
5:       for ( each index_entry ce ∈ ib )  
6:             if ((ce.t_birth ≤ ts  ce.t_death)  and (ce.key < key)) 
7:                   if ( (ie = null) or (ie.key < ce.key) )  
8:                         ie  ce 
9:       if (ie.pointer references leaf) 
10:             db  ie.pointer 
11:             break while-loop 
12:       else 
13:             ib  ie.pointer 
14: for (each data_entry de ∈ db) 
15:       if ( (de.t_death ≥ ts) && (de.key = key) ) 
16:             return {de, db} 
17: return {null, db} 

Figure 4.3: URLTIMEQUERY Operation 

 
• URLTIMESPANQUERY 

URLTIMESPANQUERY has three input parameters, a URL, start time, and end time. 

It returns all the locations of the objects whose key is the input URL, that were live 

during the time span of (t1 ~ t2). It first performs the same steps as URLTIMEQUERY 

for time t2. When we find a data block that contains an entry for t2, it backtracks to the 

block that may contain the previous version by following the backtracking pointer in 

the current block. The backtracking continues until it encounters a block that died 

before t1. If any previous versions of the entry at t2 existed since t1, all of these 
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previous entries can be found in the blocks it encountered during the backtracking. 

Figure 4.4 has the pseudo code. 

 Input 
 URI key : URI of a web object 
 Timestamp ts_start: start time stamp of the web object 
 Timestamp ts_end: end time stamp of the web object  
  
 Return 
 A set of data_entry de’s whose de.key=key and (de.t_birth~de.t_death) overlaps 

(ts_start~ts_end) 
  
 Procedure URLTIMESPANQUERY(key, ts_start, ts_end) 
1: List E<data_entry>  null 
2: data_entry de  null 
3: data_block db  null 
4: (de, db)  URLTIMEQUERY(key, ts_end) 
5: while ( (de ≠ null) && (de.t_death > ts_start) ) 
6:       E  E  {de} 
7:       db  db.ppv 
8:       de  FINDENTRYINBLOCK(de, db) 
9: return E 

Figure 4.4: URLTIMESPANQUERY Operation 

 
• TIMESLICEQUERY 

TIMESLICEQUERY returns the locations of all the objects that were alive during 

the supplied time span. Starting from the root, the search travels through all the 

blocks that were alive at a specific time period, t1~t2. It follows the pointer in an entry 

only if one or more of the following three conditions are met. 1) The birth time of the 

entry is between t1 and t2. 2) The death time of the entry is between t1 and t2. 3) The 

birth time of the entry is before t1 and the death time of the entry is after t2. Upon 

arriving at the leaf nodes, the entries that were alive during t1~t2 are returned, using 

the same eligibility check above. The pseudo code is shown in Figure 4.5. 
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 Input 
 Timestamp ts_start: start time stamp of the web object 
 Timestamp ts_end: end time stamp of the web object  
  
 Return 
 A set of data_entry de’s whose (de.t_birth~de.t_death) overlaps (ts_start~ts_end) 
  
 Procedure TIMESLICEQUERY(ts_start, ts_end) 
1: List E<data_entry>  null; 
2: List B<index_block>  { ROOT } 
3:: data_entry de  null 
4: data_block db  null 
5: index_block ib  null 
6: block cb  null 
7: for ( each index_block ib ∈ B )  
8:       for ( each index_entry ce ∈ ib )  
9:             if ((ts_start ≤ ce.t_birth < ts_end) or (ts_start  ce.t_death  ts_end) 

                                                                         or ( (ce.t_birth  ts_start) and (ce.t_death > ts_end)) 
10:                   cb = ce->pointer 
11:                   if (cb is data block) 
12:                         for (each data_entry de ∈ cb ) 
13:                               if ((ts_start ≤ de.t_birth < ts_end) or (ts_start  de.t_death  ts_end) 

                                                                        or ( (de.t_birth  ts_start) and (de.t_death > ts_end)) 
14:                                     E  E U {de} 
15:                   else /* cb is index block */ 
16:                         B = B U {cb} 
17: return E 

Figure 4.5: TIMESLICEQUERY Operation 

 

• INSERT  

INSERT adds a new data entry into PISA. In case that there already exists a 

previous entry with the same key, INSERT marks the previous entry dead and adds the 

new entry. INSERT is a more involved operation than queries. Before we explain the 

INSERT operation, we first define two parameters and three variables in Tables 4.1 and 

4.2. 

Bmax, and Bmin are configurable parameters depending on the performance and 

space needs.  Since Bmax is often set to a value equal to the block size of the storage to 

achieve the maximum disk-seek performance, one usually has to decide only Bmin. 



 

 82 
 

The value of Bmin has a direct impact on the time and space performance as can be 

seen in Section 4.5. However, we cannot use any arbitrary value. We formally discuss 

how to determine Bmin and Bmax, considering their impacts on the time and space 

performance in Appendix A. In this chapter, we only make one simple assumption: 

all parameters are positive integers. 

 

Table 4.1: PISA Parameters 

Parameter Description 
Bmax 

The maximum number of entries that a block can 
contain. 

Bmin 
The minimum number of live entries that a block must 
contain. 

 

Table 4.2: PISA Variables 
Variable Description 

na 
The number of all entries that a block currently 
contains. 

nl 
The number of live entries that a block currently 
contains. 

dead entry
dead entry

…
dead entry
dead entry
live entry
live entry
live entry

…
live entry
live entry

Bmin

Bmax

Bmax - k + 1

nl
na

 
Figure 4.6: PISA Block (Live entries clustered together for illustrative purpose) 
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The two variables, na and nl, on the other hand, are defined to simplify the 

presentation of the algorithms. Although not strictly necessary, it is assumed that na 

and nl are stored in the header of a block to conveniently describe the algorithms. 

Figure 4.6 illustrates these parameters and variables. 

When a new data entry is inserted, the appropriate data block that the data entry 

belongs to is first identified. Once the block is identified, we mark any existing entry 

with the same key as dead. If there is an empty slot in the block for the new entry, the 

entry is added to the block. If the block is full (na = Bmax), a new block is created, 

according to the following rules: 

Case 1: nl + 1 ≥ 4 x Bmin 

KEYSPLIT: Among the nl live keys, we select a median entry, me, such that 1) no 

other live entries are older than me, 2) there are at least Bmin live entries whose key is 

smaller than me’s, 3) and there are at least Bmin live entries whose key is no smaller 

than me’s. If there is no such median key, we perform VERSIONSPLIT, and restart 

KEYSPLIT over the new block spawned from VERSIONSPLIT. Otherwise, we create a 

new block, move live entries whose key is no smaller than the median key into the 

new block. We also move dead entries that were alive at the birth time of the median 

entry into the new block. We INSERT an index entry that points to the new block in the 

parent. In case the current block is the root block, we also create the new root block 

which points down to the previous root block and the new block. 

Case 2: nl + 1 < 4 x Bmin 

VERSIONSPLIT: We create a new block. We copy all the nl live keys from the 

overflowing block into the new block. We mark the copied entries in the overflowing 
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block as dead. We set the birth time of the copied entries of the new block the same 

as the birth time of the new entry. In case the overflowing block is the root block, we 

also create the new root block which points down to the previous root block and the 

new block. 

The pseudo codes for INSERT and its supplementary functions (KEYSPLIT and 

VERSIONSPLIT) are shown in Figures 4.7 ~ 4.10. 

 

 Input 
 data_entry de : data entry to insert 
  
 Procedure INSERT(de) 
1: data_block db  null 
2: db  FINDBLOCK(de.key, de.t_birth) 
3: BLOCKINSERT(de, db) 

Figure 4.7: INSERT Procedure 
 

 Input 
 entry e: (data_ or index_)entry to insert into db 
 block b: (data_ or index_)block that de is inserted into 
  
 Procedure BLOCKINSERT(e, b) 
1: block newb  null 
2: entry newe  ALLOCATEMEMORY() 
3: entry olde  FINDENTRYINBLOCK(e, b) 
4: if (olde ≠ null) 
5:       olde.t_death  e.t_birth 
6: if (b.na = Bmax) 
7:       if ((b.nl + 1) ≥ 4*Bmin ) 
8:             newb  KEYSPLIT(e, b) 
9:             newe.key  newb.ik    /* ik: index key of the block */ 
10:             newe.t_birth  e.t_birth 
11:       else 
12:             newb  VERSIONSPLIT(e, b) 
13:             newe.key  b.ik 
14:             newe.t_birth  b.t_birth 
15:       newe.t_death  ∞ 
16:       newe.ptr  newb 
17:       BLOCKINSERT(newe, PARENT(b)) 
18: else 
19:       ADDENTRYTOBLOCK(e, b) 

Figure 4.8: BLOCKINSERT Procedure 
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 Input 
 entry e : new entry to insert 
 block b : block to version-split 
  
 Return 
 block : new block resulting from the split 
  
 Procedure VERSIONSPLIT(e, b) 
1: entry olde  null 
2: entry newe  null 
3: block newb  ALLOCATEMEMORY() 
4: newb.t_birth  e.t_birth 
5: newb.t_death  ∞ 
6: newb.ppv  b 
7: newb.ik  b.ik 
8: for ( each live entry olde ∈ b ) /* olde.t_death > e.t_birth */ 
9:       if (olde.t_death > e.t_birth) 
10:             newe  DUPLICATEENTRY(olde) 
11:             olde.t_death  e.t_birth 
12:             newe.t_birth  e.t_birth 
13:             ADDENTRYTOBLOCK(newe, newb) 
14: ADDENTRYTOBLOCK(e, newb) 
15: return newb 

Figure 4.9: VERSIONSPLIT Procedure 
 
 
 Input 
 entry e : new entry to insert 
 block b : block to key-split 
  
 Return 
 block: new block resulting from the split 
  
 Procedure KEYSPLIT(e, b) 
1: entry olde  null 
2: block oldb  b U {e} 
3: entry me  FINDMEDIANKEY(oldb) 
4:  if (me = null) KEYSPLIT(e, VERSIONSPLIT(null, b)) 
5: block newb  ALLOCATEMEMORY() 
6: newb.t_birth  oldb.t_birth 
7: newb.t_death  ∞ 
8: newb.ppv  b.ppv 
9: newb.ik  me.key 
10: for ( each entry olde ∈ oldb ) 
11:       if ( olde.key ≥ me.key ) 
12:             if (olde.t_death = ∞) 
13:                   MOVEENTRY(olde, oldb, newb) 
14:             else if (olde.t_death > me.t_birth) 
15:                   COPYENTRY(olde, oldb, newb) 
16: return newb 

Figure 4.10: KEYSPLIT Procedure 
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For clarity, we illustrate an example of the INSERT operation in Figures 4.11 ~ 

4.13. In Figure 4.11, no overflowing occurred after inserting three entries (keys: Z, X 

and Z) into the previous index we saw earlier in Figure 4.2. Note that the first inserted 

Z is marked dead. 

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

{Z, 7/1/2007, 8/1/2007}

{X, 7/8/2007, ∞}

{Z, 8/1/2007, ∞}
 

Figure 4.11: INSERT Z, X, and Z 

 

Figure 4.12 shows a case where another entry with key ‘T’ is inserted into this 

index, making the block overflow. Since we have five live entries including the new 

entry, if we assume that Bmin is one (thus 4 x Bmin = 4), we fall into Case 1 where a 

key split is performed with {V, 7/1/2007, ∞} selected as a median entry. 

Before explaining Case 2, we now go back to the original index (Figure 4.2), and 

insert three entries with key ‘S’. Again, since there are available slots, no overflowing 

occurs. We only mark all the previous entries with the same key ‘S’ as dead (Figure 

4.13). 
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{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{X, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{V, 7/1/2007, ∞}

{X, 7/8/2007, ∞}

{Z, 8/1/2007, ∞}

{S, 7/1/2007, ∞}

{T, 8/3/2007, ∞}

{Z, 7/1/2007, 8/1/2007}

 
Figure 4.12: KEYSPLIT after Inserting T 

. 

{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, 7/8/2007}

{W, 7/1/2007, ∞}

{S, 7/8/2007, 9/1/2007}

{S, 9/1/2007, 10/3/2007}

{S, 10/3/2007, ∞}

 
Figure 4.13: INSERT S, S, and S 

 

Now we insert another entry with key ‘S’ again, and encounter an overflow. 

Since there are not enough live entries to key-split, we now fall into Case 2 where a 

version split is performed. Figure 4.14 shows the result of the version split.  
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{A, 7/1/2007, ∞}

{L, 7/1/2007, ∞}

{S, 7/1/2007, 11/1/2007}

{S, 11/1/2007, ∞}

{A, 7/1/2007, ∞}

{B, 7/1/2007, ∞}

{C, 7/1/2007, ∞}

{E, 7/1/2007, ∞}

{F, 7/1/2007, ∞}
{L, 7/1/2007, ∞}

{N, 7/1/2007, ∞}

{P, 7/1/2007, ∞}

{S, 7/1/2007, 7/8/2007}

{V, 7/1/2007, 11/1/2007}

{S, 7/8/2007, 9/1/2007}

{S, 9/1/2007, 10/3/2007}

{S, 10/3/2007, 11/1/2007}

{S, 11/1/2007, ∞}

{V, 11/1/2007, ∞}

 
Figure 4.14: VERSIONSPLIT after INSERT(S, 11/1/2007, ∞) 

 

4.5 Performance Analysis 

In this section, we analyze the performance of PISA in terms of the time and 

storage space. We first list two invariants we want to maintain all the time throughout 

any operations. 

Invariant 1: For any live block in PISA, 3 ≤ Bmin ≤ nl ≤ na ≤ Bmax 

Invariant 2: For any new block in PISA, 3  ≤  Bmin  ≤  nl  ≤  na  ≤  Bmax - Bmin + 1 

As defined earlier in Tables 4.1 and 4.2, Bmin represents the minimum number of 

live entries in a block, and Bmax represents the maximum number of entries in a block. 

Variables nl and na represent the number of live entries and of all entries in a block, 

respectively. 
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By ‘any new block’ in Invariant 2, we mean any block that is newly created by a 

version split or a key split as well as the existing block that a key split has moved its 

entries out from. We note that the only case where the number of entries in an 

existing block decreases is after a key split, but since we put the existing block for the 

key split into the new block category, we need to maintain Invariant 2 for this block, 

too. 

In this section, we assume that the invariants hold all the time, and analyze the 

PISA’s performance under this assumption. This assumption is justified in Appendix 

A. From each invariant, the following observations can be made. 

Observation 1: From Invariant 1, there are at least Bmin live entries at any point of 

time. 

Observation 2: From Invariant 2, at least Bmin operations need to be performed on a 

new block before an overflow can occur. 

4.5.1 Query Time 

For URLTIMEQUERY(Key k, Time t), since at least Bmin entries are valid at t in 

every block  (from Observation 1), we have the same performance boundary as B+-

Tree where each block has at least Bmin entries. Thus, the number of the accessed 

blocks is )(log min NO B , where N is the total number of entries (or equivalently, the 

total number of the INSERT operations) in PISA.  This is the best known lower bound 

for any multi-version data structure [71]. 

For URLTIMESPANQUERY(Key k, StartTime t1, EndTime t2), after we identify the 

block and entry with key k that was live at t2, we backtrack to older blocks until we 
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reach to a block whose death time precedes t1. Supposing that there are R such entries, 

we need to backtrack to as many as R-1 older blocks. Therefore, we need to access a 

total of ))((log min RNO B +  blocks. We note that our complexity is sub-optimal for 

this particular query type. The optimal bound of ))((log
max

min B
RNO B +  is not 

achieved because all qualifying entries are not clustered together. We note, however, 

that Varman and Verma [79] describe a way to achieve the optimal bound with the 

access list integration at the expense of the increase in time and space for other 

operations such as inserts. The same technique can be adopted in PISA to achieve the 

optimal performance. 

TIMESLICEQUERY(StartTime t1, EndTime t2) begins the search from the root 

block. All the child blocks that are alive during t1~t2 are visited. Again, since at least 

Bmin entries are valid at any point of time in every block (from Observation 1), this 

type of query is processed optimally. 

4.5.2 Insert Time 

For INSERT(DataEntry e), we search from the root to locate the appropriate data 

block whose key ranges include the key of e. Since there are at least Bmin live entries 

in every block, the search takes )(log min MO B  time where M is the number of current 

live blocks.  

After we identify the block, we check whether or not there is a free slot for the 

new entry. If there is an available slot, then we add the entry and complete the job. 

However, if the block is full, we split the block by creating one or two new blocks 

depending on the split type and other conditions explained previously. We then insert 
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an index entry that points to the new block into the parent block, which may also 

overflow. In the worst case, every ancestor block on the path to the root may also 

overflow. Since we need to access as many as two blocks each level, the worst case 

requires us to visit as many as 1)log2( min +× NB  blocks (one added in the end 

represents the new root).  Therefore, the total time for INSERT is bounded by 

)(log min NO B , which is larger than the optimal INSERT complexity of )(log min MO B .  

However, we can show that the amortized complexity is still optimal. We 

consider Observation 2: at least Bmin operations are needed before an overflow occurs. 

Since an overflow adds at most two index entries into the parent block, an overflow 

can occur at the parent after at least 
2
minB  INSERT operations in the child level. 

Similarly, the grandparent block can overflow only after at least 
2
minB  INSERT 

operations in the parent block, and so on. That is, at level L (L=1 for data blocks), at 

least LB )
2

( min  leaf-level INSERT operations need to be performed before an overflow 

can occur. Since an overflow requires us to access as many as three blocks in the 

same level, one operation contributes to LB )
2

(3 min block accesses at level L. 

Therefore, the amortized number of block accesses caused by one INSERT is at most 
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where h is the height of the tree, or NB minlog . This shows that not only does 

INSERT cost a constant complexity after an appropriate block is located, the constant 

can be very small (less than 
2

6

min −B
) depending on Bmin. Consequently, the 

amortized INSERT cost is no more than the time it takes to locate the target block, i.e., 

)(log min MO B . This is asymptotically optimal since this complexity is the same as 

that of B+-Tree that only maintains the current version of data. 

4.5.3 Space 

In order to analyze the space required for PISA after N INSERT operations, we 

first examine data blocks first. From Observation 2, we know that there need at least 

Bmin INSERT operations before an overflow can occur. Therefore, one INSERT 

operation contributes to at most 
2
minB  blocks (in most cases only one block is created 

as a result of a split, however, in some case as many as two blocks can be created). If 

we consider the initial block (whose need is explained in Section Appendix A), the 

space required for data blocks after N INSERT operations is upper-bounded by 

12

min

+
B

N . 

The space required by index blocks can be computed as follows. In the first index 

level (the parent level of data blocks), at least 
2
minB

 
new data blocks need to be 

created before an index block overflows and creates a new index block. We saw in 

the previous paragraph that at least 
2
minB  INSERT operations are required for a new 
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data block to be created. Therefore, at least a total of 2min )
2

( B  operations are required 

for a new index block to be created. In other words, one INSERT operation contributes 

to at most 
2min )

2
(

1
B

 index blocks in the first index level. If we generalize this for all 

the other index levels in the tree, we obtain that one INSERT operation contributes to at 

most 
1min )

2
(

1
+iB

 for the ith index level. Therefore, the maximum number of new index 

blocks after N INSERT operations is 

)2(
4
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If we also consider an initial index block, there are at most 1
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Therefore, PISA has an amortized space bound of 

),()( maxmin BNOBNO = which is optimal (we show that Bmin is selected linearly to 

Bmax in Appendix A). 
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4.5.4 Performance Comparison 

Based on the numbers that we have so far come up with, we compare the 

asymptotic performance complexities of PISA to the existing indexing structures for 

web archives. Table 4.3 summarizes the results. 

 

Table 4.3: Performance Comparison (Cells with the best performance are shaded)  
 

File-based 
B+-Tree -based 

PISA One Merged Tree Two Separated 
Trees 

URLTIMEQUERY )(log2 NO  )(log NO B  )( MVO ×  )(log NO B  
URLTIMESPANQUERY )(log2 RNO +  )/)((log BRNO B +  )( MNRO ××  )/)((log BRNO B +  
TIMESLICEQUERY )(NO  )( BNO  )(log VO B  )/)((log BRNO B +  
INSERT )(NO  )(log NO B  )(log NO B  )(log MO B  
space )(NO  )( BNO  )( BNO  )( BNO  
incremental No Yes Yes Yes 

N: # of entries.   M: # of entries in a version.   V: # of versions  B: Block size   R: # of matching entries 

 

We also note that, compared to other persistent data structures, PISA runs more 

efficiently, even for the operations that have the same asymptotic runtime. For 

example, PISA has the same asymptotic runtime as WOBT, MVBT and MVAS for 

the operations in Table 4.3. However, they all require two new blocks created for 

every key split, where as PISA only spawns one block in many cases and two new 

blocks in some cases, allowing PISA to run faster in practice, requiring compacter 

storage at the same time. 

4.6 Summary 

In this chapter, we introduced a persistent data structure, called PISA, to be used 

as a location index for temporal data. We showed how insert and queries are 
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performed in PISA. Our performance analysis showed that PISA provides insert and 

queries optimally in terms of both time and space, and it also has a lower overhead 

than other optimal schemes. 
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Chapter 5 

Optimizing Data Layout for Web Contents for Fast 

Access 

In Chapters 3 and 4, we discussed information discovery and delivery in a long-

term preservation system, respectively. Once the relevant information is discovered 

and delivered, the user begins to navigate around the returned results, following the 

hyperlinks in an html, for example. In this chapter, we consider the problem of 

storing a linked set of inter-related data into containers in such a way as to minimize 

the number of containers accessed during an information browsing session. Our 

method makes use of link analysis and optimized graph partitioning to enable faster 

browsing of archived web contents in the future. 

Our overall methodology is very general and can be used to optimize different 

browsing patterns. We include simulation results that illustrate the performance of our 

scheme and compare it to the common scheme currently used to organize web objects 

into web containers. 

5.1 Overview 

In web archiving, most web pages tend to be small, and are typically aggregated 

into relatively large containers as the objects are accessed during the crawling process. 

An emerging standard for such containers is the WARC format [82], which evolved 

from the ARC container format developed by the Internet Archive, currently the 
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world’s largest internet archive. Moreover, many web crawlers and access tools, 

Heritrix [55], NutchWAX [60], Wayback [84], WAXToolbar [83] and WERA [87], 

assume this format.  

Given a set of WARC containers that hold an archived linked set of web objects, 

a future browsing process of the archived objects starts with a web object defined by 

a seed link, followed by navigation through the linked structure until the desired web 

object is found. Our goal is to organize the web objects into containers so as to 

minimize the number of containers needed to complete a typical browsing process. 

We develop an algorithm that assigns web objects to containers by performing an 

initial link analysis on the given linked structure, followed by a partitioning process 

that leads to an efficient solution to this problem. We show that our method enables 

effective navigation through the archived linked structure and compare its 

performance to the dominant scheme in use today. 

We start in Section 5.2 by describing the previous work related to our problem, 

followed by developing and justifying our method in Section 5.3.  We apply our 

method to two web site examples and examine the performance gains achieved by our 

method in Section 5.4.  We conclude in Section 5.5.  

5.2 Related Work 

We review in this section the possible storage formats for archiving web contents 

and a couple of techniques in link analysis and graph partitioning which will form the 

core of our method. 
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5.2.1 Archival Storage 

In order to organize and store web objects in an archive, several methods have 

been proposed and are currently in use. A straightforward method (such as the one 

implemented in [31]) is based on using the local file system where the target web 

content is copied object by object to the local file system, maintaining the relative 

structure among the objects. For future access, the html tag ‘file’ can replace the 

‘http’ tag in the original object. We can then use the local file system for navigation 

through the archived web objects. For example, ‘http://www.example.org/index.html’ 

can be rewritten as ‘file:///archive/2007.08.01/www.example.org/index.html’. It is 

relatively easy to set up and run this type of web archiving and the retrieval process is 

carried out using local file access mechanisms. However, there are several problems 

in using this method for web archiving including its limited scalability to what the 

local file system can handle, and the difficulty to preserve the contents over time as 

they are tightly coupled to the specific file system. Moreover, this strategy requires 

modifications to the original contents, and thus the strict faithfulness to the original 

contents cannot be maintained in most cases [27,26,77].  

The second approach extracts documents from the hypertext context and 

reorganizes them in a different format while setting up different access mechanisms. 

For example, a small set of web pages can be converted into a single PDF document.  

However, this strategy makes sense mainly for specific objects that were originally 

created independently of the web. Although it is possible to maintain the hypertext 

structure within the converted documents, for the broader range archiving, this 

approach loses the hypertext structure between multiple such documents. 
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The most popular method currently in use by most web archives, including the 

Internet Archive, stores web objects in WARC [82] container files. A WARC file 

holds a set of harvested web files, each with its own auxiliary metadata. The size of a 

WARC file can vary up to hundreds of megabytes (usually 100~500MB). Typically, 

an external indexing server is maintained to provide the mapping between hyperlinks 

inside a WARC file and the location of the archived object that the hyperlinks point 

to. For example, if, inside a WARC file, there is a web page archived on September 

24, 2007 which has an outgoing hyper link with a tag <a 

href=”http://www.example.org/images/welcome.jpg>, the indexing server could 

return in response to the tag and date something like ‘20070924082031-00007.warc’ 

and ‘1463539’ which are the WARC file name and the offset in the WARC file, 

respectively. In this chapter, we will also assume that web files are placed in such 

containers such that a certain upper bound on the size of the container is assumed. 

5.2.2 Graph Partitioning Techniques 

Web material can be considered as a graph (web graph) where each constituent 

web page is represented by a vertex, and each incoming/outgoing link corresponds to 

a directed edge. Once represented as a graph, the web graph can be partitioned into 

multiple sub-graphs using one of existing graph partitioning techniques. The basic 

goal of a minimum edge-cut partitioning is to minimize some defined cost on the 

edges connecting the partitions. There are many ways to define the external cost of 

graph partitioning but the two notions most widely used are the maximum weight of 

the edges between vertices which lie on different partitions, and the total weight of all 
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the edges connecting distinct partitions. Although the graph partitioning problem is 

known to be NP-complete, many heuristic algorithms have been developed which 

find very good partitions in practice [8,9,23-25,28,35,39,53,52,67]. However, for our 

application, we will require additional constraints, which cannot necessarily be 

handled by many of the well-known graph partitioning algorithms. We review here 

some of the algorithms that can be used to solve our graph partitioning problem that 

will be defined formally in Section 5.3. 

Perhaps the best known graph partitioning algorithm is the Kerninghan-Lin 

algorithm [39], where the partitioning process starts with an arbitrary partition, and 

then proceeds to decrease the external cost by a series of interchanges of subsets of 

the partitions repeatedly until no further improvement is possible. To avoid local 

optimality, the algorithm is applied repeatedly to obtain a number of locally optimum 

partitions among which the best partition is chosen. Although Fiduccia and 

Mattheyses [15] later improved the performance of the Kerninghan-Lin algorithm, 

their algorithm is considered computationally expensive especially if the graph is 

large, which is clearly the case for our application.  

In order to cope with large graphs, researchers devised multilevel graph 

partitioning schemes [8,9,24,35,67] where the algorithms reduce the size of the graph 

(or “coarsen” the graph) by collapsing vertices and edges, partition the resulting 

smaller graph, and then “uncoarsen” it to construct a partition for the original graph. 

While the multilevel scheme was mainly developed and used to improve the 

partitioning performance of a large graph at the expense of worse partition quality 

[67], more recent multilevel algorithms, such as in [8,9,24,35], further refine the 
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partition during the uncoarsening phase, thus obtaining a partition quality that is 

comparable or even better than other existing techniques [28]. The Kerninghan-Lin 

algorithm is often used as the refinement algorithm. 

5.2.3 Link Analysis Technique – PageRank 

PageRank [61] is a link analysis algorithm that assigns a numerical weight to 

each element of a hyperlinked set of documents, such as web material. Intuitively, a 

web page with a higher PageRank should have a higher probability of being visited. 

The intuition behind PageRank is that if page u has a link to page v, then page u is 

implicitly conferring some importance to page v. In other words, page u can be 

thought as voting for page v. The more votes a page receives, the more important it is 

considered. However, not every vote counts equally: votes cast by pages that are 

themselves “important” weigh more heavily and help other pages become more 

“important”. 

In the ideal model, the PageRank value for page u, PR(u), can be expressed as: 

,)()( ∑
∈

=
uIv

vu vPRpuPR
 

where Iu is the set of pages with links to page u, and Pvu is the probability that a 

random surfer visiting page v jumps to page u. Since it is not possible to know the 

exact value of Pvu, Pvu is usually set to 1/out_degree(v), that is, all outgoing links 

from v are assumed to be equally likely. 

However, the ideal model has two problems. The first problem is the presence of 

dangling pages that shut the surfer when visited. A solution to the problem is to patch 

dangling pages by artificially placing outgoing links from each dangling page to all 
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the other pages. Each artificial link can be given either equal probability of 1/N (N: 

total number of pages), or personalized probability which records a generic surfer’s 

preference for each page. The second problem with the ideal model is that the surfer 

can get trapped by a cyclic path in the web graph. Brin and Page [7] suggest 

enforcing irreducibility by adding a new set of artificial transitions that, with low 

probability, jump to all nodes. Mathematically, this corresponds to the following 

equation: 

,)(1)( ∑
∈

+
−

=
uIv

vu vPRpd
N

duPR  

where N is the total number of pages, and d is the probability the random surfer 

jumps to a random page without a link. 

We note that this equation is slightly different from the original PageRank 

equation as proposed by Brin and Page [7]. The original equation, 

∑
∈

+−=
uIv

vu vPRpdduPR )(1)( , has brought up some confusion since, unlike the 

inventors’ claim, the sum of all PageRanks is not one, but N. The above scaled 

version, however, leads to ∑ = 1)(vPR , and each PageRank can be thought as a 

probability. In the above equation, the parameter d is called the damping factor which 

can be set somewhere between 0 and 1. As suggested in [61] and [7], we use d = 0.85 

in our work which will be further described in the next section. 

If we let G = (V, E) be a web graph, and A the modified adjacency matrix of G 

defined by: 
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where is the number of out-links from page j. 

If we also let P be an N-dimensional column vector of PageRank values, then P 

can be expressed by the following matrix equation: P = AP  

This is the characteristic equation of the eigensystem whose solution is the 

eigenvector corresponding to the eigenvalue of one. Furthermore, A can be 

considered as a stochastic matrix that is also irreducible and aperiodic, due to the 

modifications we performed earlier to avoid dangling nodes and cyclic paths. 

Therefore, by the Ergodic theorem of Markov chains [63], a finite Markov chain 

defined by the stochastic transition matrix A has a unique stationary probability 

distribution. This implies that, starting with any initial value of P, we can iterate the 

application of the matrix A to P, and P will converge to a steady-state probability 

vector, which in turn is the eigenvector of A corresponding to the eigenvalue of one. 

In practice, a well known mathematical technique called power iteration [20] can be 

used to efficiently determine P. 

As will be discussed further in the next section, our link analysis technique is 

based on the PageRank algorithm. However, unlike the PageRank algorithm that 

assigns a weight to each page, we assign a weight to each link, which will then be 

used to partition the graph. 
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5.3 Our Method 

As discussed earlier, the most popular storage method for web archiving is to use 

containers where each container holds a number of web pages. Typically, web 

material is archived using many containers. The primary goal of our work is to 

develop techniques to allocate web pages to containers such that each container has as 

closely related web pages as possible, thereby minimizing the chances of accessing 

many different containers when a user browses through the archived web material. 

When web contents are archived in the form of multiple containers, we can view 

these containers as a coarsened web graph (or container graph) where the original 

nodes within the same container are collapsed together to form a super node, and only 

edges between different containers survive with assigned weights as will be explained 

next. 

In the container graph, Gc=(Vc, Ec), we define the cost of the edge-cut, EC, as 

follows: 

,∑
∈

=
cEe

ewEC
 

where we is the weight of edge e. 

In order to accomplish our goal, we analyze the link structure within the web 

material to be archived to find, for each edge, a good estimate of the probability that 

the edge will be taken. Using this estimate as the edge weight, we partition the web 

graph in such a way as to minimize EC. The following two subsections discuss our 

link analysis and the partitioning technique used to minimize EC. 
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5.3.1 Edge Weight 

Edge weights should represent the relative likelihood of an edge being taken 

during a browsing session. In the live web, edges are hyperlinks embedded in web 

pages, but in an archive, edges in the web graph can also exist between two 

consecutive versions of a web page. In order to assign edge weights, a link analysis is 

performed. Before proceeding we note that our scheme will be based on a browsing 

pattern similar to what is expected in today’s live web. However it is easy to 

accommodate other access patterns within our methodology using a different weight 

function on the edges.  For example, should browsing of successive versions of a web 

page dominate, we will assign heavy weights to the corresponding edges relative to 

the remaining edges.  Similarly, should the access pattern to sub-domains of sites 

dominate, the corresponding edge weights will be assigned high values. For the rest 

of this chapter, we are assuming an access pattern similar to the one currently 

encountered on the live web. 

We start with some simple observations. If a vertex has only one outgoing edge, 

this edge will be more likely taken than an edge from another vertex with many out-

links, and thus should be weighed more heavily. A possible simple solution is to 

assign edge weights depending on the number of out-links of the source vertex. For 

instance, if the source vertex of edge e has k outgoing edges, the weight of 1/k is 

given to edge e.  

When a personalized vector is not in use, the PageRank algorithm also uses the 

same method in assigning edge weights. In this case, the only deciding factor to the 

edge weight is the number of the outgoing edges from the source vertex, and thus the 
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edge weight only represents the local probability of the edge being taken, once the 

source vertex is visited. In other words, the edge weight is only locally meaningful, 

and thus it is not possible to say that an edge is more likely to be taken than the other 

if they belong to different vertices. 

For our method, the probability of each vertex being visited is computed first 

using the PageRank algorithm. The PageRank value (or steady-state probability) of 

each vertex is then divided by the number of outgoing edges from the vertex. We call 

this quotient EdgeRank (ER) and assign the same EdgeRank value as the weight to 

every edge coming out from the same vertex. 

,
)(
)()(

vOD
vPReER =  

where vertex v is the source vertex of edge e, and OD(v) is the out-degree of 

vertex v. 

Note that, because ∑ = 1)(vPR , ∑ =1)(eER   too. 

Now that we have an edge-weighted graph representing our web contents, the 

allocation of web pages to containers is performed using a graph partitioning 

algorithm. 

5.3.2 Graph Partitioning 

As discussed in Section 5.2, there are a number of existing min-cut graph 

partitioning heuristics that seem to work well in practice. Although their primary 

partitioning criterion is to minimize the cost of the edge-cut, they differ from one 

another in input, output, and partitioning parameters. For example, some algorithms 
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support size-constrained partitioning while others do not. Also, not all algorithms 

support weighted vertices and edges. Before proceeding let’s define our graph 

partitioning problem more formally. 

Web Graph Partitioning Problem: Given a directed web graph G:(V, E)  with 

weighted nodes (weight of a node is the size of the corresponding page) and weighted 

edges, determine a partition   V = P1 U P2 U P3 U … U Pn such that, 

1. The sum of the weights of the edges that connect any two different partitions is 

minimized. 

2. For all i’s, |Pi| ≤ K  for some fixed K, where |Pi| is the sum of the weights of 

the vertices in the partition and K is an upper bound on the size of a container. 

 

The first condition is shared by almost all partitioning algorithms (some require 

non-weighted edges), while the second condition, which is the size constraint 

imposed to every partition, is supported only by a few partitioning algorithms (such 

as [28,36,35]), sometimes with a slight modification. 

In this work, we adopt the multilevel graph partitioning algorithm to solve our 

problem. The primary reason is that it supports the constraints on the partition size; 

moreover, the method is fast, which is important in our case considering the typically 

large sizes of web graphs. In particular, we adapt a partitioning technique suggested 

by Karypis and Kumar [35] as follows.  

Their scheme first computes a maximal matching using a randomized algorithm, 

and coarsens the graph by collapsing the matched vertices together. This coarsening 

step is repeated until a desired size of the coarsened graph is achieved. Once the 
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graph is coarsened, the minimum edge-cut bisection is computed using some of 

existing algorithms such as spectral bisection [3,68], geometric bisection [53] or 

combinatorial methods [16,17,39]. The partitioned graph is then refined and 

uncoarsened. The improved Kerninghan-Lin algorithm that was developed by 

Karypis and Kumar is applied to this uncoarsening-with-refinement phase.  

In particular, we use Metis [79], a partitioning tool that implements the Karypis-

Kumar scheme. Although Metis does not explicitly support the partition size 

constraints – our second condition, it does support vertex-weight-based size balancing 

among partitions, making the size of all partitions similar. Therefore, based on the 

sum of all the vertex weights of the web graph, we pre-compute the necessary number 

of partitions before running the partitioning tool, so that the resulting partitions will 

meet the second condition. 

5.4 Experimental Evaluation of Our Scheme 

In order to examine the performance of our algorithm in terms of the number of 

containers accessed during a typical browsing session, we consider two datasets. The 

first is the web graph of the University of Maryland Institute for Advanced Computer 

Studies (UMIACS) web site, located at http://umiacs.umd.edu domain, which we call 

the UMIACS web graph. We crawled every web page within five-hop distance (or 

depth) under this domain, and constructed the web graph corresponding to this 

crawling. The second dataset is the Stanford web graph which was generated from a 

crawl of the stanford.edu domain created in September 2002 by the Stanford 

WebBase project [29], and is widely used by the web graph analysis community. 
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Unlike the first dataset, the Stanford web graph has neither the size information of 

vertices, nor the actual URLs with which we might have been able to obtain estimates 

of the web pages (which undoubtedly have changed since then). Consequently, we 

randomly assign vertex sizes using two Gaussian distributions – one for html files, the 

other for non-html files. Their parameters are based on the findings from a web 

statistics study [30]. In particular, we assumed there are about 18% html objects by 

total file size, and the average html file size is 605 KB. This size modeling is not 

intended to mimic the actual web object sizes in the Stanford web page. Rather, we 

intend to assign some reasonable sizes to run our experiments. Note that the quality of 

our method does not depend on the accuracy of the vertex sizes. Table 5.1 describes 

these two datasets. 

Table 5.1: The Two Datasets Used for Evaluating Our Method 

Datasets # Vertices # Edges Total Vertex Weight 

UMIACS Web Graph 4579 9732 2.49GB 

Stanford Web Graph 281903 2312497 215.82GB 

 

In our experiments, we allocate pages to containers (or WARC files) in three 

different ways. 

• CONV: Pages are allocated to containers as they are fetched during the 

crawling process. Once a container is full, we use a new container (Figure 

5.1). 

• GP: The graph partitioning technique is applied so as to minimize the 

number of edges connecting any two partitions. All the pages belonging 
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to a partition are allocated to a single container (Line 3 in Figure 5.2 is 

omitted). 

• ER+GP: The EdgeRank technique is used to assign weights to edges 

(Line 3 in Figure 5.2), and the graph is partitioned using a minimum-

weight partitioning algorithm. Again, containers are constructed based on 

the resulting partitions. In each case, the damping factor, d = 0.85, is used 

in EdgeRank.  

 

 Input 
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 

1: Enqueue(Q, Seed URLs) 
2: i1 
3: visited[]  FALSE 
4: Ci  new Container() 
5: while (Q is non-empty) 
6:      u  Dequeue(Q) 
7:      Fetch(u); 
8:      visited[u] TRUE 
9:      if (Size(Ci) + Size(u) > MAX_CONTAINER_SIZE) 

10:           i = i + 1 
11:           Ci = new Container() 
12:      Ci = Ci  U u 
13:      for each v ∈ Adj[u] 
14:           if (visited[u] = FALSE) 
15:                   Enqueue(Q, v) 

Figure 5.1: Conventional Allocation of Pages to Containers 

 
Figure 5.1 shows a typical BFS algorithm where a visited node is stored in the 

current container as long as the size of the resulting container does not exceed the 

predefined value (MAX_CONTAINER_SIZE) (Lines 9~12). A new container is 

created if necessary. 
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In the algorithm shown in Figure 5.2, a web graph is first built (Line 1) using a 

BFS-based crawling algorithm similar to the one in Figure 5.1, followed optionally by 

computing EdgeRank (Line 3) in order to obtain edge weights in the graph. This 

graph is then partitioned into the pre-calculated (Line 2) number (n) of partitions. 

This number depends on the total sum of vertex weights (page sizes) in the graph, as 

well as the predefined maximum container size (MAX_CONTAINER_SIZE). Once 

partitioned, the URLs in each partition are re-visited and packaged in the n containers 

(Lines 5~9). In practice, depending on the resource availability, the web objects 

downloaded from the previous crawl (Line 1) can be stored and reused in the 

packaging process. 

 

 Input 
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 

1: G  BuildWebGraph(Seed URLs)  /* Using BFS */ 
2: nGetNumberOfContainers(G,MAX_CONTAINER_SIZE) 
3: G  EdgeRank(G) /* Optional */ 
4: {UL1,UL2,…,ULn}  PartitionGraph(G, n) 
5: for ( 1 ≤ i ≤ n) 
6:      Ci  new Container() 
7:      for (v ∈ULn) 
8:           fetch(v) 
9:           Ci = Ci U v 

Figure 5.2: Container Construction Based on Graph Partitioning with or without 
EdgeRank (Line 3) 

 

In our simulation, to be discussed in Section 5.4.2, the UMIACS dataset was 

partitioned into 25 partitions and the Stanford dataset was partitioned into 2200 

partitions, resulting in the size of each partition being between 100MB and 200MB. 
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5.4.1 Edge-Cut 

In order to evaluate the graph partitioning performance, we measure the edge-cut 

obtained from the graph partitioning scheme, and compare it to the conventional 

breadth-first-search (BFS) partitioning. We defined the cost of an edge-cut earlier as 

the sum of the weights of all the external edges between partitions. However, as we 

performed the experiments on the two separate datasets with different numbers of 

nodes, edges and partitions, we scaled down the cost of the edge-cut to a web graph 

with the total edge weight of 100, as follows: 

,100
E

ECECscaled
×

=  where E  is the total edge weights in the web graph. 

We begin by considering the case where the web graph has no edge weight (or 

equal edge weight). We observe that the edge-cuts generated by the conventional 

method were about 70~80 for both datasets while those generated by the graph 

partitioning scheme are 12 and 47 for the UMIACS and Stanford datasets respectively. 

Using edge weights based on the PageRank technique, the graph partitioning 

approach similarly reduces the costs of the edge-cuts relative to the conventional 

approach as illustrated in Table 5.2.  

 Table 5.2: Edge-Cut Results 

Edge-Cut Unweighted Edges Weighted Edges 
CONV GP ER+CONV ER+GP 

UMIACS 
Web Graph 73.87 12.38 62.36 36.03 

Stanford 
Web Graph 80.50 47.33 63.56 32.20 
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5.4.2 Simulation 

Although the edge-cut figures show favorable results when the partitioning 

technique is employed, we additionally ran simulations to further see how much the 

partitioning and the EdgeRank will in fact reduce the number of containers necessary 

for a random user to browse through the archived web material. In these simulations, 

we set a virtual user who randomly walks through links, and counted the number of 

containers that the user had to access. 

Table 5.3: Simulation Parameters 

Parameter Value 
Number of Hops 10 
Probability of Going Back 30% 
Outdegree of Starting Vertex > 5 
Policy At Dangling Vertex Go back 

 

Each random walk consists of ten random hops, and at each random hop, each 

outgoing link is given an equal probability of being taken. Also, we assume that the 

BACK button on a browser is pressed with 30% probability. We base this choice on a 

recent browser usage research [38] which shows that hyperlinks are taken 41.7% of 

time, followed by other navigation (23.6%) and the back button (18.9%). Since, in 

our simulation, we only consider hyperlinks and the back button, we assume that the 

back button is pressed about 30% (≈ 18.9 / (41.7 + 18.9)) of the time. Once the 

random walk reaches a vertex with no outgoing link (or a dangling), the random walk 

goes back to the previous vertex, if any, as if the user presses the BACK button. In 

order to avoid the situation where there are no more vertices left to visit soon after the 

start of the simulation, we insist that the randomly selected starting vertex has an out-
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degree of five or larger. This is achieved through repeating the random selection 

process until we find a starting vertex that meets this criterion. Table 5.3 shows our 

parameter-value pairs used in the simulations.  

In the simulations, we ran the random walk 1000 times over each dataset, where 

we monitored both the number of inter-container hops and the number of distinct 

containers needed for each random walk. Inter-container hops occur whenever a 

different container needs to be accessed. For example, if a random walk switches 

back and forth between two containers, A and B, ten times, the number of inter-

container hops will be ten, while the total number of distinct containers is only two. 

In a system with no caching policy or a limited memory, the inter-container hops will 

serve as a more useful metric because, even if a user requests a previously retrieved 

container, the system will always need to retrieve it from storage. However, if a 

system can cache enough containers, the total number of distinct containers will make 

more sense in assessing the system’s performance. Figures 5.3 and 5.4 show the 

histograms of the number of inter-container hops and distinct containers accessed for 

the UMIACS web graph, respectively, while Figures 5.5 and 5.6 show the 

corresponding histograms for the Stanford web graph. In these histograms, we 

categorized 1000 random walks by the number of containers that each random walk 

was required to access. The X-axis represents eleven categories (0, 1, …, 10 ; Note 

that the total number of hops in each random walk is ten, so there can be at most ten 

inter-container hops in worst case), whereas the Y-axis represents the number of 

random walks that fall into each category.  
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Figure 5.3: Histogram of Number of Inter-Container Hops for UMIACS Web Graph 

 

 
Figure 5.4: Histogram of Number of Distinct Containers Accessed for UMIACS Web 

Graph 
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Figure 5.5: Histogram of Number of Inter-Container Hops for Stanford Web Graph 

 

 
Figure 5.6: Histogram of Number of Distinct Containers Accessed for Stanford Web 

Graph 
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It can be observed that when the graph partitioning scheme is used, many random 

walks only need a single container (thus, zero inter-container hops). Figure 5.7 

depicts the average number of inter-container hops during the random walks over the 

two web graphs. From the figure, it can be seen that the GP and ER+GP schemes 

reduced the average number of inter-container hops from five to one for the UMIACS 

web graph. For the Stanford web graph, the GP scheme reduced the number from 

seven to five, while ER+GP further reduced the number down to four. The average 

number of containers needed is shown in Figure 5.8. Although the improvements are 

not as dramatic as the number of inter-container hops, compared to the CONV 

scheme, the GP scheme required about 28% and 11% less number of distinct 

containers for the UMIACS and Stanford web graph, respectively. The ER+GP 

scheme further reduced the numbers 9% and 17% less than those from the GP scheme. 

 
Figure 5.7: Average Number of Inter-Container Hops 
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Figure 5.8: Average Number of Distinct Containers 

 
In these experiments, based on our assumption about the access pattern discussed 

in Section 5.3.1, we only considered the cases where users follow hyperlinks on 

pages. We note that the link analysis scheme can be tailored to capture a number of 

access patterns by adjusting the weight function appropriately. The corresponding 

partitioning technique will optimize the allocation of web pages to containers so that 

the average number of containers accessed is minimized. 

5.5 Conclusion 

In this chapter, we have shown that a graph partitioning scheme for organizing 

archive containers significantly reduces the number of containers that need to be 

accessed when a user browses through the archived web material. Also shown was a 

PageRank-derived technique, called EdgeRank, which can improve this number even 

further. The overhead required by this technique is relatively small. For instance, on 
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our 2 Ghz Intel Core 2 Duo processor, we could fully partition and compute 

EdgeRank of a large graph (the Stanford web graph that contains about 300,000 

vertices, and 2.3 million edges) within minutes. 
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Chapter 6 

Concluding Remarks and Future Work 

In this dissertation, we examined the topic of long-term information preservation 

and access from three different perspectives. 

 First, we introduced a methodology to ensure the authenticity of the preserved 

contents on a long-term basis. Based on efficient and rigorous techniques, our 

integrity monitoring scheme detects with high probability any errors in an archive 

including those introduced by malicious alterations. Our scheme allows an 

independent third-party to audit any object in the archive and certify its integrity, as 

long as a small size of cryptographic information is kept intact. The current 

implementation of our scheme, ACE, has been deployed in a number of institutions 

that are using it to monitor the integrity of their digital holdings. 

Second, we developed an information retrieval and content delivery scheme. 

Based on the notion of time windows, our information retrieval scheme allows an 

efficient handling of full-text search with temporal constraints by minimizing the 

search space according to the query time span. It also allows document relevancy 

scoring to be based on the temporal context of the query time span. An analytical 

model was introduced to determine the best time window size, and validated against 

two real-world datasets of significant size. The empirical study strongly supported our 

analytical model. For content delivery, we proposed a persistent data structure, called 

PISA, to be used as a location index that identifies the location of a document version. 
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The asymptotic analysis shows that PISA is as good or better at insert and query 

operations, compared to existing schemes. 

Third, we developed a data layout scheme to organize inter-related data such that 

future navigation through the preserved data can be efficiently performed. In 

particular, we addressed the problem of how to organize inter-related objects such 

that future navigations through the objects can be more efficiently performed. Based 

on a graph partitioning technique combined with a graph analysis technique, our 

scheme showed significant performance improvement over conventional schemes. 

The issues examined in this dissertation represent a small sample of the 

challenging problems facing long term preservation. We discuss a few of these below. 

In Chapter 2, we examined integrity preservation where the focus was given to 

ensuring the bit-level integrity of the preserved data. A promising future direction is 

to extend this to categorical integrity preservation, where the actual readability of the 

preserved data is also ensured. The categorical integrity preservation will need to also 

consider file format obsolescence. We note that we conducted a preliminary study on 

the issue of file format obsolescence [18]. While this is a study that we performed 

independently of the integrity preservation work, a careful adaptation of such work 

may provide a useful component toward the goal. Meanwhile, it will also be 

interesting to extend ACE auditing to the cloud computing environment. A possible 

deployment scenario of ACE in the cloud will involve storing integrity tokens in the 

cloud, extending cloud tools to support retrieval of and validation using the integrity 

tokens, and also developing a set of audit services. 
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In Chapter 3, we assumed that the time windows have the same size in our 

analytical model. An interesting future work will be to extend the approach to 

dynamic time window sizes. A possible starting point involves a periodic evaluation 

for the best time window size over some period of time, say a year or two. We also 

assumed uniformly random query time spans when building our analytical model, as 

well as when we conducted empirical studies. However, depending on the nature of 

the collection, different access patterns may be more reasonable. For instance, one 

might expect time point queries to be prevalent for a certain type of collections. 

Should we have better knowledge about such access patterns available, we will be 

able to obtain a better estimate for the best time window size. Yet another research 

area related to information retrieval will be to include the spatial aspect of preserved 

contents. Spatial information retrieval or spatial and temporal information retrieval 

should generate various interesting and challenging issues that will have a large 

number of applications. 

We introduced a location index for time-evolving data in Chapter 4, where we 

showed asymptotic analysis for the insert and query performance. Although an initial 

real-world performance comparison between PISA and B+-Tree has been already 

performed in our paper [74], another set of real-world performance comparison 

against other multi-version access structures will also be interesting future work. 

Experiments on the link-analysis and graph partitioning techniques introduced in 

Chapter 5 may be more generally extended to other types of digital objects, not just 

web data. More importantly, the scalability of the scheme will need to be given 

considerable attention. We expect the collection size to steadily increase in the long-
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term, and therefore, the scalability aspect of the graph analysis and partitioning 

techniques is a critical problem that needs to be addressed. 
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Appendix A 

PISA: Parameters and Invariants 

In Chapter 4, we assumed that Invariant 1 and Invariant 2 always hold under only 

one parameter condition: all parameters are positive integers. Since these conditions 

are obviously not enough to maintain the invariants, we now look for stronger 

conditions that indeed satisfy both invariants, and based on the new conditions, we 

show how we can determine parameter values and what implications they have on the 

performance. 

A.1 Parameter Conditions 

We begin by making the first self-evident parameter condition. 

Condition 1: Bmin ≥ 3 

Now, we show how to maintain Invariant 1: For any live block in PISA, 3 ≤ Bmin 

≤ nl ≤ na ≤ Bmax. 

First of all, 3 ≤ Bmin holds with Condition 1. Also, since the inequalities nl ≤ na ≤ 

Bmax are automatically maintained by the definitions of nl and na, we only need to 

maintain Bmin ≤ nl. 

Note first that there are only two cases for an entry in any existing block to 

become dead: 1) an updated entry with the same key is inserted into the block, or 2) 

an overflow occurs and a version-split is performed in the block. In the former case, 

the number of live entries does not change, since a new live entry always replaces the 
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dead entry. In the latter case, the overflowing block becomes dead, so we do not have 

to deal with it anymore (Invariant 1 concerns only live blocks). 

We now examine whether updated blocks (either from key splits or version 

splits) satisfy Bmin ≤ nl. By updated blocks, we include both the newly created block 

and the original block that a key-split moves entries out from. By the result of a key 

split, at least Bmin live blocks remain in the original block, and also at least Bmin live 

blocks are moved to the newly created block. Thus, key splits do not violate Bmin ≤ nl. 

In case of a version split, the new block after the version split contains the same 

number of live entries (plus one new entry that caused the overflow), as the original 

block. Thus, as long as the original block maintained Bmin ≤ nl while it was alive, the 

inequality still holds for the new block. 

Consequently, we only need to make sure that the very initial block satisfies Bmin 

≤ nl. One easy way of ensuring this is to have an initial block which we artificially 

insert Bmin dummy (but live) entries into in the beginning. Recall that we also took 

this initial block into consideration when we counted the number of blocks in the 

previous section.  

We now look for a condition to maintain Invariant 2: For any new block in PISA, 

3 ≤ Bmin ≤ nl ≤ na ≤ (Bmax - Bmin + 1). 

Again, 3 ≤ Bmin holds by Condition 1, and  nl ≤ na always holds by the definitions 

of the variables. Moreover, since a new block is also a live block, and we already saw 

that any live block can maintain Bmin ≤ nl with initial dummy entries, we only need to 

investigate the last inequality na ≤ (Bmax - Bmin + 1), for an updated block.  



 

 126 
 

In order to evaluate the upper bound of the number of entries (na ≤ Bmax - Bmin + 

1), we first look at a key split. Sometimes, a key split is preceded by a version split 

when a qualifying median entry cannot be found.  However, it is sufficient here to 

only consider the key split procedures after a median entry is found. The case with the 

version split will be separately discussed later. Just before a key split occurs on block 

A, there are Bmax + 1 entries (or less if a version split had to be preceded) in block A 

of which at least 4Bmin are alive.  After the key split, somewhere between Bmin and 

3Bmin live entries are moved out to a new block B.  Some qualifying dead entries in 

block A are also copied into block B. As a result, block B can have as many as 3Bmin 

live entries and Bmax + 1 - 4Bmin dead entries, making a total of Bmax - Bmin + 1 at most. 

Therefore, block B clearly maintains the upper bound of na (≤ Bmax - Bmin + 1). As for 

block A, the maximum number of entries it can contain after a key split occurs when 

only Bmin live entries were moved out and it has the greatest possible number of dead 

entries (i.e. Bmax+ 1 - 4Bmin dead entries). Even in this worst case, block A may only 

contain 3Bmin + Bmax + 1 - 4Bmin = Bmax - Bmin + 1 entries, clearly maintaining the upper 

bound of na. 

We now move onto the case of a version split. After a version split on an 

overflowing block A, a new block B contains all the previously live entries in the 

overflowing block A and the newly inserted entry. Thus, there are nl + 1 entries in the 

new block B, which we require to be less than or equal to Bmax - Bmin + 1. Since nl + 1 

< 4 x Bmin (the version-split condition), nl + 1 ≤ Bmax - Bmin + 1 holds if 4 x Bmin ≤ Bmax 

- Bmin + 1, which can be rewritten as our second condition below. 

Condition 2: Bmin ≤ Bmax / 5 
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To summarize, if the two parameters values (Bmin and Bmax) meet the two 

conditions above (Condition 1 and Condition 2), the two invariants (Invariant 1 and 

Invariant 2) indeed hold. In the following subsection, we further examine how to 

determine the parameter values. 

A.2 Determining Parameter Values 

In Chapter 4, we analyzed the operation and space performance, where we saw 

the time complexity for QUERY and INSERT operations increases logarithmically with 

the logarithm base of Bmin. Hence, the larger Bmin we set, the faster these operations 

become. Furthermore, we also saw that (2N / (Bmin - 2)) + 2 block spaces are required 

for N INSERT operations. Thus, the larger Bmin we set, the less space we will need. As 

far as Bmax is concerned, in most cases, we do not have many options but to set it as a 

fixed value depending on the physical block size of the underlying storage. Therefore, 

it is always better to set Bmin to the greatest value allowed. Clearly, setting Bmin = Bmax 

/ 5 gives us the best performance both in time and in space. 
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Appendix B 

Proofs of E[X] and E[Y] 

In this appendix, we will provide proofs of the claims made in Section 3.4.1. 

regarding the expected values of X and Y, where X is the number of duplicate versions 

falling within a set of consecutive time windows that overlap with the query time 

span and Y is the number of document versions that have to be filtered out relative to 

the same query time span. Our basic assumption is that the query time span [qs, qf] is 

selected randomly – that is, each end point is selected randomly from the n time steps  

t1, t2, …, tn, the smaller of which will become qs and the other will become qf.  Hence, 

for two fixed values ts≠tf, [ts, tf] will be selected with probability 2/n2 and a point 

query at ts, for any fixed tf, will be selected with probability 1/n2. Also, [ts, tf] spans 

across more than one time window with probability of 2z2/n2, and lies within a single 

time window with probability of z2/n2. We start by estimating the expected value E[X] 

of X, and then derive the expected value E[Y] of Y.  

Let δi be the number of document versions whose validity time intervals contain 

ti and let δ be the average of all the δi’s. E[X] can be expressed as follows. 
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We can substitute δ instead of the individual δi’s to approximate E[X] as follows.  
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Figure B.1: Illustration of Values of λi, μi and δi 

 
Estimating E[Y] is a bit harder. Let λi be the number of document versions whose 

validity time intervals ends at ti, that is, a new version is created or document is 

deleted at ti, and let µi be the number of document versions whose validity time 

intervals start at ti. For a randomly selected query time span [ts, tf], the number Ys,f of 

document versions whose time intervals do not overlap with [ts, tf] is given by  

1)1(121, ...... −+++++++ +++++++= zprzprzprzpzpzpfs fffffssss
Y µµµλλλ , 

where ps (or pf) and rs (rf) are defined respectively as the quotient and remainder 

when s (f) is divided by z. 

Therefore the expected value of Y is given by: 
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iTfsY ∈, are also random variables that depend on query time 
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Substituting the average value λ of all the λi’s and the average value µ of all the 

values µi’s, E[Y] can be approximated by the following expression: 
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and the proof for E[Y] is complete.  
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