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Abstract: Somatic cell count (SCC) is a fundamental approach for determining the quality of cattle 
and bovine milk. So far, different classification and recognition methods have been proposed, all with 
certain limitations. In this study, we introduced a new deep learning tool, i.e., an improved ResNet50 
model constructed based on the residual network and fused with the position attention module and 
channel attention module to extract the feature information more effectively. In this paper, 
macrophages, lymphocytes, epithelial cells, and neutrophils were assessed. An image dataset for milk 
somatic cells was constructed by preprocessing to increase the diversity of samples. PolyLoss was 
selected as the loss function to solve the unbalanced category samples and difficult sample mining. 
The Adam optimization algorithm was used to update the gradient, while Warm-up was used to warm 
up the learning rate to alleviate the overfitting caused by small sample data sets and improve the 
model’s generalization ability. The experimental results showed that the classification accuracy, 
precision rate, recall rate, and comprehensive evaluation index F value of the proposed model 
reached 97%, 94.5%, 90.75%, and 92.25%, respectively, indicating that the proposed model could 
effectively classify the milk somatic cell images, showing a better classification performance than five 
previous models (i.e., ResNet50, ResNet18, ResNet34, AlexNet andMobileNetv2). The accuracies of 
the ResNet18, ResNet34, ResNet50, AlexNet, MobileNetv2, and the new model were 95%, 93%, 93%, 
56%, 37%, and 97%, respectively. In addition, the comprehensive evaluation index F1 showed the best 
effect, fully verifying the effectiveness of the proposed method in this paper. The proposed method 
overcame the limitations of image preprocessing and manual feature extraction by traditional machine 
learning methods and the limitations of manual feature selection, improving the classification accuracy 
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and showing a strong generalization ability. 
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1. Introduction  

Mastitis is the most common infectious disease in dairy cows, causing huge economic losses to 
dairy farmers and milk processing companies [1,2]. The cells found in healthy milk comprise 75%–85% 
of white blood cells (macrophages, neutrophils, and lymphocytes) and 15%–25% of epithelial cells. 
During mastitis, the count of white blood cells can reach 99%, a useful biomarker to indicate infection [3,4]. 
Yet, the severity of cow mastitis infection and the counts of various cells may sometimes differ [3,4]. 
Somatic cell count (SCC) is a key method used in the dairy industry to determine the quality of cattle 
and bovine milk [5]. SCC measurement can be divided into direct and indirect methods. A direct 
approach, which relies on manual counting under the microscope or calculating and analyzing the 
number of somatic cells using computerized image processing techniques from the microscopic images 
of breast samples, is considered the most accurate method. However, the manual counting method is 
susceptible to the subjective factors of the experimenter, is time-consuming and less automated, and 
may lead to counting errors [6,7]. Indirect methods include the California cell assay and the Wisconsin 
mastitis test [8]. The most popular indirect approaches are cell analyzers (e.g., MoFlo XDP ultra-fast 
flow cytometer from Beckman Coulter (USA), Nucleo Counter NC-3000 cell analyzer from 
ChemoMetecA/S (Denmark), and Fossomatic™ 7 DC somatic cell analyzer from FOSS (Denmark)); 
yet, these methods are expensive and subject to slightly less correlated results and have poor accuracy.  

Image processing technology has been increasingly used for classifying and identifying different 
cell types, mainly by collecting the color images of stained cells using a microscope [9]. Conventional 
recognition methods are mainly based on the following steps: obtaining the color images of cells 
through machine vision technology, extracting the cell features, and building models for cell 
classification and recognition using related machine learning methods [9]. Khan et al. [10] classified 
malignant and benign cells using a support vector machine (SVM) by extracting the texture 
information from breast cells. Okmen et al. [11] used the k-Nearest Neighbor (KNN) method to classify 
renal tumor cells, showing an accuracy of 83.8%. Moreover, Mishra et al. [12] extracted multiple 
features and classified lymphocytes using the random forest classifier. Gao et al. [13] proposed a rapid 
and accurate method for detecting mastitis in cattle by using the two-way two-dimensional principal 
component analysis. In addition, Gao et al. [14,15] proposed a Relief-F algorithm to extract the features 
of milk somatic cells for classification. Besides, Zhang et al. [16] proposed a recognition algorithm 
based on random forest, with an accuracy of 96%. Machine learning is also used for microorganism 
identification and classification [17–20]. 

Furthermore, over the last few years, novel image processing-based cell counting methods have 
been proposed; they combine the diagnostic experience of pathologists with the advantages of rapid 
processing and accurate calculation of computers to achieve the counting and classification of somatic 
cells, reducing the influence of subjective factors, and providing a convenient and accurate detection 
method. Liang et al. [21] proposed a set containing convolutional neural network (CNN) (using 
Xception) and recurrent neural network (RNN) (using long and short-term memory (LSTM)) features, 
with a cell classification accuracy of 90.79%. Moreover, Bani-Hani et al. [22] proposed applying CNN 
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and genetic algorithm (GA) for image classification of four types of blood cells, showing an accuracy 
of 91.00%. Habibzadeh et al. [23] used a pre-trained model, ResNet and InceptionNet, to identify white 
blood cells. Acevedo et al. [24] upgraded the structure of the Inception-v3 network model to classify 
and recognize eight types of blood cell images, reaching an accuracy of 90%. Malkawi et al. [25] 
extracted the features of leukocytes through the visual geometry group (VGG) network and then 
adopted the SVM model for classification and recognition, reaching an accuracy of 98.7%. Ghosh & 
Kundu [26] combined RNN and CNN to establish a multilayer network model and classify different 
blood cells, achieving an accuracy of 87.29%. AlexNet is the name of a convolutional neural network 
(CNN) architecture; AlexNet contains eight layers; the first five are convolutional layers, some of them 
followed by max-pooling layers, and the last three are fully connected layers [27]. MobileNetV2 is a 
convolutional neural network that is 53 layers deep and is a very effective feature extractor for object 
detection and segmentation [28].  

Over recent years, an increasing number of studies started employing deep learning methods for 
microorganism detection [17–19]. The recognition model constructed by the deep learning algorithms 
is portable and has the advantages of automatic learning and extracting shallow and deep features [29]. 
Therefore, research and construction of a recognition model based on deep learning can reduce the 
difficulty of manual feature selection and present good mobility, suitable for milk somatic cell images 
with complex backgrounds [30]. In this study, we introduced PolyLoss and product of cross-attention 
matrices (PCAM)-ResNet50, a model based on the improved structure of ResNet50, and applied it to 
bovine milk somatic cell datasets to solve the problem of multiple classifications in which the dataset 
samples themselves are difficult to obtain, and the data are unevenly distributed. In consideration of 
the characteristics of milk cells, traditional data enhancement methods were used to expand the data 
set, increase its diversity, and reduce its overfitting. The PCAM module was introduced into the 
algorithm to make the network learn with the target, while PolyLoss was selected as the loss function 
to solve the difficult acquisition of samples and imbalance classification to improve the detection and 
classification accuracy. This new, improved method (i.e., PCAM-ResNet50 combined with PolyLoss) 
introduces a position attention module and a channel attention module into the classical ResNet50 
network structure, respectively, which allows for more efficient and accurate extraction of cell features. 
Hence, the identification of the milk cells could be more accurate, providing more accurate 
identification of milk quality. 

The workflow of the proposed method in this paper is shown in Figure 1. 
The main contributions of this paper are as follows. 1) To our knowledge, this is the first study 

that uses deep learning techniques to classify images of bovine milk somatic cells. 2) This study 
proposes a new method (PCAM-ResNet50) that introduces a position attention module and a channel 
attention module into the classical ResNet50 network structure, respectively, to make it more effective 
in extracting the features of various types of cells. 3) The loss function of the original ResNet50 
structure is improved, and PolyLoss was adopted to compensate for the poor classification effect 
caused by the lack of sample size of bovine milk cells and the unbalanced data set. 4) The performance 
of the proposed method is better than other methods, and the classification accuracy reaches 97%. 
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Figure 1. Study workflow. Step 1: a single bovine milk somatic cell image is used as a 
training sample and the details of the dataset. Step 2: the dataset is preprocessed and 
enhanced by geometric rotation and other methods. Step 3: the training data are fed into 
the models proposed in this paper (PolyLoss and PCAM-ResNeet50) for training. Step 4: 
the unseen test images are provided to the model in this paper for classification. Step 5: 
the performance of the proposed model is evaluated by calculating the accuracy, precision, 
recall, and F1 values. 

2. Materials and methods 

2.1. ResNet model 

In Figure 2, Relu is input as the activation function, and the feature image is x. First, the feature image 
is reduced by checking the convolution of 1 × 1, doing a 3 × 3 convolution operation, and restoring the 
dimension by convolution 1 × 1. The solid line in Figure 2(a) and the dashed line in Figure 2(b) represent 
the input downsampling function. Figure 2(a),(b) illustrate the residual block without changing the size 
and that by adding scale, respectively. The output feature image is half of the original height and width. 
After such a jump connection, the shallow features are identically mapped to the deep layer. The deep 
gradient can be directly transmitted back to the shallow layer during the back propagation, which 
solves network degradation and improves performance. 

            

                    (a)                                   (b) 

Figure 2. ResNet residual module [31]. (a) Residual structure without changing scale. (b) 
Residual structure with added scale. 
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2.2. Loss function 

The loss function here refers to the difference between the predicted value and the true value of 
the output after the training data are input into the model. In the classical ResNet50 network, the 
cross-entropy of each sample is averagely weighted to obtain the final value of the loss function, 
shown in Eq (1): 

𝐿 ∑ 𝑦 𝑙𝑛 𝑦
∧

1 𝑦 𝑙𝑛 1 𝑦
∧

      (1) 

where N and m present the number of samples and categories, respectively, and 𝑦  and 𝑦
∧

 stand for 

the true value and the predicted value of class i, respectively. 

2.3. Model refinement 

2.3.1. Attention mechanism 

Milk has large amounts of fat, protein, and cellular debris, regarded as image backgrounds [32]. 
When cells are stained, the contrast between cells and the background is affected due to uneven 
illumination. The attention mechanism [33] was introduced in the residual model to reduce the 
influences of the above factors and make the model more targeted, improving recognition accuracy. 
The attention mechanism makes the model focus on the important information in the image [34]. The 
position attention mechanism (PAM) refers to the spatial dependence on different positions on the 
feature map [35]. The channel attention mechanism (CAM) and soft attention were used here. At a 
particular position, the feature is updated by a weighted sum at all positions, where the weights are 
determined by the feature similarity between the two positions. PAM encodes a wide range of 
contextual information into local features to improve its representation power. Figure 3 illustrates the 
structure of PAM. 

 

Figure 3. Position attention mechanism. 

The calculation process of Figure 3 was as follows: 
I. Three feature maps 𝐵, 𝐶, 𝐷 ∈ 𝑅  were obtained after passing the input feature map 

𝐴 ∈ 𝑅  through three convolutional layers. 



9428 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9423–9442. 

II. The transposes of the matrices C and B were multiplied to obtain the similarity matrix of 
the pixels within A, and the spatial attention map 𝑆 ∈ 𝑅   was obtained by Softmax with the 
following Eq (2). 

𝑆
∑

          (2) 

where 𝑁 𝐻 𝑊 represents the number of pixels in the spatial range, and Sji is the relationship of the 
i th and j th positions. The more similar the characteristic representations of the two positions are, the 
more relevant they are. 

III. Matrix multiplication was performed by transposing matrices S and D, and the result was 
restored to the original input feature size 𝑅 . The final output result 𝐸 ∈ 𝑅  was obtained 
by summing it with the original features element by element through the scale coefficient α, as shown 
in Eq (3). 

𝐸 𝛼 ∑ 𝑆 𝐷 𝐴          (3) 

where α is initialized to 0 and gradually learns to assign more weights, Di and Aj are the element of D 
and A, respectively. The above equations suggest that the feature E obtained at each position was the 
weighted sum of the features with the original features at all positions. 

For the CAM [35], advanced features of each channel could be regarded as category-specific 
information extraction of the dependency in the channel dimension. All channel features were 
weighted, and each channel feature was updated to improve classification accuracy (Figure 4). In this 
paper, the correlation of channels was modeled by using the spatial information of all relevant positions. 

 

Figure 4. Channel attention mechanism. 

As demonstrated in Figure 4, the channel attention map 𝐴 ∈ 𝑅  was calculated directly 
from the input feature map 𝑋 ∈ 𝑅 , as follows: 

1. The input feature graph 𝐴 ∈ 𝑅   was performed the reshape operation, which 
becomes𝑅 , where 𝑁 𝐻 𝑊. 

2. The transition matrixes of 𝑅  and 𝑅  were multiplied to obtain the channel attention 
matrix 𝑋 ∈ 𝑅  by Softmax, as follows: 

𝑥
⋅

∑ ⋅
        (4) 
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where, xji represents the effect of the i th channel on the j th channel. 
3. The matrix 𝑅  was obtained by multiplying the matrix X with A. After it was multiplied by 

the scale factor β, the element-level summing operation with A was performed to obtain the 
final output result 𝐸 ∈ 𝑅 . The specific calculation is shown in Eq (5): 

𝐸 𝛽 𝑥 ⋅ 𝐴 𝐴        (5) 

2.3.2. The PolyLoss function 

Lin et al. [36] proposed to adopt the focus loss function to avoid the overfitting caused by the 
cross-entropy loss function, but the loss function is not the most effective on some unbalanced data 
sets. The PolyLoss function [37] was selected for the improved ResNet50 model in this paper to solve 
the poor classification effect caused by insufficient cells and class imbalance. PolyLoss was used to 
decompose the commonly used classification loss functions (such as cross-entropy loss function and 
focal loss function) into a series of weighted polynomial bases through Taylor expansion, as shown in 
Eq (6): 

𝐿 𝑙𝑜𝑔 𝑃 ∑ 𝜀 1 𝑃        (6) 

where 𝜀 0 is the polynomial coefficient, 𝛾 ∈ 1/𝛾,∞  𝑗 ∈ 1/𝑗,∞  is the perturbation term, 
and Pt represents the probability of the target-label prediction. 

2.3.3. Resedual block model based on PCAM-ResNet50 

 

    (a) 

 

(b) 

Figure 5. Model structure diagram. (a) Classical ResNet50 model. (b) The PCAM-ResNet50 model. 
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The deep residual network model used in this paper was based on the classical ResNet50 model 
(Figure 5(a)) realized by integrating the PAM and CAM, forming a PCAM-ResNet50 model, as shown 
in Figure 5(b). The figure reveals that the input image sizes of the two model structures were the same, 
which was a color milk somatic cell image in 224 × 224 × 3. Moreover, the model structure included 
the conv layer, bn layer, maxpool layer, avgpool layer, fc layer, and Softmax classification layer. Where 
Conv1 was the convolution layer, Conv2_x (x = 1, 2, 3, 4) was the residual block with scale added, 
and there was only one residual block. Besides, Ident1_x (x = 1, 2, 3, 4) presented the residual block 
without changing the size, with 2, 3, 5, and 2 residual blocks, respectively. The improved part is marked 
in green in Figure 5(b). The PAM and CAM were added after the Max pooling layer and the last 
residual block, respectively. It aimed to ensure that the effective milk somatic cell image information 
could be transmitted to the deep layer, and the feature weight of the cell area was increased. The 
interference information, such as contrast and brightness, was reduced, and the impurity debris in the 
image background was filtered out to improve the accuracy of automatic recognition. 

The network structure contained five convolutional blocks. The first was a 7 × 7 convolutional 
layer; the remaining four were residual blocks. Each residual block comprised three convolutional 
layers, with 1 + 3 × (3 + 4 + 6 + 3) = 49 convolutional layers. The specific parameter settings for the 
PCAM-ResNet50 are listed in Table 1. 

Table 1. The parameter settings for the PCAM-ResNet50. 

Layer Name Kernel Size Stride Channels Output Size 

Conv1 7 × 7 2 64 112 × 112 

maxpool 3 × 3 2 64 56 × 56 

PAM 1 × 1 1 64 56 × 56 

layer1 1 × 1 1 256 56 × 56 

layer2 1 × 1 2 512 28 × 28 

layer3 1 × 1 2 1024 14 × 14 

layer4 1 × 1 2 2048 7 × 7 

CAM   2048 7 × 7 

avgpool   2048 1 × 1 

The flow of the image classification and recognition method under the improved ResNet 50 model 
is shown in Figure 6. 
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Figure 6. Flow chart of the algorithm proposed in this paper. 

3. Results and discussion 

3.1. Model training environment 

This experiment was carried out using the Windows 10 operating system (central processing unit: 
Intel (R) Core (TM) i5-12400F CPU 2.50 GHz, running memory of 32 G; graphics card: NVIDIA 
GeForce RTX 2060). The open-source framework for Pytorch deep learning was used to build the deep 
neural network. CUDA11.6 was used to accelerate the network training. The programming was 
realized with Pycharm and Python3.8.5. 

3.2. Experimental data set and preprocessing 

The dataset used in this experiment was obtained from the Basic Veterinary Laboratory of Inner 
Mongolia Agricultural University. It was magnified 400× using an OLYMPUS BX51 optical 
microscope, with a resolution of 2048 pixels × 1536 pixels, and it contained 57 original large-field 
images (as shown in Figure 7), which were segmented using the Kmeans algorithm [38]. After 
extraction, a pathologist screened and manually classified the cells into four types. There were 168 
macrophages (MΦ), 68 epithelial cells (EPI), 1209 neutrophils (NG), and 153 lymphocytes (LYP), 
corresponding to the numbers 1, 2, 3, and 4 in Figure 7, respectively. A total of 1598 images were 
initially analyzed. In order to enhance the generalization ability of the model and reduce overfitting, 

Image preprocessing

Input image

Training data

PCAM-ResNet50

Input images in 
batches by batch_size

Set iteration cycle

The training output 4 
classes of probability 

values

PolyLoss

Training and testing

Iteration 
Number=Max 

Iteration

Iteration 
Number=Iteration 

Number+1

Print weight, loss, 
accuacy as output

End

Yes

No



9432 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9423–9442. 

the sample size was expanded by random rotation, horizontal flip, vertical flip, and random grayscale. 
Hence, 7990 images were finally obtained and randomly divided into a training set and a test set using 
a ratio of 8:2. The data samples are shown in Figure 8.  

 

Figure 7. Original large-field image. 

   
(a) Original 

EPI 

(b) Random 

Rotation 

(c) Turn over 

horizontally 

(d) Turn over 

vertically 

(e) Random 

grayscale 

Figure 8. Example image of sample data. 

3.3. Experimental parameter setting 

In order to ensure the model was in the optimal state, the parameters were set after several 
experimental verifications as follows: the iteration times of the network training epoch were set to 200, 
the batch size was set to 16, and the Adam optimizer [39] was adopted (its initial learning rate was 0.001). 
However, the Warm-up learning rate was adopted to optimize the Adam algorithm. The Warm-up stage 
of network training was performed by gradually increasing the low learning rate. The initial learning 
rate was used for training when the model was relatively stable. At this time, the learning rate gradually 
decreased, accelerating the convergence and improving the effect. 

3.4. Model evaluation method 

The classification results were shown through the confusion matrix to evaluate the effectiveness 
of the identification method in this paper. The accuracy (A), accuracy (P), recall rate (R), harmonic 
average (F1) of recall rate, and macro average F1 (F1-macro) were adopted for a comprehensive 
evaluation. They could be calculated with the following equations: 
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𝐴          (7) 

𝑃           (8) 

𝑅           (9) 

 𝐹1           (10) 

𝐹1 𝑚𝑎𝑐𝑟𝑜 ∑ 𝐹1         (11) 

In the above equations, TP represents the true type of cell sample, i.e., the number identified by 
the model as the correct type; FN indicates that the cell sample was the true type, i.e., the number of 
types identified as wrong by the model; FP represents the wrong type of cell sample, i.e., the number 
of the correct type in the recognition model; TN is the cell sample is the error type, i.e., the recognition 
model is also the number of error types. In addition, n refers to the number of cell types. 

A relational diagram of evaluation indicators was constructed (Figure 9) to elucidate the relationship 
among TP, FN, FP, and TN, where P and N represent the correct and wrong samples, respectively. 

 

Figure 9. Relationship diagram of evaluation indicators. 

In the experiment, the receiver operating characteristic (ROC) curve was used to evaluate the 
model performance. The abscissa is the false positive rate (FPR), i.e., the proportion of all the predicted 
samples of the correct type but the wrong type in all the wrong samples, as shown in Eq (12). The 
ordinate marks the true positive rate (TPR), i.e., the proportion of all the predicted samples of the 
correct type in all the samples of the correct type, as shown in Eq (13). The effect of the model was 
evaluated by calculating the area under the ROC curve (AUC) and the coordinate axis. The larger the 
value, the better the classification effect of the model. 

𝐹𝑃𝑅          (12) 
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𝑇𝑃𝑅          (13) 

3.5. Result analysis 

3.5.1. Loss function validity analysis 

In order to verify the effectiveness of the Polyloss function for the classification of unbalanced 
milk somatic cell samples, the model proposed in this paper was compared with the classic ResNet50. 
The experimental results are shown in Table 2. The macro average F1 value of the proposed algorithm 
was 8% higher than that of the classic ResNet50 model, indicating that the model pays more attention 
to the sample imbalance after introducing the Polyloss function, thus improving the generalization 
ability of the model. 

Table 2. Comparative analysis of the effectiveness of the Polyloss function. 

Method F1-macro/% 

ResNet50 84 

New Model  92 

Meanwhile, the loss functions of the new model, ResNet18, ResNet34, and ResNet50 model 
training, were drawn, as shown in Figure 10. With the increase in training times, the loss value of the 
model in this paper greatly decreased, so the model was relatively stable. During training, the loss 
value of the model in this paper was 1/7 that of other methods. Besides, the curve tends to converge as 
the number of iterations increases. 

3.5.2. Analysis of ablation experiment results 

The ResNet50 model, the ResNet50 model using the PolyLoss function, and the new model were 
applied to the test set to verify the overall impacts of each module. Table 3 shows that the accuracy of 
the ResNet50 network was 93%. It decreased by 1% after the loss function was replaced with the 
PolyLoss, while it increased by 4% after applying the proposed algorithm. Such data suggest that the 
new method can direct the network to focus more on the useful feature information in various cell 
images. Thus, the network can enhance the expression ability of milk somatic cell features and more 
accurately classify all types of milk cells. 
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         (a)                                (b)  

 

     (c)                               (d)   

Figure 10. Training loss curves of different models. (a) The new model in this paper. (b) 
ResNet50. (c) ResNet18. (d) ResNet34. 

Table 3. Ablation experiment results. 

Model PolyLoss Attention mechanism Accuracy 

ResNet50 × × 93% 

ResNet50-PolyLoss √ × 92% 

New model √ √ 97% 

3.5.3. Comparison of overall recognition effect of models 

The overall recognition effect of the proposed algorithm was compared to ResNet18, ResNet34, 
ResNet50, AlexNet [27], and MobileNetV2 [28] models to verify the superiority of the proposed 
algorithm. As shown in Table 4, the accuracy, precision rate, recall rate, and F1 value of the new 
proposed algorithm were 97%, 94.5%, 90.75%, and 92.25%, respectively, and were higher than those 
of the other five methods, indicating that the proposed algorithm is more suitable for milk somatic cell 
image recognition. Meanwhile, the ROC curves of the six recognition models generated are shown in 
Figure 11.  



9436 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9423–9442. 

Table 4. Comparison of recognition effects of different models. 

Classification 

model 

Overall recognition effect/% 

Accuracy Precision Recall F1-score 

ResNet18 95 91.5 87 89.25 

ResNet34 93 86.25 81.25 83.5 

ResNet50 93 87.75 81.25 83.5 

New model 97 94.5 90.75 92.25 

AlexNet 56 26 24.75 25 

MobileNetV2 37 21 21 17 

3.5.4. The recognition effect of different models on different types of cells. 

In order to verify the effectiveness of the proposed algorithm for milk somatic cell classification, 
it was compared and evaluated with the other three models in terms of precision rate, recall rate, and 
F1 comprehensive index. The comparison results are shown in Tables 5–7. In addition, after 1598 
samples are tested, the confusion matrix of the four types of cells is shown in Figure 12. 

Table 5. Comparison of precision rates of different classification models. 

Classification 
model 

Precision rate of each class/% 

MΦ LYP EPI NG 

ResNet18 89 89 91 97 

ResNet34 88 81 80 96 

ResNet50 87 79 88 97 

This paper 93 93 93 99 

Table 6. Comparison of recall rates of different classification models. 

Classification 
model 

Recall rate of each class/% 

MΦ LYP EPI NG 

ResNet18 79 91 79 99 

ResNet34 71 86 70 98 

ResNet50 71 92 64 98 

This paper 92 93 78 100 
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(a)                              (b)  

 

         (c)                             (d)  

 

          (e)                            (f)  

Figure 11. ROC curves of different classification models. (a) ResNet18. (b) ResNet34. (c) 
ResNet50. (d) New modeI(e) AlexNet. (f) MobileNetV2. 
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Table 7. Comparison of F1-score of different classification models. 

Classification 
model 

F1-score of each class/% 

MΦ LYP EPI NG 

ResNet18 84 90 85 98 

ResNet34 79 83 75 97 

ResNet50 78 85 74 97 

This paper 92 93 85 99 

 

                         (a)                          (b)  

 

   (c)                           (d)  
 

Figure 12. Confusion matrix results of different models. (a) New model. (b) ResNet18. (c) 
ResNet34. (d) ResNet50. 
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4. Conclusions 

The new method (i.e., PCAM-ResNet50) introduces a position attention module and a channel 
attention module into the classical ResNet50 network structure, respectively, making the older tool 
more effective in extracting the features of various types of cells. In addition, the loss function of the 
original ResNet50 structure was improved, and the polynomial-based combination loss function 
(PolyLoss) was adopted to make up for the poor classification effect caused by the lack of sample size 
of bovine milk cells and the unbalanced data set. The performance of the new method was superior to 
other methods, and the classification accuracy reached 97%. Hence, the identification of the milk cells 
could be more accurate, providing more accurate identification of milk quality. The proposed method 
in this paper also has the potential to be used in some other research fields about AI, such as image 
segmentation [40], medical image analysis [41,42], feature extraction [43], and video analysis [44].  
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