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The number of neonatal intensive care units (NICUs) in smaller community

hospitals increased greatly during the 1980s and 1990s, attracting deliveries away

from hospitals with the most sophisticated NICUs. This pattern of “deregionaliza-

tion” has caused concern because previous studies find higher mortality rates for

high-risk infants born in hospitals with less sophisticated NICUs relative to those

born in hospitals with the highest care level. In this dissertation, I provide causal

estimates of the effect of deregionalization on infant health outcomes and treatment

intensity.

In Chapter 2, I argue that previous estimates of the relationship between the

level of care at a high-risk infant’s birth hospital and mortality may be biased by un-

observed selection. To estimate a causal relationship, I use an instrumental variable

strategy that exploits exogenous variation in distance from a mother’s residence to

hospitals offering each level of care. My instrumental variable estimates are bounded

well below ordinary least squares estimates and are not statistically different from



zero. These results suggest that relocating patients to hospitals with the highest

level of care prior to delivery may not lead to improved mortality outcomes, because

infants currently born in lower level facilities have higher unobserved mortality risk.

I also provide suggestive evidence that inter-hospital transfer after birth is one mech-

anism by which infants born at the lowest levels of care achieve similar outcomes to

those born at higher level hospitals.

In Chapter 3, I test whether additional neonatal intensive care supply leads to

excess neonatal intensive care utilization. I exploit within hospital-month variation

in the number of vacant NICU beds in an infant’s birth hospital the day prior to birth

as a source of exogenous variation in supply. I find that the effect of empty beds on

NICU admission is positive but very small for the highest risk infants as measured

by very low birth weight. However, it is larger for infants with birth weights above

this threshold. These results suggest that additional supply of neonatal intensive

care resources can lead to increased utilization of intensive care for infants above

the very low birth weight threshold.
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Chapter 1

Introduction

Rising health care costs are a fundamental problem facing the United States

economy. Health care currently accounts for about 16% of GDP and is projected

to grow to about 19% percent by 2019.1 This rapid cost growth was one of the pri-

mary motivations behind the health reform passed in 2010. One of the major factors

behind these rising costs are new medical technologies and service offerings. On av-

erage, most of these new technologies have been worthwhile due to the overwhelming

improvements in health that they are able to provide (Cutler and McClellan, 2001;

Hall and Jones, 2007; Luce et al., 2006; Murphy and Topel, 2003). However, there is

often concern that these services are not allocated optimally. The Dartmouth Atlas

Project has documented large geographic variation in health expenditures which

does not appear to be correlated with health outcomes (Baicker et al., 2006; Baicker

and Chandra, 2004b; Fisher et al., 2003a,b; Fuchs, 2004), providing some evidence

of “flat-of-the-curve” medicine, in which treatment is provided to the point where

the marginal return is below the marginal cost (or even zero).

This dissertation examines the organization of one particular medical service

that displays these characteristics: Neonatal Intensive Care Units (NICUs). A NICU

is a unit of the hospital that is separate from the traditional newborn nursery and is

specially equipped to care for sick, preterm, and underweight infants. The original

NICUs of the late 1960s and early 1970s provided incubation and sometimes me-

chanical ventilation. Since this time, technological innovations have greatly changed

medical care for sick infants, and the most sophisticated NICUs are now able to

1According to the Centers for Medicare & Medicaid Services: http://www.cms.gov/
NationalHealthExpendData/downloads/proj2009.pdf, last accessed on May 16, 2010.

1
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provide extensive monitoring, proper nutrition, artificial surfactant, extracorporeal

membrane oxygenation (ECMO), and various diagnostic tests and surgical proce-

dures.2 These innovations have clearly led to improved outcomes for high-risk in-

fants. For example, the 28-day mortality rate for infants weighing 1,000 to 1,499

grams (2.2 and 3.3 pounds) dropped from 52.2% to 6.7% between 1960 and 1990

(Cutler and Meara, 2000).3

Recent decades have seen a trend towards “deregionalization” of neonatal in-

tensive care in which many smaller hospitals have adopted NICUs. Despite the large

average gains in infant health that have been attributed to NICUs, this trend has

worried organizations such as the March of Dimes and the American Academy of

Pediatrics because previous studies have found higher mortality rates for high-risk

infants born in hospitals with these smaller, less sophisticated NICUs compared to

those born in hospitals with “Regional” NICUs (e.g., Cifuentes et al., 2002; Phibbs

et al., 2007, 1996). However, the many potential effects of this deregionalization

are not well understood. First, in terms of the first-order question of the effects

on the health of the high-risk infants NICUs are intended to treat, the previous

estimates may in fact be biased by unobserved patient selection into hospitals. De-

pending on the mechanisms behind and the direction of this selection, the effect of

the level of neonatal intensive care at an infant’s birth hospital on mortality could

be biased in either direction; deregionalization could be more or less detrimental

to infant mortality than previously thought. Second, there may be other effects of

deregionalization beyond the quality of care delivered to high-risk infants. These

effects could include changes in the quality of care of lower risk infants, differences in

2Mechanical ventilation assists infants whose lungs have not fully developed to breath. Artificial
surfactant treats respiratory distress syndrome by helping the lungs to develop. ECMO machines
pump blood out of the infant, oxygenate it, and pump it back into the infant if the infant’s heart
and lungs are too weak to oxygenate the blood on its own.

3Accounting for the costs of these innovations and the value of both lives saved and quality of
life for surviving infants, Cutler and Meara (2000) calculate a 510% rate of return to spending on
infant health care between 1960 and 1990.
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the intensity and cost of care, composition changes in who receives care, and utility

gains for mothers who can choose more convenient hospitals offering NICUs.

Given all of these potential effects, understanding the full welfare consequences

of deregionalization would be a very difficult undertaking. In this dissertation, I

tackle two pieces of this puzzle. In Chapter 2, I revisit the question of how dere-

gionalization has impacted mortality for very low birth weight infants. By exploiting

exogenous variation in the distance from where mothers live to the nearest hospi-

tal offering each level of neonatal intensive care, I account for potential unobserved

selection and estimate the causal effect of the level of care at the birth hospital on

very low birth weight infant mortality. Chapter 3 considers the effect of the supply

of neonatal intensive care on the level of utilization of these resources. I provide

preliminary estimates of the effect of the number of empty NICU beds just prior to

birth on the probability an infant is admitted to the NICU. I then examine how this

effect varies across the birth weight distribution to differentiate how available supply

affects utilization differently for high-risk and low-risk newborns. The remainder of

this chapter provides further background information about neonatal intensive care

and summarizes the results of Chapters 2 and 3.

As neonatal intensive care developed in the 1970s, few doctors and nurses

were trained in neonatology. As a result, specialists were located in regional care

centers, typically associated with large teaching hospitals. In 1976 a March of Dimes

report recommended that hospitals offering delivery services be classified into three

categories with the lowest providing no intensive care, and the highest providing the

most complex care and acting as regional referral centers for high-risk mothers and

infants (Committee on Perinatal Health, 1976).4

4In general, Level I nurseries describe hospitals that provide basic birthing service and care for
healthy infants. They have the facilities and staff required for neonatal resuscitation, but must
stabilize and transfer ill newborns to other facilities for further treatment. Level II nurseries treat
moderately ill infants, and Level III units treat infants who are extremely premature, critically ill,
or in need of surgery. In many cases, Level II and Level III units are further subdivided based on
their abilities to provide mechanical ventilation, surgery, or ECMO. Additionally, units are often

3



Also in the late 1970s, the Robert Wood Johnson Foundation began the Re-

gional Perinatal Care Program. This program was intended to explore the effects

and feasibility of encouraging regional perinatal care encompassing pre- and post-

birth care of mothers and infants, including neonatal intensive care. The program

consisted of grants to eight sites across the country. The grants provided funds to

improve record keeping, create a referral and transportation system, and conduct

education and outreach. Anecdotally, these networks functioned well. Unfortu-

nately, this program was difficult to evaluate because many forces were leading to

nationwide reductions in infant mortality rates and regionalization was occurring

outside the study sites (Holloway, 2000).

Over time the technologies and trained specialists necessary to operate NICUs

became more prevalent, and NICU adoption became feasible for a wider array of

hospitals (McCormick and Richardson, 1995). Despite the Regional Perinatal Care

Program and the March of Dimes’ recommendations of a regionalized system, ex-

actly the opposite began to occur over the 1980s and 1990s: there was a drastic

increase in the number of NICUs, and many of the new entrants were smaller units

in community hospitals (e.g., McCormick and Richardson, 1995; Schwartz, 1996;

Schwartz et al., 2000). Moreover, while births increased by 17.6% between 1980

and 1995 in Metropolitan Statistical Areas (MSA), the number of hospitals with

NICU beds doubled, the number of NICU beds more than doubled, and the number

of neonatologists more than tripled (Howell et al., 2002).5 Additionally, American

Hospital Association data reveal that 89% of the new NICUs that opened between

1980 and 1996 were lower level NICUs, as opposed to only 46% of the units estab-

lished before 1980 (Baker and Phibbs, 2002).

labeled as Intermediate, Community, or Regional units. In Section 2.3 I describe how I classify
level of care for my study.

5Improving quality of care over time did lead to more infants surviving and spending longer
periods of time in the NICU; however, Howell et al. (2002) calculate that by 1995 the number of
available NICU bed-days exceeded medically necessary bed-days by a factor of 2.5.
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Haberland et al. (2006) document that new lower level NICUs have in fact

shifted deliveries of high-risk infants from Regional hospitals to the lower level hos-

pitals in California. In a difference-in-differences framework, they show that becom-

ing closer to a mid-level NICU, as a result of a new unit opening near a mother’s

zip code of residence, increases the probability that a very low birth weight infant

is born in a hospital with a mid-level NICU by 17 percentage points and decreases

the probability of being born in a hospital with a Regional NICU by 15 percentage

points.6 Based on evidence that mortality rates are higher for infants born in hos-

pitals with lower level NICUs, discussed in detail in Chapter 2, and the course of

deregionlization, the March of Dimes reaffirmed its recommendations in 1993 (Com-

mittee on Perinatal Health, 1993). The American Academy of Pediatrics provided

similar recommendations for more regionalized care in 2004 including recommenda-

tions for consistent definitions of care levels and the need for high-risk infants to be

born in higher level facilities. (Committee on Fetus and Newborn, 2004).

It has been hypothesized that so many community hospitals adopted NICUs

in order to compete for profitable obstetric patients (McCormick and Richardson,

1995). Neonatal intensive care is typically generously reimbursed, and even managed

care organizations have been hesitant to limit infant care, so NICUs can be profit

centers for hospitals (Horwitz, 2005, see online appendix). Beyond NICUs them-

selves, hospitals are particularly interested in attracting obstetric patients, since

mothers are typically young, healthy, and likely to return to the hospital for the

later care of their families if they have a positive birth experience (Friedman et al.,

2002). Almost all births in the United States are covered by some form of pub-

lic or private insurance (Russell et al., 2007), limiting hospitals’ ability to compete

through prices. Therefore, hospitals may compete by trying to attract this desirable

6I confirm these results in Chapter 2 by showing that mothers living closer to hospitals with
lower level NICUs are more likely to choose such hospitals and less likely to choose hospitals with
higher level NICUs.

5



patient pool through signals of quality, such as the availability of a NICU.

This type of competition is not unique to neonatal intensive care. Theoreti-

cally, the effects of non-price competition on hospital behavior and patient welfare

are ambiguous but can potentially lead to over-provision of services known as a

“medical arms race” (Gaynor, 2006). Dranove et al. (1992) find that decreases in

market concentration lead to increases in the number of hospitals offering various

high tech services in that market. Others have shown that hospitals expand their

capacity to perform certain procedures in order to deter other hospitals from adopt-

ing that procedure (Dafny, 2005a), and hospitals adopt particular technologies in

order to steal business from their competitors (Schmidt-Dengler, 2006). In contrast,

comparing the effect of competition on costs and mortality for heart attack patients,

Kessler and McClellan (2000) find that competition led to improvements in patient

welfare during the 1990s. My work sheds light on how the organization of neonatal

intensive care markets affects the quantity and quality of care provided.

In Chapter 2 I revisit the question of how mortality outcomes for high-risk

infants, as measured by being very low birth weight, differ by the level of neonatal

intensive care available at the hospital of birth. As briefly discussed above and in

more detail in Chapter 2, previous studies have found that very low birth weight

infants born in hospitals with lower level NICUs experience higher mortality rates

than those born in hospitals with the most sophisticated, Regional NICUs. Most of

these previous studies utilize high-quality linked hospital inpatient, birth certificate,

and death certificate data allowing them to control for many important clinical and

demographic characteristics associated with infant mortality. However, there may

be important unobserved differences between mothers who choose hospitals with

varying levels of neonatal intensive care.

On the one hand, it may be the case that those very low birth weight infants

born in higher level hospitals are unobservably less healthy than those born in lower

6



level hospitals. For example, mothers who deliver in higher level hospitals may be

referred there by their physicians because of predetermined risk factors that are

not perfectly measured in the data. On the other hand, it may be the case that

those very low birth weight infants born in lower level hospitals are unobservably

less healthy. One could imagine that mothers of very low birth weight infants who

choose lower level hospitals are less well informed, less likely to plan ahead, or less

risk averse than those who choose to deliver in the higher level hospitals, and these

characteristics may be correlated with worse infant health outcomes. By examining

the observable characteristics of my sample, I show evidence consistent with the

predictions of both of these selection mechanisms. Depending on which mechanism

dominates, previous estimates of the mortality gradient could be biased upwards or

downwards, suggesting that deregionalization may be more or less detrimental to

very low birth weight mortality than previously thought.

I assess this concern by using an instrumental variable strategy to isolate

exogenous variation in the level of neonatal intensive care available at the hospital

in which the mother of a very low birth weight infant chooses to deliver her newborn.

In the spirit of McClellan et al. (1994), I use the distances from the center of the

mother’s zip code of residence to the nearest hospital offering each level of neonatal

intensive care as instruments for the level of care at the hospital in which she delivers

her newborn. The validity of these instruments is motivated three factors: the

hypothesis that NICUs have been adopted in order to compete for patients instead

of to address local health needs; previous evidence showing that NICU location is not

correlated with infant health measures; and evidence in my sample that distance is

not correlated with observable demographic and health characteristics. I also show

that distance is an important predictor of the level of care chosen by mothers of very

low birth weight infants. Additionally, consistent with hospitals adopting NICUs

to compete for patients across the risk distribution, I show that mothers of infants

7



with higher birth weights are more likely to choose a hospital with a NICU when

they live closer to such a hospital as well

My instrumental variables estimates indicate that very low birth weight infants

born in hospitals with lower levels of neonatal intensive care do not have statistically

significantly different mortality rates from those born in hospitals with the highest

level of care. Furthermore, these instrumental variable estimates are bounded away

from my ordinary least squares estimates, suggesting that even if the true effects

are not zero, these more traditional ordinary least squares estimates exaggerate

the mortality differences. The interesting implication of this result is that very low

birth weight infants born in hospitals with lower level NICUs have higher unobserved

mortality risk than those born in hospitals with higher level NICUs. This finding

suggests that relocating deliveries to higher level hospitals prior to birth would not

improve mortality outcomes because it would be relocating the deliveries of infants

from the higher risk portion of the health distribution.

However, these results do not imply that the higher level NICUs are of no value.

In fact, very low birth weight infants born in hospitals with lower level NICUs are

very likely to be transferred to higher level hospitals after birth, and I show that

the probability of being transferred is not affected by my measures of distance. This

finding suggests that, while the location of NICUs impacts where very low birth

weight infants are delivered, it does not impact where they ultimately receive care.

Post-birth inter-hospital transfers appear to be an effective tool to equalize mortality

outcomes for infants born in hospitals with varying levels of neonatal intensive care.

My findings suggest that limiting the trend of deregionalization is not neces-

sary to minimize very low birth weight infant mortality. However, networks between

hospitals to facilitate post-birth transfers are instrumental in ensuring that infants

eventually receive appropriate care. If hospitals coordinate sufficiently post-birth,

market competition that leads to NICU adoption is not detrimental to mortality.

8



That being said, it is important to recognize that mortality is not the only contrib-

utor to social welfare. Even if competition between hospitals in this market does

not lead to lower quality of care, it may or may not lead to less efficient allocation

of neonatal intensive care resources.

Chapter 3 of this dissertation considers one way in which neonatal intensive

care resources may not be allocated efficiently. An important issue in the provision

of health care is whether the mere presence of the supply of medical services leads

to excessive utilization of these resources, and I examine this question in the con-

text of neonatal intensive care. Such a relationship could occur through two main

mechanisms related to two important information asymmetries prevalent in health

care markets. First, the physician often has more information about the patient’s

health than the patient himself. Given this information gap, physicians may take

advantage of their agency over patients to increase income by prescribing additional

treatment beyond what is necessary. Because the physician is able to influence the

patient’s demand for medical care, this behavior is called “supplier-induced demand”

(Evans, 1974; Fuchs, 1978; McGuire, 2000; Pauly, 1981). The second mechanism

that may cause excessive utilization when more supply is available is moral hazard

in insurance, which acts through the patient’s information advantage over the in-

surer. Because insurance lowers the price of consuming health care, and the insurer

cannot fully know the patient’s true health status, insurance can lead to the pa-

tient consuming more than the optimal amount of health care (Arrow, 1963; Cutler

and Zeckhauser, 2000; Pauly, 1968). Of course, moral hazard cannot increase the

amount of health care utilization if supply is not available; thus, additional supply

can lead to excessive utilization of services by opening the door for latent moral

hazard to be realized.

Cross sectional comparisons between available supply and utilization are not

sufficient to identify if this relationship exists, because there are many factors that
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may be correlated with the availability of health resources that could lead to addi-

tional utilization. Methodologically, the innovation of Chapter 3 of this dissertation

is to find an exogenous source of variation in available supply. I conduct a first

examination of the effect of the number of empty NICU beds available in the birth

hospital on the day prior to birth on the probability that an infant is admitted

to the NICU. The key to the identification strategy is the use of hospital-specific

month fixed effects. With these fixed effects I identify the relationship between

NICU supply and utilization from within hospital-month variation in the number

of empty NICU beds. The fixed effects allow me to flexibly control for character-

istics of patients who choose a particular hospital, long run trends and short run

seasonality of infant health, and any hospital-specific trends or seasonality. I argue

in the chapter that conditional on observable characteristics and these fixed effects,

a particular infant’s unobserved health characteristics are unlikely to be correlated

with the unobserved health characteristics of infants born just prior to the infant,

which is what determines the number of available empty NICU beds. While this

identification strategy accounts for unobserved correlates between NICU supply and

utilization, NICU admission is measured with error in the data that I utilize. There-

fore, results in Chapter 3 are best viewed as preliminary, and I intend to verify these

results using other data sources in future research.

I find that on average an additional empty NICU beds increases the probabil-

ity of being admitted to the NICU by 1.11%. Not surprisingly, the effect of empty

beds on NICU admission varies across the birth weight distribution. When I esti-

mate regressions separately for subsamples stratified by birth weight, I find that the

effect is very small for very low birth weight infants.7 However, the effect size jumps

discretely for infants above the very low birth weight threshhold and is largest for

7The effect of empty beds on NICU admission is especially small for this group when I account
for the fact that very low birth weight infants are likely to be transferred if NICU beds are not
available for them at the birth hospital.
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infants close to the top of the low birth weight range and infants with high birth

weights. These two groups are likely to be on the margin of needing neonatal inten-

sive care. These results imply that the availability of empty NICU beds increases

the utilziation of neonatal intensive care resources, particularly in the birth weight

ranges where hospitals would have the most discretion over admission decisions.

This analysis is quite relevant in the context of deregionalization. With the

diffusion of neonatal intensive care resources, the potential for excess supply grows.

This chapter estimates the effects of short term variation in empty NICU beds, but

this variation is likely to be related to the long term trends in availability associated

with deregionalization. Interestingly, I also find that the effect of empty beds on

NICU admission is the largest in hospitals with lower level NICUs as compared to

hospitals with the most sophisticated NICUs. As these lower level NICUs are those

units most associated with deregionalization, this finding suggests that deregional-

ization may have the scope to lead to additional intensive care utilization for lower

risk infants.8

This chapter also provides an important contribution to the literature on

neonatal intensive care markets by considering infants throughout the birth weight

distribution. Much of the previous literature focuses on the effect of deregionaliza-

tion on mortality outcomes for high-risk infants. It is also important to consider the

implications of neonatal intensive care markets for healthier infants, and my find-

ings suggest that excess supply contributes to lower risk infants receiving additional

treatment. Because care in the NICU is more expensive than care in the traditional

nursery, additional supply has likely increased the cost of care for low-risk infants.9

8It is also not surprising that the effects are smaller in higher level NICU hospitals since many
high-risk infants are transferred from hospitals with lower level NICUs to these higher level hos-
pitals. Therefore, there is likely to be less discretion and less incentive for responding to excess
capacity in these higher level hospitals.

9There may be other costs associated with excessive NICU utilization including psychic costs
to the parents of seeing their infant in intensive care and the potential for hospital borne infections
that are prevalent in NICUs.
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Overall, this dissertation finds that deregionalization has likely not been as

detrimental to very low birth weight infant mortality as previously thought, but

additional NICU supply contributes to increased utilization of care for lower risk

infants. These two findings represent two important contributions to understanding

the welfare effects of deregionalization and open the door for further research about

other aspects of the welfare calculation. Some important avenues of future research

include the effect on broader health measures than the blunt consideration of mor-

tality, the utility implications for mothers who are able to choose more convenient

hospitals with some level of neonatal intensive care, a more specific understanding

of costs including the fixed costs of adopting a NICU and the costs of maintaining

and operating a NICU, and the determinants of NICU adoption from the hospital

point of view.
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Chapter 2

The Effect of Deregionalization on Health Outcomes: Evidence from

Neonatal Intensive Care

2.1 Introduction

Technological innovations over the past half century have greatly changed med-

ical care for sick infants. Over this time Neonatal Intensive Care Units (NICU) have

been developed to administer treatments such as mechanical ventilation, artificial

surfactant, and extracorporeal membrane oxygenation (ECMO)1 to sick, preterm,

and underweight infants, and they have clearly lead to improved outcomes for these

groups. For example, the 28-day mortality rate for infants weighing 1,000 to 1,499

grams (2.2 and 3.3 pounds) dropped from 52.2% to 6.7% between 1960 and 1990

(Cutler and Meara, 2000).2

Despite these long run gains, there is concern that NICUs have not diffused

optimally. The 1980s and 1990s saw a large increase in the number of NICUs

in smaller, community hospitals that provide less sophisticated care compared to

the original NICUs in large, regional hospitals (e.g., McCormick and Richardson,

1995; Schwartz, 1996; Schwartz et al., 2000). This trend of “deregionalization” has

1Mechanical ventilation assists infants whose lungs have not fully developed to breath. Artificial
surfactant treats respiratory distress syndrome by helping the lungs to develop. ECMO machines
pump blood out of the infant, oxygenate it, and pump it back into the infant if the infant’s heart
and lungs are too weak to oxygenate the blood on its own.

2I do not focus on costs in this chapter, but anecdotally, opening a new NICU can cost be-
tween $125,000 and $200,000 per bed (Baker and Phibbs, 2002). Hospital costs for very low birth
weight (VLBW) infants, those weighing less than 1,500 grams or 3.3 pounds, averaged $136,000
in California in 2000 (Schmitt et al., 2006). Nationwide, it is estimated that medical care ser-
vices for high-risk infants cost $16.9 billion in 2005 (http://www.marchofdimes.com/peristats/
slidesets/slideset_6_99.ppt, last accessed on October 6, 2009). In the long run Cutler and
Meara (2000) calculate a 510% rate of return to spending on infant health care between 1960 and
1990, accounting for the value of both lives saved and quality of life for surviving infants.

13

http://www.marchofdimes.com/peristats/slidesets/slideset_6_99.ppt
http://www.marchofdimes.com/peristats/slidesets/slideset_6_99.ppt


worried policy makers because previous studies have found higher mortality rates for

infants born in hospitals with these Community NICUs compared to those born in

hospitals with Regional NICUs, conditional on observable demographic and health

characteristics (e.g., Cifuentes et al., 2002; Phibbs et al., 2007, 1996). Based on this

evidence, organizations such as the March of Dimes and the American Academy of

Pediatrics have advocated for a stronger regional system where high-risk mothers

are referred to hospitals with Regional NICUs prior to delivery in order to minimize

mortality.

This chapter seeks to estimate the causal effect on mortality of the level of care

available at the hospital in which a very low birth weight (VLBW) infant – under

1,500 grams or 3.3 pounds – is born. As an empirical matter, it is not clear that the

worse outcomes experienced by infants born in hospitals with lower level NICUs are

attributable to the hospital type per se. Even conditional on observable character-

istics, infants born in different hospitals may have different underlying risk factors.

Depending on the mechanisms behind any unobserved selection, conventional esti-

mates of mortality differences by level of care could be biased in either direction. If

infants born in hospitals with lower level NICUs have lower underlying mortality

risk than those born in Regional NICUs, previous estimates will have understated

the mortality penalty associated with being born in lower level hospitals. Alterna-

tively, if infants born in hospitals with lower level NICUs have higher underlying

risk factors, previous estimates will have overstated the mortality differences. Any

bias implies the system of deregionalization might actually be more harmful or less

harmful than currently believed. While deregionalization may affect many factors

other than mortality, understanding the causal effect of level of care on mortality of

high-risk infants is of first-order importance to making policy decisions about the

organization of neonatal care.

I propose an instrumental variables strategy to overcome selection issues asso-
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ciated with a mother’s choice of hospital. I exploit the distance a mother must travel

to the nearest hospital of each level of care as a source of quasi-experimental varia-

tion in the type of hospital chosen. Distance is an important determinant of hospital

choice for many medical treatments such as cardiac and cancer surgery (e.g., Cutler,

2007; Kessler and McClellan, 2000; McClellan and Newhouse, 1997; Tay, 2003) and

for expectant mothers as well (Phibbs et al., 1993). I also provide evidence that

distance is likely to be exogenous to unobserved health outcomes in my data set,

which is not surprising given evidence that NICU location is not correlated with

the geographic variation in underlying infant health conditions (Goodman et al.,

2001). Using detailed data on all California VLBW births between 1991 and 2001,

I estimate how the birth hospital’s level of care causally effects VLBW mortality.

My ordinary least squares (OLS) analysis yields estimates of 7.6%, 13.4%, and

31.8% higher risk-adjusted mortality rates for infants born at hospitals offering three

lower levels of care relative to those born in hospitals offering the highest level of

care. These results are consistent with the previous literature, but my instrumental

variable estimates provide evidence that these OLS estimates are biased upward.

The instrumental variables estimates are bounded well below the OLS estimates

and are not statistically different from zero. My results are robust to including zip

code level controls, such as population density and racial characteristics, or zip code

fixed effects.

Comparing the OLS and the instrumental variable estimates reveals that in-

fants born in hospitals with lower levels of care are negatively selected. This selection

could occur if, for example, more uninformed mothers choose lower levels of care and

have unobservably less healthy infants. This finding implies that relocating births

to Regional NICU hospitals prior to delivery would not lead to lower mortality rates

because the relocated infants would have higher unobserved mortality risk. In terms

of mortality, deregionalization does not appear to have caused worse outcomes for
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high-risk infants.

It is also possible that the instrumental variable estimates represent a local

average treatment effect. I find that my estimates are not heterogeneous across

demographic sub-samples, but there still may be heterogeneous effects along un-

observable dimensions. If this is the case, instrumental variables would estimate

the effect of level of care on mortality for an unobserved subgroup of infants whose

mothers’ choices of level of care are affected by the distance instruments. However,

because variation in the instruments is directly related to deregionalization, any

local effect is precisely the policy relevant effect. My estimates would imply that

infants of mothers who choose to give birth in hospitals with lower level NICUs

because these NICUs are available – the marginal group of infants whose delivery

hospitals are impacted by deregionalization – do not experience higher mortality

rates.

While my results indicate that mortality does not differ by level of care at

the hospital in which an infant is born, they do not imply that Regional NICUs are

of no value. In fact, I show evidence that infants born in hospitals with the lowest

levels of care are likely to be transferred to Regional NICU hospitals after birth, and

the geographic distribution of hospitals does not impact the probability of transfer.

It is difficult to compare outcomes to the counterfactual world that experiences

deregionalization but does not allow for post-birth transfer, but my findings suggest

that mortality is not causally affected by the level of care at the birth hospital

because high-risk infants eventually receive care in higher level hospitals if necessary.

The remainder of this chapter is structured as follows. Section 2.2 reviews the

previous literature. Section 2.3 describes the data and summary statistics. Section

2.4 provides the empirical framework. Section 2.5 presents the results, followed by

robustness checks in Section 2.6. Section 2.7 concludes.
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2.2 Previous Literature

2.2.1 Previous Estimates of Mortality Differences by Level of Care

Multiple authors have estimated how risk-adjusted mortality varies by level

of neonatal intensive care at the hospital of birth, and many of these studies use

the same California inpatient data set as this chapter. The typical methodology

includes a logistic regression of mortality on level of care indicators, controlling for

demographic characteristics and health status. The specific results depend on the

precise categorization of hospitals, but in general these studies find higher mortality

as level of care decreases for groups of high-risk infants that NICUs are intended

to care for. Phibbs et al. (1996) find that VLBW infants born in hospitals with

the largest Regional NICUs have statistically lower mortality rates than the lower

categories, but the lower categories, including hospitals with no NICU, do not differ

from each other. Cifuentes et al. (2002) use a population of infants below 2,000

grams (4.4 pounds) and find that all levels except for the largest Community NICUs

have higher mortality rates than Regional NICUs. As they restrict their sample to

smaller and smaller birth weight groups, the gradient becomes steeper. Similarly,

Gould et al. (2002) find higher mortality rates at all levels relative to Regional

NICUs except for those Community NICUs that are licensed under the California

Children’s Services Program.

Finally, in the most recent study on the relationship between level of care and

mortality, Phibbs et al. (2007) distinguish mortality rates by very narrow level and

volume interactions. While not necessarily statistically significant within each level,

they find decreasing mortality across levels and by volume within levels. Based on

their estimates, they conclude that if 90% of VLBW deliveries in California urban

areas had been relocated to hospitals with the largest Regional NICUs, 21% of
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VLBW deaths in 2000 could have been avoided.3

However, while high-quality hospital inpatient data sets allow the ability to

control for many important covariates, mothers may select into different delivery

hospitals based on characteristics not observed in the data. Such unobserved selec-

tion would lead to biased estimates of the mortality differences by level of care, and

the direction of the bias would depend on the direction of the selection.

One typical form of selection that biases estimates of the effect of health treat-

ments on outcomes is selective referral. If mothers and physicians have additional

information about the mother’s health status, and higher risk mothers are referred

to hospitals with Regional NICUs, mothers would be positively selected into lower

levels of care. Therefore, the mortality differences relative to Regional NICUs would

be underestimated. On the other hand, if mothers negatively select into lower lev-

els of care over hospitals with Regional NICUs, the mortality differences would be

overestimated. This case might arise if more uninformed mothers are more likely to

choose hospitals with lower levels of care over hospitals with Regional NICUs and

infants of these uninformed mothers have higher unobserved mortality risk.

2.2.2 Natural Experiments in Health Research

This chapter is also related to the health economics literature that uses natural

experiments to determine the marginal effects of medical treatments and technology.

As with neonatal care, time series evidence suggests that most new technologies have

led to vast improvements in health outcomes over time and the monetized benefits

have outweighed the costs (Cutler and McClellan, 2001; Hall and Jones, 2007; Luce

et al., 2006; Murphy and Topel, 2003). However, comparisons of health care ex-

penditures and outcomes across geographic regions have found that higher spending

3They calculate this number only considering the sample of infants for whom they deem relo-
cation geographically feasible and note that such relocation would require new large NICUs and
the closure of some smaller NICUs.
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areas do not achieve better outcomes (Baicker et al., 2006; Baicker and Chandra,

2004b; Fisher et al., 2003a,b; Fuchs, 2004). Given this contradiction, researchers

have taken advantage of quasi-experimental variation to better compare individu-

als who differ only in their treatment and not in other unobserved dimensions to

estimate causal effects of treatment. Here I highlight two portions of this literature

that are most related to this chapter: research on the effects of infant health care

and research using a similar identification strategy to that used in this chapter.

Studies that use natural experiments to estimate the returns to incremental

units of infant health care find mixed results. Almond and Doyle (2008) exploit a

California policy extending minimum length of hospital stays following delivery and

the discontinuity in stay length for infants born just before and just after midnight.

They find no effect of increased stay length on health outcomes for uncomplicated

infants. Evans et al. (2008) exploit the same policy and find similar results for un-

complicated infants, but they do find that longer length of stay leads to reduced

hospital readmission rates for more complicated cases. Using a regression discon-

tinuity design, Almond et al. (2008) find that infants just below the VLBW cutoff

receive more treatment and experience lower mortality rates than those just above

the VLBW cutoff. Taken together, these studies imply that, at least for high-risk

infants, increased treatment can be beneficial. My research adds to this literature

by estimating whether the facilities available at the hospital in which a high-risk

infant is born affect mortality.

McClellan et al. (1994) and Cutler (2007) use a similar identification strat-

egy to this chapter’s strategy in order to estimate the effect of catheterization and

revascularization, respectively, following a heart attack on mortality. As with infant

care, there are two selection concerns in this context, although the mechanisms are

slightly different. First, the healthiest patients may have less need for these intensive

surgeries. Second, the sickest patients may forego surgery due to a higher risk of dy-
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ing during the procedure. To account for selection, both papers use distance to the

nearest hospital providing surgery as an instrument for whether a patient receives

surgery.4 Both studies find that instrumental variable estimates of the benefit of

intensive surgery are substantially lower than the ordinary least squares estimates,

although Cutler (2007) finds that the monetized benefits still outweigh the costs.

2.3 Data

2.3.1 Linked Birth Data

My empirical analysis requires detailed data describing infants’ hospitaliza-

tions and outcomes. The primary data set I utilize is the Linked Patient Discharge

Data/Birth Cohort File (LPDD/BCF) created by the California Office of Statewide

Health Planning and Development (OSHPD). This data set includes records of all

births in non-Federal hospitals in the state of California. I have obtained data files

for the years 1991 to 2001, comprising approximately six million births. In addi-

tion to including observations of all births from a large state, the main advantage

of this data set is that it links additional data to an infant’s hospital discharge

record. First, it links an infant’s delivery hospital discharge record to the mother’s

discharge record and all subsequent records resulting from transfers or readmissions

to California hospitals within the first year of life. For each hospitalization, the data

set includes detailed diagnosis and treatment variables, summary variables such as

length of stay and hospital charges, and patient information including zip code of

residence. Second, the hospital discharge data are linked to vital statistics data on

births and infant deaths within the first year of life, which include gestation, birth

weight, number of prenatal care visits, month prenatal care began, and demograph-

4Other authors have also used distance as a source of exogenous variation to predict patient
flows in order to estimate the effect of volume (Gowrisankaran et al., 2006) and competition
(Gowrisankaran and Town, 2003; Kessler and McClellan, 2000; Tay, 2003) on health outcomes.
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ics, such as the mother and father’s race, ethnicity, and education. Additionally,

these records provide information on infant mortality within the first year of life,

even if death occurred outside of the hospital.

The main analysis sample that I consider includes VLBW infants, defined as

weighing between 500 and 1,500 grams (1.1 and 3.3 pounds) at birth. Of the initial

6.1 million birth observations with non-missing birth weight, 72,275 fall in this birth

weight range.5 To obtain my analysis sample, I first exclude observations with a

missing zip code of residence, a zip code of residence outside the state of California,

a missing hospital identification number, or that are delivered in a hospital without

a delivery unit. The remaining sample contains 65,567 birth observations.

I then make three restrictions to maintain a sample that is as broad as possible

but that excludes observations with an unusual hospital choice set. I first drop 2,704

observations where the mother’s county of residence is “non-metro” according to

the Office of Management and Budget.6 This restriction excludes a small group of

infants from the most rural areas for whom access to neonatal care is quite different

from other residents of the state. Additionally, the previous literature has focused

on deregionalization and the effect of level of care on outcomes in metropolitan

areas (Howell et al., 2002; Phibbs et al., 2007) where policy recommendations about

delivery relocation would be most feasible. Second, I drop 7,627 infants delivered

in Kaiser owned hospitals. Mothers who choose a Kaiser hospital for delivery must

be covered by Kaiser insurance, and mothers covered by Kaiser insurance must

deliver in a Kaiser owned hospital; therefore, choice of hospital is restricted for this

group.7 Third, I exclude 4,113 observations diagnosed with a congenital anomaly.

5The full data set includes 6,221,001 births of which 1.54% of the observations have a missing
birth weight.

6Based on 1993 USDA Rural-Urban Continuum Codes that are calculated from
the 1990 Census. Source: http://www.ers.usda.gov/briefing/rurality/ruralurbcon/
priordescription.htm.

7In my analysis sample, 88% of mothers with Kaiser coverage deliver in a Kaiser hospital, and
97% of mothers who deliver in a Kaiser hospital have Kaiser coverage. In results not shown here,
regressions similar to the first stage regressions discussed below for the sample of Kaiser insured
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This restriction is consistent with the previous literature (Phibbs et al., 2007), and

it also excludes observations most likely to be selectively referred to higher levels of

care due to a diagnosis during the prenatal period.

I also exclude 8,115 observations of fetal deaths, which are infants who die

prior to delivery and, therefore, never receive neonatal care (Phibbs et al., 2007).

Finally, because I cluster standard errors at the zip code level and estimate models

with zip code fixed effects, I exclude 96 observations for which the mother’s zip code

of residence has no other observations remaining in the data. In Section 2.6, I show

that my results are robust to each of these sample restrictions.

I choose my sample of high-risk infants using birth weight as the health proxy

in order to be comparable to previous literature, and because it is the best measure

of an infant’s health stock at birth (Almond et al., 2005; Cutler and Meara, 2000).

Relative to gestation, another summary of health status at birth, Almond et al.

(2008) note that birth weight is more accurately recorded, less likely to be missing

in the data, and less likely to be manipulated by delaying birth because it is not

possible to know birth weight ex ante.8

VLBW infants are the population most of interest because they contribute

disproportionately to costs and mortality. Schmitt et al. (2006) document that

VLBW infants make up 0.9% of births but account for 36% of newborn hospital

costs, and tabulations of hospital charges for my sample lead to similar figures.

Mean charges for my VLBW sample are $209,000, compared to $21,000 for low

birth weight infants (1500 to 2500 grams or 3.3 to 5.5 pounds) and $2,630 for normal

birth weight infants (above 2500 grams or 5.5 pounds). Likewise, length of stay after

birth averages 50.6 days for VLBW infants, 9.2 days for low birth weight infants,

mothers show that distance has very little power in predicting the level of care chosen for delivery.
This is in contrast to the strong predictive power of distance for the analysis sample discussed in
Section 2.5.

8Additionally, Almond et al. (2008) find empirical evidence that the recording of birth weight
is not manipulated by physicians.
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3.0 days for normal birth weight infants. Additionally, VLBW infants make up the

vast majority of infant mortality. The main outcome I focus on in this chapter is

neonatal mortality, defined as mortality within twenty-eight days of birth or within

one year if an infant is continuously hospitalized since birth. VLBW infants have

a neonatal mortality rate of 15.7%, compared to 0.7% for low birth weight infants

and 0.1% for normal birth weight infants. Therefore, changes in how infant care is

delivered has the most scope to affect outcomes for VLBW infants.

2.3.2 Hospital Data

My empirical analysis also requires data describing the level of neonatal care

offered by each hospital that delivers infants. I obtain data from the authors of

Phibbs et al. (2007) that differentiate hospitals into six levels of neonatal care based

on the treatments each hospital provides in a given year. First, they use OSHPD

hospital financial data to determine which hospitals have neonatal intensive care

beds. Second, they use ICD-9 CM procedure codes in the hospital inpatient data to

identify which hospitals perform particular procedures. As a guide, they define levels

of care consistent with the six levels outlined in the American Academy of Pediatrics

2004 report.9 Table 2.1 lists the six levels and their corresponding procedures. Third,

the authors confirmed level of care designations through conversations with hospital

personnel.

I collapse these detailed categories into four levels of care, which I refer to as

No NICU, Intermediate NICU, Community NICU, and Regional NICU hospitals.

No NICU hospitals provide birthing services and well-baby care, but no neonatal

intensive care (Level I in Table 2.1). Intermediate NICUs care for mildly ill infants

but do not provide mechanical ventilation (Level II). Community NICUs include

9The authors utilize the draft version of the American Academy of Pediatrics report because
the final version does not include a category that provides unrestricted ventilation but no surgery,
a level of service many CA units provide.
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any unit that provides mechanical ventilation and either does not provide major

surgery or provides surgery but treated less than 50 VLBW infants in 1991 (IIIA,

small IIIB, and small IIIC).10 Finally, Regional NICUs include those that provide

major surgeries and treated greater than 50 VLBW infants in 1991, or any unit that

provides cardiac bypass and/or ECMO, the two most specialized surgical procedures,

regardless of size (large IIIB, large IIIC, and all IIID).

This categorization results in 161 No NICU, 58 Intermediate, 41 Community,

and 36 Regional NICU hospitals at the beginning of my sample in 1991. These

numbers change during my sample period as deregionalization progressed through

the decade. Table 2.2 shows the number of hospitals by level and year between

1991 and 2001. The total number of hospitals providing any birthing services falls

from 296 in 1991 to 269 in 2001. In contrast, the number of Community NICUs

increases from 35 to a peak of 57 in 1999. 10 hospitals open new NICUs at the

Community level and 21 hospitals upgrade an Intermediate NICU to the Community

level. As a result of these upgrades, the aggregate number of Intermediate NICUs

actually decreases from 58 to 45 over the sample period; however, there are also

15 hospitals that open new NICUs at the Intermediate level. Not surprisingly, the

number of Regional NICUs, the largest, most well established, and most expensive

units, remains relatively constant over the sample period.

2.4 Empirical Framework

This section describes my empirical approach to estimating the effect of level

of neonatal care at the birth hospital on mortality. I first discuss an ordinary least

squares regression that estimates average mortality differences between infants born

in No NICU, Intermediate NICU, or Community NICU hospitals and those born

10I use the number of VLBW infants treated in 1991 to identify this classification to prevent
hospitals from changing levels due to changes in demand during my sample period.
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in Regional NICU hospitals, conditional on a rich set of control variables. This

estimation strategy is comparable to the methodology of the previous literature and

provides “risk-adjusted” mortality differences. I then discuss how these estimates

could be upwards or downwards if mothers choose hospitals based on unobserved

characteristics not included in the risk adjustment. Lastly, I discuss my instrumental

variables strategy to account for unobserved selection and estimate the causal effect

of level of care.

2.4.1 Baseline Model

I begin by estimating the average difference in mortality rates by level of care

at the delivery hospital, controlling for observable characteristics of the mother and

infant. The regression equation is as follows:

yizt = α +Niztβ
N + Iiztβ

I + Ciztβ
C + XiztΓ + εizt (2.1)

The unit of observation is infant i, whose mother resides in zip code z, born in year

t. The dependent variable, yizt, is a neonatal mortality indicator that is equal to one

if an infant dies within 28 days of birth or within one year if continually hospitalized

since birth, and zero otherwise.11 Xizt is a vector of observable determinants of infant

izt’s health. These controls include time (year, month, and day of week indicators);

mother’s demographics such as age, race, ethnicity, and insurance coverage;12 and

health related controls such as the infant’s sex, birth weight, and diagnoses.13

11In Section 2.6 I show that results are robust to measuring mortality across different time
frames.

12Specific demographic controls are age, age squared, and indicators for black, other race, His-
panic, Medicaid, HMO, and self-pay.

13Specific health controls are parity, sex, multiple birth status, an indicator for having a clinical
condition, indicators for small and large for gestational age, birth weight dummies at 100 gram
increments, the number of prenatal care visits, and the month in which prenatal care began.
The clinical condition indicator is equal to one for infants having at least one of the following
conditions identified in Phibbs et al. (2007): hydrops due to isoimmunization, hemolytic disorders,
fetal distress, fetus affected by maternal condition, oligohydramnios, other high-risk maternal
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The three explanatory variables of interest, Nizt, Iizt, Cizt, are indicators equal

to one if infant izt is born in a hospital with No NICU, an Intermediate NICU,

or a Community NICU, respectively. Being born in a hospital with a Regional

NICU is the excluded group, so the βj coefficients are interpreted as the difference

in mortality when born in a hospital with level of care j relative to being born in a

Regional NICU hospital.14

For this specification to estimate the causal effect of level of care on mortality,

hospital choice must be uncorrelated with unobserved determinants of mortality

captured by the error term, εizt, conditional on the observable characteristics, Xizt

(E [H′iztεizt|Xizt] = 0, where Hizt = [Nizt, Iizt, Cizt]). If this condition is not met,

and unobserved mortality, conditional on observables, is different for infants born

in hospitals with different levels of care the OLS estimates of the βjs will be biased.

If infants born in lower level hospitals are unobservably healthier (lower unobserved

mortality), consistent with physicians referring the highest risk mothers to Regional

NICU hospitals, OLS estimates will understate the true mortality difference between

being born in lower level hospitals and Regional NICU hospitals. On the other

hand, if infants born in lower level hospitals are unobservably less healthy (higher

unobserved mortality), consistent with more uninformed mothers choosing lower

levels of care and having higher risk infants, OLS estimates will overstate these

mortality difference.

Sample means by level of care in Table 2.3 show that there are clear uncon-

ditional differences in mortality rates by level of care at the hospital in which an

infant is born. Neonatal mortality rates fall from 21.9% for VLBW infants born

in No NICU hospitals, to 16.9% in Intermediate NICU hospitals, 15.5% in Com-

conditions, placenta hemorrhage, premature rupture of membrane, and prolapsed cord.
14It is important to point out that I am estimating mortality differences based on the hospital in

which the infant is born. This framework does not take into account whether or not the infant was
actually treated in the NICU or whether they were transferred to and treated in another hospital.
In this context, my estimates can be thought of as intent-to-treat effects.
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munity NICU hospitals, and 14.7% in Regional NICU hospitals. However, there

are also differences in important observable characteristics. OLS regressions control

for these observable characteristics, but these differences motivate the concern that

there may be differences in unobservable dimensions as well. Mothers’ demographic

characteristics differ by level of care, but not monotonically. For example, 9.8% of

mothers giving birth in No NICU hospitals, 20.5% in Intermediate NICUs, 12.8%

in Community NICUs, and 18.6% in Regional NICUs are black. The percentage

of mothers covered by Medicaid and the percentage without any college education

decreases substantially from No NICU, to Intermediate NICU, and to Community

NICU hospitals, but the percentage in Regional NICU hospitals is higher than the

percentage in Community NICU hospitals. These large differences indicate selection

into level of care by mothers’ demographics, but the direction of the selection is am-

biguous. Furthermore, these demographic characteristics are likely to be correlated

with mortality risks. For example, Singh and Kogan (2007) show persistent infant

mortality disparities by mothers’ education and socioeconomic status.

There are also clear patterns of selection on infant health characteristics. Con-

sistent with selection of healthier infants into lower levels of care, infants born at

lower levels are less likely to be multiple births, have slightly higher birth weight

and longer gestation, are less likely to have a clinical diagnosis, are less likely to be

small or large for their gestational age, and experience lower hospital charges and

shorter lengths of stay. Given the differences in observed characteristics by level of

care, there are likely differences in unobserved characteristics as well (Altonji et al.,

2005). Therefore, accounting for non-random selection is important, though the

direction of the bias is again unclear ex ante.
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2.4.2 Estimating Causal Effects

To understand the effects of deregionalization on VLBW infant outcomes, it is

necessary to estimate the causal effect of level of care on neonatal mortality. Because

OLS estimates may not be able to control for all determinants of mortality, I utilize

instrumental variables to overcome unobserved selection. With three endogenous

explanatory variables, at least three instruments are necessary to identify the em-

pirical model. I construct three instruments based on the distance from a mother’s

residence to each level of care, which I define in more detail below. For a 3 × 1

vector of instruments, Dzt, instrumental variables estimates of βN , βI , and βC will

be consistent if the instruments are uncorrelated with the error term in Equation

(2.1) (E[D′ztεizt|Xizt] = 0) and are strong determinants of the type of hospital a

mother chooses, conditional on the other observable characteristics. This second

condition is similar to saying that the coefficients on the instruments are non-zero

in the following set of first stage regression equations of each level of care indicator

on the vector of instruments and all other covariates:15

Nizt = δN + DztΠ
N + XiztΓ

N + µN
izt

Iizt = δI + DztΠ
I + XiztΓ

I + µI
izt

Cizt = δC + DztΠ
C + XiztΓ

C + µC
izt

(2.2)

Notation is as above with each Πj representing a vector of three first stage coeffi-

cients and each µj
izt representing a first stage error term.

The parameter estimates of Equation (2.2) are used to obtain the predicted

probability of choosing each level of care for each observation, and two stage least

squares (2SLS) estimates are computed by estimating Equation (2.1) with these

15More formally, it must be the case that the instruments are sufficiently linearly related to
Hizt that E[Z′

iztHizt] is of full column rank, where Zzt = [Dzt, Xizt]. It is also necessary for
the instruments to be sufficiently linearly independent so that E[Z′

iztZzt] has full column rank
(Wooldridge, 2001).
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predicted probabilities in place of the level of care indicators.16 Therefore, identi-

fication of βN , βI , and βC in Equation (2.1) comes from comparing mortality for

otherwise identical infants who are born at different levels of care because they

live at different distances from each level of care. For example, βC is identified

from differences in mortality outcomes between infants who are and are not born

in hospitals with Community NICUs because their mothers live within close or far

proximity to a hospital offering a Community NICU. Intuitively, this comparison

emphasizes the importance of the assumption that E[D′ztεizt|Xizt] = 0. In order

for instrumental variables to provide causal estimates, it is crucial that mothers

living at different distances from each level of care not have infants that differ in

unobserved determinants of mortality.

Since this strategy requires the location of NICUs to be exogenous to VLBW

infant health, it is worth briefly re-emphasizing the process by which NICUs have

diffused and discussing how mothers choose hospitals. Most importantly, diffusion

has been driven by many factors unrelated to the health of VLBW infants. Over time

the technologies and trained specialists necessary to operate NICUs became more

prevalent, and therefore, NICU adoption became feasible for community hospitals.

It has been hypothesized that so many hospitals adopted lower level NICUs in order

to compete for profitable obstetric patients (McCormick and Richardson, 1995).

Ninety-seven percent of births are covered by private or public insurance (Russell

16Both the dependent variable and the endogenous explanatory variables in this model are binary.
Bhattacharya et al. (2006) point out that two stage least squares can lead to inconsistent estimates
when the mean probability of the binary dependent variable is close to zero or one, or when there
is more than one endogenous binary treatment variable. They advocate a multivariate probit
model which assumes that the error terms from Equations (2.1) and (2.2) follow a multivariate
normal distribution. On the other hand, Angrist (2001) argues that linear models still provide good
approximations of average causal effects, parameter estimates directly correspond to the relevant
average treatment effects, and nonlinear models depend on the distributional assumptions and are
inconsistent if these assumptions are incorrect. Wooldridge (2001) points out that some of the
assumptions behind average treatment effects are not precisely true with binary outcomes, but
linear methods may still produce reasonable average treatment effect estimates. I have estimated
my OLS specifications with both probit and logit models and find marginal effects that are almost
identical to the OLS coefficient estimates presented in Section 2.5. Future work will verify that
the 2SLS estimates are not biased by the linear functional form.
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et al., 2007), so most families are shielded from the full cost of infant care. One way

for hospitals to compete for these patients is to invest in signals of quality, which

might attract risk-averse mothers. Hospitals are particularly motivated to attract

obstetric patients, since mothers are typically young, healthy, and likely to return to

the hospital for the later care of their families if they have a positive birth experience

(Friedman et al., 2002), and NICUs themselves can be profitable (Horwitz, 2005,

see online appendix).

Most preterm labor is spontaneous, and in 50% of cases, doctors are not even

able to determine the cause ex post. Forty to fifty percent of cases with an identified

cause are traced to an infection, but often mothers show no signs of these infec-

tions prior to labor.17 As detailed by an Institute of Medicine report, there are a

variety of documented correlates of preterm delivery. These correlates range from

behavioral factors such as tobacco use and nutrition, to psychosocial factors such as

stress, personal resources, and social support, to medical conditions of the mother

or pregnancy such as obesity or multiple births, to other factors such as exposure to

environmental toxins, genetics, etc. Interrelated with many of these characteristics,

there are demographic differences in preterm birth rates as well. Mothers at either

extreme of the age distribution, unmarried mothers, black mothers, and mothers

with low income or low educational attainment are all known to have higher rates

of preterm delivery. Despite these correlates, this report emphasizes that there is in

fact little understanding of what conditions and events can be used to predict and

diagnose preterm labor before it occurs (Behrman and Butler, 2007).

As a result of this unpredictability, a NICU is likely an effective tool for at-

tracting patients of all risk levels. Expectant mothers usually deliver in the hospital

where their obstetrician has delivery privileges, so they in effect choose their delivery

hospital when they choose their obstetrician early in their pregnancy. If risk-averse

17Source: www.marchofdimes.com/peristats, last accessed on September 29, 2009.
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mothers plan ahead when choosing their obstetrician and delivery hospital, the pres-

ence of a NICU is likely to factor into their decision. A mother likely considers travel

time, convenience for family members, perceived quality of care, and the possibility

of transfer if higher quality care is needed. If utility is increasing in perceived qual-

ity of care and decreasing in travel time, a community hospital with a NICU can

attract nearby mothers willing to trade additional perceived quality at a further Re-

gional NICU in favor of the increased convenience of choosing the nearby hospital.

Furthermore, if mothers tend to choose local obstetricians who are likely to have

priveldges in local hospitals, mothers will be more likely to choose nearby hospitals.

Of course, location relative to hospitals with NICUs is not the only deter-

minant of hospital choice. Phibbs et al. (1993) estimate hospital choice models

separately for high- and low-risk mothers and for publicly and privately insured

mothers within each risk category. Not surprisingly, overall, mothers prefer closer

hospitals, hospitals with higher quality, and hospitals with neonatal intensive care

units. Despite the fact that many high-risk deliveries are unexpected, the authors do

find some differences in hospital choices among high- and low-risk mothers. For ex-

ample, high-risk mothers prefer hospitals with higher measures of quality, including

higher level neonatal intensive care units. This finding is consistent with my sample

means above that find higher-risk infants born in hospitals with higher levels of care.

The authors also find some important differences in hospital choice between publicly

and privately insured mothers. While distance has a similar effect on hospital choice

for both groups, publicly insured mothers deliver in hospitals with worse health out-

comes and are less likely to deliver in hospitals with NICUs. These findings suggest

possible restrictions on access to care for publicly insured mothers.18

As discussed above, I restrict the sample to exclude Kaiser insured patients

18Additionally, during my sample period California began adopting Medicaid managed care plans
on a county by county basis. These plans potentially provide further restrictions on the hospitals
in which some Medicaid mothers can deliver.
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who have little choice of delivery hospital, but the findings of Phibbs et al. (1993)

suggest there are likely to be other groups with varying degrees of choice restrictions

including publicly insured patients. Patients with other managed care insurance are

likely to be restricted somewhat as well, though to varying degrees as compared to

Kaiser. That being said, the motives to compete for healthy, risk-averse mothers,

evidence that growth of neonatal resources has outpaced medical need, and findings

that the location of neonatal intensive care resources are uncorrelated with markers

of need such as occurrences of VLBW or preterm births (Goodman et al., 2001),

support the exogeneity of NICU location to VLBW infant health. In the next

subsection, I provide further evidence from my data supporting this claim. To the

extent that some patients have restricted choice, the only effect would be to weaken

the power of the instrument as long as these factors are not correlated with distance,

which appears to be the case.

It is important to point out that under the assumptions of the empirical model,

the instrumental variables estimates of βN , βI , and βC in Equation (2.1) are struc-

tural parameters and provide causal estimates of the effect of level of care at the

hospital of birth on infant mortality rates. In contrast, the first stage relationships

in Equation (2.2) are reduced form equations where the endogenous level of care

indicators are regressed on all of the model’s exogenous variables. These equations

do not necessarily provide structural parameters of the neonatal intensive care level

demand function.19

19As discussed above, one previous study has attempted to estimate hospital demand parameters
for delivery hospitals. Phibbs et al. (1993) estimate McFadden conditional logit models of hospital
choice, and their model includes features such as distance from a mother’s residence and presence of
a neonatal intensive care unit. Additional work in this area is left to future research, as estimating
such demand functions is important for understanding how mothers choose hospitals and why
hospitals choose to provide various levels of care. Additionally, many hospitals now advertise
heavily about not only the quality of care, but also amenities available for expectant mothers,
such as private rooms, jacuzzis, etc. Goldman and Romley (2008) find that Medicare pneumonia
patients in Los Angeles place a high value on non-medical amenities when choosing a hospital for
treatment. Such amenities may also be an important tool for hospitals competing for maternity
patients.
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2.4.3 The Instruments

In this section, I describe how I calculate the three distance instruments and

discuss why they are likely to be exogenous to unobserved VLBW mortality. I first

calculate the straight line distance from the center of each patient’s zip code of

residence to each hospital using GIS software. Hospital location is obtained from

OSHPD’s publicly available geocoded data of hospital latitude and longitude.20 I

then construct three instruments that represent the differential distance between

the nearest hospital of a given level of care or higher and the nearest hospital with

a Regional NICU, as follows:

NoDistzt = D(Regzt)−min[D(Nozt), D(Intzt), D(Comzt), D(Regzt)] (2.3a)

IntDistzt = D(Regzt)−min[D(Intzt), D(Comzt), D(Regzt)] (2.3b)

ComDistzt = D(Regzt)−min[D(Comzt), D(Regzt)] (2.3c)

The D(·) operator indicates the distance from zip code z at time t to the nearest

hospital offering a particular level of care. These measures can be thought of as the

number of miles saved by choosing the nearest hospital with at least a particular

level of care over the nearest hospital with the highest level of care, and therefore

get larger as an individual lives closer to a hospital offering the particular level of

care.

When using differential distance, the hospital choice decision is modeled as a

function of distance to each lower level of care relative to distance to Regional NICU

hospitals.21 It emphasizes the fact that mothers make a trade off when choosing a

lower level of care at a closer hospital – they forego potentially higher quality care

20OSHPD only provides this data for currently existing facilities. For those facilities for which
I do not have exact location, I use the center of the hospital’s zip code obtained in the OSHPD
State Utilization File of Hospitals.

21Cutler (2007) and McClellan et al. (1994) also use differential distance as their instruments
by subtracting distance to the nearest hospital from distance to the nearest hospital offering heart
surgery.
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in exchange for a shorter travel time.22 Also, these three measures will always take

on values greater than or equal to zero due to the min[·] operator in (2.3), and they

equal zero if an individual lives closer to a Regional NICU than one of the lower

levels of care. This specification captures the fact that if a hospital nearby offers a

particular level of care, a mother can also receive lower level care by traveling to the

same hospital.

These distances are not the only way one could specify exposure to NICUs. I

utilize this method to best proxy for the cost of obtaining each level of care; although,

one could also specify distance based on the distance to the nearest hospital of a

specific level of care (instead of the nearest hospital with a particular level or higher).

Other potential measures of exposure include hospital market shares or the number

of hospitals of each level within a given radius. I choose distance so as not to

impose potentially endogenous market definitions. As mentioned above, the goal is

not to estimate structural parameters of hospital choice, but instead to exploit the

exogenous variation in distance that directs patients to different levels of care.

Table 2.4 provides summary statistics of the four distance measures used to

construct the instruments and of the three instruments themselves. On average,

mothers of VLBW infants in my sample live 3.7, 5.7, 8.1, and 14.8 miles from the

nearest hospital offering any birthing services, at least Intermediate care, at least

Community care, and Regional care, respectively. The average number of miles

saved by traveling to the nearest hospital with no NICU or higher relative to the

nearest Regional NICU is 11.2. The average number of miles saved traveling to the

nearest hospital with at least an Intermediate NICU or at least a Community NICU

is 9.1 and 6.8 miles, respectively. These measures have wide variation, each with

22A model with four instruments based on distance to each of the four levels of care would
achieve the same goal, as it would condition on distance to the nearest Regional NICU in each first
stage regression. Using differential distance is equivalent to including all four distance measures
separately, but restricting the coefficient on the Regional distance variable. 2SLS results, not
shown here, without this functional form assumption are almost identical to those presented in
Section 2.5.
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standard deviations around 20 miles, or two to three times their means.

I now provide a set of summary statistics supporting the assumption that

differential distance is uncorrelated with the error term in Equation (2.1) and is

therefore independent of unobservable determinants of VLBW mortality. Table

2.5 lists sample means of observable characteristics by the three instruments. If a

detailed list of observable characteristics are independent of differential distance, it

is likely to be the case that unobservable characteristics are as well (Altonji et al.,

2005). For each instrument the table shows sample means for three groups: those

observations with zero differential distance and those with differential distance below

and above the median, conditional on non-zero differential distance.

The first three rows show that those individuals living in zip codes below the

median typically save between one and five miles by traveling to each of the three

lower levels of care, and those with values above the median save between 16 and

32 miles. Other than the proportion of mothers who are black, which is about twice

as large for observations at zero differential distance compared to individuals above

the median for all three instruments, mothers’ demographics show little variation

by distance. For example, the percent of mothers covered by Medicaid ranges from

48.3% to 52.1% for the Community distance groups. In contrast, this figure had a

gap of 13.6 percentage points between No NICU and Community NICU hospitals in

Table 2.3. Most importantly, infant health characteristics do not differ much across

distance groups. While the number of prenatal visits is slightly lower for those with

zero miles saved, the month prenatal care began is similar across groups and there

are no large differences in parity, multiple births, birth weight, or gestation.

Most individual observable characteristics do not appear to differ by distance,

but there may be other important characteristics that do. The bottom portion of the

table presents means of zip code level characteristics. These variables are collected

from the 2000 census and merged to the mother’s zip code of residence, and I
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present means treating each birth as an observation. Here, there are some potentially

important differences by differential distance as median household income increases,

percent urban decreases, and population density decreases across columns for each

distance variable.23

Despite these differences, the variation in differential distance is not driven

by population density alone. Figure 2.1 displays a map of California and plots

the location of Intermediate, Community, and Regional NICUs in 1991. The light

gray lines outline counties in the San Francisco Bay, Los Angeles Metro, and San

Diego Metro areas. NICUs are clearly clustered around these metropolitan areas,

but there does not appear to be any systematic difference in where each level of

care is located. The geographic distribution of the community distance variable at

its 1991 baseline is displayed in Figure 2.2, with Panel A showing the whole state

and Panel B zooming in on the five counties comprising the Los Angeles Metro area.

The lightest colored zip codes have no births in the VLBW sample and the other zip

codes are shaded by the three groups discussed above: those saving zero miles, and

those above and below the median conditional on non-zero differential distance. The

darker zip codes that have the largest differential distances, and are therefore closer

to Community NICU hospitals, are more likely to be in outlying areas, but there is

variation both within the major metropolitan areas and in the suburban areas with

many neighboring zip codes of varying distances. Figure 2.3 shows similar maps

plotting Intermediate distance.

Overall, summary statistics indicate that differential distance is uncorrelated

with most major observable demographic and infant health characteristics. To the

extent that any differences in urban concentration are not captured by the individual

controls, I examine the robustness of my results to the inclusion of zip code level

controls and estimate models with zip code fixed effects in Section 2.6.

23Cutler (2007) and McClellan et al. (1994) also find that areas with higher differential distance
to hospitals offering heart surgery are less urban.
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2.5 Results

Comparisons of sample means in Section 2.4 revealed unconditionally higher

neonatal mortality for VLBW infants born in hospitals with lower levels of care com-

pared to those born in Regional NICU hospitals. However, there are also important

differences in observable characteristics by level of care. This section estimates OLS

specifications of the effect of level of care on mortality controlling for these observ-

able characteristics and 2SLS estimates that account for any other unobservable

determinants of mortality that may be correlated with hospital choice.

2.5.1 OLS Estimates

Table 2.6 presents OLS coefficient estimates of βN , βI , and βC . Moving across

the columns, I progressively add control variables. To account for likely similarities

in health conditions and hospital choices at local levels, and because the instruments

vary at the zip code level when I estimate 2SLS models, standard errors of all

regression estimates in this chapter are clustered by zip code. This clustering allows

for arbitrary correlation of the error term within zip codes.

The estimates in Column 1 reflect the unadjusted mortality differences by

level of care with no additional covariates and replicate the differences in sample

means from Table 2.3. VLBW infants born in No NICU, Intermediate NICU, and

Community NICU hospitals are 7.2, 2.2, and 0.8 percentage points more likely to die,

respectively, than those born in Regional NICU hospitals. The Community NICU

coefficient is statistically significant at the 10% level and the other two coefficients

are statistically significant at the 5% level. Column 2 adds controls for long term

mortality trends in the form of year dummies and within year mortality cycles

in the form of eleven month-of-year dummies and six day-of-week dummies. The

estimated effect of being born in a hospital with a Community NICU increases to
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1.3 percentage points and is now statistically significant at the 5% level; the other

two estimates are similar to the previous column.

Column 3 adds controls for mother’s demographic characteristics. The coeffi-

cient estimates decrease from Column 2 but are still positive and precisely estimated.

Column 4 adds controls for the infant’s baseline health characteristics and prenatal

care. These covariates control for underlying health risk and are similar to controls

used in previous studies. This specification estimates “risk-adjusted” mortality dif-

ferences by level of care and will be treated as the baseline OLS estimates for the

remainder of the paper. Except for the No NICU coefficient, the estimates in Col-

umn 4 are slightly larger than those in the previous column, and the coefficients

imply that on average, infants born in hospitals with Community NICUs, Inter-

mediate NICUs, or No NICUs are 1.2, 2.1, or 5.0 percentage points more likely to

die than those born in hospitals with Regional NICUs, respectively. Relative to the

sample mean mortality rate of 15.7%, these coefficients imply effects of 7.6%, 13.4%,

and 31.8%, respectively.

OLS estimates lead to the conclusion that infants born in lower level hospitals

experience higher risk-adjusted mortality rates, confirming the previous literature.

Infants born in No NICU hospitals have the highest risk-adjusted mortality rate,

and most relevant to the trend towards deregionalization, infants born in Intermedi-

ate and Community NICU hospitals experience statistically and qualitatively higher

mortality rates than those born in Regional NICU hospitals. However, the finding

that the coefficient estimates are sensitive to controls implies that observed deter-

minants of mortality are correlated with level of care. The fact that the coefficient

estimates increase or decrease depending on which controls are added reinforces that

the direction of any selection is ambiguous. Evidence of selection on the observables

emphasizes the importance of accounting for any potential unobserved selection as

well.
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2.5.2 First Stage Estimates

This section presents the first stage estimates of the effect of distance on level

of care chosen specified in Equation (2.2). I provide evidence that the three distance

measures are strong instruments and further evidence that they satisfy the exclusion

restriction. Table 2.7 presents the results, building up to the baseline specification by

progressively adding controls across the columns for each outcome. The coefficient

estimates and standard errors show little to no change across columns. This finding

implies little correlation between distance and observable characteristics and further

supports the hypotheses that the instruments are uncorrelated with unobserved

characteristics as well.

Columns 4, 8, and 12, present the main first stage specifications with all

controls included. All of the first stage coefficient estimates are strongly statistically

significant and show the expected substitution patterns. Individuals living closer to

a particular level of care are more likely to choose that level of care and less likely

to choose the other levels of care. For example, a ten mile increase in ComDist,

associated with living ten miles closer to a Community NICU or higher, decreases the

probability of choosing a No NICU hospital and an Intermediate NICU hospital by

2.5 and 2.7 percentage points, respectively, and increases the probability of choosing

a Community NICU hospital by 7.4 percentage points.24 These coefficient estimates

are equivalent to 33%, 24%, and 31% changes relative to their respective level of

care indicator sample means. These are large effects given the standard deviations of

the distance instruments are around twenty. Qualitatively, distance is an important

determinant of the level of care a mother chooses.

Below the estimates in each panel I report F-Statistics testing the null that

24Though not a part of the estimation, there is implicitly a fourth relationship between the
probability of choosing a hospital with a Regional NICU and distance. While not shown in the
table, this same change decreases the probability of choosing a hospital with a Regional NICU by
2.2 percentage points, confirming the findings of Haberland et al. (2006) that lower level NICUs
divert high-risk births from Regional NICUs.
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the three distance coefficients are jointly equal to zero. The F-Statistics for the

main specifications with the full set of controls are 32.46, 44.56, and 38.35, all well

above the rule-of-thumb cutoff of 10 typically used to assess finite sample bias from

weak instruments. Additionally, the fact that each instrument is significant in all

three equations and has a particularly large coefficient estimate in the equation cor-

responding to its respective level of care, suggests that each of the three instruments

provide independent variation to identify the model.

2.5.3 2SLS Estimates

Table 2.8 reports the 2SLS results. Column 1 repeats the baseline OLS results

with all controls from Table 2.6. All three 2SLS coefficient estimates in Column

2 are substantially lower than their counterparts in Column 1. The coefficient of

the No NICU indicator decreases from 0.050 to -0.030, the coefficient of the Inter-

mediate NICU indicator decreases from 0.021 to 0.009, and the coefficient of the

Community NICU indicator decreases from 0.012 to -0.063. The No NICU and

Community NICU coefficient estimates actually change signs and the Intermediate

NICU coefficient estimate falls by half, but the standard errors increase by a factor

of between three and nine. The Community NICU coefficient estimate is marginally

statistically significant (at the 10% level), but neither of the other two estimates in

Column 2 are statistically significant.25

Despite the large standard errors, the 2SLS estimates are clearly different

from and bounded below the OLS estimates. First, I conduct a Hausman test of the

null hypothesis that both the OLS and 2SLS estimates are consistent against the

25One might be concerned that some of the infant health and prenatal care controls are endoge-
nous. This would be a concern if, for example, mothers who live close to Regional NICUs also
have access to higher quality prenatal care, or if hospitals with differing levels of care have differ-
ent propensities to diagnose various health conditions. To account for this, I also estimate 2SLS
regressions excluding this set of controls. The results are similar to those reported in Column 2
of Table 2.8 with coefficient (standard error) estimates of -0.021 (0.037), 0.014 (0.018), and -0.041
(0.042) for No NICUs, Intermediate NICUs, and Community NICUs, respectively.
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alternative that only the 2SLS estimates are consistent.26 The p-value of this test

is 0.031, so the null is rejected at the 5% significance level. This test implies that

the 2SLS coefficient estimates are statistically different from the OLS estimates and

provide more consistent estimates.

Second, even the upper bounds of the 2SLS estimates imply much lower quan-

titative and qualitative effects on mortality than the OLS estimates, at least for the

No NICU and Community NICU coefficients. Figure 2.4 plots the OLS and 2SLS

coefficient estimates scaled by mean neonatal mortality. It also plots one and two

standard deviation intervals above the 2SLS coefficient estimates. The OLS coeffi-

cient estimate of the No NICU coefficient implies 31.8% higher mortality relative to

being born in a Regional NICU hospital. The 2SLS coefficient estimate is large and

negative, one standard deviation above the 2SLS coefficient estimate is still below

zero, and even two standard deviations above implies an effect of 17.9% – 44% lower

than the OLS estimate. Similarly, one standard deviation above the Community

NICU coefficient estimate is still far below zero, and two standard deviations above

implies an effect of 4% – 46% lower than the OLS effect of 7.4%. One standard

deviation above the Intermediate NICU 2SLS coefficient estimate is above the OLS

estimate, but the point estimate is still 55% lower than the OLS point estimate.

The 2SLS estimates are not statistically different from zero and are small in

magnitude compared to OLS estimates. This finding provides evidence that the OLS

estimates of higher mortality at the three lower levels of care relative to Regional

NICU hospitals are overstated. The dominant form of selection is unobservably

higher risk births occurring in lower level hospitals. These results imply that policy

26The usual Hausman test also assumes that the OLS estimates are efficient under the null
hypothesis. However, clustered standard errors result in a covariance matrix that is not asymptot-
ically efficient. Therefore, I construct the Hausman test statistic using a paired bootstrap strategy
that samples at the zip code level. My sample has 1,144 zip codes, so I construct 5,000 random
samples of my data that each draw 1,144 zip codes with replacement. For each bootstrap sample,
I run my OLS and 2SLS regressions and save the coefficient estimates. I then construct the esti-
mated variance-covariance matrix of the difference between the OLS and 2SLS coefficients based
on the distribution of these 5,000 estimates. See Cameron and Trivedi (2005, p. 378) for details.
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measures aimed at reversing the effects of deregionalization are likely to have a

limited impact on mortality. Relocating mothers who would have chosen to give

birth in lower level hospitals to Regional NICU hospitals prior to birth would not

improve mortality rates because the relocated deliveries would be from the less

healthy portion of the distribution.

It is important to emphasize that I am estimating how the level of care at the

hospital in which an infant is born impacts mortality. My results do not imply that

being treated in a hospital with a higher level NICU has no effect on outcomes. In

fact, a likely mechanism behind my results is that infants born in hospitals with

lower levels of care achieve similar outcomes to those born in hospitals with higher

levels of care because the former group will be transferred to a higher level hospital

after birth if necessary. In my sample 66% of VLBW infants born in hospitals with

No NICUs or Intermediate NICUs are transferred to a higher level hospital after

birth, and 85% of those that are transferred are sent to a Regional NICU hospital.

In order to explore whether the probability of transfer is systematically im-

pacted by distance, I regress an indicator for whether or not an infant is transferred

to a Regional NICU hospital on the three distance instruments for the sample of

VLBW infants born in No NICU or Intermediate NICU hospitals. To run this

regression, I select the sample based on an endogenous variable, but statistically

insignificant coefficients on the three distance instruments would suggest that hos-

pitals do not selectively transfer infants based on distance. In other words, this kind

of finding would imply that transfers occur when medically necessary and are not

impacted by where a mother lives in relation to where NICUs are located.

Results of this regression do reveal a positive and statistically significant co-

efficient of 0.029 on the No NICU distance variable, but the coefficient estimates

on the other two distance instruments are very small and statistically insignificant

(-0.00008 and 0.008, respectively). The positive coefficient on No NICU differen-
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tial distance implies that as a mother lives closer to a hospital with No NICU or

higher or farther from the nearest Regional NICU, her infant is more likely to be

transferred to a Regional NICU. When I instead regress the transfer indicator on

all four distance measures instead of the three differential distance measures, I find

that this coefficient is being driven by the distance to the nearest Regional NICU

hospital. This finding is likely a result of using the selected sample of infants born

in No NICU or Intermediate NICU hospitals. Infants of mothers who live close to

Regional NICU hospitals, but choose not to deliver in the Regional NICU hospital

are likely to have healthier infants and less medical need for transfer. Overall, these

results suggest that I find no gradient between level of care at the birth hospital

and mortality because VLBW infants are transferred to hospitals with higher levels

of care when medically necessary, and the location of lower level NICUs does not

change the probability of eventually being treated in a hospital with a higher level

NICU.

2.6 Robustness Tests

In this section I further test the assumptions that lead to my conclusions and

explore the robustness of my findings to various alternative specifications. I also

examine whether the effect of level of care on mortality differs among different sub-

samples of the VLBW infant population and discuss implications of local average

treatment effects.

2.6.1 Additional Tests of Instrument Validity

The distance instruments are motivated by the supposition that NICUs are not

located according to medical need and are likely adopted to attract low-risk obstetric

patients. Table 2.9 provides further evidence of this hypothesis by presenting “first
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stage” estimates of the effect of distance on mothers’ hospital choice for infants above

the VLBW threshold. I display estimates for low birth weight infants (1,500 to 2,500

grams or 3.3 to 5.5 pounds), those just above the low birth weight cutoff (2,500 to

3,000 grams or 5.5 to 6.6 pounds), and the remaining normal birth weight group

(3,000 to 4,500 grams 6.6 to 9.9 pounds).27 Distances are strong predictors of level

of care for these samples, and the coefficient estimates and F-Statistics actually

increase in absolute value as birth weight increases. This evidence supports the

anecdotes that NICUs attract all mothers and the assumption that NICU location

is exogenous to the unobserved determinants of VLBW mortality.

As a final test of the validity of the instruments, I estimate reduced form re-

gressions of the effect of the distance instruments on neonatal mortality, and examine

their sensitivity to the addition of controls. The stability of the first stage estimates

in Table 2.7 provides evidence in favor of the exclusion restriction. A similar exercise

for the reduced form estimates provides a sharper test because it provides evidence

on how observable characteristics are correlated with the portion of distance that

predicts neonatal mortality. If selection on the unobservables is similar to selection

on the observables, and the reduced form estimates are insensitive to controls, the

exclusion restriction that E[D′ztεizt|X] = 0 is likely to hold.

Table 2.10 presents the results. The first column includes no controls, the

second column adds time dummies, and the final two columns add demographic

and health characteristics. The estimates are quite stable across specifications. The

NoDist and IntDist coefficient estimates change slightly as controls are added,

but they are quite small and statistically insignificant across all four columns. The

ComDist coefficient estimate is very stable across specifications and in the final

column is estimated as a statistically significant -0.004.

These reduced form point estimate are also small in magnitude. For example,

27All samples are subject to the same restrictions described in Section 2.3.
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a one standard deviation change in miles saved to the nearest Community NICU or

higher (18.4 miles) only leads to a 0.8 percentage point decrease in mortality. As a

comparison, a one standard deviation increase in mother’s age (6.9 years) reduces

mortality by 4.5 percentage points, and a one standard deviation increase in number

of prenatal care visits (6.1 visits) reduces mortality by 1.8 percentage points. An

increase in birth weight from the category just below the mean (900 to 999 grams)

to the category just above the mean (1,000 to 1,099 grams) decreases mortality by

3.9 percentage points. All of these effects are much larger in magnitude than the

effects of distance on neonatal mortality. These quantitatively and qualitatively

small reduced form estimates are consistent with the small 2SLS estimates of the

effect of level of care on mortality. 2SLS estimates scale the reduced form estimates

by the size of the effect of distance on hospital choice. If distance affects the level of

care chosen but not mortality, level of care cannot affect mortality for the population

that chooses level of care as a result of distance.

2.6.2 Alternative Specifications

2.6.2.1 Zip Code of Residence Controls

Sample means by differential distance in Table 2.5 showed that individuals

living closer to each of the three lower levels of care relative to Regional NICU

hospitals live in zip codes with lower population density and higher income. Though

I control for many individual level covariates in my main results, if these zip code

level characteristics are conditionally correlated with distance and infant health,

2SLS estimates would be biased. Therefore, I test the robustness of my estimates

to controlling for zip code level population density; percent black; percent Hispanic;

percent of the population over 25 with no college, some college, a college degree,
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and more than a college degree; and median household income.28

Additionally, distances may factor into the hospital choice decision differently

in urban and suburban areas. For example, five miles in downtown Los Angeles may

have a much different travel time than five miles in a suburban area. Furthermore,

hospitals are located closer to each other in more urban areas than less urban areas.

Using differential distance and controlling for all three distance variables captures

some of these features, but the fist stage regression may have more predictive power

if the effect of distance is allowed to vary with population density. I therefore

estimate models with interactions of the distance measures and zip code population

density added to the instrument set.

Table 2.11 presents first stage estimates with the baseline specification re-

peated in Panel A. In this table each row lists coefficient estimates from one first

stage regression. When zip code level controls are added in the first three rows

of Panel B, the magnitudes of the first stage coefficient estimates change slightly,

but they are very similar, highly statistically significant, and the F-Statistics are of

similar magnitudes to Panel A. The second portion of Panel B interacts the distance

instruments with population density. The coefficient estimates of the three distance

measures decrease a bit in magnitude, but are still highly statistically significant.

The density interactions are almost all statistically significant with positive diagonal

elements and negative off diagonal elements, matching the pattern of signs of the

distance main effects. Thus, the effect of distance becomes stronger as population

density increases, as would be expected if travel times are longer or travel is more

expensive in more densely populated areas. The three added instruments result

in similar F-Statistics for the No NICU and Intermediate NICU regressions, but a

lower F-Statistic in the Community NICU regression that is still well above 10.

The corresponding panels of Table 2.12 present the OLS and 2SLS squares

28All zip code level variables are calculated from the 2000 Census. Unfortunately, the 1990
census does not provide comparable data at the zip code level.
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results, with each row listing coefficient estimates from one regression. The OLS

and 2SLS coefficient and standard error estimates in specifications controlling for zip

code level characteristics are very similar to the baseline estimates. Controlling for

differences between urban and suburban zip codes does not impact the results. The

last row of Panel B presents results when the instrument set includes interactions

with population density. The standard errors of these estimates are very similar

to the specification with zip code level controls and the baseline specification; how-

ever, the coefficients all move towards zero and none are statistically significant. If

anything, allowing the effect of distance to differ with population density results in

point estimates that are even closer to zero.

2.6.2.2 Zip Code of Residence Fixed Effects

Next, I estimate models with zip code of residence fixed effects to control for

any other characteristics that are constant within a zip code, but not accounted

for by the census data controls. Identification with these fixed effects comes from

changes over time in a zip code’s distances to each level of care caused by new,

upgraded, or closed NICUs nearby during the sample period. Thus, the variation

in distance is directly driven by deregionalization during the sample period. 25%

of the VLBW sample lives in a zip code that at some point between 1991 and 2001

experiences a change in Intermediate Distance, and the average change is 4.5 miles.

32% lives in a zip code that experiences a change in Community Distance, and the

average change is 3.9 miles. Figure 2.5 maps zip codes that become no closer, slightly

closer (changes below the median), and much closer (changes above the median) to

Community NICUs, with Panel A showing the whole state and Panel B focusing

on the Los Angeles metro area. Zip codes with large changes in distance are more

likely to be in outlying areas, but there are many neighboring zip codes experiencing

different changes in both urban and suburban areas. Figure 2.6 shows similar maps
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for Intermediate distance.

With fixed effects the instruments are valid if zip code level changes in distance

are uncorrelated with zip code level changes in unobserved mortality.29 Even if zip

codes at different distances differ systematically, identification will only be threat-

ened if unobserved mortality trends are conditionally correlated with changes in

distance. Figure 2.7 shows that at least trends in mean observable demographic and

underlying health variables do not systematically differ between zip codes experi-

encing different changes in distance. This finding of parallel trends is not surprising

given the evidence that deregionalization has not been driven by the health needs

of high-risk infants.

Panel C of Tables 2.11 and 2.12 show first stage and second stage results with

zip code fixed effects, respectively. The instruments are still strong predictors of level

of care chosen with large, positive, and statistically significant coefficients along the

diagonal. The F-Statistics are lower than in the cross sectional specifications, but

they are all above 16 without population density interactions and above 11 with

the interactions. OLS results in Table 2.12 are similar to the cross sectional results.

The 2SLS estimates are again not statistically significant. The fixed effects lead to

much larger standard errors and more negative point estimates of the No NICU and

Community NICU coefficients, but the qualitative results are similar: negative or

small point estimates, indicating no difference in mortality outcomes by level of care

at the birth hospital. When the instruments are allowed to vary with population

density, the negative point estimates of the No NICU and Community NICU coef-

ficients are cut by about two thirds and move towards zero as in the specifications

without fixed effects. These specifications confirm that the main results are robust

to the most complete possible controls for local characteristics. They also show

that the cross sectional 2SLS specifications estimate similar effects to specifications

29Formally, the assumption is E[D̈′
ztε̈izt|Ẍizt] = 0, where the dots indicate variables in deviation-

from-zip-code-mean-form.
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identified directly from changes in distance related to deregionalization.

2.6.2.3 Pooling No NICUs and Intermediate NICUs

I also estimate models where I pool No NICU and Intermediate NICU hospitals

into one category. Only 7.6% and 11.1% of the VLBW sample are born in these two

types of hospitals, respectively. Thus combining them into one group may provide

more precision. Additionally, some of the first stage predictions of these indicators

are outside the unit interval. Pooling these two groups reduces the percentage of

observations with at least one of their first stage predictions outside the unit interval

from 12.8% to 2.7%.

It is also likely medically reasonable to pool these two groups. Neither of

these types of hospitals is designed to care for VLBW infants, and neither provides

mechanical ventilation. Additionally, infants born at both levels of care have very

similar transfer patterns. About 60% of VLBW infants born at these two levels of

care are transferred to Regional NICUs. In contrast, only 20% of infants born in

Community NICU hospitals are transferred to Regional NICUs. Given the likely

similarity of care, it is not surprising that a χ2 test that the 2SLS No NICU and

Intermediate NICU coefficient estimates from the main specification are the same

does not reject the null hypothesis (p-value=0.24).

Panel D of Tables 2.11 indicates that distance is still a strong predictor of level

of care with even larger F-statistics than in the original estimation. In Panel D of

Table 2.12 OLS estimates are as expected, with a similar Community NICU coef-

ficient estimate to the baseline specification and coefficient estimates of the pooled

No/Intermediate NICU coefficient between the original No NICU and Intermedi-

ate NICU coefficient estimates. The precision gains in the 2SLS estimates are not

large, but the point estimates are closer to zero, and none of them are statistically

significant negative estimates.
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2.6.2.4 Alternative Control Variables and Clustering

Table 2.13 presents estimate from six other alternative specifications, with the

baseline specification repeated in Column 1. Columns 2 through 5 test whether the

results change of I include various different health related controls. Column 2 adds

an indicator for whether the infant was delivered by cesarean section or not. I do

not include this control in the main specification because, as a treatment decision,

it may be endogenous to the level of neonatal intensive care at the birth hospital.

Despite this concern, adding it as a control variable does not appreciably change

the OLS or 2SLS estimates. Column 3 and 4 provide evidence that my results are

not sensitive to how I control for birth weight. In these two columns, I interact

the birth weight indicators with the male dummy and re-specify the birth weight

indicators in 50-gram increments instead of 100-gram increments, respectively. Both

alternative specifications lead to OLS and 2SLS estimates that are similar to the

baseline estimates. Column 5 replaces the dummy indicating whether an infant has

any of the defined clinical conditions with a full set of indicators for each of the nine

different conditions.30 Again, the results are quite similar to the baseline estimates.

The last two columns of Table 2.13 explore whether the standard error esti-

mates change if the level of clustering is changed. To this point, standard error

estimates have been clustered at the zip code level to allow unobserved mortality to

be correlated within zip codes. Column 6 allows for more conservative geographic

correlation by clustering at the HSA (Hospital Service Area) level. These HSAs are

collections of zip codes for which most of their Medicare patients receive care from

the same hospital.31 While these areas are calculated only with Medicare patients,

they are likely good proxies for general health care markets. My sample includes

30The nine conditions include hydrops due to isoimmunization, hemolytic disorders, fetal dis-
tress, fetus affected by maternal condition, oligohydramnios, other high-risk maternal conditions,
placenta hemorrhage, premature rupture of membrane, and prolapsed cord (Phibbs et al., 2007).

31Source: http://gonzo.dartmouth.edu/faq/data.shtm, last accessed May 17, 2010.
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1,144 zip codes which are grouped into 192 HSAs. The standard error estimates

remain virtually unchanged when clustering at this larger geographic level. If any-

thing the 2SLS estimate of the community NICU coefficient becomes a bit more

precise.32 Column 7 clusters standard errors by hospital instead of by geography.

Allowing unobserved mortality to be correlated within hospitals does slightly inflate

the standard errors beyond those allowing unobserved mortality to be correlated

within geographic areas.

2.6.2.5 Alternative Mortality Measures

Results to this point indicate that OLS estimates overstate differences in

neonatal mortality by level of care. This definition of mortality includes all deaths

within 28 days of birth or within one year if an infant is continuously hospitalized

since birth. It may be the case that results differ for shorter or longer term measures

of mortality. In Table 2.14 I present OLS and 2SLS estimates of the effect of level

of care on 1-day, 28-day, and 1-year mortality, regardless of hospitalization time.

In general results are similar to the baseline specification, repeated in Column 1.

OLS estimates reveal higher mortality in lower level hospitals. The point estimates

increase as the mortality window increases, but increases in the mean mortality rate

as the window lengthens imply the relative magnitudes are similar for each outcome.

For all three additional mortality outcomes 2SLS estimates are well below the OLS

estimates and statistically insignificant. The finding that OLS estimates overstate

differences in mortality is robust to these alternative outcome measures.

32Unreported estimates reveal very similar standard error estimates when clustering at the
county level. As a caveat, the asymptotics for clustered standard errors require the number of
clusters to approach infinity while the cluster size is fixed. There are only 39 counties in the data,
so this specification has a small number of large clusters.
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2.6.3 Heterogeneity and Local Average Treatment Effects

Throughout the paper I have assumed a homogeneous effect of level of care on

mortality for all VLBW infants. However, it is possible that the effect may vary by

the infant’s characteristics. This is particularly important with instrumental vari-

able estimates because they only estimate the impact of level of care on mortality

for the sub-group of infants whose mothers choose level of care based on the in-

struments. If these “compliers,” who choose their level of care because of distance,

are different from the rest of the sample, these estimates will represent a local av-

erage treatment effect (LATE) (Angrist et al., 1996; Imbens and Angrist, 1994). I

cannot directly observe the compliers in my data, but one might be concerned that

the 2SLS estimates are driven by a particular group of observations if these com-

pliers differ from the general population. I therefore estimate my OLS and 2SLS

regression equations on various sub-samples based on observable characteristics to

ensure the estimates are not being driven by any particular groups. Understanding

any heterogeneity in this effect is also important for policy implications. If there

are sub-groups for whom there is a gradient between level of care and mortality,

interventions may be warranted to target these specific groups and ensure they are

able to deliver in higher level hospitals.

Table 2.15 presents results for various subsamples with the baseline estima-

tion from Table 2.8 repeated in Column 1. Overall, the OLS and 2SLS coefficient

estimates are similar across all reported sub-groups. OLS estimates are positive

and statistically significant, and 2SLS estimates are small and mostly statistically

insignificant. Column 2 shows the results for infants of Hispanic mothers. The

2SLS estimate of the effect of being born in an Intermediate NICU hospital (0.025)

is close to the OLS coefficient estimate (0.028) for this group, but still statistically

insignificant. The other two 2SLS coefficient estimates are negative, statistically

insignificant, and similar to the baseline sample.
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Column 3 excludes infants of black mothers from the estimation. Infants with

black mothers make up a small subset of the sample, so I do not estimate the re-

gressions for them alone, but excluding them does not have much effect on the

estimates. This sample also provides a useful robustness check because of the differ-

ence in percent black by differential distance reported in Table 2.5. The estimates

for the population of infants with mothers covered by Medicaid in Column 4 are

similar to the baseline specification, indicating the results are similar by insurance

coverage. The sample of infants whose mothers have no college education in Column

5 has a 2SLS Intermediate NICU coefficient that is the same as the OLS estimate

(0.027), but again it is not statistically significant and the other 2SLS coefficient

estimates are negative.

In the previous section I show the results are robust to controlling for popula-

tion density and allowing the effect of distance to differ by population density. One

might also be concerned that the results are driven by either urban or suburban

areas, which I address in Column 6. This column presents estimates for the sub-

sample whose zip code population density is below the median. Again, the 2SLS

coefficient on being born in an Intermediate NICU hospital (0.022) is similar to the

OLS coefficient (0.028), but the other estimates are similar to the baseline spec-

ification, indicating the results are similar for individuals in urban and suburban

areas.

Finally, the effect of level of care may have changed over time. Mortality rates

for VLBW infants decreased during the early 1990s, but leveled off during the latter

part of the decade (Horbar et al., 2002).33 Also, Table 2.2 shows that the diffusion

of NICUs leveled off during the second half of the decade. It is possible that the

gradient between level of care and mortality changed during this time period if

technology improved, if new NICUs improved over time due to learning, or if the

33In my sample, mean neonatal mortality fell from 20.08% to 14.80% between 1991 and 1995,
but only fell to 13.62% by 2001.
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propensity for lower level units to transfer infants to higher levels changed over

time. Column 7 presents results for births occurring during the first half of the

sample from 1991 to 1995. The OLS gradient between level of care is greater during

this time period as compared to results for the full time period, but because mean

mortality was higher during the earlier period, the relative effects are similar. The

2SLS estimates are similarly small and statistically insignificant as compared to the

baseline estimation. There is no evidence of a differential effect of level of care on

mortality over time.

Despite evidence that the effect of level of care on mortality does not vary by

observable characteristics, there still may be unobserved heterogeneity. If there are

heterogeneous treatment effects that vary by unobservables, 2SLS would estimate a

LATE for a group of compliers that are not identifiable in the data. That being said,

because the compliers are the infants whose mothers choose their delivery hospital

based on distance, the LATE would in fact be the policy relevant effect. Even if

the 2SLS estimates do not represent the effect of level of care on mortality for the

entire population, they still imply that the population that would be impacted by

policy measures regarding the geographic distribution of NICUs does not experience

different mortality rates by level of care.

2.6.4 Sample Selection

In this section I ensure that my estimates are not sensitive to the sample

restrictions discussed in Section 2.3. The first column of Table 2.16 repeats the

estimates from the main specification in Table 2.8. Columns 2 through 5 report

results including various groups that were excluded from the main analysis sample.

Column 2 includes infants in the most rural counties, Column 3 includes infants

born in Kaiser hospitals, Column 4 includes infants diagnosed with a congenital

anomaly, and Column 5 includes fetal deaths.
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These estimates reveal that the OLS and 2SLS estimates are not appreciably

affected by these sample restrictions. If anything, including rural residents results

in 2SLS estimates that are closer to zero, although excluding these observations

is still probably best, since they are likely to live furthest from all hospitals and

may be unobservably different from those living close to all hospitals. Including

deliveries in Kaiser hospitals has little effect on the estimation as well. Results

of first stage regressions for this sample alone, not shown here, reveal that these

added observations do not choose hospitals based on distance; therefore, they do

not contribute to the 2SLS estimates, so it is not surprising that the results are not

affected by including them.

Including infants with congenital anomalies leads to higher coefficient esti-

mates in the OLS specification, but similar 2SLS estimates to the baseline specifica-

tion. Finally, including observations of infants who die before delivery approximately

doubles the magnitude of both the OLS and 2SLS coefficient estimates. The mean

mortality rate for this sample is almost twice that of the main analysis sample, so

the relative effects are very similar. This finding indicates that differences in level

of care do not differentially impact the probability of death prior to delivery.

2.7 Conclusion

This chapter estimates the causal effects of level of neonatal intensive care at

the birth hospital on VLBW mortality. The issue of deregionalization – the increas-

ing number of smaller, community hospitals opening NICUs – has gained attention

in the health policy community. Evidence of higher risk-adjusted mortality rates

for VLBW infants born in hospitals with lower level NICUs has led advocates to

suggest high-risk mothers be referred to more sophisticated hospitals prior to de-

livery. However, these estimates could be biased in either direction by unobserved

selection. To overcome selection concerns, I utilize an instrumental variables strat-
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egy that exploits exogenous variation in distance from a mother’s residence to the

nearest hospital of each level of care. NICU location has been driven by factors

unrelated to the health of VLBW infants, and I provide evidence in my data that

distance is uncorrelated with health conditions.

My OLS estimates confirm the previous literature and imply 7.6%, 13.4%, and

31.8% higher risk-adjusted mortality rates for VLBW infants born in Community,

Intermediate, and No NICU hospitals, respectively, relative those born in Regional

NICUs hospitals. However, my instrumental variables estimates imply that these

mortality differences are overstated. 2SLS estimates are not statistically different

from zero and are small in magnitude. The No NICU and Community NICU 2SLS

coefficient estimates are bounded well below their OLS counterparts, with even

two standard deviations above the 2SLS estimates lying about 50% below the OLS

estimates. The Intermediate NICU 2SLS coefficient estimate is not clearly bounded

below the OLS estimate, but the point estimate is half the magnitude. My results are

robust to controlling for zip code level characteristics and zip code level fixed effects.

I also find no evidence that the effect of level of care on mortality is heterogeneous

by demographics. Even if the effect varies on other unobservable dimensions, any

unobserved heterogeneity would lead to a local average treatment effect directly

identified from infants impacted by deregionlization.

The fact that the 2SLS estimates are below the OLS estimates, reveals that

mothers with higher unobserved risk select into hospitals with lower levels of care.

In terms of mortality, these results imply that relocating high-risk deliveries to

Regional NICU hospitals prior to birth will not result in improved health outcomes.

Instead, Regional hospitals would be treating new patients with higher unobserved

acuity. I also show evidence that level of care at the birth hospital does not impact

mortality because infants born in No NICU and Intermediate NICU hospitals are

often transferred to Regional NICU hospitals, and these transfers are independent

56



of how close mothers live to lower level facilities. Deregionalization does not appear

to prevent infants born in No NICU or Intermediate NICU hospitals from eventually

receiving care in Regional NICUs.

This analysis has addressed the first-order question of how deregionalization

has impacted VLBW mortality. Future research is needed to understand the full

welfare impacts of this trend. First, while mortality may not vary by level of care

at the birth hospital, there may be important differences in cost of care. If larger

hospitals achieve economies of scale, they may be more efficient in treating sick

infants. Inter-hospital transfers may also be costly, both monetarily and emotionally.

Alternatively, more sophisticated facilities may provide more costly procedures with

little marginal return. Second, there may be important effects of deregionalization

on quality and cost of care for healthier infants. Chapter 3 examines one aspect of

this question and finds that additional short term NICU supply leads to a higher

probability of NICU admission for infants above the very low birth weight threshold.

Third, if mothers value shorter travel time and more convenient visitation of

family members, access to at least some level of intensive care at nearby hospitals

may increase utility. Also, more competition in the neonatal intensive care market

may lead to lower prices. Ho et al. (2007) study the market for Whipple surgery,

a treatment for pancreatic cancer, and find that regionalizing this treatment by

consolidating it to the hospitals with the highest volume leads to substantial price

increases.34 Finally, further research is warranted to understand the determinants

of NICU adoption by hospitals and whether hospitals are able to recoup their fixed

costs by attracting profitable patients.

34These authors do find that regionalization of Whipple surgery can reduce mortality, but price
increases cancel out over half of the increased consumer surplus.
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Figure 2.1: NICU Location by Level of Care in 1991

Notes: The light gray lines outline counties in the San Fransisco Bay, Los Angeles Metro, and San
Diego Metro areas. See text for definitions of the levels of care.
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Figure 2.2: Miles Saved to Nearest Community NICU or Higher, 1991

(a) Full State (b) LA Metro Area

Notes: These figures shade zip codes based on the number of miles a mother living at the center of the zip code saves by choosing the nearest
Community NICU or higher over the nearest Regional NICU. Zip codes shaded in white indicate no very low birth weight births in my analysis
sample. Remaining zip codes are divided into three groups: those saving zero miles, and those above and below the median conditional on non-zero
differential distance. The dark lines in Panel A outline counties in the San Fransisco Bay, Los Angeles Metro, and San Diego Metro areas.
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Figure 2.3: Miles Saved to Nearest Intermediate NICU or Higher, 1991

(a) Full State (b) LA Metro Area

Notes: These figures shade zip codes based on the number of miles a mother living at the center of the zip code saves by choosing the nearest
Intermediate NICU or higher over the nearest Regional NICU. Zip codes shaded in white indicate no very low birth weight births in my analysis
sample. Remaining zip codes are divided into three groups: those saving zero miles, and those above and below the median conditional on non-zero
differential distance. The dark lines in Panel A outline counties in the San Fransisco Bay, Los Angeles Metro, and San Diego Metro areas.
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Figure 2.4: Coefficient Estimate Magnitudes

Notes: This figure plots the OLS and 2SLS coefficient estimates from Table 2.8 divided by mean
neonatal mortality (15.7%). The dashed points indicate one and two standard deviation intervals
above the 2SLS coefficient estimates.
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Figure 2.5: Changes in Community Distance, 1991 to 2001

(a) Full State (b) LA Metro Area

Notes: These figures shade zip codes based on changes from 1991 to 2001 in the number of miles a mother living at the center of the zip code saves by
choosing the nearest Community NICU or higher over the nearest Regional NICU. Zip codes shaded in white indicate no very low birth weight births
in my analysis sample. Remaining zip codes are divided into three groups: those that become no closer, slightly closer (changes below the median),
and much closer (changes above the median). The dark lines in Panel A outline counties in the San Fransisco Bay, Los Angeles Metro, and San Diego
Metro areas.
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Figure 2.6: Changes in Intermediate Distance, 1991 to 2001

(a) Full State (b) LA Metro Area

Notes: These figures shade zip codes based on changes from 1991 to 2001 in the number of miles a mother living at the center of the zip code saves
by choosing the nearest Intermediate NICU or higher over the nearest Regional NICU. Zip codes shaded in white indicate no very low birth weight
births in my analysis sample. Remaining zip codes are divided into three groups: those that become no closer, slightly closer (changes below the
median), and much closer (changes above the median). The dark lines in Panel A outline counties in the San Fransisco Bay, Los Angeles Metro, and
San Diego Metro areas.
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Figure 2.7: Demographic and Health Trends by Changes in Distance

(a) Demographics by ∆ IntDist (b) Demographics by ∆ ComDist

(c) Health Characteristics by ∆ IntDist (d) Health Characteristics by ∆ ComDist

Notes: These figures plot means of mothers’ demographic and infants’ health characteristics by
changes in differential distance to Intermediate and Community NICUs. Observations are divided
into three groups based on whether the zip code of residence becomes no closer, slightly closer
(changes below the median), or much closer (changes above the median) to the respective level of
care between 1991 and 2001. N=42,912.
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Table 2.1: Detailed Level of Care Definitions

Level Care Provided

I Basic neonatal care for healthy infants
No Intensive Care Unit

II Have an intensive care unit
Care for midly ill infants
Do not provide mechanical ventilation

IIIA Provide mechanical ventilation with restrictions
(e.g., only for less than 96 hours, or only for infants
weighing above 1,000 grams)

IIIB Provide mechanical ventilation without restrictions

IIIC Provide major neonatal surgery excluding cardiac surgery requiring
bypass and/or extracorporeal membrane oxygenation (ECMO)

IIID Provide cardiac surgery requiring bypass and/or ECMO

Notes: Level of neonatal care definitions from Phibbs et al. (2007). There are three ICD-9 CM
codes indicating mechanical ventilation: <96 hours, >96 hours, and duration unknown. Hospitals
with NICU beds that do not have occurrences of any of these codes are labeled as Level II. In
distinguishing between Level IIIA and IIIB, Phibbs et al. (2007) count units that never provide
ventilation for more than 96 hours as IIIA. For units that provide both types but do not provide
any surgery, they examine the patterns of ventilation by duration and birth weight to distinguish
which appear to have restrictions.
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Table 2.2: California Obstetric Hospitals by Year and Level of Care

No Intermediate Community Regional
Year NICU NICU NICU NICU Total

1991 161 58 35 42 296
1992 153 52 43 44 292
1993 149 53 45 45 292
1994 147 56 45 45 293
1995 148 49 51 46 294
1996 140 48 54 46 288
1997 141 47 55 46 289
1998 139 45 58 46 288
1999 135 44 60 46 285
2000 130 45 57 45 277
2001 122 45 57 45 269

Notes: Author’s tabulations based on data from Phibbs et al. (2007) and OSHPD Annual Utiliza-
tion Files. See level of care definitions in text.
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Table 2.3: Sample Means by Level of Care at Birth Hospital

No Intermediate Community Regional
NICU NICU NICU NICU

Mother’s Demographics
Age 25.781 26.861 27.939 28.084
Black 0.098 0.205 0.128 0.186
Hispanic 0.567 0.374 0.454 0.434
Medicaid 0.591 0.546 0.455 0.508
HMO 0.148 0.213 0.276 0.212
Self Pay 0.095 0.045 0.031 0.022
No College 0.788 0.679 0.643 0.654
Some College 0.151 0.199 0.195 0.183
College 0.061 0.122 0.162 0.163
Infant Characteristics
Month Prenatal Care Began 2.323 2.321 2.190 2.202
# of Prenatal Visits 6.692 8.209 8.718 8.873
Parity 2.349 2.358 2.209 2.289
Male 0.542 0.521 0.512 0.511
Multiple Birth 0.167 0.210 0.218 0.244
Birth Weight (Grams) 1067.017 1063.166 1064.203 1055.371
Gestation (Weeks) 30.079 30.083 29.836 29.928
Clinical Condition 0.153 0.192 0.237 0.306
Small for Gest. 0.034 0.049 0.065 0.055
Large for Gest. 0.008 0.009 0.012 0.021
Treatment
Total Length of Stay 39.179 44.197 50.828 53.319
Total Charges ($1,000s) 156.595 158.987 204.456 228.216
Charges/Day ($1,000s) 1.656 2.894 4.059 4.136
Ventilation 0.136 0.235 0.571 0.556
Transfer 0.706 0.638 0.209 0.114
Outcomes
28 Day Mortality 0.202 0.150 0.139 0.131
1 Year Mortality 0.235 0.185 0.167 0.160
Neonatal Mortality 0.219 0.169 0.155 0.147
28 Day Readmission 0.043 0.036 0.011 0.007
1 Yr Readmission 0.223 0.240 0.204 0.198
Observations 3,268 4,788 10,136 24,720
# of Hospitals 142 49 51 45

Notes: Columns display sample means for infants delivered in hospitals at four levels of care. Total
Length of Stay and Total Charges sum length of stay and hospital charges over all contiguous
hospitalizations prior to first being discharged home or dying. Neonatal mortality is mortality
within twenty-eight days of birth or within one year if an infant is continuously hospitalized since
birth. Number of hospitals indicates the average number of hospitals providing each level of care
over the 11-year sample. See Table 2.2 for number of hospitals by year.
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Table 2.4: Summary Statistics of Distance Variables

Mean SD

D(No+) 3.673 4.206
D(Int+) 5.709 8.065
D(Com+) 8.064 11.983
D(Reg) 14.830 22.991

NoDist 11.156 21.723
IntDist 9.120 20.249
ComDist 6.766 18.446

N 42,912

Notes: The first four rows show the mean and standard deviation of distance to the nearest hospital
offering each level of care or higher. The next three rows show the mean and standard deviation
of differential distance to the nearest hospital offering each level of care or higher relative to the
nearest Regional NICU.
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Table 2.5: Sample Means by Distance

By Miles Saved to Nearest No + By Miles Saved to Nearest Int + By Miles Saved to Nearest Com +

0 <Median >Median 0 <Median >Median 0 <Median >Median

Distance
Miles Saved No+ 0.000 1.982 26.378 1.605 3.137 28.981 4.010 4.500 32.040
Miles Saved Int+ 0.000 1.488 21.695 0.000 2.000 25.604 2.177 3.108 28.958
Miles Saved Com+ 0.000 0.919 16.277 0.000 1.257 19.219 0.000 1.584 25.420
Mother’s Demographics
Age 27.826 27.913 27.517 27.787 27.936 27.490 27.752 28.038 27.411
Black 0.227 0.196 0.107 0.208 0.194 0.102 0.207 0.163 0.095
Hispanic 0.434 0.457 0.431 0.475 0.414 0.436 0.438 0.431 0.462
Medicaid 0.519 0.517 0.488 0.524 0.501 0.493 0.521 0.483 0.499
HMO 0.213 0.223 0.227 0.205 0.239 0.224 0.211 0.242 0.224
Self Pay 0.031 0.030 0.035 0.034 0.030 0.033 0.033 0.034 0.030
No College 0.684 0.668 0.650 0.694 0.648 0.650 0.676 0.645 0.661
Some College 0.170 0.181 0.198 0.171 0.189 0.197 0.178 0.188 0.197
College 0.146 0.151 0.152 0.135 0.163 0.153 0.147 0.166 0.142
Infant Characteristics
Mth Prenatal Care Began 2.240 2.214 2.220 2.241 2.213 2.210 2.244 2.203 2.194
# of Prenatal Visits 8.196 8.733 8.679 8.277 8.792 8.728 8.537 8.628 8.683
Parity 2.390 2.247 2.259 2.370 2.229 2.246 2.316 2.228 2.270
Male 0.502 0.514 0.522 0.506 0.515 0.522 0.512 0.511 0.523
Multiple Birth 0.223 0.224 0.236 0.218 0.231 0.236 0.227 0.233 0.226
Birth Weight (Grams) 1056.087 1059.704 1060.439 1056.993 1061.276 1059.441 1060.140 1060.478 1056.107
Gestation (Weeks) 30.033 29.909 29.905 29.980 29.963 29.859 29.975 29.925 29.860
Clinical Condition 0.281 0.279 0.242 0.273 0.286 0.236 0.287 0.276 0.212
Small for Gest. 0.061 0.055 0.051 0.058 0.057 0.050 0.057 0.057 0.050
Large for Gest. 0.018 0.019 0.013 0.018 0.018 0.013 0.018 0.016 0.013
Zip Code Characteristics
Med HH Income ($1,000) 40.511 43.736 46.599 40.221 45.705 46.690 43.265 45.441 44.694
Percent Urban 0.986 0.987 0.924 0.978 0.984 0.925 0.973 0.980 0.923
Population Density 8683.053 9752.449 3162.460 9185.203 8225.657 3312.801 8142.096 7983.427 3456.633
Observations 9,247 16,776 16,889 14,585 14,147 14,180 21,440 10,719 10,753

Notes: The first three columns display sample means by differential distance to the nearest hospital with any obstetric services, the second three
columns by differential distance to the nearest Intermediate NICU or higher, and the final three columns by differential distance to the nearest
Community NICU or higher. For each set of columns, the sample is divided into three groups: those with zero differential distance, and those above
and below the median conditional on non-zero differential distance.
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Table 2.6: Neonatal Mortality by Level of Care, OLS Estimates

Dependent Variable: Neonatal Mortality

(1) (2) (3) (4)

I(No NICU) 0.072** 0.072** 0.054** 0.050**
(0.009) (0.008) (0.009) (0.007)

I(Intermediate NICU) 0.022** 0.021** 0.017** 0.021**
(0.007) (0.006) (0.006) (0.005)

I(Community NICU) 0.008* 0.013** 0.010** 0.012**
(0.004) (0.004) (0.004) (0.004)

Time FE X X X
Demographics X X
Health Controls X

Notes: Each column lists estimates with standard errors in parentheses (clustered at the zip code
level) from separate regressions of neonatal mortality on indicators for delivery in a hospital with
No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group.
The columns successively add controls. Time fixed effects include year dummies, month-of-year
dummies, and day-of-week dummies. Demographics include age, age squared, race, ethnicity, and
insurance coverage. Health controls include number of prenatal care visits, month in which prenatal
care began, parity, sex, multiple birth status, an indicator for having a clinical condition, indicators
for small and large for gestational age, and birth weight dummies at 100 gram increments. N =
42,912; * p<.10, ** p<.05

70



Table 2.7: Level of Care by Distance, First Stage Estimates

Dep. Var.: I(No NICU) I(Intermediate NICU) I(Community NICU)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

NoDist 0.116** 0.115** 0.112** 0.111** -0.044** -0.044** -0.042** -0.043** -0.034** -0.031** -0.033** -0.034**
(0.013) (0.013) (0.013) (0.012) (0.008) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006)

IntDist -0.087** -0.087** -0.085** -0.084** 0.126** 0.126** 0.124** 0.125** -0.025** -0.026** -0.024** -0.024**
(0.015) (0.015) (0.015) (0.014) (0.013) (0.014) (0.013) (0.013) (0.009) (0.009) (0.009) (0.009)

ComDist -0.025** -0.025** -0.025** -0.025** -0.027** -0.027** -0.027** -0.027** 0.077** 0.073** 0.074** 0.074**
(0.007) (0.007) (0.007) (0.007) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008)

F-Stat 33.47 33.22 32.47 32.46 43.53 43.69 44.54 44.56 40.91 37.18 38.48 38.35

Time FE X X X X X X X X X
Demog. X X X X X X
Health X X X

Notes: Each column lists coefficient estimates with standard errors in parentheses (clustered at the zip code level) from separate regressions of a level
of care indicator on the distance instruments. See notes to Table 2.6 for details of control variables. N = 42,912; * p<.10, ** p<.05
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Table 2.8: Neonatal Mortality by Level of Care, 2SLS Estimates

Dependent Variable: OLS 2SLS

Neonatal Mortality (1) (2)

I(No NICU) 0.050** -0.030
(0.007) (0.029)

I(Intermediate NICU) 0.021** 0.009
(0.005) (0.015)

I(Community NICU) 0.012** -0.063*
(0.004) (0.035)

Notes: This table lists OLS and 2SLS coefficient estimates with standard errors in parentheses
(clustered at the zip code level) of neonatal mortality on indicators for delivery in a hospital with
No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group.
All controls described in the notes to Table 2.6 are included in both columns. N = 42,912; * p<.10,
** p<.05
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Table 2.9: Level of Care by Distance for Heavier Infants

1,500 to 2,500 Grams 2,500 to 3,000 Grams 3,000 to 4,500 Grams

Dependent Var: I(No NICU) I(Inter) I(Comm) I(No NICU) I(Inter) I(Comm) I(No NICU) I(Inter) I(Comm)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

NoDist 0.199** -0.069** -0.059** 0.240** -0.081** -0.071** 0.251** -0.083** -0.077**
(0.019) (0.010) (0.008) (0.023) (0.011) (0.009) (0.023) (0.010) (0.009)

IntDist -0.173** 0.188** -0.009 -0.221** 0.209** 0.002 -0.239** 0.209** 0.011
(0.021) (0.016) (0.010) (0.025) (0.018) (0.011) (0.025) (0.017) (0.012)

ComDist -0.022** -0.074** 0.086** -0.015* -0.087** 0.082** -0.005 -0.090** 0.080**
(0.008) (0.010) (0.007) (0.009) (0.012) (0.007) (0.007) (0.010) (0.007)

F-Stat 43.27 51.50 57.03 41.99 51.42 59.40 46.84 49.76 64.78
N 237,488 237,488 237,488 751,750 751,750 751,750 3,705,006 3,705,006 3,705,006

Notes: Each column lists coefficient estimates with standard errors in parentheses (clustered at the zip code level) from separate regressions of delivery
hospital level of care indicators on No NICU distance, Intermediate distance, and Community distance. Each panel presents estimates for a different
sample, stratified by birth weight. All regressions include all controls described in the notes to Table 2.6. * p<.10, ** p<.05
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Table 2.10: Reduced Form Estimates

Dependent Variable: Neonatal Mortality

(1) (2) (3) (4)

NoDist 0.003 0.002 -0.002 -0.002
(0.004) (0.004) (0.004) (0.003)

IntDist 0.002 0.002 0.004 0.005
(0.005) (0.005) (0.005) (0.003)

ComDist -0.005** -0.003 -0.003 -0.004**
(0.003) (0.003) (0.003) (0.002)

Time FE X X X
Demographics X X
Health Controls X

Notes: Each column lists OLS coefficient estimates with standard errors in parentheses (clustered
at the zip code level) from separate regressions of neonatal mortality on No NICU distance, In-
termediate distance, and Community distance. Columns successively add controls. See notes to
Table 2.6 for details of control variables. N = 42,912; * p<.10, ** p<.05

74



Table 2.11: Alternative Specifications: First Stage Estimates

NoDist IntDist ComDist NoDistXDensity IntDistXDensity ComDistXDensity F-Stat

A. Baseline
I(No NICU) 0.111** (0.012) -0.084** (0.014) -0.025** (0.007) 32.46
I(Intermediate) -0.043** (0.008) 0.125** (0.013) -0.027** (0.009) 44.56
I(Community) -0.034** (0.006) -0.024** (0.009) 0.074** (0.008) 38.35

B. Zip Code Level Controls
I(No NICU) 0.105** (0.012) -0.079** (0.014) -0.025** (0.007) 29.83
I(Intermediate) -0.038** (0.007) 0.120** (0.013) -0.026** (0.009) 44.01
I(Community) -0.045** (0.008) -0.015 (0.010) 0.073** (0.008) 38.30

I(No NICU) 0.097** (0.012) -0.066** (0.014) -0.025** (0.008) 0.020** (0.005) -0.022** (0.005) 0.002 (0.002) 26.60
I(Intermediate) -0.023** (0.007) 0.080** (0.013) -0.010 (0.011) -0.011** (0.004) 0.034** (0.009) -0.020** (0.008) 46.54
I(Community) -0.046** (0.007) 0.009 (0.010) 0.053** (0.008) -0.007 (0.006) -0.012* (0.007) 0.018** (0.005) 17.92

C. Zip Code Level Fixed Effects
I(No NICU) 0.085** (0.016) -0.111** (0.017) -0.009 (0.006) 16.06
I(Intermediate) -0.000 (0.025) 0.124** (0.017) -0.045** (0.005) 46.08
I(Community) 0.021 (0.036) 0.074** (0.028) 0.072** (0.011) 21.50

I(No NICU) 0.075** (0.019) -0.108** (0.018) -0.005 (0.006) 0.012** (0.005) -0.006 (0.006) -0.005 (0.003) 11.92
I(Intermediate) -0.001 (0.025) 0.107** (0.020) -0.041** (0.005) -0.008 (0.005) 0.021** (0.007) -0.005 (0.005) 28.94
I(Community) -0.004 (0.037) 0.048* (0.028) 0.060** (0.011) -0.002 (0.011) 0.029** (0.012) 0.012* (0.007) 13.61

D. Pooling No and Intermediate NICUs
No/Interm 0.093** (0.007) -0.037** (0.008) 114.74
Community -0.048** (0.005) 0.065** (0.006) 60.04

Notes: Each row lists coefficient estimates with standard errors in parentheses (clustered at the zip code level) from separate regressions of delivery
hospital level of care indicators on No NICU distance, Intermediate distance, and Community distance. All regressions include all controls described
in the notes to Table 2.6. N = 42,912; * p<.10, ** p<.05
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Table 2.12: Alternative Specifications: OLS & 2SLS Estimates

I(No NICU) I(Intermediate NICU) I(Community NICU)

A. Baseline
OLS 0.050** (0.007) 0.021** (0.005) 0.012** (0.004)
2SLS -0.030 (0.029) 0.009 (0.015) -0.063* (0.035)

B. Zip Code Level Controls
OLS 0.051** (0.007) 0.022** (0.005) 0.012** (0.004)
2SLS -0.041 (0.037) 0.008 (0.015) -0.072* (0.038)
2SLS (Density Interaction) -0.003 (0.029) 0.003 (0.013) -0.027 (0.033)

C. Zip Code Fixed Effects
OLS 0.055** (0.007) 0.034** (0.006) 0.014** (0.004)
2SLS -0.186* (0.108) 0.005 (0.069) -0.086 (0.056)
2SLS (Density Interaction) -0.074 (0.098) 0.064 (0.065) -0.028 (0.045)

D. Pooling No NICU and Intermediate NICU
OLS 0.032** (0.004) 0.011** (0.004)
2SLS -0.001 (0.012) -0.034 (0.031)

Notes: Each row lists OLS and 2SLS coefficient estimates with standard errors in parentheses (clustered at the zip code level) of neonatal mortality
on indicators for delivery in a hospital with No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group. All
regressions include all controls described in the notes to Table 2.6. N = 42,912; * p<.10, ** p<.05
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Table 2.13: Alternative Control Variables and Clustering

C-Section BW Dummies BW Dummies Specific Clin. Cluster at Cluster at
Baseline Control × Male in 50 Grams Cond. Controls HSA Hospital

(1) (2) (3) (4) (5) (6) (7)

OLS Estimates
I(No NICU) 0.050** 0.049** 0.049** 0.050** 0.049** 0.050** 0.050**

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008)
I(Intermediate NICU) 0.021** 0.020** 0.021** 0.020** 0.020** 0.021** 0.021**

(0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.009)
I(Community NICU) 0.012** 0.013** 0.011** 0.012** 0.012** 0.012** 0.012*

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.007)

2SLS Estimates
I(No NICU) -0.030 -0.028 -0.030 -0.025 -0.030 -0.030 -0.030

(0.029) (0.029) (0.029) (0.029) (0.029) (0.030) (0.034)
I(Intermediate NICU) 0.009 0.009 0.010 0.009 0.010 0.009 0.009

(0.015) (0.015) (0.014) (0.014) (0.015) (0.015) (0.023)
I(Community NICU) -0.063* -0.058* -0.063* -0.057* -0.060* -0.063** -0.063

(0.035) (0.035) (0.034) (0.034) (0.035) (0.029) (0.043)

Notes: Each column lists OLS and 2SLS coefficient estimates with standard errors in parentheses (clustered at the zip code level) of neonatal mortality
on indicators for delivery in a hospital with No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group. All
regressions include all controls described in the notes to Table 2.6 plus additional controls noted in column headings. N = 42,912; * p<.10, ** p<.05
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Table 2.14: Alternative Mortality Measures

Neonatal Mortality within:
Mortality 1 Day 28 Days 1 Year

(1) (2) (3) (4)

OLS Estimates
I(No NICU) 0.050** 0.026** 0.048** 0.052**

(0.007) (0.005) (0.006) (0.007)
I(Intermediate NICU) 0.021** 0.017** 0.018** 0.024**

(0.005) (0.004) (0.005) (0.006)
I(Community NICU) 0.012** 0.003 0.011** 0.012**

(0.004) (0.003) (0.004) (0.004)

2SLS Estimates
I(No NICU) -0.030 -0.054** -0.030 -0.014

(0.029) (0.020) (0.026) (0.027)
I(Intermediate NICU) 0.009 0.011 -0.003 0.021

(0.015) (0.011) (0.014) (0.014)
I(Community NICU) -0.063* -0.099** -0.097** -0.037

(0.035) (0.027) (0.033) (0.035)

Mean Mortality 0.157 0.063 0.140 0.170

Notes: Each column lists OLS and 2SLS coefficient estimates with standard errors in parentheses
(clustered at the zip code level) of neonatal mortality on indicators for delivery in a hospital with
No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group.
All regressions include all controls described in the notes to Table 2.6. * p<.10, ** p<.05
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Table 2.15: Heterogeneity

Non- No 1991 -
Baseline Hispanic Black Medicaid College Suburban 1995

(1) (2) (3) (4) (5) (6) (7)

OLS Estimates
I(No NICU) 0.050** 0.049** 0.056** 0.042** 0.048** 0.050** 0.059**

(0.007) (0.009) (0.007) (0.009) (0.008) (0.008) (0.010)
I(Intermediate NICU) 0.021** 0.028** 0.022** 0.018** 0.027** 0.028** 0.017**

(0.005) (0.009) (0.006) (0.007) (0.007) (0.007) (0.007)
I(Community NICU) 0.012** 0.010* 0.013** 0.007 0.011** 0.010* 0.013**

(0.004) (0.005) (0.004) (0.006) (0.005) (0.005) (0.006)
2SLS Estimates
I(No NICU) -0.030 -0.023 -0.039 -0.017 -0.018 -0.029 -0.024

(0.029) (0.036) (0.030) (0.036) (0.033) (0.034) (0.042)
I(Intermediate NICU) 0.009 0.025 0.012 -0.001 0.027 0.022 0.002

(0.015) (0.022) (0.015) (0.020) (0.020) (0.019) (0.022)
I(Community NICU) -0.063* -0.040 -0.080** -0.047 -0.090** -0.059 -0.078

(0.035) (0.059) (0.035) (0.049) (0.045) (0.041) (0.060)

N 42,912 18,974 35,705 21,707 27,651 21,464 19,861
Mean Mortality 0.157 0.168 0.159 0.160 0.162 0.157 0.175

Notes: Each column lists OLS and 2SLS coefficient estimates with standard errors in parentheses (clustered at the zip code level) of neonatal mortality
on indicators for delivery in a hospital with No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group. All
regressions include all controls described in the notes to Table 2.6. * p<.10, ** p<.05
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Table 2.16: Robustness to Sample Restrictions

Include Include Include Include
Baseline Rural Kaiser Cong. Anom. Fetal Death

(1) (2) (3) (4) (5)

OLS Estimates
I(No NICU) 0.050** 0.054** 0.052** 0.058** 0.110**

(0.007) (0.006) (0.007) (0.007) (0.007)
I(Intermediate NICU) 0.021** 0.023** 0.026** 0.029** 0.056**

(0.005) (0.005) (0.005) (0.005) (0.006)
I(Community NICU) 0.012** 0.013** 0.013** 0.011** 0.023**

(0.004) (0.004) (0.003) (0.004) (0.004)
2SLS Estimates
I(No NICU) -0.030 -0.006 -0.017 -0.000 -0.066**

(0.029) (0.028) (0.028) (0.029) (0.028)
I(Intermediate NICU) 0.009 0.005 0.013 0.018 0.014

(0.015) (0.015) (0.014) (0.015) (0.015)
I(Community NICU) -0.063* -0.020 -0.055* -0.050 -0.093**

(0.035) (0.033) (0.033) (0.036) (0.036)

N 42,912 44,937 49,018 47,121 51,123
Mean Mortality 0.157 0.157 0.158 0.167 0.291

Notes: Each column lists OLS and 2SLS coefficient estimates with standard errors in parentheses (clustered at the zip code level) of neonatal mortality
on indicators for delivery in a hospital with No NICU, an Intermediate NICU, and a Community NICU. Regional NICU is the excluded group. All
regressions include all controls described in the notes to Table 2.6. * p<.10, ** p<.05

80



Chapter 3

The Effect of Neonatal Intensive Care Availability on Utilization

3.1 Introduction

Amid rising health care costs and the political debate over health reform, ex-

cessive utilization of health care resources is an important topic. One concern is that

the availability of supply directly leads to additional utilization of health resources.

The large amount of regional variation in health expenditures, which appears not to

be correlated with health outcomes (Fisher et al., 2003a,b), provides some evidence

that health care is consumed to the point where the marginal benefit is below the

marginal cost. That said, it is difficult to identify whether a determinant of over

utilization is that simply the availability of medical resources leads to additional uti-

lization. Theoretically, physicians and hospitals face financial incentives to provide

additional care. Additionally, moral hazard in insurance can lead to over utiliza-

tion when supply is available and patients are insulated from the full cost of their

care. However, as Fuchs (2004) points out, empirically testing the hypothesis that

availability itself leads to excessive utilization requires variation in supply that is

uncorrelated with variation in demand, and cross sectional comparisons are likely

to be insufficient.

In this chapter, I conduct a first examination of the effect of supply on utiliza-

tion in the context of neonatal intensive care. I estimate the effect of the number of

empty beds available in the NICU the day prior to birth on the probability that an

infant is admitted to the NICU. To overcome the endogeneity between supply and

utilization, I estimate regressions with hospital-specific month fixed effects. These

fixed effects allow me to flexibly control for many unobserved factors that might
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be correlated with NICU admission and exploit within-hospital month variation in

the availability of NICU beds. Within hospital-month deviations in the availabil-

ity of NICU beds is unlikely to be correlated with changes in the health of infants

born in that hospital, and I provide empirical evidence to support this identifying

assumption.

Neonatal intensive care is an important and interesting health care market to

examine the effect of availability on utilization. It has been claimed that the increase

in the supply of NICUs has outpaced demand, and in particular, the growth in the

number of small NICUs in community hospitals has been unnecessary (e.g., Baker

and Phibbs, 2002; Howell et al., 2002; Schwartz, 1996; Schwartz et al., 2000). In

order for a NICU to directly provide revenue to the hospital and income to the physi-

cian, the beds must be utilized; therefore, in the context of this deregionalization,

there may be particularly large scope for available supply to increase utilization.

Furthermore, almost all births in the United States are covered by insurance, so

risk-averse parents, insulated from the full cost of their infant’s care, may prefer

additional care for their infant if it is available.

If the availability of neonatal intensive care directly leads to additional uti-

lization of neonatal intensive care, there are a variety of important costs that would

be incurred. First, there is the economic cost associated with using care beyond

the point where the marginal benefit outweighs the marginal cost. On its face this

cost is a transfer from the insurers to the hospital and physician. But, it will also

be passed on to consumers in the form of higher premiums or less coverage and to

the government and taxpayers in the case of Medicaid covered infants. In terms of

social welfare it is a cost to use these resources beyond their efficient level. Further-

more, entry into the NICU market entails high fixed costs. In a market like neonatal

intensive care in which the marginal costs are low relative to the fixed costs and rel-

ative to insurance reimbursements, hospitals have incentives to increase utilization
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to recoup these fixed costs. As a result, looking for an effect of available capacity

on NICU admission is one way to get a sense of how hospitals attempt to recoup

these fixed costs.

There are also psychic costs associated with an infant being cared for in a

NICU. The birth of a child is a stressful time for parents, and seeing an infant

in intensive care and thinking he or she may have health problems provides addi-

tional stress and worry. Additionally, there are potentially negative health effects of

unnecessary care in the NICU. In particular, there is a literature in epidemiology

documenting the role of nosociomal, or hospital borne, infections. These infections

lead to mortality, morbidity, and longer lengths of stay, are difficult to predict and

diagnose, and their prevalence has risen over recent decades (e.g., Benjamin et al.,

2000; Clark et al., 2004; Kossoff et al., 1998).1 Increased exposure to such infections

could be one potential cost of spending time in the NICU.

Also, if the supply of neonatal intensive care affects utilization, it is likely to

be strongest for healthier infants just on the margin of needing intensive care. These

relatively healthier patients are an important population in terms of the share of

NICU case-loads and costs, though they are an understudied group in the litera-

ture on neonatal intensive care and its deregionalization. A study by Kirkby et al.

(2007) finds that moderately preterm infants with 32-34 weeks of gestation comprise

23.8% of NICU admissions and 21.6% of NICU costs. In one large regional NICU

in Massachusetts, Gray et al. (1996) find that normal birth weight infants (those

weighing more than 5.5 pounds) account for 35.4% of NICU admissions. Further-

more, 41% requires only monitoring and no intensive treatments, suggesting that

perhaps these are in fact marginal NICU cases. These infants also likely represent

the group for which the marginal cost of NICU admission is low relative to the

1For example, Kossoff et al. (1998) find that the prevalence of these infections increased from
2.5 cases per 1000 admissions in 1981 to 1985 to 28.5 per 1000 in 1991 to 1995 in one particular
NICU.
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marginal return to the hospital from a per diem insurance reimbursement. To the

extent that deregionalization provides scope for excess capacity to increase utiliza-

tion, this chapter provides a first look at how deregionalization might affect the care

of healthier infants.

I find that on average, more empty beds on the day prior to an infant’s birth

does increase the probability of NICU admission. Disaggregating the effects by birth

weight categories reveals that the effects are small for very low birth weight infants

(those weighing less than 1,500 grams). Above the very low birth weight threshold,

the effect of empty beds on admission jumps discretely, and there is a large effect for

low birth weight infants (those weighing between 1,500 and 2,500 grams), as high

as 1.4% for each additional empty bed. While the effect size decreases for normal

birth weight infants it is still large in magnitude. The effect size increases again

among high birth weight infants. These results suggest that empty beds have the

smallest effect for the sickest infants who necessitate intensive care regardless of

external factors such as supply, and have the largest effect for low birth weight and

high birth weight infants, two groups likely to be on the margin of needing intensive

care.

It is possible that the effect of availability on utilization is at least partially

driven by NICUs that are capacity constrained and must turn away patients when

crowded. I cannot completely rule out this possibility, but I argue that, while this

mechanism may be present, it is unlikely to be driving the result. A hospital can

transfer an infant to another hospitals when its NICU is crowded and has little

incentive not to do so. The birth hospital cannot receive a reimbursement for caring

for the infant in the NICU if it does not have capacity. When I allow for the

fact that infants who are not admitted to the NICU at the birth hospital may be

transferred to other hospitals, I find that the effect of empty beds on utilization

becomes very small for VLBW infants but shows little change for infants above the
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VLBW threshold. This finding suggests that VLBW infants are transferred when

the NICU is crowded, but higher birth weight infants admitted to the NICU when

more beds are available is likely to represent over-utilization. I also show that the

effect of empty beds on NICU admission is still present when I remove hospitals

from my sample that are often facing capacity constraints.

In addition to birth weight, I explore heterogeneity of the effect of empty beds

on NICU admission along other dimensions. Of particular interest in the context

of NICU deregionalization, I find that the effect of empty beds on NICU admission

is positive in hospitals at all three levels of care, but is larger in Intermediate and

Community NICU hospitals as compared to Regional NICU hospitals. After taking

into consideration that lower level NICU hospitals are more likely to transfer infants

who need NICU care and differences in the variation in empty beds across levels of

care, the differences in the effect size across hospital types decreases but still prevails.

This finding suggests that the NICUs most associated with deregionalization have

the most scope to increase utilization in response to availability.

It is worth pointing out three limitations of this study. First, while my identifi-

cations strategy accounts for many issues associated with understanding the effect of

supply on utilization, the data used in this analysis does contain some complicated

measurement error. The data I utilize does not explicitly identify which infants are

treated in the NICU. I therefore impute NICU admission based on its most likely

predictors – length of stay and hospital charges. As a result, both the dependent

and independent variables in my analysis are measured with error. Because the

measurement error affects the dependent and independent variables in ways that

are clearly correlated with each other, this measurement error is non-classical. As a

result, it is difficult to account for and difficult to even understand the full effects,

though I discuss some of the ramifications below. This chapter provides preliminary

estimates of the effect of NICU availability on utilization, although these results
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may be biased by this measurement error. In future research I will verify my NICU

admission algorithm and estimate the effect of empty beds on NICU admission in

other data sets that do specify which infants are treated in the NICU. In particular

I intend to examine this research question using hospital inpatient data from the

state of New York collected by the Statewide Planning and Research Cooperative

System (SPARCS). This data set includes accommodation codes that indicate when

an infant is cared for in the NICU.

A second important caveat is that my analysis models the decision to admit an

infant to the NICU as a function of the conditions in the NICU on the previous day.

I do not take into account the health of other infants born in the hospital on the

same day, and I treat these observations as independent. Future work is warranted

to take these issues into account in a more sophisticated model.

Third, I am not able to tease out the mechanism behind the effect of empty

beds on utilization. As discussed in more detail below, there are two potential

mechanisms stemming from two different information asymmetries. One mecha-

nism is “supplier-induced demand.” This behavior occurs when the physician takes

advantage of his agency and information advantage over the patient and prescribes

additional care beyond what the patient needs in order to increase revenue. The

second mechanism is moral hazard in insurance. The physician and the patient both

know more about the patient’s true health than the insurance provider. Because

insurance insulates the patient from the full cost of care and insurers cannot per-

fectly monitor the physician and patient’s care decisions, patients may over consume

medical care.2

The remainder of this chapter is organized as follows. Section 3.2 provides a

brief review of the previous literature on excessive utilization, including a discussion

2Throughout the paper, references to moral hazard will indicate ex post moral hazard, as op-
posed to ex ante moral hazard which states that individuals insulated from the price of medical
care by insurance will perform more risky behaviors leading to a higher need for care.
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of moral hazard and induced demand. Section 3.3 describes the data and the algo-

rithm to impute NICU admission. Section 3.4 discusses the empirical framework.

Section 3.5 presents results including a discussion of heterogeneity, and Section 3.6

concludes.

3.2 Previous Literature

There are two sets of very influential papers that provide explanations for the

potential over-utilization of health care resources. Moral hazard in insurance, first

formalized by Arrow (1963) and Pauly (1968), describes the tendency for patients to

spend more on medical care when these expenditures are partially or fully paid by the

insurer than they would if they were paying the full cost. In essence, moral hazard

is the substitution effect on the part of the patient towards a lower priced good.

Insurers are unable to optimally design policies to prevent moral hazard because

they cannot fully observe the individuals medical needs. Thus, moral hazard takes

place as a result of “hidden action” by the agent (the individual) when the principle

(the insurer) cannot fully monitor behavior (Cutler and Zeckhauser, 2000).

Empirically identifying moral hazard is difficult because individuals who need

more medical care may demand more insurance. In order overcome this endogeneity,

the RAND Health Insurance Experiment was designed to explore the extent of

moral hazard. By randomizing coinsurance rates across study participants, they

were able to show that more insurance coverage leads to higher health expenditures

and estimate that the price elasticity of medical care is around -0.2 (Manning et al.,

1987). This study remaines the best empirical evidence to date that health insurance

leads to moral hazard (Cutler and Zeckhauser, 2000).

Moral hazard may be particularly important in the case of infant care. While

NICU stays are expensive, almost all child births in the United States are covered
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by public or private insurance.3 In addition, parents are likely to be very risk averse

with regard to their infants’ health, leading them to demand even more care when

the price is low. Moral hazard is a mechanism that leads individuals to consume

more than the optimal amount of health care, though it does not directly mean that

available supply will lead to additional utilization. However, Glazer and Rothenberg

(1999) point out that it is difficult to deny care when capacity is available. Also,

in the context of the utilization of neonatal intensive care, moral hazard can only

occur if a bed is available for the infant. Two identical sets of parents may choose

to consume additional neonatal intensive care resources because insurance provides

a low price, but the behavior can only be realized when beds are available.

The second mechanism behind excessive utilization of health resources is sup-

ply (or physician) induced demand as first defined by Evans (1974), Fuchs (1978),

and Pauly (1981). Induced demand occurs when the physician, acting as the agent,

exploits his information advantage over the patient, who is the principle, and pro-

vides excess treatment to increase revenue. McGuire and Pauly (1991), Gruber and

Owings (1996), and McGuire (2000) formalize the idea by modeling the physician’s

utility function as increasing in income (which increases in the amount of care pro-

vided) and decreasing in inducement. The physician will induce demand to the

point where the marginal return to inducement is equal to the marginal utility cost

of inducement.4

There are two major empirical literatures that attempt to identify demand

inducement, one related to income effects and the other substitution effects. The

3In the dataset analyzed below, 96% of deliveries in the state of California between 1992 and
2001 were paid for by some form of insurance. Russell et al. (2007) report a similar percentage for
infants in the 2001 National Inpatient Sample.

4Physicians may also induce if they practice defensive medicine in fear of malpractice litigation
(McGuire, 2000). The empirical evidence on the importance of this concern is mixed. Kessler
and McClellan (1996) find malpractice reform intended to reduce liability caused a reduction in
expenditures on heart disease treatment. In contrast Baicker and Chandra (2004a) find little
evidence of increased utilization for states with increased malpractice costs across a variety of
treatments. Kim (2006) finds that malpractice risk does not change the probability of cesarean
delivery or other OB/GYN treatment decisions.
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early literature on income effects was problematic as it looked for cross sectional

relationships between the number of physicians (or physician-to-population ratios)

and utilization, the idea being that when there are additional providers in a market,

each individual provider’s income decreases (McGuire, 2000). The most convincing

study of income effects is Gruber and Owings (1996), who look at the decrease in

demand associated with decreasing fertility during the 1970s. They find that a 10%

decrease in fertility leads to a 0.97 percentage point increase in the rate of cesarean

sections, which are more generously reimbursed than normal deliveries. Their result

implies that doctors respond to the negative income shock associated with a decrease

in demand by altering treatment practices to maintain income. The other major

empirical literature considers substitution effects by examining physician responses

to fee differentials between complementary treatments. For example, Gruber et al.

(1999) show that increases in Medicaid fee differentials between cesarean and vaginal

deliveries increase the cesarean delivery rate.5

Similarly to induced demand, when reimbursements are determined by groups

of diagnoses, it may be the case that physicians diagnose patients with more gener-

ously reimbursed conditions. Dafny (2005b) examines the effect of a policy change

that leads to large changes in reimbursement rates for Medicare patients. Medicare

reimbursements are based on Diagnosis Related Groups (DRGs), and she finds that

in response to changes in DRG specific reimbursement rates, hospitals tend to “up-

code” patients to the diagnosis codes with the largest price increases.6 As discussed

above, Gray et al. (1996) find that many normal birth weight infants admitted to the

NICU require only monitoring and no intensive treatments. It would be interesting

5In another line of research relevant to induced demand, Afendulis and Kessler (2007) examine
the tradeoff that occurs with the integration of diagnosis and treatment. They find that paitients
diagnosed by cardiologists who also perform angioplasty are more likely to recieve angioplasty than
those diagnosed by cardiologists who do not themselves provide treatment.

6More specifically Dafny (2005b) finds that patients are more likely to be diagnosed as a case
“with complications” instead of “without complications” when the reimbursement differential be-
tween the two increases.
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for future research to determine if marginal infants admitted to the NICU when

there are more empty beds available actually receive more intensive treatment, or if

admitting them to the NICU provides an opportunity for hospitals to “upcode” the

infants in order to receive a higher reimbursement.

Baras and Baker (2009) is an example of a study that attempts to identify the

causal effect of supply on utilization. They examine the effect of the availability of

MRI scanners on MRI use for lower back pain, a condition for which the use of MRIs

is controversial.7 They include geographic market fixed effects to control for cross

sectional differences in unobserved preferences and health and identify that increases

in MRI availability lead to increases in usage and increases in surgery rates. These

results are valid so long as changes in demand or changes in underlying health are

not associated with changes in the availability of MRI machines.

I exploit a different sort of time-series variation in availability in the context of

neonatal intensive care by utilizing hospital-specific month fixed effects to identify

the effect of the number of empty NICU beds on the probability of an infant being

admitted to the NICU. This strategy provides two advantages over a strategy using

geographic fixed effects to look at the effect of aggregate supply on utilization.

First, I exploit variation in availability within a hospital-month pair, allowing me

to control for unobserved patient preferences at a fine level. It is unlikely that

changes in patient preferences within a hospital and within a month are correlated

with within hospital-month changes in NICU availability. Second, the variation in

availability that I exploit is not driven by the hospital’s decision to offer neonatal

intensive care. Instead, it is driven by the availability of NICU beds conditional on

the hospital offering a NICU and, furthermore, the size of the NICU. As such, the

variation is only driven by the health of infants born prior to a given infant.

7Baras and Baker (2009) point out that using MRIs to diagnose lower back pain is controversial
because it often detects and leads to surgery for lower back abnormalities that are not necessarily
the cause of the pain
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Profit et al. (2007) is the study most directly related to this paper. The

authors examine the effect of the number of NICU patients on discharge patterns.

In a population of infants between 30 weeks and 34 weeks gestation in ten NICUs

in Massachusetts and California the authors find that the probability of discharge is

correlated with the NICU census (the number of patients being treated in the NICU)

at the time of discharge. They document that discharges are 20% less likely than

expected on days in the lowest census quintile and 32% more likely than expected

on days in the highest census quintile. There are no significant differences between

actual and expected discharges in the second through fourth quintiles. My paper

differs by examining the decision to admit an infant to the NICU. Both margins are

likely important drivers of expenditures and have different implications. If capacity

affects the intensive margin through the timing of discharge and therefore length of

stay, it may be the case that infants who need care are receiving more care than

necessary. However, if capacity affects the extensive margin by changing who is

admitted to the NICU it could impact infants who are not in need of intensive care.

3.3 Data

3.3.1 Data Sources

This chapter uses data sources that were discussed in Chapter 2, but I will

briefly review their main features here. In particular, this chapter uses two Califor-

nia data sets provided by the Office of Statewide Health Planning and Development

(OSHPD): the Linked Patient Discharge Data/Birth Cohort File and the State Uti-

lization Data File of Hospitals. I utilize data from 1991 through 2001, although for

reasons discussed below, the analysis sample will include 1992 through 2001. The

Linked Discharge Data File provides records of all California births in non-Federal

hospitals in a given year. The data set links patient discharge data to vital statistics
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on births and infant deaths. It is organized with one observation for each hospital-

ization within the first year of life, so I can follow each infant from its birth record

through all transfers and readmissions within the first year. For each hospitalization,

the data set includes information on an infant’s health at birth such as gestation and

birth weight, demographics such as education and race of the mother and father,

detailed information about diagnoses and treatment, and further information about

the hospitalization such as length of stay and charges. The Utilization Data File

contains annual hospital level data on capacity and utilization. Particularly useful

for this chapter are variables indicating a hospital’s annual number of NICU beds

and NICU discharges.

3.3.2 Imputing NICU Admission

A limitation of the Linked Discharge Data File is that it does not identify if

an infant is admitted to the NICU. I thus impute whether an infant is admitted to

the NICU based on a set of observables in each record. Phibbs et al. (1996) use

earlier years of this same data set and a criteria based on Diagnosis Related Group

(DRG) codes, birth weight, length of stay, and diagnoses to identify the population

of infants most likely to have been cared for in the NICU.8 I take guidance from

their procedure along with input from a neonatologist that I interviewed in creating

my NICU admission selection algorithm.

A key difference between my approach and Phibbs et al. (1996) is that, while

these authors study the population of those most likely to be admitted to the NICU, I

am using NICU admission itself as an outcome and using it to build my key explana-

tory variable. Therefore it is important for me to be more precise in assigning NICU

admission. To maximize the accuracy with which I assign admission, I calibrate my

approach to match the number of NICU admissions reported in the Utilization Data

8The authors do not explicitly describe their criteria for choosing diagnoses that lead to NICU
admission.
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File. For each hospital-year pair, this target number of admissions is equal to the

sum of the number of NICU discharges and the number of infants transferred from

the NICU to another ward within the hospital.9 Also, because I am imputing both

the dependent variable and the independent variable of interest, I must calculate

them in a way that does not “assume” induced demand or moral hazard. Therefore,

unlike Phibbs et al. (1996), I do not use variables such as diagnoses in my imputation

because induced demand and moral hazard motives may lead to inaccurate record-

ing of such variables. I predominantly use measures of hospital resource utilization

to impute NICU admission.

First, I divide observations into three types of records: births, transfers, and

readmissions.10 Second, I prevent NICU admission for three types of records: (1)

readmission records more than 8 weeks after birth if the DRG at birth had indicated

a normal newborn, (2) readmission records more than 8 weeks after birth if the most

recent hospitalization was greater than 4 weeks prior to the readmission; and (3) all

subsequent transfer and readmission records following these two types of records.

According to the neonatologist that I interviewed, readmitted infants can be cared

for in the NICU, but not if they are readmitted long after birth, particularly if they

were healthy at birth. Healthy infants at birth will likely be too large for the NICU

bassinets if readmitted long after birth.

All other birth, transfer, or readmission observations not described above are

considered candidates for NICU admission. Phibbs et al. (1996) impute likely ad-

mission for infants with a length of stay greater than five days. I find in my data

set that a threshold of 5 days is too inclusive and in many hospitals would impute

admissions for more infants than my target allows. Therefore, the third step of my

9Discharges include those who died, were transferred to another hospital, or were discharged to
home.

10Transfers are identified a any record in which the admission source is from another acute care
hospital and follows a record for the same infant in which the discharge status is to another acute
care hospital. All other records that are not birth records are identified as readmission records.
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procedure assigns NICU admission to all infants with a length of stay greater than

10 days. This threshold still overshoots the target in some hospitals, but by far less

than when using a five-day threshold. Fourth, I impute the rest of the admissions

necessary to meet the target number in each hospital-year by selecting infants with

the highest charges per day. NICU stays are extremely expensive, so it is very likely

that the most expensive babies have accumulated their charges in the NICU.11 This

claim was confirmed by the neonatologist that I interviewed. 26.59% of admissions

are imputed based on stays longer than 10 days. The remaining 73.41% are chosen

based on charges per day.

Once admission has been imputed within my sample, I derive the daily census

for each NICU by counting how many patients are present based on their hospital

admission date and length of stay.12 It is important to note that I must assume an

infant admitted to the NICU spends it’s entire hospital stay in the NICU, so I may

be overestimating the number of patients in the unit on a given day. In Section 3.4

I discuss the ramifications of this inherent measurement error.

3.3.3 Analysis Sample

I begin with the sample of all birth, transfer, and readmission records in the

Linked Discharge Data File from 1991 through 2001 merged with the Utilization

Data File at the hospital-year level. This initial sample includes 6,221,001 birth

observations and 7,053,804 total observations from an average of 387.27 hospitals per

year. I proceed to make a series of restrictions on the sample, which are summarized

in Table 3.1. The first set of restrictions is at the hospital-year level. First, I restrict

my sample to observations in hospitals with NICUs by limiting to hospitals that

report a positive number of neonatal intensive care beds in the Utilization Data File

11Even if the infant does not receive a large amount of intensive treatment in the NICU, the per
diem charge would be much higher than the normal newborn nursery.

12For birth records, birth date and hospital admission date are synonymous.
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and then to hospitals that report a positive number of NICU patients (the sum of

NICU discharges and within hospital NICU transfers).13

Second, I eliminate hospitals that either report zero births in the Utilization

Data File or have no birth records present in the Linked Discharge Data File. This

restriction in effect eliminates children’s hospitals from the sample. I am focusing

on the NICU admission decision at the hospital of birth, so I do not want to consider

children’s hospitals that do not provide delivery services and only receive neonatal

intensive care patients via transfer or readmission. I also eliminate hospital years for

which the number of births reported by the Utilization Data File and the number

of births in the Linked Discharge Data File differ by more than 10% in order to

remove hospitals with discrepancies between the two data sets. As seen in Table 3.1

this restriction only eliminates 4 hospitals per year on average.

I next eliminate hospitals for which all patients are missing charge data. With-

out data on hospital charges, I cannot assign NICU admission for infants in these

hospitals. It is worth pointing out that this restriction excludes Kaiser owned hos-

pitals because they do not report hospital charges in the data.14 Therefore, the

results of this paper are not relevant to Kaiser owned hospitals. One interesting

question that I cannot address is whether incentives to fill empty beds are weaker

in Kaiser hospitals where physicians are not directly paid for the quantity of care

provided. In Section 3.5 I do examine effects separately for patients with managed

care insurance other than Kaiser, but this group is less well defined than the Kaiser

population would be.

The sample that remains contains an average of 121.91 hospitals per year and

4,028,735 observations of which 3,566,527 are birth records. At this point I perform

13These restrictions eliminate birth records from non-NICU hospitals, but they do not eliminate
subsequent records for patients transferred to or readmitted to a NICU hospital if they were born
in a non-NICU hospital.

14All hospitals excluded by this restriction are in fact Kaiser hospitals. No other hospitals are
missing charges for all patients. In my final sample only 1,208 or 0.04% of individual infants are
missing charge data.
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the NICU admission imputation algorithm on all remaining observations. In some

cases where many infants had a length of stay greater than 10 days, this algorithm

leads to too many admissions as compared to the target number of discharges. I

drop all observations for a hospital-year in which the target number of discharges

differs from the number of imputed admissions by more than 10%. This restriction

only removes 1.27 hospitals per year and 1.9% of the birth observations.

Finally, I make three restrictions at the infant level. I drop a very small number

of observations for which the admission date is missing. For such observations, I

cannot know the census on their date of birth nor can I count them in the census

during their time in the hospital. I also drop a very small number of observations

with missing birth weight information. This only eliminates 1% of the birth records.

Finally, I exclude observations from 1991 from my analysis sample, because I do not

observe the stock of infants in a NICU at the beginning of the sample. The 99th

percentile of length of stay for NICU admitted patients is 91 days, so excluding one

year of data should be sufficient to allow the stock of patients to be accurate after

one year. The final analysis sample includes an average of 121.1 hospitals per year

and 3,131,948 birth observations.

3.4 Empirical Framework

The basic empirical strategy is to estimate a linear probability model where

the probability of NICU admission is a function of characteristics of the infant and

the number of empty NICU beds on the day prior to birth. The analysis is conducted

on the 3,131,948 birth records to examine admission patterns at the birth hospital.

The number of empty beds is measured as the difference between the number of

NICU beds reported in the Utilization Data File and the number of infants that I

count as being patients in the NICU on a given day. I use the number of empty

beds on the day prior to birth because the contemporaneous value of this variable
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is correlated with NICU admission by construction, as an admitted infant would be

counted against the number of empty beds on its birth date.15

I use ordinary least squares to estimate regression equations of the following

form:

admitith = α + EmptyBedst−1,hβ + XithΓ + δth + εith (3.1)

admitith is an indicator equal to 1 if infant i, born at time t, in hospital h is admitted

to the NICU. EmptyBedst−1,h is the measure of how many empty beds are available

in the NICU of hospital h at time t − 1 (the day prior to the infant’s birth). Xith

is a vector of characteristics specific to the infant which I describe in more detail in

Section 3.5. δth are hospital-specific month fixed effects16 and εith is a random error

term. All standard errors are clustered at the hospital level to allow unobserved

determinants of NICU admission to be correlated within hospitals but maintain

the assumption that they are independent across hospitals. It is likely that infants

within a hospital would have correlated unobservable characteristics as a result of

factors such as geography, socioeconomic status, etc.

The key to identifying the causal effect of empty beds on NICU admission, β,

are the hospital-specific month effects, δth, which allow the unobserved probability

of admission to vary for each hospital within each month. These fixed effects flexibly

control for unobserved differences across hospitals in treatment styles and patient

populations, long run trends and seasonality of infant health, and any differences in

these trends and seasonality across hospitals.

Clearly, it is desirable to control for differences across hospitals in the types of

patients they attract and their treatment practices. While Equation (3.1) controls

15If I had more detailed information such as exactly when infants are admitted and discharged,
I could construct my measure of empty beds just prior to admission. Because I must assume that
an infant is admitted on the day of birth and leaves the NICU on the day of discharge, the best
measure I can use is excess capacity on the day prior to birth.

16In practice I construct a variable that takes on a unique value for every hospital month pair
and estimate the regressions “absorbing” these fixed effects.
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for patient level observables. Chapter 2 makes clear that infants born at different

hospitals differ in unobservable characteristics as well. In my data it is also clear

that hospitals vary greatly in their use of neonatal intensive care. Figure 3.1 plots

the density of hospital level NICU admission rates and shows a great deal of hetero-

geneity. The mean hospital has a NICU admission rate of 12.97%, the median has

an admission rate of 10.75%, and the standard deviation is 9.50%. Furthermore,

differences in hospital treatment styles will directly affect the dependent and inde-

pendent variables. For example, a high intensity hospital will likely have a higher

NICU admission rate and may maintain a higher NICU census as a result. In fact,

at the hospital level the correlation coefficient of the NICU admission rate and the

number of empty beds faced by the average infant is -0.24. Taking scale into ac-

count, the correlation between the NICU admission rate and the percent of empty

beds faced by the average infant is -0.37.

In addition, it is important to control for the fact that characteristics of moth-

ers giving birth and the health of their infants are quite cyclical. Buckles and

Hungerman (2008) show that mothers of infants born during the winter months

have lower socioeconomic characteristics relative to those giving birth in the spring

and summer months.17 They also examine measures of infant health and find that

infants born during the winter months have lower birth weights and lower APGAR

scores18 than those born during the spring and summer months. Figure 3.2 con-

firms this seasonal relationship in my data by plotting the fraction of births that are

very low birth weight, the neonatal mortality rate of very low birth weight infants,

and the NICU admission rate by quarter over my 11 year sample. In general, the

VLBW rate and the NICU admission rate increase over time while VLBW mortality

decreases over time. In addition to these general trends, there is a large amount of

17For example, mothers giving birth during the winter are more likely to be teenagers, less likely
to have a college degree, more likely to be black, and less likely to be married.

18APGAR scores measure an infant’s health at birth based on a test performed immediately
after birth
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quarter to quarter variation in all three rates.

However, including only time dummies in the empirical model is potentially

insufficient if these cycles are heterogeneous and vary across hospitals. Serial corre-

lation in infant health within a hospital would lead to downward biased estimates

of β because times with few empty beds would also be times with few subsequent

NICU admissions. To the extent that hospital-specific month effects flexibly con-

trol for these cycles separately for each hospital, I will be able to purge this serial

correlation from the regression.

With these fixed effects the identifying variation comes from within hospital-

month variation in the number of empty beds. The estimate of β represents how

within hospital-month deviations from the hospital-month average number of empty

beds changes the NICU admission probability of subsequent newborns. Therefore,

the identifying assumption is that these deviations are uncorrelated with unobserved

NICU admission probability. This assumption is likely to be valid since unobserved

changes in newborns’ baseline health are unlikely to be correlated with unobserved

changes in the health of the infants born in the immediate past who determine the

number of empty NICU beds available in the hospital. While this assumption is

untestable in practice, I provide supportive evidence of its validity in Section 3.5.

While these fixed effects are necessary to identify the effect of empty beds on

NICU admission, they lead to identifying the effect from a very specific source of

variation – unexpected changes in the number of empty NICU beds. For example,

if hospitals decrease their overall threshold for the type of infant they admit to

the NICU because they are often under capacity and, therefore, over the course

of a longer period of time admit more infants due to available supply, this effect

would be absorbed by the hospital-month fixed effects. However, to the extent that

I find an effect of hospital-month deviations in empty beds on NICU admissions,

it likely implies that there is scope for available capacity to affect utilization on

99



other margins as well. If patients and hospitals respond to short term deviations in

available capacity, they likely respond to broader variation in available capacity as

well. Short term effects of capacity on utilization imply additional economic, psychic,

and health costs themselves, but any potential broader effects would greatly magnify

these costs.

If the number of empty NICU beds affects the NICU admission decision, the

effect is likely to vary by characteristics of the infant. Presumably the care decisions

of the sickest infants will be independent of excess capacity in the NICU, especially if

hospitals can transfer these infants when the NICU is full. Infants around the margin

of needing NICU care are the most likely to be admitted as a result of available beds.

For this reason, I allow the effect of empty beds to differ by the baseline health of

the infant. In addition to estimating Equation (3.1) for the full sample, I estimate

it for subsamples stratified by birth weight: very low birth weight (VLBW) infants

weighing less than 1,500 grams (3.33 pounds), low birth weight (LBW) infants

between 1,500 and 2,500 grams (3.33 to 5.5 pounds), two groups of normal birth

weight (NBW) infants, one ranging from 2,500 to 3,250 grams (5.5 to 7.15 pounds)

and the other from 3,250 to 4,000 grams (7.15 to 8.81 pounds), and high birth weight

(HBW) infants above 4,000 grams (8.81 pounds). I also present results that trace

out the effect more flexibly by estimating Equation (3.1) for subsamples stratified

at half pound increments.19

It is important to note that that imputing NICU admission introduces mea-

surement error into both the dependent and independent variables. Furthermore,

the measurement error in the two variables will be correlated, but the direction of

the correlation is ambiguous. For example, suppose over a certain period of time in

a give hospital, the actual NICU patients are less sick than usual and therefore ac-

19As discussed in Chapter 2 birth weight is the best measure of an infant’s health stock at birth
(Almond et al., 2005; Cutler and Meara, 2000) and is measured more accurately than gestation.
In Section 3.11 I examine the robustness of my results to stratifying by gestation instead of birth
weight
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cumulate fewer charges. If my algorithm fails to assign NICU admission to some of

these newborns, I would both overestimate the number of empty beds available the

day before infant i’s birth and underestimate NICU admission for infant i. These

errors would bias the estimates of β downward. On the other hand, it may be the

case that when my algorithm assigns NICU admission to too many infants on the

day prior to infant i’s birth date, infant i himself will be less likely to be assigned

admission because there are fewer slots available for admission in that hospital-

year’s quota. In this case, estimates of β would be biased upward. Unfortunately,

there is no way of telling to what extent and in which direction measurement error

occurs. To the extent that these errors are constant within a hospital-month, they

would only shift the mean number of empty beds and mean admission probability

in a hospital-month and be absorbed by the hospital-specific month fixed effects.

However, this error may not be constant within a hospital-month. As a result, the

estimates in this chapter should be viewed as preliminary until verified using other

data sources more suited to measuring NICU admission. As discussed above, I will

utilize data from New York that specifically reports NICU admission to improve

this analysis.

3.5 Results

3.5.1 Summary Statistics

Before presenting the estimation results, this section discusses summary statis-

tics of the analysis sample. Table 3.2 describes the six analysis samples, listing means

for all newborns in each sample and those admitted to the NICU in each sample.

The differences across these samples in mean NICU admission rates further motivate

providing estimates separately for each. While 13.5% of newborns are admitted to

the NICU, 76.9% of VLBW newborns are admitted and 52.3% of LBW newborns
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are admitted. This number falls to 11.4% for the first NBW group and 9.2% for the

second NBW group, before rising slightly to 12.3% for the HBW group. With such

large differences in baseline admission rates, it is more informative to analyze these

samples separately.

As discussed in Chapter 2 some demographic characteristics are associated

with preterm delivery, but for the most part these high risk births are often unex-

pected. As a result, there are some differences in demographic characteristics across

the samples, but for the most part these differences are not very large. The three

lightest groups are more likely to be covered by Medicaid and have lower education

than the two heaviest groups. There are large differences in the fraction of infants

whose mothers are black with VLBW and LBW infants having a much higher frac-

tion than the heavier groups. On the other hand, the heavier groups have higher

proportions of Hispanic mothers.20

There are more noticeable differences across samples in health related char-

acteristics. Not surprisingly, infants born at lower birth weights are more likely to

be multiple births and have slightly higher parities. Mothers of lighter infants have

received slightly less prenatal care; although, this difference is likely mechanical, as

shorter gestational age limits the possible number of visits. This is confirmed by the

fact that there are are very small differences in the month prenatal care began across

birth weight samples. Heavier infants are less likely to have congenital anomalies,

less likely to be diagnosed with a clinical condition21 (except for HBW infants) and

have longer gestation.

Finally there are large differences in health outcomes across these samples.

While I do note examine outcomes directly, these differences further motivate the

20This is consistent with the well documented “Hispanic paradox” that Hispanics typically have
lower socioeconomic status but better health outcomes

21Clinical conditions include hydrops due to isoimmunization, hemolytic disorders, fetal distress,
fetus affected by maternal condition, oligohydramnios, other high-risk maternal conditions, pla-
centa hemorrhage, premature rupture of membrane, and prolapsed cord as defined in Phibbs et al.
(2007).
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need to explore the birth weight samples separately. As discussed in Chapter 2,

neonatal mortality rates drop drastically with birth weight from 23.0% for VLBW

infants22 to 1.2% for LBW infants and well below 1% for heavier infants. Finally,

lighter infants are much more likely to be transferred and incur much more intensive

treatment in the form of much longer lengths of stays and hospital charges. For

example, VLBW infants spend an average of 48.626 days in the hospital, LBW

infants spend 10.469 days in the hospital and higher birth weight infants spend

around 3 days in the hospital.

Table 3.3 provides summary statistics of the NICU environment on the day

prior to birth for the full sample of newborns and each of the birth weight subsam-

ples. On average, newborns are born in a hospital with 21.470 NICU beds, though

this varies widely, as the standard deviation is 17.278 beds. On average, there are

1.897 empty beds available in the NICU, and the standard deviation is 9.049. At

the 25th percentile there are -3 empty beds and at the 75th percentile there are 7

empty beds.23 VLBW infants, and to a lesser extent LBW infants, are typically

born in hospitals with larger NICUs. Also, at the mean, lighter infants face slightly

fewer available empty NICU beds when they are born.

While these numbers give a sense of the baseline NICU environment, the iden-

tification strategy is based on variation after partialing out the hospital-specific

month fixed effects. For each birth weight subsample, the third row of Table 3.3

summarizes the variation in the residuals from a regression of the number of empty

beds on these fixed effects. In other words, it summarizes how the number of empty

beds deviates from the within hospital-month mean number of empty beds. By

construction the mean of this variable is zero. The standard deviation is 3.097. At

22Note that the neonatal mortality rate is higher than in Chapter 2 because this sample includes
infants weighing less than 500 grams

23The number of empty beds can be negative because my NICU admission algorithm is based
on the annual number of infants treated in the NICU, and because I must assume that an infant
spends their entire hospital stay in the NICU
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the 25th percentile newborns face 1.682 less empty beds than the hospital-month

average, and at the 75th percentile they face 1.695 more beds than the hospital-

month average. When discussing estimation results, I will refer to these measures

in order to discuss the magnitude of my results. As such, it is helpful to see that

this variation does not differ drastically across birth weight samples. The standard

deviations are slightly larger for the lighter infants, likely as a result of often being

born in hospitals with larger NICUs. The differences, however, are small with the

standard deviations ranging from 3.037 beds to 3.158 beds. The difference between

the 25th and 75th percentiles ranges from 3 beds to 3.4 beds and does not follow a

monotonic pattern by birth weight. As a result of these similarities across subsam-

ples, I will discuss my results in the context of changing the number of empty beds

by 3.

The identifying assumption for my framework to estimate the causal effect of

the number of empty beds on NICU admission is that unobserved within hospital-

month deviations in admission probability are uncorrelated with unobserved within

hospital-month deviations in the number of empty beds. Table 3.4 provides support-

ive evidence of this claim by comparing observable characteristics by the number

of empty beds available. For each of the birth weight samples, this table divides

observations by whether the residual number of empty beds the day prior to birth

is above or below the median. For simplicity, I present means of the observable

characteristics without partialing out the fixed effects. There is some evidence that

VLBW infants born on days with above median residual empty beds are less healthy

than those born on below median days, but these differences are quite small. For

example, they are slightly more likely to be multiple births and more likely to have

a congenital anomaly. Otherwise, there are little to no differences in demographic,

pregnancy, or infant characteristics on days with above or below median residual

empty beds for the six samples, suggesting unobserved determinants of NICU ad-
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mission are likely not associated with residual empty beds. For each sample, the

NICU admission probability is higher for infants born on days with higher residual

empty beds. These differences range from 0.7 percentage points for the NBW2 sam-

ple to 6 percentage points for the VLBW sample. This table provides preliminary

evidence that NICU admission rates are higher on days with more empty beds.

3.5.2 The Effect of Empty Beds on NICU Admission

The previous section provides evidence that newborns are more likely to be

admitted to the NICU on days with higher than average empty bed counts. In this

section, I discuss the regression estimates of the effect of empty beds on NICU ad-

mission controlling for various observable characteristics and hospital-specific month

fixed effects as described by Equation (3.1).

The main regression results are presented in Table 3.5 where each row lists

coefficient estimates for a different birth weight sample. For reference, Column

1 repeats the mean NICU admission rate and the number of observations for each

sample. Moving across Columns 2 through 7, I present separate regression estimates

of the empty bed coefficient subsequently adding control variables. All estimates

include the hospital-specific time fixed effects. Column 2 presents estimates with

no other controls included. For all six samples, the coefficient estimates are positive

and very precisely estimated. Before discussing the magnitudes, notice that the only

control variables that appreciably impact any of the coefficient estimates are the

birth weight dummies. These control variables decrease the size of the coefficients

for the full, VLBW, and LBW samples. However, after adding birth weight controls,

the coefficient estimates are quite insensitive to the addition of day of week dummies,

demographic characteristics, pregnancy characteristics, and infant characteristics.24

24Demographic characteristics mother’s age, mother’s age squared, education indicators (some
college, college degree, more than a college degree), insurance status indicators (Medicaid and
managed care), and race and ethnicity indicators (black, other race, and Hispanic). Pregnancy
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If there are any differences in health characteristics associated with empty beds, they

appear to be fully accounted for by including birth weight controls, and the stability

of these coefficient estimates to the addition of all other controls further supports

the evidence presented above that empty beds are not correlated with observable

characteristics after conditioning on hospital-specific time effects.25

Focusing on the main results with all controls included in Column 7, an addi-

tional empty bed leads to a 0.15 percentage point increase in the probability of NICU

admission. Relative to the overall mean rate of admission, this represents an effect

of 1.11% as reported in Column 8. Estimates in the subsequent rows imply that

there is important heterogeneity in this effect. The coefficient estimates are highest

for the VLBW and LBW samples (0.34 and 0.49 percentage points, respectively)

and lower for the NBW samples, before increasing slightly for the HBW sample

(0.14, 0.09, an 0.17 percentage points, respectively). However, these magnitudes

are difficult to compare because of the large differences in admission rates by birth

weight. In Column 8 I compare the results relative to mean admission probabilities

for each sample. Here the relative effect is actually smallest for VLBW infants at

0.40%. This effect increases to 0.94% for LBW infants, 1.21% and 1.00% for the

two NBW groups, and 1.34% for the HBW group.

As expected, the smallest relative effect is among the VLBW infants. To get

a better sense of the magnitude of these effects, it is useful to scale them by a

measure of the actual variation in the number of empty beds. As discussed above,

the standard deviation of the residual number of empty beds and the difference

characteristics include sex, parity, a multiple birth indicator, month prenatal care began, and
number of prenatal care visits. Infant characteristics include indicators for having a congenital
anomaly, a clinical condition, being small for gestational age, and being large for gestational age.

25Though not reported in the table, regression estimates that control for whether or not the
infant is delivered by cesarean section are identical to those in Column 7. While a cesarean section
is an important risk factor, I prefer not to include it in the regressions. Since it is a treatment
decision, it is potentially endogenous to the number of empty beds, as the number of empty NICU
beds may weigh into a physicians decision on if and when to schedule a cesarean delivery. Below
I examine the robustness of my results to excluding infants delivered by cesarean section.
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between the 25th and 75th percentiles of these residuals are around 3 for all of

the birth weights subsamples. So, even for three bed change, the VLBW estimate

implies an effect of only 1.2%. While it appears that the number of empty beds

impacts the probability that VLBW infants are admitted to the NICU, the effect

seems quite small for this group, which is the group one would expect the smallest

impact of external factors on treatment choices. A three bed change in the number

of empty beds leads to an increase in the NICU admission probability by 2.82%,

3.63%, 3.00% and 4.02% for LBW, NBW1, NBW2, and HBW infants respectively.

Considering that a one standard deviation change or moving from the 25th to the

75th percentile of empty beds is a large shock, it could be argued that these effects

are relatively small. However, as discussed above in Section 3.4, these estimates are

based on a very specific source of variation – unexpected hospital-month deviations

in the number of empty NICU beds. To the extent that I find a measurable effect

of these short term deviations on NICU utilization, we might expect that NICU

utilization responds to NICU capacity at other margins as well. While the estimates

do not directly imply that additional NICU capacity in aggregate leads to additional

NICU utilization, these results suggest that there is wide scope for available capacity

to effect utilization at broader levels as well. In particular, increases in capacity

associated with deregionalization may provide opportunities for additional NICU

utilization.

To further disaggregate the effect I estimate Equation (3.1) for subsamples

at 250-gram birth weight increments. The coefficient estimates and 95% confidence

intervals are plotted by birth weight in Figure 3.3a, and the percentage effect relative

to each subsample’s mean NICU admission probability is plotted in Figure 3.3b. In

these figures, the birth weight along the horizontal axis represents the upper bound

of each subsample. For all subsamples, the coefficient estimates are positive, and

except for the 750 to 1000 subgroup, they are all statistically significant at the 5%
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level.

Focusing on the relative effects in Figure 3.3b reveals an interesting pattern.

The relative effects are flat and small for infants below 1500 grams. There is then

a discrete increase moving from just below 1500 grams to just above 1500 grams as

the size of the effect jumps from 0.22% to about 0.66%. While the absolute effect

declines through the LBW range, the relative effect, which takes into account the

declining admission probability through this range, rises to a peak of about 1.38%

for infants between 2250 and 2500 grams. The effect then drops to about 0.9% for

infants above 2750 grams and remains flat through most of the NBW range. Finally,

the relative effect size begins to climb again through the HBW range – those above

4000 grams.

These patterns are consistent with those discussed above in the more aggre-

gated estimates, but plotting the effects for narrower birth weight groups makes

clear that the effect of empty beds on NICU admission is quite small for the least

health infants as measured by VLBW, discretely jumps above this threshold and

climbs through the group of LBW infants who are likely on the margin of needing

NICU care, decreases for the most health NBW infants, and increases again for

another potentially marginal group of HBW infants.

The finding that the effect of empty beds on NICU admission probability

increases from just below to just above the VLBW threshold is interesting in the

context of Almond et al. (2008). These authors use the VLBW “rule of thumb”

to identify the effect of additional treatment on mortality. They find discretely

higher charges but lower mortality rates for infants just below this threshold. It is

interesting that this rule of thumb also seems to affect how physicians respond to

empty beds. Below the rule of thumb, there appears to be little room for judgment,

and empty beds have little effect on NICU admission. Above the rule of thumb,

there appears to be more room for external factors to impact admission decisions.
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3.5.3 The Mitigating Effects of Inter-Hospital Transfer

A positive effect of empty NICU beds on NICU admission does not necessarily

imply that excess capacity leads to excessive utilization of NICUs. It may be the

case that this effect is at least partially driven by infants being denied NICU care

when a NICU is full and therefore capacity constrained. However, infants who need

neonatal intensive care are often transferred to other hospitals. In my sample, 19%

of VLBW infants are transferred from their birth hospital to another hospital and

8% are transferred on the day of birth. If infants are more likely to be transferred

when the NICU at the birth hospital is crowded, I will overestimate the effect of the

number of empty beds on NICU admission as these transferred infants (and eventual

NICU patients) will be considered to not be admitted. To understand the extent

to which this occurs, Table 3.6 provides estimates of the effect of empty beds on an

indicator for whether or not an infant is transferred to another hospital. In Column

1, I consider the effect of empty beds on whether an infant is ever transferred, and

in Column 2, I consider the effect on whether the infant is transferred on the day he

is born. If an infant is being transferred due to capacity constraints in the NICU,

it is likely to occur soon after birth.

The number of empty NICU beds has a negative and statistically significant

impact on the probability of ever being transferred and transferred on the first day

for all subsamples except HBW infants. However, the effect size is extremely small

in magnitude for infants above the low birth weight threshold, consistent with the

fact from Table 3.2 that heavier infants have mean transfer rates under 1% and

transfer rates on the first day of less than 0.3%.

For VLBW infants, transfers mitigate a large portion of the effect of empty

beds on NICU admissions. To show this directly, Columns 3 and 4 show estimates

of the effect of empty beds on an indicator variable that is equal to one if the

infant is admitted to the NICU or transferred. Compared to the baseline estimates
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in the last column of table 3.5 the effect is cut by one third for VLBW infants

from 0.31 percentage points to 0.20 percentage points. Transfers also have a small

mitigating effect for LBW infants, decreasing the effect from 0.49 percentage points

to 0.45 percentage points. Not surprisingly, transfers do not mitigate the effect

of empty beds for heavier infants. These results suggest that the effect of empty

beds on the ultimate treatment received by the sickest infants is negligible, while

healthier infants who are more likely to be on the margin of needing intensive care

are impacted more. Furthermore, it suggests that if hospitals transfer infants when

it is medically necessary, much of the effect of empty beds on NICU admission for

infants above the VLBW threshold is likely due to excessive utilization of services

as opposed to binding capacity constraints.

3.5.4 Hospital Level Heterogeneity

To this point, I have examined the effect of the number of empty beds on

NICU admission separately by birth weight. However, incentives to make treatment

decisions based on available capacity may be heterogeneous along many other di-

mensions in addition to birth weight. In this section I explore how the effect of

empty beds on NICU admission differs by hospital characteristics, continuing to

show all results separately by birth weight as well.

In the context of neonatal intensive care deregionalization, an immediate ques-

tion is how the effect of empty beds on NICU admission differs by the level of NICU

available at a hospital. It has been documented that the diffusion of NICUs has out-

paced medical need, and by 1995 the number of available NICU bed-days exceeded

medically necessary bed-days by a factor of 2.5 (Howell et al., 2002). Addition-

ally, most of the new NICUs established during the 1980s and 1990s where lower

level NICUs in community hospitals (e.g., Baker and Phibbs, 2002; McCormick and

Richardson, 1995; Schwartz, 1996; Schwartz et al., 2000). As discussed in Chapter
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2, in my data covering California over the period 1991 through 2001, 31 hospitals

opened new Intermediate or Community NICUs while the number of hospitals with

the most sophisticated Regional NICUs remained constant. If deregionalization has

in fact led to excess supply of neonatal intensive care, it suggests that there is a large

amount of scope to admit marginal infants to the NICU. In particular, if lower level

NICUs represent excess capacity in aggregate, they may be more likely to respond

to the incentives associated with empty beds as they attempt to recoup fixed costs

and maintain revenue.

The first three columns of Table 3.7 presents results for subsamples based on

the level of NICU available at the newborn’s birth hospital. For all subsamples,

the point estimate of the effect of empty beds on NICU admission is highest in

hospitals with Intermediate NICUs and lowest in hospitals with Regional NICUs.

This result suggests that hospitals with lower level NICUs respond more strongly to

the prevalence of empty NICU beds. Also, the effect is still positive and statistically

significant in hospitals with Regional NICUs, suggesting these hospitals respond

to the incentives associated with empty beds as well. Table 3.8 replicates these

results with NICU admission or transfer on the first day as the dependent variable.

The point estimates show little change for infants above the LBW threshold, but

the point estimates for VLBW and LBW infants are lower when considering the

mitigating effect of transfers. Also, consistent with the fact that hospitals with

lower level NICUs are more likely to transfer high-risk infants, considering transfers

has a larger proportional effect on Intermediate hospitals. For VLBW infants, the

effect falls by over a half in Intermediate NICU hospitals and by about a third

in both Community and Regional NICU hospitals. For LBW infants, the effect

size falls by a fifth in Intermediate NICU hospitals but only by about a tenth in

Community and Regional NICU hospitals.

In addition to comparing the effects of a one-bed change in the number of
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empty beds, it is also important to consider the fact that the variation in empty

beds differs by hospital type. Therefore, I compare the effects of a one standard

deviation change in residual empty beds from separate regressions of empty beds on

hospital-specific month fixed effects from each birth weight/NICU level subsample.

With this additional scaling, the effect of empty beds on NICU admission is still

largest in Intermediate and Community NICU hospitals and smallest in Regional

NICU hospitals, but the gradient is less steep. For example, in the LBW sample,

a one standard deviation change in empty beds in an Intermediate NICU hospital

(1.97) leads to a 1.9 percentage point increase in NICU admission. In Community

NICU hospitals a one standard deviation change (2.34) leads to a 0.86 percentage

point increase in NICU admission, and in Regional NICU hospitals, a one standard

deviation change (3.92) leads to a 0.59 percentage point increase in NICU admission.

While Intermediate NICU hospitals appear to respond more strongly to the number

of empty beds, considering differences in the variation in empty beds decreases the

discrepancy between levels of care.

Given the fact that variation in empty beds differs across hospitals, it is worth-

while to also separate them by NICU size as well. With the hospital-specific month

fixed effects, my estimates are identified from deviations from the within hospital-

month mean number of empty beds. While these fixed effects inherently control for

the NICU size, they do not account for the fact that, for example, NICUs with 10

beds only have scope to deviate from their mean by a small number of beds, whereas

NICUs with 50 beds can have much wider deviations from their means. Not sur-

prisingly, the standard deviation of residual empty beds from a regression of empty

beds on the hospital-specific month effects is 2.068 for the sample of infants born

in hospitals with less than 20 NICU beds and 3.744 in hospitals with more than 20

NICU beds. In Columns 4 and 5 of Table 3.7 and Table 3.8 I separate hospitals

by NICU size and present estimates for infants born in hospitals with less than 20
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NICU beds and greater than or equal to 20 NICU beds. While number of beds is

highly correlated with level of care – at the hospital-year level Intermediate NICUs

average 6.4 beds, Community NICUs 12.5 beds, and Regional NICUs 32.0 beds –

there is heterogeneity within each category. Only 2.8% of Intermediate NICUs have

greater than 20 beds, but 15.6 % of Community NICUs have greater than 20 beds,

and 22.3% of Regional NICUs have fewer than 20 beds.

The results indicate that empty beds have a higher absolute effect on NICU

admission in hospitals with smaller NICUs across all birth weights, though the very

large discrepancies for VLBW and LBW infants are partially offset in Table 3.10

where the outcome is NICU admission or transfer. Scaling by the standard deviation

of residual empty beds for each group decreases the gradient. For example, for the

LBW group, the estimates imply that a one standard deviation change in empty

beds in small NICUs (2.282) increases the probability of NICU admission or transfer

by 1.7 percentage points while a one standard deviation change in empty beds in

large NICUs (3.915) increases the probability of NICU admission or transfer by 1.2

percentage points. Taking these differences into consideration reveals that the effect

of empty beds is larger in hospitals with smaller NICUs, though not by a substantial

amount when considering relative size. These results also indicate that the main

estimates are not being driven by empty bed variation from NICUs of a particular

size.

The final set of columns in Table 3.7 and Table 3.8 show the effect of empty

beds on NICU admission by hospital characteristic that may directly affect financial

incentives: ownership status. There is an important literature in health economics

on the differences between for-profit and not-for profit hospitals. In particular, Dug-

gan (2000) shows that privately owned not-for-profit hospitals are similarly respon-

sive to financial incentives as for-profit hospitals, while government owned hospitals

are less responsive, and Duggan (2002) finds that not-for-profit hospitals behave
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more similarly to for-profit hospitals when they compete more directly with other

for-profit hospitals. On the other hand Dafny (2005b) finds that for-profit hospi-

tals are more likely to upcode patients to “with complication” DRGs when price

differences between DRGs increase.

Columns 6-8 of Table 3.7 show the effect of empty beds on NICU admission

for government owned, privately owned not-for-profit, and for-profit hospitals, re-

spectively. The effects are positive and statistically significant for all three hospital

types in all birth weight subsamples except for VLBW infants in for-profit hospitals,

suggesting that hospitals with all three ownership structures respond to available

capacity. The point estimates are generally largest for infants born in for-profit

hospitals, although this is not true for VLBW infants where the effect is not sta-

tistically significant in for-profit hospitals and is largest in not-for-profit hospitals.

However, when considering the role of transfers in Columns 6-8 of Table 3.8 the

effect for VLBW infants in Government owned hospitals falls to zero, and the effect

for LBW infants in Government owned hospitals becomes very similar to those in

not-for-profit hospitals. Comparing these results suggests that government-owned

hospitals do not respond to available capacity for VLBW infants. While they are

still responsive for LBW infants, the effect is similar to not-for-profit hospitals and

smaller than for-profit hospitals. Generally these results suggest that empty beds

lead to additional NICU utilization for all three ownership types, but consistent

with Dafny (2005b) the effect is strongest in for-profit hospitals.

3.5.5 Individual Level Heterogeneity

In this section, I examine the effect of empty beds on admission probability

separately by individual characteristics. Table 3.9 presents results for subsamples

based on individual characteristics, with the baseline results repeated in Column

1. Table 3.10 presents the same sample cuts with NICU admission or transfer on
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the first day as the dependent variable. While coefficient estimates are lower in the

second table, the patterns across columns are similar, so I will mainly discuss the

estimates in Table 3.9.

On one hand, physicians may be less able to take advantage of their agency

and induce demand when the patient is more informed (McGuire, 2000). On the

other hand, more informed, higher educated individuals may be more prone to

moral hazard.26 Columns 2 through 4 explore these possibilities by separating the

samples by demographic characteristics. I show results for infants with Hispanic

mothers, black mothers, and mothers with no college education. The point estimate

for VLBW infants with Hispanic mothers is 0.24, which is lower than the baseline

estimate of 0.31. For all other birth weight groups, the estimates for infants of

Hispanic mothers are very similar to the baseline samples. The fact that the effect

of empty beds on NICU admission does not differ much for Hispanic infants is

not informative about the level of induced demand or moral hazard for this group

relative to other groups.

Results for infants with black mothers are presented in Column 3. These

point estimates reveal that the effect of empty beds on NICU admission is higher

for VLBW black infants than the VLBW baseline, lower for LBW black infants

relative to the LBW baseline, and very similar for black infants and the baseline at

higher birth weights. One possible explanation for the very high point estimate for

VLBW black infants is that these infants are more prone to face capacity constraints

that prevent them from receiving treatment; however, the estimate for VLBW black

infants when considering the outcome of NICU admission or transfer is still over

twice the size of the baseline point estimate. Future research is warranted to under-

stand why the treatment of VLBW black infants is more likely to be impacted by

26In a related context Fang et al. (2008) find that higher educated and higher income individuals
purchase more insurance despite having lower health risks. This relationship is labeled “advanta-
geous selection” as it relates to individuals buying more insurance, but it may be the case that
these individuals would utilize health care resources at a higher level as well.
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available NICU capacity.

Column three presents results for samples where the mother has no college

education. If non-college educated individuals show a larger effect, it may be the

case that induced demand is stronger for less well informed patients. On the other

hand, if the effect is smaller, it would suggest higher educated individuals are more

risk averse. The point estimate suggest a slightly higher effect of empty beds on

NICU admission for VLBW infants whose mothers have no college education, but

no differences at the other birth weights. Again, the lack of heterogeneity in the

effect by education does not distinguish between induced demand and moral hazard.

Columns 5 through 7 of Table 3.9 considers that there may be direct differences

in financial incentives by insurance status. Among the privately insured, managed

care organizations provide fewer financial incentives that are directly tied to the

type of treatment administered and provide tighter monitoring of behaviors that

might be considered moral hazard. In fact, managed care has been shown to slow

the adoption of neonatal intensive care units (Baker and Phibbs, 2002). However,

anecdotally, managed care has been hesitant to limit reimbursement of infant care

(Horwitz, 2005, see online appendix), so it is an empirical question whether the

effect of supply on utilization differs between these two groups of patients. Almost

all births that are not covered by private insurance are covered by Medicaid. While

Medicaid typically does not reimburse as generously as private insurance, there is

still scope for induced demand and moral hazard in this population.

The results in Columns 5 through 7 reveal little difference in the point esti-

mates between private non-managed care patients and managed care patients except

for VLBW infants where there is a larger effect for managed care patients. This re-

sult is in line with the fact that managed care may be hesitant to limit infant health

care. As a caveat, my sample excludes all Kaiser hospitals. Kaiser likely provides

the weakest scope for induced demand and moral hazard, but unfortunately, I can-
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not test the effect of empty beds on NICU admission for this strongest form of

managed care. The results for Medicaid patients are similar to privately insured pa-

tients except for a slightly higher point estimate among VLBW Medicaid patients

relative to VLBW privately insured patients. Even if Medicaid reimburses neonatal

intensive care less generously than private insurance companies, the availability of

empty beds still increases the probability of NICU admission for Medicaid patients.

Finally, in the last two columns of Table 3.9 I present estimates separately

for the period from 1991 through 1995 and the period from 1996 through 2001. As

discussed in Chapter 1, deregionalization continued through the early part of the

1990s but leveled off after 1996. The point estimates are slightly larger for the later

period, but the effect seems relatively stable over time.

3.5.6 Robustness

In this section I discuss the robustness of my results to various specification

and sample considerations. First, I estimate my regressions by gestational age sub-

groups instead of birth weight to ensure that measuring health by gestation leads

to similar conclusions. Figure 3.4a plots coefficient estimates and 95% confidence

intervals for subsamples at one-week of gestation intervals. Figure 3.4b plots these

coefficient estimates relative to the mean NICU admission probability in each one-

week subgroup. While not as distinct as with the birth weight specifications, a

similar pattern occurs. The coefficient estimates are all positive and statistically

significant at the 5% level. The relative effects are small for infants with low gesta-

tional ages. Gestation of less than 32 weeks is considered very preterm, 32-36 weeks

moderately preterm, and 37 weeks or higher term. The effect size increases substan-

tially between 33 and 34 weeks – in the middle of the moderately preterm range.

After this threshold, the pattern is a bit noisy, but relatively flat until increasing for

infants with long gestational ages.
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Results of various other robustness checks are presented in Table 3.11, with

the baseline results from Table 3.5 repeated in Column 1. As discussed above,

adding birth weight dummies to the regression of NICU admission on the empty

beds variable and the hospital-specific month fixed effects changed the empty beds

coefficient. Here I examine whether including more specific birth weight controls

impacts the results. Column 2 of Table 3.11 presents results including birth weight

dummies in 50-gram increments instead of the relatively crude 250-gram increments.

For all of the birth weight subgroups, results are almost identical whether I include

birth weight controls in 50 or 250-gram increments.

One potential behavior on the part of hospitals and physicians that could bias

my results is the ability to time a delivery through either delaying or inducing labor

or scheduling cesarean sections. If physicians attempt to deliver high risk infants

when NICUs are less crowded, my estimates would be biased towards finding a

possitive effect of empty beds on NICU admission. To consider this, Column 3

presents results excluding cesarean deliveries, one group for which timing of birth

may be endogenous. This restriction leads to a slightly larger effect for VLBW

infants and a slightly smaller effect for the other groups. Overall, potentially planned

cesareans do not appear to bias the results.

The final two columns of Table 3.11 relate to my NICU admission algorithm.

After performing my algorithm, I find that some hospitals experience many days

where the number of empty beds is negative indicating that the NICU is over ca-

pacity. In fact 18% of hospital-year level observations are over capacity for more

than 60% of the year. By assuming that infants are admitted to the NICU imme-

diately when born and leave the NICU at discharge, I can expect to overestimate

the number of infants in the NICU on a given day, but this assumption is likely

not driving this large number of days over capacity. The Utilization Data File also

lists the number of total days infants spent in the NICU for a given year. When
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dividing this number by the number of bed-days available (the number of beds times

the number of days they are available to be used), I find that the utilization data

also indicate that NICUs are operating over capacity, with bed-days used exceeding

bed-days available in 24% of hospital year observations. Also, the ratio of utilized

bed-days to available bed-days is highly correlated with the percentage of days a

hospital is over capacity under my admission algorithm. The correlation coefficient

between these two measures is 0.69.

If these facts are taken to indicate that some hospitals often operate with

very full NICUs, it is worth ensuring they are not driving the results, and that the

estimates are instead driven by hospitals with empty bed variation in ranges away

from their capacity constraints. In Column 4 of Table 3.11 I drop all observations on

days where the NICU is greater than 5% over capacity, in other words, days where

the number of NICU occupants by my algorithm exceeds the number of NICU beds

by more than 5%. In Column 5 I drop all observations for hospital-years in which

the number of NICU occupants exceeded NICU beds for more than 60% of the

year. If anything, excluding these two sets of observations increases the coefficient

estimates for VLBW, LBW, and HBW infants, while they are virtually unchanged

for NBW infants. This finding again suggests that the results are not being driven

by the denial of neonatal intensive care when NICUs are crowded.

3.6 Conclusion

The effect of the availability of medical resources on their rate of utilization

is a difficult to identify parameter. I provide a preliminary examination of this

question in the context of neonatal intensive care, an important and interesting

context due to the increase in the number of hospitals offering NICUs. To identify

the effect of availability on utilization, I estimate the effect of the number of empty

beds available in the NICU the day prior to an infant’s birth on the probability that
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the infant is admitted to the NICU. Including hospital-specific month fixed effects

in my regressions allows me to exploit within hospital-month variation in NICU

availability. I am therefore able to flexibly control for factors correlated with an

individual’s choice of hospital, hospital treatment style, serial correlation in infant

health, and serial correlation in infant health specific to each hospital.

I find that on average, an increase in the number of empty NICU beds of 3

(an approximately one standard deviation change) increases the probability of being

admitted to the NICU by 3.33%. The magnitude of the effect is smallest for VLBW

infants (1.2%) and larger for infants above this threshold. For example, for LBW

infants, the effect of a 3 bed change is 2.82%. Allowing for the fact that many

VLBW infants are transferred on their first day in the hospital decreases the effect

for this group by about a third. When I estimate the effect separately for narrower

birth weight groups, I find that the effect size is negligible for all VLBW infants,

and jumps discretely after this threshold is crossed. The effect appears to be the

largest for the heaviest of the LBW group and for HBW infants, two groups likely

on the margin of needing and not needing neonatal intensive care.

In the context of the deregionalization of neonatal intensive care, the finding of

a measurable effect of hospital-month deviations in empty beds on NICU admission,

suggests that there is likely scope for supply to lead to additional NICU utilization

in general. Additionally, I find that the effect of empty beds on NICU admission

is largest in Intermediate NICU hospitals even after accounting for the fact that

these hospitals are more likely to transfer infants to other hospitals when there are

fewer empty beds available. It appears that lower level NICU hospitals, which are

those hospitals most associated with deregionalization, are more prone to admitting

infants to the NICU in response to empty NICU beds.

These estimates suggest that the availability of neonatal intensive care beds

leads to additional neonatal intensive care utilization. I also provide evidence that
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this effect is not being driven by crowded NICUs denying care. This finding has

important implications. In particular, it implies additional economic costs, psychic

costs, and potential health costs for unnecessarily treated infants. Future research is

warranted to better understand these costs, particularly the health effects of being

admitted to the NICU because empty beds were available. This is a difficult question

to answer because the stock of infants in the NICU may have other effects on health

outcomes through avenues independent of NICU admission. For example, nurses

and doctors may be able to provide better care for all infants when there are fewer

patients to attend to.

These results open the door to other avenues of future research as well. First,

it is important to verify these results using data that specifically identify which

infants are admitted to the NICU. Second, it may be interesting and informative to

model the NICU decision in a more sophisticated manner. Relevant to the concerns

about the direct effects of having fewer infants in the NICU on health outcomes, a

particular infant’s outcomes and NICU admission decision may also be a function of

the number and health of other infants born the same day as a given infant. Finally,

while I document that empty beds lead to additional utilization of NICUs, I am not

able to identify the mechanism behind this result. It is likely that both information

asymmetries between physicians and patients and information asymmetries between

patients and insurers contribute, but understanding the relative contributions is an

important question for future research.

121



Figure 3.1: Hospital Level NICU Admission Density

Notes: This figure plots the kernel density of NICU admission rates at the hospital level. For each
hospital, the NICU admission rate is calculated as the fraction of infants admitted to the NICU.
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Figure 3.2: Very Low Birth Weight, Mortality, and NICU Admission Over Time

Notes: This figure plots trends in the fraction of VLBW infants, the fraction of VLBW infants
that die in 28 days or within one year if hospitalized continuously since birth, and the fraction of
infants admitted to the NICU by quarter from the analysis sample. VLBW infants are measured
on the left hand side axis while Mortality and NICU admission are measured on the right hand
side axis.

123



Figure 3.3: Effect of Empty Beds on NICU Admission by Birth Weight

(a) Coefficients and 95% Confidence Intervals

(b) Coefficients Normalized by NICU Admission Rate

Notes: The top panel plots coefficient estimates and 95% confidence intervals from separate regres-
sions of NICU admission on the number of empty beds the day before birth for samples stratified
by birth weight in 250-gram increments. Specifications include all control variables described in
the notes to Table 3.5, including hospital-specific month fixed effects. All standard errors are
clusterd at the hospital level. The bottom panel plots these coefficient estimates divided by the
NICU admission rate with each birth weight subgroup.
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Figure 3.4: Effect of Empty Beds on NICU Admission by Gestation

(a) Coefficients and 95% Confidence Intervals

(b) Coefficients Normalized by NICU Admission Rate

Notes: The top panel plots coefficient estimates and 95% confidence intervals from separate regres-
sions of NICU admission on the number of empty beds the day before birth for samples stratified
by gestation in 1-week increments. Specifications include all control variables described in the
notes to Table 3.5, including hospital-specific month fixed effects. All standard errors are clusterd
at the hospital level. The bottom panel plots these coefficient estimates divided by the NICU
admission rate with each gestation subgroup.
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Table 3.1: Constructing Analysis Sample

Average # of # of Observations

Hospitals per Year Births Transfers Readmissions Total

Initial 387.27 6,221,001 96,041 736,762 7,053,804
# of NICU Beds > 0 158.27 4,445,751 92,925 596,589 5,135,265
# of NICU Admissions > 0 139.55 4,269,275 91,600 581,939 4,942,814
# of Births > 0 144.27 4,264,353 67,554 469,546 4,801,453
Birth Diff < 10% 140.45 4,152,220 64,329 452,827 4,669,376
Non-Missing Charges 121.91 3,566,527 57,440 404,768 4,028,735
Algorithm Diff < 10% 119.64 3,495,411 55,926 393,283 3,944,620
Admission Date Present 119.64 3,477,195 55,926 393,283 3,926,404
Birth Weight Present 119.64 3,440,074 55,717 392,429 3,888,220
Year > 1991 121.10 3,131,948 50,492 369,092 3,551,532

Notes: This table lists the number of observations and average number of hospitals per year after the imposition of each sample restriction. The
sample starts with all infants in the Discharge Data File and then eliminates hospitals with 0 NICU beds, hospitals with 0 NICU patients, hospitals
with no births reported in the Utilization Data File or no births in the Discharge Data File, hospitals where the number of births differs by more
than 10% between the two data sets, hospitals with charges missing for all infants, and hospitals for which the number of NICU patients derived from
my admission algorithm differs from the number of target admissions by more than 10%. It then eliminates infant observations missing an admission
date, missing birth weight, and from 1991.
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Table 3.2: Sample Means

Full Sample VLBW LBW

All NICU All NICU All NICU

NICU Admission 0.135 1.000 0.769 1.000 0.523 1.000
Mother’s Demographics
Age 27.482 27.752 27.931 28.187 27.690 27.939
Medicaid 0.475 0.493 0.495 0.483 0.512 0.512
Managed Care 0.385 0.367 0.338 0.350 0.349 0.346
Self Pay 0.037 0.033 0.029 0.018 0.035 0.030
No College 0.623 0.629 0.656 0.639 0.643 0.641
Some College 0.183 0.184 0.189 0.194 0.180 0.182
College 0.110 0.104 0.089 0.095 0.098 0.098
College Plus 0.083 0.083 0.067 0.072 0.078 0.079
Black 0.074 0.110 0.168 0.165 0.136 0.138
Other Race 0.125 0.118 0.100 0.104 0.132 0.115
Hispanic 0.474 0.449 0.440 0.435 0.427 0.423
Pregnancy Characteristics
Multiple Birth 0.028 0.085 0.238 0.246 0.219 0.241
Parity 2.150 2.180 2.257 2.250 2.225 2.284
Mnth. Pren. Beg. 2.450 2.394 2.148 2.175 2.425 2.376
# of Pren. Visits 11.533 11.329 8.599 9.152 10.968 10.746
Male 0.512 0.555 0.510 0.503 0.478 0.520
Infant Characteristics
Congenital Anom. 0.010 0.045 0.090 0.099 0.035 0.052
Clinical Condition 0.107 0.224 0.268 0.295 0.166 0.225
Small for Gest. 0.004 0.019 0.058 0.070 0.044 0.052
Large for Gest. 0.067 0.099 0.016 0.018 0.018 0.025
Birth Weight (G) 3337.54 2951.86 993.00 1071.44 2171.40 2056.66
Gestation (Wks) 39.464 37.877 29.381 30.063 36.341 35.247
Treatment & Outcomes
Neonatal Mort. 0.005 0.014 0.230 0.107 0.012 0.012
28 Day Readmit 0.032 0.033 0.010 0.007 0.034 0.026
1 Year Readmit 0.105 0.140 0.193 0.217 0.139 0.151
Transfer 0.009 0.034 0.173 0.135 0.037 0.041
Transfer Day 1 0.003 0.000 0.069 0.001 0.014 0.000
Length of Stay 3.868 10.986 39.393 50.837 9.605 15.234
Charges 6.522 37.744 175.217 226.201 24.846 44.727
Charges/Day 0.847 2.625 4.097 4.419 1.799 2.655
Total LOS 4.118 11.958 48.626 57.492 10.469 16.148
Total Charges 7.636 42.083 213.979 254.629 28.243 48.268
N 3,131,948 423,840 42,040 32,340 173,895 90,967

Continued on next page
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Table 3.2 – continued from previous page

NBW1 NBW2 HBW

All NICU All NICU ALL NICU

NICU Admission 0.114 1.000 0.092 1.000 0.123 1.000
Mother’s Demographics
Age 26.967 27.385 27.552 27.590 28.623 28.637
Medicaid 0.502 0.508 0.461 0.478 0.432 0.465
Managed Care 0.364 0.356 0.397 0.385 0.419 0.396
Self Pay 0.040 0.038 0.037 0.034 0.032 0.030
No College 0.642 0.640 0.614 0.614 0.595 0.616
Some College 0.176 0.179 0.185 0.186 0.197 0.191
College 0.104 0.102 0.114 0.111 0.119 0.107
College Plus 0.078 0.080 0.087 0.089 0.090 0.086
Black 0.092 0.124 0.059 0.083 0.044 0.060
Other Race 0.158 0.139 0.113 0.116 0.076 0.085
Hispanic 0.469 0.435 0.485 0.470 0.471 0.485
Pregnancy Characteristics
Multiple Birth 0.034 0.047 0.003 0.004 0.000 0.001
Parity 2.061 2.129 2.153 2.092 2.370 2.348
Mnth. Pren. Beg. 2.500 2.458 2.440 2.406 2.394 2.384
# of Pren. Visits 11.336 11.343 11.704 11.926 12.017 12.242
Male 0.454 0.531 0.530 0.580 0.628 0.651
Infant Characteristics
Congenital Anom. 0.009 0.045 0.006 0.032 0.007 0.030
Clinical Condition 0.052 0.144 0.065 0.165 0.437 0.611
Small for Gest. 0.002 0.006 0.000 0.001 0.000 0.001
Large for Gest. 0.013 0.037 0.036 0.082 0.422 0.578
Birth Weight (G) 2973.22 2927.34 3577.76 3584.03 4273.25 4324.34
Gestation (Wks) 39.211 38.659 40.033 39.921 40.426 40.296
Treatment & Outcomes
Neonatal Mort. 0.002 0.007 0.001 0.003 0.001 0.003
28 Day Readmit 0.034 0.040 0.031 0.036 0.030 0.036
1 Year Readmit 0.108 0.140 0.098 0.122 0.097 0.117
Transfer 0.006 0.025 0.004 0.019 0.005 0.019
Transfer Day 1 0.002 0.000 0.001 0.000 0.002 0.000
Length of Stay 3.106 6.025 2.914 4.924 3.206 5.353
Charges 3.393 17.521 2.674 13.762 3.346 14.649
Charges/Day 0.757 2.375 0.724 2.479 0.794 2.364
Total LOS 3.220 6.498 2.977 5.241 3.285 5.669
Total Charges 3.974 19.959 3.008 15.485 3.746 16.266
N 1,032,399 117,619 1,560,110 143,068 323,504 39,846

Notes: This table presents sample means for the full sample and each of the five birth weight
subsamples. For each sample, the first column includes all infants and the second includes
those admitted to the NICU. Total LOS and Total Charges sum length of stay and hospital
charges over all contiguous hospitalizations prior to first being discharged home or dying.
Neonatal mortality is mortality within twenty-eight days of birth or within one year if an
infant is continuously hospitalized since birth.
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Table 3.3: Summary Statistics of Empty Beds

Mean St. Dev. 25th Pct. 50th Pct. 75th Pct.

Full Sample (N=3,131,948)
NICU Beds 21.471 17.278 8.000 16.000 28.000
Empty NICU Beds 1.897 9.049 -3.000 2.000 7.000
Residual Empty Beds 0.000 3.097 -1.682 0.063 1.695

VLBW (N=42,040)
NICU Beds 27.923 19.489 12.000 22.000 40.000
Empty NICU Beds 1.716 10.484 -4.000 2.000 8.000
Residual Empty Beds 0.000 3.158 -1.500 0.000 1.500

LBW (N=173,895)
NICU Beds 23.675 18.193 10.000 19.000 32.000
Empty NICU Beds 1.723 9.621 -3.000 2.000 7.000
Residual Empty Beds 0.000 3.181 -1.706 0.000 1.708

NBW1 (N=1,032,399)
NICU Beds 21.381 17.055 9.000 16.000 28.000
Empty NICU Beds 1.815 9.092 -3.000 2.000 7.000
Residual Empty Beds 0.000 3.079 -1.660 0.054 1.683

NBW2 (N=1,560,110)
NICU Beds 21.147 17.148 8.000 16.000 28.000
Empty NICU Beds 1.945 8.932 -3.000 2.000 7.000
Residual Empty Beds 0.000 3.066 -1.659 0.066 1.669

HBW (N=323,504)
NICU Beds 21.297 17.551 8.000 16.000 28.000
Empty NICU Beds 2.042 8.951 -2.000 2.000 7.000
Residual Empty Beds 0.000 3.037 -1.600 0.500 1.621

Notes: This table provides summary statistics of the number of NICU beds, the number of empty
NICU beds and the residual empty NICU beds for the full sample and each of the five birth weight
subsamples. The residuals are from separate regressions of empty beds on hospital-specific month
fixed effects for each subsample.
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Table 3.4: Sample Means by Residual Empty Beds

Full Sample VLBW LBW

Below Above Below Above Below Above
Median Median Median Median Median Median

NICU Admission 0.128 0.143 0.741 0.804 0.497 0.549
Mother’s Demographics
Age 27.469 27.496 27.873 28.004 27.675 27.706
Medicaid 0.475 0.474 0.491 0.500 0.511 0.514
Managed Care 0.385 0.385 0.341 0.335 0.350 0.347
Self Pay 0.037 0.037 0.033 0.025 0.036 0.034
No College 0.624 0.622 0.654 0.658 0.645 0.641
Some College 0.183 0.183 0.191 0.186 0.179 0.182
College 0.109 0.111 0.088 0.089 0.097 0.100
College Plus 0.084 0.083 0.067 0.067 0.079 0.078
Black 0.074 0.074 0.166 0.171 0.135 0.136
Other Race 0.125 0.125 0.099 0.102 0.134 0.131
Hispanic 0.475 0.474 0.439 0.441 0.427 0.426
Pregnancy Characteristics
Multiple Birth 0.026 0.030 0.230 0.247 0.210 0.228
Parity 2.149 2.151 2.234 2.285 2.219 2.231
Mnth. Pren. Beg. 2.450 2.450 2.136 2.162 2.431 2.419
# of Pren. Visits 11.538 11.527 8.452 8.781 10.962 10.973
Male 0.512 0.512 0.516 0.502 0.476 0.481
Infant Characteristics
Congenital Anom. 0.009 0.010 0.087 0.095 0.034 0.036
Clinical Condition 0.106 0.109 0.261 0.276 0.163 0.169
Small for Gest. 0.004 0.004 0.056 0.060 0.044 0.044
Large for Gest. 0.067 0.067 0.016 0.017 0.018 0.019
Birth Weight (G) 3344.34 3330.74 988.77 998.23 2181.30 2161.46
Gestation (Wks) 39.493 39.436 29.312 29.466 36.410 36.272
Treatment & Outcomes
Neonatal Mort. 0.005 0.005 0.242 0.215 0.013 0.012
28 Day Readmit 0.032 0.032 0.010 0.011 0.034 0.033
1 Year Readmit 0.104 0.105 0.188 0.199 0.137 0.141
Transfer 0.009 0.009 0.188 0.155 0.039 0.035
Transfer Day 1 0.004 0.003 0.084 0.051 0.016 0.013
Length of Stay 3.742 3.995 37.555 41.662 9.102 10.110
Charges 5.986 7.059 166.925 185.444 23.263 26.435
Charges/Day 0.820 0.874 4.098 4.097 1.759 1.838
Total Length of Stay 3.982 4.253 47.731 49.731 10.020 10.921
Total Charges 7.056 8.215 210.349 218.462 26.903 29.589
N 1,566,023 1,565,925 23,231 18,809 87,131 86,764

Continued on next page
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Table 3.4 – continued from previous page

NBW1 NBW2 HBW

Below Above Below Above Below Above
Median Median Median Median Median Median

NICU Admission 0.110 0.118 0.088 0.095 0.118 0.129
Mother’s Demographics
Age 26.961 26.973 27.543 27.560 28.610 28.635
Medicaid 0.502 0.502 0.460 0.461 0.432 0.432
Managed Care 0.364 0.364 0.397 0.397 0.419 0.419
Self Pay 0.040 0.041 0.036 0.037 0.032 0.033
No College 0.643 0.640 0.615 0.613 0.595 0.594
Some College 0.176 0.176 0.185 0.185 0.197 0.196
College 0.104 0.105 0.113 0.115 0.118 0.120
College Plus 0.078 0.078 0.087 0.087 0.090 0.089
Black 0.092 0.091 0.059 0.059 0.044 0.043
Other Race 0.159 0.158 0.113 0.113 0.076 0.076
Hispanic 0.469 0.468 0.485 0.486 0.473 0.470
Pregnancy Characteristics
Multiple Birth 0.033 0.034 0.003 0.003 0.000 0.000
Parity 2.062 2.061 2.152 2.153 2.368 2.371
Mnth. Pren. Beg. 2.500 2.499 2.437 2.442 2.398 2.390
# of Pren. Visits 11.334 11.338 11.708 11.700 12.003 12.031
Male 0.454 0.454 0.530 0.529 0.628 0.627
Infant Characteristics
Congenital Anom. 0.009 0.009 0.006 0.006 0.007 0.007
Clinical Condition 0.051 0.052 0.065 0.065 0.435 0.440
Small for Gest. 0.002 0.002 0.000 0.000 0.000 0.000
Large for Gest. 0.013 0.013 0.036 0.036 0.420 0.424
Birth Weight (G) 2973.57 2972.86 3578.02 3577.51 4271.97 4274.53
Gestation (Wks) 39.221 39.202 40.037 40.030 40.424 40.429
Treatment & Outcomes
Neonatal Mort. 0.002 0.002 0.001 0.001 0.001 0.001
28 Day Readmit 0.034 0.035 0.031 0.031 0.030 0.031
1 Year Readmit 0.108 0.108 0.097 0.098 0.097 0.096
Transfer 0.006 0.006 0.004 0.004 0.005 0.005
Transfer Day 1 0.003 0.002 0.001 0.001 0.002 0.002
Length of Stay 3.071 3.140 2.899 2.928 3.182 3.229
Charges 3.237 3.548 2.578 2.770 3.190 3.501
Charges/Day 0.744 0.770 0.707 0.742 0.771 0.817
Total Length of Stay 3.188 3.252 2.959 2.995 3.263 3.307
Total Charges 3.830 4.117 2.894 3.122 3.612 3.881
N 516,209 516,190 780,057 780,053 161,876 161,628
Notes: This table presents sample means for the full sample and each of the five birth
weight subsamples by residual empty beds. The residuals are from separate regressions of
empty beds on hospital-specific month fixed effects for each subsample. Total LOS and Total
Charges sum length of stay and hospital charges over all contiguous hospitalizations prior
to first being discharged home or dying. Neonatal mortality is mortality within twenty-eight
days of birth or within one year if an infant is continuously hospitalized since birth.
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Table 3.5: Effect of Empty Beds on NICU Admission

P(Admit) and Regression Coefficients Relative
Sample Size Dependent Var: NICU Admission Effect

(1) (2) (3) (4) (5) (6) (7) (8)

Full Sample 0.135 0.0024** 0.0015** 0.0015** 0.0015** 0.0015** 0.0015** 1.11%
3,131,948 (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

VLBW 0.769 0.0047** 0.0034** 0.0034** 0.0033** 0.0032** 0.0031** 0.40%
(0 to 1,499 G) 42,040 (0.0007) (0.0006) (0.0006) (0.0006) (0.0005) (0.0006)

LBW 0.523 0.0075** 0.0052** 0.0052** 0.0051** 0.0051** 0.0049** 0.94%
(1,500 to 2,499 G) 173,895 (0.0008) (0.0006) (0.0005) (0.0005) (0.0005) (0.0005)

NBW1 0.114 0.0014** 0.0014** 0.0014** 0.0014** 0.0014** 0.0014** 1.21%
(2,500 to 3,249 G) 1,032,399 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

NBW2 0.092 0.0009** 0.0009** 0.0010** 0.0010** 0.0010** 0.0009** 1.00%
(3,250 to 4,000 G) 1,560,110 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

HBW 0.123 0.0017** 0.0017** 0.0017** 0.0017** 0.0017** 0.0017** 1.34%
(4,000+ G) 323,504 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Hospital-specific Month FE X X X X X X
Birth Weight FE X X X X X
Day of Week FE X X X X
Demographics X X X
Pregnancy Characteristics X X
Infant Characterisitcs X

Notes: Each row presents coefficient estimates with standard errors in parenthesis (clustered at the hospital level) from separate regressions of NICU
admission on the number of empty beds for the full sample and each of the five birth weight subsamples. All specifications include hospital-specific
month fixed effects. Birth weight fixed effects are in 250-gram increments. Day of week fixed effects are dummies for 6 of the 7 days of the week.
Demographics include mother’s age, mother’s age squared, race, ethnicity, and insurance coverage. Pregnancy characteristics include number of
prenatal care visits, month in which prenatal care began, parity, sex, and multiple birth status. Infant characteristics include an indicator for having
a congenital anomaly, an indicator for having a clinical condition, and indicators for small and large for gestational age. * p<.10, ** p<.05

132



Table 3.6: Mitigating Effects of Inter-Hospital Transfers

Admit or Admit or
Dependent Var: Transfer Transfer Day 1 Transfer Transfer Day 1

(1) (2) (3) (4)

Full Sample -0.0001** -0.0001** 0.0014** 0.0014**
(0.0000) (0.0000) (0.0001) (0.0001)

VLBW -0.0015** -0.0011** 0.0020** 0.0020**
(0 to 1,499 G) (0.0005) (0.0003) (0.0005) (0.0005)

LBW -0.0008** -0.0005** 0.0044** 0.0045**
(1,500 to 2,499 G) (0.0002) (0.0001) (0.0005) (0.0005)

NBW1 -0.0001** -0.0001** 0.0013** 0.0013**
(2,500 to 3,249 G) (0.0000) (0.0000) (0.0001) (0.0001)

NBW2 -0.0000* -0.0000* 0.0009** 0.0009**
(3,250 to 4,000 G) (0.0000) (0.0000) (0.0001) (0.0001)

HBW -0.0000 -0.0000 0.0017** 0.0016**
(4,000+ G) (0.0000) (0.0000) (0.0002) (0.0002)

Notes: Each row presents coefficient estimates with standard errors in parenthesis (clustered at
the hospital level) from separate regressions for the full sample and each of the five birth weight
subsamples. In Column 1 the dependent variable is whether the infant is ever transfered, Column
2 whether the infant is transfered on the first day, Column 3 whether the infant is admitted to the
NICU or ever transferred, and Column 4 whether the infant is admitted to the NICU or transferred
on the first day. Specifications include all control variables described in the notes to Table 3.5,
including hospital-specific month fixed effects. * p<.10, ** p<.05
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Table 3.7: Heterogeneous Effects by Hospital Characteristics – NICU Admission

Dependent Var: NICU Level NICU Size Hospital Ownership

NICU Admission Less Than Greater Than Non- For-
Inter. Comm. Reg. 20 Beds 20 Beds Gov. Profit Profit

(1) (2) (3) (4) (5) (6) (7) (8)

Full Sample 0.0032** 0.0021** 0.0011** 0.0024** 0.0011** 0.0017** 0.0014** 0.0022**
(0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0004)

N 564,035 1,205,629 1,347,250 1,785,118 1,346,830 546,232 2,219,680 371,924

Very Low Birth Weight 0.0125** 0.0065** 0.0023** 0.0074** 0.0022** 0.0015* 0.0036** 0.0010
(0 to 1,499 Grams) (0.0025) (0.0015) (0.0005) (0.0014) (0.0047) (0.0009) (0.0007) (0.0013)
N 4,223 12,482 25,283 17,463 24,577 7,425 30,221 4,426

Low Birth Weight 0.0118** 0.0088** 0.0034** 0.0092** 0.0034** 0.0054** 0.0047** 0.0065**
(1,500 to 2,499 Grams) (0.0016) (0.0009) (0.0004) (0.0009) (0.0004) (0.0008) (0.0006) (0.0016)
N 27,192 60,221 85,933 89,595 84,300 31,687 123,318 19,151

Normal Birth Weight 1 0.0030** 0.0017** 0.0011** 0.0022** 0.0010** 0.0014** 0.0013** 0.0020**
(2,500 to 3,249 Grams) (0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0003)
N 185,486 397,938 444,189 586,234 446,165 181,525 728,132 124,497

Normal Birth Weight 2 0.0022** 0.0012** 0.0007** 0.0013** 0.0007** 0.0014** 0.0007** 0.0017**
(3,250 to 4,000 Grams) (0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0004)
N 285,974 610,950 655,201 902,873 657,237 268,026 1,108,103 187,106

High Birth Weight 0.0030** 0.0026** 0.0012** 0.0022** 0.0014** 0.0018** 0.0016** 0.0019**
(4,000+ Grams) (0.0008) (0.0004) (0.0002) (0.0003) (0.0003) (0.0005) (0.0002) (0.0007)
N 61,160 124,038 136,644 188,953 134,551 57,569 229,906 36,744

Notes: Each cell presents coefficient estimates with standard errors in parenthesis (clustered at the hospital level) from separate regressions of NICU
admission on the number of empty beds. Each row presents estimates from the full sample and each of the five birth weight subsamples. Columns
1-3 present estimates from samples defined by the level of NICU, Columns 4-5 by the number of NICU beds, and Columns 6-8 by hospital ownership.
Specifications include all control variables described in the notes to Table 3.5, including hospital-specific month fixed effects. * p<.10, ** p<.05

134



Table 3.8: Heterogeneous Effects by Hospital Characteristics – NICU Admission or Transfer

Dependent Var: NICU Level NICU Size Hospital Ownership

NICU Admission or Less Than Greater Than Non- For-
Transfer Day 1 Inter. Comm. Reg. 20 Beds 20 Beds Gov. Profit Profit

(1) (2) (3) (4) (5) (6) (7) (8)

Full Sample 0.0030** 0.0020** 0.0010** 0.0022** 0.0011** 0.0016** 0.0013** 0.0021**
(0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0004)

N 564,035 1,205,629 1,347,250 1,785,118 1,346,830 546,232 2,219,680 371,924

VLBW 0.0061** 0.0044** 0.0015** 0.0042** 0.0016** -0.0001 0.0025** 0.0010
(0 to 1,499 G) (0.0011) (0.0011) (0.0005) (0.0010) (0.0005) (0.0011) (0.0005) (0.0012)
N 4,223 12,482 25,283 17,463 24,577 7,425 30,221 4,426

LBW 0.0098** 0.0082** 0.0031** 0.0083** 0.0031** 0.0046** 0.0043** 0.0059**
(1,500 to 2,499 G) (0.0013) (0.0009) (0.0004) (0.0008) (0.0004) (0.0008) (0.0006) (0.0015)
N 27,192 60,221 85,933 89,595 84,300 31,687 123,318 19,151

NBW1 0.0029** 0.0017** 0.0010** 0.0022** 0.0009** 0.0013** 0.0013** 0.0019**
(2,500 to 3,249 G) (0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0004) (0.0001) (0.0004)
N 185,486 397,938 444,189 586,234 446,165 181,525 728,132 124,497

NBW2 0.0022** 0.0012** 0.0007** 0.0013** 0.0007** 0.0014** 0.0007** 0.0017**
(3,250 to 4,000 G) (0.0004) (0.0002) (0.0001) (0.0002) (0.0001) (0.0003) (0.0001) (0.0004)
N 285,974 610,950 655,201 902,873 657,237 268,026 1,108,103 187,106

HBW 0.0029** 0.0026** 0.0012** 0.0022** 0.0014** 0.0018** 0.0016** 0.0020**
(4,000+ G) (0.0008) (0.0004) (0.0002) (0.0003) (0.0003) (0.0005) (0.0002) (0.0007)
N 61,160 124,038 136,644 188,953 134,551 57,569 229,906 36,744

Notes: This table is structured identically to Table 3.7, except the dependent variable is an indicator that is equal to one if the infant is admitted to
the NICU or transferred on the first day. Specifications include all control variables described in the notes to Table 3.5, including hospital-specific
month fixed effects. * p<.10, ** p<.05
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Table 3.9: Heterogeneous Effects by Individual Characteristics – NICU Admission

Dependent Var: Demographics Insurance Status Time

NICU Admission No Private/Non- Managed 1991 – 1996 –
Baseline Hispanic Black College Managed Care Care Medicaid 1995 2001

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full Sample 0.0015** 0.0014** 0.0015** 0.0015** 0.0014** 0.0013** 0.0016** 0.0013** 0.0016**
(0.0001) (0.0001) (0.0003) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0002)

N 3,131,948 1,486,098 231,056 1,952,067 323,065 1,206,000 1,486,377 1,325,225 1,806,723

VLBW 0.0031** 0.0024** 0.0068** 0.0038** 0.0016** 0.0027** 0.0037** 0.0028** 0.0033**
(0 to 1,499 G) (0.0006) (0.0010) (0.0014) (0.0007) (0.0008) (0.0011) (0.0007) (0.0007) (0.0008)
N 42,040 18,491 7,080 27,573 5,763 14,228 20,820 17,225 24,815

LBW 0.0049** 0.0050** 0.0033** 0.0047** 0.0050** 0.0046** 0.0047** 0.0043** 0.0055**
(1,500 to 2,499 G) (0.0005) (0.0006) (0.0007) (0.0004) (0.0012) (0.0009) (0.0005) (0.0005) (0.0008)
N 173,895 74,188 23,579 111,801 18,042 60,606 89,117 73,311 100,584

NBW1 0.0014** 0.0013** 0.0013** 0.0013** 0.0015** 0.0012** 0.0013** 0.0013** 0.0014**
(2,500 to 3,249 G) (0.0001) (0.0002) (0.0003) (0.0001) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)
N 1,032,399 483,914 94,563 662,321 96,980 375,625 518,062 437,107 595,292

NBW2 0.0009** 0.0010** 0.0006** 0.0010** 0.0006** 0.0008** 0.0010** 0.0008** 0.0010**
(3,250 to 4,000 G) (0.0001) (0.0001) (0.0003) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
N 1,560,110 757,033 91,753 957,999 164,556 619,948 718,624 658,382 901,728

HBW 0.0017** 0.0017** 0.0006 0.0016** 0.0016** 0.0017** 0.0017** 0.0015** 0.0018**
(4,000+ G) (0.0002) (0.0003) (0.0014) (0.0003) (0.0006) (0.0002) (0.0003) (0.0004) (0.0003)
N 323,504 152,472 14,081 192,373 37,724 135,593 139,754 139,200 184,304

Notes: Each cell presents coefficient estimates with standard errors in parenthesis (clustered at the hospital level) from separate regressions of NICU
admission on the number of empty beds. Each row presents estimates from the full sample and each of the five birth weight subsamples. Column 1
repeats the baseline estimates from Table 3.5, Columns 2-4 from samples defined by demographic characteristics, Columns 5-7 by insurance status,
and Columns 8-9 by time. Specifications include all control variables described in the notes to Table 3.5, including hospital-specific month fixed
effects. * p<.10, ** p<.05
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Table 3.10: Heterogeneous Effects by Individual Characteristics – NICU Admission or Transfer

Dependent Var: Demographics Insurance Status Time

NICU Admission or No Private/Non- Managed 1991 – 1996 –
Transfer Day 1 Baseline Hispanic Black College Managed Care Care Medicaid 1995 2001

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full Sample 0.0014** 0.0013** 0.0013** 0.0014** 0.0014** 0.0013** 0.0014** 0.0012** 0.0015**
(0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)

N 3,131,948 1,486,098 231,056 1,952,067 323,065 1,206,000 1,486,377 1,325,225 1,806,723

VLBW 0.0020** 0.0015 0.0049** 0.0027** 0.0008 0.0016* 0.0026** 0.0015** 0.0023**
(0 to 1,499 G) (0.0005) (0.0009) (0.0014) (0.0006) (0.0007) (0.0009) (0.0008) (0.0007) (0.0006)
N 42,040 18,491 7,080 27,573 5,763 14,228 20,820 17,225 24,815

LBW 0.0045** 0.0044** 0.0028** 0.0042** 0.0048** 0.0042** 0.0040** 0.0038** 0.0050**
(1,500 to 2,499 G) (0.0005) (0.0006) (0.0007) (0.0004) (0.0012) (0.0009) (0.0005) (0.0005) (0.0008)
N 173,895 74,188 23,579 111,801 18,042 60,606 89,117 73,311 100,584

NBW1 0.0013** 0.0012** 0.0013** 0.0013** 0.0014** 0.0012** 0.0013** 0.0012** 0.0014**
(2,500 to 3,249 G) (0.0001) (0.0002) (0.0003) (0.0001) (0.0003) (0.0002) (0.0002) (0.0002) (0.0002)
N 1,032,399 483,914 94,563 662,321 96,980 375,625 518,062 437,107 595,292

NBW2 0.0009** 0.0009** 0.0006** 0.0009** 0.0006** 0.0008** 0.0010** 0.0008** 0.0010**
(3,250 to 4,000 G) (0.0001) (0.0001) (0.0003) (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001)
N 1,560,110 757,033 91,753 957,999 164,556 619,948 718,624 658,382 901,728

HBW 0.0016** 0.0016** 0.0006 0.0016** 0.0016** 0.0017** 0.0017** 0.0014** 0.0018**
(4,000+ G) (0.0002) (0.0003) (0.0014) (0.0003) (0.0006) (0.0002) (0.0003) (0.0004) (0.0003)
N 323,504 152,472 14,081 192,373 37,724 135,593 139,754 139,200 184,304

Notes: This table is structured identically to Table 3.9, except the dependent variable is an indicator that is equal to one if the infant is admitted to
the NICU or transferred on the first day. Specifications include all control variables described in the notes to Table 3.5, including hospital-specific
month fixed effects. * p<.10, ** p<.05
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Table 3.11: Robustness Checks

Dependent Var: 50 G BW Exclude < 5% < 60% of Days
NICU Admission Baseline Dummies C-Sections Over Capacity Over Capacity

(1) (2) (3) (4) (5)

Full Sample 0.0015** 0.0012** 0.0017** 0.0017**
(0.0001) (0.0001) (0.0002) (0.0002)

N 3,131,948 2,428,260 2,118,001 2,269,669

VLBW 0.0031** 0.0030** 0.0036** 0.0042** 0.0042**
(0 to 1,499 Grams) (0.0006) (0.0006) (0.0008) (0.0007) (0.0007)
N 42,040 42,040 18,915 26,865 28,483

LBW 0.0049** 0.0049** 0.0047** 0.0058** 0.0060**
(1,500 to 2,499 Grams) (0.0005) (0.0005) (0.0005) (0.0008) (0.0008)
N 173,895 173,895 107,492 113,986 122,061

NBW1 0.0014** 0.0014** 0.0011** 0.0014** 0.0015**
(2,500 to 3,249 Grams) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
N 1,032,399 1,032,399 830,504 691,937 741,901

NBW2 0.0009** 0.0009** 0.0008** 0.0010** 0.0010**
(3,250 to 4,000 Grams) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
N 1,560,110 1,560,110 1,245,920 1,062,425 1,138,587

HBW 0.0017** 0.0017** 0.0014** 0.0021** 0.0020**
(4,000+ Grams) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
N 323,504 323,504 225,429 222,788 238,637

Notes: Each cell presents coefficient estimates with standard errors in parenthesis (clustered at the hospital level) from separate regressions of NICU
admission on the number of empty beds. Each row presents estimates from the full sample and each of the five birth weight subsamples. Column 1
repeats the baseline estimates from Table 3.5, Column 2 includes birth weight controls at 50-gram increments, Column 3 excludes infants delivered
by cesarean section, Column 4 excludes observations from hospital-days in which the number of NICU patients exceeds the number of beds by more
than 5%, and Column 5 excludes hospital-years in which the number of NICU patients exceeds the number of NICU beds for more than 60% of the
year. Specifications include all control variables described in the notes to Table 3.5, including hospital-specific month fixed effects. * p<.10, ** p<.05

138



Bibliography

Afendulis, Christopher C and Daniel P Kessler (2007), “Tradeoffs from integrating
diagnosis and treatment in markets for health care.” American Economic Review,
97, 1013–1020.

Almond, Douglas, Kenneth Y. Chay, and David S. Lee (2005), “The costs of low
birth weight.” Quarterly Journal of Economics, 120, 1031–1083.

Almond, Douglas and Joseph J. Doyle (2008), “After midnight: A regression dis-
continuity design in length of postpartum hospital stays.” NBER Working Paper,
No. 13877.

Almond, Douglas, Joseph J. Doyle, Amanda E. Kowalski, and Heidi Williams (2008),
“Estimating marginal returns to medical care: Evidence from at-risk newborns.”
NBER Working Paper, No. 14522.

Altonji, Joseph G., Todd E. Elder, and Christopher R. Taber (2005), “Selection
on observed and unobserved variables: Assessing the effectiveness of Catholic
schools.” Journal of Political Economy, 113, 151–184.

Angrist, Joshua D. (2001), “Estimation of limited dependent variable models with
dummy endogenous regressors: Simple strategies for empirical practice.” Journal
of Business & Economic Statistics, 19, 2–16.

Angrist, Joshua D., Guido W. Imbens, and Donald B. Rubin (1996), “Identification
of causal effects using instrumental variables.” Journal of the American Statistical
Association, 91, 444–455.

Arrow, Kenneth J. (1963), “Uncertainty and the welfare economics of medical care.”
The American Economic Review, 53, 941–973.

Baicker, Katherine, Kasey S. Buckles, and Amitabh Chandra (2006), “Geographic
variation in the appropriate use of cesarean delivery.” Health Affairs, 25, w355–
367.

Baicker, Katherine and Amitabh Chandra (2004a), “The effect of malpractice lia-
bility on the delivery of health care.” Forum for Health Economics & Policy, 8,
Article 4.

Baicker, Katherine and Amitabh Chandra (2004b), “Medicare spending, the physi-
cian workforce, and beneficiaries’ quality of care.” Health Affairs, W4–184–W4–
197.

Baker, Laurence C. and Ciaran S. Phibbs (2002), “Managed care, technology adop-
tion, and health care: The adoption of neonatal intensive care.” The RAND
Journal of Economics, 33, 524–548.

139



Baras, Jacqueline D. and Laurence C. Baker (2009), “Magnetic resonance imaging
and low back pain care for medicare patients.” Health Affairs, 28, w1133–1140.

Behrman, Richard E. and Adrienne Stith Butler, eds. (2007), Preterm Birth:
Causes, Consequences, and Prevention. The National Academies Press, Wash-
ington, D.C.

Benjamin, Daniel K., Jr., Kelly Ross, Ross E. McKinney, Jr., Daniel K. Benjamin,
Richard Auten, and Randall G. Fisher (2000), “When to suspect fungal infection
in neonates: A clinical comparison of Candida albicans and Candida parapsilosis
fungemia with coagulase-negative staphylococcal bacteremia.” Pediatrics, 106,
712–718.

Bhattacharya, Jay, Dana Goldman, and Daniel McCaffrey (2006), “Estimating pro-
bit models with self-selected treatments.” Statistics in Medicine, 25, 389–413.

Buckles, Kasey and Daniel M. Hungerman (2008), “Season of birth and later out-
comes: Old questions, new answers.” NBER Working Paper, No. 14573.

Cameron, A. Colin and Pravin K. Trivedi (2005), Microeconometrics: Methods and
Applications, 1st edition. Cambridge University Press, New York.

Cifuentes, Javier, Janet Bronstein, Ciaran S. Phibbs, Roderic H. Phibbs, Susan K.
Schmitt, and Waldemar A. Carlo (2002), “Mortality in low birth weight infants
according to level of neonatal care at hospital of birth.” Pediatrics, 109, 745–751.

Clark, Reese, Richard Powers, Robert White, Barry Bloom, Pablo Sanchez, and
Daniel K Benjamin (2004), “Prevention and treatment of nosocomial sepsis in
the NICU.” Journal of Perinatology, 24, 446–453.

Committee on Fetus and Newborn (2004), “Levels of neonatal care.” Pediatrics,
114, 1341–1347.

Committee on Perinatal Health (1976), Toward Improving the Outcome of Preg-
nancy: Recommendations for the Regional Development of Maternal and Perina-
tal Health. March of Dimes, White Plains, NY.

Committee on Perinatal Health (1993), Toward Improving the Outcome of Preg-
nancy: The 90s and Beyond. March of Dimes, White Plains, NY.

Cutler, David M. (2007), “The lifetime costs and benefits of medical technology.”
Journal of Health Economics, 26, 1081–1100.

Cutler, David M. and Mark McClellan (2001), “Productivity change in health care.”
The American Economic Review, 91, 281–286.

Cutler, David M. and Ellen Meara (2000), “The technology of birth: Is it worth it?”
In Frontiers in Health Policy Research, Volume 3 (Alan M. Garber, ed.), 33–68,
National Bureau of Economic Research, Inc.

140



Cutler, David M. and Richard J. Zeckhauser (2000), “The anatomy of health in-
surance.” In Handbook of Health Economics, Volume 1 (Anthony J. Culyer and
Joseph P. Newhouse, eds.), 563–643, Elsevier, San Diego, CA.

Dafny, Leemore S. (2005a), “Games hospitals play: Entry deterrence in hospital
procedure markets.” Journal of Economics & Management Strategy, 14, 513–542.

Dafny, Leemore S. (2005b), “How do hospitals respond to price changes?” The
American Economic Review, 95, 1525–1547.

Dranove, David, Mark Shanley, and Carol Simon (1992), “Is hospital competition
wasteful?” The RAND Journal of Economics, 23, 247–262.

Duggan, Mark (2002), “Hospital market structure and the behavior of not-for-profit
hospitals.” The RAND Journal of Economics, 33, 433–446.

Duggan, Mark G. (2000), “Hospital ownership and public medical spending.” Quar-
terly Journal of Economics, 115, 1343–1373.

Evans, Robert (1974), “Supplier-induced demand: Some empirical evidence and
implications.” In The Economics of Health and Medical Care (Mark Pearlman,
ed.), 162–173, Macmillan, London.

Evans, William N., Craig Garthwaite, and Heng Wei (2008), “The impact of early
discharge laws on the health of newborns.” Journal of Health Economics, 27,
843–870.

Fang, Hanming, Michael P. Keane, and Dan Silverman (2008), “Sources of advan-
tageous selection: Evidence from the Medigap insurance market.” The Journal of
Political Economy, 116, 303–350.

Fisher, Elliott S., David E. Wennberg, Therese A. Stukel, Daniel J. Gottlieb, F. L.
Lucas, and Etoile L. Pinder (2003a), “The implications of regional variations in
medicare spending. Part 1: The content, quality, and accessibility of care.” Annals
of Internal Medicine, 138, 273–287.

Fisher, Elliott S., David E. Wennberg, Therese A. Stukel, Daniel J. Gottlieb, F. L.
Lucas, and Etoile L. Pinder (2003b), “The implications of regional variations in
medicare spending. Part 2: Health outcomes and satisfaction with care.” Annals
of Internal Medicine, 138, 288–298.

Friedman, Bernard, Kelly J. Devers, Claudia A. Steiner, and Steven H. Fox (2002),
“The use of expensive health technologies in the era of managed care: The re-
markable case of neonatal intensive care.” Journal of Health Politics, Policy and
Law, 27, 441–464.

Fuchs, Victor R. (1978), “The supply of surgeons and the demand for operations.”
The Journal of Human Resources, 13, 35–56.

141



Fuchs, Victor R. (2004), “Perspective: More variation in use of care, more flat-of-
the-curve medicine.” Health Affairs, VAR104–VAR107.

Gaynor, Martin (2006), “What do we know about competition and quality in health
care markets?” NBER Working Paper, No. 12301.

Glazer, Amihai and Lawrence S. Rothenberg (1999), “Increased capacity may exac-
erbate rationing problems: With applications to medical care.” Journal of Health
Economics, 18, 669–678.

Goldman, Dana and John A. Romley (2008), “Hospitals as hotels: The role of
patient amenities in hospital demand.” NBER Working Paper, No. 14619.

Goodman, David C., Elliott S. Fisher, George A. Little, Therese A. Stukel, and
Chiang hua Chang (2001), “Are neonatal intensive care resources located accord-
ing to need? Regional variation in neonatologists, beds, and low birth weight
newborns.” Pediatrics, 108, 426–431.

Gould, Jeffrey B., Amy R. Marks, and Gilberto Chavez (2002), “Expansion of
community-based perinatal care in California.” Journal of Perinatology: Official
Journal of the California Perinatal Association, 22, 630–640.

Gowrisankaran, Gautam, Vivian Ho, and Robert J. Town (2006), “Causality, learn-
ing and forgetting in surgery.” Working Paper.

Gowrisankaran, Gautam and Robert J. Town (2003), “Competition, payers, and
hospital quality.” Health Services Research, 38, 1403–1422.

Gray, James E., Marie C. McCormick, Douglas K. Richardson, and Steven Ringer
(1996), “Normal birth weight intensive care unit survivors: Outcome assessment.”
Pediatrics, 97, 832–838.

Gruber, Jonathan, John Kim, and Dina Mayzlin (1999), “Physician fees and proce-
dure intensity: The case of cesarean delivery.” Journal of Health Economics, 18,
473–490.

Gruber, Jonathan and Maria Owings (1996), “Physician financial incentives and
cesarean section delivery.” RAND Journal of Economics, 27, 99–123.

Haberland, Corinna A., Ciaran S. Phibbs, and Laurence C. Baker (2006), “Effect of
opening midlevel neonatal intensive care units on the location of low birth weight
births in California.” Pediatrics, 118, e1667–1679.

Hall, Robert E. and Charles I. Jones (2007), “The value of life and the rise in health
spending.” Quarterly Journal of Economics, 122, 39–72.

Ho, Vivian, Robert J. Town, and Martin J. Heslin (2007), “Regionalization versus
competition in complex cancer surgery.” Health Economics, Policy and Law, 2,
51–71.

142



Holloway, Marguerite Y. (2000), “The regionalized perinatal care program.” In To
Improve Health and Health Care 2001: The Robert Wood Johnson Foundation
Anthology (Stephen L. Isaacs and James R. Knickman, eds.), 1st edition, 175–
194, Jossey-Bass, Princeton, NJ.

Horbar, Jeffrey D., Gary J. Badger, Joseph H. Carpenter, Avroy A. Fanaroff, Sarah
Kilpatrick, Meena LaCorte, Roderic Phibbs, and Roger F. Soll (2002), “Trends in
mortality and morbidity for very low birth weight infants, 1991-1999.” Pediatrics,
110, 143–151.

Horwitz, Jill R. (2005), “Making profits and providing care: Comparing nonprofit,
for-profit, and government hospitals.” Health Affairs, 24, 790–801.

Howell, Embry M., Douglas Richardson, Paul Ginsburg, and Barbara Foot (2002),
“Deregionalization of neonatal intensive care in urban areas.” American Journal
of Public Health, 92, 119–124.

Imbens, Guido W. and Joshua D. Angrist (1994), “Identification and estimation of
local average treatment effects.” Econometrica, 62, 467–475.

Kessler, Daniel and Mark McClellan (1996), “Do doctors practice defensive
medicine?” The Quarterly Journal of Economics, 111, 353–390.

Kessler, Daniel P. and Mark B. McClellan (2000), “Is hospital competition socially
wasteful?” Quarterly Journal of Economics, 115, 577–615.

Kim, Beomsoo (2006), Legislating Healthcare Quality. PhD Dissertation, University
of Maryland, College Park.

Kirkby, Sharon, Jay S. Greenspan, Michael Kornhauser, and Roy Schneiderman
(2007), “Clinical outcomes and cost of the moderately preterm infant.” Advances
in Neonatal Care: Official Journal of the National Association of Neonatal Nurses,
7, 80–87.

Kossoff, E. H., E. S. Buescher, and M. G. Karlowicz (1998), “Candidemia in a
neonatal intensive care unit: Trends during fifteen years and clinical features of
111 cases.” The Pediatric Infectious Disease Journal, 17, 504–508.

Luce, Bryan R., Josephine Mauskopf, Frank A. Sloan, Jan Ostermann, and L. Clark
Paramore (2006), “The return on investment in health care: From 1980 to 2000.”
Value in Health, 9, 146–156.

Manning, Willard G., Joseph P. Newhouse, Naihua Duan, Emmett B. Keeler, and
Arleen Leibowitz (1987), “Health insurance and the demand for medical care:
Evidence from a randomized experiment.” The American Economic Review, 77,
251–277.

143



McClellan, Mark, Barbara J. McNeil, and Joseph P. Newhouse (1994), “Does more
intensive treatment of acute myocardial infarction in the elderly reduce mortal-
ity? Analysis using instrumental variables.” Journal of the American Medical
Association, 272, 859–866.

McClellan, Mark and Joseph P. Newhouse (1997), “The marginal cost-effectiveness
of medical technology: A panel instrumental-variables approach.” Journal of
Econometrics, 77, 39–64.

McCormick, Marie C. and Douglas K. Richardson (1995), “Access to neonatal in-
tensive care.” The Future of Children, 5, 162–175.

McGuire, Thomas G. (2000), “Physician agency.” In Handbook of Health Economics,
Volume 1 (Anthony J. Culyer and Joseph P. Newhouse, eds.), 461–536, Elsevier,
San Diego, CA.

McGuire, Thomas G. and Mark V. Pauly (1991), “Physician response to fee changes
with multiple payers.” Journal of Health Economics, 10, 385–410.

Murphy, Kevin M. and Robert H. Topel (2003), “The economic value of medical
research.” In Measuring the Gains from Medical Research: An Economic Approach
(Kevin M. Murphy and Robert H. Topel, eds.), University of Chicago Press,
Chicago.

Pauly, Mark V. (1968), “The economics of moral hazard: Comment.” The American
Economic Review, 58, 531–537.

Pauly, Mark V. (1981), Doctors and Their Workshops: Economic Models of Physi-
cian Behavior. University of Chicago Press, Chicago.

Phibbs, Ciaran S., Laurence C. Baker, Aaron B. Caughey, Beate Danielsen, Susan K.
Schmitt, and Roderic H. Phibbs (2007), “Level and volume of neonatal intensive
care and mortality in very-low-birth-weight infants.” New England Journal of
Medicine, 356, 2165–2175.

Phibbs, Ciaran S., Janet M. Bronstein, Eric Buxton, and Roderic H. Phibbs (1996),
“The effects of patient volume and level of care at the hospital of birth on neonatal
mortality.” Journal of the American Medical Association, 276, 1054–1059.

Phibbs, Ciaran S., David H. Mark, Harold S. Luft, Deborah J. Peltzman-Rennie,
Deborah W. Garnick, Erik Lichtenberg, and Stephen J. McPhee (1993), “Choice
of hospital for delivery: A comparison of high-risk and low-risk women.” Health
Services Research, 28, 201222.

Profit, Jochen, Marie C. McCormick, Gabriel J. Escobar, Douglas K. Richardson,
Zheng Zheng, Kim Coleman-Phox, Rebecca Roberts, and John A.F. Zupancic
(2007), “Neonatal intensive care unit census influences discharge of moderately
preterm infants.” Pediatrics, 119, 314–319.

144



Russell, Rebecca B., Nancy S. Green, Claudia A. Steiner, Susan Meikle, Jennifer L.
Howse, Karalee Poschman, Todd Dias, Lisa Potetz, Michael J. Davidoff, Karla
Damus, and Joann R. Petrini (2007), “Cost of hospitalization for preterm and low
birth weight infants in the United States.” Pediatrics, 120, e1–9.

Schmidt-Dengler, Philipp (2006), “The timing of new technology adoption: The
case of MRI.” Working Paper.

Schmitt, Susan K., LaShika Sneed, and Ciaran S. Phibbs (2006), “Costs of newborn
care in California: A population-based study.” Pediatrics, 117, 154–160.

Schwartz, Rachel M. (1996), “Supply and demand for neonatal intensive care:
Trends and implications.” Journal of Perinatology, 16, 483–489.

Schwartz, Rachel M., Russell Kellogg, and Janet H. Muri (2000), “Specialty newborn
care: Trends and issues.” Journal of Perinatology, 20, 520–529.

Singh, Gopal K. and Michael D. Kogan (2007), “Persistent socioeconomic disparities
in infant, neonatal, and postneonatal mortality rates in the united states, 1969-
2001.” Pediatrics, 119, e928–939.

Tay, Abigail (2003), “Assessing competition in hospital care markets: The impor-
tance of accounting for quality differentiation.” The RAND Journal of Economics,
34, 786–814.

Wooldridge, Jeffrey M. (2001), Econometric Analysis of Cross Section and Panel
Data, 1st edition. The MIT Press, Cambridge, MA.

145


	List of Tables
	List of Figures
	Introduction
	The Effect of Deregionalization on Health Outcomes: Evidence from Neonatal Intensive Care
	Introduction
	Previous Literature
	Previous Estimates of Mortality Differences by Level of Care
	Natural Experiments in Health Research

	Data
	Linked Birth Data
	Hospital Data

	Empirical Framework
	Baseline Model
	Estimating Causal Effects
	The Instruments

	Results
	OLS Estimates
	First Stage Estimates
	2SLS Estimates

	Robustness Tests
	Additional Tests of Instrument Validity
	Alternative Specifications
	Heterogeneity and Local Average Treatment Effects
	Sample Selection

	Conclusion

	The Effect of Neonatal Intensive Care Availability on Utilization
	Introduction
	Previous Literature
	Data
	Data Sources
	Imputing NICU Admission
	Analysis Sample

	Empirical Framework
	Results
	Summary Statistics
	The Effect of Empty Beds on NICU Admission
	The Mitigating Effects of Inter-Hospital Transfer
	Hospital Level Heterogeneity
	Individual Level Heterogeneity
	Robustness

	Conclusion


