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Thomas and Yong [17] introduced a theory of jeu de taquin which extended

Schützenberger’s [14] for Young tableaux. The extended theory computes struc-

ture constants for the K-theory of (type A) Grassmannians using combinatorial

machinery similar to that for cohomology. This rule naturally generalizes to give a

conjectural root-system uniform rule for any minuscule flag variety G/P .

In this dissertation, we see that the root-system uniform rule is well-defined

for certain G/P other than the Grassmannian. This gives rise to combinatorially

defined rings which are conjecturally isomorphic to K(G/P ). Although we do not

prove that these rings are isomorphic to K(G/P ), we do produce a “Pieri rule”

for computing the product of a general class with a generating class in the type B

combinatorial case. We also investigate some symmetries which support the conjec-

tural isomorphism. Moreover, our results combined with recent work of Buch and

Ravikumar [3] imply that this conjecture is in fact true.

Lenart [9] gave a Pieri rule for the type A K-theory, demonstrating that the

Pieri structure constants are binomial coefficients. In contrast, using techniques of



[10], we show that type B Pieri structure constants have no such simple closed forms.
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Chapter 1

Introduction

1.1 Schubert calculus on G(k,Cn)

Classically, one might ask for the number of some linear spaces of given dimen-

sions which satisfy certain geometric conditions. In such an arrangement, for each of

the linear spaces, the set of linear subspaces meeting it is a Schubert variety. Thus

the answer to the question is to compute some number of intersections of Schubert

varieties. Intersections of Schubert varieties can be identified as cup products in

cohomology.

The (type A) Grassmannian G(k,Cn) is the set of k-dimensional subspaces

of Cn. Each Schubert variety Ωλ within G(k,Cn) gives rise to a cohomology class

σλ = [Ωλ], making this projective variety precisely the place to compute intersections

like those mentioned above. Schubert classes are in bijection with partitions, and

indeed as an abelian group H∗(G(k,Cn),Z) = ⊕λZσλ. When expressed in the basis

of Schubert classes, products in the ring give rise to structure constants cνλ,µ which

compute intersections of appropriate Schubert varieties.

σλ ∪ σµ =
∑
ν

cνλ,µσν

As a ring, H∗(G(k,Cn)) is generated by the special Schubert classes σ(p). It is
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therefore helpful to look for a formula for cνλ,(p). Named for its 19th century discoverer

Mario Pieri, the Pieri rule computes exactly the product of a special class with an

arbitrary class [11]. In H∗(G(k,Cn)), cνλ,(p) is 1 exactly when ν is the result of adding

a size p horizontal strip to λ, and is 0 otherwise.

Using Young tableaux, Littlewood and Richardson formulated the first com-

binatorial enumeration of the structure constants cνλ,µ. Known as the Littlewood-

Richardson rule, cνλ,µ counts the number of Young tableaux on the diagram ν/λ

satisfying an easily checked “word” condition.

1.2 Extending to maximal isotropic Grassmannians

Rather than parametrizing any k-dimensional subspace, we may parametrize

subspaces of Cn which are isotropic with respect to a symplectic or orthogonal form.

Computing intersections of Schubert varieties of the maximal isotropic Grassman-

nians, gives rise to theorems analogous to the Littlewood-Richardson rule. We call

the set of n-planes in 2n-space which are isotropic with respect to the standard

symplectic form the Lagrangian Grassmannian, LG(n, 2n). The maximal orthog-

onal Grassmannians are denoted OG(n, 2n+ 1) and OG(n+ 1, 2n+ 2), depending

on the parity of the dimension of the ambient space. LG(n, 2n) and OG(n, 2n+ 1)

are examples of Hermitian symmetric spaces, and Schubert calculus can be extended

to Hermitian symmetric spaces which are not Grassmannians.

Pieri rules in these contexts were given by Hiller and Boe in 1986 [6]. Pragacz

[12] noted a connection to Schur’s Q-functions and later Stembridge [15] provided
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a “Littlewood-Richardson”-type rule for structure constants of H∗(LG(n, 2n)) and

the orthogonal cases.

1.3 K-theoretic and minuscule extensions

Geometric and combinatorial theorems in Schubert calculus can be general-

ized from singular cohomology to other theories, including equivariant or quantum

cohomology. In this dissertation, we choose to view K-theoretic Schubert calculus.

As an abelian group K(G(k,Cn)) = ⊕λZ[Oλ] with a basis of classes of struc-

ture sheaves of the Schubert varieties Ωλ, still corresponding to partitions λ fitting

in the k × (n− k) partition. The structure constants for K(G(k,Cn)) with respect

to this basis are denoted Cν
λ,µ, and are equal to cνλ,µ when |λ|+ |µ| = |ν|.

In 2000, Lenart [9] proved a Pieri rule for K(G(k,Cn)). The Pieri structure

constants Cν
λ,(p) are binomial coefficients

(
r(ν/λ)−1
|ν/λ|−p

)
where r(ν/λ) is the number of

rows in the skew shape ν/λ. Buch [2], in 2002, provided a Littlewood-Richardson

rule, using new “set-valued” tableaux on ν/λ obeying a specific word condition. In

this way, Buch recovered Lenart’s Pieri rule. He also showed that polynomials com-

ing from set-valued tableaux give rise to Grothendieck polynomials, first discussed

in 1982 by Lascoux and Schützenberger [8].

All Grassmannians so far mentioned are examples of minuscule flag varieties.

Thomas and Yong [16], in 2006, gave a root-system uniform rule for calculating in

H∗(G/P ) for any minuscule flag variety G/P . This enabled them to see Littlewood-

Richardson rules of cohomology in the light of Lie theory. It also gave a setting
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where tableau combinatorics and a process called rectification made computation of

cohomological structure constants more uniform across the different Lie types.

Finally, in 2009, Thomas and Yong formulated their uniform rules in the set-

ting of K-theory, using increasing and superstandard tableaux. In [17], they show

how their framework gives rise to the Pieri rule in type A, provided by Lenart in

2000. Because the two rules agree on a generating set for K(G(k,Cn)), the number

of increasing tableaux on ν/λ which K-rectify to superstandard tableau Sµ equals

the type A K-theoretic structure constant Cν
λ,µ.

Structure constants of K-theory of other Lie types remained unproved. How-

ever, the root-system uniform language allowed Thomas and Yong to state a con-

jectural rule for calculating structure constants, providing that their K-rectification

procedure is well-defined on a class of increasing tableaux.

1.4 Summary of new results

The primary result of this dissertation is to prove Thomas and Yong’s con-

jectural rule in type B. To do this, our workhorse will be a tableau property called

tulginess which is invariant under the K-theoretic sliding algorithm defined in [17].

After proving that type B K-rectification to superstandard tableaux is well-

defined, we are able to create numbers which count the procedure. The integer

dνλ,µ is the number tableaux on shape ν/λ which K-rectify to Sµ, the superstandard

tableau of shape µ. Using techniques similar to Thomas and Yong, we show that the

dνλ,µ are structure constants in a commutative ring. Unsurprisingly, the generating
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set for this ring corresponds to the special partitions (p), and we prove an explicit

Pieri formula for computing dνλ,(p). Unlike Lenart’s type A result, the type B Pieri

formula is not so simple as to be expressed as a binomial coefficient.

Without a geometric Pieri rule to compare with, the ring defined by the {dνλ,µ}

as structure constants is only conjecturally isomorphic to K(OG(n, 2n+ 1)). If that

isomorphism exists, we should expect to see certain symmetries in the structure

constants. Indeed, we see an S3 action on the coefficients: dνλ,µ = dνµ,λ = dλ
∨

µ,ν∨ .

Anders Buch and Vijay Ravikumar [3] have recently proved the required geometric

Pieri rule, which agrees with our combinatorial one. This implies that the above two

rings are isomorphic, and we therefore obtain a Littlewood-Richardson type rule for

the K-theory of orthogonal Grassmannians.

Thomas and Yong have recently announced in [18] that they have arrived at

proofs of Theorems 3.2.4 and 3.3.1 independently of work presented here.

In the final chapter, some attention is paid to minuscule cases other than

OG(n, 2n+ 1). We also discuss further generalizations of tableau combinatorics in

relation to Schubert calculus.
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Chapter 2

Preliminaries

In this chapter, we will review the definitions and results of Thomas and Yong

[17] which are the motivation for this work. We will see that much of their work,

while not explicitly stated by them, applies to all minuscule G/P .

2.1 Minuscule Schubert calculus

Let G be a complex connected reductive Lie group. Fix Borel and opposite

Borel subgroups B and B−, with maximal torus T = B ∩ B− and Weyl group

W = N(T )/T . Denote the root system Φ, the positive roots Φ+, and a base of

simple roots ∆. Every subset of ∆ is associated to a parabolic subgroup P . The

generalized flag variety G/P has Schubert varieties

Xw = B−wP/P for wWP ∈ W/WP ,

where WP is the parabolic subgroup of W corresponding to P . Let K(G/P ) be the

Grothendieck ring of algebraic vector bundles over G/P . K(G/P ) has a Z-basis of

Schubert structure sheaves {[OXw ]}.
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Define Schubert structure constants Cw
u,v(G/P ) ∈ Z by

Ou · Ov =
∑

wWP∈W/WP

Cw
u,v(G/P )Ow.

Brion [1] has established that

(−1)l(w)−l(u)−l(v)Cw
u,v(G/P ) ∈ {0, 1, 2, . . .},

where l(w) is the Coxeter length of the minimal length coset representative of wWP .

A simple root and a maximal parabolic subgroup P corresponding to the root

are minuscule if the associated fundamental weight ωP satisfies 〈ωP , α∨〉 ≤ 1 for

all α ∈ Φ+ under the usual pairing between weights and coroots. The minuscule

flag varieties G/P are classified into five infinite families and two exceptional cases,

corresponding to the Lie type of G as seen in Figure 2.1.

Associated to each minuscule G/P is a planar poset (ΛG/P ,≺), obtained as a

subposet of the positive roots ΩG∨ for the dual root system of G. Figure 2.2 gives

two such examples of ΛG/P ⊂ ΩG∨ . The relation ≺ is the transitive closure of the

covering relation x � y, meaning y − x ∈ ∆. Lower order ideals of ΛG/P , called

shapes, are in bijection with cosets wWP indexing Schubert varieties. Under this

bijection, if wWP ↔ λ then l(w) = |λ|, the number of roots in the shape λ.

Define a skew shape ν/λ to be the set theoretic difference of two shapes, ν\λ,

7



Root System Dynkin Diagram Nomenclature

An
◦ ◦ ◦ ◦ ◦ ◦•
1 2 · · · k · · · n Grassmannian G(k,Cn)

Bn

◦ ◦ ◦ ◦ ◦ ◦>
1 2 · · · n

•
Odd Orthogonal Grassmannian OG(n, 2n+ 1)

Cn, n ≥ 3
◦ ◦ ◦ ◦ ◦ ◦<•
1 2 · · · n Projective Space P2n−1

Dn, n ≥ 4

◦ ◦ ◦ ◦ ◦HH��
◦
◦•

1 2 · · · n−1

n

◦ ◦ ◦ ◦ ◦HH��
◦
◦1 2 · · · n−1

n•
•

Even dimensional quadric Q2n−2

Even Orthogonal Grassmannian OG(n+ 1, 2n+ 2)

E6
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◦

1 3 4 5

2

6 Cayley Plane OP2

E7
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2

6 7 (unnamed) Gω(O3,O6)

Figure 2.1: Dynkin diagrams of all Lie types with miniscule simple roots shown.
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Figure 2.2: ΛG/P ⊂ ΩG∨ for G/P = G(k,Cn) and OG(n, 2n+ 1)
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when λ is a subideal of ν. An increasing tableau on skew shape ν/λ is an assignment

label : ν/λ→ {1, 2, . . . , q}

such that label(x) < label(y) when x ≺ y, and where each label 1, . . . , q appears

at least once. An inner corner of ν/λ is a maximal element x ∈ ΛG/P that is below

some element in ν/λ.

The geometric terms and diagrams are often cumbersome and unintuitive, so

the next section will provide the combinatorial language we will use to talk about

operations on the posets.

2.2 Combinatorial definitions

A partition λ of a positive integer n is a sequence λ = (λ1, λ2, . . . , λl) of weakly

decreasing positive integers λi whose sum is n. If λ1 > λ2 > · · · > λl then λ is called

a strict partition of n. We write l(λ) = l and say λ has length l. The unique length

0 partition is denoted ∅. The size of λ is the number n which it partitions and is

denoted |λ| = n.

A partition λ = (λ1, λ2, . . . , λl) can be represented by a diagram, consisting of

l left-justified rows of λi boxes in row i. Strict partitions can also be represented

by shifted diagrams, wherein row i is indented i − 1 boxes, rather than being left-

justified. For example, consider the partition (5, 3, 2). The diagram and shifted
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diagram for this partition are as below.

For partitions λ and ν, if νi ≥ λi for each i ≤ l(λ), we say λ ⊆ ν. Furthermore,

we can create the skew diagram ν/λ consisting of the boxes of ν not in λ.

An increasing tableau is a filling of a (skew) diagram (shifted or not) with one

number per box such that the labels strictly increase reading down any column or

across any row. The (shifted) (skew) shape of a tableau is the partition which gives

rise to the (shifted) (skew) diagram underlying that tableau. Here are two increasing

tableaux on the shape (5, 3, 2) and the shifted skew shape (5, 3, 2)/(3), respectively.

1 2 4 5 6
3 4 5
5 6

1 2
1 3 4

5 6

While not technically necessary, we also require that all positive numbers less

than the maximal label be entries of the tableau. This convenience ensures that the

alphabet from which labels are drawn is indexed merely by the largest integer entry

of a tableau. Since most tableaux we mention will be increasing tableaux, we will

often drop the word “increasing.”

Note. Partitions whose diagrams fit inside a k× (n− k) rectangle correspond

to lower order ideals of ΛG(k,Cn), hence to type An Schubert varieties. Those which

fit in an n-column staircase correspond to type Bn Schubert varieties. The relation

10



1 2 3 4 5
6 7

8

1 2 3 4 5
6 7
8

Figure 2.3: Superstandard tableaux on (5,2,1).

x ≺ y on ΛG/P corresponds to a box x being above and/or to the left of box y in

the diagram corresponding to the entire ideal ΛG/P . So we see that the increasing

tableaux notions of both sections agree. Often we will use cardinal and intermediate

directions when referring to diagrams. We will use the terms “diagram” and “shape”

interchangeably. With this convention, x ≺ y iff x is weakly northeast of y in the

diagram sense.

An inside corner of ν/λ is a maximally southeast box of λ. The set of increasing

tableaux of shape ν/λ in ΛG/P is denoted INCG/P (ν/λ), or just INC(ν/λ) if G/P

is understood from context.

When no entry of a tableau T is repeated, we call T a (shifted) standard

tableau. The (shifted) superstandard tableau Sµ is a the (shifted) standard filling

of the (shifted) shape µ with 1, 2, . . . , µ1 in the first row, µ1 + 1, . . . , µ1 + µ2 in the

second row, etc. For example, S(5,2,1) shifted and not are as in Figure 2.3.

Skew shapes with no pair of boxes sharing a north-south border are called

horizontal strips. Vertical strips are those sharing no east-west borders. A border

strip is a skew shape ν/λ which can be written as a union of one vertical strip ρ/λ

and one horizontal strip ν/ρ for some shape ρ.

Although ν/λ = is a union of a horizontal strip and a vertical strip, there

is no ρ fulfilling the conditions of the definition of a border strip, so it is not a border

11



strip. In fact, one can see that if is contained in a skew shape, then the shape

is not a border strip. Conversely, every shape which is not a border strip must have

three boxes in the shape of . Thus an alternative definition of a border strip is

any shape ν/λ not containing as a subshape.

Example 2.2.1. The following skew shapes form a horizontal strip, vertical strip,

and border strip respectively.

2.3 K-theoretic jeu de taquin

A ribbon is a skew shape which does not contain , , or as a sub-

shape. Each connected component is called a short ribbon. An alternating ribbon is

a filling of a ribbon with two symbols where adjacent boxes are filled differently. We

define switch(R) to be the operation on an alternating ribbon R which switches

the positions of each symbol. For example,

R =

◦ •
◦ •
• switch(R) =

• ◦
• ◦
◦

By definition, if an alternating short ribbon consists of a single box, switch does

nothing to the symbol in it.

We now define the process of K-theoretic jeu de taquin, an operation on in-

12



creasing tableaux. Let T ∈ INCG/P (ν/λ) have largest entry q. Choose {x1, . . . , xs},

a subset of inside corners of ν/λ. Fill the boxes {xi} with the symbol “•,” called

a hole. Form the alternating ribbon R1, consisting of boxes with entry 1 or a hole.

Perform switch on R1. Then form R2 consisting of boxes with entry 2 or a hole.

Perform switch again. Proceed through each Ri until switch has operated on Rq.

This process “moves holes past” the entries of T . Delete all boxes with holes. The

resulting filling of numbers makes up the tableau Kjdt{xi}(T ).

Example 2.3.1. Here is an example of type B Kjdt. Let T and {xi} be as indicated

as below. Each “7→” indicates a switch within the Kjdt{xi}(T ) procedure.

• 2
• 2 4
1 3 7→

• 2
1 2 4
• 3 7→

2 •
1 • 4
• 3 7→

2 •
1 3 4
3 • 7→

2 4
1 3 •
3 •

So Kjdt{xi}(T ) =

2 4
1 3
3 .

Outside corners of a shape are the boxes maximally northwest in ΛG/P which

are southeast of the shape. A process of reverse K-theoretic jeu de taquin, Krevjdt,

begins with a subset of outside corners to a tableau, and moves them through the

tableau from right to left. This occurs by performing successive switch operations

on Rq through R1.

Since we begin with an increasing tableau and switch holes with each filling

in numeric order, we see that Kjdt{xi}(T ) is an increasing tableau also. Given a

T ∈ INCG/P (ν/λ), we can iterate applications of Kjdt, choosing a sequence of

inside corner subsets. When no (non-empty) inside corner subsets can be chosen,
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the result is called a K-rectification of T , denoted KrectR(T ). The choice R =

({x(1)
i }, . . . , {x

(t)
j }) of holes is called the rectification order.

Example 2.3.2. In this type B example, the symbol “ 7→” indicates an application

of Kjdt with the holes as indicated. Call the first tableau (minus the holes) T and

the last U .

• 2
• 2 4
1 3 7→

2 4
• 1 3

3 7→
• 2 4

1 3 7→
• 2 4
1 3 7→

• 1 2 4
3 7→

1 2 4
3

This shows KrectR(T ) = U .

A rectification order, R, can also be thought of as an increasing tableau itself.

Let us suppose the sequence of hole choices is length qR. We label the first set of

inside corners with qR, the second with qR − 1, and so on. For future convenience,

when displaying a rectification order as a tableau, the entries will be boldfaced. In

the example above:

R =

1 2 3 5
4 5

Later, it will be helpful to consider modifying to partial K-rectification, called

K-infusion. If T ∈ INC(ν/λ) and S ∈ INC(λ/ρ), we can slide the boxes of S

through the boxes of T as if S were a sequence of holes. This setup can be seen in

Figure 2.4. The result is a pair of tableaux on shapes γ/ρ and ν/γ for some shape

γ. The first will be denoted Kinf1(S, T ), and the second Kinf2(S, T ). Notice that

if R ∈ INC(λ) then KrectR(T ) = Kinf1(R, T ).

Example 2.3.3. Let S be the bold skew tableau in INC((4, 3, 1)/(3)) and T ∈

14



S
T

Figure 2.4: T ∈ INC(ν/λ) extending S ∈ INC(λ/ρ)

INC((6, 5, 3, 1)/(4, 3, 1)) the other tableau “extending” S. Each “ 7→” is an appli-

cation of Kjdt(T ) using part of S as the choice of holes. We do not delete holes

during K-infusion.

1 1 3
1 2 3 2 4

3 1 3
3 7→

1 1 3
1 2 1 2 4

1 3 3
3 7→

1 1 3
1 1 2 4 2

3 2 3
3 7→

1 3 1
1 2 4 1 2

3 2 3
3

Kinf1(S, T ) =

1 3
1 2 4

3 Kinf2(S, T ) =

1
1 2

2 3
3

K-infusion is an involution. The proof given in [17] uses techniques we will

not utilize in this dissertation, but does generalize to all minuscule G/P . Likewise,

the lemma following the theorem will not be proved here, but will be used.

Theorem 2.3.1. ([17]) Let S ∈ INCG/P (λ/ρ) and T ∈ INCG/P (ν/λ). Then

(1) Kinf1(Kinf1(S, T ), Kinf2(S, T )) = S and

(2) Kinf2(Kinf1(S, T ), Kinf2(S, T )) = T .

As a special case of this theorem, we see that if Kjdt{xi}(T ) = U and {yj}

are the positions of the holes before deletion after computing Kjdt{xi}(T ), then

Krevjdt{yj}(U) = T .
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Lemma 2.3.2. ([17]) Let T ∈ INCG/P (ν/λ), R ∈ INCG/P (λ), and a ∈ N. If A

is the subtableau of T consisting of entries 1, . . . , a, and B = T\A is the remaining

tableau, then

KrectR(T ) = Kinf1(R, T ) = Kinf1(R,A) ∪Kinf1(Kinf2(R,A), B)).

Thomas and Yong [17] demonstrate that different rectification orders applied

to the same starting tableau can yield different K-rectifications in Type A. There is,

however, a class of tableaux for which K-rectification is well-defined without speci-

fying rectification order. These are tableaux whose K-rectification is superstandard.

Theorem 2.3.3. ([17]) Let T ∈ INCG(k,Cn)(ν/λ) such that KrectR(T ) = Sµ for

some partition µ and rectification order R. Then KrectQ(T ) = Sµ for any rectifica-

tion order Q.

Let cνλ,µ be the number of (type A) increasing tableaux on ν/λ whose K-

rectification is Sµ. These combinatorial numbers coincide with structure constants

of type A K-theory, up to a sign. Let ενλ,µ = (−1)|ν|−|λ|−|µ|.

Theorem 2.3.4. For any λ, µ, and ν in ΛG(k,Cn), c
ν
λ,µ = ενλ,µC

ν
λ,µ(G(k,Cn))

This result led Thomas and Yong to conjecture that for every minuscule G/P ,

there would exist a class of tableaux on which K-rectification would be well defined.

Moreover the number of tableaux K-rectifying to a tableau of that class should

coincide with the K-theoretic structure constant, up to the predictable sign ενλ,µ.
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Conjecture 2.3.5. ([17]) (1) For any minuscule G/P , there is a class of tableau

{Cµ(G/P )} indexed by shapes µ ⊂ ΛG/P such that if T ∈ INCG/P (ν/λ) and

KrectR(T ) = Cµ for some R ∈ INCG/P (λ), then KrectQ(T ) = Cµ for all Q ∈

INCG/P (λ).

(2) The number of tableaux T ∈ INCG/P (ν/λ) withKrect(T ) = Cµ equals ενλ,µC
ν
λ,µ(G/P ).

As in type A, different rectification orders applied to the same tableau can

result in different K-rectifications in type B.

Example 2.3.4. Below are two K-rectifications of the same initial tableau, but

with differing rectification orders. Note that in neither case is the K-rectification

superstandard.

(1)

• 3
1 3 5
2 4 7→

• 3 5
• 1 4

2 7→
• 1 3 5
1 2 4 7→

• 1 2 3 5
2 4 7→

1 2 3 5
4

(2)

3
• 1 3 5

2 4 7→

• 3
1 2 3 5

4 7→

• 3 5
1 2 5

4

7→
• 2 3 5
1 4 5 7→

• 1 2 3 5
4 5 7→

1 2 3 5
4 5

In type B, we will see that the first part of Conjecture 2.3.5, is true. The su-

perstandard tableaux {Sµ} provide the class on which K-rectification is well-defined.

We let dνλ,µ count the number of type B tableaux on shape ν/λ whose K-

rectification is Sµ. We will show that the dνλ,µ, with appropriate signs, form struc-

ture constants of a ring, but it remains conjectural that this ring is isomorphic to

K(OG(n, 2n+ 1)) as desired. Some progress toward that result will be presented, by
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counting certain dνλ,µ which conjecturally correspond to structure constants coming

from the generators of K(OG(n, 2n+ 1)).

18



Chapter 3

Type B Structure

For this chapter, G/P = OG(n, 2n+ 1), so the notation will often suppress

the use of G/P subscripts.

3.1 Tulginess

Let T ∈ INC(ν/λ). Construct the column word of T , col(T ), to be the string

formed by reading the the entries of T down each column from top to bottom starting

at the right. Analogous to col(T ), we define row(T ) to be the row word obtained

by keeping track of position while reading the entries of T from left to right starting

from the bottom.

Example 3.1.1.

T =

1 4
2

2 3

col(T ) = 41232 row(T ) = 23214

Note that the first 2 of the row word corresponds to the second 2 of the column

word, as they occupy the same box within the tableau, but the first 2 of row(T )

does not correspond with the first 2 of col(T ). The correspondence is a bijection

of the two sequences and will be denoted σ. We will say that some k and σ(k) are

partners and frequently abuse notation, saying that some k in row(T ) is the partner
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of (the corresponding) k in col(T ).

We define the mix word of a tableau, mix(T ), as the concatenation of col(T )

with row(T ) along with the bijection σ relating partners. Referring again to the

previous example, mix(T ) = (41232|23214, σ). The pipe symbol helps keep track of

where the column word part ends and the row word begins. Although σ is part of

the data of mix(T ), the notation will be suppressed when writing mix(T ).

For the next few paragraphs, the expanse of a tableau is the longest length

among weakly increasing subsequence v1 · · · vq of mix(T ) such that no pair (vi, vj)

are partners. This condition means that although each pair k and σ(k) appear in

mix(T ), the expanse counts at most one of them.

In the previous example, there are two such longest subsequences of mix(T ).

They are the underlined portions of mix(T ): 41232|23214 and 41232|23214. Thus

the expanse of the tableau above is 5.

The expanse of a tableau is somewhat analogous to Thomas and Yong’s LIS(T )

statistic [17]. While this statistic was invariant under type A Kjdt, the notion of

expanse is not quite strong enough for type B. What will suffice for type B is the

condition that the expanse of a tableau be as large as possible. This motivates the

following definition and supplants the usage of “expanse” afterward.

Definition 3.1.1. A tableau T ∈ INC(ν/λ) is called tulgey if the expanse of T is

|ν/λ|.

The tableau of the previous example is thus tulgey. When a tableau is tulgey,

an underlining of its mix word which exhibits the tulginess is called a marking.
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Markings of the previous example’s mix(T ) are denoted above. In every marking,

for every k in mix(T ) either k or σ(k) is underlined. It bears repeating that because

longest weakly increasing subsequences of mix(T ) with at most one partner per pair

underlined are not unique, there may be multiple markings for the mix word any

tulgey T . Sometimes we use the phrase “marking of a tableau” as shorthand for

“marking of the mix word of that tableau.” Every tulgey tableau has a marking,

and we do not use the word “marking” except when referring to tulgey tableaux.

Proposition 3.1.1. If T ∈ INC(ν/λ) is a tulgey tableau then ν/λ is a border strip.

Proof. Suppose ν/λ is not a border strip. Then
a b
c is contained in T somewhere for

a < b < c. Moreover bca|cab is a subsequence of mix(T ). If there is a marking with

the first b underlined: bca|cab (other underlines unknown) then neither a can be

underlined in the marking, so T can not be tulgey. If bca|cab is part of the marking

of mix(T ) then neither c can be underlined, so again T can not be tulgey. Either

way, we see that only tableaux which are border strips can be tulgey.

We extend the definitions above to tableaux “with holes” by inserting the

hole symbol into the words where appropriate. It is also required that if a and b

are numbered (non-hole) entries of a tableau with holes and a ≤ b then b is not

weakly northwest of a. Tulginess is also extended, but is defined by ignoring holes

in markings of a tableau. The following tableau is tulgey with holes:

1 4
2 •
• 3
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This tableau with holes has a marking given by: 41 • 32 • | • 32 • 14. Since each

numbered entry or its partner is underlined, this tableau with holes is tulgey (so the

use of the word “marking” is justified).

It is convenient when choosing markings that they be in a certain standard

form. For this we need the following proposition.

Proposition 3.1.2. Let T be a tulgey tableau with holes. For any fixed k, a num-

bered label of T , there is a marking of mix(T ) such that all k are underlined on the

same side of the pipe.

Proof. Let k be a numbered label of the tableau T , tulgey with holes. For any

marking M of T , define the statistic kc(M) to be the number of k underlined in

col(T ) in M . Our goal is to build a marking M ′ for T wherein all k are underlined

on the same side of the pipe in M ′.

Pick a marking M which maximizes the statistic kc. If kc(M) equals the

number of k in col(T ), then M suffices to finish the proof. Let us assume neither

this nor kc(M) = 0. (If kc(M) = 0, we are again done, as M provides a marking of

T where all k are underlined in row(T )).

Now we may say there is at least one k underlined in row(T ) such that the

result of switching that k’s underlining to σ(k), is not a valid marking. Let k1 be

the first such k in row(T ). Let k2 be the first k underlined in col(T ). Then

M = αk2β|γk1δ

with α, β, γ, and δ sequences of (underlined and not) numbers and holes. Note that
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nothing but k can be underlined in β|γ. Also, all numbers less than k are underlined

in α and everything larger than k is underlined in δ. If σ(k1) is in β, then

M ′ = αk2β1k1β2|γk1δ (where β1k1β2 = β)

is a valid marking of mix(T ), but kc(M
′) = kc(M)+1, contradicting the maximality

condition defining M . Thus σ(k1) is in α, making

M = α1k1α2k2β|γk1δ (with α1k1α2 = α).

This means the box labeled with k1 is strictly east of the box labeled with

k2. To be tulgey with holes, k2’s box may not be north of k1’s, so k2 is in γ. This

means we can shift the underline to σ(k2) to arrive at a new marking. Likewise, any

k underlined in β is the label of a box strictly west of k1’s box so must be south

of k1’s box, placing the partner of that k in γ. We can now create M ′ a marking

of mix(T ) where all k are underlined in row(T ), and all other underlines are where

they were in M .

We may now assume without loss of generality that for a pair (T, k), where T

is a tulgey tableau with holes and k is a numbered entry of T , all underlined k in

the marking of mix(T ) occur entirely within col(T ) or within row(T ).

Theorem 3.1.3. Kjdt{xi}(T ) is tulgey iff T is, regardless of initial holes {xi}.

The proof of this theorem follows immediately from the following two lemmas,

as Kjdt{xi} and Krevjdt{xi} are merely repeated applications of switching.
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Set T0 to be T along with holes at positions {xj} and Ti be the result of

switching the •’s with the i’s of Ti−1.

Lemma 3.1.4. If Ti−1 is tulgey with holes then Ti is also tulgey with holes.

Proof. Let M be a marking of Ti−1 with all i underlined on the same side of the

pipe. We will create M ′ a marking for Ti. Doing so requires us to consider the two

possibilities of where i is underlined in M .

Case 1. All i are underlined in col(Ti−1) in M . Let M1 be the underlining of

mix(Ti) with all non i labels underlined where they were in M and all i’s underlined

in col(Ti). If M1 is a marking, M ′ = M , but if M1 is not a marking, we will move

one underline from a label in col(Ti) to its partner to get the marking M ′. This

happens in a very predictable way as we shall see.

Because holes for i’s shifting up in switch occur immediately before the i which

will fill them, only i’s moving left in switch can force M1 not to be a marking. For

all non-southwesternmost i, there is an i later in col(Ti−1) and col(Ti), so specifically

only the southwesternmost i shifting left can force M1 not to be a marking. The

following figure demonstrates this. The problem occurs only when b is underlined

in col(Ti−1).

•
• i1

• a
• i2
b

i1
i1 •

i2 a
i2 •

b

•i1 • a • i2b • |b • i1 • a • i2• ⊆M i1 • i1ai2 • bi2|bi2 • i2ai1 • i1 ⊂M1
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Notice how in M1 there is the underlined sequence bi2 even though i < b.

Let us now consider the problem of the southwesternmost i shifting left locally.

Let a, b, c, d, e, f, and g be either labels of Ti−1 or outside the shape of Ti−1, in which

case they are “empty” and can be discarded from considerations of M . Although c

could be a hole, we have already dealt with any i shifting up, so we assume without

loss of generality that c 6= •.

a b c
d • i
e f g ⊂ Ti−1 and

a b c
d i •
e f g ⊂ Ti

cigb • fade|efgd • iabc ⊂M

Immediately we see a, b, and d are empty, since there is no way to underline them

in M . The underlining of c is irrelevant to our purposes as after switch its position

relative to all i has not changed. We need only consider ig • fe|efg • i ⊂M .

If g is underlined in row(Ti−1)), then M1 is a marking, so M ′ = M1. However,

if g is underlined in col(Ti−1), we see that e and f , being less than g can not be

underlined in M , so are empty. This is the situation where g sits on the staircase.

In this case, ig • |g • i is the relevant part of M and •gi|gi• is the corresponding

part of M ′. That is, M ′ is M1 with the underlining of g moved to σ(g).

Case 2. All i are underlined in row(Ti−1) in M . Let M1 be the underlining

consisting of non i labels underlined in row(Ti) and all other numbers underlined in

their same positions as in M . Again, if M1 is a marking, let M ′ = M1. Analogous

to the last case, if M1 is not a marking, only the easternmost i shifting up can
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potentially be a problem for creating M ′. Isolating that i, we see the following.

a b c
d • e
f i g ⊂ Ti−1

a b c
d i e
f • g ⊂ Ti

cegb • iadf |figd • eabc ⊂M

Since i < e (if e is non-empty) we see g must be empty. Also, a must be empy lest

we be unable to underline b in M . To be tulgey, d must be underlined in col(Ti−1),

if it isn’t empty. The important part of M is now •iadf |fid • a. What we have

shown is that M1 is indeed a marking, with no underlines needing to move to their

partners to create M ′.

Lemma 3.1.5. If Ti is tulgey then Ti−1 was tulgey too.

Proof. This proof is almost identical to the last. Here, let M be the marking of Ti

with all i underlined in the same half of mix(Ti). We again create a marking M ′ of

Ti−1, to show it too is tulgey. We must proceed by cases, just as before.

Case 1. All i are underlined in col(Ti). Let M1 be as in Case 1 of the previous

proof. Only the northernmost i shifting right can present a problem for creating M ′

from M1. Let a, b, c, d, e, f, and g be as in the last proof.

a b c
i • d
e f g ⊂ Ti cdgb • faie|efgi • dabc ⊂M

Other than a and f , all entries are in the same positions relative to all i in M and
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M1. We need only examine a and f in this local picture.

If non-empty, a < i, thus b would be non-empty too. We have a < b < i but

all three can not be underlined in M , so a must actually be empty. To be a tableau

with holes, if f is non-empty, it must be underlined in row(Ti). This means M1 is

a marking, so M ′ = M1 is a marking for Ti−1.

Case 2. All i are underlined in row(Ti). Let M1 be as in Case 2 of the previous

proof. This time, only the southernmost i shifting down can potentially present a

problem for creating M ′. This time we have the following piece of Ti and marking:

a i b
c • d
e f g ⊂ Ti bdgi • face|efgc • daib ⊂M

For Ti to be tulgey, b and d must be empty, because they can not be underlined

along with i in row(Ti). This forces g to be empty too. Since f > i, it can not be

underlined in M , so it is empty. The relevant piece of M is i • ace|ec • ai. After

switch, the corresponding piece of M1 is •iace|ecia•. M1 is a marking, so M ′ = M1

making Ti−1 is tulgey with holes.

We now know that tulginess is an invariant of Kjdt, so KrectR(T ) is tulgey

iff T is. The shape of KrectR(T ) is a shifted partition so box (1,1) has a label in

KrectR(T ) (unless T = ∅, but then we’re not really saying much). Since tulgey

tableaux must occupy border strips, the shape of KrectR(T ) must be (p), the only

type of border strip which is also a (non-skew) shape. Here, p is the number of

distinct letters appearing as labels of T . Note that each label appears exactly once,
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by the “increasing” condition of KrectR(T ). There are no more or fewer labels since

no new labels are added during Kdjt, nor are any destroyed.

We have now categorized T such that KrectR(T ) = S(p). They are the tulgey

tableaux with entries 1, 2, . . . , p. Moreover, we see that the K-rectification of any

tulgey tableau is unique, regardless of rectification order! We state this formally as

the following theorem.

Theorem 3.1.6. Let T ∈ INC(ν/λ) with entries 1, . . . , p. (1) T is tulgey iff

there is some R ∈ INC(λ) such that KrectR(T ) = S(p). (2) If T is tulgey then

KrectQ(T ) = S(p) for any Q ∈ INC(λ).

3.2 Uniqueness of K-rectification

We need some more machinery analogous to that found in [17] to prove that

K-rectification to superstandard tableau is rectification order invariant.

Definition 3.2.1. For S ∈ INCG(k,Cn)(ν/λ), LISA(S) is the length of a longest

strictly increasing subsequence of row(S). For T ∈ INCOG(n,2n+1)(ν/λ), LISB(T )

is the length of a longest strictly increasing subsequence of mix(T ).

Theorem 3.2.1. ([17]) LISA(T ) = LISA(Kjdt{xi})(T ) for any set of inside cor-

ners {xi} and any T ∈ INCG(k,Cn)(ν/λ).

Corollary. LISA(T ) = LISA(KrectR(T )) for any R ∈ INCG(k,Cn)(λ) and T ∈

INCG(k,Cn)(ν/λ). This number is also µ1 where the shape of KrectR(T ) is µ.

Definition 3.2.2. Let T ∈ INCOG(n,2n+1)(ν/λ). By considering ΛOG(n,2n+1) as the

upper triangular subposet of ΛG(n,C2n), create a tableau T 2 ∈ INCΛG(n,C2n)
(ν/λ) by

28



T 2 = T ∪ T t where T t is the transpose of T . This process can be done on shapes

as well as tableau. Conversely, if A is a set of boxes in ΛG(n,C2n), let
√
A be the

minimal set of boxes B in ΛOG(n,2n+1) such that A ⊆ B2.

Example 3.2.1. Boxes filling out ΛG/P are shown for clarity.

T =

1 4
1 2

3

T 2 =

1 4
1 2

1 2 3
4

Let A be the set of boxes marked with a • in the first picture below, then
√
A is the

set of boxes marked with a • in the second.

A =

• •
•
•

• • √
A =

• •
• • •

Now we have the tools to prove the following lemma, and thus the proposition

following it as an immediate corollary.

Lemma 3.2.2. If T ∈ INCOG(n,2n+1)(ν/λ) then LISB(T ) = LISA(T 2).

Proof. First see that T having no boxes on the staircase means T 2 misses the di-

agonal of the n × n boxes it sits inside. In this case mix(T ) = row(T 2), so we see

immediately that LISB(T ) = LISA(T 2).

If T 2 intersects the diagonal in exactly one place filled with label k then mix(T )

is exactly row(T 2) with the k duplicated. So again LISB(T ) = LISA(T 2).

Let I be a collection of boxes of T such that LISB(T ) = LISB(I) = |I|. We
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can see that I2 meets the diagonal in at most two places, by considering a, b labels

of I with

I =

a
· · ·

b ⊂ T

Since a < b, a is included in the col(I) part of of the sequence enumerated by

LISB(I) and b is included in row(I). If there were a third entry c on the diagonal

to the southeast of b, it would be included in row(I), but b would be included in

col(I). Thus there can be no third box in I on the diagonal.

We can also ensure that there is an I satisfying LISB(T ) = LISB(I) = |I|

with at most one box of I on the diagonal. Suppose I such a set of boxes, but with

I intersecting the diagonal at two positions (x, x) and (y, y), labeled with a and

b respectively, with a < b. The entries of I in row y are in consecutive boxes, as

if any were skipped, I could be made larger by including them, which of course is

impossible. It is also interesting to see that a is the last entry counted by I from

col(T ) and b is the first from row(T ).

If c is the label of a box in T directly above a box of I from row y, we see

that c satisfies a < c < b, but c occurs in col(T ) before a and in row(T ) after b.

Therefore it is impossible that c’s box be in I.

Since row y − 1 is read immediately after row y in row(T ), we can create a

new subset J of T formed by removing the boxes in row y of I and replacing them

with the boxes immediately above, from row y − 1. In addition, we notice that we

could increase the size of J by including the box in position (y − 1, y − 1). Since

|J | = |I|, which is maximal, that box must be in I already, and so being on the
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diagonal, must be filled with a in position (x, x), giving x+ 1 = y.

To reiterate, we now have J satisfying LISB(T ) = LISB(J) = |J | with J

containing only one box of the diagonal. This means LISB(J) = LISA(J2) and

since J2 ⊆ T 2, we have LISB(T ) ≤ LISA(T 2).

To obtain the opposite inequality, let I ⊆ T 2 such that LISA(I) = LISA(T 2) =

|I|. Because
√
I ⊆ T , we have row(I) ⊆ mix(

√
I) ⊆ mix(T ), and thus LISA(T 2) =

LISA(I) = LISB(
√
I) ≤ LISB(T 2).

Proposition 3.2.3. Let T ∈ INCOG(n,2n+1)(ν/λ) and R ∈ INCOG(n,2n+1)(λ) with

KrectR(T ) having shape µ. Then LISB(T ) = µ1. Moreover because LISB(T ) is

independent of R, we see that KrectQ(T ) has µ1 boxes in its first row for any

Q ∈ INCOG(n,2n+1)(λ).

Proof. By consideringR2, a symmetric rectification order, we note thatKrectR2(T 2) =

(KrectR(T ))2 since each step of type A Kjdt using R2 will mirror each step of type

B Kdjt using R. Also, note that for a tableau S on a non-skew shape ρ, we have

LISB(S) = LISA(S2) = ρ1. Now we have

LISB(T ) = LISA(T 2) = LISA(KrectR2(T 2)) = µ1

via the previous lemma and Theorem 3.2.1.

Theorem 3.2.4. Let T ∈ INCOG(n,2n+1)(ν/λ). If KrectR(T ) = Sµ for some recti-

fication order R, then KrectQ(T ) = Sµ for any rectification order Q.

Proof. Pick R ∈ INC(λ) such that Kinf1(R, T ) = Sµ. Let Q ∈ INC(λ) and

let U1 be the subtableau of T consisting of all entries 1, . . . , µ1. Set T2 = T\U1,
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R2 = Kinf2(R, T ), and Q2 = Kinf2(Q, T ).

KrectR(T ) = Kinf1(R, T ) = Kinf1(R,U1) ∪Kinf1(R2, T2)

KrectQ(T ) = Kinf1(Q, T ) = Kinf1(Q,U1) ∪Kinf1(Q2, T2)

Because Kinf1(R,U1) = S(µ1), U1 must be tulgey, which forces Kinf1(Q,U1) = S(µ1)

as well.

KrectR(T ) has µ1 boxes in its first row, so by Proposition 3.2.3, KrectQ(T )

has µ1 boxes in its first row also. We now have that KrectR(T ) and KrectQ(T )

have the same first row. With no switches in Kinf1(Q2, T2) affecting the first row,

it now suffices to prove Kinf1(R2, T2) = Kinf1(Q2, T2).

We may think of Kinf1(R2, T2) as a K-rectification to a superstandard tableau

of shape (µ2, . . . , µl(µ)) with alphabet {µ1 + 1, . . . , |µ|}. Using T2 in the place of T ,

R2 instead of R, and Q2 for Q, we can repeat the above argument to see that the

first two rows of KrectR(T ) and KrectQ(T ) agree. After l(µ) − 2 more iterations,

we see that all rows must agree, thereby forcing KrectR(T ) = KrectQ(T ).

Now knowing that K-rectifiction to superstandard tableaux is unique, we drop

the subscript and simply write Krect(T ). Along with that, we can now count

superstandard K-rectifications.

Definition 3.2.3. Define the symbol dνλ,µ = #{T ∈ INC(ν/λ)|Krect(T ) = Sµ}.

The number of tulgey tableau with entries 1, . . . , p on shape ν/λ is dνλ,(p).
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3.3 Ring structure

We define D = ⊕λZτλ, with Z-basis of formal symbols {τλ} indexed by strict

partitions. Multiplication of basis elements in D is given by

τλ ∗ τµ =
∑
ν

dνλ,µτν .

Thomas and Yong [17] explicitly provide a type A analogue of D. We will

follow their proof technique and give all details to show that D is a commutative

ring.

Theorem 3.3.1. D is a commutative ring, with identity τ∅.

Proof. Let α, β, and γ be strict partitions. Curiously, we will require a proof of

commutativity within the proof of associativity, so let us show that first.

Let B be a tableau on γ/α such that Krect(B) = Sβ, that is B is a tableau

counted by dγα,β. We have Kinf1(Sα, B) = Sβ. Create A = Kinf2(Sα, B) a tableau

on γ/β. We know the shape of A since it extends Sβ. Note that Kinf1(Sβ, A) = Sα

by involution, Theorem 2.3.1. This gives us a bijection

{B on γ/α|Krect(B) = Sβ} ↔ {A on γ/β|Krect(A) = Sα}

This is precisely the statement dγα,β = dγβ,α.

For multiplication in D to be associative, we must examine the following prod-
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ucts.

(τα ∗ τβ) ∗ τγ =
∑
σ

dσα,βτστγ =
∑
σ

dσα,β
∑
ν

dνσ,γτν =
∑
σ,ν

dσα,βd
ν
σ,γτν

τα ∗ (τβ ∗ τγ) =
∑
ρ

dρβ,γτατρ =
∑
ρ

dρβ,γ
∑
ν

dνα,ρτν =
∑
ρ,ν

dρβ,γd
ν
α,ρτν

This means we must show equality
∑

σ d
σ
α,βd

ν
σ,γ =

∑
ρ d

ρ
β,γd

ν
α,ρ for any fixed ν.

The first sum counts the number of pairs (B,C) such that B is a tableau on σ/α

with Krect(B) = Sβ and C is a tableau on ν/σ with Krect(C) = Sγ. The second

sum counts pairs of tableaux (F,D) where D is on ρ/β with Krect(D) = Sγ and F

is on ν/α with Krect(F ) = Sρ.

Given such a (B,C) pair, construct A = Kinf2(Sα, B) on σ/β. This is the

image of B under the commutativity bijection. Because Krect(C) = Sγ, we may

pick whatever rectification order we choose. Our order will be to partially K-rectify

C by infusion with A, then finish the order with a further K-infusion with Sβ. Thus

Kinf1(Sβ, Kinf1(A,C)) = Sγ. Let D = Kinf1(A,C), on shape ρ/β for some ρ.

Likewise, if E = Kinf2(A,C) then Krect(E) = Krect(A) = Sα.

Tableaux like E are counted by dνρ,α. Under the commutativity bijection, E

corresponds to F , a tableau on ν/α which K-rectifies to Sρ.

Now we have a sequence of bijections mapping pairs.

(B,C)↔ (A,C)↔ (D,E)↔ (F,D)

We see that F and D are counted by dνα,ρ and dρβ,γ as intended. Thus multiplication

in D is associative.
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To see that τ∅ is the multiplicative identity, consider τ∅ ∗ τα =
∑

ν d
ν
∅,ατν . As

dν∅,α counts tableaux T on ν/∅ = ν which K-rectify to Sα, T must already be K-

rectified. This gives the fact that dν∅,α = 1 when α = ν and is zero if α 6= ν. By

commutativity, τ∅ is also a right identity.

We define D(n) to be the quotient D/〈τλ|λ1 > n〉. The only τλ that occur are

those for which λ fits in the n column staircase. It is conjectured in [17], and given

Theorem 3.2.4 proved in [3], that τλ 7→ (−1)|λ|[Oλ] extends to a ring isomorphism

from D(n) to K(OG(n, 2n+ 1)).

Because the lowest order piece ofK(X) isH∗(X), cohomological structure con-

stants must coincide with with the lowest graded structure constants ofK(OG(n, 2n+ 1)).

This means that the correspondence between combinatorics and geometry holds

when |ν| = |λ| + |µ| since in [16], it is proved that dνλ,µ do provide the structure

constants for the cohomology ring H∗(OG(n, 2n+ 1)) for |ν| = |λ|+ |µ|.

Proposition 3.3.2. The ring D(n) is generated by the “special classes” τ(k). That

is, D(n) = 〈τ(k)|1 ≤ k ≤ n〉.

Proof. Consider the order �, on partitions. This is lexicographic order in the sense

that λ = (λ1, . . . , λl) � (µ1, . . . , µk) = µ iff for the smallest i where λi 6= µi, then

λi < µi. When two partitions are of unequal length, the shorter may be padded

with zeroes, if that is deemed convenient. The relation � provides a total order on

the set of (non-skew) shapes.

Note that if dνλ,µ 6= 0 then λ ⊆ ν so λ � ν. If p < λl(λ) then d
(λ,p)
λ,(p) = 1, where
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(λ, p) = (λ1, . . . , λl(λ), p). Combining these facts yields

τ(λ1) ∗ τ(λ2) ∗ · · · ∗ τ(λl(λ)) = τλ +
∑
λ�µ

cλ,µτµ

for some cλ,µ ∈ Z. Because no shapes are larger than the entire staircase (n, n −

1, . . . , 1) under this order,

τ(n) ∗ τ(n−1) ∗ · · · ∗ τ(1) = τ(n,n−1,...,1) ∈ 〈τ(k)|1 ≤ k ≤ n〉

Suppose τµ ∈ 〈τ(k)|1 ≤ k ≤ n〉 for all µ � λ. Then τλ = Π1≤i≤l(λ)τ(λi) −∑
λ�µ cλ,µτµ is in 〈τ(k)|1 ≤ k ≤ n〉 by induction, completing the proof.

The above proof is the standard argument to show that Pieri rules generate

many rings in Schubert calculus.

In different language, Stembridge [15] defines a word condition on objects

called marked shifted tableaux. In this context, cohomological structure constants

cνλ,µ are counted by such tableaux on ν/λ of “content µ” satisfying the word condi-

tion. There is an explicit bijection between Stembridge’s tableaux and standard

tableaux on ν/λ K-rectifying to Sµ. This gives another proof that the dνλ,µ =

Cν
λ,µ(OG(n, 2n+ 1)) when |ν| = |λ| + |µ|. Because a second proof is redundant

and we have not introduced Stembridge’s marked shifted tableaux, the technical

details are omitted.

We are already familiar with the commutation symmetry dνλ,µ = dνµ,λ. In [17],
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λ

λ∨

Figure 3.1: Strict partitions and their duals fill out the staircase.

there is an allusion to a Z/3Z symmetry

Cν
λ,µ(G/P ) = Cλ∨

µ,ν∨(G/P ) = Cµ∨

ν∨,λ(G/P )

for minuscule G/P . If dνλ,µ = ενλ,µC
ν
λ,µ(OG(n, 2n+ 1)) as expected, then dνλ,µ would

share this symmetry. By including the commutation symmetry, we get an S3-

symmetry.

In the OG(n, 2n+ 1) case, a strict partition λ uses some subset of {1, . . . , n}.

λ∨ is defined as the strict partition using the complementary subset. Pictorially

λ ∪ λ∨ = ΛOG(n,2n+1) when λ∨ is reflected through the “y = x” line, as seen in

Figure 3.1.

We are able to explicitly provide the bijection on tableaux to show dνλ,(p) =

dλ
∨

ν∨,(p). After applying the commutation symmetry, this gives a special case of the

expected Z/3Z symmetry. We temporarily create an operation flip on tableaux

which views an increasing tableau on ν/λ as a decreasing tableau on λ∨/ν∨.

Proposition 3.3.3. For λ, ν strict partitions and p ∈ N, dνλ,(p) = dλ
∨

ν∨,(p).

Proof. Let T be a tableau counted by dνλ,(p), i.e. a tulgey tableau of shape ν/λ whose

alphabet is {1, . . . , p}. Thus flip(T ) is a decreasing tableau on the shape λ∨/ν∨.

37



An illustration of this process follows the proof. Because ν/λ is a border strip, the

reverse of the column word of T is its row word, and vice-versa, so

mix(flip(T )) = rev(row(T ))|rev(col(T )) = col(T )|row(T ) = mix(T )

Create T̂ by replacing entry x of flip(T ) with p + 1 − x. Now T̂ is an increasing

tableau. There are decreases in mix(T̂ ) precisely when there are increases in mix(T )

and vice-versa. Thus, there is a marking of mix(T̂ ) consisting of the underlines given

by the complement of the underlines in a marking of mix(T ). Noticing that
ˆ̂
T = T

shows that this involution is the necessary bijection to tulgey tableaux on λ∨/ν∨

with alphabet {1, . . . , p}, counted by dλ
∨

ν∨,(p).

Example 3.3.1. Let T be the first tableau below. Then flip(T ) and T̂ are the

second and third, respectively. Extra empty boxes fill out ΛOG(5,11) for clarity.

Markings for mix(T ) and mix(T̂ ) have complementary positions underlined. Notice

also that mix(flip(T )) = mix(T ).

1
1 2 3
2

3 1
2

2 1

1 3
2

2 3

mix(T ) = 13212|21231 mix(T̂ ) = 31232|23213
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Chapter 4

Type B Pieri Rule

If dνλ,µ = ενλ,µC
ν
λ,µ(OG(n, 2n+ 1)) as conjectured, knowing dνλ,(p) will allow us

to compute any structure constants of K(OG(n, 2n+ 1)). Pieri structure constants,

dνλ,(p), are not so clean to count as their type A counterpart. This chapter will

develop a few formulas which cover all possible cases to count dνλ,(p) for any λ, ν, or

p.

We will need the following lemma frequently in this chapter. A very similar

statement was given in [17], as the tableaux described are those which K-rectify to

S(p) in Type A.

Let c(ν/λ) be the number of columns of ν/λ and r(ν/λ) be the number of

rows.

Lemma 4.0.4. Let ν/λ be a horizontal strip and p ≥ 1. The number of increas-

ing tableaux on ν/λ with alphabet 1, . . . , p such that row(T ) is weakly increasing is(
r(ν/λ)−1
|ν/λ|−p

)
.

Proof. Each row of ν/λ contains distinct and consecutive numbers as we are counting

increasing tableaux. An entry can be repeated in a labeling if and only if it begins a

row other than the first. There are |ν/λ|−p repeats. There are r(ν/λ)−1 new rows

where the weak increases can occur. Choose |ν/λ| − p of the new rows in which to

insert a weak increase. In all other new rows, a minimal strict increase is forced.
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Corollary. Let ν/λ be a vertical strip and p ∈ N. Then the number of increas-

ing tableaux on ν/λ with alphabet 1, . . . , p such that col(T ) is weakly increasing is(
c(ν/λ)−1
|ν/λ|−p

)
.

Proof. This is exactly the same as the previous proof with columns and rows trans-

posed.

4.1 A large component in the southwest

Two boxes of a shape are said to be neighbors if they share an edge. Set

x ∼ y iff x and y are neighbors. A component of a shape is an equivalence class

of the transitive closure of ∼. Corners of a shape are all boxes with the following

two exceptions: (1) those boxes with neighbors both east and west of themselves,

or (2) those boxes with neighbors both north and south of themselves. Figure 4.1

shows a shape consisting of two components, and six corners (marked with holes).

Thus corners include all “turning points,” singletons (single box components), and

“extrema of components.”

Let N denote the number of components of ν/λ, and N ′ be the number of

components with more than one box. Also let C(C) be the number of corners in

a given component C. C(ν/λ) is the sum of C(C) for all components, and is the

number of corners of the entire shape ν/λ. We suppress notation showing that N

and N ′ are dependent on ν/λ.

Note that because we are considering dνλ,(p), we will assume all tableaux, with-

out holes, in this chapter are border strips. This also implies that within ν/λ, the
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Figure 4.1: Corners of a skew shape.

southwesternmost box has at most one neighbor (also in ν/λ). For this section, we

will assume that the southwesternmost component is large, meaning it has more

than a single box. Thus, the southwesternmost box has a neighbor in ν/λ.

Definition 4.1.1. Let ν/λ be a border strip. A separation of ν/λ is a partition α

such that λ ⊆ α ⊆ ν with α/λ a vertical strip and ν/α a horizontal strip.

Example 4.1.1. Consider the border strip ν/λ = (7, 5, 2)/(5, 2). It has two separa-

tions; one of which is given by α = (6, 3, 1). So ν/λ = α/λ∪ ν/α a union of vertical

and horizontal strips, respectively.

= ∪

We say that two boxes of ν/λ are separated by a separation α if one is in

α and the other is not. We say that a large component is separated by α if the

southwesternmost box of that component is separated from its unique neighbor in

ν/λ.

In this section, where the southwesternmost component of ν/λ is large, we

make the extra assumption that all separations mentioned will not separate the

southwesternmost component.
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For each other large component C, the only box of C which has the potential

to be in one separation and not in another is the southwesternmost box of C. If

⊆ ν/λ then the box on the right must be in ν/α. If ⊆ ν/λ the box above

must lie in α/λ. We see immediately there are 2 to the power of the number of

components of ν/λ minus 1 different separations of ν/λ, as singleton components

can be in ν/α or α/λ.

We say that a tableau T on ν/λ respects a separation α, or is tulgey with

respect to α when there is a marking M of mix(T ) such that

α = λ ∪ {boxes of ν containing entries underlined in col(T ) in M}.

Note that every tulgey tableau respects some α, i.e. the description above is

a shape. To see this, let c be a box of α, constructed in such a way. Let a be the

box immediately to its north (unless c is in the first row of the staircase) and b be

the box immediately to the west of c (unless c is the westernmost box of its row). α

is a shape provided that a is either in λ or in α; same with b. If a ⊆ λ, we’re done.

Since a < c, then the enty of T in box a must be underlined in M before c, so it is

underlined in col(T ), so a ⊂ α. The same line of reasoning works for b.

Proposition 4.1.1. No tableau can be tulgey with respect to two distinct separations.

Proof. Suppose there are different separations α and β with T tulgey with respect

to both of them. This would require some southwesternmost box of some non-

southwesternmost component to be in one separation and not in the other. T has

some entry k in this box. Let q be the label of the southwesternmost box of T .
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Case 1: The box to the east of q is in ν/λ. If T is tulgey with respect to α in

which the box containing k is in α then k ≤ q, but if T is tulgey with respect to β

with the box containing k not in β then k > q.

Case 2: The box to the north of q is in ν/λ. In this case, the box with label

k being in α implies k < q, and that box not being in β means k ≥ q.

Both of these outcomes lead to contradictions.

Notice that in the proof above we do use the fact that the the southwest-

ernmost component of ν/λ is large. We also see that given a tulgey T (with a

large southwesternmost component), there are precisely two markings of T , the one

described by the creation of an α as above, and the marking due to a separation

which does not respect our caveat that of keeping the southwesternmost component

unseparated.

For the proof of the next proposition, we recall the Vandermonde identity:

∑
k

(
n

a− k

)(
m

b+ k

)
=

(
n+m

a+ b

)

A quick proof of this celebrated identity is given by asking, “What is the coefficient

of xa+b in (1 + x)n+m = (1 + x)n(1 + x)m?”

Proposition 4.1.2. When the southwesternmost component of ν/λ is large,

dνλ,(p) =
∑
α

(
c(α/λ) + r(ν/α)− 1

|ν/λ| − p

)

where the sum is over all separations α of ν/λ leaving the southwesternmost com-
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ponent of ν/λ unseparated.

Proof. Let us count the number of tableaux which are tulgey with respect to a fixed

α. By earlier considerations, because no tableau will be counted twice and each

tulgey tableau is tulgey with respect to some separation, we simply vary α over all

possible separations to arrive at dνλ,(p).

Case 1: The southwesternmost box of ν/λ has its unique neighbor to its east.

We index our count of tulgey T by the entry q in the southwesternmost box of T .

The first part of the following sum comes from first filling α/λ with an alphabet of

1, . . . , q − 1 and ν/α with q, . . . , p. The second part of the sum fills α/λ with an

alphabet 1, . . . , q. These are all the tulgey fillings of ν/λ with respect to α.

∑
q

(
c(λ/α)− 1

|α/λ| − (q − 1)

)(
r(ν/α)− 1

|ν/α| − (p− q + 1)

)
+

(
c(λ/α)− 1

|α/λ| − q

)(
r(ν/α)− 1

|ν/α| − (p− q + 1)

)

=

(
c(α/λ) + r(ν/α)− 2

|ν/λ| − p

)
+

(
c(α/λ) + r(ν/α)− 2

|ν/λ| − p− 1

)
=

(
c(α/λ) + r(ν/α)− 1

|ν/λ| − p

)

by the Vandermonde identity then the recursive definition of binomial coefficients.

Case 2: The southwesternmost box of ν/λ has its neighbor to the north. We

perform the same steps as above, but notice that the alphabets filling α/λ must be

1, . . . , q, but here the alphabet for ν/α can include q or not.

∑
q

(
c(λ/α)− 1

|α/λ| − q

)(
r(ν/α)− 1

|ν/α| − (p− q + 1)

)
+

(
c(λ/α)− 1

|α/λ| − q

)(
r(ν/α)− 1

|ν/α| − (p− q)

)

=

(
c(α/λ) + r(ν/α)− 2

|ν/λ| − p

)
+

(
c(α/λ) + r(ν/α)− 2

|ν/λ| − p− 1

)
=

(
c(α/λ) + r(ν/α)− 1

|ν/λ| − p

)
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Figure 4.2: Sample for counting contribution to s(α).

again by Vandermonde and recursive identities.

Proposition 4.1.3. When the southwesternmost component of ν/λ is large,

dνλ,(p) = 2N−N
′
N ′−1∑
k=0

(
N ′ − 1

k

)(
C(ν/λ)− k − 2

|ν/λ| − p

)
.

Proof. For a separation α of ν/λ, let s(α) = c(α/λ) + r(ν/α) for shorthand. Com-

ponents of ν/λ contribute to s(α) independently, so we focus first on understanding

how one component C of ν/α contributes to s(α).

If C consists of a single box, then it contributes exactly 1 to s(α), as the box

is entirely in one column of α/λ or one row of ν/α.

To compute the contribution of a large component C, let us begin in its north-

easternmost box and trace through its boxes neighbor by neighbor, adjusting our

count until we arrive at the southwesternmost box of C. For purposes of clarity, we

will work through the sample shape in Figure 4.2.

In Figure 4.2, a box is labeled Y if the box contributes to s(α), N if not, and

M if it depends on α. The subscripts on the labels are in the order of the path

through the component.

Notice that, yes, the first box starts us off in some column of α/λ, so our

45



contribution count is currently 1. Moving to the second box, as it is in the same

column of α/λ, it does not change the running total. The next box also does not

contribute to s(α) for the same reason. The fourth box is no longer in α, so being

in ν/α it contributes to r(ν/α), increasing our running total for s(α). The fifth

box is in the same row, so until the next corner, no new boxes will contribute in

our running tally of s(α). The sixth and seventh boxes each contribute since they

occupy new columns and rows not yet counted in s(α). See that the final box could

contribute to s(α), but only if it is separated from its neighbor by α.

In general, any component works the same way a new box in the march through

C contributes to s(α) if it is a corner, unless it is the southwesternmost box of C and

α does not separate it from its neighbor. For each of the N ′ large components Ci,

let ci(α) be C(Ci) if α separates Ci or C(Ci)− 1 if α leaves Ci unseparated.

s(α) = N −N ′ + c1(α) + · · ·+ cN ′(α)

If k(α) is the number of components Ci for which α does not separate Ci for 1 ≤ i ≤

n− 1, we have

s(α) = N −N ′ +
N ′∑
i=1

C(Ci)− k(α)− 1 = C(ν/λ)− k(α)− 1.

There are 2N−N
′(N ′−1

k

)
separations α for which k(α) = k, and each has

(
s(α)−1
|ν/λ|−p

)
=(

C(ν/λ)−k−2
|ν/λ|−p

)
tulgey tableaux with respect to it. Thus, by indexing by the number of

components left unseparated, we have recovered the the expression for dνλ,(p) as we
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desired.

4.2 All components are singletons

The next case we tackle is when ν/λ is composed of precisely N singleton

components (and no large components). Jeu de taquin performed by choosing one

box at a time can “shift” a box west or north until two boxes share a vertex. Krevjdt

can shift them east or south. Any N singleton shape can be shifted to any other.

Tulginess is invariant under this kind of shifting, so the number of tulgey tableaux

dνλ,(p) depends only on p and the number of boxes, N . Let T (N, p) = dνλ(p), in this

instance.

When p = 1, there is only one filling of ν/λ, and it is tulgey, so T (N, 1) = 1.

When p = 2, any filling with at least one 1 and one 2 is tulgey, which makes

T (N, 2) = 2N − 2. Set T (N, p) = 0 when p > N or p < 1.

When p ≥ 2, it should be clear that the first letter in mix(T ) is either a 1 or p.

Consider the permutation in Sp which reverses the alphabet, i.e. (1 p)(2 p− 1) · · · .

Acting on a tulgey tableau with this permutation gives a different tulgey tableau.

This also switches those whose mix words begin with 1 and those that begin with p.

The number of tulgey tableaux beginning with 1 is T (N − 1, p) + T (N − 1, p− 1).

This can be seen by adding the number of those where 1 is repeated and those where

it is not. These considerations together give the recurrence relation:

T (N, p) = 2T (N − 1, p) + 2T (N − 1, p− 1)

47



Proposition 4.2.1. T (N, p) = 2p−1
∑N−p

k=0 2k
(
p+k−2
p−2

)
for p ≥ 2.

Proof. Given base cases as above, it suffices to show that the alleged expression

satisfies the recurrence relation above. Let’s see what we get when we plug into the

recurrence relation:

2p−1

N−p∑
k=0

2k
(
p+ k − 2

p− 2

)
?
= 2p

N−p−1∑
k=0

2k
(
p+ k − 2

p− 2

)
+ 2p−1

N−p∑
k=0

2k
(
p+ k − 3

p− 3

)

Combining two arithmetic steps in one line, the above is true iff the below is.

2N−p
(
N − 2

p− 2

)
?
= 2N−p

(
N − 3

p− 3

)
+

N−p−1∑
k=0

2k
[(p+ k − 2

p− 2

)
+

(
p+ k − 3

p− 3

)]

Substitute using the recursive binomial identity twice:
(
N−3
p−3

)
=
(
N−2
p−2

)
−
(
N−3
p−2

)
and

(
p+k−3
p−3

)
=
(
p+k−2
p−2

)
−
(
p+k−3
p−2

)
. After moving a couple terms, we get:

2N−p
(
N − 3

p− 2

)
?
=

N−p−1∑
k=0

2k
[
2

(
p+ k − 2

p− 2

)
−
(
p+ k − 3

p− 2

)]

Moving the negative piece to the left side, and noticing that its k = 0 term

does not contribute, we now have:

N−p∑
k=1

2k
(
p+ k − 3

p− 2

)
?
= 2

N−p−1∑
k=0

2k
(
p+ k − 2

p− 2

)

These two sides are indeed equal, and can be seen to be so by shifting the

index k by one on either side.
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4.3 Singletons in the southwest

We have only one case left to examine. It is a sort of combination of the

two previous types. This is when there are exactly M ≥ 1 consecutive singleton

components in the southwest of ν/λ followed by a large component. There may be

more components further to the northeast, singletons or large ones.

Let N and N ′ again be the number of components of ν/λ and the number of

large components, respectively. Form a subshape ν̄/λ̄ from the N −M northeast-

ernmost components. Thus ν̄/λ̄ is a shape whose southwesternmost component is

large.

To count the tulgey tableaux on ν/λ, pick s and t to index the minimal and

maximal entries of the M singletons. There are m = t − s + 1 number of distinct

entries in the M singletons. Next, choose a separation α of ν̄/λ̄ as before, starting

from the northeasternmost vertex of the northeasternmost box of ν̄/λ̄, ending at

the southwesternmost vertex of the southwesternmost box of ν̄/λ̄.

Note. We make no stipulation that the separation must keep the last large

component unseparated.

Given s, t, and separation α as above, there are four methods of filling in ν̄/λ̄.

The alphabet in α/λ can be 1, . . . , s− 1 or 1, . . . , s and the alphabet in ν/α can be

t, . . . , p or t+1, . . . , p. This will introduce overcounting OV , which we will calculate

later.

Adding those four alphabet choices and remembering to fill in the M single-
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tons, we have:

dνλ,(p) =
∑

1≤s≤t≤p

T (M,m)
∑
α

[(c(α/λ)− 1

|α/λ| − s

)(
r(ν/α)− 1

|ν/α/| − (p− t+ 1)

)

+

(
c(α/λ)− 1

|α/λ| − s

)(
r(ν/α)− 1

|ν/α/| − (p− t)

)
+

(
c(α/λ)− 1

|α/λ| − (s− 1)

)(
r(ν/α)− 1

|ν/α/| − (p− t+ 1)

)
+

(
c(α/λ)− 1

|α/λ| − (s− 1)

)(
r(ν/α)− 1

|ν/α/| − (p− t)

)]
−OV .

Replacing s with t−m+ 1, we can use the Vandermonde identity to eliminate

t from our sum:

dνλ,(p) =
∑

α,1≤m≤p

T (M,m)
[(c(α/λ) + r(ν/α)− 2

|ν̄/λ̄| − p+m− 2

)

+ 2

(
c(α/λ) + r(ν/α)− 2

|ν̄/λ̄| − p+m− 1

)
+

(
c(α/λ) + r(ν/α)− 2

|ν̄/λ̄| − p+m

)]
−OV

Using the recursive binomial identity twice, we can clean this sum up even

further:

dνλ,(p) =
∑
α,m

T (M,m)

(
c(α/λ) + r(ν/α)

|ν̄/λ̄| − p+m

)
−OV

Just as previously, we see that c(α/λ)+r(ν/α) is the number of corners of ν̄/λ̄

minus the number of large components left unseparated by α. This time, however,

as α may or may not separate the southwesternmost box of ν̄/λ̄ from its neighbor,

we have

dνλ,(p) = 2N−N
′−M

∑
m,k

T (M,m)

(
N ′

k

)(
C(ν̄/λ̄)− k
|ν̄/λ̄| − p+m

)
−OV
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by summing over the number of unseparated components k.

Let us now turn to the problem of overcounting. If s < t, given α, the four

alphabet cases produce distinct classes of tableaux and no tableaux is counted twice

in its class. Moreover, in this circumstance, since α can be recovered from a tableau,

different separations can not yield the same tableau.

This means overcounting can only potentially occur when s = t, i.e. m = 1. In

this case, there are two different separations for every tulgey tableau on ν/λ. They

are the one which separates the southwesternmost box of the southwesternmost large

component from its neighbor and the one that does not, provided the label in that

box is also s.

This makes every single tulgey filling of ν̄/λ̄ count precisely twice. Since ν̄/λ̄

has a large lower left component, there are 2N−N
′−M∑

k

(
N ′−1
k

)(
C(ν̄/λ̄)−k−2

|ν̄/λ̄|−p

)
such

overcountings.

Sadly, we are not done overcounting. We have inadvertently counted some

fillings which were not increasing tableaux. This occurred when α separated the

southwesternmost box, filled with s, from its neighbor, filled with t. The problem

is that because s = t, there is not an increase between these two adjacent boxes.

For each potential α separating the southwesternmost component, filled with

s, there are
(
c(α/λ)−1
|α/λ|−s

)(
r(ν/α)−1

|ν/α/|−(p−s+1)

)
such overcountings. The non-tableaux counted

by the formula amount to:

∑
α

(
c(α/λ) + r(ν/α)− 2

|ν̄/λ̄| − p− 1

)
= 2N−N

′−M
∑
k

(
N ′ − 1

k

)(
C(ν̄/λ̄)− k − 2

|ν̄/λ̄| − p− 1

)
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Total overcounting amounts to:

OV = 2N−N
′−M

N ′−1∑
k=0

(
N ′ − 1

k

)[(C(ν̄/λ̄)− k − 2

|ν̄/λ̄| − p

)
+

(
C(ν̄/λ̄)− k − 2

|ν̄/λ̄| − p− 1

)]
= 2N−N

′−M
N ′−1∑
k=0

(
N ′ − 1

k

)(
C(ν̄/λ̄)− k − 1

|ν̄/λ̄| − p

)

This formula holds in the specialized case when there are no large components.

Here N = M , N ′ = 0, ν̄/λ̄ = ∅ making the sum include only terms m = p and k = 0.

Each term of the overcounting is 0, so dνλ,(p) = T (N, p) as needed.

In one expression, we have the following proposition.

Proposition 4.3.1. When the southwesternmost component is a singleton,

dνλ,(p) = 2N−N
′−M
[∑
m,k

T (M,m)

(
N ′

k

)(
C(ν̄/λ̄)− k
|ν̄/λ̄| − p+m

)

−
N ′−1∑
k=0

(
N ′ − 1

k

)(
C(ν̄/λ̄)− k − 1

|ν̄/λ̄| − p

)]

Example 4.3.1. Here we compute the number of tableaux counted by dνλ,(p) where

p = 5 and

ν/λ = (14, 13, 12, 10, 8, 7, 3, 1)/(13, 12, 11, 9, 7, 4, 2).

In this example N = 5, N ′ = 2, M = 2, and

ν̄/λ̄ = (14, 13, 12, 10, 8, 7)/(13, 12, 11, 9, 7)
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Figure 4.3: Tableaux enumerating dνλ,(p).

which makes C(ν̄/λ̄) = 6 and |ν̄/λ̄| = 8.

dνλ,(p) = 25−2−2
[∑
m,k

T (2,m)

(
2

k

)(
6− k

8− 4 +m

)
−

2−1∑
k=0

(
2− 1

k

)(
6− k − 1

8− 4

)]
= 2
[(2

0

)(
6

5

)
+

(
2

1

)(
5

5

)
+ 2

(
2

0

)(
6

6

)
−
(

1

0

)(
5

4

)
−
(

1

1

)(
4

4

)]
= 2[6 + 2 + 2− 5− 1] = 20− 12 = 8

There are 2 tableaux double-counted and 10 things counted that were not tableaux.

Figure 4.3 shows the 8 tableaux actually counted by dνλ,(p), followed by Figure 4.4,

showing the 10 “tableaux” which were counted that shouldn’t have been. The first

tableau in each of the first two rows of Figure 4.3 is counted twice, which is why the

overcounting is 10+2=12, not just 10.

Combining Propositions 4.1.3 and 4.3.1, we arrive at the type B Pieri Rule.
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Figure 4.4: Non-tableaux contributing to overcounting of dνλ,(p).
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Theorem 4.3.2. (Type B Pieri rule) (1) If the southwesternmost component of ν/λ

is a singleton,

dνλ,(p) = 2N−N
′−M
[∑
m,k

T (M,m)

(
N ′

k

)(
C(ν̄/λ̄)− k
|ν̄/λ̄| − p+m

)

−
N ′−1∑
k=0

(
N ′ − 1

k

)(
C(ν̄/λ̄)− k − 1

|ν̄/λ̄| − p

)]

(2) If the southwesternmost component of ν/λ is large,

dνλ,(p) = 2N−N
′
N ′−1∑
k=0

(
N ′ − 1

k

)(
C(ν/λ)− k − 2

|ν/λ| − p

)
.

4.4 A Mathematica session

This short section takes us on a brief but interesting tangent. The techniques

of the book A=B by Petkovšek, Wilf, and Zeilberger [10], allow us to determine

whether hypergeometric sums have simple closed forms. A hypergeometric term f(k)

is a function for which the ratio f(k+1)
f(k)

is a rational function in k. Hypergeometric

terms may have multiple variables, provided the ratios corresponding to all variables

are all rational functions. Expressible as a simple closed form roughly means that a

sum can be written as a definite finite linear combination of hypergeometric terms.

See [10] for the precise definition of “simple closed form.”
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Using A=B packages, we examine the simplest of our Pieri rules:

T (N, p) = 2p−1

N−p∑
k=0

2k
(
p+ k − 2

p− 2

)

If T (N, p) has a simple closed form, then we may be able to express dνλ,(p) in a simple

closed form, as T (N, p) is a specialization of a dνλ,(p) calculation. However, if T (N, p)

is not “Gosper-summable,” meaning that Gosper’s algorithm does not yield a nice

expression, we have no hope for dνλ,(p) in general.

In the example below, t[k,p] is the summand of T (N, p). Note that it is a

hypergeometric term, so asking if it is Gosper-summable is exactly what we want.

The zb.m Mathematica package (available through resources in [10]) will allow us

to ask if a hypergeometric series is Gosper-summable. The command Gosper will

only display an empty set when something is not Gosper-summable.

The other piece of information displayed is a recurrence relation held by

t[k,p]. Below, F is t and ∆k[f(k)] = f(k + 1) − f(k). R is the “key” function

used in the algorithms of A=B, shown here for the sake of those already familiar

with the book.

Example 4.4.1. This is a Mathematica session showing that the Pieri rule given

by T (N, p) is not Gosper-summable.

In[1]:=<<zb.m

In[2]:=t[k,p]:=2∧(p+k-1)Binomial[p+k-2,p-2]

In[3]:=Gosper[t[k,p],{k,0,N-p}]

Out[3]={}
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In[4]:=Zb[t[k,p],k,p,1]

Out[4]={2F[k,p]+F[k,1+p]==∆k[F[k,p]R[k,p]]}

In[5]:=Show[R]

Out[5]= 2k
-1+p
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Chapter 5

Further Results and Conjectures

5.1 K-rectification in the other classical minuscule Lie types

Let us turn our attention to the classical Lie types other than A and B. Let

dνλ,µ(G/P ) be the number of increasing tableaux of shape ν/λ which K-rectify to

Sµ within ΛG/P . We shall see that in types C and D that dνλ,µ(G/P ) is indeed well

defined.

In the minuscule type Cn case, G/P = P2n−1 which gives ΛG/P the shape

described by the partition (12n−1) := (1, . . . , 1) of length 2n − 1. On this very

simple shape, all K-rectification is well defined as there is only one rectification

order possible for any skew shape (0k, 1|ν/λ|). Provided its alphabet is 1, . . . , |µ|, the

single possible tableau K-rectifies to Sµ. Thus dνλ,µ(P2n−1) is 1 when |ν| = |λ| − |µ|

else it is 0.

There are two minuscule type Dn cases. Picking the first simple root to be the

minuscule one makes G/P = Q2n−2, the complex quadric defined by the equation

z2
1 + · · ·+ z2

2n = 0. The poset ΛQ2n−2 is given in Figure 5.1. This poset is known as

dn(1) = ∆n−2,n−2 in [13], but we will return to this later.

Proposition 5.1.1. Let T ∈ INCQ2n−2(ν/λ). Then Krect(T ) is well-defined for

any rectification order.
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Figure 5.1: ΛQ2n−2 as a poset and as shape (1, . . . , 1, 2, 2, 1, . . . , 1) when n = 5.

Proof. Consider possible rectification orders of T , i.e. the set INC(λ). Notice that

if λ contains the unique instance of then there are three tableaux in INC(λ). If

6⊂ λ then there is a unique increasing tableau on λ, so there is only one potential

rectification order. Thus Krect(T ) is well-defined if 6⊂ λ.

Suppose ⊂ λ. It must then be the case that |ν/λ| ≤ n− 2. K-rectification

of T necessarily occupies a vertical strip, thus is S(1|ν/λ|).

Let us count dνλ,µ(Q2n−2). Let Λ = ΛQ2n−2 for this section. Our analysis will

proceed by exhausting all possible cases.

Case 1: |µ| ≥ n, i.e. ⊂ µ. If |µ| = |ν/λ|, there’s a unique sequence of

Krevjdt to get from Sµ to a tableau on ν/λ. This tableau must therefore K-rectify

to Sµ. If |µ| 6= |ν/λ| then there is no hope to get to T ∈ INC(ν/λ) via Krevjdt.

Thus in Case 1, dνλ,µ = 1 if |µ| = |ν/λ| and 0 otherwise.

Case 2: µ is a vertical strip with |µ| ≤ n − 2. Any tableau with an alphabet

of 1, . . . , |µ| will K-rectify to Sµ. If |ν/λ| = |µ| then dνλ,µ = 2 when ⊂ ν/λ or

1 when 6⊂ ν/λ. If |ν/λ| = |µ| + 1 then dνλ,µ is 1 iff ⊂ ν/λ. In any other

situation within Case 2, dνλ,µ = 0.

Case 3: |µ| = n − 1. There are two possible shapes of µ: (1n−2, 2) and the
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vertical strip (1n−1). Each of these has only one possible sequence of Krevjdt to

arrive at any potential ν/λ. That ν/λ must have n− 1 boxes. Any tableau on n− 1

distinctly filled boxes K-rectifies to one of the potential µ.

If ⊂ ν/λ then there are precisely two standard tableaux on ν/λ. These

can not K-rectify to the same tableau, so one must K-rectify to (1n−2, 2) and one to

(1n−1).So dνλ,µ = 1 when ⊂ ν/λ and |ν/λ| = n− 1.

If 6⊂ ν/λ, then ν/λ = Λ/(1n−2, 2) or Λ/(1n−1). Each of these must K-

rectify to one of the potential µ. The only thing to determine is which K-rectifies

to which.

Subcase 1: ν/λ = Λ/(1n−2, 2). Let T be the unique tableau on this shape.

After any sequence of Kjdt, there is an odd entry in the position (1, n−1). If n−1 is

odd then during the Kdjt applications within Krect(T ), the highest numbered box

of T goes to this position and finishes there since the shape is now non-skew. Thus

Krect(T ) = S(1n−1). If n − 1 is even, the highest numbered box ends in position

(2, n− 2) instead, making Krect(T ) = S(1n−1,2).

Subcase 2: ν/λ = Λ/(1n−1). Let U be the unique tableau on this shape. Oppo-

site reasoning from the previous subcase gives us that when n− 1 odd, Krect(U) =

S(1n−2,2). When n− 1 is even, Krect(U) = S(1n−1).

This finishes calculations for all structure constants dνλ,µ(Q2n−2).

The type C minuscule case is trivial, as ΛP2n−1 is a vertical strip. This makes

dνλ,µ(P2n−1) = 1 when |µ| = |ν/λ| and 0 otherwise.
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Figure 5.2: A d-complete poset sample.

5.2 Generalizations in various directions

Proctor [13] defined and examined the class of d-complete posets. These are

posets where a particular jeu de taquin algorithm is well-defined. This allows us

to ask if there is a class of tableaux {Cµ} to which rectification (iterated jdt) is

also well-defined. For all minuscule G/P , ΛG/P is a d-complete poset, and standard

tableaux provide the right targets for rectification [16].

Using techniques like Proctor’s, it would be interesting to know if Kjdt and

Krect are well-defined for all d-complete posets. For this, it would be necessary

to create a new class of tableaux {Cµ}. In this dissertation, we have seen that in

ΛG/P the superstandard tableaux are a good choice. However, it is not even clear

what a superstandard tableau on certain d-complete posets would be. Figure 5.2 is

a special case of one of Proctor’s d-complete classes.

If an analogue of K-rectification does hold on d-complete posets, we might be

able to construct rings where the analogues of dνλ,µ provide structure constants.

Buch [2] showed that the type A K-theoretic structure constants count a wholly

different sort of tableaux. These tableaux have sets as entries in each box, instead

of individual numbers. The lowest degree (cohomological) structure constants spe-
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cialize to the case where all sets are singletons, and cohomology is recovered. In

addition, he defines a procedure of jdt as well.

It remains to be seen whether set valued tableaux can make the jump to other

Lie types. A promising aspect of Buch’s set-valued tableaux is that they give rise to

Grothendieck polynomials which multiply like classes of K(G(k,Cn)). To move to

type B, as well as others, some connection between type B Grothendieck polynomials

and (probably) shifted tableaux would likely first need to exist.

Type B Grothendieck polynomials themselves would be a treasure trove of

combinatorics, but there are some hurdles to overcome before using them. As shown

by Fomin and Kirillov [4], there are multiple “kinds” of type B analogues of Schu-

bert polynomials. Each kind has its benefits, such as integral rather than rational

coefficients, or being well-defined under cleaner divided difference operators. Un-

fortunately, unlike type A, all the desired properties can not be enjoyed by a single

family. Still, using these constructions and the ideas of their work on Grothendieck

polynomials and the Yang-Baxter equation [5], it may be possible to construct useful

type B Grothendieck polynomials.

In yet another direction, it would be interesting to look at equivariant, quan-

tum, or even quantum equivariant K-theory of minuscule G/P . It is an intriguing

question to know how far increasing tableaux algorithms can be pushed to give

meaningful answers to problems of more abstract cohomology theories. Quantum

and equivariant cohomology is well studied, but in the type B case, little work has

been done on the details when moving to K-theory.
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