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Vehicle tracking is an important component of autonomy in the robotics field, 

requiring integration of hardware and software, and the application of advanced 

algorithms. Sensors are often plagued with noise and require filtering. Additionally, no 

single sensor is sufficient for effective tracking. Data from multiple sensors is needed in 

order to perform effective tracking. The Kalman Filter provides a convenient and 



  

efficient solution for filtering and fusing sensor data as well as estimating noise error 

covariances. Consequently, it has been essential in tracking algorithms since its 

introduction in 1960.  

This thesis presents an application of the Kalman filter to tracking of a custom 

four-wheel-drive four-wheel-steering vehicle using a limited sensor suite. Sensor 

selection is discussed, along with the characteristics of the sensor noise as related to 

meeting the requirements of the Kalman filter for guaranteeing optimality. The filter 

requires the development of a dynamical model, which is derived using empirical data 

methods and evaluated. Tracking results are presented and compared to unfiltered data. 
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Chapter 1: Introduction, Purpose and Chapter 

Summary 

1.1. Introduction  

Methods to improve autonomous navigation are quickly becoming a significant 

research topic, attracting students and research companies alike [1].  Between the need to 

perform hazardous or mundane tasks, and the desire to simplify our every-day lives; 

autonomous systems, whether they be augmenting user interaction; or exhibiting 

complete self-reliance, deliver useful application of our ever-more capable computation 

platforms to the hardware systems we design.  

The first step towards building an autonomous system is being able to estimate 

the current state of the system, in our case a robotic platform‘s position.  In this thesis, we 

employ a Kalman filter to perform on-board state estimation, which is equivalent to 

developing a tracking system for our robot.   

Inertial sensors are often used in tracking applications when very high data rates 

are required or when other means for tracking such as GPS are either unavailable or 

impractical. In this research, the robotic platform is generally operating indoors, so access 

to GPS or other global tracking methods is not possible. Even outdoors, where GPS is 

accessible, robot motion is on such a small scale that cost-effective GPS units would be 

useless in tracking.  Most current commercially-available, high-quality GPS receivers are 
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only accurate to about three meters [2], and individually give poor information regarding 

heading unless moving large distances in the same direction.  This precludes their use for 

tracking a highly maneuverable platform such as the four-wheel steering (4WS) robot 

under present study.  

The research presented in this thesis is supported by the University of Maryland 

Autonomous Systems Laboratory (ASL).  Projects in this facility include wireless mesh 

network systems as presented in [3], distributed sensing systems, simultaneous 

localization and mapping (SLAM), and autonomous helicopter and ground systems.  In 

the ASL, numerous hardware, software, and sensor assets have been developed to support 

these various projects, which are leveraged for this research.  Many research topics focus 

on searching buildings or path-optimization or similar, but these rely on at least some 

form of self-positional awareness which this thesis attempts to attain for the vehicle under 

research.  This research is directly applicable to an ongoing study by the ASL in 

distributed SLAM, by affording the study a means of robotic vehicle tracking. 

1.2. Plans, Methods and Approach 

The goal of this thesis is to apply a Kalman filter to track a robotic platform using 

a limited sensor suite.  Since no external absolute sensors such as GPS or fixed reference 

point tracking methods are employed, the current system is not expected to have perfect 

accuracy over long distances.  Nonetheless, using only on-board measurements of wheel 

encoder and inertial sensors, the Kalman filter approach demonstrated herein exhibits 

superior performance in tests compared to model-only and simple sensor-based tracking 
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methods. 

First, the selection and modification of a suitable robot is discussed.  Actuators 

and sensors added to the robot will then be addressed, along with the hardware necessary 

to interface with them and perform high-level algorithms.  A low-level data acquisition 

device for sensor interface developed by ASL will be summarized in the Wheel Speed 

Sensors section, along with the algorithms on-board to decode the sensor data.  

The design process behind implementing the Kalman filter for tracking includes 

sensor characterization, system identification, and incorporation of software tools.  

Kalman filter implementation will be achieved using the MATLAB software package.  

Access to these methods in the primary coding environment is achieved using the 

MATLAB deployment tools, which will be briefly discussed in the MATLAB .NET 

deployment section of this thesis. 

The Kalman filter and other ancillary methods are implemented entirely using an 

off-the-shelf, capable Core 2 Duo computer.  The software architecture used to allow 

embedding of the computer device is discussed along with Software.  Microsoft 

development products are used and the primary coding environment is in C#.  

1.3. Chapter Summary 

Chapter 2 introduces the platform on which the research is being conducted.  A 

list of all components incorporated into the vehicle is given, several pictures of the robot 
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are provided, and the sensors added to the vehicle are characterized.  

The next chapter discusses the theory behind the work, along with the 

implementation itself.  The necessary vehicle dynamics are discussed, along with basic 

methods of odometry.  Having these dynamics and tracking methods in mind, the overall 

character of the robot is uncovered by means of system identification; a mathematical 

description of the behavior of the robot.  This is followed by the main topic of the thesis, 

the Kalman filter.  Background information and relevant equations are described, 

followed by the full implementation of the filter using the model defined.  The argument 

for sensor fusion is posed, followed by the relevant changes necessary to the Kalman 

filter.   

Chapter 4 presents basic evaluation of the results comparing the filters‘ 

performance to simpler methods of tracking. Finally, Chapter 5 introduces ideas for 

future improvement of the work performed, along with concepts for other applications of 

the presented technology.  Methods to integrate a camera to the sensor suite for additional 

feedback are investigated and tested.  
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Chapter 2: Robot Hardware and Sensors 

2.1. Robot overview 

This thesis deals specifically with wheeled robotics, and for the purpose of 

scalability of the algorithms: is decidedly chosen to be a simple four-wheeled car.  The 

wheeled platform itself; rather than being designed from the ground up, was built upon a 

commercially available off-the-shelf remote controlled car; the TXT-1 four-wheel-drive 

(4WD), four-wheel-steering (4WS) rock crawler truck.  The availability of components 

for the RC market lends itself to ease of modification of said platform to suit our specific 

needs.  The car in its original form is shown in Figure 2-1. 

 

Figure 2-1: Tamiya TXT-1 [4] 

Modification is needed in order to support sensors, data gathering devices, 

computing platforms, and control interfaces.  The relevant components are listed in Table 

2-1.  
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Quantity Component 

1 Tamiya TXT-1 Monster Truck 4WD 

1 Set of Custom ASL Platform and Brackets 

1 AOpen Core 2 Duo miniPC (windows XP Pro) 

1 CarNetix CNX-1900 DC-DC Regulator 

1 Novak Goat Crawler ESC 

1 Parallax Servo Controller 

1 ASL Sensor Board V2 

1 Logitech QuickCam Pro 9000 Webcam 

2-4 11.1V 6600mAh Li-Ion Battery Pack 

2 8.4V 4200mAh Battery Pack 

4 US Digital E4P Miniature Optical Encoder Kit 

1 LynxMotion Pan-Tilt Kit [5] 

2 Futaba HS-5645MG digital high torque servo [6] 

1 TRX Systems Inertial Navigation Unit (INU) 

Table 2-1: Robot Components 

To support the devices not normally found on RC cars, some custom machining 

was performed.  An aluminum platform and brackets support the pan-tilt device (which 

holds the camera), the AOpen miniPC Core 2 Duo computer, and the DC-DC power 

converter, which powers everything but the Novak Motor controller and the servo 

actuators.  Other components are present, but not discussed for their irrelevance to this 

research.  CAD drawings of this platform and brackets are shown in the Platform CAD 
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Drawings appendix.  Images of the completed robotic platform are shown in Figure 2-2 

and Figure 2-3. 

 

Figure 2-2: Modified Tamiya TXT-1 robot with all sensors present.  Side view 
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Figure 2-3: Modified Tamiya TXT-1 robot with all sensors present.  Corner view 

The Novak Goat crawler Electronic Speed Control (ESC) and Futaba HS-

5645MG servos impact the behavior of the robot.  The Goat is responsible for driving the 

stock motors, and hence the propulsion of the robot, while the servos control steering, 

front and rear.  Control of these actuators is achieved through serial command of the 

Parallax Servo controller, and their response will be discussed in the System 

Identification portion of this document.  

Sensors used in this thesis include the TRX INU, and the US Digital E4P optical 

encoder.  Use of the Logitech QuickCam webcam is discussed for future application, but 

was not implemented in the present work.  Data gathering of encoder data was performed 

using the custom ASL Sensor Board V2, as discussed with the sensors themselves in the 

Wheel Speed Sensors section.  
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2.2. Sensors and their characteristics 

A sensor is a device that measures a physical quantity and converts it into a 

signal, read by an observer or instrument.  Sensors come in all shapes and sizes, and 

measure countless quantities.  The sensors used in this thesis all measure quantities of 

physical motion (displacement or rotation).  Quadrature wheel encoders are used to detect 

individual wheel speeds, and from these measurements, velocity and relative heading are 

calculated.  A MicroElectroMechanical Systems (MEMs) gyroscope in an Inertial 

Navigation Unit (INU) is used in an attempt to correct the errors arising from wheel slip 

and tire deformation discussed in the Steering Dynamics section to improve the 

measurement of vehicle heading.  Imaging-based algorithms are also briefly discussed in 

the Future Work chapter for their potential application of further improving the estimate 

of vehicle heading, and potentially for vehicle velocity corrections.  

The noise of a sensor is critical in implementing a filter.  To discover the nature of 

the noise, a controlled experiment is executed.  This is achieved by driving the vehicle on 

a straight path at a constant speed and gathering data.  Since the sensors behave in a 

linear manner, deviation from this scenario does not present appreciable changes in the 

noise.  If this were not true, sensor covariance values change over time, mapped by the 

mean of the sensor value.  Noise profiles are created by subtracting the means from the 

data and plotting histograms.  
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2.2.1. Gaussian Distribution 

Data returned from sensors can be thought of as the true parameter value with 

noise superposed upon it.  The sensor noise can be characterized by a probability 

distribution.  It is important to know the nature of this distribution when using a filter for 

the data to ensure all assumptions made in the derivation of the filter are satisfied.  The 

Kalman filter, for instance, provides an optimal recursive estimate of the state of a linear 

system with the assumption that the sensor noise is Gaussian-zero-mean, so it is 

important for the sensors to exhibit this behavior. 

The Gaussian distribution (otherwise known as the Normal Distribution) is a 

continuous probability distribution that often gives a good description of data that clusters 

around the mean.  The central limit theorem also provides that under certain conditions 

the sum of a number of random variables with finite means and variances approach a 

normal distribution as the number of random variables increase [7].  This implies that 

data may start to appear Gaussian after some time even if the noise for a particular 

measurement may not be Gaussian.  The Gaussian distribution is completely 

characterized by its mean and standard deviation (𝜇 and 𝜎, respectively).  The equation 

for the Gaussian distribution is: 

 

𝑓 𝑥 =  
1

 2𝜋𝜎2
∗ 𝑒

−(𝑥−𝜇)2

2𝜎2  
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This is often abbreviated: 

𝑁 𝜇, 𝜎2  

 

Figure 2-4: Gaussian distribution [7] 

When a sensor exhibits a Gaussian profile, Figure 2-4 shows how frequent the 

data may appear in certain regions.  The dark blue region is within one standard deviation 

from the mean.  For a variable with a normal distribution, values will fall in within one 

standard deviations of the mean about 68% of the time, two standard deviations from the 

mean (medium and dark blue) about 95% of the time, and three standard deviations 

(light, medium, and dark blue) from the mean about 99.7%of the time [7].  By plotting a 

histogram of data, one can compare the frequency of data appearing in these regions, and 

hence the similarity of the noise to the Gaussian distribution. 

The family of Gaussian distribution is closed under linear transformation.  That is, 
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if 𝑋𝑖  are independent Gaussian random variables with means 𝜇𝑖  and standard 

deviations 𝜎𝑖
2, then their scaled sum 𝑋 =   𝑎𝑖𝑋𝑖𝑖  is Gaussian with parameters 𝜇 =

 𝑎𝑖𝜇𝑖𝑖 , and 𝜎2 =  𝑎𝑖
2𝜎𝑖

2
𝑖 .  This is an important fact in deriving the constituents of the 

covariance matrices found in the Kalman filtering section. 

As will be seen below, raw measurements of a single sensor are not necessarily 

used directly as input to the Kalman filter.  Scaling of sensor data or multiplying two 

sensors‘ data together results in a different noise profile than the original.  Properties of 

the Gaussian distribution can be used to find the new process covariance in this case.  

2.2.2. Rate Gyro 

Measuring heading is difficult with wheel speed sensors alone, as discussed in the 

Wheel Odometry section.  Yaw rate sensors may then be employed to either improve 

upon this, or replace the measurement entirely; as integrating angular rate yields vehicle 

angle.  To this purpose, an INU is applied for its internal gyro (a device that measure yaw 

rate) sensor.  Information returned from the INU is parsed and yaw information alone is 

used from the INU to serve for heading correction. 

TRX Systems provides an integrated INU package with full 6 degrees of freedom 

(6-DOF) through the use of Analog Devices ADIS16355 [8].  This is a highly functional 

device, capable of resolving 300°/s in rotation and ±10g‘s of acceleration on all axes.  

The TRX INU (shown Figure 2-5: TRX INU) performs sophisticated calibration routines, 

and sends full state information representing the INU‘s rotation and acceleration over 
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USB.  The device returns yaw as a cumulative measure, showing complete yaw relative 

to the device‘s startup angle.  Since the dynamics of the system are generating yaw 

velocity (as will be seen in the System Identification section), the difference is taken of 

this data to effectively use the INU as a single axis gyro.  

 

Figure 2-5: TRX INU 

The noise profile of this yaw sensor exhibits behavior very close to Gaussian-

zero-mean while sitting still.  Additional disturbances are present when in use on the 

robot, and must be included in the total characterization.  For this reason, data is taken in 

the manner described in the opening to this section, to encompass all sources of noise.  

These yaw disturbances are due in part to tire non-uniformity, drive-train friction, and 

longitudinal acceleration through solid axle suspensions causing unequal vehicle roll 

front and rear.  Gyro drift would manifest itself as a mean-shift, but the algorithms in the 

TRX INU effectively remove this.  The data in Figure 2-6 shows a histogram of the gyro 
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data in the case of the vehicle being driven in a straight line for sensor characterization. 

 

Figure 2-6: Histogram of Gyro Data taken from straight line test 

Empirical measurement of the variance using MATLAB shows that: 

𝜎2 = 3.5 ∗ 10−6 

This will be used in the Kalman Filter section as the covariance of the yaw-sensor 

observation. 



 

 
15 

 

2.2.3. Wheel Speed Sensors 

 

Figure 2-7: Optical Encoder Functional Depiction [9] 

 Measurement of individual wheel speed is convenient for the purpose of position 

and velocity feedback of the vehicle.  Tachometer type measurement devices exist for 

accurate velocity measurement, but are often unwieldy and expensive.  Furthermore, 

since we are interested in measuring the total distance covered by each wheel, accurate 

positional feedback is decidedly the best choice, in order to avoid accumulated velocity 

integration errors.  For continuous rotation applications (as is the case with a drive-

wheel), a rotary encoder is really the only option.  Encoders may be magnetic (operating 

on the ―Hall effect‖), capacitive, or optical.  They may be analog or digital.  For small 

applications as is the case with our 4WD robotic platform, digital optical encoders are 

predominantly used.  Digital Optical Encoders have three major elements: a coded wheel, 

which is a pattern of ‗teeth‘, a light source, and a measurement device.  The wheel may 

be reflective such that its pattern either reflects or absorbs the source, or transmissive 

such that the source is either transmitted or occluded.  Figure 2-7 shows a basic optical 
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encoder, with a light source being intermittently occluded by some rotary pattern.  This is 

a transmissive type optical encoder.  Our encoder is very similar in design, only that the 

source and receiver are on the same side of the coded wheel (reflective type).  An image 

of the encoder used for our robot is shown taken apart in Figure 2-8.  The optical emitter 

and detector exist on the PCB shown second from the left, followed by the coded wheel 

second from the right.  The encoder is then shown mounted on the robotic platform in 

Figure 2-9.  Stub-axle components were custom machined in order to support the use of 

this sensor on our robot, as is shown in the Platform CAD Drawings appendix.  

 

Figure 2-8: E4P Optical encoder components 
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Figure 2-9: E4P Encoder shown on robot stub axle 

 The encoder works by emitting light from the source, having that light be 

absorbed or reflected by the particular position of the wheel and then measured by one or 

more detectors.  That information is transformed to a digital code to be analyzed by a 

microcontroller that determines where the wheel is in its rotation, how fast it is moving, 

and which direction it is rotating.  

The design of the coded wheel is very important in determining its operation.  The 

pattern on the wheel determines the resolution of the encoder (how many cycles per 

rotation), the ability to measure direction, and whether it is a relative or absolute encoder.  

Absolute digital type encoders produce a unique digital code for each distinct angle of the 

shaft [10], while relative encoders only show relative motion to the initialized state.  The 
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resolution is an obvious feature; the number of outputs generated per rotation.  The 

ability to measure direction requires a pattern that is either entirely unique for every 

angular position of the wheel (i.e. an absolute encoder) where the direction is obvious, or 

a cleverly designed periodic pattern.  This pattern is common in encoder designs, and 

when it is employed, the device is called a Quadrature Encoder.  Using two code tracks 

with sectors positioned 90° out of phase (Figure 2-10) the two output channels of the 

quadrature encoder indicate both position and direction of rotation.  If A leads B, for 

example, the disk is rotating in a clockwise direction.  If B leads A, then the disk is 

rotating in a counter-clockwise direction.  Therefore, by monitoring both the number of 

pulses and the relative phase of signals A and B, you can track both the position and 

direction of rotation [9]. 

 

Figure 2-10: Quadrature Encoder Pattern [9] 

While with our robotic platform it is possible to determine direction by other 

means (such as a measurement from the image frame), it is markedly more 

straightforward to put this task on the same sensor by selecting the appropriate device.  

The device used in this research is a relative, 1000 counts/revolution, quadrature encoder.  

The nature of the noise of these sensors is congruent with requirements posed 
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below in the Kalman Filter section.  A histogram of the noise is shown below in Figure 

2-11.  Variance of the sensor is calculated to be: 

𝜎2 = 5.3 ∗ 10−7 

 

Figure 2-11: Wheel speed sensor noise 

In order to use these encoders at the level of software the algorithms are written, 

some interface must be used.  Therefore, members of ASL developed a USB data 

acquisition device, capable of interpreting the signals from the encoder and sending each 

individual wheels‘ speed and direction.  This board was designed in Eagle and 

manufactured in-house.  The design and an image of the board are shown in Figure 2-12, 
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Figure 2-13, and Figure 2-14.  Interface to the primary computer is through USB, using a 

message structure of our own definition.  The messaging is done synchronously at 1/15
th

 

of a second, based on its CPU clock, both to maintain real-time measurements and to ease 

the integration of data process at the higher level of abstraction in C# on the primary 

computer. 

The core computing platform of this data acquisition device is the microchip 

DsPIC30F6012A microcontroller.  This is a convenient device for signal acquisition, 

basic algorithms, and communications. 

 

Figure 2-12: Data Acquisition Board Layout 
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Figure 2-13: Data Acquisition Board Schematic 

 

Figure 2-14: Data Acquisition Board 

 The device observes a change of state of the pins from each wheel encoder, and 

decodes the state information returned in channels A and B by the state transition table 

(similar to a truth table) in Table 2-2.  The code required to interpret this information is 

written in C as a lookup table, appending the beginning state to the final state as a hybrid 
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4-bit word.  This interprets a change from one state to another as a clockwise, 

counterclockwise, no change, or error event (as indicated as CW, cCW, NC, Err; 

respectively in the table).  The message sent from the data acquisition device is the sum 

of these events per time step, such that the net effect is total clockwise rotations per time-

step.   

 

 

 

 

 

Table 2-2: Quadrature Encoder State Transition Table [11] 

Previous Current   

(A; B) 0, 0 0, 1 1, 0 1, 1 

0, 0 NC CW cCW Err 

0, 1 cCW NC Err CW 

1, 0 CW Err NC cCW 

1, 1 Err cCW CW NC 
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Chapter 3: Theory and Application 

3.1. Steering Dynamics 

The vehicle has two control inputs: steering (or wheel angle) and motor torque.  

Of the two, the dynamics associated with steering control are more complex.   The test 

vehicle used in this research is a modified remote-controlled Tamiya TXT-1 truck, with 

front and rear axle steering control (four-wheel steer).  To simplify steering behavior and 

control the location about which the vehicle will rotate, the front and rear axles are 

steered equally but in opposite directions.  The following discussion explains the 

importance of this configuration.  

First, consider the most general case of four wheel independent steering, as shown 

in Figure 3-1.  Under low speed conditions (negligible lateral acceleration), the vehicle 

will turn about the intersection point of the four vectors drawn perpendicular to the 

wheels.  The intersection point is termed the instant center of rotation (ICR).  For the 

more common front wheel steering case, the ICR lies along the axis of the rear axle, and 

the turn radius depends on the mean steering angle of the front wheels defined as the 

Ackerman angle, mean = L/R, where L is the wheelbase and R is the turn radius. 

Four wheel steering, used in this research, improves steering capability by 

reducing the turn radius and improving yaw response.  When the rear wheels turn in the 

opposite direction of the front wheels, the ICR is shifted towards the vehicle centerline, 



 

 
24 

 

enabling the vehicle to turn tighter for a given steer angle.   Hence, four-wheel steering 

effectively reduces the necessary Ackerman angle for a desired turn radius. 

Parallel steering was utilized on the current research vehicle to simplify steering 

geometry.   This means the wheels of each axle turn the same amount, producing tire 

scrub (sideslip) during a turn [12].  The case of four-wheel parallel steering is illustrated 

in Figure 3-2.  Scrub results because the two wheel tracks (outside and inside of the turn) 

have distinct ICRs.   The true ICR is between the individual track ICRs. 

During higher speed conditions all four wheels will experience tire slip and the 

wheel velocity vectors will differ from their respective steering vectors.  The ICR will 

now occur at the intersection of the vectors perpendicular to the slip vectors.  Vehicle 

weight properties, suspension and tire spring stiffness, and acceleration levels will cause 

each wheel slip vector to be different, complicating estimation of the ICR for control.    

Given these basic steering principles, four-wheel parallel steering with some 

additional constraints was utilized to simplify ICR estimation for control and improve 

steering performace ( over basic front-wheel steering).  The front and rear wheels were 

constrained to steer with equal angles but in opposite directions front to rear.  

Consequently, at low speeds the ICR always occurs at mid-wheelbase and at the midpoint 

of the two individual track ICRs.   Even at higher speeds with limited slip present, the 

ICR will remain reasonably close to the estimate. 
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Figure 3-1: Instant Center of Rotation (ICR) Concept [13] 
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Figure 3-2: Four wheel Parallel Steer [13] 

Lastly, four-wheel drive vehicles require three differentials due to differences in 

wheel track paths and velocities to minimize slip and reduce powertrain wear, A 

differential is placed between each wheel on an axle and a third placed between the two 

axles.   With equal steering front to rear, the third differential can be eliminated, as is the 

case in the Tamiya TXT-1.  

3.1.1. Wheel Odometry  

Odometry uses the data from the movement of actuators to estimate change in 

position [14].  It is often applied to ground robotics for tracking and mapping purposes, 

as is the challenge of this thesis.  Encoder-based odometry requires some knowledge of 

the vehicle platform.  Specifically, how the motion of each of the wheels relates to 

motion of the vehicle.  As described in the Steering Dynamics section above, it is not a 
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completely straightforward relation with tire circumference as some might think.  The 

tires travel paths of varying lengths and often slip.  With analysis, the varying path 

lengths and some of the causes of slipping can be understood and used to glean even 

more information about the path of the vehicle.  

Tracking of a vehicle on a plane requires its current position, in addition to some 

relative motion.  A motion in X and a motion in Y (Cartesian vector displacement) could 

characterize that relative motion.  The information garnered from our wheel speed 

sensors can be used to generate this.  As discussed above, the paths tracked by the inside 

tires are different from those tracked by the outside tires.  In fact, it is always the case that 

when in a turn, the outside tires will travel further than the inside.  This fact can be used 

to uncover how the vehicle is rotating (turning).  The distance traveled is just the average 

of the inside and outside tires.  In principle, only two tires will be required to generate 

this information (one inside and one outside), but due to the errors induced by slip 

discussed above, all four tires are consulted in order to minimize the magnitude of the 

errors.  

A vehicle having steered tires (when steering is limited to less than 90 degrees) 

cannot move in the X direction independently of its motion in the Y direction.  Vehicles 

such as cars have a plane of symmetry, and are propelled in such a way that the guiding 

forces act along the plane of symmetry, with a very small component of the force used to 

change direction.  It can therefore be assumed that there will always be a point on the 

vehicle such that the velocity of that point is always along the plane of symmetry 
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(tangentially in our case).  That point in our vehicle will be the halfway point between the 

front and rear tires [15].  Such vehicles are called non-holonomic, implying that the 

current position (state) will depend on the path taken to achieve it.  The equations used to 

generate the relative motion in X and Y are given by: 

𝑑𝑋 = 𝑉 ∗ cos Θ  

𝑑𝑌 = 𝑉 ∗ sin Θ 

Where theta is calculated assuming the inside and outside paths are piecewise 

circular.  This results in a simple equation for theta shown below.  At each time-step, 𝑑Θ 

and 𝑉 are calculated by: 

𝑉 = (𝑉𝑓𝑟 + 𝑉𝑓𝑙 + 𝑉𝑏𝑟 + 𝑉𝑏𝑙 )/4 

dΘ = ((𝑉𝑓𝑙  + 𝑉𝑏𝑙 ) − (𝑉𝑓𝑟 + 𝑉𝑏𝑟 ))/(2 ∗ 𝑇) 

Where: 

𝑉 – Velocity of the Vehicle 

𝑉𝑓𝑟  – Velocity of the front right wheel 

𝑉𝑓𝑙  – Velocity of the front left wheel 

𝑉𝑏𝑟 – Velocity of the back right wheel 
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𝑉𝑏𝑙  – Velocity of the back left wheel 

𝑇 – Track-width of the vehicle 

In reality, as discussed in the Steering Dynamics section, the TXT-1 will not be 

able to steer without some slip of the tires and the Instant Center may move further or 

closer to the vehicle along the normal to its axis, changing the result for Θ.  This is one 

source of error for our estimate. 

 

Figure 3-3: Tire deformation [16] 

In addition to tire slip, the tire may also deform with load in the road-normal 

direction as shown in Figure 3-3.  The change in effective diameter has severe 

implications in a single tire‘s ability to return accurate speed information.  Effects on 

vehicle velocity are not as profound as the effects on Θ due to the averaging over all four 

tires.  Θ is inherently more sensitive to this effect.  This does not mean that our estimate 

of the equation for theta is entirely unusable; rather, that knowledge of the effective 

Instant Center is not without error.  It is for these reasons that tracking by wheel 

odometry alone in the case of the vehicle under research is unreliable.  A schema to 
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improve upon this will be discussed in the Kalman Filter Sensor fusion section.  

3.2. System Identification 

Physical systems in the broadest sense are an interconnection of components, 

devices, or subsystems.  A system can be viewed as a process in which input signals are 

transformed by the system or cause the system to respond in some way resulting in other 

signals as outputs [17].  Models are mathematical interpretations of the evolution of the 

state of the system by external inputs, along with the outputs generated by it.  The model 

may depend only in present inputs, but generally may depend on past inputs and outputs 

and even future inputs.  A system that anticipates future inputs is called non-causal.  For 

the purposes of real-time tracking (or any type of real-time filtering for that matter), 

causality is required. 

The system in the context of this thesis is the Tamiya TXT-1 truck robot, having 

as its inputs (u) the steering angle request and motor torque.  The outputs for tracking can 

be phrased in several ways.  The output of the system model could be position expressed 

directly in X and Y coordinates.  This is a perfectly acceptable model. It is non-linear; 

however, and will complicate the estimation problem.  Instead, to mirror and complement 

the information returned from the wheel speed sensors (for the purpose of sensor fusion 

as described in the Kalman Filter section), the outputs (y) were selected to be 𝑑Θ 

(differential change in heading) and 𝑉 (the vehicle velocity).  Tracking information is 

calculated from this data as total heading, it is the cumulative sum of 𝑑Θ.  X and Y are 
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calculated as shown in the Wheel Odometry section.  

The process by which a model is created (or perhaps ―discovered,‖ depending on 

the philosophical view) is called System Identification.  A model may be developed 

purely by theory, as many are; however, not all the parameters of the system may be 

known.  Often errors arise due to inaccuracy in measuring the parameters, or factors 

arising in the physical system that were not anticipated while deriving the model.  

Frequently the structure of the model is known, but the parameters may not be known or 

may be difficult to measure.  

The approach taken herein focuses on the experimental discovery of the model by 

recording inputs and outputs and fitting a model to them.  When it is possible and 

convenient to write down a differential or difference equation to model the system, but 

difficult to discover parameters, a model based on the differential or difference equation 

may be used as a starting point for experimental model discovery.  Such Models are 

called grey-box models.  In the case where such an equation is not used as a starting point 

and the model is created by data alone, the model is called a black-box model.  Figure 

3-4: depicts such a black box model, where inputs are transformed to outputs by some 

unknown structure.  
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Figure 3-4: Black Box Model 

The Matlab software package provides tools for the identification of systems (the 

process portion of Figure 3-4).  The tool used in this thesis is the Identification Toolbox.  

This toolbox contains methods for normalizing and filtering input and output data, along 

with the estimation tools for constructing models as well as means to evaluate the models 

created.  The process of system identification requires that you: 

1) Measure the input and output signals from your system in time or frequency 

domain 

2) Select a model structure 

3) Apply an estimation method to estimate the values for the adjustable 

parameters allowed by the candidate model structure 

4) Evaluate the estimated model to see if the model is adequate in describing the 

dynamics of the system sufficiently 

[18] 

This process may be (and in all probability will be) executed numerous times, 

where steps 1, 3 and 4 may be repeated with different data in order to improve the model.  

Considering this model will be implemented on a digital computer gathering data in a 

 Control (u)  Output (y) 
Process 

 



 

 
33 

 

time-quantized manner, the nature of the model will be that of a discrete time dynamic 

model.  

Choice of the input data is of paramount importance; clearly, if the steering was 

left at zero and the vehicle was driven in a straight line at a constant speed, the model 

would be useless in determining any dynamic behavior such as turning and accelerating.  

For this reason, input-output data was generated by driving the vehicle in such a way as 

to capture sufficient dynamic behavior to develop an appropriate model.  Output data (y) 

is both the wheel encoder and gyro data.  Ideally, measurement of absolute truth should 

be performed using some external reference, since the noise present in sensor data can 

further complicate the system identification.  Since no practical means of performing this 

are available, the gyro is used as a ground truth sensor for 𝑑Θ for the purposes of model 

identification.  The encoder-returned 𝑉 is used as ground-truth for velocity.  

Sinusoidal inputs sweeping frequency and magnitude are generally adequate in 

sufficiently exciting the vehicle dynamics.  Roughly sinusoidal inputs are generated 

manually utilizing the XBOX controller, supplying both independent excitation to motor 

and steering, and coupled excitation (accelerating and decelerating while turning).  

Justifying this process is the success of the model in accurately representing outputs 

generated by inputs different from those supplied in the process of System Identification 

(generally a-periodic).  This evaluation process is discussed in more detail in the 

Evaluating Models section.  
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3.2.1. Selecting a Model Structure 

The Matlab identification toolbox provides tools for estimating models of 

numerous types.  These include: 

1) Linear Parametric Models 

2) Process Models 

3) Nonlinear Models 

4) Spectral Models 

5) Correlation Models 

The process of selecting a model structure and order may be very simple if the 

model structure is already known as in the case of grey-box modeling.  In the case of 

black-box modeling; however, it is not so clear.  The optimal model is the simplest one 

that is able to recreate your outputs adequately.  Having some knowledge about the 

system may assist in selecting this.  

When an input is sent to the platform ([Motor Value, Steering Value]), the system 

evolves by altering its velocity and relative change in heading ([𝑉, 𝑑Θ]).  The change in 

velocity is created by the motor value requesting a torque of the TXT-1 motor and the 

motor responding by accelerating the platform.  In a simple motor model, integration is 

needed to capture the resulting velocity as a function of the motor input, so it is clear that 

past information will be required.  Steering is usually found by direct measurement of the 

steering position.  Our Tamiya TXT-1 platform utilizes hobby servos for steering, which 
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do not report such information.  We send a request to the servo to move to a position, and 

since these servos do not report their current position in time; some integration must be 

performed for steering as well since the servo takes some time to respond.  Because of 

these facts, a history of the inputs will be required.  In addition, due to the steering 

responding differently at different speeds and vertical loads, a history of outputs will 

likely be required for the change in heading.  These facts, along with the linear 

mathematical structure of the Kalman Filter lead us to choose a Linear Parametric Model 

for evaluation since we may control the depth of memory for both the inputs and outputs.  

The depth of memory will depend purely on evaluation; that which produces the best 

model with the least order is the best solution. 

The Identification Toolbox provides several structures within the Linear 

Parametric Models type.  ARMAX and Box-Jenkins models attempt to explicitly model 

the noise [18].  Since the implementation of our model is in the context of the Kalman 

filter, where the noise is assumed Gaussian, there is no interest in introducing the added 

complexity of either of these models.  Output Error (OE) models only support single 

output systems, so it is also precluded from use because we are modeling Velocity and 

change in relative heading (two outputs).  This leaves State Space and ARX 

(autoregressive).  Autoregressive models can be transformed into a state space model as 

will be investigated in the implementation of the Kalman Filter, so for exercising more 

control over the choice of state variables, it is decided to work with ARX models for the 

present development.  
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The form of the ARX model for MIMO systems is as follows: 

𝐴0𝑦𝑘 +  𝐴1𝑦𝑘−1 + ⋯ +  𝐴𝑛𝑦𝑘−𝑛 =  𝐵0𝑢𝑘 +  𝐵1𝑢𝑘−1 +  … + 𝐵𝑚𝑢𝑘−𝑚 +  𝑒(𝑡)  

Equation 3-1 

Where 𝐴𝑖  represent square matrices with order equal to the number of outputs and 𝐵𝑖  

represent matrices of order  𝑗 ∗ 𝑘.  In the case of the tracking problem presented 𝑗 = 𝑘 =

2 (two inputs and two outputs, respectively).  The parameter 𝐴0 is the identity matrix by 

convention for the purpose of implementation.  

3.2.2. Making a MIMO ARX Model 

The toolbox can be used at the MATLAB command prompt, or run using the GUI 

provided.  Evaluation tools within the GUI allow rapid development and comparison of 

models, so it is used exclusively, rather than employing the command line interface. 

To open the toolbox, enter: 

>>ident 

at the Matlab command prompt.  This will open the GUI shown in Figure 3-5.  
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Figure 3-5: Identification Toolbox Startup 

Assuming the input and output data from the given experiment are available in the 

MATLAB workspace, importing them into the toolbox is very straightforward.  This is 

done by clicking the Import Data drop-down menu and selecting Time domain Data.  

The input and output data relevant to this discussion is a MIMO system arranged as 

follows: 

Inputs: 

𝑢 =  𝑀𝑜𝑡𝑜𝑟; 𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔  

Outputs: 

𝑦 = [𝑉;  𝑑Θ] 
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as introduced in the Robot overview section. 

Once this data is entered into the Import Data GUI, it is available in one of the left 

frames as the name given in the data import GUI.  This data is shown in bold if it is 

currently selected.  To view the data in a time-plot, check the time-plot checkbox at the 

bottom left of the System Identification Tool GUI.  If this is the first data entered into the 

toolbox, it will appear in the Working Data and Validation Data panes in the middle, and 

bottom of the GUI, respectively.  

The data shown in the Working Data pane is that which will be used to perform 

the system identification.  Changing the selected data set requires dragging the desired 

data set onto this pane.  Click the Estimate drop down menu and select Linear Parametric 

Models (see Figure 3-6). 
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Figure 3-6: Linear Parametric Models Window 

Here the order of the model can be chosen either directly in the Orders text field, 

or within the order editor.  The order shown is [2 2 1], representing the history of 

inputs, outputs, and the delay in input-output response, respectively.  The first number 

corresponds to 𝑛 in Equation 3-1.  The second plus the third number is 𝑚 in the same 

equation.  The last number (the delay) is the number of timesteps of the input ignored for 

generating the current output.  For example, if the system took three time steps to respond 

to an input (delay = 2) and 𝑚 was five, 𝐵0 through 𝐵2 would be zero, and 𝐵3 through 𝐵5 

would be non-zero model parameters.  In general, the orders may be specifically defined 

per input and output channel by defining matrices other than the matrix of ones as shown 

in the Orders field.  In this thesis, uniform depth over inputs and outputs is used.  
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For single output systems, a convenient method exists for evaluating multiple 

orders to discover a suitable order for the system.  By entering an order parameter as a 

vector such as [𝑝: 𝑞] and clicking Estimate, the toolbox brings up the Figure 3-7: ARX 

Model Structure Selection Window, showing unexplained output variance for models 

beginning with order parameter 𝑝 and ending with 𝑞.  This window can assist in selecting 

model order.  For multiple output systems, it is useful to apply this test to each output 

individually in order to gain some insight in discovering the complete model order.  If the 

system is treated as a single output system for each of its outputs and this test shows 

similar results for each, then the model order for the MIMO system is likely similar.  

Once the evaluation has been performed and a model has been deemed 

unsatisfactory by the methods shown below, a model may be improved or discarded and 

re-attempted.  If the order of the model is not deemed the cause of the error, more data 

should be used to improve the model.  This is done by performing another iteration of 

model estimation by selecting by an initial model in the model structure drop down menu 

in the Linear Parametric Models Window. 
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Figure 3-7: ARX Model Structure Selection Window 

 At this point, MIMO model estimation (system identification) is ready to be 

performed more explicitly using an appropriate model order.  Clicking Estimate in the 

Figure 3-6: Linear Parametric Models Window will create a model shown as an image on 

the right side of the Figure 3-5: Identification Toolbox Startup window.  Checking the 

boxes below the model will display the model outputs, residuals (errors with auto and 

cross-correlation views), model transient response, and others.  Model outputs and model 
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residuals are used in evaluating the model‘s performance below. 

3.2.3. Evaluating Models 

Multiple models of the system were developed in this research, and three are 

presented below to assist in understanding the process.  It is important to evaluate a 

model with different data than was used to generate it.  Once preliminary model 

estimation has been performed, another data set should be used to evaluate the model.  

This can be done by dragging and dropping a different data set onto the Validation data 

pane in the Identification Toolbox Startup menu.  

Two windows are critical to judging a model‘s performance: the model output, 

and model resids (residuals).  Checking the Model Output box brings up the window 

shown in Figure 3-8 (shown with a few of the models created for evaluation in this 

thesis).   



 

 
43 

 

 

Figure 3-8: Model Output Window showing the model output for 𝒅𝚯 from three models.  

The model output window shows the fit percentage to the right for each model selected.  

The models are named to reflect their order as discussed above.  Performance for this 

data is relatively straightforward to judge.  Clearly, the red model (arx221) fits the 

ground-truth sensor for 𝑑Θ (from the gyro) the best, while not modeling the noise, yet 

another model with the same order (arx221Try2) overshoots the data.  A model‘s 

performance may improve or worsen with the addition of data to the estimation process. 

Generally, improvement comes by using data that exhibits additional excitation of the 

dynamics. 

 The second window relevant to judging performance is the Model output 

residuals window.  If the model accurately represents the dynamics system, the error will 
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not be correlated with the inputs.  Noise will inevitably be present, but true noise in the 

output will not be highly correlated with ordered input data.  Said in another way, if the 

system did nothing, and absolutely no output was generated (clearly the extreme case of 

poorly modeling the dynamics), the error would be the output of the system itself which 

should be highly correlated with the input data.  These facts imply the cross correlation 

for input and output residuals should be minimal for a model to be accurate. 

 

Figure 3-9: Model output residuals for channel 𝒅𝚯 

The fit percentage is clearly the best for the red model (ARX221), as it reasonably 

captures the character of the ground truth sensor.  This process has only been discussed 

for one output: 𝑑Θ.  Examining the same information for the other channel (𝑉), together 

with the discussion above yields a decision for the best model.  Images of the residuals 
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and model output for V are shown in Figure 3-10, and Figure 3-11. 

 

Figure 3-10: Model output for channel 𝑽 
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Figure 3-11: Model output residuals for channel 𝑽. 

 This is the result of system identification after performing multiple iterations on 

numerous data sets.  These results show that the models performance is better at 

modeling the behavior for 𝑑Θ than for 𝑉.  Considering the discussion in the Wheel 

Odometry section regarding the expected accuracy of the measurements, this is 

acceptable, as the wheel encoders return much better quality data for 𝑉 than for 𝑑Θ.  

Further discussion regarding this point will be had in the Kalman Filter chapter.  

 The model producing the best results with the lowest order was ARX221.  

Parameters for the model are shown here: 

𝐴1 =  
−1.5391 . 0062

. 4391 −.7789
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𝐴2 =
. 5869 −.0053
−.4258 . 0032

 

𝐵0 =
0 0
0 0

 

𝐵1 =
−.0090 . 0001
. 0030 −.0047

 

𝐵2 =
−.0002 −.0001
−.0057 −.0142

 

3.3. Kalman Filter 

A mathematical model of a physical system is never perfect in capturing every 

nuance of its character.  A linear system can theoretically be modeled using only 

knowledge of inputs and outputs; however, real systems are rarely truly linear, and often 

have many un-modeled nonlinearities.  These nonlinearities can be slip and deformation 

of the tires, and can be affected by un-modeled inputs or disturbances.  Due to these 

nonlinearities, depending purely on the inputs of a system to determine its behavior is 

rarely a good practice.  Even when the model is presumed to be perfect, the system may 

be buffeted by some noise in the process or the measurements not covered in the model.  

The Kalman filter solves this problem, in the sense that it allows for inaccuracies of the 

model as long as the sensor data is of sufficient quality to correct it. 

The Kalman Filter is a state Estimator, meaning, it estimates the true state of a system 

based on measurements and inputs.  The filter produces estimates of the true parameter 
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values based on measurements and their associated calculated values by predicting a 

value by employing a model, estimating the uncertainty of the predicted value, and 

computing a weighted average of the predicted value and the measured value [19].  A 

diagram of the Kalman filter (KF) application is shown in Figure 3-12.  The inputs to the 

filter are the observations from sensor data, along with the control inputs to the process.  

Internal to the filter is the vehicle model.  

Figure 3-12: Process-Estimator 

3.3.1. Background and Governing Equations 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the actual state of a process, in a way that 

minimizes the mean of the squared error.  The necessity of the filter to estimate the actual 

state is often dictated by the inability to measure the state directly with some degree of 

accuracy.  The filter is very powerful in several aspects: it supports estimations of past, 

 

Process Control (u)  Observations Estimator 

(KF) 

State Estimate (ŷ) 

Model 
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present, and even future states, and it can do so even when the precise nature of the 

modeled system is unknown [20].  It does require some knowledge of the statistical 

nature of the data in the system.  

In principle, the Kalman filter may have applications both to discrete-time 

systems as well as continuous-time systems (where such a filter is named the ―Kalman-

Bucy Filter [19]), but the continuous domain is not to be discussed herein.  Our system is 

treated in discrete-time due to the nature of the digital computing methods used, and the 

arrival of sensor data in a time-quantized manner.  

The purpose of the Kalman filter is to estimate the state 𝑥 ∈ ℝn
 of a discrete-time 

process that is perturbed by some noise.  The nature of that noise is crucial in the 

definition of the filter, and in its performance.  All sensor and process noise is presumed 

to be zero-mean-Gaussian  𝑁(0, 𝜎).  The system being filtered has inherent system 

properties described by a model.  The evolution of the state is governed by the following 

discrete time stochastic difference equation: 

𝑥𝑘 = Ak  𝑥𝑘−1 +  𝐵𝑘  𝑢𝑘−1 + 𝑤𝑘−1 

Sensor data is used to correct this state, but measurement of this process may not 

necessarily be performed in the same space as the state itself.  It is also assumed to have 

had some noise introduced in the form of sensor noise.  We define the measurement or 

otherwise called the observation of 𝑧𝑘 ∈  ℝ𝑛  as: 
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𝑧𝑘 = 𝐻𝑘  𝑥𝑘 +  𝑣𝑘  

Where: 

𝑥𝑘  – State vector at time-step k. Dimension (𝑛 × 1) 

𝑢𝑘  – Control input vector at time-step k. Dimension 𝑚  

𝑧𝑘— Measurement.  Dimension (𝑝 × 1)  

𝐴𝑘  – Discrete time transition matrix that relates 𝑥𝑘−1 to 𝑥𝑘  .  Dimension (𝑛 ×  𝑛)  

𝐵𝑘  – Control input to state vector matrix.  Dimension (𝑛 ×  𝑚)  

𝐻𝑘—Relates the measurement 𝑧 to the state 𝑥.  Dimension (𝑝 ×  𝑛)  

𝑤𝑘— Process Gaussian White Noise (GWN).  Probability distribution is Normal: 

𝑃 𝑤𝑘 ~ 𝑁(0, 𝑄 𝑘 ) 

𝑣𝑘— Measurement GWN.  𝑃 𝑣 ~ 𝑁 0, 𝑅 𝑘   

𝑄 𝑘  – Process Noise Covariance (PNC) matrix.  Varying with time-step in principle 

𝑅(𝑘)— Measurement Noise Covariance (MNC) matrix.  Similar to PNC  
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Figure 3-13: The ongoing Kalman filter cycle [20] 

For the purpose of implementation, a ―predictor-corrector‖ form is employed, 

where the Kalman filter is divided into two distinct stages: the Prediction stage and the 

Update stage (as shown in Figure 3-13).  The time update projects the current state 

estimate in time.  The measurement update adjusts the projected update by an actual 

measurement at that time [20].  The prediction stage is where the dynamics of the system 

come into play, by predicting what the system should be seeing.  This is followed by 

updating the process with sensor data (when it is available).  The ability of these two 

stages to be partitioned forms an important implication.  If sensor data is not available for 

a stretch of time, or if two or more sensors are operating at different frequencies, the filter 

may continue to operate, giving an estimate of the true state.  

The prediction stage consists of the dynamics themselves, along with the 

incorporation of another matrix that represents the degree to which the state can be 

trusted.  Every time the system predicts what the state should be, it also predicts how 

accurate the state estimation is.  On a prediction, the state covariance matrix increases, 
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while every time a sensor updates the state, it is reduced.   

The filtering equations themselves are presented below with annotation as to their 

significance: 

Prediction Stage: 

Predicted State   𝑥 𝑘|𝑘−1 = 𝐹𝑘𝑥 𝑘−1|𝑘−1 + 𝐵𝑘𝑈𝑘  

Predicted estimate covariance  𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘  

Update Stage 

Innovation (error)   𝑦 𝑘 = 𝑧𝑘 − 𝐻𝑘𝑥 𝑘|𝑘−1 

Innovation Covariance  𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘  

Kalman Gain (weighting factor) 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1
 

Updated state estimate  𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘𝑦 𝑘  

Updated estimate covariance  𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 

[19] 

While the derivations themselves will not be presented in this thesis, the implementation 

of these equations is very straightforward in MATLAB.  
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Certain initializations are required for the state vector and matrices defined above.  

If the filter began operating with the wrong assumptions, many time-steps may occur 

before the filter starts reflecting what the internal state truly is, due to the internal 

dynamics.  Since the tracking example presented assumes the system is initialized while 

the vehicle is standing still, the state vector is initialized to zero.  

In the application of the Kalman filter to odometry, using just one sensor such as 

the wheel speeds, the observation matrix is as follows:  

𝐻𝑘 =
1 0 0 0
0 1 0 0

 

This means that we are observing the current 𝑑Θ and 𝑉 since the state vector is: 

𝑋𝑘 =

𝑉𝑘

𝑑Θ𝑘

𝑉𝑘−1

𝑑Θ𝑘−1

 

The innovation portion of the filter is: 

𝑦 𝑘 = 𝑧𝑘 − 𝐻𝑘𝑥 𝑘|𝑘−1 

This is written more explicitly as: 

𝑦 𝑘 =
𝑉𝑘𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑑Θ𝑘𝑂𝑏𝑠𝑒𝑟 𝑣𝑒𝑑

−
𝑉𝑘

𝑑Θ𝑘
 

The measurement covariance matrix (MNC) is generated by a-priori 
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measurements of statistical information based on sensor characteristics.  Variance of the 

sensor data was defined in the Sensors and their characteristics section.  The wheel speed 

sensor data then underwent some functional transformation as defined in the Wheel 

Odometry section.  Deriving the observation variances according to the properties of the 

Gaussian distribution: 

𝑉𝑘𝑣𝑎𝑟
=

1

4
𝜎2

𝑤𝑕𝑒𝑒𝑙  

𝑑Θ𝑘𝑣𝑎𝑟
=

1

𝑇2
𝜎2

𝑤𝑕𝑒𝑒𝑙  

The MNC is defined as  

𝑅𝑘 =
𝑉𝑘𝑣𝑎𝑟

0

0 𝑑Θ𝑘𝑣𝑎𝑟

 

The PNC matrix is defined somewhat by experimental tuning.  By trusting the 

internal process more, the model is used more in determining the output of the filter.  The 

matrix that seems to give the best results for tracking is: 

𝑄𝑘 =

10−4 0 0 0
0 10−6 0 0
0
0

0
0

10−2 0
0 10−7

 

3.3.2. Incorporating the dynamical model into the filter 

The equations formulated above utilize vectors for state variables (both for the 
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state vector 𝑋𝑘  and input vector 𝑈𝑘), and matrices to implement the model.  The ability of 

MATLAB to work so seamlessly with matrices and vectors lends itself to the application 

of the Kalman filter.  In addition, the tools present in MATLAB for the process of system 

identification allow effortless incorporation of the model into the code written for the 

Kalman filter.  For these reasons, MATLAB is used to implement the filter, and will be 

integrated into the algorithms written in C# on the host computer.  

As stated in the System Identification section, the ARX model can be transformed 

to the classical state space implementation: 

𝑥𝑘+1 = 𝐹𝑘𝑋𝑘 +  𝐵𝑘𝑈𝑘  

By careful choice of states based on the model order, we can use this model. This 

transformation requires first, rearranging the equation as shown: 

𝐴0𝑦𝑘  =  𝐵0𝑢𝑘 + 𝐵1𝑢𝑘−1 +  … + 𝐵𝑚𝑢𝑘−𝑚 − (𝐴1𝑦𝑘−1 + ⋯ +  𝐴𝑛𝑦𝑘−𝑛) +  𝑒(𝑡)  

This transformation is followed by constructing a state vector and input vector with the 

dimensions satisfying the orders shown above.  This state vector must not only 

dimensionally make sense, but also contain the necessary history of outputs to the 

order  𝑛.  The input vector 𝑢 is defined similarly but to satisfy order 𝑚, of course.  

𝑋𝑘
𝑛𝑥1 =  

𝑦𝑘−1

𝑦𝑘−2

⋮
𝑦𝑘−𝑛
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𝑈𝑘
𝑚𝑥 1 =

𝑢𝑘

𝑢𝑘−1

⋮
𝑢𝑘−𝑚

 

The order of the model is defined in terms of 𝑛 and 𝑚 shown in the equation 

above.  These represent the depth of history of inputs and generated outputs required to 

satisfy the model‘s design.  

Finally, 𝐹𝑘  and 𝐵𝑘  must be appropriately constructed to include all 𝐴𝑖 ′𝑠 and 𝐵𝑖 ′𝑠 

defined in the model. 

𝐹𝑘
𝑛𝑥𝑛 =

−𝐴1  −𝐴2 ⋯ −𝐴𝑛

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

0
⋮
0

 

 

𝐵𝑘
𝑛𝑥𝑚 =

𝐵1 ⋯ 𝐵𝑚

0
⋮
0

⋯

⋯

0
⋮
0

 

The matrix 𝐹𝑘  ensures that at every iteration, the current output will be moved one 

time-step into the past.  Likewise, every previous output will be shifted back one time-

step by the appearance of the shifted identity matrix.  𝐵𝑘  is used to incorporate the input 

to the system, and appends zeros below the first line to remain consistent with the number 

of states introduced to the system.  Clearly, since the input does not affect previous states, 
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this dimensionally makes sense.  

3.3.3. Sensor fusion 

Often a single sensor is capable of resolving every detail of interest in a 

dynamical system, but not always.  Sensors often suffer from noise, and it is common for 

one sensor to have less noise in certain regions of use than another.  Additionally, some 

sensors are more capable of resolving certain regions or aspects of the dynamics of the 

system as in the case of GPS-Inertial Navigation (INU) integration.  Table 3-1illustrates 

the advantages of the two sensors in different regions of use. 

 Advantages Disadvantages 

INU a. High Data rate 

b. Provides both 

translational and 

rotational data 

1) Unbounded errors 

2) Knowledge of gravity 

is required 

GPS Errors are bounded 1) Low data rate 

2) No attitude 

information 

 

Table 3-1: Comparison of INU and Satellite sensor features [21] 

This is cause for the field of Sensor Fusion.  This may be as simple as ignoring 
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one sensor when it is in its mode of poorest operation and instead, trusting another.  

There are more advanced techniques.  Should the covariance of one sensor increase, 

while another sensor‘s covariance decreases, this would be a reason to weight the sensor 

with the lowest covariance more.  The Kalman filter provides a convenient methodology 

for doing so, by means of the innovation portion of the update stage of the filter.  Very 

few modifications are needed to perform sensor fusion with the Kalman filter.  Only the 

matrices 𝐻𝑘  and 𝑅𝑘 , along with the vector of observations 𝑧𝑘  must be changed.  

The nature of integration between two sensors is spoken of in terms of coupling.  

There are uncoupled, loosely coupled, tightly coupled, and deep integration.  The details 

of these are beyond the scope of this discussion, but the integration of the system 

presented is that of a loosely coupled integration. 

Though the filter is operating on additional sensor data, the structure of the 

process remains the same.  Figure 3-12: Process-Estimator still represents the filter‘s use, 

only the number of observations made changes (along with some internal filter matrices 

as discussed below).  

The matrix 𝐻𝑘  was originally chosen to transform the state into the space in which 

the observations were made.  When more than one observation is made for the same state 

vector element, 𝐻𝑘  accommodates by simply providing that same vector element to the 

innovation stage of the filter [22].  Given that the observation is: 
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𝑧𝑘 =
𝑤𝑠_𝑉
𝑤𝑠_𝑑Θ

𝑔𝑦𝑟𝑜_𝑑Θ
 

The new 𝐻𝑘  becomes: 

𝐻𝑘 =
1 0 0 0
0 1 0 0
0 1 0 0

 

Making the innovation equation: 

𝑦 𝑘 =

𝑤𝑠_𝑉𝑘𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑤𝑠_𝑑Θ𝑘𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑔𝑦𝑟𝑜_𝑑Θ𝑘𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

−

𝑉𝑘

𝑑Θ𝑘

𝑑Θ𝑘

 

The new observation covariance matrix increases dimensions and incorporates the 

variance seen by the added sensor.  

𝑅𝑘 =
𝑤𝑠_𝑉_𝐶𝑜𝑣 0 0

0 𝑤𝑠_𝑑Θ_𝐶𝑜𝑣 0
0 0 𝑔𝑦𝑟𝑜_𝑑Θ_𝐶𝑜𝑣

 

3.4. Software  

3.4.1. ASL Framework 

The need to integrate the data from many different types of sensors is good cause 

for writing as high a level code as possible.  It is for this reason that the .NET 

environment is chosen as the primary coding environment.  Additionally, the varied plug-
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ins available for .NET further justifies its use.  

The ASL Software Framework provides a hierarchical structure for application 

development.  Every application that utilizes the ASL Framework consists of one or more 

algorithms as well as a platform.  The platform specification consists of all sensor, 

actuator, and communication devices currently deployed on the testing platform.  This 

specification could include one or more webcams, a servo controller, and/or the peer-to-

peer communication network manager.  Algorithms, on the other hand, consist of 

multiple interconnected processing components defined as functional units [3].  A 

functional unit is used to implement the Kalman filter itself by calling the relevant 

MATLAB subroutines, while other functional units handle the data gathering and 

graphical mapping routines.  The diagram in Figure 3-14 shows the overall structure of 

the ASL Framework. 

  

Figure 3-14: ASL Software Framework Hierarchy [3] 

The framework is designed such that the algorithms written may be somewhat 

platform agnostic, but in this case knowledge of the platform model as well as those of 
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the sensors is needed in the Kalman filter; however, the same procedure for system 

identification could be used on another vehicle and applied identically to the process 

discussed herein.  

3.4.2. MATLAB .NET deployment 

The Kalman filter discussed is very straightforward to implement in MATLAB, 

but not nearly so in C#.  Fortunately, MATLAB provides the means for C# to call 

functions written natively in MATLAB directly.  This is achieved through .NET 

deployment through the MATLAB Builder NE package.  

MATLAB Builder NE creates MATLAB based .NET components for royalty-free 

deployment on desktop machines or Web servers.  As a result, you can integrate your 

MATLAB applications into your organization‘s .NET programs.  The builder creates the 

components by encrypting MATLAB functions and generating a .NET wrapper around 

them [23].  The process behind creating the .NET .dll is entirely GUI-based in the 

MATLAB and very straightforward.  Once the functions are written in MATLAB, the 

Builder NE is opened either by clicking the MATLAB start menu and selecting 

MATLAB  MATLAB Builder NE  deployment tool, or typing  

>>deploytool 

at the MATLAB command line.  From this point, all that is needed is to include the 

function files in the build, create a name for the class, and select BUILD.  The ASL 

Framework uses the .dll created from this process and allows function calls in MATLAB 
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that are defined as below: 

function [Y, Xnew, Pnew] = KalmanFilter(Zk, Xold, Pold, Xcov, Zcov, 

bigA, bigB, bigH, inputs) 

 

to be accessed in C# in the manner shown below: 

double[] outputs = myKalmanFilter.KalmanFilter(Zk, inputs); 

Here Xnew and Pnew are returned internally to the class myKalmanFilter along with the 

necessary covariance matrices.  These matrices may be modified at any time by another 

method within the myKalmanFilter class. The outputs returned here are simply 𝑉 

and 𝑑Θ. 



 

 
63 

 

Chapter 4: Tracking Results 

The output of the Kalman filter is an estimate of the robots velocity 𝑉, and rate of 

change of heading, 𝑑Θ.  In order to produce a map of the path of the robot, integration is 

performed and the equations in the Wheel Odometry section are employed.  In addition to 

mapping the output from the Kalman filter, for comparison, the behaviors predicted by 

the model alone (using purely inputs to generate 𝑉 and 𝑑Θ), as well as encoder-only 

odometry alone are computed.  Once the integration is performed for each of these, a 

vector of X‘s and Y‘s are held in the form of a list in C# where they will be plotted.  

Examining the performance of the Kalman filter is done by comparing the plotted 

track generated using the filter, to the path generated by the two simpler methods.  In 

each experiment, the starting and final position of the vehicle should be identical.  The 

following plots shown all contain four markers.  The light green marker is the starting 

point of the robot, while the blue, red, and dark green markers show the final position as 

predicted by the Kalman filter, the model by itself, and the wheel speed sensors by 

themselves, respectively.  These plots were generated by driving the vehicle in varying 

manners followed by returning to the original position.  From this data, a total cumulative 

displacement error can be easily seen.  

Figure 4-1 shows these paths when the robot is driven very gently, assuring that 

the limits of the dynamics of the system as reported in the system identification section 

are obeyed.  It is clear from the plot that the model by itself is very capable of tracking 
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the robot in certain circumstances.  Mapping purely by the wheel speed sensors it is 

clearly shown to be problematic.  Significant steering errors can be seen in the gross 

misestimate of vehicle heading, resulting in a final position error of ~1.4m out of 30 

meters versus less than .2m for both the Kalman Filter and the model based estimate. 

The following figure, Figure 4-2 shows a case where the robot was driven in a 

more haphazard manner.  This excites more of the dynamics of the vehicle, as well as 

likely inducing tire-slip.  This is a clear cause for the application of the Kalman filter as 

presented.  The Kalman filtered and sensor fused result has a total error on the order of .1 

meter, while purely model-based tracking is close to 2.5 meters and pure wheel speed 

odometry is closer to 5 meters over a course of ~36 meters.  

The final image, Figure 4-3, shows the estimated path of the robot for a highly 

disorganized path of travel.  In addition to multiple high-speed steering changes, the 

vehicle makes three complete circles on the return trip. 

It is important to note the consistency of the performance.  In all three plots, the 

robot drives different distances, performs varying maneuvers, and yet the Kalman filter 

still manages to estimate the return position with consistent accuracy.  This is not a 

perfect result, as clearly there is still error in the estimated path.  There are indelible 

causes for error that a dead-reckoning solution will not be able to fix.  Further 

improvements to the methods posed are discussed in Future Work. 
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Figure 4-1: Smooth Plotted path with indicated start and stop points.  Units in meters 

 

Figure 4-2: Wiggly Plotted path with indicated start and stop points.  Units in meters 
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Figure 4-3: Wiggle and turnaround plotted path with indicated start and stop points.  Units 

in meters 
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Chapter 5: Future Work  

Towards the goal of autonomous navigation, this thesis demonstrated the ability 

to significantly improve tracking (state estimation) performance over raw sensor 

measurements using a Kalman Filter.  A logical next step is to implement a closed loop 

control that allows the robot to move towards a set of given waypoints completely 

autonomously in a GPS denied environment. 

Several issues arise in closing the loop.  The first and probably the most 

problematic for long term operation of the system is that the sensors selected are all body 

reference frame sensors.  Because of this, the robot has no global reference and no 

method of correcting an error in location once it starts on its course.  While the Kalman 

filter performed well in the tests as shown, these were short duration tests and 

accumulation of error could be an issue in longer tests. 

To address this, other global reference sensors may be added, for example an 

optical sensor.  Optical sensors provide capability to not only to locate but also to confirm 

waypoints visually.  They may also provide a means to autonomously select waypoints 

(or landmarks) and generate their own building map, which is the topic of another ASL 

lab thesis. 

As discussed further below, cameras can also be used to correct the estimate for 

heading and velocity using ego motion algorithms to supplement both inertial and wheel 

encoder measurements as an additional body reference frame sensor.  There has been 
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much work in both wheel odometry and visual odometry (VO), while only limited 

attention has been paid to the intersection of the two approaches [24].  

 Certainly, improvements to our developed wheel encoder tracking methods posed 

in this thesis are also possible.  In the Wheel Odometry section, the equations for heading 

were derived assuming a piecewise circular path, and ideal steering geometry.  

Performing accurate steering calibrations can improve the data returned by the encoders 

for heading. 

5.1. Camera as a sensor 

While not a motion sensor by itself, algorithms are commonly used to employ 

cameras as motion detectors.  Specific to this application, ego-motion is the type of 

sensing of interest.  Visual odometry is a type of ego-motion, where vehicle displacement 

and rotation may be measured in full or in part by imaging.  Ego-motion is the estimation 

of a camera‘s motion relative to rigidly place objects; in this case, the scenery passed by 

the robot.  This can be derived from instantaneous velocity measurements in the form of 

optic flow, or more positional-based measurements by observing the translation of the 

image frame or of one particular object identified by algorithms that are more capable.  

Imaging is achieved through use of an off the shelf web-cam device.  Webcams 

are so-called because of their colloquial use for holding face-to-face conversations over 

the internet.  Most webcams utilize CMOS imager arrays due to their low cost.  Such is 

the case with our webcam.  The choice to use a webcam stems from how inexpensive 
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they are, in conjunction with their ease of interface with our software framework.  The 

web cameras provide images to the framework at a rate of 30fps, though not all cameras 

are equal in this respect.  Our images suffer from an artifact caused by a rolling shutter, 

something most inexpensive CMOS cameras employ.  A rolling shutter samples the 

image sensor array in a serial manner, rather than taking a complete ―snapshot‖ at one 

time instance.  Considering the sensor to be a matrix of measurement points, one entire 

row is sampled starting with the uppermost (top of figure) and continuing until the last 

row (bottom of figure).  For slowly varying images, or slow moving objects, a clear 

image that accurately depicts the subject will be produced.  However, the rolling shutter 

causes inaccuracy when measuring dynamic events such as the case on a moving robot 

where ego-motion is employed.  If a solid vertical object is introduced into the frame, and 

the camera turns quickly, causing the object to move rapidly from one side to the camera 

frame to the other, the final camera image after a complete shutter sequence would show 

the object tilting to one side.  Figure 5-1 shows the effects of a rolling shutter when the 

camera is panning to the right.  The image to the left is the original object location, while 

the image on the right shows the result when scanned by a rolling shutter (scanning 

vertically downward).   
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Figure 5-1: Rolling Shutter [25] 

This artifact is called skew.  This is problematic for ego motion for two reasons.  

Firstly, images that have translated in a highly dynamic manner may look different in 

their new frame when compared to the previous and may require an unknown eigenvalue 

transformation to compare to the previous frame.  Secondly, considering that the image 

skews, the different parts of the object of interest appear to move at different velocities.  

This is essentially the same point as the first, but it is important to note the implications 

of the different analyses.  This presents a problem when measuring optic flow or optic 

translation information as will be discussed below. 

5.2. Optic Flow and Image Translation 

Two methods are proposed for using a camera for longitudinal and yaw velocity 

feedback to further aid localization: optic flow and image translation.  Methods to garner 

this information from video information exist in the OpenCV computer vision library.  

Emgu provides code written in .NET access to algorithms within the C-based OpenCV 

(Open Source Computer Vision) library [26].  These methods are not employed, but have 
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been researched for use on future platforms.  Unfortunately, the quality of images is 

insufficient in the tests performed to justify the use of these data as sensors in this thesis.  

Cause for the poor quality is due in part to the image quality of the camera and partly due 

to the surroundings of the robot during testing (see Figure 5-2: Testing Hallway.  

Completely white walls, solid lines, and periodic features do not support good results 

from either optic flow or image translation.  

 

Figure 5-2: Testing Hallway 

The concept of Optic Flow involves identifying points that remain unique 

between sequential frames in time, followed by measuring the displacement of those 

points between frames.  This returns a velocity for every point tracked.  Assuming many 

points may be tracked in an image, a relatively accurate result for velocity can be 

achieved.  Figure 5-3: Optic Flow imagery of moving keyboard  is an example of optic 

flow applied to a video of a camera moving over a keyboard.  The points being tracked 

are denoted by red circles, and the vectors represent the direction and magnitude of the 
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velocity of the points between sequential frames.  

 

Figure 5-3: Optic Flow imagery of moving keyboard 

Image translation is a term given to the measured translation of an image or 

portion of an image in a frame.  OpenCV provides a method called template matching 

that reports the probability of a tested image being located at a specific location within a 

reference frame by sliding the tested image over the reference frame and comparing the 

similarities.  Figure 5-4 shows the results from the same sliding keyboard test.  Bright 

spots indicate high probabilities, indicating the object is moving by the Cartesian 

displacement of the bright spot from the center of the frame.  
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Figure 5-4: Image template probability map of sliding keyboard test 

 These two methods are very computationally demanding, causing the need to use 

lower-resolution images or smaller regions of interest.  Simultaneous application of both 

these methods is unfeasible on the computer used in this research because the computer is 

not fast enough.  

The concept of applying the Kalman filter to tracking of a ground platform is not 

a new one, but is applied for the purposes of understanding and supplementing additional 

research at the Autonomous Systems Lab.  The same methods for model creation and 

Kalman filter application can be applied to many types of vehicles for land, sea, and air 

operation.  The models may be more complex, or perhaps non-linear, but there are still 

ways of implementing the Kalman filter for this.  The Extended Kalman filter and the 

Unscented Kalman filter are both used for applying the Kalman filter to non-linear 

systems.  These are of interest to the ASL lab, and will be implemented on the Align 
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TREX Helicopter pictured in Figure 5-5 for stabilization and full autonomy 

 

Figure 5-5: Align TREX Hobby helicopter [27] 
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Appendix A: CAD 

 

A.1. Platform CAD Drawings 

The Tamiya TXT-1 has two parallel vertical frame rails (shown in grey in Figure 

A-1) that form the primary structure of the remote control truck.  In order to support the 

additional sensors and computing platform, an aluminum plate is attached to the top of 

these rails (shown as yellow in the image for clarity) by means of six custom brackets 

(shown in blue and red).  The brackets raise the platform above the moving components 

of the truck.  Sensor and computer mounting brackets are depicted in green in the image, 

and are mounted to the platform by means of #6-32 tapped holes at regular intervals.  
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Figure A-1: Platform Modifications CAD 
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Figure A-2: Custom stub-axle for wheel-speed sensor application 
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Appendix B: Kalman filter MATLAB Code 

function [Xnew, Pnew] = myKalman(Zk, Xold, Pold, Xcov, Zcov, Unew, Hk, 

Bk, Fk) 

  

%% Gather inputs 

Qk = Xcov;  % State covariance 

Rk = Zcov;  % Observation covariance 

Uk = Unew; 

  

%% Predict Stage 

Xpred = Fk * Xold + Bk * Uk;        % Internal Dynamics.  

Ppred = Fk * Pold * Fk' + Qk;       % Prediction of estimate covariance 

  

%% Support Calculations (part of the update stage) 

Yk = Zk - Hk * Xpred;               % Find residuals (error) 

Sk = Hk * Ppred * Hk' + Rk;         % Innovation covariance 

Kk = Ppred * Hk' * Sk^-1;           % Calc Kalman Gain 

  

%% Correction stage (final part of the update stage) 

Xnew = Xpred + Kk * Yk;             % Updated State estimate 

Pnew = (eye(length(Hk)) - Kk * Hk) * Ppred; % updated estimate 

covariance 

  

end 
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