
 
 The support of this research by the Institute of Museum and Library Services under grant LG-30-
08-0117-08 is gratefully acknowledged. 
 

 
 
 
 
 

LAMP-TR-154      July 2010 
CS-TR-4964 
UMIACS-TR-2010-09 

 
COMPLEMENTARITY AND SIMILARITY: 

RELATIONSHIPS BETWEEN TEXT-MINED TERMS AND  
SOCIAL TAGS FOR IMAGE DESCRIPTION 

 
Judith L. Klavans, Hyoungtae Cho, Rebecca LaPlante 

 
Computational Linguistics and Information Processing 

Institute for Advanced Computer Studies 
University of Maryland 

College Park, MD 20742-3275 
jklavans@umd.edu, hcho5@cs.umd.edu, laplante@umd.edu 

 
 

Abstract 
 
In this paper, we present our results on comparing the language of social tags with text-
mined terms for images. We have developed a novel modification of the standard term 
frequency/inverse document frequency metric (tf*idf) (Salton & Buckley 1988) over tags 
and terms to identify and filter terms which discriminate images for searchers. Since tags 
serve as additional input, we refer to this modification as the T-tf*idf Measure, i.e. Tags-
term frequency as an inverse of document frequency, where “document” in this case 
refers to the either the tag or term dataset. We present the results of several variations on 
this measure, and demonstrate the impact on output. We discuss evaluation of our results 
on the ability of the metric to reflect human judgments through experiments which 
illustrate the value of the approach. 
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1 Project Context 
 

3 -disciplinary 
project comprised of academic researchers, digital librarians, and museum professionals. We explore the application of 
techniques from computational linguistics and social tagging to the creation of linkages between the formal academic 
language of museums and the vernacular language of social tagging. We use text mining algorithms, taxonomies, and 
lexical resources to identify suggested terms and thus to aid users in tagging and retrieving images based on tags assigned 
from many different perspectives. We use the trust a user places in particular metadata sources, e.g. other users or other 
sources, to infer a weighted set of results for their searches. Consideration of these weights in ranking algorithms--along 
with term relationships from lexical resources  has the potential to produce high-quality, focused and personalized 
retrieval of works from image collections.   
 
2 T erm W eighting for Tags and T ext 
 
The focus of this paper is on working with museums and libraries for high quality use of terms and tags to identify images 

 need, to cluster images according to similarity of terms from text and user-assigned tags used to 
describe them, and thus to develop new computational linguistic ranking algorithms in the process of achieving this 
application outcome.  Whereas approaches to term weighting have been in the information retrieval (IR) and computational 
linguistics (CL) fields since the 1950s (Luhn 1958) and are proven to be successful in contributing to document search, 
comparison, and retrieval (Salton and Buckley 1988), the application of these methods to the problem of text-based image 
access over a combined data set of social tags combined with terms from surrounding text has not, to our knowledge, been 
researched.    Note that text-based image access contrasts with content-based image access, which relies on properties of the 
image such as color, shape, texture, etc. to determine similarity and difference, and to characterize semantic features, e.g. 
face recognition or scene identification. 

Text-based image access using text alone, without the use of social tags, has been explored, especially as a basic method 
before content-based image retrieval of visual image features became a more developed field (Smeulders et al. 2000).  Thus, 
image search using proximal text is not novel (Sable, McKeown and Church 2002).  However, it is well known that 
keywords and anchor text alone are not adequate to identify images.  Traditional search over text is keyword-based and 
algorithms center mainly on the keyword: where and how often it (or they) might appear in the page title, on-page text, 
inbound anchor links, etc.  Image search continues to be increasingly content-based (i.e. related to the visual features of an 
image, e.g. color, shape, people, objects) in general, but combined hybrid approaches using text and visual features are 
dominating the field.    

The novel contribution of this paper is on using terms from text in combination with social tags as a new source of 
evidence for categorization and search.  At the same time, our goal as humanities scholars is to understand the relationship 
between the language used to describe images in traditional ways (i.e. through descriptive text) in combination with newer 
ways (i.e. through social tagging and folksonomies (Bearman and Trant 2005).  Thus, the underlying model of this paper 
relies on the abstract notions of complementarity and similarity.  The principle of complementarity states that, for any 
reasonably complex system, the views of any two observers will be complementary, that is,  it will be impossible to derive 
all the observations of one of the observers from the other (Easterbrook et al. 2001, Brunet et al. 2006).  The principle 



applies whenever we have partial descriptions of the world from observers and may disappear if we ask observers to make 
increasingly detailed observations.  Descriptions are partial by definition since filtering occurs as a result of perceptual 
limitations, cognitive abilities, personal values and experience, time limitations, etc.  The notion of complementarity in the 
image description and tagging context refers to the fact that any two o could be redundant (if one 

), equivalent (if redundant in both directions), independent (if there is no 
overlap at all in their descriptions) or complementary, i.e. if none of the above hold.  A corollary of complementarity is 
similarity, since words and phrases are often subtlely semantically related; determining a metric for similarity and 
complementarity is the larger goal of this research. 
 
3 Experimental Paradigm 
 
Our data set consists of social tag observations (12,600 by token, and 4,000 unique tags by type) from the steve.museum 
project combined with terms extracted from text (16,049 terms by token, and 4,788 unique terms by type) taken from the 
handbook descriptions of 165 images from the collection of the Indianapolis Museum of Art (IMA) (imamuseum.org).  

(www.steve.museum).  As 
reported in Trant et al (2007), tags contributed directly by users might help bridge the gap between professional and public 
discourse by providing a source of terms not in museum documentation.  The tag-term collection constitutes a novel 
research dataset for computational linguistics and one which we will provide to the larger community for analysis and use.   

For each image, we analyzed the set of tags, and extracted terms from descriptive text.  For example, consider the 
following image in Figure 1, where a selection of tags is given on the right and an excerpt from the IMA handbook is also 
provided.  
 
 

 
 
 
 
 
 
 
 

 

 

 
 
 

 
 
 
 

F igure 1.   Artist: Lemmen, Georges, Title: The Two Sisters or The Serruys Sisters, Nationality: Belgian 
 

Our hypothesis was that tags would be more informal, whereas the text, even in a handbook, would be more 
formal.  We anticipated little overlap, and that the overlap would be in words of certain categories, i.e. color, shape and 
representation (e.g. red, box, and woman).  In order to test this hypothesis, we selected images of five types - Asian 
Sculpture, Abstract Painting, Representational Painting, Costumes, and Biblical Work - from the larger set of 165 images.  
We first ran the Morphy morphological analyzer (Lezius 1996) to compute raw overlap by type.  Results of overlap on a 
random set of six images, one from each of the five types plus the image in Figure 1, is shown in Table 1 below. 
 
 
 
 

vase brass pitcher tablecloth 

flower portrait red dress 

sister moneyplant boredom 

face match double portrait 

expression dress big sleeve 

youth chair embroidery 

pointillism sibling rivalry portrait 

A member of the enthusiastic Belgian contingent who adopted Neo-Impressionism, Georges 
Lemmen wed intensity of mood with intensity of color to create a double portrait of 
commanding presence. The subjects, eight-year-old Jenny and twelve-year-old Berthe, were 

led, austere 
approach to portraiture, recall the precise likenesses of the northern Renaissance tradition. 
Nothing could be further from a conventionally sentimental image of childhood.  (Excerpt 
from IMA handbook description, 2005) 

 



 
Table 1.  Overlap of Tags and Terms over Six Sample Images 

 
 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 

  Overlap 
Tags + 
Terms Tags Terms O/T+T O/Tag O/Term 

Row 1 Image 1 9 91 36 64 9.9% 25.0% 14.1% 
Row 2 Image 2 14 111 42 83 12.6% 33.3% 16.9% 
Row 3 Image 3 13 140 82 71 9.3% 15.9% 18.3% 
Row 4 Image 4 1 111 27 85 0.9% 3.7% 1.2% 
Row 5 Image 5 19 121 68 72 15.7% 27.9% 26.4% 
Row 6 Image 6 11 138 71 78 8.0% 15.5% 14.1% 

 Average     9.4% 20.2% 15.2% 
 

Table 1 shows that there is wide variety in the number of overlapping tags/terms, as shown in Column 2.  However, the 
average appears to be between 9-10% over the combined tag-term set.  Note that the overlap for tags alone averages 20.2% 
whereas the average for terms is 15.2% since the term set tends to be larger. Given this variance and given the difference in 
tag and term sets, in the next section of this paper, we show how we have normalized to prevent bias for images with larger 
tag sets or for images with longer textual descriptions.  In future work, we intend to measure the variance, to examine the 
types of lexical items which tend to overlap, and the relationship between these items and their frequency in a large corpus.  
The goal will be to gain further insights on the nature of the overlapping terms and tags and the images they describe. 
 
4 Complementarity, Similarity, and Image Descr iption Metrics 
 
After our initial observations, our goal was to identify which of these terms might be useful to characterize the individual 
distinguishing features of images, and thus perhaps be helpful to users in differentiating images.  We compared this task to 
the information retrieval task of determining which documents might be relevant to a given query by using basic metrics 
such as tf*idf  or, in future work, Latent Dirichlet Allocation (Blei et al. 2003) or Latent Semantic Indexing (Deerwester et 
al. 1990).  The notion of term frequency (tf) has a long history, starting with early research on summarization (Luhn 1958) 
to the exploration of inverse document frequency (idf) (Spärck Jones 1972), to relevance weighting (Salton & Buckley 
1988), leading to many variations to characterize topic and thus determine relevance to a query. 

The original contribution of this paper is in exploring a new variation of tf*idf which is able to incorporate the 
notion of tags added to term frequency to measure the ranking of a term/tag pair vis a vis the overall vocabulary of the 

 two types of documents, where one type refers to the terms extracted 
from a piece of text related to an image, and the other type refers to the set of tags for that same image.  Thus, in Column 2 

For example, 
i -mined terms alone.  
In Rows 2, 4-   Six scores were computed in order to compare the 
similarities and differences between tags and terms, and to gain an understanding of the impact of each on characterizing an 
image. These scores are outlined in Table 2. 

 
Table 2.  Computational Variations of T-tf*idf 

 

 T-tf*idf 
Type 

Data used for term 
frequency(tf), tfD  

Data set used for inverse  
document frequency (idf), idfD  Metric 

Row 1 T1 Tag tag set    
Row 2 T2 Tag tag set + text-mined terms   
Row 3 T3 text-mined term    text-mined terms   
Row 4 T4 text-mined term tag set + text-mined terms   
Row 5 T5 Tag + text-mined term   tag set + text-mined terms Arithmetic mean 
Row 6 T6 Tag + text-mined term  tag set + text-mined terms Harmonic mean 

 



We experimented with six different variations to explore which would correlate with human judgments.  We have 
labeled these six variations as T1-T6 in order to refer to them each independently.  Term frequency (tf) can be computed as: 
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tf(t )=

N(t )
  ,  

(1)  

 

where it  is a term, N( it ) is the frequency of the term, 
n

i
i

N(t ) is the normalization factor to indicate the frequency of all 

the terms in a particular document. The count is normalized to prevent bias for images with larger tag sets or for images 
with longer textual descriptions. We varied the formula to obtain various term frequencies. The data set used for inverse 
document frequency is also used for normalization of term frequency as follows: 
 

tf ii
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N(D (t ))N(t )
tf(t )=

N(t ) N(D (t ))
  ,  

(2)  

 
where ( )tf iD t refers to the criteria in column 2 of Table 2 and where ( )idf iD t  is the data set used for inverse document 
frequency depending on the criteria in column 3 of Table 2.   The normalized tag frequency by tag denominator is defined 
as:  
 

i
Frequency of tag for one imagetag-frequency(t )=

Sum of # all the tags for the same image
  .   (3)  

 
The normalized tag frequency by tag/term denominator (represented with the ) is defined as: 

 

i
Frequency of tag for one imagetag-frequency-c(t )=

Sum of # all the tags+terms for the same image
  .   (4)  

 
In Table 2, Row 2 shows that the denominator consists of tags plus terms.   Thus, compared to Row 1, which has 

tag-frequency( it ) alone in the denominator, Row 2 adds term frequencies to tag-frequency in the denominator.  The 
normalized term frequency by term denominator is defined as: 

 

i
Frequency of term for one imageterm-frequency(t )=

Sum of # all the terms for the same image
  .   (5)  

 
The normalized term frequency by the tag/term denominator is defined as.   
 

i
Frequency of term for one imageterm-frequency-c(t )=

Sum of # all the tags+terms for the same image
  .   (6)  

 
In (6) as in (4), term-frequency-c( it ) means that tag-frequency is complemented with tag frequencies in the denominator.    

In Row 5 of Table 2, we present a normalized tag/term frequency by tag/term denominator using an arithmetic 
mean: 

 



i i
i

tag-freqency(t )+term-frequency(t )
tag/term-frequency(t )=

2
  .   (7)  

 
In contrast to (7) for the arithmetic mean, the normalized tag/term frequency by tag/term denominator using a harmonic 
mean is shown in (8): 

 

i i
i

i i

2 tag-freqency(t ) term-frequency(t )
tag/term-frequency-h(t )=

tag-freqency(t )+term-frequency(t )
  .   (8)  

 
The tag/term-frequency-h( it ) means that the average of tag and term frequency is computed by harmonic mean which is 
the same formula as F-score, while the tag/term-frequency( it ) uses an arithmetic mean.  This is shown in (9).  The 
interesting point in (9) is that if either of tag-frequency( it ) or term-frequency( it ) is zero, tag/term-frequency-h( it ) 
becomes zero. In other words, this frequency measure provides positive term frequencies for overlapped types in tags and 
text-minded terms; zeros for others.    For example, in Figure 1, The Two Sisters or The Serruys Sisters , the 
type girl  appears 10 times in tags and there are 124 tags for that image by token.  Thus, as shown in (3) above, the tag-

 = 10/124 = .08.   s image. 
The numerator in T5 (9) is thus .08 + 0.  The arithmetic mean is thus .04.   For the same image, the numerator in T6 is 2 
* .08 * 0 (as shown in (8)), and the denominator is .08 + 0, producing a 0 result for T6 (9). 
 

T5 (Table 2): term/tag-frequency( it )=
0.08+0.00 0.04

2
 

T6 (Table 2): term/tag-frequency-h( it )= 2 0.08 0.00 0
(0.08+0.00)

 
(9)  

 
In the same manner, we have an inverse document frequency formula as following: 

 

i 2

1
idf(t )=log

{ :  of } 1i idf

Doc
doc t doc D

   (10)  

 
The number of documents, Doc , remains the same over various formulas, since we consider 165 image sets as documents 
for both tags and text-mined terms. The denominator of the formula indicates the number of documents consisting of idfD , 
which is defined in Table 2, where it appears. We add 1 both for nominator and for denominator to avoid zero-division. 

We apply the formula above into each case by defining tag-idf( it ), term-idf( it ), and tag/term-idf( it ) as follows: 

i 2
i

165 1tag-idf(t )=log
{ : t  of tagset} 1doc doc

 for T-tf*idf  T1 

  

(11)  

i 2
i

165 1term-idf(t )=log
{ : t  of terms} 1doc doc

 for T-tf*idf  T3 

 

(12)  

 

i 2
i

165 1tag/term-idf(t )=log
{ : t  of tagset+terms} 1doc doc

 for T-tf*idf  T2, T4, T5, and T6. 

 

(13)  

 
 



5 Results  
 
Note that T1 and T2 reflect a greater weighting for tags over terms since T1 uses only tags without the larger denominator 
from adding text-mined terms, whereas T2 increments the denominator by using tags and terms together.  As shown in 
Table 3, the results in Columns 1 and 2 are only slightly different;  the reason for this is that text-mined terms tend to occur 
in the same number of documents as do tags in tag clouds.  Through exploration of each of the six permutations, it has 
become evident that the differences between T1 and T2 are minimal, as are the differences between T3 and T4.  The reason 
for this is that T1 and T2 add weight to words that appear in tag sets, whereas T3 and T4 both emphasize term sets.  Thus, 
through the full computational analysis, we have been able to simplify comparisons by eliminating two of the metrics 
which are redundant.  In future work, we will determine a principled reason for selecting between T1 and T2, and between 
T3 and T4.  As shown in Table 2, the tf*idf scores of T2 place more weight on the tags that appear mostly in the tag set by 
considering terms as an element of document for idf, as compared with T1. To take a concrete example, observe the 
rankings of the tf*idf scores of tags  The Two Sisters or The Serruys Sisters Figure 1.  The ranks by 
tf*idf score of the tags in the T1 and T2 methods shown in Table 2, above, and their inverse document frequency in terms 
of text-mined terms are  shown in Table 3.  Underlined items are those occurring both as tags and terms. 

 
Table 3:  Rank of tag by tf*idf scores using the T1 and T2 computations  

 
As shown in Table 3, the rank of the tag same that appears frequently in other image descriptions for text-mined terms is 
lower, since the T2 method also takes account of how meaningful a tag is among text-mined terms with regard to term 
specificity.  
terms both across a general vocabulary (e.g. the word same  has a higher frequency in a corpus) than a term such as 
pointillism ), as computed across a specialized vocabulary and then compared to a general vocabulary. 

Table 4 shows how, for the same image, we observe the difference between T3 and T4 methods using the same 
observation of results from their formulas.  Table 4 shows the impact of frequency of occurrence for terms in tag clouds 

often appear in tag clouds compared with their frequencies in text.  Not surprisingly, the top ranked item is the creator, the 
artist, Lemmon.  
Interestingly
divergence is not common, as noted in Table 4 by the underlining in the Table.  As we evaluate with user input, we will 
utilize human judgments to determine how to account for these differences, and possibly how to combine the intuitions 
from T1/T2 and T3/T4 into a single metric which reflects the impact and significance of each term or tag.  Through these 
methods, described in the future work section, we will gain insights into the categorization of tags and terms, as seen 
through thesaural and other classifications (e.g. Panofsky 1972, discussed below). 

 
 

Tag Rank in 
T1 

Rank in 
T2 

# of documents the tag 
appears in tag clouds  

# of documents the 
tag appears in text-
mined terms  

Increase/decrease  

girl 1 1 8 3 -163% 
sister 2 2 2 1 -150% 
pointillism 3 3 4 0 -200% 
dot 4 4 6 0 -200% 
dress 5 5 17 0 -200% 
portrait 6 7 18 4 -178% 
tablecloth 7 6 5 0 -200% 
plant 8 8 5 3 -140% 
brass 9 9 7 1 -186% 
chair 10 10 9 1 -189% 
same 11 17 2 8 200% 
money 12 13 2 3 -50% 
vase 13 12 11 3 -173% 
two 14 11 13 0 -200% 



Table 4: Rank of terms by tf*idf scores using the T3 and T4 computations  
 

Text-mined 
Terms 

Rank in 
T3 

Rank in 
T4 

# of documents the 
term appears in text-
mined terms  

# of documents the 
term appears in tag 
clouds  

increase/decrease  

Lemmen 1 1 1 0 -100% 
Neo 2 2 4 0 -100% 
portrait 3 6 11 11 0% 
likeness 4 3 3 0 -100% 
intensity 5 5 3 1 -67% 
Belgian 6 4 3 0 -100% 
impressionism 7 8 7 4 -43% 
hue 8 7 9 1 -89% 
old 9 38 13 21 62% 
tendril 11 9 1 0 -100% 
tendency 12 10 1 0 -100% 
tablecloth 13 32 1 4 300% 
rigorous 14 12 1 0 -100% 

 
In order to show how lexical items are ranked according to each of the six variations on T-tf*idf, Table 5 provides 

the output.   First, starting from T6, we observe that the overlapping items consist of 11 lexical items, where lexical item 
could be a tag or term; in T6, of course, each lexical item occurs as a tag and a term.  Note that several morphological 
operations will need to be modified to optimize 
appears in the image in Figure 1, and which is commonly used to symbolize sincerity and honesty, has been tokenized into 

   
 

Table 5: Top 15 ranks over six T-tf*idf methods 
 
Rank T1 T2 T3 T4 T5 T6 
1 girl girl Lemmen Lemmen girl portrait 
2 sister sister neo neo Lemmen Lemmen 
3 pointillism pointillism portrait likeness sister tablecloth 
4 dot dot likeness Belgian pointillism plant 
5 dress dress intensity intensity neo brass 
6 portrait tablecloth Belgian portrait portrait money 
7 tablecloth portrait impressionism hue dot frame 
8 plant plant hue impressionism tablecloth double 
9 brass brass old impressionist plant vase 
10 chair chair impressionist tendril brass complementary 
11 same two tendril tendency dress colors 
12 money vase tendency rigorous money N/A 
13 vase money tablecloth portraiture vase N/A 
14 two youth rigorous Jenny frame N/A 
15 youth frame portraiture dialogue likeness N/A 

 
 



 4 and 5, which was extracted from Neo-Impressionism  shown in the text describing 
the image 

-
ongoing difficult challenge across applications (Klavans and Tzoukermann 1992). 
 
6 Evaluation and Validation  
 
While these tf*idf scores show the frequency of a tag or term within a given document set, can they accurately predict the 
real usefulness or importance of a term for a user?  To answer this question, we have run a formative evaluation with three 
subjects to compare the value a person places on the perceived usefulness of a given tag or term to distinguish an image to 
the value of that same tag or term as derived from the T-tf*idf calculation to test our methods.  Now that we have generated 
the results from the six T-tf*idf variations, we are positioned to run these independent validation studies.  A sample of the 
survey tool used is provided in Figure 2 and selected results are provided in Table 6.   
 
 

 
 
 
 
 

 
 
 
 

1   5            1                   5 
useful  not useful        useful           not useful 

   
 

1 2 3 4 5 Word or Phrase  1 2 3 4 5 Word or Phrase 
friend girl 

money approach 

renaissance Lemmen 

vase double 

family division 

big tree 

Lemmen drape 

artist likeness 

impressionism year 

match plant 

childhood tablecloth 

 
F igure 2.   Ranking experiment of tags and terms by human subjects for The Two Sisters or The Serruys Sisters  

 
We first needed to address two questions for the user evaluation design: (1) we needed to determine how the tags 

and terms associated with each image would be represented, and (2) we needed to identify a manageable set of information 
for a human evaluator to review. The data set which we have processed to use in the next phase of this project includes the 
original set of tags and terms extracted from text, with single words and multi-word phrases.  This set of tags and terms had 
been modified for use in this experiment to tokenize multiword phrases into their component parts, resulting in the phrase 



eight-year-old  being represented as three separate tokens, eight , year , and old .  Thus, the counts for terms and tags 
often result in phrases being   In order to maintain 
consistency between human judgments and their application to evaluation of the weighting metrics, we did not retro-correct 
and recombine phr -year- rather, we left them split to reflect the performance of the automatic 
tokenization.  In future work, we will explore the impact of this decision on overall results. 

In addition, the full set of images and related tags and text is too large to reasonably expect a human subject to 
all terms and tags for each image.  As shown above in Table 1, there is an average of 

approximately 120 tags/terms per image.  To eliminate overloading our subjects and thus potentially invalidating our results, 
we have selected one image from each of the five image groups discussed in Section 3 and one additional image (that in 
Figure 1) for a total of six images to use in the evaluation.  However, even with this reduction, the volume of the tags and 
terms associated with the six images was still too large for human subjects.  Thus, we took a random sampling of the tags 
and terms for each image to end with a test set of 15 tags and 15 terms for a total of 30 tags and terms for each user to 
evaluate for each image.  The random sampling was created by isolating the set of normalized, decoupled tags and sorting 
the set by frequency, with duplicates removed.  Proper names which had been incorrectly changed to lower case were 
manually corrected.  Lastly, we did not change the spelling of any tag or term that we felt may have been misspelled 
because of the difficulty in determining the correct word intended by the individual who originally assigned the tag or 
wrote the text that included the term.   

Table 6 shows our initial results for the formative evaluation.  Note that Subject 1 (S1) consistently ranked all 
items lower than Subject 2 (S2); similarly for S3, who was consistently lower than S2.   
 

Table 6.  Rank of Tags and Terms over One Image 
 

Terms    Tags    
 S1 S2 S3  S1 S2 S3 

childhood 3 2 5 money 5 4 1 
likeness 5 4 3 eyes 2 3 5 
year 5 5 1 match 4 3 4 
double 5 3 4 red 2 3 5 
Lemmen 5 1 5 dress 2 3 5 
family 4 2 4 double 3 3 5 
friend 4 4 2 big 5 5 1 
approach 5 4 1 tablecloth 4 4 2 
presence 5 4 4 dry 5 5 1 
impressionist 3 4 4 tree 5 5 1 
division 5 5 1 vase 4 3 2 
renaissance 3 4 3 girl 3 1 4 
impressionism 3 4 4 drape 4 4 1 
artist 2 3 3 sleeve 3 3 4 

sentimental 3 3 4 plant 5 5 1 
 

We illustrate in Table 6 the kind of data we have collected to explore ways to match human judgments to those of our 
T-Tf*idf metrics.  s, the highest 

 course, 
a much larger sample across many images with more subjects will enable us to draw more solid conclusions, and will 
permit us to accurately link human judgments to the output of our metrics.  It seems, at first glance that the results in T1/T2 
appear to match human judgments although more data is needed.  This is our next step for future work on this data. 
 
7 Conclusions  
 
In this paper, we present a novel metric for examining the role of social tags and text-mined terms for images, as part of a 
research project involving text-based image access in museums and libraries.  Using computational linguistic techniques to 



extract and normalize terms from text, we present our first results on overlap, complementarity, and similarity.  We have 
developed the T-tf*idf Measure, i.e. Tags-term frequency as an inverse of document frequency.  Our results from 
evaluation of variations on this metric have been compared with human judgments to determine agreement or differences 
with our findings.   

In future research we will pursue three directions:  first, we intend to utilize thesauri to classify the types of terms.  
Specifically, the Art and Architecture Thesaurus (AAT) provides the opportunity to focus on the domain specific terms of 
image description, and explore overlapping categories such as color, shape, or material.  We anticipate that Panofsky  
pre-iconographic and iconographic distinctions will also contribute to an understanding of the subject description analysis. 
Second, we will investigate the nature of the overlapping tag/term set in terms of the category, type and nature of lexical 
item.  Finally, we intend to explore in much greater depth different types of metrics that cluster, categorize and assign tags 
and terms to topics, such as Latent Dirichlet Allocation (Blei et al. 2003) or Latent Semantic Indexing (Deerwester et al. 
1990) utilizing coocurrence as well as occurrence with probabilistic modeling.  In all cases, we will evaluate with human 
subjects to ensure that our intuitions are supported by objective experimental data. 
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