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Performance comparison
of TCR-pMHC prediction
tools reveals a strong
data dependency

Lihua Deng1†, Cedric Ly2†, Sina Abdollahi2, Yu Zhao2,
Immo Prinz1* and Stefan Bonn2*

1Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf,
Hamburg, Germany, 2Institut of Medical Systems Biology, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany
The interaction of T-cell receptors with peptide-major histocompatibility

complex molecules (TCR-pMHC) plays a crucial role in adaptive immune

responses. Currently there are various models aiming at predicting TCR-pMHC

binding, while a standard dataset and procedure to compare the performance of

these approaches is still missing. In this work we provide a general method for

data collection, preprocessing, splitting and generation of negative examples, as

well as comprehensive datasets to compare TCR-pMHC prediction models. We

collected, harmonized, and merged all the major publicly available TCR-pMHC

binding data and compared the performance of five state-of-the-art deep

learning models (TITAN, NetTCR-2.0, ERGO, DLpTCR and ImRex) using this

data. Our performance evaluation focuses on two scenarios: 1) different splitting

methods for generating training and testing data to assess model generalization

and 2) different data versions that vary in size and peptide imbalance to assess

model robustness. Our results indicate that the five contemporary models do not

generalize to peptides that have not been in the training set. We can also show

that model performance is strongly dependent on the data balance and size,

which indicates a relatively low model robustness. These results suggest that

TCR-pMHC binding prediction remains highly challenging and requires further

high quality data and novel algorithmic approaches.

KEYWORDS

T-cell receptor (TCR), peptide, MHC, machine learning/deep learning, TCR
specificity prediction
1 Introduction

T-cell receptors (TCR) play a crucial role in adaptive immunity mainly through the

recognition of peptide fragments from foreign pathogens that are presented by major

histocompatibility complex (MHC) molecules. TCRs consist of two transmembrane

polypeptide chains, a and b chain; they form a heterodimer on the cell surface. The
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extraordinary diversity of the TCR repertoire is mainly attributed to

a somatic recombination process, V(D)J recombination. Humans

can theoretically generate more than 1015 different antigen-specific

TCRs Uziela et al. (1). The diversity of TCR a and b is realized

mainly by the complementarity-determining regions (CDRs), with

CDR3 being the contact side to the peptide fragment and

consequently the most important area for antigen recognition

Hennecke and Wiley (2). There are two types of MHC molecules,

MHC class I and MHC class II molecules, presenting peptides to

CD8+ and CD4+ T cells, respectively.

The major public data resources for TCR-pMHC binding data

are VDJdb Goncharov et al. (3), IEDB Vita et al. (4), McPAS-TCR

Tickotsky et al. (5), ImmuneCODE Nolan et al. (6), TBAdb Zhang

et al. (7) and 10X Genomics 10x Genomics (8), which all contain

TCR CDR3 b chain information. These are all precious data since

identifying cognate TCRs-pMHC binding pairs typically needs both

the pMHC multimers technology and single cell sequencing

technology Pai and Satpathy (9); Joglekar and Li (10).

This vast diversity of the TCR repertoire makes it difficult to

experimentally cover all possible TCR pMHC binding pairs. Under

the fundamental assumption that the binding between TCR and

pMHC is governed by fundamental physicochemical interaction

rules, computational approaches could detect and learn patterns in

data. Applying machine learning (ML) and deep learning (DL)

approaches to predict the interaction between TCR and pMHC

have been explored, resulting in various models such as TITAN,

NetTCR-2.0, ERGO, DLpTCR and ImRex Weber et al. (11);

Montemurro et al. (12); Springer et al. (13); Xu et al. (14); Moris

et al. (15). Among these models, ERGO and TITAN integrated
Frontiers in Immunology 02
natural language processing (NLP) techniques, NetTCR-2.0 and

ImRex are based on convolutional neural networks (CNN), and

DLpTCR is a combination of CNN, fully connected network (FCN)

and deep residual network (ResNet). Unfortunately, to date there

exists no appropriate benchmark dataset or workflow to compare

contemporary TCR-pMHC prediction models and improve them.

In this work, we collected and preprocessed all available major

TCR-pMHC data and compared the performance of those state-of-

the-art models in different training and testing scenarios.
2 Results

2.1 Current available data showed a
great imbalance

To compare currently available TCR-pMHC prediction models,

we first collected data from the most comprehensive public

resources, including 10X Genomics, McPAS-TCR, VDJdb,

ImmuneCODE, TBAdb and IEDB, then preprocessed separately

and afterwards merged into one dataset (TCR preprocessed dataset,

tpp dataset). The general process is depicted in Figure 1. The tpp

dataset amounts to 113762 entries, out of which 32237 entries

contain paired TCR chains, 7167 entries contain only a chains

(TRA) and 74358 entries contain only b chains (TRB)(Figure 2A).

The composition of the database is shown in Figure 2B. From

different data resources, ImmuneCODE contains exclusively TRB

information, whereas VDJdb contains the highest number of paired

chain examples (Figure 2C). If we further look into the binding
FIGURE 1

Flow chart shows the basic procedure for preparing different datasets. After collecting data from public resources and merging the preprocessed
into one dataset (TCR preprocessed dataset, tpp dataset), different filtering criteria were applied to obtain the positive examples for dbase,strict,
dbase,uniform, dbal and dimbal datasets. Negative examples were generated within folds (refer to 4.1.3) after splitting (refer to 4.1.2) to obtain the
complete datasets. dbase: the base dataset filtered from tpp dataset. dbase,strict: strict splitting used on dbase . dbase,uniform: uniform splitting used on dbase .
dbal: the balanced dataset filtered from dbase , then split using uniform splitting. dimbal: the imbalance dataset filtered from dbase , then split using
uniform splitting.
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pairs between TCRs and peptides presented by MHC molecules,

there is a strong imbalance concerning the peptides, i.e. 0.12% of all

peptides (20/1659) account for 58.38% of the total entries (66413/

113762). More detailed peptides origin concerning different disease

categories for each resource is shown in Figure S1.

In order to compare the performance of TITAN, NetTCR-2.0,

ERGO, DLpTCR and ImRex, they need to be trained and tested on

the same data. We constructed a base dataset (dbase), which fulfills

all the requirements from these models so that every model can be

trained and tested on it. The criteria are: 1) peptide length equals to

9; 2) CDR3 TRB length in the range of 10 to 18; 3) peptides are

presented by the HLA-A*02 MHC allele. After applying these

criteria, we removed duplicates based on the CDR3 TRB and

peptide, this resulted in a total of 15331 entries for dbase, across

15039 CDR3 TRB and 691 peptides. The data in dbase is highly

imbalanced towards high frequent peptides, 82.66% (12672) of all

entries are derived from the top 20 most frequent peptides. The total

entries for the top 20 peptides in dbase is shown in Figure 3A. The

imbalance of TCRs pairing with the top 20 peptides is highlighted in

Figure 3B. The top 20 peptides are paired with 82.66% of the total

TCRs while the remaining peptides are paired with the remaining

17.34% TCRs. Furthermore, 517 out of the total 691 peptides have

less than five examples per peptide in dbase.
Frontiers in Immunology 03
2.2 Comparison of model performance
on dbase indicates that current DL models
perform similarly well regardless of
model complexity

After acquiring the merged dataset and filtering with the most

strict requirements of all tested models we obtained the dbase dataset.

In the creation of dbase dataset there were two steps necessary. First,

we split the data into five folds as we use 5-fold cross-validation. We

used two different splitting methods (see subsection 4.1.2), uniform

splitting which keeps the peptide distribution equal across all folds

and strict splitting which keeps the peptides unique in each fold.

The second prerequisite was to generate negative examples (see

subsection 4.1.3), i.e. by assigning combinations of CDR3 b
sequences and peptides that do not bind to each other.

Next, we tested six different DL models from five publications.

The chosen models predict the binding between a given TCR-pMHC

pair. The feature input are the CDR3 TRB sequence of the TCR, and

the amino acid (aa) sequence of the peptide. The six models differ in

their approaches to embed and process the given features. This

subsection compared the different approaches and measured their

performance. Models were trained and tested on dbase using 5-fold

cross-validation. In Table 1 the tested models are summarized.
A

B

C

FIGURE 2

Overview of TCR-pMHC binding data merged from different resources. (A) Venn plot shows the overlap of entries that contain only TRA, paired
chains or only TRB. The size of the ellipses correlate to the number of entries for each category. (B) Pieplot shows the composition of the merged
database. Number of entries in each resource indicated in the parentheses. (C) TRA and TRB availability for the six major resources.
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The number of trainable parameters (Table 1) of a model

indicates the model complexity. We do not see a correlation

between the number of trainable parameters and performance of

the model. We used a 1:1 ratio of positive:negative binding examples

for both training and testing sets. The ROC-AUC score of each model

on dbase, except for ERGO with the embedding of long short-term

memory (LSTM), were above fifty percent (Figure 4). Therefore,

almost all models predicted the outcome of a given TCR-pMHC pair

better than random guessing. With the exception of ERGO with the

LSTM embedding, no ROC-AUC score stood out and performances

of those models were within 0:66 ± 0:04 ROC-AUC. A summary to

compare the obtained ROC-AUC from the original work and our

measurements using a distinct dataset is given by Table S1.
2.3 Model performance on uniform or
strict split data indicates that current
models do not perform well on unseen
peptides

A generalized prediction model will find interaction patterns that

are transferable to new TCR-pMHCs examples. We used two training

and testing splitting methods (see subsection 4.1.2) to generate uniform

and strict splitting data sets. The main difference of uniform splitting

and strict splitting is whether the peptide in the testing set appears in
Frontiers in Immunology 04
the training set. In uniform splitting the peptides in the testing set also

exist in the training set (seen peptides), whereas the peptides in strict

splitting have no overlap between training and testing set (unseen

peptides). For a generalized TCR-pMHC binding prediction model, it

should be able to predict binding on unseen peptides.

The model performance for all models using these two splitting

methods is compared in Figure 5. DLpTCR returns a binary in its

prediction, and this explains why the curves for DLpTCR in Figure 5 only

connect three points. Every othermodel outputs a value between zero and

one, which serves as a probability for the given TCR-pMHC pair to bind.

A continuous probability value can generate more points in the ROC and

PR curve, if one vary the threshold for a binding and unbinding

prediction. Model performance collapsed for strict splitting (comparing

Figures 5A with Figure 5C or Figure 5B with Figure 5D for each model),

indicating that current models do not generalize to unseen peptides.
2.4 Collapsing performance on dbal
suggests that 5-10 examples per peptide is
not sufficient for training state-of-the-art
DL models

After comparing the results for dbase using uniform/strict splitting,

we realized that current models are not able to predict the binding for

unseen peptides. Since results for uniform splitting showed moderate
A B

FIGURE 3

Overview of TCR-pMHC positive binding examples for dbase . (A) Barplot shows the number of entries for the top 20 peptides. (B) Pie chart shows the
constitution of examples for the top 20 peptides vs. the rest in dbase .
TABLE 1 Overview of the tested models.

Models Architecture Embedding Year Trainable parameters

TITAN Weber
et al. (11)

Bimodal attention networks,
pretrained with BindingDB.

Encoded peptides with SMILES, TCRs with BLOSUM62 and
padded to the same length.

2021 15,506,099

DLpTCR Xu et al.
(14)

Ensemble network out of: FCN,
CNN and ResNet

depending on subNN: PCA on 500 amino acid indices, one-hot
encoded or 20 different physicochemical properties (PCP)

2021 10,454,869

ERGO Springer
et al. (13)

Autoencoder or LSTM !Multilayer
perceptron (MLP)

One-hot encoded and embedded with either LSTM or
Autoencoder

2020 580,299 (Autoencoder) or
6,557,421 (LSTM)

NetTCR2.0
Montemurro et al.
(12)

CNN Both sequences were encoded using the BLOSUM50 matrix 2021 21,345

ImRex Moris et al.
(15)

CNN, L2 regularization penalty of
0.01. Dual-input CNN architecture

PCP interaction map between CDR3 and peptide sequence with
20x11x4 dimensions.

2020 248,257
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prediction ability, we suspected that these models learned for the high

frequent peptides. In order to elucidate this, we prepared a new

balanced data set (dbal) to test this hypothesis. Based on dbase , we

filtered out entries with less than 5 examples per peptide and afterwards

we downsampled (see chapter 4.1.4) each unique peptide, so that each

peptide in dbal only contains 5-10 examples. This resulted in dbal with a

total of 2812 examples, across 1397 unique CDR3 TRB sequences and

174 unique peptides. Training the models on dbal , we saw a complete

collapse of performance for the models (Figure 6), similar to dbase strict

splitting. This indicates either that 5-10 examples per peptide is not

sufficient for a predictive model to learn the general TCRs-pMHC

binding rules or that a total of 2812 examples is not enough to train and

test the models on. In the following subsection we investigated how

data imbalance impacted the model performance.
2.5 Model performance comparison on
dbase and dimbal indicates that “success” is
only due to the most frequent peptide

The difference between dbal and dbase is in the size and the

imbalance regarding the peptide distribution. The degree of balance
FIGURE 4

ROC of models predicting binding of TCR-pMHC trained and tested on
dbase using uniform splitting. The dashed red line indicates performance
of random guessing. ROC curve for DLpTCR looks “linear”, because
DLpTCR outputs a binary and not a continuous probability.
D

A B

C

FIGURE 5

Model performance on dbase using different splitting methods. (A) ROC curve and (B) PR curve for models using uniform splitting. (C) ROC curve and
(D) PR curve for models using strict splitting. The dashed red lines indicate performance of random guessing. ROC and PR curve for DLpTCR looks
“linear”, because DLpTCR outputs a binary and not a continuous probability.
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can be calculated with the formula for Shannon entropy,

Balance =
−1

log (K)o
K

i=1
cilog(ci) (1)

with K as the number of unique peptides and ci as the

occurrence in percentage for peptide i. We constructed dimbal to

investigate whether the peptide imbalance or the data size impacts

the performance more. This dataset included all available data for

the most frequent peptide (mfp) (“NLVPMVATV”), but filtered

and downsampled the remaining peptides (non-mfp). In total,

dimbal has 12268 entries, with 7678 unique CDR3 TRB sequences

and 174 unique peptides. This dataset has a higher peptide

imbalance than dbase and a smaller size (see Table S2).

We would expect dbase which contains more input data to have a

better performance over dimbal if the model can learn a general

binding rule. However, models trained on dimbal had a prediction
Frontiers in Immunology 06
power comparable to models trained on dbase, and even slightly

better than models trained on dbase (Figure 6). In the case of ERGO

with LSTM embedding, which was as bad as random guessing if

trained on dbase, if trained on dimbal we saw an increase in prediction

performance. Therefore, we conclude that peptide imbalance

impacts the performance more than the size of the data. This

result also suggests that all models learned the binding rule for the

most frequent peptide examples.
2.6 Performance increases with
peptide imbalance

Next, we investigated whether the learned most frequent

peptides from dimbal can be transferred to predict the binding for

less frequent peptides. Overall, the ROC-AUC scores for the models
D

A B

E F

C

FIGURE 6

Model performance on different datasets using uniform splitting. ROC curve for (A) NetTCR-2.0, (B) ImRex, (C) TITAN, (D) DLpTCR (Curves looks
“linear”, because DLpTCR outputs a binary and not a continuous probability), (E) ERGO Autoencoder model and (F) ERGO LSTM model using dbase ,
dbal and dimbal . The dashed red diagonal line indicates performance for random guessing.
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trained on dimbal were significantly higher than the one trained on

dbal (Figure 6). If models trained on dimbal also showed better

performance for the non-mfp, compared to models trained on

dbal , this would mean that the learned mfp increases the likelihood

of generalization. In Figure 7, taking NetTCR-2.0 as an example, we

compared the accuracy on non-mfp data using models trained on

the two datasets and no change in performance was observed. We

observed a strong data dependency regarding the performance of all

models (Figure S2). In retrospect, the success of previously

published models could thus be attributed to the peptide

imbalance within each dataset.
3 Discussion

In this work, we compared different state-of-the-art models for

the prediction of TCR-pMHC binding. We chose to use these models

as they were supplied, without optimizing them for our datasets. This

might have advantages for somemodels and disadvantages for others,

but the aim of this study was to make a consistent comparison across

all available data, rather than to compare the peak performance of

these models. The data preprocessing and filtering criteria were based

on the intersection requirements of all models. In this way we fairly

tested the models for their generalization ability using the same input

data. By using different train/test splitting methods, we were able to

contrast the performance of the models between unseen and seen

peptides. Our findings clearly show that all models with different

complexity fail to predict on unseen peptide examples. This is

consistent with the findings of Grazioli et al. Grazioli et al. (16),

who contrasted the performance between uniform and strict splitting

as well. They show that ERGO II as well as NetTCR-2.0 performs

worse in strict splitting. Here, we have also tested NetTCR-2.0 and a

predecessor model of ERGO II (ERGO), but additionally includes

TITAN, DLpTCR and ImRex to cover all the current state-of-the-art

models (Table 1) for TCR-pMHC binding prediction. We showed

that the performance stays the same across models with different
Frontiers in Immunology 07
complexity. Notably, Grazioli et al. suggested that TITAN is a

potential candidate to have a generalized prediction prowess.

TITAN Weber et al. (11) by Weber et al. applied strict splitting

themselves and measured a performance of up to 0.62 ROC-AUC.

However, we could not replicate this result based on our dataset.

TITAN did not perform significantly better than the other models

tested in our study, despite using the most advanced model

architecture. A possible explanation why Weber et al. measured

better performances could be that they only used data from VDJdb

(peptides from various origin) and ImmuneCODE (exclusively

COVID data). Merging those two datasets will result in mostly

peptides associated with COVID (105/192 [54.69%] assuming

VDJdb does not contain many COVID data). Even if the peptides

in the testing and training sets are disjoint in strict splitting, there

might be similar peptides across the training and testing set, due to

their same origin from COVID. This may have contributed to the

better performance reported. If this hypothesis is true, given enough

training examples, it might be possible for TITAN and other models

to not only predict peptide-specific binding but also origin-specific

binding. Based on current available data, models work better for

epitope specific predictions, not for general predictions.

We also investigate the impact of peptide imbalance on the

performance of the models. To the best of our knowledge, we have

not seen similar training and testing of the models on different data

scenarios (dbase, dbal and dimbal). The data scenarios vary in size and

peptide distribution. We suggest that peptide imbalance contributes

more to a better performance of the models than size, a finding that

was alsomade in antibody-antigen prediction Robert et al. (17). It will

be interesting to see whether the models perform well purely because

of peptide frequency, or whether other factors such as biological or

physicochemical properties may influence performance. This can be

explored by clustering peptides based on physicochemical features

using different approaches (HMM Rabiner (18) to KNN Taunk et al.

(19), and checking the performance. With various clusteringmethods

to choose and an abundant set of parameters, we would continue our

research on this in the future.
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FIGURE 7

Exemplary comparison of NetTCR-2.0 performance trained on dimbal and dbal . Data points indicate accuracy for models (trained on different
datasets) testing on unique peptide with different occurrence. mfp: most frequent peptide 20 examples in dbal and 9476 examples in dimbal .
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This is consistent with the consensus that currently available data

are not sufficient, an issue raised so far by every study of these models

Weber et al. (11); Montemurro et al. (12); Springer et al. (13); Xu et al.

(14); Moris et al. (15). The way we prove data dependence in this study

may not take into account the effects of sequence features or

similarities, but this actually strengthens the findings. We have

shown in the most straightforward and transparent way that down

to the smallest granularity (peptide as a categorical variable), data

imbalance has a major impact on performance. Our results support the

idea that a generalized predictive model requires data that is not only

large but also massively diverse to uncover a large range of potential

pMHC-TCR binding rules. A suggestion would be to specifically

increase the screening for scarce peptides to further increase dataset

diversity. TCR sequencing on the single cell level is a rapidly

progressing field, so affordable screening technology to do so with

high fidelity should be available soon.

The hypothesis that models such as TITAN might be able to

predict unseen but similar peptides or peptides from the same

origin is a very interesting research question for future work. If this

hypothesis holds, we need a global effort to experimentally screen a

set of peptides to cover a diverse peptides pool, and make use of the

generated data for constructing a generalizable prediction model.

A limitation of this study is that our datasets only comprised

TCRs from CD8+ T cells pairing with peptides presented by the

HLA-A*02 allele without considering other MHC alleles, however,

it was important to exclude additional variables such as HLA

isotypes at this point. Moreover, we only compared DL models

for predicting binding between random TCRs and random pMHC,

not epitope-specific models (i.e. the prediction of whether random

TCRs bind to a specific peptide). Meysman et al. have compared

superficially different approaches to TCR-pMHC binding Meysman

et al. (20), but also raised the importance of a truly independent

benchmark. They reveal that additional information like CDR1/2

improved the prediction, but they did not investigate the role that

imbalance, size or overtraining might have on model performance

by using those additional features within the used dataset.
4 Methods

4.1 Data preprocessing

4.1.1 Date merging and preprocessing
We downloaded the data from six different resources. We unified

the column names of (CDR3 TRA, CDR3 TRB, peptide and MHC,

etc.). We only kept entries that have a peptide and at least either a

CDR3 TRA or TRB sequence. Only TCRs sequences and peptide

sequences that use the 20 valid amino acid residues are kept. After

this quality control, all data from different resources weremerged into

one dataset (tpp dataset), duplicates in this merged dataset were then

removed. The preprocessing of the merged dataset and prefiltering

for different datasets are shown in Figure 1.

4.1.2 Splitting
We explored two different splitting methods (Figure S3). The

first method kept the distribution of the peptide in each part
Frontiers in Immunology 08
(uniform splitting). The second method distributed peptides to

each part, so that no peptide is in two different parts (strict

splitting). The strict splitting we used here is inspired by the

splitting method from the TITAN [20] model. Strict splitting was

only used for dbase (Figure 1). dbase,strict and dbase,uniform vary in size

(Table S2), because strict splitting includes peptides with less than

five examples. In subsection 2.1 we showed a data imbalance in

peptides. For the 5-fold cross-validation in strict splitting we

ensured, that each fold did not have a peptide exceeding more

than half of its entries. If a peptide has more entries it will be

downsampled to the half of the fold size. Uniform splitting exclude

peptides with less than five examples, because uniform splitting

requires at least one example for each peptide in all five folds. Table

S2 shows that dbase,strict have more unique peptides but less total

entries compare to dbase,uniform. In dbase,strict , we downsampled many

positive examples (for high frequent peptides) in order to generate

negative examples within each fold without external reference TCR

repertoire, this reduces the total number of examples in the dataset,

while in dbase,uniform, some examples for less frequent peptides were

filtered out to ensure at least one example in each fold.
4.1.3 Negative example generation
The collected and merged dataset only have positive binding

examples. The training of neural network models for binding

prediction requires positive and negative examples. The negative

examples were created by rearranging TCR-pMHC pairs. Let Ta,0,

Ta,1 be T cells which bind to peptide pa and Tb,0, Tc,0 bind to pb or

pc respectively. By pairing Ta,0, Ta,1 with pb and pc we created

negative pairing examples. Statistically it is unlikely for the new

generated TCR-pMHC pair to bind. This generation of negative

examples agrees with most models original work. For each positive

example a negative example was created. dbase, dbal and dimbal have

therefore a positive to negative ratio of 1 : 1. In case one peptide

needs more Ti (i.e. dimbal) to generate the same amount of negative

examples, Ti from previous downsampling served as additional

reference Ti.
4.1.4 Downsampling
Peptides are not uniformly distributed throughout tpp dataset.

Some peptides occur only a few times (low frequent peptides) and

some occur hundreds of times (high frequent peptide). For dbal and

dimbal we downsampled the high frequent peptides to keep only 10

random examples for each peptide.
4.2 Model performance measurement

We downloaded the source code for all models from their

respected GitHub repository. We evaluated all models with 5-fold

cross-validation. We used our datasets to train the models with the

default parameters. The performance is measured by the area under

the receiver and operator curve (ROC-AUC) Davis and Goadrich

(21), as well as the area under the precision recall curve (PR-AUC)

Saito and Rehmsmeier (22). The best ROC-AUC models was saved

and evaluated on testing set.
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