
 1

Optimization of Linked List Prefix Computations on Multithreaded GPUs Using
CUDA

(Technical Report UMIACS-TR-2010-08)

Zheng Wei and Joseph JaJa
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies, University of Maryland
College Park, U. S. A

{zwei, joseph}@umiacs.umd.edu

ABSTRACT

We present a number of optimization techniques to compute prefix sums on linked lists and implement them on multithreaded
GPUs using CUDA. Prefix computations on linked structures involve in general highly irregular fine grain memory accesses that
are typical of many computations on linked lists, trees, and graphs. While the current generation of GPUs provides substantial
computational power and extremely high bandwidth memory accesses, they may appear at first to be primarily geared toward
streamed, highly data parallel computations. In this paper, we introduce an optimized multithreaded GPU algorithm for prefix
computations through a randomization process that reduces the problem to a large number of fine-grain computations. We map
these fine-grain computations onto multithreaded GPUs in such a way that the processing cost per element is shown to be close to
the best possible. Our experimental results show scalability for list sizes ranging from 1M nodes to 256M nodes, and significantly
improve on the recently published parallel implementations of list ranking, including implementations on the Cell Processor, the
MTA-8, and the NVIDIA GeForce 200 series. They also compare favorably to the performance of the best known CUDA algorithm
for the scan operation on the Tesla C1060.

KEYWORDS: PREFIX COMPUTATION, LIST RANKING, GPU, CUDA, PARALLEL COMPUTING

1. INTRODUCTION

It has been widely recognized that the scan operation on an array of elements plays a fundamental role in parallel
processing [1,2,3]. This operation amounts to computing all the prefix sums of the elements stored in an array, and was
recognized early on to be solvable by a fast and work-optimal data parallel algorithm. In this case, a fast parallel algorithm
refers to O(log n) parallel time assuming an unlimited number of processing elements. By work optimal, we refer to the fact
that the data parallel algorithm asymptotically employs the same total number of operations as the best sequential algorithm. A
fast and work-efficient implementation of the scan operation on the NVIDIA GPU was recently reported in [4]. The
computation of prefix sums on the elements contained in a linked list also plays an important role in parallel processing of
irregular applications involving linked structures such as trees and graphs [5]. Given that the successor of each node of a linked
list can appear anywhere in the memory, this computation can be dominated by fine-grain irregular memory accesses and as
such it represents a challenging problem for parallel computing. It is worth noting that the list ranking problem is a special case
in which all the values stored in the linked list are equal to the identity element. In such a case, the prefix sum of a node (called
its rank) is equal to the distance of the node from the head of the list. In this paper, we will tackle the general prefix sums
problem but sometimes refer to it as list ranking.

The development of parallel algorithms for list ranking has received significant attention in the literature dating back to the
work of Wyllie [6] in which he introduced the pointer jumping technique for the PRAM model. More recently, the emergence
of many internet applications that involve extremely large amounts of data with linked structures has rekindled interest in list
ranking. Recent work on parallel algorithms for list ranking is reported in [7] and [8], which will later be compared to the
approach developed in this paper.

Our main contributions can be summarized as follows.

 2

 We develop a CUDA-tailored multithreaded implementation of a slight variant of the algorithm of Helman and JaJa [9]
and provide an analysis that is used to determine optimal values for the number of blocks, number of threads, and
number of sublists handled per thread.

 Experimental results on the NVIDIA Tesla C1060 show linear scalability for lists whose sizes range from 1M to 256M
nodes, with the processing time per node shown to be very close to the best theoretical time that can be supported by the
hardware.

 Our execution times are significantly faster than the recently published results for list ranking on multicore processors,
and compare favorably to the best known CUDA implementation of the sequential scan operation on the same hardware.

2. MULTITHREADED GPUS USING CUDA

A surprising facet of the recent evolution of multicore processors is the continued appearance of extremely powerful GPUs
that have much better performance to power ratio than the standard multicore CPUs, and that offer increasingly more flexible
general purpose programming environments. Examples of such co-processors include the IBM Cell Broadband Engine (Cell
BE), the NVIDIA GeForce 200 series, and the Intel Larrabee. These multicore processors provide flexible general-purpose
programming environments with impressive peak performance. Since this paper is primarily concerned with optimization
techniques for the NVIDIA CUDA programming model [10], we devote the rest of this section to briefly summarize that
programming model and related features.

The basic architecture of the NVIDIA GeForce 200 series consists of a set of Streaming Multiprocessors (SMs), each of
which containing eight Scalar Processors (SPs or cores) executing in a SIMD fashion, 16,384 registers, and a 16KB of shared
memory. The 16KB shared memory is organized into 16 banks. Threads running on the same SM can share data and
synchronize limited by the available resources on the SM. Each SM has small constant and texture caches. All the SMs have
access to a very high bandwidth Global Memory; such a bandwidth is achieved only when simultaneous accesses are coalesced
into contiguous 16-word lines. However the latency to access the global memory is quite high and is around 400-600 cycles.

In our work, we have used the NVIDIA Tesla C1060 that has 30 SMs coupled to a 4GB global memory with a peak
bandwidth of 102 GB/s. Fig. 1 and Fig. 2 illustrate the overall architecture of the Tesla C1060.

The characteristics of the memory organization of the Tesla C1060 are summarized in Table I.
The CUDA programming model envisions phases of computations running on a host CPU and a massively data parallel

GPU acting as a co-processor. The GPU executes data parallel functions called kernels using thousands of threads. Each GPU
phase is defined by a grid consisting of all the threads that execute some kernel function. Each grid consists of a number of
thread blocks such that all the threads in a thread block are assigned to the same SM. Several thread blocks can be executed on
the same SM, but this will limit the number of threads per thread block since they all have to compete for the resources
(registers and shared memory) available on the SM. Programmers need to optimize the use of shared memory and registers
among the thread blocks executing on the same SM.

Each SM schedules the execution of its threads into warps, each of which consists of 32 parallel threads. Half-warp (16
threads), either the first or second half of a warp, is introduced to match the 16 banks of shared memory. When all the warp’s
operands are available in the shared memory, the SM issues a single instruction for the 16 threads in a half-warp. The eight
cores will be fully utilized as long as operands in the shared memory reside in different banks of the shared memory (or access
the same location from a bank). If a warp stalls, the SM switches to another warp resident in the same SM.

Optimizing performance of multithreaded computations on CUDA requires careful consideration of global memory
accesses (as few as possible and should be coalesced into multiple of contiguous 16-word lines); shared memory accesses
(threads in a warp should access different banks); and partitioning of thread blocks among SMs; in addition to carefully
designing highly data parallel implementations for all the kernels involved in the computation.

Figure 1. Architecture of the Tesla C1060

 3

Figure 2. Architecture of the TPC in Tesla C1060

TABLE I. OVERALL MEMORY ORGANIZATION OF THE TESLA C1060

Global

Memory
Shared

Memory
Constant

Cache
Texture
Cache

Size 4GB
16KB per

SM
8KB per

SM
6-8KB
per SM

Accessibility
All

threads

All threads
in the same

block

All
threads

All
threads

Other
Properties

High
latency

Low
latency

Only
readable
by thread

Only
readable
by thread

3. MULTITHREADED LIST RANKING ALGORITHM AND OPTIMIZATION TECHNIQUES FOR CUDA

Let L be a singly linked list in which each node contains two fields, one containing a data element and the second
containing a pointer to the successor. The last node on the list is distinguished by a negative value in the successor field. The
computation of prefix sums on L amounts to updating the value in the data field of a node by the sum of the values stored in
the data fields of all the predecessor nodes, including the node itself. In other words, it is identical to the scan operation when it
is carried out on an array A such that A[i] holds the value of the node of rank i. We assume that our list L is represented by an
array X such that X[i].prefix and X[i].succ represent respectively the data and successor fields. Note that X[i].succ could be any
arbitrary index in the array X. In our case, we assume that the head of L is not known, and hence has to be identified by the
algorithm before prefix computations can take place. The main reason for making this assumption is to explore the impact of
the presence of significant caches (as in the Intel Clovertown processor) since the initial step that determines the head of the
list will fill the cache with some of the input data thereby rendering the execution of later steps faster on such processors.

The list ranking problem admits of a simple and effective sequential algorithm involving two passes through the array X.
The first pass identifies the head of the list, and the second pass traverses the list, starting from the head, and following the
successor field while accumulating the prefix sums in the traversal order. This sequential algorithm performs extremely well in
practice, especially if the processor contains a large enough cache, and hence it is somewhat of a challenge to develop a work-
optimal, data parallel version that scales linearly.

3.1. Overview

Before introducing our approach, we quickly review the best known CUDA implementation of the scan operation on an
array X [4], a considerably simpler problem. The array is partitioned into subarrays, each group of whose prefix sums is
computed separately by a block of threads using a data parallel algorithm that is a slight variation of Blelloch’s [3]. The prefix
sums of the last element of each subarray are then written into another array Y, followed by applying the same scan procedure
on Y. Each prefix sum of Y is then added to each element of the corresponding block of X. This strategy can be viewed as a
divide-and-conquer strategy in which the conquer steps involve the use of data parallel algorithms. As is, this strategy will not
be appropriate for the list ranking problem. In particular, each subarray resulting from the initial partition may contain many
sublist fragments of the initial list, whose head nodes have to be identified before any useful work can be done. Such a process
seems to require almost as much work as the initial list ranking problem.

 4

Our approach for list ranking is also based on a divide-and-conquer strategy but the initial partitioning is randomized. We
randomly select s nodes (called splitters) from L and use these nodes to decompose the list into sublist fragments (or just
sublists), each of which begins with a random node and consists of the successor nodes until we reach a node whose successor
is a splitter. As we will see later, the choice of s is critical for optimal performance; the larger s the better the load balance
among the streaming processors but the more the overhead will be incurred in combining the partial results. We divide these
fragments equally between CUDA grid blocks, and use highly data parallel algorithms to process the fragments within each
block. This is followed by a list ranking algorithm applied on the list L’ consisting of these s random nodes, where the
successor of a random node Z is the first random node encountered upon the traversal of L starting from Z. The last merge step
is similar to that of the scan operation and involves adding each prefix sum of L’ to each element of the corresponding sublist
fragment.

 (a) (b)

Figure 3. Input array and the corresponding output for list ranking

3.2. Detailed Description of Prefix Sums Algorithm

The prefix sums problem is formally defined as follows. We are given a singly linked list L of n elements stored in an array
X such that X[i] contains two fields, X[i].prefix holding a data value and X[i].succ holding the array index of its successor. The
successor of the last element of L contains a negative integer indicating the end of the list. We make the assumption that the
index of the head of the list is not known. The prefix sum of the ith node (assuming not the head of the list) is defined by:

X[i].prefix = X[i].data  X[pre].prefix,
where pre is the index of the predecessor of X[i] and  can be any binary associative operator. For the head of the list, the

corresponding prefix sum is equal to the value of the data stored there. Fig. 3 illustrates a simple example of a list and the
corresponding prefix sums.

Our algorithm will follow the strategy outlined in the previous section using in particular many of the details developed in
[9]. More specifically, our algorithm consists of the following five steps:
 Step 1: Compute the location of the head of the list.
 Step 2: Select s random locations of X to split the list into s random sublists, where each random location provides a

pointer to the head of a sublist. As we will see, the value of s will be selected to guarantee load balancing with high
probability.

 Step 3: Using the standard sequential algorithm, compute the prefix sums of each sublist separately. All the sublists can
be handled in parallel.

 Step 4: Compute the prefix sums of the list consisting exclusively of the splitters, where the successor of a splitter is the
next splitter encountered when traversing the initial list.

 Step 5: Update the prefix value of each element of the array X by using the prefix sum values computed in Step 4.

3.3. Implementation Details and Analysis

The list ranking algorithm in [9] was designed for symmetric multiprocessors with caches. In our heterogeneous CPU and
GPU platform, we partition the work so that few specialized tasks that can substantially benefit from caches are allocated to the
CPU. The remaining tasks are handled by thousands of threads on the GPU in such a way as to hide memory access latency
and make effective use of the shared memory. The implementation details of each step are described next.

Step 1 can be implemented as follows. Since each of the indices between 0 and n-1, except for the index of the head node,
must occur exactly once in the successor fields, the index of the head node can be computed by the formula:

(1)
_

2

n n
HEAD SUM SUCC


 

where SUM_SUCC is the sum of the all indices in the successor fields, except for the negative index. Hence this step

amounts to a sum operation, which can be performed by a data parallel CUDA algorithm built around a balanced binary tree
[11]. The resulting algorithm is work optimal and makes effective use of global and shared memory accesses. The details can
be found in [11].

 5

Step 2 is implemented as follows. For every subarray of X of size n/s, we select a random location as a splitter, and record
it in an array Sublist_head. Then the successor field of splitter i in the original list is first copied into array Sublist_scratch[i]
and then changed into –i in X to indicate the fact that it is now the head of sublist i. Hence Step 2 involves highly data parallel
computations that are independent of each other.

Step 3, the most computationally demanding step of our algorithm, is implemented as follows. The s sublists are allocated
equally among the CUDA blocks, which in turn are allocated equally among the threads of each block. Each thread will then
compute the prefix sums of each of its sublists and copy the prefix value of the last element of sublist i into Sublist_prefix[i].
Note that the head location of sublist i can be found in Sublist_head[i], and its successor index in Sublist_scratch[i]. The end
of a sublist can be identified by the negative successor index, indicating the head of another sublist. Also, once a node is
traversed, its successor is changed into –j if it belongs to sublist j.

Using Lemma 1 of [9], the total number of nodes handled by a thread is about the same as any other thread with high

probability if the number of sublists is at least lnp n and the number of processors p is
ln

n

n
 , where n is the total number

of nodes in the original list. We will later determine the best combination of the values of the number of blocks, the number of
threads per block, and the number of sublists per thread, which will clearly satisfy these conditions.

Step 4 uses the standard sequential algorithm to carry out the prefix computations on the list of splitters. In our case, this
step is executed on the CPU since the amount of data involved is quite small. As we will see, the amount of time taken by this
step (including the time to move the list of splitters from the GPU global memory to the main memory and back into the GPU
global memory) is less than 3% of the total execution time of the algorithm.

Step 5 updates the values of the prefix sums computed in Step 3 using the splitters prefix sums of Step 4. Hence we have to
identify the sublist of X[i] for each i. This can easily be done by checking the value of X[i].successor, which was set to the
negative index of the corresponding sublist. Therefore, all the elements of X can be updated as follows:

for all i between 1 and n do in parallel
X[i].prefix= X[i].prefix Sublist_prefix[-X[i].successor]

We perform this operation using coalesced memory accesses to the array X. We store Sublist_prefix into the constant
memory of the Tesla C1060 and then each SM can use its constant memory cache to load Sublist_prefix instead of always
fetching it from global memory.

D. Comparison with Recent Parallel List Ranking Algorithms

While both [7] and [8] use the algorithm of [9] as the basis of their list ranking algorithms for CUDA and the Cell
Processor respectively, there are a significant number of differences between their implementations and ours. We focus here on
the main differences with [8] and ours since they use the same CUDA programming model. The main differences are:
 The algorithm in [8] uses n/logn or n/(2log2n) as the number of splitters, which tends to generate too many sublists for

very large n. As a result, handling the list of splitters and combining the results incur a very significant overhead. In our
implementation we strike an optimal balance between the desirability of a large number of sublists (for fine-grain data
parallel computations and load balancing) and the splitting/merging costs.

 The algorithm of [8] recursively computes the prefix sum of Sublist_prefix, which will incur a very significant overhead.
We simply perform this step using a sequential algorithm on the CPU. In our case, the execution time of this step is at
most 3% of the total time.

 It is not clear how the splitters in [8] are selected. Unless they are selected carefully, the longest sublist can be very long
in which case no load balancing will be possible. In our algorithm, we select the splitters in such a way as to guarantee
load balancing with high probability.

 Another difference is the fact that [8] assume that they already know the head of the list, which makes their problem
slightly easier than ours.

4. EXPERIMENTAL RESULTS

Our prefix sums algorithm is tested on the NVIDIA Tesla C1060 graphic card as a co-processor to an Intel Xeon X5260
Processor. Each of the input arrays consists of 64-bit entries such that 32 bits are reserved for the data field and the remaining
32 bits are reserved for the successor field. We select addition as our associative  operation. As in [9], we consider three
main types of input: (i) random, in which the successor is selected randomly from among the indices of the array; (ii) ordered,
in which the successor node is the next consecutive node in the array; and (iii) stride of size d, in which the successor of each
node is d indices away from the node, with wrapping around as necessary, and where d is some integer constant. We typically
run each test hundreds of times, and report the average times over all these runs.

 6

4.1. Performance as a Function of Various Parameters

We conduct extensive tests to determine the performance of our algorithm as a function of: (i) type of list (random, ordered,
stride); (ii) number of random splitters (i.e. number of sublists). In the rest of this section, we give a summary of the results of
these tests.
4.1.1. Performance as a Function of the types of lists

Typical execution times of our algorithm on ordered, random, and stride (with different stride values) lists with 64M (1M =
220) nodes are shown in Fig. 4. Tests run using different list sizes show a very similar pattern. Parameters (number of sublists,
number of blocks, number of threads per block, and number of sublists per thread) are selected to yield the best performance
for each type. The values of these parameters turn out to be the same for all list types. The results show a slightly faster
performance on ordered lists, and show performance on stride lists which ranges from that of ordered lists to that of random
lists depending on the size of the stride. However, overall the difference in execution times is at most 10%.

Given the overall memory architecture of the Tesla, these results are not surprising. Note that since parallel accesses to
contiguous locations can be coalesced, we see a slightly improved performance on ordered lists, or stride lists with small
strides. However memory coalescing is limited once parallel threads process different sublists that are relatively far apart. An
important observation is that when the stride value is large enough (> 100), the performance on stride lists is almost identical or
worse to that on random lists. Given this fact, we use stride lists with different stride values (typically stride value = 1,001) to
report on the performance of our algorithm since it is much easier to generate such lists.

271 273 277

297 297 297 297

0

80

160

240

320

Ordered S=1 S=11 S=101 S=1001 S=10001 Random

List Type

R
u

n
n

in
g

 T
im

e
(m

il
li

se
co

n
d

s)

Figure 4. Performance of our algorithm on different types of lists with 64M nodes

4.1.2. Performance as a Function of the number of sublists
We focus our attention here in determining the best value of s, the number of sublists. This issue is somewhat intertwined

with the choices of other parameters such as number of blocks, number of threads per block, and number of sublists per thread.
Since the head of each sublist is randomly selected, the length of each sublist may vary over a large range. To achieve the

best performance, we must try to balance the work load (number of nodes processed) among all the SMs and the SPs, which is
in particular critical for the most computationally demanding Step 3 of our algorithm. In fact, the running time of Step 3 is
dominated by the execution time of the SM that has to process the maximum number of nodes.

For a fixed value of s, it is clear from the randomization performed in Step 2 that the more sublists are assigned to each
thread, the more load balanced the work of the threads will be. This is intuitively clear and also follows from the proof of the
main lemma in [9]. Hence this implies that a smaller number of threads will yield better performance. We can make the same
argument regarding the number of blocks. For our Tesla processor, the number of blocks has to be a multiple of 30 (including
30 itself) and the number of threads per block has to be a multiple of 64. It turns that, for a fixed size list, the best performance
is achieved when the number of blocks is equal to 30 and the number of threads per block is set equal to 64. Fixing these two
parameters, we now take a close look at the execution time of Step 3 and overall execution time of the algorithm as a function
of the number of sublists for a list of size 64M.

As expected, the execution time of Step 3 decreases as the number s of sublists increases. However the overhead to create
these lists (Step 2) and to combine the partial results (Step 4) will eliminate any gain beyond the valued of s=61,440, resulting
from the combination of 30 blocks, 64 threads per block, and 32 sublists per thread. It turns out that these values are consistent
for all lists of sizes larger than 16M (up to 256M in our tests). Also, note that in the same graph we show that the maximum
number of nodes handled by any SM, which decreases as we increase the number of splitters.

 7

0

60

120

180

240

300

360

420

1920 3840 7680 18432 30720 61440 122880 245760

Number of Total Sublists

R
u

n
n

in
g

 T
im

e
(m

il
li

se
co

n
d

s)

0

500000

1000000

1500000

2000000

2500000

3000000

M
axim

u
m

 N
u

m
b

er o
f N

o
d

es H
an

d
led

 b
y O

n
e

S
M

Step 3 Running Time
Total Running TIme
of Nodes per SM

Figure 5. Performance of Step 3 and overall algorithm as a function of s on 64M stride list (stride = 1001). Upper curve represents the maximum load on an

SM as a function of s.

4.1.3. Performance as a Function of the number of blocks
In this section, we report on the performance of our algorithm as we vary the number of blocks from 1 to 120. The

NVIDIA scheduler allocates each block to an SM, and may allocate up to eight blocks to a single SM as necessary. Fig. 6
shows that the performance of our algorithm is almost linear in the number of blocks whenever the number is less than or equal
to 30. In our tests, we have used a stride list of 64M nodes with stride value 1001, 64 threads per block, and 61,440 sublists.
This combination yields the best performance for any number of blocks. The performance stays about the same as we increase
the number of blocks from 30 to 120, indicating that load balancing and memory accesses do not improve as we increase the
number of blocks beyond 30.

Figure 6. Performance of our algorithm on a 64M stride list (stride = 1001) as a function of the number of blocks.

4.2. Migration of the computations in Step 4 to CPU

In Step 4, the sequential prefix sums algorithm is executed on the splitters, a process that can be carried out on the CPU or
the GPU. If this task is migrated to the CPU, we have to pay the additional cost of moving the data from the GPU global
memory to main memory and then copying the results back into the GPU to complete the execution of the algorithm. A reason
to do this is that all the splitters can fit into CPU cache, which can speed up the computation. In our tests on 64M lists with
61,440 splitters, the GPU sequential algorithm takes 56.72 milliseconds to finish this task, which is about 16.57% of the total
running time. On the other hand, this step only takes 2.076 milliseconds if migrated to the CPU: 0.346 milliseconds to copy
these splitters from the GPU memory to main memory, 1.365 milliseconds to perform the computation, and 0.365 milliseconds
to copy the results back to the GPU. This amounts to 0.70% of the total running time and the percentage is even lower for
larger lists.

 8

4.3. Overall Performance of our Algorithm and its Scalability

We now report on the overall performance of our algorithm as a function of the list size using stride lists whose sizes range
from 1M to 256M. Table II shows the detailed execution times of each of the steps for different list sizes. We have used the
number of blocks to be 30 and the number of threads per block to be 64 based on the discussion above. The number of sublists
per thread increases linearly with list size until it reaches 32, after which the running time spent on dividing and conquering
increases faster than the time saved in fine tuning the loads among the threads. The overall running time scales linearly with
the size of the list as illustrated by the graph in Fig. 7.

TABLE II. EXECUTION TIMES IN SECONDS OF THE DIFFERENT STEPS OF OUR ALGORITHM AS A FUNCTION OF THE LIST SIZE. WE USE STRIDE LISTS (STRIDE
VALUE = 1001)

List Size
(1M=210)

Sublists per
Thread

Step 1
(secs)

Step 2
(secs)

Step 3
(secs)

Step 4
(secs)

Step 5
(secs)

Total
(secs)

1M 30*64*2 0.000221 0.000350 0.003877 0.000118 0.000824 0.005592

2M 30*64*4 0.000387 0.000744 0.007126 0.000468 0.001740 0.010718

4M 30*64*8 0.000669 0.000639 0.014794 0.000476 0.003473 0.020342

8M 30*64*16 0.001261 0.001140 0.028548 0.000979 0.006164 0.038470

16M 30*64*32 0.002451 0.001944 0.057316 0.001723 0.011974 0.075690

32M 30*64*32 0.004889 0.002139 0.115246 0.002380 0.024180 0.149186

64M 30*64*32 0.011538 0.003580 0.225137 0.002076 0.050643 0.296722

128M 30*64*32 0.019263 0.002129 0.451424 0.002006 0.099795 0.574955

256M 30*64*32 0.038433 0.002682 0.935964 0.002001 0.201184 1.180574

0.001

0.01

0.1

1

10

1M 2M 4M 8M 16M 32M 64M 128M 256M

List Size (1M=1,048,576)

R
u

n
n

in
g

 T
im

e
(s

ec
s)

Figure 7. Scalability to list sizes on Stride lists (stride = 1001)

4.4. How much Can our Algorithm be Improved?

We now take a close look at the processing time per node achieved by our algorithm as a function of the list size ranging
from 1M to 256M. Based on our extensive tests, the processing cost per node ranges between 4.28ns to 5.33ns, as long as the
stride value is not extremely large. However, and surprisingly, the processing cost per node seems to increase significantly
when the stride value is extremely large. To better understand this unexpected phenomenon and to determine whether our cost
per node can theoretically be improved, we develop an optimized CUDA program whose main goal is to only access the
device global memory at a very fine granularity, and compare its execution time per element to that of our prefix sums
algorithm. It turns out that the performance of our algorithm is very close to the optimized global memory testing algorithm,
both for extremely large strides and for moderate/small strides. We provide the details next.

Let Y be an array such that each entry consists of 64 bits. We develop a trivial CUDA algorithm such that each of its
threads reads a location of Y (dependent on the thread ID), and then successively reads N locations which are at a certain stride
d from the initial location. Our goal is to develop such a CUDA algorithm that results in the best possible performance per
single access. Let B be the number of blocks and Th be the number of threads of our program. We conduct tests based on the
following 224 possible combinations of the values of B, Th, and N:

B = { 8, 15, 16, 30, 32, 60, 64, 128 };
Th = { 8, 16, 32, 64, 128, 256, 512};

 9

N = { 1024, 2048, 4096, 8192}.

The ranges above seem to cover all reasonable values to achieve the best possible access cost per element. After exploring
all the combinations, the values achieving the best access time per element turn out to be: B = 16, Th = 64 and N = 4096. Some
other combinations came close but not as good as this combination. The typical time per access is 4.044067 ns for many of the
tested sizes for the array Y (varied from 1M to 256M entries – that is, actual size of array Y varies from 8MB to 2GB).

We now compare the performance of the global memory testing algorithm with that of our prefix sums algorithm focusing
on stride lists, starting with the case of stride value d =1001. A summary of the results is shown in Table III, which is also
illustrated in the graph shown in Fig. 8. These results clearly demonstrate that the performance of our list ranking program is
very close to the performance achieved by the optimized global memory testing program.

TABLE III. TIME IN NANOSECONDS PER ELEMENT COMPARISON BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING PROGRAM (STRIDE = 1001)

List Size
(1M = 1,048,576)

1M 2M 4M 8M 16M 32M 64M 128M 256M

File Size
(MB)

8 16 32 64 128 256 512 1024 2048

Test Program-Stride=1001
(per 64-bit integer)

3.70 3.84 3.93 3.97 4.00 4.04 4.06 4.13 4.19

List Ranking-Stride=1001
(per 64-bit node)

5.33 5.11 4.85 4.59 4.51 4.45 4.42 4.28 4.40

Figure 8. Time per element comparison between list ranking and global memory testing program (Stride = 1001) on the Tesla C1060

We now consider the case of extremely large stride values which are close to the size of lists. In this case, the performance
degrades substantially when the stride value is 64M or larger (and hence list sizes are larger than 64M nodes) both by the
global memory testing program as well as our prefix sums algorithm. However the performance per element still matches for
both algorithms. Table IV and Fig. 9 illustrate the performance of both algorithms for extremely large stride values.

TABLE IV. PERFORMANCE COMPARISON OF COST PER ELEMENT IN NANOSECONDS BETWEEN LIST RANKING AND GLOBAL MEMORY TESTING PROGRAM
USING EXTREMELY LARGE STRIDES

List Size
(1M = 1,048,576)

1M 2M 4M 8M 16M 32M 64M 128M 256M

File Size
(MB)

8 16 32 64 128 256 512 1024 2048

Test Program-Random
(per 64-bit integer)

3.74 3.86 3.95 3.99 4.03 4.06 4.07 8.70 13.40

List Ranking
(per 64-bit node)

5.33 5.11 4.85 4.59 4.51 4.45 4.42 9.33 14.05

Figure 9. Time per element comparison between list ranking and global memory testing program with extremely large strides

 10

4.5. Performance Comparison on Different Machines

In this section, we compare the performance of our prefix sums algorithm on the Tesla C1060 and the Intel 8-core
Clovertown, as well as, to the performance of other recently reported list ranking algorithms on the Cell Processor, the MTA-8
(eight 220MHz Cray MTA-2 processors) [7], and the NVIDIA GTX280 [8]. Our Intel Clovertown consists of four duo-cores,
each with 4MB of L2 cache. The overall Clovertown architecture is illustrated in Fig. 10.

Figure 10. An overview of the architecture of the Clovertown

Figure 11. Comparison of different platforms on Random List with 8M nodes

Fig. 11 provides a summary of the overall performance of our prefix sums algorithm on the Tesla and Clovertown, and the
best performance numbers reported on other machines for the list ranking problem on random list with 8M nodes. It is clear
that our algorithm achieves the best raw performance even when compared to the Cray MTA-8 machine. The high
performance of our algorithm can be attributed to the following facts:
 Our implementation uses thousands of active threads to make effective use of the hundreds of processors available and

to hide memory access latency;
 Cache sensitive computations are migrated to the CPU while the Cell has a small local cache and the MTA-8 has no

local cache;
 The tradeoff between balanced workload for each processor and a small overhead of merging parallel results is well

addressed and as a result the power of the underlying GPU hardware is fully utilized;
 Shared memory with one clock cycle access time among eight SPs from the same SM is used whenever applicable to

reduce the inter-processor synchronization and communication overhead of parallelism; on the other hand, processors on
either the Cell or the MTA-8 are interconnected by networks with relatively high latency;

 Global memory accesses are coalesced to exploit the high bandwidth of the GPU whenever possible.
We now compare the performance of our algorithm to that of the scan operation on the Tesla C1060, as well as to that of

the Clovertown on ordered lists. Clearly we expect the Clovertown performance to improve significantly on ordered lists
because of the L2 cache. On the other hand, the scan operation is specifically designed for sequential lists, and hence optimized
coalescing of global memory accesses and optimized access to the shared memory (that is, avoiding bank conflicts) are
reported in the CUDA implementation of [4]. A summary of the results is illustrated in Fig. 12 for the case of 64M nodes. Both
the scan algorithm and our algorithm are run on the Tesla C1060, and the performance ratio 7-8 of our algorithm compared to
the scan operation seems to hold independent of the list size.

 11

Figure 12. Performance of the scan operation and our list ranking algorithm applied to 64M ordered list on the Tesla C1060. The rightmost bar represents the

performance of our algorithm on the Clovertown using the same ordered list.

5. CONCLUSION

In this paper, we presented an optimized CUDA algorithm for performing prefix sums on linked lists. Such computation
amounts to highly irregular, fine-grain global memory accesses, and hence is usually considered to be unsuitable for the stream
based, data parallel CUDA programming model. The algorithm creates randomized sublists that are handled by parallel threads
in such a way that the merging operation is organized to exploit the CUDA architecture. We have conducted extensive tests of
our algorithm on the Tesla C1060 using different types of linked lists of sizes ranging from 1M nodes to 256M nodes. The
results show scalable performance with the cost of processing a node close to the best possible for the Tesla processor. A
byproduct of our tests is the discovery of significant memory performance degradation whenever the consecutive locations
accessed by a thread become far apart.

ACKNOWLEDGMENT

We would like to thank Dave Luebke and NVIDIA for providing the Tesla processors used in this research and Mark
Harris from NVIDIA for providing help in CUDA programming. This research was partially supported through an NSF
Research Infrastructure award, grant number CNS 0403313.

REFERENCES

[1] G. E. Blelloch, Vector Models for Data-Parallel Computing, MIT Press, Cambridge, London, 1990.

[2] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens, Scan primitives for GPU computing, Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, 2007, pp. 97-106.

[3] G. E. Blelloch, Prefix sums and their applications, Chapter 1 in Synthesis of Parallel Algorithms by J. H. Reif, Morgan Kaufmann Publishers Inc., San
Mateo, California, 1993, pp. 35-60.

[4] M. Harris, Parallel Prefix Sum (Scan) with CUDA, NVIDIA Corporation, 2008.

[5] J. JaJa, And Introduction to Parallel Algorithms, Addison-Wesley Publishing Company, New York, 1992.

[6] J. C. Wyllie, The Complexity of Parallel Computations, PhD Thesis, Department of Computer Science, Cornell University, Ithaca, NY, 1979.

[7] D. A. Bader, V. Agarwal, K. Madduri, On the Design and Analysis of Irregular Algorithms on the Cell Processor: A Case Study of List Ranking, IEEE
International Parallel and Distributed Processing Symposium, 2007.

[8] M. S. Rehman, K. Kothapalli, P. J. Narayanan, Fast and Scalable List Ranking on the GPU, 23rd International Conference on Supercomputing (ICS),
New York, USA, 2009.

[9] D.R. Helman, J. JaJa, Prefix Computations on symmetric multiprocessors, Journal of Parallel and Distributed Computing, 2001, 61(2): pp. 265-278.

[10] NVIDIA Corporation, NVIDIA CUDA Programming Guide Version 2.2.1, 2009.

[11] M. Harris, Optimizing Parallel Reduction in CUDA, available at
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/reduction/doc/reduction.pdf. Access date: 01/27/2010.

