
ABSTRACT

Title of
Thesis:

APPLICATION SPECIFIC PRECISION ANALYSIS OF
CHOLESKY DECOMPOSITION IN MMSE MIMO
RECEIVER SYSTEMS
Muhammad Umer Ikram, Master of Science, 2010

Directed By: Assistant Professor, Dr. Peter Petrov
Department of Electrical and Computer Engineering

We conduct an exploration study of various bit precisions for Cholesky

decomposition. This research focuses on obtaining the minimum required signal to noise

ratio (���) in Cholesky decomposition by reducing the internal precision of the

computation. Primary goal of this research is to minimize resources and reduce power by

performing calculations at a lower internal precision than the full 32-bit fixed or floating

point. Cholesky decomposition is a key component in minimum mean square error

(MMSE) multiple-input multiple-output (MIMO) receiver systems. It is used to calculate

inverse of a matrix in many modern wireless systems. Cholesky decomposition is a very

computation heavy process. We have investigated the effects of internal bit precisions in

Cholesky decomposition. This is an exploration study to provide a benchmark for system

designers to help decide on the internal precision of their system given �������, signal

and noise variances, required output ��� and symbol error rate.

Using pseudo floating point to control internal bit precision we have simulated

Cholesky decomposition at various internal bit precisions with variable signal and noise

variances, and �������values. These simulations have provided ��� for lower triangular

matrix �, its inverse �	
, and the solution vector � (from the matrix equation �� = �).

In order to observe the effects of various bit precisions on ��� and symbol error

probability, ��� in � and �	
are plotted against condition number for 2x2, 4x4, 8x8, and

16x16 input matrices, and loss in symbol error probability (����) is plotted against

condition number for 4x4 matrices for QPSK, 16QAM and 64QAM constellations.

We find that as the internal precision is lowered there is a loss in SNR for � and

�	
matrices. It is further observed that loss in symbol error rate is negligible for internal

bit precisions of 28 bits and 24 bits in all constellations. The loss in symbol error rate

begins to show at 20 bits of precision and then increases drastically, especially for higher

�������. These results provide an excellent resource for system designers. With these

benchmarks, designers can decide on the internal precision of their systems according to

their specifications.

APPLICATION SPECIFIC PRECISION ANALYSIS OF CHOLESKY
DECOMPOSITION IN MIMO RECEIVER SYSTEMS

by

Muhammad Umer Ikram

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2010

Advisory Committee:
Assistant Professor Dr. Peter D. Petrov – Advisor
Associate Professor Emeritus Steven A. Tretter
Professor Shuvra S. Bhattacharyya

© Copyright by
Muhammad Umer Ikram

2010

ii

ACKNOWLEDGEMENTS

First, I would like to thank Graduate Studies Office at Electrical & Computer Engineering

Department at University of Maryland College Park, and Texas Instruments in providing me the

invaluable opportunity to be a Texas Instruments Scholar for the year 2008 – 2009. This

opportunity enabled me to work on industry level projects and learn from experienced

professionals. I would to give a special thanks to Brian Johnson, Alexander Purkovic, Mingjian

Yan, and their team at TI for their patience, guidance, and support throughout my research. It

was a great privilege to work with such talented people. Without their help, this research project

would not have been possible.

I would like to thank my advisor, Dr. Peter Petrov, for mentoring me as a graduate student.

He has always believed in me and supported me through my entire graduate studies. He will be

my advisor during my Ph.D. studies as well. I would also like to thank Dr. Steven Tretter for his

continual help and support throughout my research. The time he spent with me to discuss ideas

and answer my questions was invaluable. I also would like to express my sincere appreciation to

Dr. Shuvra Bhattacharyya for serving on my Master’s Thesis committee.

Finally, I would like to acknowledge the unconditional support given to me by my mother,

and father. They have always guided me in the correct direction, and helped me face challenges

throughout my life. I know that I will never be able to fully repay my parents for all the hardship

they have endured on my part, but at the same time I feel blessed that Allah has given me such

caring parents. Also, I would like to thank my beloved wife for all her support, and for

encouraging me in times of need.

iii

Contents

Chapter 1 Introduction ...1

1.1. Introduction ...1

1.2. Cholesky Decomposition ..2

1.3. MIMO in Long Term Evolution (LTE)...3

1.4. Precision Analysis ...6

1.5. Outline ...7

Chapter 2 Related Work...8

Chapter 3 Problem Formulation...13

3.1. Channel Model ..13

3.1.1. LTE Uplink MIMO ..13

3.1.2. LTE MMSE MIMO Receiver ..14

3.2. Fixed Point Implementation Drawbacks ...19

Chapter 4 Simulation Setup ...21

4.1. Simulation outline ...21

4.2. Pseudo Floating Point ...26

4.2.1. Precisions explored ..27

4.3. SNR as a function of Condition Number ..27

4.3.1. Effect of SNRline on Condition Number...28

4.4. System Variables explored ..28

Chapter 5 Results & Discussion ..30

5.1. SNR forL, L-1 Matrices ...30

5.1.1. Simulation Specifications ..30

5.1.2. 2x2 Input Matrix ..31

5.1.3. 4x4 Input Matrix ..32

5.1.4. 8x8 Input Matrix ..34

5.1.5. 16x16 Input Matrix ..35

5.2. SNR for Solution Vector ...36

5.2.1. Simulation Specifications ..36

5.2.2. QPSK SNR Analysis..37

5.2.3. 16QAM SNR Analysis ..41

5.2.4. 64QAM SNR Analysis ..45

iv

5.3. Loss in Symbol Error Rate ..50

5.3.1. Simulation Specifications ..50

5.3.2. QPSK SER Loss ..51

5.3.3. 16QAM SER Loss ...53

5.3.4. 64QAM SER Loss ...56

Chapter 6 VEX Hardware Simulator ...59

6.1. The VEX System ...59

6.2 VEX Simulation Setup ..60

6.3 VEX Simulation Results ...62

Chapter 7 Conclusion ...64

7.1 Conclusion ...64

7.2 Future Prospects ..65

References ..66

v

List of Tables

Table 3.1: Parameter combinations for simulations ... 19
Table 4.1: Cholesky decomposition scheme used to calculate A = LL† 22

Table 6.1: Comparison of TI C64x DSP Specifications and VEX Simulator Setup 60

vi

List of Figures

Figure 1.1: A general MIMO channel model.. 4
Figure 1.2: QPSK Constellation diagram with Gray coding .. 5
Figure 1.3: 16QAM Constellation diagram with Gray coding ... 6
Figure 3.1: Uplink Multi-user MIMO ... 13
Figure 3.2: Equivalent frequency domain system model.. 14
Figure 3.3: System model used for the MMSE estimation (per sub-carrier) 15

Figure 4.1: SER and BER vs. SNR for QPSK .. 24
Figure 4.2: Symbol SER and BER vs. SNR for 16QAM ... 25
Figure 4.3: SER and BER vs. SNR for 64QAM ... 25
Figure 5.1: SNR(dB) for 2x2 L matrix ... 31
Figure 5.2: SNR(dB) for 2x2 L-1 matrix ... 31

Figure 5.3: SNR(dB) for 4x4 L matrix ... 32
Figure 5.4: SNR(dB) for 4x4 L-1 matrix ... 32

Figure 5.5: SNR(dB) for 8x8 L matrix ... 34
Figure 5.6: SNR(dB) for 8x8 L-1 matrix ... 34

Figure 5.7: SNR(dB) for 16x16 L matrix ... 35
Figure 5.8: SNR(dB) for 16x16 L-1 matrix ... 35

Figure 5.9: QPSK Solution Vector ��� for SNRline = 12dB and Signal Variance = 222 38
Figure 5.10: QPSK Solution Vector ��� for SNRline = 12dB and Signal Variance = 224........... 38
Figure 5.11: QPSK Solution Vector ��� for SNRline = 50dB and Signal Variance = 222........... 38
Figure 5.12: QPSK Solution Vector ��� for SNRline= 50dB and Signal Variance = 224............ 38
Figure 5.13: QPSK ���′(dB) for SNRline= 12dB and Signal Variance = 222 39

Figure 5.14: QPSK ���′(dB) for SNRline= 12dB and Signal Variance = 222 (zoom) 39

Figure 5.15: QPSK ���′(dB) for SNRline= 12dB and Signal Variance = 224 39

Figure 5.16: QPSK ���′(dB) for SNRline= 12dB and Signal Variance = 224 (zoom) 39

Figure 5.17: QPSK ���′(dB) for SNRline= 50dB and Signal Variance = 222 41

Figure 5.18: QPSK ���′(dB) for SNRline= 50dB and Signal Variance = 224 41

Figure 5.19: 16QAM Solution Vector ��� for SNRline= 18dB and Signal Variance = 222 42
Figure 5.20: 16QAM Solution Vector ��� for SNRline= 18dB and Signal Variance = 224 42
Figure 5.21: 16QAM Solution Vector ��� for SNRline= 50dB and Signal Variance = 222 42
Figure 5.22: 16QAM Solution Vector ��� for SNRline= 50dB and Signal Variance = 224 42
Figure 5.23: 16QAM ���′(dB) for SNRline= 18dB and Signal Variance = 222 43

Figure 5.24: 16QAM ���′(dB) for SNRline= 18dB and Signal Variance = 222 (zoom) 43
Figure 5.25: 16QAM ���′(dB) for SNRline= 18dB and Signal Variance = 224 43

Figure 5.26: 16QAM ���′(dB) for SNRline= 18dB and Signal Variance = 224 (zoom) 43
Figure 5.27: 16QAM ���′(dB) for SNRline= 50dB and Signal Variance = 222 44

Figure 5.28: 16QAM ���′(dB) for SNRline= 50dB and Signal Variance = 224 44

vii

Figure 5.29: 64QAM Solution Vector ��� for SNRline= 24dB and Signal Variance = 222 46
Figure 5.30: 64QAM Solution Vector ��� for SNRline= 24dB and Signal Variance = 224 46
Figure 5.31: 64QAM Solution Vector ��� for SNRline= 50dB and Signal Variance = 222 46
Figure 5.32: 64QAM Solution Vector ��� for SNRline= 50dB and Signal Variance = 224 46
Figure 5.33: 64QAM ���′(dB) for SNRline= 24dB and Signal Variance = 222 47

Figure 5.34: 64QAM ���′(dB) for SNRline= 24dB and Signal Variance = 222 (zoom) 47
Figure 5.35: 64QAM ���′(dB) for SNRline= 24dB and Signal Variance = 222 47

Figure 5.36: 64QAM ���′(dB) for SNRline= 24dB and Signal Variance = 222 (zoom) 47
Figure 5.37: 64QAM ���′(dB) for SNRline= 50dB and Signal Variance = 222 49

Figure 5.38: 64QAM ���′(dB) for SNRline= 50dB and Signal Variance = 224 49

Figure 5.39: QPSK Pe/Pe' for SNRline= 12dB and Signal Variance = 222 52

Figure 5.40: QPSK Pe/Pe' for SNRline= 12dB and Signal Variance = 222 (zoom) 52

Figure 5.41: QPSK Pe/Pe' for SNRline= 12dB and Signal Variance = 224 52

Figure 5.42: QPSK Pe/Pe' for SNRline= 12dB and Signal Variance = 224 (zoom) 52

Figure 5.43: QPSK Pe/Pe' for SNRline= 50dB and Signal Variance = 222 53

Figure 5.44: QPSK Pe/Pe' for SNRline= 50dB and Signal Variance = 224 53

Figure 5.45: 16QAM Pe/Pe' for SNRline= 18dB and Signal Variance = 222 54

Figure 5.46: 16QAM Pe/Pe' for SNRline= 18dB and Signal Variance = 222 (zoom)..................... 54

Figure 5.47: 16QAM Pe/Pe' for SNRline= 18dB and Signal Variance = 224 55

Figure 5.48: 16QAM Pe/Pe' for SNRline= 18dB and Signal Variance = 224 (zoom) 55

Figure 5.49: 16QAM Pe/Pe' for SNRline= 50dB and Signal Variance = 222 56

Figure 5.50: 16QAM Pe/Pe' for SNRline= 50dB and Signal Variance = 224 56

Figure 5.51: 64QAM Pe/Pe' for SNRline= 24dB and Signal Variance = 222 57

Figure 5.52: 64QAM Pe/Pe' for SNRline= 24dB and Signal Variance = 224 57

Figure 5.53: 64QAM Pe/Pe' for SNRline= 50dB and Signal Variance = 222 58

Figure 5.54: 64QAM Pe/Pe' for SNRline= 50dB and Signal Variance = 224 58

1

Chapter 1 Introduction

1.1. Introduction

The current generations of mobile telecommunication networks are collectively

known as 3G (“third generation"). LTE (Long Term Evolution) is the next major step

towards the 4th generation (4G) of mobile radio communications designed to increase the

capacity and speed of mobile networks. LTE is a set of enhancements, to the Universal

Mobile Telecommunications System (UMTS), which will be introduced in 3rd

Generation Partnership Project (3GPP) Release 8 [1]. LTE uses orthogonal frequency

division multiplexing (OFDM) as its radio access technology, together with advanced

antenna technologies. Cholesky decomposition is a key component in a 3GPP Long-Term

Evolution (LTE) minimum mean square error (MMSE) multiple-input multiple-output

(MIMO) receiver system. It is used to obtain the numerical solution of linear equations.

The computation time in Cholesky decomposition is of the order of n3/3, where n is the

dimension of the matrix. Since, an MMSE MIMO receiver is implemented using digital

signal processors (DSP’s), most of the DSP time and energy is spent on doing heavy

matrix computations. A DSP is usually not very flexible in providing variable bit

precisions to internal calculations. In order to save power, it is suggested that a co-

processor be designed to perform the matrix operations at a lower bit precision than the

standard 32-bits that the DSP provides. This will not only help in reducing the power cost

of performing the computations but also free up the DSP for other tasks.

2

1.2. Cholesky Decomposition

Cholesky decomposition is used to solve a system of linear equations where the

coefficient matrix is positive definite. If a matrix � is Hermitian and positive definite,

then � can be decomposed as � = ���. Where � is a lower triangular matrix with strictly

positive diagonal entries, and �� denotes the conjugate transpose of �. This is defined as

the Cholesky decomposition of matrix �. The Cholesky decomposition is unique in the

sense that there is only one lower triangular matrix � with strictly positive diagonal

entries for a given Hermitian, positive-definite matrix � [3], [4].

Cholesky decomposition is used to solve the set of linear equations �� = � as

follows:

�� = � (1.2.1)

���� = � where � = ���

��� = �	
�

� = ��	
�	
� (1.2.2)

� = (���)	
�

� = �	
� where � = ���

The primary object is to solve equation (1.2.1). We use equation (1.2.2) to

calculate the solution vector �. Lower triangular matrix � is calculated using Cholesky

decomposition. �	
is obtained through back-substitution. The conjugate transpose of

�	
gives �	
�
, which is the same as ��	

.

3

1.3. MIMO in Long Term Evolution (LTE)

Multiple-input multiple-output (MIMO) channels represent a very general

description for a wide range of applications. Special cases for MIMO include Single-

Input Single-Output (SISO), Multiple-Input Single-Output (MISO) and Single-Input

Multiple-Output (SIMO) channels. MIMO channels are usually associated with multiple

antenna systems [5]. MIMO employs multiple antennas on both the receiver and

transmitter to utilize the multi-path effects that always exist to transmit additional data,

thus providing increased transmission data rates without additional power. Multiple-Input

Multiple-Output (MIMO) systems offer high reliability and data rate. High reliability

with full diversity is achieved with the use of Orthogonal Space-Time Block Codes

(OSTBC) [6], [7]. High data rates can be obtained using spatial multiplexing (SM) [8] in

a MIMO system. Although MIMO adds complexity to the system in terms of processing

and the number of antennas required, it enables much higher data rates along with

improved spectral efficiency. As a result, MIMO has been included as an integral part of

LTE. Figure 1.1 shows a general MIMO channel model.

4

Figure 1.1: A general MIMO channel model

MIMO uses quadrature amplitude modulation (QAM) for data transmission. QAM

is a modulation scheme which conveys two digital data streams by changing the

amplitudes of two carrier waves, using the amplitude-shift keying (ASK) digital

modulation scheme. These two carrier waves are 90° out of phase with each other and are

thus called quadrature. At the receiver, the modulated waves are summed, and the

resulting waveform is a combination of both phase-shift keying (PSK) and amplitude-

shift keying (ASK). MIMO uses square constellations namely, quadrature phase-shift

keying (QPSK, also known as 4QAM), 16QAM, and 64QAM schemes for transmission.

4, 16 and 64 indicate the number of constellation points in the QAM schemes

respectively. In QAM, the constellation points are arranged in a square grid with equal

vertical and horizontal spacing. Figure 1.2 and Figure 1.3 show the constellation diagrams

for QPSK and 16QAM with Gray coding, where each adjacent symbol differs by only

one bit. By moving to a higher-order constellation, it is possible to transmit more bits per

symbol. However, if the mean energy of the constellation is to remain the same, the

5

points must be closer together and are thus more susceptible to noise. This results in a

higher bit error rate. Therefore, higher-order QAM can deliver more data less reliably

than lower-order QAM, for constant mean constellation energy. In our simulations we

calculate solution vector ���, and loss in symbol error rate for QPSK, 16QAM and

64QAM constellations, in order to cover the most commonly used transmission schemes

in a MIMO system.

Figure 1.2: QPSK Constellation diagram with Gray coding

6

Figure 1.3: 16QAM Constellation diagram with Gray coding

1.4. Precision Analysis

We use pseudo-floating point to simulate various bit precisions in our simulations.

In pseudo-floating point, a number is represented by two numerals of variable bit width,

one mantissa part and one exponent part. The exponent is fixed at 8-bits. This is the

minimum number of bits required to handle the range of numbers in our system. The

mantissa part is varied from 10-bits to 31-bits. Our simulations do not truncate bits at the

output stage, but take into account rounding errors, and overflow scenarios during each

7

computation step in order to provide reliable data. SNRs for the � and �	
matrices are

calculated at 28, 32, 36, and 39-bits of precision. The SNR for solution vector �, and loss

in symbol error rate for QPSK, 16QAM, and 64QAM constellations are simulated at 18-

bits, 20-bits, 24-bits, and 28-bits of precision. We found that there is a gradual

degradation in the ��� with the decrease in bit precision. Similar degradation is

observed in symbol error rate at lower bit precisions. The MMSE MIMO system

designers can apply the results of our study in order to find the best bit precision for their

system, given their specifications for �������, signal and noise variances, output ���,

and loss in symbol error rate.

1.5. Outline

The thesis is arranged as follows:

• In Chapter 2, we site work done by other research groups around the world towards

energy efficient MIMO systems, precision exploration studies, and matrix

manipulation optimization methods.

• In Chapter 3, we provide the full problem formulation, and the motivations behind

undertaking this research project.

• In Chapter 4, we describe the simulation setup, and the MIMO channel model used.

This includes the choices of variables explored, and fixed and variable entities for

each set of simulations are specified clearly.

• In Chapter 5, all the results are enumerated, and discussed in detail.

• In Chapter 6, we summarize the conclusions and discuss future prospects in this field

of study.

8

Chapter 2 Related Work

Wireless communication is one of the most important Digital Signal Processing

(DSP) applications. The design of low power systems is one of the key challenges in the

domain of wireless communication. With an increase in the type of services provided

(image, video, internet access, etc), the demand for high data rates has increased in recent

years. Consequently, the complexity of the baseband digital signal is growing. Since

bandwidth is limited by power within a wireless system (node or base-station), new

strategies to reduce the energy and power consumption at an acceptable level must be

proposed [14]. Many optimizations have been proposed for MIMO transmitters, MIMO

channel, and MIMO receivers. All these efforts focus on reducing energy and power

consumption in a MIMO system.

Khan et al analyzed the vertical Bell Laboratories layered space time (VBLAST)

receiver used in a MIMO wireless system from a hardware implementation perspective.

The primary motivation behind this is that MIMO is very expensive with regard to area

and power consumption if implemented in hardware [2]. VBLAST is a MIMO detection

algorithm [8] that provides a good tradeoff between bit error rate (BER) performance and

computational complexity compared to its counter parts. They identify the processing

elements that consume more area and power due to complex signal processing. They

propose two power efficient VLSI architectures for blocks that compute pseudo-inverse

of the channel matrix using SVD [16]. One is a multiplier-based architecture which

consumes less power and has low area cost. This architecture uses one divider and eight

multipliers with some glue logic to perform the pseudo inverse computation using the

9

square root algorithm [16]. The other is the improved CORDIC-based architecture that

has the advantages of slightly reduced area and is able to operate at a higher frequency

(160MHz) [16]. The same authors have proposed an architecture for calculating the

pseudo inverse using two independent and generic pipelined CORDICs [9]. Selective

clock gating is used in the MAC module to reduce the power consumption even further

[16]. From a power efficiency point of view, the multiplier based implementation should

be preferred.

At the University of Texas at Austin, the Wireless Networking and

Communications Group has proposed an adaptive technique exploiting transmission

mode switching between MIMO and SIMO. The idea is that most of the time a base

station is underutilized. Due to the DC power components associated with the

multiplicity of transmission chains, MIMO has higher power consumption than SIMO.

Therefore, if the mode of a mobile transmitter or a base station can be switched

dynamically from MIMO to SIMO according to the situation, it will be possible to save

up to 50% of the mobile terminals’ transmission energy [17]. Winston Ho et al propose

an optimization to minimize the overall transmit power in a MIMO-OFDM downlink, if

user target rates are known. This special resource allocation reduces the interference

ingress to neighbouring cells and limits the power consumption at the base station [18].

The optimal solution using the proposed optimization algorithm can be found in O(KM)

time for a system with K users and M subcarriers. Linear beamforming is assumed at

both the transmitter and the receiver ends. To deal with the frequency-flat fading in

OFDM resource allocation they propose using dual proportional fairness. This proposed

10

method handles all fading scenarios, including flat or partially frequency-selective fading

[18].

Efficient implementation of DSP applications in embedded wireless systems

requires fixed-point arithmetic. Therefore, the vast majority of embedded DSP

applications are implemented in fixed-point architectures. In [14], a dynamic precision

scaling method is proposed on the basis that the fixed-point specification at the MIMO

receiver depends on external elements (noise level, input signal dynamic range, quality of

service) and can be adapted during runtime to reduce the average power consumption. A

Dynamic Precision Scaling approach that adapts the fixed-point specification according

to the input receiver SNR is proposed. This enables reduction in power consumption by

reducing the precision at the receiver depending on the SNR of the incoming signal.

Singh et al investigated the effects of quantization noise and round off errors involved in

finite-precision signal processing on the performance of MIMO receivers under flat-

fading channel conditions [11]. They simulated the bit error rate (BER) performance for a

range of finite precisions for two common MIMO architectures – 2 x 2 MIMO and 4 x 2

MIMO. They investigate the sources of quantization noise and round off errors in a

MIMO receiver. Minimum word-length precision requirements for various MIMO

schemes are also provided in [11].

Ryan Kastner and his team at University of California, San Diego are concentrating

on optimizing architectures for matrix decomposition algorithms for wireless

communication systems [19] [20] [21]. They have developed a new core generation tool

(GUSTO) that does automatic generation and optimization of matrix decomposition

methods (QR, LU, and Cholesky). GUSTO offers different parameterization options such

11

as resource allocation, bit widths of the data, number of functional units and organization

of controllers and interconnects [19] [20] [21]. Using GUSTO, a designer can easily

study the area and throughput tradeoffs of different architectures. The application specific

architectures generated by GUSTO decrease the area by 83%, 94% and 86% and increase

the throughput by 16%, 68%, and 14% as compared to the general purpose architecture

for QR, LU, and Cholesky decompositions respectively. Currently GUSTO works on

small matrix sizes (maximum 8x8) using fixed point arithmetic and architecture only

[19].

Anup Hosangadi, Farzan Fallah and Ryan Kastner have also developed algebraic

methods for optimizing constant multiplications in linear systems [22] [23]. This is of

great importance in wireless communications. A lot of energy and power is used in

solving linear equations in all wireless systems. Specifically, MIMO receiver systems

employ both QR and Cholesky decompositions to calculate inverse of the received

channel matrix. Commonly, constant multiplications are implemented in hardware by

nesting a sequence of addition and shift operations. These can be optimized further by

finding common sub-expressions among these operations. In [22] they present algebraic

techniques in multi-level logic synthesis for the minimization of the number of literals

and hence gates used in Boolean implementation. Authors in [22] use rectangle covering

and fast extract (FX) and adapt them to the problem of optimizing linear arithmetic

expressions. The main advantage of using such methods is that systems consisting of

multiple variables can be optimized. These systems cannot be optimized using

conventional techniques. The optimizations are aimed at reducing hardware area and

power consumption [22]. Ryan Kastner’s group, using experimental results, has been able

12

to show over 30% improvement in the number of operations over conventional

techniques. Synthesis and simulation results support an equal level of area and power

reduction [22].

In light of the work already done in optimizing MIMO wireless communication, we

aim to explore the relationship between bit precision used in calculations and output SNR

in Cholesky decomposition. Since Cholesky decomposition is a primary method in

calculating the inverse of the channel matrix, optimizing the power consumed in this step

will have a significant effect on the overall power of the MIMO receiver.

13

Chapter 3 Problem Formulation

3.1. Channel Model

A multiuser MIMO system can be categorized into a transmitter (user), and a

receiver (base station). The number of transmit antennas (��) and the number of receive

antennas (��) govern the sizes of all matrices and vectors in the system. The number of

transmit and receive antennas in a MIMO system do not have to be the same.

3.1.1. LTE Uplink MIMO

Uplink multiple-input multiple-output (UL-MIMO) receiver at the base station

(eNode B) separates signals coming from two mobile users transmitting over the same

resource block (Figure 3.1). Each user transmits over a single antenna. The goal of this

scheme is to enable better utilization of the channel and ultimately higher aggregate

throughput.

Figure 3.1: Uplink Multi-user MIMO

In addition to separating the users (layers), another function of the UL-MIMO

receiver is the computation of the effective noise at the input of the constellation de-

14

mapper. These effective noise values are used by the soft slicer in the process of

computation of the bit Log-Likelihood Ratios (bit LLR's).

3.1.2. LTE MMSE MIMO Receiver

We are interested in the MMSE MIMO receiver. It can be shown that a simplified

model in the frequency domain can be used. With that assumption the system model

between the output of the modulation mapper and the input to the soft slicer looks as it is

shown in Figure 3.2.

Figure 3.2: Equivalent frequency domain system model

Time domain modulated data corresponding to a particular resource block during an

SC-FDMA (Single Carrier – Frequency Division Multiple Access) symbol used by UE1

MIMO channel model

MMSE

estimator

sub-carrier

0d1,0 D1,0

L-point

DFT

d1,1 D1,1

d1,L-1 D1,L-1

d2,0 D2,0

L-point

DFT

d2,1 D2,1

d2,L-1 D2,L-1

MIMO channel model

MIMO channel model

+

+

+

+

R1,0
Z1,0

Z2,0 R2,0

Z3,0 R3,0

Z4,0 R4,0

H0

H1

HL-1

+

+

+

+

R1,1
Z1,1

Z2,1 R2,1

Z3,1 R3,1

Z4,1 R4,1

+

+

+

+

R1,L-1
Z1,L-1

Z2,L-1 R2,L-1

Z3,L-1 R3,L-1

Z4,L-1 R4,L-1

MMSE

estimator

sub-carrier

1

MMSE

estimator

sub-carrier

L-1

L-point

IDFT

L-point

IDFT

D1,0

D1,1

D1,L-1

d1,0

d1,1

d1,L-1

D2,0

D2,1

D2,L-1

d2,0

d2,1

d2,L-1

UE1

UE2

User

(layer)

User

(layer)

Frequency domain

15

and UE2 are represented by �
,�, �
,
, … , �
,!	
and �",�, �",
, … , �",!	
, respectively.

Transformed data at the output of the L-point DFT (Digital Fourier Transform) block is

mapped to the same set of sub-carriers in both UE's. By using this frequency domain

model each sub-carrier can be processed independently.

The described frequency domain model leads to the final model that will be used

for the description of the MMSE MIMO estimator. Subscripts associated with the sub-

carrier index are omitted.

Figure 3.3: System model used for the MMSE estimation (per sub-carrier)

Based on Figure 3.3 the basic equation is:

� = #$ + &

where:

16









=

2

1

D

D
D

























=

21

2221

1211

.

.

RR NN HH

HH

HH

H























=

RNR

R

R

.

.
2

1

R























=

RNZ

Z

Z

.

.
2

1

Z

�� is the number of receive antennas (2 or 4). However, the number of transmit antennas

(layers, participating UE's), ��, is fixed to 2.

The MMSE solution filter, ' (an �� × �� matrix) is the one that minimizes:

)($) = *{,$ − '�,"}
The expectation operation is done with respect to the transmitted vector $ and the

noise vector &. With the assumption that signal and noise are uncorrelated, the solution

filter coefficients can be found from:

*{$$�#� − '#$$�#� − '&&�} = /01×02

Superscript † denotes conjugate transpose matrix. Now we introduce another

reasonable assumption: The data frequency domain symbols, 3
 and 3", transmitted by

UE1 and UE2, respectively, are uncorrelated, zero-mean and their variances are the same,

45".The last part of the assumption is based on another reasonable assumption that the

time domain constellation points are scaled such that their variance is fixed and

independent of the modulation type. It is also assumed that differences in the transmit

chains of the two participating UE's are absorbed by the channel model. With all these

assumptions we have:

�66 = *{$$�} = 45"701

17

As mentioned before the equation used for deriving the MMSE filter coefficients was:

*{$$�#� − '#$$�#� − '&&�} = /01×02

This equation now becomes:

45"701#� − '#45"701#� − '�88 = /01×02

⇒ 45"'##� + '�88 = 45"#�

Finally, the filter coefficient matrix is computed as:

' = #� :##� + 1
45"

�88<
	

Considering that the number of the received antennas is greater than or equal to the

number of transmit antennas (�� ≥ ��) the above expression can be further simplified

(applying the Matrix Inversion Lemma) to:

' = :#��88	
+ 1
45"

701<
	

#��88	

The symbols demodulated in the frequency domain ($> ??5@, �� × 1) are the

MMSE estimate of the frequency domain samples given as [11], [12]:

$> ??5@ = '� = A#��88	
+

BCD 701E	
 #��88	
� (3.1.1)

where #, �� × �� is the channel matrix, �88, �� × �� is the noise covariance matrix, �,

�� × 1 is the vector of received complex samples and 45" is the signal variance. �� is the

18

number of transmit antennas and �� is the number of receiver antennas. Transmitted

symbols (D ’s) belong to a QAM modulation constellation: QPSK, 16-QAM, 64-QAM.

We are going to focus on a special case where we assume same noise variance across all

receive antennas → �88 = 40"702. This assumption reduces equation 3.1.1 to:

$> ??5@ = '� = :#�# + 40"45"
701<

	

#��

Where ' = A#�# + BFDBCD 701E	
 #� is the MMSE MIMO solution filter.

The minimum mean square error (covariance matrix of the effective noise in the

frequency domain) of the estimator is given by:

�GG = HIJ(K)

�GG = :#��88	
+ 1
45"

701<
	

�GG = 40" :#�# + 40"45"
701<

	

The goal is to find out how the effective noise variance changes as a function of the

condition number and selected precision. Ultimately, we will show the degradation of the

symbol error rate (we call D’s symbols) as a function of the condition number and

selected precision. One way how to assess the impact of the condition number and

selected precision on the symbol error rate is to define two parameters: ������� and

19

signal variance 45" (noise variance is determined as: 40" = 45" �������⁄). Define #� =
45# and write the solution in the form:

$> ??5@ = :#�# + 40"45"
701<

	

#�� = M#��#� + 40"701N	
45#���

$> ??5@ = �	
� with � = #��#� + 40"701and � = 45#���

45" and 40" affect the condition number range of the matrix � = #��#� + 40"701.

Recommendation is to use the following parameter combinations, as the lower and upper

bounds for ������� are taken from industry standards in practice today. All simulations

performed during this research project explore all possible combinations of 45" and

������� given in Table 3.1 for each QAM constellation.

Table 3.1: Parameter combinations for simulations

2
Sσ

QPSK, �������(dB) 16QAM, �������(dB) 64QAM, �������(dB)
222 = 4194304 12 50 18 50 24 50
224 = 16777216 12 50 18 50 24 50

3.2. Fixed Point Implementation Drawbacks

In this research project we investigate the new Texas Instruments (TI) C64x line of

DSPs. A TI C64x DSP performs all computations in 32-bit fixed point. This provides a

very high SNR for the output. In most applications such high SNR is not required. Since,

the DSP is incapable of running at lower bit precisions, we suggest that a co-processor be

designed that works in parallel with the DSP and performs the matrix computations at a

lower bit precision. This co-processor will provide a lower but acceptable SNR at the

20

output. Since, the co-processor is running at a lower bit precision, it will have less

complex circuitry. As a result, it will consume less power, and require fewer

computational cycles as compared to the DSP. Another benefit of introducing a lower

precision co-processor comes from the fact that not all the input data at the MMSE

MIMO receiver is at 32-bits of precision. Most of the data is at much lower bit precision.

Therefore, spending power to do 32-bit computation on a data that is inherently low rate

is counter-productive. It will be beneficial to reduce power by reducing the internal bit

precision of the system performing calculations on this input data (in this case, the co-

processor). With these motivations, we focus our research on exploring lower bit

precisions and the corresponding output SNRs.

21

Chapter 4 Simulation Setup

4.1. Simulation outline

First #� matrix is generated using a custom Gaussian random number generator.

All entries of #� are complex, with real and imaginary parts of each entry at 16-bit fixed

point precision. Then we take conjugate transpose of #� to get #��. The matrix product

#��#� is calculated and then added to 40"701, where 40" = 45" �������⁄ . 45" is the signal

variance, and 40" is the noise variance in the system. This gives us the input matrix

� = #��#� + 40"701 where each complex number entry in matrix � has 32-bits for real

and imaginary parts. The resulting matrix is then converted to floating point, double

floating point or custom pseudo floating point precision by calling respective conversion

routines.

Using the Cholesky decomposition scheme given below we calculate � = ���.

Using simple back-substitution �	
is computed. In order to calculate SNR for both � and

�	
 matrices we use Matlab as a reference. We use Matlab’s built-in functions to

calculate �?OP�OQ and �?OP�OQ	
 and treat these as ideal cases. ��� (in dB) for both � and

�	
 matrices is then calculated as follows:

R! = �?OP�OQ − �

,R!," = STU�VT"
�,V

,�?OP�OQ," = S WX?OP�OQ�VW"
�,V

22

���! = 10 log
� :,�?OP�OQ,"
,R!," <

Similarly for �	
matrix we do:

R�]^ = �?OP�OQ	
 − �	

,R�]^," = STU�VT"
�,V

,�?OP�OQ	
 ," = S WX?OP�OQ	
 �VW"
�,V

����]^ = 10 log
� :,�?OP�OQ	
 ,"
,R�]^," <

Table 4.1: Cholesky decomposition scheme used to calculate A = LL †

Int32 Cholesky(
 INOUT cplxf_t ** matrixIn,
 INOUT float * diag,
 IN int32 n)
{
 int32 row, col, k ;
 cplxf_t cholFactor ; /* cplxf_t is a structure to represent a floating point complex number */
 Int32 cholFailed = 0 ;

 /* We are computing the lower triangular Cholesky Factor "L" col-by-col */
 for (row = 0; row < n; row++)
 {
 for (col = row; col < n; col++)
 {
 /* Assign the Cholesky Factor equal to the input matrix element. */
 cholFactor = matrixIn[row][col] ;

 /* Subtract the respective terms from the input marix element.
 * This way only the product of Cholesky Factor withh one other
 * term is left in the end. This computation is needed regardless
 * of the values of row and col variables.
 */
 for (k = 0; k < row; k++)
 {
 cholFactor = cplxSub(cholFactor, cplxMul(matrixIn[row][k], cplxConj(matrixIn[col][k])));
 }

 /* Now we decide what to do with the Cholesky Factor based on
 * values of row and col variables.
 */
 if (row == col)
 {
 /* Input matrix, with rounding errors, is not positive definite. */
 if (cholFactor.real <= 0.0)
 {
 printf("Cholesky Decomposition failed.\n") ;
 cholFailed = 1 ;
 }

 else
 {
 /* We do a simple square root operation here because we know that the diagonal elements are all real */
 diag[row] = (float)(sqrt(cholFactor.real)) ;
 }
 }
 else
 {
 if(cholFailed == 0)
 {
 matrixIn[col][row] = cplxScalarMul(cplxConj(cholFactor), (1/diag[row])) ;
 }
 }
 } /* end of col loop */
 } /* end of row loop */

23

 /* Zero out the upper triangular part of the input matrix */

 for (row = 0; row < n; ++row)
 for (col = row + 1; col < n; ++col)
 {
 matrixIn[row][col].real = 0.0 ;
 matrixIn[row][col].imag = 0.0 ;
 }

 return cholFailed ;
}

For each realization of #� we create M number of realizations of �� such that

�� = #$� for m = 1,2,…,M, where $� is a (�� × _) vector of random QAM

constellation points of signal variance 45". Further, for each realization of �� we

compute:

3� = T$> ??5@_�a�O�,�T"
 and

*� = T$> ??5@_�a�O�,� − $> ??5@,�T"

$> ??5@_�a�O�,� is obtained using Matlab, whereas $> ??5@,� is obtained using our matrix

inversion using Cholesky decomposition as described in section 1.2.

For each #� we record condition number k of the matrix � as well as:

T

M

m
m

MN
D

∑
== 1

D
 (4.1.1)

T

M

m
m

MN
E

∑
== 1

E
 (4.1.2)

and

���??5@ = 3/* (4.1.3)

Using Matlab we find linear fits to the above set of points and get 3c(d) and *e(d)

after the simulations (Section 4.4).

24

Figure 4.1, Figure 4.2, and Figure 4.3 show the standard plots for symbol error

probability (rate) and bit error probability (rate) as a function of signal to noise ratio

(���) for QPSK, 16QAM, and 64QAM constellations, respectively. To evaluate the loss

in symbol error probability for a particular modulation at a particular precision, we find

the SNR point corresponding to a given ���� (say ���� = 10	
). Then we compute

corresponding noise variance �c(d) = 3c(d)/���. New ���′ corresponding to new

conditions "spoiled" by the finite processing precision is computed as:

���f = 3c(d) M�c(d) + *e(d)Ng (4.1.4)

Using ���′ and ���� = h(���) plot, or by using the equation ����f = h(���′) we

calculate the new symbol error probability. Finally, the plot ���� ����f⁄ as a function of

the condition number k provides the loss in symbol error probability.

Figure 4.1: SER and BER vs. SNR for QPSK

0 2 4 6 8 10 12 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Symbol Error Probability (SER) and Bit Error Probability (BER) vs. SNR for QPSK

SNR (dB)

S
E

R
/B

E
R

SER vs. SNR

BER vs. SNR

25

Figure 4.2: Symbol SER and BER vs. SNR for 16QAM

Figure 4.3: SER and BER vs. SNR for 64QAM

4 6 8 10 12 14 16 18 20 22 24
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Symbol Error Probability (SER) and Bit Error Probability (BER) vs. SNR for 16-QAM

SNR (dB)

S
E

R
/B

E
R

SER vs. SNR

BER vs. SNR

10 12 14 16 18 20 22 24 26 28 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Symbol Error Probability (SER) and Bit Error Probability (BER) vs. SNR for 64-QAM

SNR (dB)

S
E

R
/B

E
R

SER vs. SNR

BER vs. SNR

26

This process can be repeated for ���� = 10	", ���� = 10	i, ���� = 10	j, and ���� =
10	k depending on the system specifications. In this thesis we show plots for ���� =
10	
. Alternatively ��� loss (��� – ���’) at different ����values can also be plotted,

as a measure of the signal degradation that occurs with lower precisions. We do not show

��� loss plots in this thesis.

4.2. Pseudo Floating Point

In pseudo floating point a number is represented by two integers (positive or

negative), namely nopqrsso and *tuIpUpq. The number is then written as

nopqrsso ∗ 2@xyz���P. The precision of the number is controlled by allocating variable

bits to both nopqrsso and *tuIpUpq. Precision mode is either written as

nopqrsso, *tuIpUpq, or as a single number which is the sum of nopqrsso and

*tuIpUpq. During all our simulations the *tuIpUpq is fixed at 8 bits. This is the

minimum number of bits required to handle the range of numbers in our system. The

primary motivation for using pseudo floating point is to maintain consistent internal

precision throughout all calculations. At no point in the simulations we use more bits than

allocated by the pseudo floating point representation. There is no truncation of bits, and

all rounding errors are applied after each calculation. This is to ensure, that we simulate a

system that has registers of a fixed bit-width, and is incapable of holding a number with

higher bit precision. In this way unnecessary rounding-off errors are avoided as well. The

advantage of using pseudo floating point is that we do not waste computation power by

performing calculations at maximum precision, and then providing the answer at a lower

precision by simply truncating the last few bits. By using the pseudo floating point

27

arithmetic we guarantee that all values remain within the operating range and overflow

does not occur.

4.2.1. Precisions explored

Simulations to obtain ��� plots for � and �	
matrices are performed at 39-bits, 36-

bits, 32-bits and 28-bits of precision. Simulations to obtain ��� plots for the solution

vector $> ??5@, ���’, and the ratio ���� ����f⁄ , are carried out at 28-bits, 24-bits, 20-bits,

and 18-bits of precision.

4.3. SNR as a function of Condition Number

Condition number of the matrix � in linear equation (1.2.1) is a measure of the

sensitivity of the system to perturbations in the transformation vector �. In other words, it

is a measure of error introduced in the solution vector �, for any errors present in � [4]. If

the co-efficient matrix � has a low condition number, then it is said to be well-

conditioned. Similarly, if the condition number is high, then the matrix is said to be ill-

conditioned. The condition number is a property of the matrix, and not a measure of the

processing system’s accuracy, nor is it a measure of algorithm efficiency. Numerically

we define condition number d as [3],[4]:

d(�) = ,�,,�	
,

Condition number is also a measure of how close the matrix is to singularity. Roughly it

is the difference between the highest and lowest Eigen values of the matrix. A high

condition number means the matrix is close to a singular matrix, and vice versa.

28

Since, the condition number does not depend on numerical precision, it is a true

independent variable. Therefore, we plot simulation results for ���, ���f, and

���� ����f⁄ as a function of condition number of the coefficient matrix � in Chapter 5.

This gives us a means to evaluate each simulation independently, and compare results

across multiple bit precisions.

4.3.1. Effect of SNRline on Condition Number

As described in Section 4.1, we define 40" = 45" �������⁄ , where 40" is the noise

variance, 45" is the signal variance. Since, the input matrix � is given as: � = #��#� +
 40"701, we see that ������� has a direct impact on the condition number of �. Thus, we

can control the upper bound on the condition number of matrix � by changing �������.

Lower ������� upper bounds the condition number of � to a lower value, whereas a

higher ������� allows higher condition numbers for matrix �. Table 3.1 lists the range of

�������values most commonly used in the industry for each constellation. These values

of ������� enable us to explore variable ranges of condition numbers in different

constellations.

4.4. System Variables explored

The following system variables are set before each simulation:

• Number of trials

• Number of transmission antennas (��)

• Number of receive antennas (��)

• Constellation for signal modulation Simulation outline(QPSK, 16QAM, or

64QAM)

29

• Number of realizations of $� for each trial, or the value of M (Section

Simulation outline4.1)

• Signal variance (45")

• ������� (in dB)

• Noise variance is calculated as 40" = 45" �������⁄

• Values of {pqU|U} and *tuIpUpq to set the internal bit precision of the

simulation

The following variables are measured during the simulation (Section 4.1):

• Condition number d for the matrix �

• ��� (in dB) for � and �	_ matrices using floating point

• ��� (in dB) for � and �	_ matrices using pseudo floating point

• 3�, and *�for each $> ??5@,�

• Values of 3 and * (Equations 3.1.1, and 3.1.2)

• ���??5@ (in dB) (Equation 3.1.3)
The following variables are calculated after the simulations using Matlab

• 3c(d), *e(d) and �c(d)

• ���′ (in dB) corresponding to each condition number

• ���� ����f⁄ corresponding to each ���′

30

Chapter 5 Results & Discussion

5.1. SNR forL, L-1 Matrices

In this section we discuss the ��� results obtained after computing �, and

�	_through Cholesky decomposition. These results are independent of modulating

constellation, as they only relate to the input coefficient matrix �. We are interested in bit

precisions that give an SNR greater than or equal to 50dB.

5.1.1. Simulation Specifications

For all simulation results shown in Section Chapter 0 the type of modulating

constellation and the value of M are irrelevant. Following variables are constant across all

simulation results:

• Number of trials is set to 5000

• Signal variance (45") = 224

• ������� = 50��

• *tuIpUpq = 8 �rqs
Variables varied across simulation results shown in Section Chapter 0 are given

below:

• {pqU|U} is given the values: 31, 28, 24, and 20
• Number of transmission antennas (��) and the number of receive antennas

(��) are set to give input coefficient matrices with dimensions 2 × 2, 4 × 4,

8 × 8, and 16 × 16

31

The figures in Section Chapter 0 also show ��� plots obtained using 32-bit floating

point and the actual TI C64x chip operating at 32-bit fixed point precision for � matrices.

5.1.2. 2x2 Input Matrix

Figure 5.1 shows the ��� in dB for 2 × 2 � matrix as a function of condition

number (d) for C64x 32-bit fixed point, 32-bit floating point, 39-bit pseudo floating

point, 36-bit pseudo floating point, 32-bit pseudo floating point, and 28-bit pseudo

floating point implementations. Whereas Figure 5.2 shows the ��� in dB for the

corresponding �	
matrices. Following important observations are made from these two

plots. The minimum condition number for the input coefficient matrix � is very close to

1. This is because of the small dimensions of �.

Figure 5.1: SNR(dB) for 2x2 L matrix

Figure 5.2: SNR(dB) for 2x2 L-1 matrix

The worst condition number for � is observed to be around 3x104, but the bulk of the

condition numbers are in the range 1 to 102. The 32-bit fixed point provides much higher

��� than the floating point implementation. The 32-bit fixed point ��� is very close to

39-bit pseudo floating point, and can be chosen without compromising accuracy.

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

180

200

Condition number

S
N

R
 (d

B
)

C64 Fixed pt.
Float
Pfloat 31,8
Pfloat 28,8
Pfloat 24,8
Pfloat 20,8

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

180

200

Condition number

S
N

R
 (d

B
)

fl.point
Pseudo Fl. 31,8
Pseudo Fl. 28,8
Pseudo Fl. 24,8
Pseudo Fl. 20,8

32

Furthermore, 39-bit and 36-bit pseudo floating point implementations also give higher

��� than 32-bit floating point. However, ���s for 32-bit and 28-bit pseudo floating

point implementations are below 32-bit floating point. Moreover, the general slope of the

SNRs for �	
 matrices is greater than that of � matrices. This is consistent with the fact

that more computation is required to obtain the �	
 matrix than the � matrix. There is an

inherent loss in the signal quality with each extra calculation hence reducing signal

quality for �	
. The minimum ��� for � matrix is approximately 65dB, and

approximately 30dB for �	
matrix. However, if we restrict condition number to less than

104 we can get an SNR better than 60dB for �	
matrix, hence satisfying the requirement

of ��� greater than 50dB.

5.1.3. 4x4 Input Matrix

Figure 5.3: SNR(dB) for 4x4 L matrix

Figure 5.4: SNR(dB) for 4x4 L-1 matrix

 Figure 5.3 shows the ��� in dB for 4 × 4 � matrix as a function of condition

number (d) for C64x 32-bit fixed point, 32-bit floating point, 39-bit, 36-bit, 32-bit, and

28-bit pseudo floating point implementations. Whereas, Figure 5.4 shows the ��� in dB

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

180

200

4x4 L Matrix SNR (dB) vs. Condition number

Condition number

S
N

R
 (d

B
)

C64 Fixed Pt.
fl.point
Pseudo Fl. 20,8
Pseudo Fl. 24,8
Pseudo Fl. 28,8
Pseudo Fl. 31,8
Fixed Pt. 28

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

180

200

4x4 L-1 Matrix SNR (dB) vs. Condition number

Condition number

S
N

R
 (d

B
)

fl.point
Pseudo Fl. 20,8
Pseudo Fl. 24,8
Pseudo Fl. 28,8
Pseudo Fl. 31,8
Fixed Pt. 28

33

for the corresponding �	
matrices. Following important observations are made from

these two plots. Unlike the 2 × 2 case, the minimum condition number for the input

coefficient matrix � is close to 4. This is a good condition number, as the dimensions of

� are still relatively small. The worst condition number for � is observed to be around

2x105, but the bulk of the condition numbers are in the range 4 to 103. It is noted that this

range is bigger than the range of condition numbers for 2 × 2 matrices, because 4 × 4

matrices are slightly more complex than their 2 × 2 counterparts. The 32-bit fixed point

provides higher ��� than the floating point implementation for the most part. However,

there are cases where floating point performs equally as good. Unlike the 2 × 2 matrices,

the 32-bit fixed point ��� is not close to 39-bit pseudo floating point, but closer to 36-bit

pseudo floating point. However, 32-bit fixed point is still a good choice over 36-bit

pseudo floating point. We see that SNR for 28-bit fixed point is below all other SNR

plots. This is because fixed point representation loses SNR very rapidly, and runs into

saturation problems very quickly. In this case, Cholesky decomposition fails at 27-bit

fixed point precision. 27-bit fixed is unable to handle the range of numbers required for

an MMSE MIMO receiver. Furthermore, 39-bit and 36-bit pseudo floating point

implementations also give higher ��� than 32-bit floating point. ���s for 32-bit and 28-

bit pseudo floating point implementations are below 32-bit floating point. As before, the

general slope of the SNRs for �	
 matrices is greater than that of � matrices. The

minimum ��� for � matrix is approximately 70dB, and approximately 30dB for

�	
matrix if we restrict condition number to less than 104. In this case if we want SNR

for �	
to be greater than 50dB, then either we have to restrict condition numbers to less

than 103, or pick 32-bit pseudo floating point implementation.

34

5.1.4. 8x8 Input Matrix

We make the following observations from SNR clouds in Figure 5.5 and Figure 5.6.

The minimum condition number for the input coefficient matrix � is now around 50,

which is much greater than corresponding numbers for the previous cases. The

deterioration in the best possible condition number is now becoming non-trivial. The

worst condition number for � is observed to be around 106, but most of the condition

numbers are in the range 50 to 104.

Figure 5.5: SNR(dB) for 8x8 L matrix

Figure 5.6: SNR(dB) for 8x8 L-1 matrix

Here we notice that the condition numbers are closely distributed within this range. The

diversity in SNR for a given condition number is reduced due to increased complexity of

8 × 8 matrices. The 32-bit fixed point implementation converges towards 32-bit floating

point, and 36-bit pseudo floating point implementations. Furthermore, SNR clouds for

each pseudo floating point implementation show reduced scatter, and overlap minimally.

���s for 32-bit and 28-bit pseudo floating point implementations are distinctly below

32-bit floating point. As before, the general slope of the SNRs for �	
 matrices is greater

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

180

200

8x8 L Matrix SNR (dB) vs. Condition number

Condition number

S
N

R
 (d

B
)

C64 Fixed Pt.
fl.point
Pseudo Fl. 20,8
Pseudo Fl. 24,8
Pseudo Fl. 28,8
Pseudo Fl. 31,8
Fixed Pt. 29

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

20

40

60

80

100

120

140

160

180

200

8x8 L-1 Matrix SNR (dB) vs. Condition number

Condition number

S
N

R
 (d

B
)

fl.point
Pseudo Fl. 20,8
Pseudo Fl. 24,8
Pseudo Fl. 28,8
Pseudo Fl. 31,8
Fixed Pt. 29

35

than that of � matrices. This is consistent with the trend observed so far. The minimum

��� for � matrix is approximately 60dB, and approximately 20dB for �	
matrix. If a

system specification relies on SNR for �	
matrix to be greater than 50dB, the choices are

very limited. Either we restrict condition numbers to less than 2x103 and choose 28-bit

pseudo floating point implementation, or pick 32-bit pseudo floating point

implementation.

5.1.5. 16x16 Input Matrix

16 × 16 is the maximum possible dimensions for our input matrix �. Most MIMO

systems do not use 16 × 16 matrices. We expect the SNR for these dimensions to be

much worse than previous cases. Figure 5.7 and Figure 5.8 show the SNR clouds for

16 × 16 � and �	
 matrices. The minimum condition number for the input coefficient

matrix � is greater than 100. The degradation in the best possible condition number is

now evident. The worst condition number for � is observed to be around 107, and the

condition numbers are almost uniformly distributed within the range 100 to 2x104.

Figure 5.7: SNR(dB) for 16x16 L matrix

Figure 5.8: SNR(dB) for 16x16 L-1 matrix

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

80

100

120

140

160

180

200

Condition number

S
N

R
 (d

B
)

C64 Fixed pt.
Float
Pfloat 31,8
Pfloat 28,8
Pfloat 24,8
Pfloat 20,8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

20

40

60

80

100

120

140

160

180

200

Condition number

S
N

R
 (d

B
)

fl.point
Pseudo Fl. 31,8
Pseudo Fl. 28,8
Pseudo Fl. 24,8
Pseudo Fl. 20,8

36

The spread in SNR for a given condition number is narrowed down along the slope

of the SNR cloud. This is attributed to the high dimensions and complexity of 16 × 16

matrices. The 32-bit fixed point implementation completely envelopes 32-bit floating

point, and 36-bit pseudo floating point implementations. Furthermore, SNR clouds for

each pseudo floating point implementation are non-overlapping, distinct and collimated.

As expected the minimum ��� for � matrix is much lower than previous cases and falls

at approximately 40dB. The SNR for �	
matrix is almost reduced to zero for the 28-bit

pseudo floating point implementation. Here, we must choose 32-bit pseudo floating point

implementation, and restrict condition numbers to less than 2x104, if our system

specification relies on SNR for �	
matrix to be greater than 50dB.

5.2. SNR for Solution Vector

In this section we discuss the ���??5@ results obtained for the solution vector.

These results depend on modulating constellations. Also, we investigate the degradation

in ���′. Values of ������� for each constellation are selected according to Table 3.1. We

expect these ������� values to be the usual lower and upper bounds for industry

standards. We predict that these variables only depend on the condition number of the

matrix �. Since, ������� only controls the range of condition numbers, therefore, the

results should not be affected by different values of �������.

5.2.1. Simulation Specifications

For all simulation results shown in Section Chapter 0 the type of modulating

constellation is very important, and it governs the loss in ���′ to some extent. Following

variables are constant across all simulation results:

37

• Number of trials is set to 300

• M = 10

• Number of transmission antennas (��) = 4

• Number of receive antennas (��) = 4

• *tuIpUpq = 8 �rqs
Variables varied across simulation results shown in Section Chapter 0 are given below:

• ������� is varied according to Table 3.1 for each constellation

• Signal variance (45") is assigned the values 222, and 224 for each �������

• {pqU|U} is given the values: 20, 16, 12, and 10

Since, both the number of transmission antennas (��), and the number of receive

antennas (��) are fixed at 4, therefore, the input coefficient matrix � is a 4 × 4 matrix for

all simulation results shown below. All ���′ values are calculated at ���� = 10	
.
5.2.2. QPSK SNR Analysis

Figure 5.9, and Figure 5.10, show ���??5@ (equation 3.1.1) for signal variances

(45") 222 and 224 respectively when ������� is fixed at 12��. Similarly, Figure 5.11, and

Figure 5.12 show ���??5@ for signal variances (45") 222 and 224 respectively when

������� is fixed at 50��. These plots show that there is negligible difference between

values of ���??5@ as signal variance (45") is varied from 222 to 224. However, we

observe that plots shown in Figure 5.9, and Figure 5.10, are subsets of plots given in

38

Figure 5.11, and Figure 5.12 respectively. This shows that ���??5@ is independent of

�������.

Figure 5.9: QPSK Solution Vector ��� for

SNRline = 12dB and Signal Variance = 222

Figure 5.10: QPSK Solution Vector ��� for

SNRline = 12dB and Signal Variance = 224

Figure 5.11: QPSK Solution Vector ��� for SNRline =

50dB and Signal Variance = 222

Figure 5.12: QPSK Solution Vector ��� for SNRline=

50dB and Signal Variance = 224

These results confirm the initial predictions that the behavior of the linear equation

(1.2.1) depends on condition number only, and is independent of the range of condition

numbers defined by �������. As expected, ���??5@ degrades with a decrease in

precision bits.

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

39

Figure 5.13: QPSK ���′(dB) for SNRline= 12dB
and Signal Variance = 222

Figure 5.14: QPSK ���′(dB) for SNRline= 12dB
and Signal Variance = 222 (zoom)

Figure 5.15: QPSK ���′(dB) for SNRline= 12dB
and Signal Variance = 224

Figure 5.16: QPSK ���′(dB) for SNRline= 12dB
and Signal Variance = 224 (zoom)

Figure 5.13 and Figure 5.15 show plots for ���′ (equation 3.1.4) for signal

variances (45") 222 and 224 respectively when ������� is fixed at 12��. We notice that the

base value for ���′ is 4.26��. This is consistent with the standard SER plots shown in

Figure 4.1. Figure 4.1 shows that ��� corresponding to ���� = 10	
 should be around

4��. Our calculations reveal that the base value for ���′ is indeed close to 4��, as

expected. In Figure 5.13 and Figure 5.15, the variations in ���′, for various bit

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

4.24

4.245

4.25

4.255

4.26

4.265

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

4.24

4.245

4.25

4.255

4.26

4.265

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

40

precisions, along the y-axis cannot be distinguished. Therefore, Figure 5.14 and Figure

5.16 are presented with data zoomed along the y-axis. At this zoom level, significant

variations across bit precisions are visible. Even at this scale, any variation in values of

���′ for 28-bit and 24-bit precisions is still un-distinguishable. However, 20-bit

precision shows a very small deviation (~0.005) from base value (4.26), and 18-bit

precision shows slightly higher deviation (~0.015) in ���′ with increasing condition

numbers. It is further observed that there is a greater loss in ���′ for 45" = 2"" than

45" = 2"j for 18-bit precision. It is interesting, as this is the first time that we have been

able to distinguish a different behavior for the two signal variances used. From section

3.1 we know that � = #��#� + 40"701, and noise variance is defined as 40" =
45"/�������. This shows that 45" controls the noise added to the diagonal of �. A bigger

signal variance will add a bigger number to the diagonal �, hence improving the

condition of �, and in turn improving the overall signal power. From these observations

we infer that a higher signal variance gives better SNR than a lower signal variance.

Figure 5.17 and Figure 5.18 show plots for ���′ (equation 3.1.4) for signal

variances (45") 222 and 224 respectively when ������� is fixed at 50��. Significant

variations in ���′, for various bit precisions are easily distinguished. Any variation in

values of ���′ for 28-bit and 24-bit precisions is still un-distinguishable. However, 20-

bit and 18-bit precisions show noticeable degradation in ���′ with increasing condition

numbers. ���′ for 20-bit pseudo floating point starts to degrade close to condition

number 103, but ���′ for 18-bit pseudo floating point starts to degrade around condition

number 102.

41

Figure 5.17: QPSK ���′(dB) for SNRline= 50dB
and Signal Variance = 222

Figure 5.18: QPSK ���′(dB) for SNRline= 50dB and
Signal Variance = 224

Therefore a system that operates at ������� = 50�� will be significantly affected by a

lower precision system design. In other words 20-bit precision can be considered a cut-

off point for systems with ������� = 50��. From all the figures shown in section 5.2.2,

it is observed that ���′ behaves independently of �������. This is evident from the fact

that Figure 5.13 and Figure 5.15 appear to be subsets of figures Figure 5.17 and Figure

5.18. This supports the initial expectations, as ������� only controls the range of

condition numbers, and has no effect on the value of ���′.
5.2.3. 16QAM SNR Analysis

Next we discuss ���??5@ (equation 3.1.1) for signal variances (45") 222 and 224

when ������� is fixed at 18�� for 16QAM constellation. The corresponding plots are

shown in Figure 5.19, and, Figure 5.20 respectively. Similarly, Figure 5.21, and Figure

5.22 show ���??5@ for signal variances (45") 222 and 224 respectively when ������� is

fixed at 50��. As in the QPSK case these plots show negligible difference between

���??5@ values as signal variance (45") is varied from 222 to 224.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

42

Figure 5.19: 16QAM Solution Vector ��� for SNRline=
18dB and Signal Variance = 222

Figure 5.20: 16QAM Solution Vector ��� for SNRline=
18dB and Signal Variance = 224

Figure 5.21: 16QAM Solution Vector ��� for SNRline=
50dB and Signal Variance = 222

Figure 5.22: 16QAM Solution Vector ��� for SNRline=
50dB and Signal Variance = 224

Similar to QPSK results, we observe that plots shown in Figure 5.19, and Figure 5.20, are

simply smaller subsections of plots given in Figure 5.21, and Figure 5.22 respectively.

Again these results show that ���??5@ is independent of �������, and confirm the

initial predictions that the behavior of the linear equation (1.2.1) depends on condition

number only, and is independent of the range of condition numbers defined by �������.

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

43

Figure 5.23: 16QAM ���′(dB) for SNRline= 18dB
and Signal Variance = 222

Figure 5.24: 16QAM ���′(dB) for SNRline= 18dB
and Signal Variance = 222 (zoom)

Figure 5.25: 16QAM ���′(dB) for SNRline= 18dB
and Signal Variance = 224

Figure 5.26: 16QAM ���′(dB) for SNRline= 18dB
and Signal Variance = 224 (zoom)

Figure 5.23 and Figure 5.25 show plots for ���′ (equation 3.1.4) for signal

variances (45") 222 and 224 respectively when ������� is fixed at 18��. We notice that the

base value for ���′ is 12.2�� as opposed to 4.26�� for the QPSK case. This is

consistent with data given in Figure 4.2. In Figure 4.2 we see that ��� corresponding to

���� = 10	
is approximately 12��. So, we expect the base value for ��� to be close to

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

12

12.05

12.1

12.15

12.2

12.25

12.3

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

12

12.05

12.1

12.15

12.2

12.25

12.3

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

44

12��. At the scale used to plot Figure 5.23 and Figure 5.25, the variations in ���′, for

various bit precisions, along the y-axis are barely distinguishable. However, Figure 5.24

and Figure 5.26 are presented so the deviations in ���′ can be observed more closely.

Even though plots in Figure 5.24 and Figure 5.26 show significant variations across bit

precisions, it should be noted that the maximum variation is no larger than 0.08 for the

lowest bit precision of 18-bits. Also, any variation in ���′ values for 28-bit and 24-bit

precisions is still un-distinguishable, as we observed in the QPSK case. It can be safely

concluded that these variations are within acceptable limits from a practical industrial

point of view, as they are very close to the base value of 12.2��. Similar to the QPSK

case, we observe that there is a greater loss in ���′ for 45" = 2"" than 45" = 2"j for 18-

bit precision. Once again we are able to distinguish a different behavior for the two signal

variances used. As described in the QPSK case, a signal variance of 224 adds a bigger

number to the diagonal �, hence improving the condition of �, and in turn improving the

overall signal power.

Figure 5.27: 16QAM ���′(dB) for SNRline= 50dB and
Signal Variance = 222

Figure 5.28: 16QAM ���′(dB) for SNRline= 50dB and
Signal Variance = 224

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

45

Figure 5.27 and Figure 5.28 show plots for ���′ (equation 3.1.4) for signal

variances (45") 222 and 224 respectively when ������� is fixed at 50��. Significant

variations in ���′, for various bit precisions are easily distinguished. Variation in ���′
values for 28-bit and 24-bit precisions is still un-distinguishable. However, 20-bit and 18-

bit precisions show noticeable degradation in ���′ with increasing condition numbers.

���′ for 20-bit pseudo floating point starts to degrade close to condition number 5x102,

but ���′ for 18-bit pseudo floating point starts to degrade around condition number

7x101. Notice that this degradation starts at an earlier condition number than the QPSK

case. This is because of the inherent behavior of 16QAM constellation points. The

constellation points are packed closer together than QPSK, and are hence more

susceptible to noise. Again we must conclude that 20-bit precision can be considered a

cut-off point for systems with ������� = 50��, as the signal degradation is significant as

condition numbers go above 102. From all the figures shown in section 5.2.3, it is

observed that ���′ behaves independently of �������. This is evident from the fact that

Figure 5.23 and Figure 5.25 appear to be subsets of Figure 5.27 and Figure 5.28. This

supports the initial expectations, as ������� only controls the range of condition

numbers, and has no effect on the value of ���′.
5.2.4. 64QAM SNR Analysis

���??5@ (equation 3.1.1) plots for signal variances (45") 222 and 224 for 64QAM

constellation when ������� is fixed at 24�� are shown in Figure 5.29, and, Figure 5.30

respectively. Also, Figure 5.31, and Figure 5.32 show ���??5@ for signal variances (45")

222 and 224 respectively when ������� is fixed at 50��. As in the QPSK, and 16QAM

cases these plots show negligible difference between ���??5@ values as signal variance

46

(45") is varied from 222 to 224. Also, consistent with QPSK, and 16QAM results, we

observe that plots shown in Figure 5.29, and, Figure 5.30, are simply subsets of plots

given in Figure 5.31, and Figure 5.32 respectively.

Figure 5.29: 64QAM Solution Vector ��� for
SNRline= 24dB and Signal Variance = 222

Figure 5.30: 64QAM Solution Vector ��� for
SNRline= 24dB and Signal Variance = 224

Figure 5.31: 64QAM Solution Vector ��� for
SNRline= 50dB and Signal Variance = 222

Figure 5.32: 64QAM Solution Vector ��� for
SNRline= 50dB and Signal Variance = 224

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

140

160

Condition number

S
N

R
(d

b
)

Float
PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

47

Again these results show that ���??5@ is independent of �������, and confirm the

initial predictions that the behavior of the linear equation (1.2.1) depends on condition

number only, and is independent of the range of condition numbers defined by �������.

Figure 5.33: 64QAM ���′(dB) for SNRline= 24dB and
Signal Variance = 222

Figure 5.34: 64QAM ���′(dB) for SNRline= 24dB and
Signal Variance = 222 (zoom)

Figure 5.35: 64QAM ���′(dB) for SNRline= 24dB and
Signal Variance = 222

Figure 5.36: 64QAM ���′(dB) for SNRline= 24dB and
Signal Variance = 222 (zoom)

Next we show plots for ���′ (equation 3.1.4) for 64QAM constellation points for

signal variances (45") 222 and 224 respectively when ������� is fixed at 24��, in Figure

5.33 and Figure 5.35. We notice that the base value for ���′ is 18.755��, which is

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

18

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

12

13

14

15

16

17

18

19

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

18

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

12

13

14

15

16

17

18

19

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

48

higher than both 4.26�� and 12.2�� from QPSK and 16QAM cases respectively. This is

consistent with data given in Figure 4.3. In Figure 4.3 we see that ��� corresponding to

���� = 10	
is a little less than 19��. So, we expect the base value for ��� to be close

to 18.8��. At the scale used to plot Figure 5.33 and Figure 5.35, the variations in ���′,
for various bit precisions, along the y-axis are considerably distinguishable as compared

to the QPSK and 16QAM cases. To be consistent with the data provided for QPSK and

16QAM, Figure 5.34 and Figure 5.36 are presented so the deviations in ���′ can be

observed more closely. Plots in Figure 5.24 and Figure 5.26 show significant variations

across bit precisions, and it is noted that the maximum variation is around 6 for the

lowest bit precision of 18-bits. This is a much greater variation than the QPSK and

16QAM cases. Even though there is significant degradation in ���′ values for 18-bit and

20-bit precisions, any variation for 28-bit and 24-bit precisions is still un-distinguishable.

We can infer from these results that 64QAM loses signal quality much more rapidly at

lower precisions than QPSK and 16QAM. In the case of 64QAM we cannot conclude

that these variations are within acceptable limits from a practical industrial point of view,

as it will greatly depend on the tolerance of the system whether it can handle a

degradation of 6dB ��� or not. Similar to the QPSK and 16QAM cases, we observe that

there is a greater loss in ���′ for 45" = 2"" than 45" = 2"j for 18-bit precision. The

difference is ���′ values is approximately 0.5��. This may be significant to a system

that is sensitive to lower values of ���′.

49

Figure 5.37: 64QAM ���′(dB) for SNRline= 50dB and
Signal Variance = 222

Figure 5.38: 64QAM ���′(dB) for SNRline= 50dB and
Signal Variance = 224

Figure 5.37 and Figure 5.38 show plots for ���′ (equation 3.1.4) for signal

variances (45") 222 and 224 respectively when ������� is fixed at 50��. Significant

variations in ���′, for various bit precisions are easily distinguished. Here, variation in

���′ values for 28-bit and 24-bit precisions are distinguishable. As in the case of QPSK

and 16QAM 20-bit and 18-bit precisions show noticeable degradation in ���′ with

increasing condition numbers. We notice that ���′ actually comes very close to zero for

18-bit precision in Figure 5.38. ���′ for 20-bit pseudo floating point starts to degrade

close to condition number 2x102, but ���′ for 18-bit pseudo floating point starts to

degrade around condition number 3x101. Notice that this degradation starts at an earlier

condition number than both QPSK and 16QAM cases. This is because of the inherent

behavior of 64QAM constellation points. The constellation points are packed closer

together than 16QAM and QPSK, and are hence more susceptible to noise. Here

conclude that 24-bit precision should be adopted for systems with ������� = 50��, as

the signal degradation is significant for bit precisions lower than 24-bits, as condition

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18

20

Condition number

S
N

R
 p

ri
m

e
(d

B
)

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

50

numbers go above 102. From all the figures shown in section 5.2.4, it is observed that

���′ behaves independently of �������. This is evident from the fact that Figure 5.33

and Figure 5.35 appear to be subsets of Figure 5.37 and Figure 5.38. This supports the

initial expectations, as ������� only controls the range of condition numbers, and has no

effect on the value of ���′.

5.3. Loss in Symbol Error Rate

In this section we study loss in symbol error rate (SER) by analyzing the ratio

���� ����f⁄ . As discussed in section 4.1 ���� is a function of ���. With the new ���′
values calculated in the previous section, we now have the data to get the corresponding

����f values at each bit precision. As before, values of ������� for each constellation are

selected according to Table 3.1. We expect these ������� values to be the usual lower and

upper bounds for industry standards. As observed in section 5.2, ���′ values were

independent of �������. Based on this observation, we predict that the ratio ���� ����f⁄

depends on the condition number of the matrix � only, and is independent of �������.

5.3.1. Simulation Specifications

For all simulation results shown in Section 5.3 the type of modulating constellation

is very important, and it governs the loss in symbol error rate to some extent. Following

variables are constant across all simulation results:

• Number of trials is set to 300

• M = 10

• Number of transmission antennas (��) = 4

51

• Number of receive antennas (��) = 4

• *tuIpUpq = 8 �rqs
Variables varied across simulation results shown in Section Chapter 0 are given below:

• ������� is varied according to Table 3.1 for each constellation

• Signal variance (45") is assigned the values 222, and 224 for each �������

• {pqU|U} is given the values: 20, 16, 12, and 10

Since, both the number of transmission antennas (��), and the number of receive

antennas (��) are fixed at 4, therefore, the input coefficient matrix � is a 4 × 4 matrix for

all simulation results shown below. All calculations for the ratio ���� ����f⁄ are done

with ���� = 10	
.

5.3.2. QPSK SER Loss

Figure 5.39 and Figure 5.41 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 12�� for a QPSK system. These plots show a

nearly perfect ratio of ���� ����f⁄ = 1.0 at all bit precisions. However, if we zoom in

along the y-axis, we see that there is some loss in SER for 18-bits, and an almost

negligible loss in SER for 20-bits (Figure 5.40 and Figure 5.42). No loss in SER is

observed for 24-bit and 28-bit precisions in any of the figures shown above. Also, we

notice that the maximum loss in SER is still very small for 18-bit

52

Figure 5.39: QPSK Pe/Pe' for SNRline= 12dB and
Signal Variance = 222

Figure 5.40: QPSK Pe/Pe' for SNRline= 12dB and
Signal Variance = 222 (zoom)

Figure 5.41: QPSK Pe/Pe' for SNRline= 12dB and
Signal Variance = 224

Figure 5.42: QPSK Pe/Pe' for SNRline= 12dB and
Signal Variance = 224 (zoom)

precision (~0.006) with increasing condition numbers. It is further observed that there is a

greater loss in SER for 45" = 2"" than 45" = 2"j for 18-bit precision. This is in

accordance with previous results of ���′ in section 5.2. As discussed in section 4.1, we

know that ����f = h(���f), and hence ����f ∝ ���f. If a system is to be designed with

condition numbers less than 2x102 then any bit precision will be acceptable.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e
 r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

Condition number

P
e
 r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e
 r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

Condition number

P
e
 r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

53

Figure 5.43: QPSK Pe/Pe' for SNRline= 50dB and
Signal Variance = 222

Figure 5.44: QPSK Pe/Pe' for SNRline= 50dB and
Signal Variance = 224

Figures 5.43 and 5.44 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 50�� for a QPSK system. These plots show a clear

degradation of the ratio ���� ����f⁄ at all bit precisions except for 28-bits. Even at the

given scale it is clear that there is a significant loss in SER for 18-bits. Loss in SER for

20-bits starts at a later condition number, but similar to the 18-bits case, the ratio

degrades very rapidly. Minor loss in SER is observed for 24-bits. No loss in SER is

observed for 28-bit precisions in any of the figures shown above. These results are as

expected. The SER is expected to degrade with increase in condition number. The

degradation should be more drastic for lower bit precisions than higher ones. As observed

the SER stay stable and close to perfect with 28-bit precision even when the condition

number goes above 104.

5.3.3. 16QAM SER Loss

Figure 5.45 and Figure 5.47 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 18�� for a 16QAM system. Unlike the QPSK

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

54

case, these plots do not show a nearly perfect ratio of ���� ����f⁄ = 1.0 at all bit

precisions. There is a noticeable difference in the ���� ����f⁄ ratio across the tested bit

precisions at higher condition numbers. If we zoom in along the y-axis, we see that there

is some loss in SER for 18-bits, and an almost negligible loss in SER for 20-bits (Figure

5.46 and Figure 5.48). No loss in SER is observed for 24-bit and 28-bit precisions in any

of the figures shown below. Also, we notice that the maximum loss in SER is still very

small for 18-bit precision (~0.005) with increasing condition numbers. It is further

observed that there is a greater loss in SER for 45" = 2"" than 45" = 2"j for 18-bit

precision. This is in accordance with previous results of ���′ in section 5.2. As

discussed in section 4.1, we know that ����f = h(���f), and hence ����f ∝ ���f. If a

system is to be designed with condition numbers less than 2x102 then any bit precision

will be acceptable.

Figure 5.45: 16QAM Pe/Pe' for SNRline= 18dB and
Signal Variance = 222

Figure 5.46: 16QAM Pe/Pe' for SNRline= 18dB and
Signal Variance = 222 (zoom)

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

55

Figure 5.47: 16QAM Pe/Pe' for SNRline= 18dB and
Signal Variance = 224

Figure 5.48: 16QAM Pe/Pe' for SNRline= 18dB and
Signal Variance = 224 (zoom)

Figures 5.49 and 5.50 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 50�� for a 16QAM system. These plots show a

clear degradation of the ratio ���� ����f⁄ at all bit precisions. The degradation for 28-bits

is very small, but it is noticeable for signal variance of 222. It is clear that there is a

significant loss in SER for both 18-bits and 20-bits. Loss in SER for 24-bits starts at a

later condition number, and surprisingly does not degrade very quickly. Minor loss in

SER is observed for 28-bits at very high condition numbers. These results show that 24-

bits is the cut-off point for a 16QAM system, if we want to get reasonable reliability even

at higher condition numbers. As in the QPSK case, the SER is expected to degrade with

increase in condition number. The degradation should be more drastic for lower bit

precisions than higher ones (as observed). The SER stays stable and close to perfect with

28-bit precision even when the condition number goes above 104 for both signal

variances. Therefore, if a system is to be designed using 16QAM, then 24-bit or 28-bit

precisions should be used in order to get reliable behavior at higher condition numbers.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Condition number

P
e
 r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

56

Figure 5.49: 16QAM Pe/Pe' for SNRline= 50dB and
Signal Variance = 222

Figure 5.50: 16QAM Pe/Pe' for SNRline= 50dB and
Signal Variance = 224

5.3.4. 64QAM SER Loss

Figure 5.51 and Figure 5.52 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 24�� for a 64QAM system. Similar to the 16QAM

case, these plots do not show a nearly perfect ratio of ���� ����f⁄ = 1.0 at all bit

precisions. There is a noticeable difference in the ���� ����f⁄ ratio across the tested bit

precisions at higher condition numbers. No zooming is required here, as the loss in SER

is clearly visible for lower precisions at the current scale. No loss in SER is observed for

28-bit precision in any of the figures shown below. Also, we notice that the maximum

loss in SER is no longer small for 18-bit precision with increasing condition numbers. It

is further observed that loss in SER for 45" = 2"" than 45" = 2"j for 18-bit precision is no

longer distinguishable. This is due the fact that the noise introduced inherently by the

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

57

64QAM system is comparable to the signal variance, hence balancing out the effects of

change in signal variance.

Figure 5.51: 64QAM Pe/Pe' for SNRline= 24dB and
Signal Variance = 222

Figure 5.52: 64QAM Pe/Pe' for SNRline= 24dB and
Signal Variance = 224

Figures 5.53 and 5.54 show loss in SER for signal variances (45") 222 and 224

respectively when ������� is fixed at 50�� for a 64QAM system. These plots show a

clear degradation of the ratio ���� ����f⁄ at all bit precisions. Similar to the 16QAM

system, the degradation for 28-bits is very small. Loss in SER is less than 0.8 for signal

variance of 222, which should be acceptable in most systems. There is a significant loss in

SER for both 18-bits and 20-bits, and this degradation starts very early at small condition

numbers. This makes it difficult to have a system run at 18-bit or 20-bit precisions if

higher input condition numbers are expected. Similar to the 16QAM case, loss in SER for

24-bits starts at a later condition number, and does not degrade very quickly. Minor loss

in SER is observed for 28-bits at very high condition numbers, this makes 28-bits the best

choice for a reliable 64QAM system. These results show that 24-bits is again the cut-off

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

58

point for a 64QAM system, if we want to get reasonable reliability at higher condition

numbers. We observe that SER levels off at 0.1. This can mathematically verified. As

condition number increases ����f also increases to a maximum value of 1. Since ���� is

fixed at 0.1, therefore the ratio flattens out at 0.1. If ���� if fixed at a different number,

then the ���� ����f⁄ ratio curve will level off at that value. Given the above observations

we can conclude that if a system is to be designed using 64QAM constellations, then 24-

bit or 28-bit precisions should be used in order to get reliable behavior at higher condition

numbers.

Figure 5.53: 64QAM Pe/Pe' for SNRline= 50dB and
Signal Variance = 222

Figure 5.54: 64QAM Pe/Pe' for SNRline= 50dB and
Signal Variance = 224

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Condition number

P
e r

at
io

PFloat 28 bits
PFloat 24 bits
PFloat 20 bits
PFloat 18 bits

59

Chapter 6 VEX Hardware Simulator

6.1. The VEX System

VEX stands for VLIW Example. “VEX includes three basic components:

1. The VEX Instruction Set Architecture. VEX defines a 32-bit clustered VLIW ISA

that is scalable and customizable to individual application domains. The VEX ISA is

loosely modeled upon the ISA of the HP/STMicroelectronics Lx/ST200 family of

VLIW embedded cores. Scalability includes the ability to change the number of

clusters, execution units, registers and latencies; customizability enables users to

define special-purpose instructions in a structured way.

2. The VEX C Compiler. The VEX C compiler is a derivation of the Lx/ST200 C

compiler, itself a descendant of the Multiflow C compiler. It is a robust, ISO/C89

compiler that uses Trace Scheduling as its global scheduling engine. A very flexible

table-like machine model determines the target architecture. VEX selectively exposes

some of the parameters to allow architecture exploration by changing the number of

clusters, execution units, issue width and operation latencies, without having to

recompile the compiler.

3. The VEX Simulation System. The VEX simulator is an architecture-level

(functional) simulator the uses compiled simulator technology to achieve a speed of

many equivalent ‘MIPS’. The simulation system also comes with a fairly complete

set of POSIX-like libc and libm libraries (based on the GNU newlib libraries), a

60

simple built-in cache simulator (level-1 cache only), and an API that enables other

plug-ins used for modeling the memory system.” [24]

6.2 VEX Simulation Setup

VEX is set up to simulate the Texas Instruments C64x line of fixed point DSPs. The

following table compares the TI DSP with the VEX setup. The only difference between

the TI DSP and the VEX setup is that in VEX the number of ALUs cannot be odd.

Therefore VEX had to be setup with four ALU units. Furthermore, VEX simulator does

not allow L2 caches. Thus, two data caches are defined as L1 caches.

Table 6.1: Comparison of TI C64x DSP Specifications and VEX Simulator Setup

TI C64x DSP Specifications VEX Simulator Setup

• VLIW clusters: 2

• Issue Width: 4

• ALUs per cluster: 3

• Multipliers per cluster: 1

• Simultaneous Loads: 2

• General Register size: 64-bits

• Split L1 cache for Data and Instructions

• L2 cache

• VLIW clusters: 2

• Issue Width: 4

• ALUs per cluster: 4

• Multipliers per cluster: 1

• Simultaneous Loads: 2

• General Register size: 64-bits

• L1 instruction cache

• 2 x L1 data caches

61

Following compilation flags are used to introduce timing and cycle instrumentation:

-c -ms -c99inline -fmm=config.mm -mas_G -mas_t -O4 -width 2

Details of these flags are given below:

-c Suppress the loading phase of the compilation; do not delete the ‘.o’ files

produced by the assembler. These files may be loaded by cc or ld at a later

time. [24]

-ms Compile the named programs, leave the assempler-language output on

corresponding files suffixed ‘.s’ and continue to generate ‘.o’ files

normally. By default cc deletes any ‘.s’ files that it creates. [24]

-c99inline Allow c99-style inline keywords to manually control inline expansion.

[24]

-fmm Read machine description parameters (latency, resources, etc.) from the

files specified. [24]

-mas_G Turn on gprof-style collection of profiling data. The gprof tool produces

an execution profile of programs where the effect of called routines is

incorporated into the profile of each caller. Profile data is taken from the

call graph profile file (gmon.out by default). [24]

-mas_t Enables the collection of ‘Compiled Simulator’ runtime statistics, I-cache

simulation and D-cache simulation when program is executed. [24]

-O4 Compiler applies level 4 optimization resulting in heavy l

[24]

-width n Changes the number of clusters to n, must be either 1, 2 or 4. [24]

Custom instructions are defined for pseudo float add, subtract, and multiply, which are

executed in VEX as standalone hardware instructions. Figure 6.1 shows t

a pseudo floating point register as customized in VEX

to extract the required component as needed.

Figure

6.3 VEX Simulation Results

Primary goal of doing hardware simulations with VEX is to find out the percentage of

pseudo floating points operations and cycles during the total Cholesky decomposition

execution. Using the profiling flags mentioned above, the

numbers are obtained:

� Total Instructions

Instructions for Pseudo Floating point

Percentage of Pseudo Floating point Instructions

62

Compiler applies level 4 optimization resulting in heavy l

Changes the number of clusters to n, must be either 1, 2 or 4. [24]

Custom instructions are defined for pseudo float add, subtract, and multiply, which are

executed in VEX as standalone hardware instructions. Figure 6.1 shows t

a pseudo floating point register as customized in VEX. Bit shifting and masking is used

to extract the required component as needed.

Figure 6.1: Pseudo Floating point bit allocation in VEX

VEX Simulation Results

Primary goal of doing hardware simulations with VEX is to find out the percentage of

pseudo floating points operations and cycles during the total Cholesky decomposition

execution. Using the profiling flags mentioned above, the following instruction and cycle

Total Instructions for Cholesky Decomposition: 3345

Instructions for Pseudo Floating point operations: 1916

Pseudo Floating point Instructions: 57.28%

Compiler applies level 4 optimization resulting in heavy loop unrolling.

Changes the number of clusters to n, must be either 1, 2 or 4. [24]

Custom instructions are defined for pseudo float add, subtract, and multiply, which are

executed in VEX as standalone hardware instructions. Figure 6.1 shows the bit layout of

. Bit shifting and masking is used

Primary goal of doing hardware simulations with VEX is to find out the percentage of

pseudo floating points operations and cycles during the total Cholesky decomposition

following instruction and cycle

63

� Total cycles for Cholesky Decomposition: 7555

Cycles for Pseudo Floating point operations: 3850

Percentage of Pseudo Floating point cycles: 50.95%

From the numbers given above it is clear that custom bit precisions in pseudo floating

point hold great potential in optimizing energy and power of the overall Cholesky

decomposition process.

64

Chapter 7 Conclusion

7.1 Conclusion

In our study we explored many bit precisions across multiple constellations that can

be used to implement a MIMO system. Matrix inversion is a key part of any MIMO

receiver, as the equation �t = � has to be solved every time a new channel matrix is

received. Cholesky decomposition is commonly used to calculate the inverse of the

channel matrix. Although LU and QR decompositions are also used in certain systems,

Cholesky decomposition has the least runtime complexity and the highest stability of the

three.

The primary goal of this exploration study is to determine the lowest possible bit

precision for a MIMO receiver system while keeping the SNR and SER ratio within

system specifications. By using less bits in calculating the inverse of the channel matrix,

power, area, and energy costs can be minimized. Cholesky decomposition generates a

lower triangular matrix �. This matrix is then used to calculate �	
 by using back-

substitution. There is minimum error introduced in generating �	
 as no divisions take

place during the calculation process. Subsequently calculations of �	
 matrix and the

final vector are very stable as well. We explored SNR levels for various bit precisions for

�, �	
, and the final vector using them as checkpoints. These checkpoints help guide the

hardware designer in the correct direction during the design process. At each stage the

level of SNR degradation is clearly indicated and inferences are made according to the

observations. Finally, loss in Symbol Error Rate (SER) is calculated by computing the

65

ratio ���� ����f⁄ . This is the primary metric for a system’s performance. This ratio should

be used as the first step to determine the bit precision for the system. After that, results

for �, �	
, and the result vector should be used to guide the design in the correct direction

while keeping the SNR within system specifications. The VEX hardware simulations

show that a significant proportion (over 50%) of instructions and cycles in Cholesky

decomposition are pseudo floating point. Thus, optimizing the internal bit precision of the

calculation can lead to significant power savings.

7.2 Future Prospects

There are many opportunities to explore the relationship of SNR and system bit

precision in wireless communication systems. Wireless systems and digital signal

processing applications commonly use SVD, and QR decomposition to calculate pseudo

inverse of a channel matrix. Any wireless communication system can be optimized in

power and area by using just the number of bits necessary to get the correct result.

Various bit precisions can be used for different sections of the system, thus minimizing

overall power and area. Another prospect is to build wireless systems where each

component has adaptable internal precision. This way overall power can be reduced

without compromising the minimum requirements of the wireless system.

66

References
[1] LTE – an introduction. Ericsson. 2009.

[2] D. Garrett, L. Davis, S. Brink, B. Hochwald, and G. Khagge, “Silicon complexity

for maximum likelihood MIMO detection using spherical decoding,” IEEE Journal
of Solid-State Circuits, Vol. 39, no. 9, pp. 1544-1552, Sep. 2004.

[3] G. H. Golub, and C. F. Van Loan, Matrix Computations (Third Ed.). Baltimore: The

John Hopkins University Press, 1996.

[4] D. S. Watkins, Fundamentals of Matrix Computations (Second Ed.). New York:
John Wiley & Sons, Inc., 2002.

[5] V. Kühn, Wireless Communications over MIMO Channels. England: John Wiley &

Sons Ltd., 2006.

[6] S. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

[7] V. Tarokh, H. Jafarkhaniand, and A. R. Calderbank, “Space-time block codes from

orthogonal designs,” IEEE Transaction on Information Theory, vol. 45, no. 5, pp.
1456–1467, July 1999.

[8] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-blast:

An architecture for realizing very high data rates over rich-scattering wireless
channel,” Proceedings of International Symposium on Signals, Systems, and
Electronics (ISSSE), Pisa, Italy, pp. 295–300, Sept. 1998.

[9] Z. Khan, T. Arslan, J. S. Thompson, and A. T. Erdogan, “Dual strategy based VLSI

architecture for computing pseudo inverse of channel matrix in a MIMO wireless
system,” in Proceeding of IEEE International Symposium on VLSI, pp. 12-17, 2006.

[10] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,

Numerical Recipes in C: The Art of Scientific Computing (Second Ed.). New York:
Cambridge University Press, 1992.

[11] C. K. Singh, N. Al-Dhahir, and P. T. Balsara, “Effect of Word-length Precision on

the Performance of MIMO Systems,” IEEE International Symposium on Circuits
and Systems, pp. 2598-2601, 2007.

67

[12] R. Bohnke, D. Wubben, V. Kuhn, and K. D. Kammeyer, “Reduced complexity
MMSE detection for BLAST architectures,” IEEE Global Telecommunications
Conference (GLOBECOM), vol. 4, pp. 2258-2262, Dec. 2003.

[13] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985,

Aug. 1985.

[14] Hai-Nam Nguyen, D. Menard, and O. Sentiey, “Dynamic Precision scaling for low
power WCDMA receiver,” IEEE International Symposium on Circuits and Systems,
pp. 205-208, May 2009.

[15] D. Menard, R. Serizel, R. Rocher, and O. Sentieys, “Accuracy Constraint

Determination in Fixed-Point System Design,” EURASIP Journal on Embedded
Systems, vol. 2008.

[16] Z. Khan, T. Arslan, J. S. Thompson, and A. T. Erdogan, “Analysis and

Implementation of Multiple-Input, Multiple-Output VBLAST Receiver From Area
and Power Efficiency Perspective,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 14, no. 11, pp. 1281-1286, Nov. 2006.

[17] H. Kim, C. B. Chae, G. Veciana, and R. W. Heath, “Energy-Efficient Adaptive

MIMO Systems Leveraging Dynamic Spare Capacity,” 42nd Annual Conference on
Information Sciences and Systems (CISS), pp. 68-73, 2008.

[18] W. W. L. Ho, and Y. C. Liang, “Efficient Resource Allocation for Power

Minimization in MIMO-OFDM Downlink,” IEEE 68th Vehicular Technology
Conference (VTC 2008-Fall), pp. 1-5, 2008.

[19] A. Irturk, B. Benson, N. Laptev, and R. Kastner, “Architectural Optimization of

Decomposition Algorithms for Wireless Communication Systems,” IEEE Wireless
Communications and Networking Conference (WCNC), April 2009.

[20] A. Irturk, B. Benson, A. Arfaee, and R. Kastner, “Automatic Generation of

Decomposition based Matrix Inversion Architectures”, IEEE International
Conference on Field-Programmable Technology (ICFPT), Dec. 2008.

[21] A. Irturk, B. Benson, S. Mirzaei, and R. Kastner, “GUSTO: An Automatic

Generation and Optimization Tool for Matrix Inversion Architectures,” ACM
Transactions on Embedded Computing Systems, to appear.

68

[22] A. Hosangadi, F. Fallah, R. Kastner, “Algebraic Methods for Optimizing Constant
Multiplications in Linear Systems,” Springer Journal of VLSI Signal Processing,
vol. 49, issue 1, pp. 31-50, Oct. 2007.

[23] A. Arfaee, A. Irturk, F. Fallah, and R. Kastner, “Xquasher: A Tool for Efficient

Computation of Multiple Linear Expressions,” Design Automation Conference
(DAC), July 2009.

[24] The Vex System, Hewlett Packard Labs, 2009.

