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Neisseria gonorrhoeae, the causative agent of the sexually transmitted 

infection gonorrhea, adheres to and invades genital epithelial cells. This study 

investigates host components that are used by the bacteria for their entry into 

epithelial cells. I found that the interaction of gonococci with the surface of HEC-1-

B, a human endometrial carcinoma, and ME180, a human cervical epidermoid 

carcinoma, caused redistribution of both epidermal growth factor receptor (EGFR) 

and ErbB2, a related family member. Both EGFR and ErbB2 were translocated from 

the basolateral to the apical membrane in polarized HEC-1-B cells and concentrated 

under the microcolonies. Gonococcal infection increased EGFR and ErbB2 

phosphorylation, indicating activation of the receptors. Kinase inhibitors of EGFR 

and ErbB2 inhibited and enhanced bacterial invasion, respectively, but had no effect 



on gonococcal adherence or the recruitment of EGFR and ErbB2 to the 

microcolonies. Gonococcal inoculation upregulated the transcription levels and 

matrix metalloproteinases (MMP)-mediated surface shedding of ligands of EGFR. 

Inhibition of the surface shedding of EGFR ligands by an MMP inhibitor and by 

heparin wash reduced gonococcal invasion without altering their adherence. N. 

gonorrhoeae induced the activation of the MAP Kinase ERK, PI3K/AKT and PLCγ 

signaling pathways in an EGFR tyrosine kinase-dependent manner. Blocking Ca2+ 

flux, the downstream pathway of PLCγ, but not ERK and PI3K by inhibitors reduced 

gonococcal invasion. These data indicate that N. gonorrhoeae utilizes host signaling 

pathways to drive its invasion. The bacteria modulates host signaling by recruiting 

and activating EGFR and ErbB2. N. gonorrhoeae induces EGFR activation by 

increasing the expression and MMP-mediated shedding of EGFR ligands. 
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Chapter 1 Introduction  

 

1.1 Background 

 Neisseria gonorrhoeae (gonococci), a Gram-negative diplococcus, is the 

causative agent of the sexually transmitted infection gonorrhea. Gonococci are 

obligate pathogens of humans that have no other natural host. N. gonorrhoeae causes 

significant disease in the U.S. and worldwide. Gonorrhea is the second most 

commonly reported infectious disease in the US at over 300,000 reported cases 

annually, although there are estimated to be approximately 700,000 cases in the US 

and 80,000,000 cases worldwide annually (106). Because of increasing incidence of 

antibiotic resistance, cephalosporins are the only remaining class of antibiotics that 

are available to treat gonorrhea (107). Additionally, the significance of this disease is 

exacerbated by the findings that gonococcal infection increases the risk of HIV 

transmission (42). 

 N. gonorrhoeae primarily infects epithelial cells of the genitourinary tract of 

both men and women, but also can infect epithelial cells of the conjunctiva, pharynx, 

and rectal mucosa. Primary infection differs between men and women. Nearly 90% of 

infected men are symptomatic. Symptoms usually appear within 2-5 days after 

infection, but can take up to 30 days to arise. These include dysurea and purulent 

discharge. During the initial infection of men, gonococci are thought to invade 

urethral epithelial cells. Proinflammatory cytokines are released, causing an influx of 

polymorphonuclear leukocytes (PMN) which engulf gonococci by phagocytosis.  
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 Women are exposed to N. gonorrhoeae by their infected partners. Most 

infected women, however, are asymptomatic or have symptoms so mild that they are 

disregarded (101). Since asymptomatic women fail to seek treatment, this allows 

women to become chronically infected. Chronic infection allows the bacteria to 

spread to secondary sites and cause more serious disease. One of the outcomes of this 

is pelvic inflammatory disease (PID), which occurs in 10-20% of infected women 

(106). PID occurs when the infection moves into the upper reproductive tract. 

Infection of the Fallopian tubes, salpingitis, causes apoptosis of the ciliated cells, 

leading to the loss of function of the tubes. PID is also known to induce the over 

production of proinflammatory cytokines, which ultimately can lead to scarring of the 

reproductive organs, resulting in chronic pelvic pain, ectoptic pregnancy, and 

infertility. Disseminated gonococcal infection (DGI) occurs in 1-3% of infections and 

typically manifests as arthritis and dermatitis, but can also cause endocarditis, 

meningitis, and adult respiratory distress syndrome (1, 8, 16, 69, 98). Gonococcal 

infection during pregnancy has been shown to enhance the chances of acquiring DGI 

(1, 98). Men also are susceptible to DGI, although it occurs at a much lower 

incidence than in women (1). 

 Productive infection by N. gonorrhoeae of genital epithelial cells consists of 

four sequential steps: adherence, invasion, intracellular survival, and exocytosis. 

Since the anatomy of the male and female reproductive tracts is quite different, 

gonococci have had to develop methods to survive in both environments. 

Additionally the female reproductive tract remodels itself monthly. Therefore, in 

order to maintain infection in women, gonococci have had to develop strategies that 
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allow it to adhere to and possibly invade deeper into tissues as older cells are shed 

and newer epithelial cells differentiate in order to adapt to a constantly changing 

environment. One of the mechanisms that gonococci have developed to adapt to 

different environments is the ability to phase vary multiple genes including many of 

its surface molecules. A recent genomic search found that N. gonorrhoeae strain 

FA1090 had 72 genes that are putatively phase variable (130). Besides being able to 

adapt to changing environments, the ability to phase vary multiple genes has also 

been suggested to be important for avoiding immune detection (89).  

 

1.2 Gonococcal Virulence Factors 

Pili (Pil), opacity-associated proteins (Opa) and lipooligosaccharide (LOS) are 

three of the most studied gonococcal virulence factors, all of which are phase 

variable. N. gonorrhoeae express type IV pili (Tfp) that mediate the initial adherence 

to genital epithelial cells (68, 97). The gonococcal pilus is composed of multiple 

subunits of identical pilin monomers, PilE. There is both interstrain and intrastrain 

variability in pilus expression. Intrastrain variation is due to reciprocal homologous 

recombination of pilE with any of the multiple copies of pilS, the silent pilin loci. The 

pilS loci contain one or more partial copies of pilin genes that lack the N-terminal 

coding region and are tandemly arranged. N. gonorrhoeae strain MS11 has five pilS 

loci that contain up to 16 partial pilin gene copies (137). 

Expression of the PilC protein is necessary for pilus fiber stabilization (154). 

The pilC gene is phase variable, which thereby controls pilus expression phase 
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variation. Besides being necessary for pilus stabilization, PilC is the major adhesin 

located at the tip of the pilus (112, 118). Loss of pilC expression through phase 

variation does not alter expression of the pilin monomers. When PilC is not 

expressed, PilE is processed by removal of approximately 39 amino acids N-terminal 

and secreted as a soluble pilin molecule called S pilin (54, 64). Gonococcal pili are 

highly immunogenic, so it has been postulated that secretion of S pilin might act as a 

decoy for the anti-pilus antibody response (25, 136). 

After gonococci adhere to epithelial cells via their pili, they retract their pili 

allowing for a more intimate association between the bacterium and host cell surface 

(108). The twitching of all Tfp and pilus retraction is under the control of the ATPase 

protein PilT (154). The ability of the gonococci to retract their pili enhances the 

infection process, as gonococci that are piliated but do not express PilT invade 40% 

less well than gonococci that express PilT (79). Although CD46, a membrane protein, 

initially was identified as the receptor for gonococcal pili via PilC (77), recent studies 

have suggested that there is no relationship between CD46 and gonococcal adherence 

(71, 141). Thus there have been no definitive host receptor(s) identified for 

gonococcal pilus. 

 After initial attachment by pili, more intimate attachment is thought to be 

mediated via interaction of Opa and LOS with host cells. Opa comprise a family of 

closely related outer membrane proteins (7, 135). Most strains of N. gonorrhoeae 

have 10-11 opa genes, and through phase variation at any time can express none or 

several. (10, 15, 143). Opa proteins are lectins that increase both inter-gonococcal 

adherence by binding to the oligosaccharide portion of LOS on adjacent bacteria (14) 
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and gonococcal binding to host receptors.  

 Both Opa+ and Opa- gonococcal variants are thought to be virulent, since both 

can be isolated from sites of active gonococcal infection. Gonococci isolated from 

male urethrae and the cervices of women near the time of ovulation are mostly Opa+, 

whereas gonococci isolated from the cervices of women near the time of 

menstruation, from Fallopian tubes and from blood during DGI are Opa-.  

 There have been several host cell receptors identified for Opa proteins. Heparan 

sulfate proteoglycans (HSPG) are membrane proteins that are glycosylated primarily 

with heparan sulfate but also with chondroitan sulfate. CD44v3, syndecan-1 and 

syndecan-4 are all HSPGs that bind to at least one Opa variant on the surface of 

gonococci, which then can lead to the internalization of bacteria (44). All three 

HSPGs are localized at the basolateral side of epithelial cells. Since infection is 

initiated from the apical side, it is still unclear how these proteins may be utilized 

during the infection process. Opa proteins also have been shown to interact with 

members of the carcinoembryonic antigen (CEACAM) family on the surface of 

neutrophils and direct bacterial invasion (22). Neutrophil infiltration is a hallmark of 

gonococcal disease in men, but seldom occurs in women. About 70% of cervical 

epithelial cells have been shown to express CEACAM (93, 138), but it hasn't been 

found on Fallopian tube epithelial cells (138). While binding to CEACAM expressed 

on genital epithelial cells leads to internalization of gonococci by Opa:CEACAM 

mediated endocytosis, internalized gonococci via this mechanism are transported to 

lysosomes where they are efficiently killed (85). CEACAM mediated endocytosis by 

neutrophils does not lead to killing of the bacteria, which may be important for 



 

 6

disease progression in men. CEACAM-mediated endocytosis by female genital 

epithelial cells could lead to intracellular killing of gonococci and therefore may be 

protective. 

 N. gonorrhoeae express LOS, which is similar to the lipopolysaccharide (LPS) 

of enteric bacteria except that it lacks the O-antigen sugar repeats. Gonococcal LOS 

has a triantennary oligosaccharide (OS) structure that mimics human 

glycosphingolipids (52, 82, 83). Gonococcal LOS consists of a membrane anchored 

lipid A that is attached to two 2-keto-3-deoxy-mannooctulosonic acid (KDO) 

molecules. Two heptoses (Hep) extend from KDO1. The alpha-OS chain is attached 

to Hep1, and both the beta- and gamma-OS chains are attached to Hep2. Additionally 

the heptoses may be decorated with one or two phosphoethanolamines. The genes for 

the glycosyltransferases that encode for the stepwise addition of the sugars are 

known. The glycosyltransferases that produce the alpha-OS chain is encoded by the 

lgtA-E gene cluster and lgtF of which lgtA, lgtC and lgtD are phase variable (49). The 

shortest naturally occurring alpha-OS is a lactosyl moiety which occurs by the action 

of the invariant lgtF and lgtB. Extension of the beta-OS is under the control of the 

phase variable lgtG expression. The gamma-OS consists of a single N-

acetylglucosamine and is controlled by the expression of rfaK which is coexpressed 

with lgtF and is invariant (65). 

 In a human challenge study designed to follow the variation of LOS in 

disease, men were intraurethrally challenged with various amounts of gonococcal 

strain MS11mk varA (MKA) (125). This strain produces a single LOS with a lactosyl 

alpha-chain. Only men who had been inoculated with the most organisms, 108, had 
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symptoms of disease. At the onset of leukorrhea it was noted that the LOS had varied 

to a higher MW species MS11varC (MKC). This change was found to be the alpha-

chain lactose with one or more additions of N-acetyllactosamine called lacto-N-

neotetraose or paraglobosyl LOS (63). The same study also found that 34/36 naturally 

acquired infections expressed paraglobosyl LOS or larger LOS species, the remaining 

two produced both paraglobosyl and lactosyl LOS. This and sequential human 

challenge studies demonstrated that paraglobosyl LOS is the virulent phenotype, and 

that ID50 of these virulent strains is only 2.5x103 gonococci (124, 125). 

 Wang et al. showed that the lacto-N-neotetraose OS could inhibit the invasion 

of HEC-1-B cells by gonococci, suggesting that this LOS is important for invasion of 

epithelial cells (149). The importance of the OS portion of LOS in gonococcal 

invasion was further investigated in two similar in vitro studies using N. gonorrhoeae 

OS mutants of two different gonococcal strains and ME180 cervical epithelial cell 

line. In vitro studies with strain F62 using alpha-chain OS mutants that are invariant 

in the expression of a single LOS species in a Pil+ Opa- background showed that 

although there was no difference in the ability of the LOS mutants to adhere to 

human cervical epithelial cells only lacto-N-neotetraose LOS promoted efficient 

invasion into the epithelial cells (131). Contrary to this finding, another study using 

LOS mutants of strain MKC in a Pil- Opa+ background showed that there was no 

difference in adherence or invasion of gonococci with the truncated LOS alpha-chain 

mutants as compared to those with lacto-N-neotetraose LOS into ME180 cells. Only 

gonococci that express LOS lacking an alpha-chain OS were found to have both poor 

adherence and invasion. Clearly the background expression of two known adhesins, 
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pili and Opa, are reversed for the two studies. This could be one explanation for the 

disparity between the two studies. Consistent with a role of LOS in infection, clinical 

studies show that men expose women to N. gonorrhoeae that express pili, Opa and 

lacto-N-neotetraose LOS. 

 

1.3 Gonococcal Infection Process  

 Gonococcal invasion of genital epithelial cells is an active process that requires 

participation of both the host cells and gonococci (Fig. 1). Killed bacteria are not 

endocytosed (13, 114). Unlike other bacterial intracellular pathogens in which 

endocytosis is rapid, N. gonorrhoeae infection of genital epithelial cells in vitro takes 

approximately 4-6 hours. Maximal adherence is seen at about 2 hours. New protein 

synthesis after initial adherence is required in both the gonococci and host cell in 

order to induce its endocytosis (53, 114, 127). After 2 hours, the host cell microvilli 

elongate, surround the gonococcal microcolonies, and attach to the gonococci along 

their full lengths. (33, 53). The gonococci appear to sink into the membrane without 

the benefit of lamellipodia or filopodia formation. Their invasion most closely 

resembles Type II phagocytosis like the complement receptor 3 (CR3)-mediated 

phagocytosis of C3bi opsonized particles (18). 

 CR3 dependent uptake of microorganisms happens in the absence of 

proinflammatory responses, a situation that exists in gonococcal infection of women. 

Although CR3 initially was believed to be expressed only on the surface of 

professional phagocytes, it has recently been found to be expressed on the surface of 

primary epithelial cells, including cervical and endometrial cells (38, 61). Gonococcal 
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LOS has been demonstrated to bind C3. The subsequent conversion of C3 to C3bi 

allows the engagement of CR3 and phagocytosis of the bacteria(37). 

 Gonococcal invasion of host cells is an actin-mediated process that is dependent 

upon rearrangement of the host cell cytoskeleton. The addition of the actin perturbing 

agents, cytochalasin B and cytochalasin D, inhibits gonococcal invasion of epithelial 

cells (114, 127). Pili-mediated initial adherence of gonococci to genital epithelial 

cells induces cortical plaque formation (87). The formation of cortical plaques 

requires host cytoskeletal rearrangement. Pili mediated adherence causes the 

recruitment of ezrin, a protein that links the actin cytoskeleton with the membrane 

and the assembly of F-actin beneath the gonococci (48, 86). EGFR (ErbB1), CD44v3 

and ICAM-1 all were shown to be enriched in gonococcal induced cortical plaques 

and along elongated host microvilli (87).  

 Hoffmann et al. (59) did similar studies to examine the surface redistribution of 

ErbB receptors on the surface of endothelial cells in response to N. meningitidis. 

Unlike gonococcal adherence of epithelial cells, the study showed that in endothelial 

cells there is no recruitment of EGFR (ErbB1) to the site of adherent meningococci. 

EGFR and the ErbB family receptors, ErbB3 and ErbB4, all showed punctate staining 

over the entire surface of endothelial cells before and after the addition of 

meningococci. However the study showed that the addition of meningococci induces 

the recruitment of ErbB2 to the site of the meningococcal microcolonies. 

 In the past twenty years a lot of work has been published examining the 

mechanisms and signal transduction pathways that gonococci use in order to invade 

epithelial cells and cause disease. Pil- Opa- variants have been shown to be unable to 
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adhere, invade or cause primary disease. Therefore, much of the work has used 

gonococcal variants that where either Pil+ Opa- or Opa+ Pil- in an attempt to tease out 

the host signaling components that were specific to each adhesin. The results, 

although garnering a lot of new and overlapping information, also has led to 

contradictory information. This has led to the ever increasing view in the field that 

gonococci have multiple mechanisms for invasion and causing disease (109). 

 Adherence of gonococci to female genital epithelial cells is first initiated by pili 

binding to the host cell surface. The pili then retract bringing the gonococci in close 

intimate contact with the host cell. This pili retraction under the control of the PilT 

protein is able to induce host signaling events culminating in the invasion of the 

gonococci. Retraction of a single gonococcal pilus can exert forces up to 100 pN (81). 

Gonococci that are in a Pil+ Opa- background induces a Ca2+ flux in epithelial cells 

within 10 min of adherence, and this Ca2+ flux is enhanced by PilT expression (6, 76). 

Pilus retraction induces the activation of ERK conferring cytoprotection (60). Finally, 

Pil+ gonococci induce phosphoinositide 3-kinase (PI3K) signaling pathways that are 

enhanced by PilT expression. PI3K activation enhances microcolony formation on 

the surface of the host cell (79). The importance of PI3K activation for invasion by 

Pil+ Opa- gonococci is not clear, as it has been reported both to be (79) and not be 

important for the invasion of epithelial cells. (36).  

 Opa proteins mediate intimate interactions between the epithelial cell surface 

and gonococci. In addition, they mediate inter-gonococcal interactions by binding to 

LOS, promoting microcolony formation. There are over 50 different molecules on the 

surface of HeLa cells that can bind Opa proteins, although most remain unknown (9). 
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Opa50 binds to the serum components, vitronectin and fibronectin, which can bind 

integrin receptors at the apical side (30). Opa50 also binds HSPGs on the basolateral 

side of epithelial cells leading to the internalization of gonococci. Similar to pili, 

Opa50 induces actin cytoskeleton rearrangement, microvilli extension, and the 

accumulation of phosphotyrosine proteins beneath the bacterial microcolony (44). 

Opa50 binding to HSPGs induces the activation of phosphatidylcholine dependent 

phospholipase C and acidic sphingomyelinase, generating the second messengers 

diacylglycerol (DAG) and ceramide and results in the invasion of gonococci (50). 

Vitronectin bridges the binding of Opa50 expressing gonococci to αv containing 

integrin receptors and fibronectin bridges the binding to the α5β1 integrin receptor. 

Integrin-mediated gonococcal invasion are Protein Kinase C (PKC) dependent. 

 Most Opa proteins that are expressed by gonococci can bind to any of three 

CEACAMs, -1, -5 or -6, found on the surface of genital epithelial cells to promote 

their invasion (94). CEACAMs are not ubiquitously expressed on all genital epithelial 

cells, 30% of normal cervical epithelial cells do not express CEACAM (138). 

Although Opa binding to any of these three CEACAMs on epithelial cells induces 

gonococcal endocytosis, the gonococci that entered host cells through CEACAM 

have been shown to be killed intracellularly (85). This suggests that expression of 

CEACAM is potentially a protective mechanism of cervical epithelial cells. 
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N. gonorrhoeae       Adhesins/Invasins 
 
 Initial Adherence   Pili  

 Intimate Adherence   Opa, LOS  

 Invasion     Pili, Opa, LOS, Por,  

 

Genital epithelial cell      Receptors 
 
       CEACAM, HSPG, Integrins 

       CR3, AGPR 

 

 

 

 

 

 

Figure 1. Gonococcal infection model of genital epithelial cells. Initial adherence 
of the gonococci occurs via pili binding to the epithelial cell surface. The pili retract 
to allow for a more intimate adherence via the adhesins, Opa and LOS. Gonococci 
multiply on epithelial cell surface for several hours to form microcolonies. By 4 h 
invasion begins to occur and is maximal by 6 h. 
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1.4 ErbB Receptor Family 

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK). 

It belongs to the ErbB family of four closely related RTK's, named after the oncogene 

v-erbB of the avian erythroblastosis virus, a homologue of EGFR (158). The four 

ErbB family members are EGFR/ErbB1/HER1, ErbB2/HER2/Neu, ErbB3/HER3, 

and ErbB4/HER4. The ErbB receptors contain an extracellular ligand binding 

domain, a transmembrane domain, an intracellular tyrosine kinase domain, and an 

intracellular hydrophilic tail that contains many tyrosine residues that can be 

phosphorylated (116). The ErbB receptors are activated by dimerization. Ligand 

binding induces a conformation shift of the extracellular domain, which exposes a 

dimerization site that noncovalently binds to this same region of another ligand bound 

ErbB receptor. The ErbB receptors are able to form homo- and heterodimers. 

Dimerization places the kinase domains in proximity to the hydrophilic tails, which 

are then trans-autophosphorylated on tyrosine residues. The phosphotyrosines serves 

as docking sites for proteins containing either SH2 (Src homology 2) or PTB 

(phosphotyrosine binding) sites, initiating signals that can lead to proliferation, 

migration, differentiation, cell survival, and/or adhesion. 

 The signals transduced via ErbB receptors are regulated by many factors. 

These include the type (growth factors), form (soluble or membrane associated), 

source (autocrine or paracrine) and concentration of ErbB ligands. These factors then 

direct the dimerization, either hetero- or homodimerization. ErbB2 and ErbB3 are 

unable to homodimerize thus allowing for a total of 10 distinct dimerization states. 

ErbB3 lacks the tyrosine kinase domain. ErbB2 lacks the ligand binding domain and 
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cannot homodimerize with itself, although ErbB2 homodimers can be stabilized 

through oncogenic mutation or over expression (17, 133, 148). 

 There is a hierarchy of dimerization, which is dependent upon the availability 

of ligand and ErbB receptor (142). Although ErbB2 has no known ligand and 

typically does not form homodimers, it is the preferred dimerization partner of the 

other three ErbB receptors because its dimerization site is constitutively exposed 

(142). ErbB2 has been shown to increase the binding affinity of the dimerizing ErbB 

partner for ligands (74, 142) and decrease the turnover rate of phosphorylated ErbB 

receptors, which significantly prolongs their signaling (56, 66).  

 There are eleven peptide ligands for the ErbB receptors. These ligands fall 

into four groups dependent upon which ErbB receptor(s) they bind (55, 73). The first 

group binds only EGFR, including EGF, transforming growth factor-α (TGF-α), and 

amphiregulin (AR). The second group binds to both EGFR and ErbB4, and includes 

heparin binding epidermal growth factor-like growth factor (HB-EGF), epiregulin, 

and betacellulin (BT). The third group contains only epigen, which binds to ErbB1, 

ErbB3, and ErbB4. The final group is the neuregulins (NRG), NRG-1, NRG-2, NRG-

3 and NRG-4, which bind to either or both ErbB3 and ErbB4. Additionally NRG-1 

and NRG-2 have two isomers each, α and β, which are created by differential 

splicing. 

 All of the ErbB ligands are expressed on the cell surface as transmembrane 

proteins that are cleaved by matrix metalloproteinases (MMP) and/or ADAMS (a 

disintegrin and metalloproteinase) to release the mature peptides (55, 115, 121, 134). 

These peptide ligands are shed into the extracellular matrix where they are able to 



 

 15

signal in an autocrine or paracrine manner. Additionally, both EGF and TGF-α are 

expressed systemically and are able to signal in an endocrine manner. The 

transmembrane, pro-forms of HB-EGF, AR, TGF-α and BT also have been shown to 

function in a juxtacrine manner (129, 139). 

 Activation of ErbB receptors via juxtacrine ligand binding results in a 

different response than autocrine/paracrine activation. For example, wound healing is 

governed (activated) by the switch from juxtacrine to autocrine/paracrine signaling 

via HB-EGF binding to ErbB1/4. (129) Juxtacrine ligation of HB-EGF is integral to 

cell layer integrity. When there is injury to the cell layer, the loss of pro-HB-EGF 

binding to neighboring cells expressing EGFR or ErbB4 induces metalloproteinase 

expression, leading to cleavage and release of HB-EGF. This then shifts the balance 

toward autocrine/paracrine signaling of ErbB1/4 by binding to soluble HB-EGF. 

ErbB1/4 binding to soluble HB-EGF induces wound healing by promoting cell 

proliferation and migration. The migration of new cells into the wound and up against 

other cells restores juxtacrine engagement of pro-HB-EGF with ErbB1/4, shifting 

cells back toward juxtacrine signaling. 

 Each of the ErbB receptors has several potential autophosphorylation sites. In 

addition, EGFR and ErbB2 also have several tyrosine residues that can be 

phosphorylated by Src kinase (140). Phosphorylated tyrosines in the cytoplasmic tail 

of ErbB serve as docking sites for a variety of signaling molecules. Different ErbB 

ligands lead to different dimerization possibilities of the four ErbB family members, 

differential tyrosine phosphorylation of their cytoplasmic tails, and docking of a 
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variety of signaling molecules, which allow for extensive and fine tuned signaling 

through ErbB receptors. 

 Signal transduction emanating from EGFR and ErbB2 can be induced through 

transactivation by various G-protein-coupled receptors (GCPR). GPCR activation by 

its ligands endothelin I (28), thrombin (28), lysophosphatidic acid (28), bradykinin 

(162), angiotensin II, carbachol (67), bombesin and IL-8 (62, 146) all have been 

shown to induce EGFR phosphorylation with subsequent activation of the Mitogen 

Activated Protein Kinase (MAPK) signaling pathway. Although GPCR 

transactivation of EGFR was initially thought to be a ligand independent event, 

increasingly studies are suggesting that GPCR activates metalloproteinases that 

promote the shedding of membrane anchored EGF-like ligands (105). GPCR-induced 

activation of the metalloproteinases is Ca2+ dependent. Dependent upon ligand and 

cell type, PKC, calmodulin-dependent kinase II, and proline rich tyrosine kinase 2 

(PYK2), all calcium dependent kinases, are implicated in GCPR-mediated 

transactivation of EGFR (105). Activation of Src kinase and PI3K also have been 

shown to be important for EGFR transactivation in some cell lines (117). 

 

1.5 EGFR Signaling Cascades 

Ligand binding to EGFR induces dimerization and phosphorylation of 

tyrosine residues in the cytoplasmic tail (Fig. 2). EGFR has six tyrosine residues that 

can be trans-autophosphorylated and four tyrosine residues that can be 

phosphorylated by Src. Which tyrosine residues are phosphorylated is dependent 

upon the ligand type, ligand concentration and dimerization partner. Proteins that 
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contain SH2 domains bind to the phosphotyrosines. PLCγ, Grb2, Gab1 and Shc are 

major SH2 domain containing proteins that bind to phosphorylated EGFR (Fig.1). 

The prototypical signaling pathway from EGFR is the MAPK/ERK (extracellular 

signal-regulated kinase) pathway. Activation of MAPK/ERK pathway is initiated by 

the docking of Grb2 and/or Grb2/Shc to phosphotyrosines in the cytoplasmic tail of 

EGFR. Grb2 activates SOS, the GEF of the small G-protein Ras. Ras activation 

activates Raf (MAPK kinase kinase), which phosphorylates and activates MEK1/2 

(MAPK kinase), which phosphorylates and activates ERK1/2 (p44/p42 MAPK). 

ERK1/2 can activate multiple transcription factors, leading to expression of genes 

that are required for cell proliferation and control of cell fates.  

 EGFR activation also leads to the activation of phospholipase-gamma (PLCγ) 

PLCγ cleaves phosphoinositol 4,5 bisphosphate (PIP2) to diacylglycerol (DAG) and 

inositol triphosphate (IP3) (19). IP3 causes sarcoplasmic reticulum induced Ca2+ 

release with the subsequent activation of several Ca kinases. DAG and Ca2+ together 

activate PKC.  

 EGFR activation induces activation of PI3K through Gab1 (78). Gab1 binds 

to phosphorylated EGFR through its SH2 domain, and the p85 subunit of PI3K binds 

to phosphorylated Gab1 through its SH2 domain. PI3K activates the AKT/PKB 

(protein kinase B) pathway by generating PIP3 (phosphatidylinositol-3,4,5-

triphosphate). The AKT/PKB pathway is one of the major signaling pathways 

promoting cell growth and suppressing apoptosis (35). 

 EGFR activates Src kinase via the adaptor protein Shc (123) which binds to 

activated EGFR. Src, a nonreceptor tyrosine kinase, has numerous substrates, 
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including EGFR. Phosphorylation of EGFR by Src is thought to potentiate its 

signaling. 

 

 

 

 

 

 

 

 

Figure 2. Major signaling pathways induced via EGF binding to EGF receptor. 
Modified from Cellsignal.com. 
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1.6 EGFR Regulation of Actin Dynamics 

The interaction of gonococci with epithelial cells induces actin rearrangement 

in the host cells. This actin rearrangement has been shown to be important for the 

invasion of gonococci into epithelial cells of the female reproductive tract (114, 127). 

Actin cytoskeleton dynamics is controlled by actin regulators (31). These actin 

regulators, under the influence of intracellular and extracellular signals, can enhance 

actin polymerization and depolymerization. The induction of many signaling 

pathways has been shown to influence actin dynamics, including those activated by 

EGFR signaling. 

 The EGFR downstream signaling pathways, PI3K and PLCγ, can regulate the 

activity of cofilin. Cofilin (cofilin-1) is a member of the cofilin family of actin 

binding proteins that contains the highly homologous cofilin-1, cofilin-2 and muscle 

cofilin, along with actin-depolymerizing factor. The activity of cofilin shifts 

dependent upon the concentration gradient of cofilin within different regions of the 

cell (145). At low concentrations, cofilin binding to actin favors actin severing, 

resulting in actin depolymerization. Slightly higher cofilin concentrations increase 

cofilin binding to F-actin and stabilize actin filaments. The highest cofilin 

concentrations favor cofilin nucleation of actin with stabilization of the newly formed 

filaments. Cofilin binding to actin can be regulated by its phosphorylation by LIMK 

(LIM Kinase), which prevents its binding to actin. Cofilin binds to PIP2 and PIP3
, the 

product of PI3K, sequestering cofilin to the plasma membrane. When PIP2 is cleaved 

by PLCγ, it releases active cofilin to bind F-actin. 
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 Signaling through activated EGFR can regulate villin and gelsolin-mediated 

regulation of actin dynamics by activating PLCγ, calcium flux and Src. Gelsolin and 

villin are two actin binding proteins that belong to the gelsolin family that regulate 

actin cytoskeleton dynamics. Gelsolin is found across many cell types, whereas villin 

is restricted to epithelial cells, primarily of the gastrointestinal and urogenital tracts. 

Gelsolin has the ability to sever, cap, and nucleate actin filaments. (159) Under high 

(micromolar) calcium concentrations, gelsolin severs and caps actin filaments, 

leading to actin depolymerization (100, 103), or controversially under some 

circumstances may lead to actin nucleation by triggering the Arp2/3 complex (23). 

Villin is highly homologous to gelsolin and retains its ability to sever, cap and 

nucleate actin, but has an additional head group that allows it to bundle F-actin by 

cross linking it. The bundling of F-actin via villin induces the formation of microvilli 

on the apical side of epithelial cells. Villin's functions are regulated by 

phosphorylation, calcium concentration and binding to PIP2. At low calcium 

concentrations villin caps actin filaments, while at high (micromolar) calcium 

concentrations it nucleates actin in addition to capping F-actin. The binding of villin 

to PIP2 in the membrane prevents its actin capping activity, but enhances its F-actin 

bundling activity. However, villin's bundling activity is not influenced by calcium, 

but is enhanced by PIP2 binding. Villin can be phosphorylated by Src (70). This 

phosphorylation decreases villin's ability to bind to F-actin, but enhances its ability to 

bind to active PLCγ (70, 99). Furthermore, phosphorylation of villin inhibits its 

bundling and nucleating activities, and under moderate Ca2+ concentrations promotes 

its actin severing activity. EGFR triggered activated Src phosphorylates villin, 
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causing it to switch from PIP2 to PLCγ binding and freeing local PIP2 to be cleaved 

by PLCγ, which induces a calcium flux. The calcium flux shifts phosphorylated villin 

from bundling F-actin to the severing of it and activates the F-actin capping and 

severing activities of gelsolin. 

 

1.7 Rationale 

This study was designed to gain a better understanding of the signaling events that N. 

gonorrhoeae induce that are essential for gonococcal invasion of genital epithelial 

cells of the female reproductive tract. Women bear the brunt of the serious sequelae 

of this disease. Since women tend to be asymptomatic, infection often becomes 

chronic leading to outcomes including DGI, PID and infertility. 50% of the women 

who are infected are young, under age 24. Infertility of young women of child 

bearing age is a serious health concern. Because of this, research in the Song and 

Stein labs has focused on understanding gonorrhea in women. Because N. 

gonorrhoeae is a pathogen that is exclusive to humans, there is no animal model for 

the disease. This has forced researchers to establish cell lines and tissues of the 

female reproductive tract as models for the disease. Two cells lines, HEC-1-B, a 

human epithelial endometrial adenocarcinoma cell line, and ME180, a human 

cervical epidermal carcinoma cell line, have been used extensively in the N. 

gonorrhoeae field and were used for this study. Men shed N. gonorrhoeae that 

express Opa, pili and lacto-N-neotetraose LOS, therefore I used MKC, a strain that 

produces the lacto-N-neotetraose LOS, and selected Pil+ Opa+ variants.  



 

 22

 EGFR is one of the proteins that is found in the cortical plaques that form 

beneath adherent N. gonorrhoeae on the surface of genital epithelial cells. (87). 

ErbB2 was found to be recruited to the site of N. meningitidis microcolonies on 

endothelial cells and signaling through ErbB2 was found to be important for invasion 

(59). The work in N. meningitidis implies that EGFR and possibly other ErbB 

receptors could be important for gonococcal infection. Bacterial pathogens are known 

to hijack host cell-signaling pathways and use them to their advantage in order to 

invade into and survive within host cells. Recent studies have shown that 

Pseudomonas aeruginosa activates EGFR in order to prevent epithelial cell apoptosis 

(161). This led to the hypothesis that N. gonorrhoeae activates ErbB receptor(s) for 

their invasion into genital epithelial cells. 

 

1.7.1 Aim 1 

 This aim was designed to address the hypothesis that N. gonorrhoeae 

activates ErbB receptor(s) for their invasion into genital epithelial cells. I show that 

N. gonorrhoeae transactivate EGFR and ErbB2 for their invasion into genital 

epithelial cells. The transactivation of EGFR is accomplished by the activation of 

heparin bound MMP(s) that cleave HB-EGF. 

 

1.7.2 Aim 2 

  This aim was designed to determine which signaling cascades N. 

gonorrhoeae induced transactivation of EGFR activates and which EGFR signaling 

cascades contribute to gonococcal invasion. I examined ERK1/2, PI3K and PLCγ 
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induction in genital epithelial cells after gonococcal infection. I show that neither 

PI3K nor ERK1/2, contributes to gonococcal invasion. I show that gonococcal 

infection induces PLCγ activation and that Ca2+ release from intracellular stores is 

important for gonococcal invasion. I discuss the possibility that Ca2+ release is due to 

EGFR induced PLCγ activation, and additional experiments needed to determine this. 
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Chapter 2: Neisseria gonorrhoeae-induced transactivation of 
EGFR is required for gonococcal invasion 

 

 

2.1 Introduction 

 Neisseria gonorrhoeae is an obligate pathogen of humans and has no other 

natural host. Infection of genital epithelial cells by N. gonorrhoeae is a sequential 

process, consisting of adherence, invasion, intracellular survival, and exocytosis. 

These events are initiated and mediated by multiple interactions of gonococcal 

surface molecules with genital epithelial cells. Initial contact of gonococci to 

epithelial cells is mediated by their type IV pili (110). Pili retraction brings the 

bacteria closer to host cells, giving the opportunity for more intimate interactions 

with host cells mediated by other gonococcal surface molecules, such as opacity 

protein (Opa) and lipooligosaccharide (LOS) (88). Opas have been shown to bind to 

cell surface heparin sulfate proteoglycans (HSPG) or carcinoembryonic antigen-

related cell adhesion molecules (CEACAMs) and direct the invasion of gonococci 

into epithelial cells (144, 147). Gonococcal LOS is required for the efficient invasion 

of N. gonorrhoeae into the epithelial cells in the absence of Opa (131). All three of 

these surface molecules of N. gonorrhoeae have the ability to undergo phase 

variation and genetically vary their surface structures, which allows them to adapt to 

different host environments and evade host immune protection. 

The interactions of gonococcal surface molecules with the epithelial cell 

surface activate signaling cascades in the host cells and trigger the reorganization of 
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the cytoskeleton, allowing the entry of the bacteria into host cells and transmigration 

across the host epithelium (51). Pili retraction from adherent gonococci on the 

epithelial cell surface activates Ca2+ flux (6), PI3K/Akt pathway (79), and MAP 

kinase ERK (60), leading to actin cytoskeletal rearrangement. The interaction of Opa 

with HSPG activates phosphatidylcholine-specific phospholipase C (PLC) and the 

acid sphingomyelinase (50). Opa also can trigger integrin-mediated protein kinase C 

(PKC) activation through binding to the serum-derived extracellular matrix proteins, 

fibronectin and vitronectin (30). It has long been reported that the adherence of N. 

gonorrhoeae to A431 cells, an epidermoid carcinoma cell line that expresses a high 

level of epidermal growth factor receptor (EGFR), induces co-clustering of EGFR, 

CD44v3, ICAM-1, and F-actin under bacterial adherent sites (87). EGFR, one of the 

common surface receptors that are essential for epithelial cell survival and 

proliferation, can activate signaling cascades, including PI3K, PLCγ, Ca2+ flux, PKC, 

and MAP kinases. However, whether EGFR has a role in gonococcal infection and 

whether and how N. gonorrhoeae activate EGFR to support their infectivity remain to 

be elucidated. 

Bacterial pathogens are known to hijack host cell-signaling pathways and use 

them to their advantage in order to invade into and survive within host cells. Recent 

studies have shown that EGFR is a common signaling receptor that is manipulated by 

pathogens for these purposes. Both Pseudomonas aeruginosa and Helicobacter pylori 

activate EGFR in order to prevent epithelial cell apoptosis (157, 161). Haemophilus 

influenzae activation of EGFR negatively regulates TLR2 expression in infected host 

cells (90). Pasteurella multocida activation of EGFR stimulates proliferation of 
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fibroblasts (126). Activation of ErbB2, a related family member of EGFR, is crucial 

to N. meningitidis invasion of endothelial cells (59). H. pylori and P. aeruginosa both 

have been shown to transactivate EGFR via inducing the shedding of the EGFR 

ligand, heparin-binding EGF-like growth factor (HB-EGF) from the plasma 

membrane, but the mechanism by which these bacteria induce the cleavage of cell 

surface HB-EGF is largely unknown. 

EGFR (ErbB1) belongs to the ErbB family of four closely related receptor 

tyrosine kinases. These receptors bind differentially to 13 peptide ligands. All of the 

ligands initially are expressed at the plasma membrane as transmembrane proteins. 

These precursor proteins are shed from the plasma membrane by proteolytic cleavage 

that is mediated by members of the matrix metalloproteinase (MMP) family and/or 

ADAM (a disintegrin and metalloproteinase) family (58). After these processed 

ligands bind to ErbB receptors, the receptors either homo- or heterodimerize. While 

ErbB2 does not bind to any ligand, it is able to heterodimerize with the other family 

members and is their preferred dimerization partner. The cytoplasmic tail of each of 

the ErbBs contains a tyrosine kinase that trans-autophosphorylates the cytoplasmic 

tail of its dimerization partner. The phosphotyrosines then serve as docking sites for 

Src homology 2 (SH2) and phosphotyrosine binding (PTB) domains containing 

molecules and induce signaling cascades. Depending on the concentration of ligands, 

the density of the receptor, or the nature of the dimers formed, activation of the ErbB 

family of receptors results in diverse outcomes, including cell proliferation, survival, 

migration, and/or differentiation.  
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In this study, I examine the role of ErbB family receptors in gonococcal 

adherence to and invasion into genital epithelial cells. Our results show that the 

interaction of gonococci with genital epithelial cells induces both the tyrosine 

phosphorylation of EGFR and ErbB2 and their recruitment to the sites of gonococcal 

attachment. The kinase activity of EGFR is necessary for gonococcal invasion into 

epithelial cells. Furthermore, the activation of EGFR is not induced by direct 

interaction of the gonococci with the receptor, but by transactivation via stimulating 

the gene expression and surface cleavage of EGFR ligands. 

 

2.2 Materials and Methods 

2.2.1 Bacterial strains and epithelial cell lines 

Neisseria gonorrhoeae strain MS11MKC (MKC) was maintained on 

gonococcal media base (GCK) with 1% Kellogg’s supplement (152). Piliated (Pil+), 

Opa-expressing (Opa+) variants were selected by their light refracting properties 

using a dissecting light microscope. The concentration of bacteria in suspension was 

determined spectrophotometrically and verified by viable plate count. Gonococci 

were killed by incubation with 100 µg/ml gentamicin sulfate at 37°C for 2 h, 

followed by overnight at 4°C. Before use, the killed gonococci were washed three 

times in serum free Eagle’s MEM. HEC-1-B cells, a human endometrial 

adenocarcinoma cell line (ATCC# HTB-113), were maintained in Eagle’s MEM 

supplemented with 10% fetal bovine serum (FBS). ME180 cells, a human cervical 

epidermal carcinoma cell line (ATCC# HTB-33), were maintained in RPMI1640 

supplemented with 10% FBS. For establishing polarized epithelial cells, HEC-1-B 
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cells were seeded at 4×104 into 6.5 mm diameter, 3 µm pore size transwell filters 

(Corning, Lowell, MA) and incubated at 37°C with 5% CO2, changing the media 

every other day. Polarization was monitored by transepithelial resistance (TER) 

readings daily. The cells were allowed to grow for 7-9 days until the maximum TER 

values (~400 Ω) were reached. 

 

2.2.2 Inhibitors and antibodies 

AG1478, an EGFR kinase inhibitor, AG825, an ErbB2 kinase inhibitor, and 

anti-EGFR mAbs that were used for confocal microscopy and prevention of EGFR 

ligand binding were purchased from Calbiochem (San Diego, CA). Anti-EGFR 

antibody that was used for western blot and anti-ErbB2 antibodies were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-β-tubulin antibody and 

heparin were purchased from Sigma (St. Louis MO). Anti-phosphotyrosine mAb 

(4G10) was purchased from Millipore (Temecula, CA). Anti-ZO-1 was purchased 

from BD Biosciences (San Jose, CA). Anti-HB-EGF-biotin conjugate was purchased 

from R&D Systems (Minneapolis, MN). 

 

2.2.3 Bacterial adherence and invasion assays 

Epithelial cells (5×104/well) were seeded in 96-well plates and incubated at 

37°C in 5% CO2. After 24 h, cells were cultured in serum-free medium overnight. 

Cells were pre-incubated with AG1478 and AG825 for 2 h or anti-EGFR mAb for 30 

min. Next, cells were incubated with MKC P+O+ at an MOI of 5 for 2 h for adherence 

assays and 6 h for invasion assays at 37°C. For adherence assays, cells were washed 
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with PBS and then lysed in 1% saponin, and appropriate dilutions were plated on 

GCK medium. For invasion assays, cells were washed and then incubated with 

50 µg/ml gentamicin for 1.5 h at 37°C. After extensively washing to remove 

remaining gentamicin, bacteria that had invaded were quantified by lysing the 

epithelial cells with 1% saponin and serially plating the cell lysates on GCK plates. 

The significance of differences was assessed using the Student's t-test for independent 

population means. 

For the heparin wash treatment, the epithelial cells were incubated with 5 

mg/ml heparin in serum-free media at 37°C two times for 15 min each and three 

times for 1 min. The cells were washed with serum-free media four times to remove 

any remaining heparin before proceeding with the adherence or invasion assays. 

 

2.2.4 Immunofluorescence microscopy 

Epithelial cells were seeded at 2×105 onto coverslips in 24-well dishes, 

cultured for 24 h, and then serum-starved overnight. Cells were incubated with MKC 

P+O+ at an MOI of 5 for 4-6 h, washed, and fixed with 4% paraformaldehyde (PFA) 

(Electron Microscopy Sciences, Ft. Washington, PA). Then, cells were stained with 

anti-ErbB2, anti-EGFR and anti-N. gonorrhoeae antibodies (13). The polarized cells 

were fixed prior to immunostaining using the pH shift method. The cells were first 

fixed with 4% PFA in 80 mM Pipes, pH 6.5, 150 mM NaCl, 5 mM EGTA, 2 mM 

MgCl2 for 10 min and then shifted to 4% PFA in 100 mM NaBorate, 150 mM NaCl 

for 10 min. The cells were permeabilized and blocked in PB solution (DMEM, 10% 

FBS, 10 mM Hepes pH 7.6, 10 mM glycine, 0.05% saponin) and stained with 
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primary and secondary antibodies in PB. After post-fixing with 2% PFA, cells were 

mounted and analyzed using a Zeiss LSM 510 laser scanning confocal microscope. 

For Z-stack images, a series of images from the top to bottom of the cells were taken 

at 0.5 µm steps.  

 

2.2.5 Immunoblotting 

Epithelial cells were seeded at 1×106 in 6-well dishes. After 24 h, the cells 

were serum-starved overnight and incubated with MKC P+O+ at an MOI of 5 for up 

to 6 h. The cells then were washed with ice-cold PBS and lysed in 75 µl RIPA buffer 

(1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 

1 mM EGTA, 2 mM EDTA, 1 mM Na3VO4, 50 mM NaF, 10 mM Na4P2O7, 1× 

proteinase inhibitor cocktail (Sigma)). Cell lysates were mixed 1:1 with 

nondenaturing loading buffer (for detection of HB-EGF) or denaturing loading buffer 

for all other proteins. Lysates were separated through SDS-polyacrylamide gels (Bio-

Rad, Hercules, CA), analyzed by western blot, and visualized using Western 

Lightning chemiluminescence substrate (Perkin Elmer, Boston, MA). Images were 

acquire and digitized directly using Fujifilm LAS-3000 (Valhalla, NY) or acquired 

with x-ray film. Blots were stripped with Restore western blot stripping solution 

(Pierce, Rockford, IL) and reprobed with anti-β-tubulin antibody. The blots were 

quantified by densitometry using MultiGauge software from Fujifilm. 
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2.2.6 Immunoprecipitation 

Epithelial cells were seeded at 1×106 in 6-well dishes. After 24 h, the cells 

were serum-starved overnight and incubated with MKC P+O+ at an MOI of 5 for up 

to 6 h. The cells then were washed with ice-cold PBS and lysed in 1% Triton-X 100 

lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 2 

mM EDTA, 1 mM Na3VO4, 50 mM NaF, 10 mM Na4P2O7, 1× proteinase inhibitor 

cocktail). The lysates were sonicated and centrifuged at 4°C. The supernatants were 

subjected to immunoprecipitation using anti-phosphotyrosine mAb and Protein G 

conjugated sepharose beads (GE Healthcare, Piscataway, NJ). The 

immunoprecipitates were analyzed using SDS-PAGE and western blot, probing for 

EGFR or ErbB2 using specific antibodies. 

 

2.2.7 Real Time PCR 

HEC-1-B cells that were grown to ~90% confluence were serum starved 

overnight and incubated with MKC P+O+ at an MOI of 5 for up to 8 h. Total RNA 

was extracted with Trizol (Invitrogen). RNA was converted to cDNA with 

Superscript III (Invitrogen) using oligo dT primers according to the manufacturer’s 

protocol. The cDNA was amplified using 1X SYBR Green master mix (Applied 

Biosystems, Foster City, CA) using the following conditions: 50°C for 2 min and 

then 95°C for 10 sec, followed by 46 cycles of 95°C for 15 sec, 58°C for 15 sec and 

72°C for 30 sec. The products were denatured at 95°C for 15 sec, annealed at 58°C 

for 30 sec and then subjected to a slow dissociation by ramping from 58°C to 95°C at 

2% of the normal ramp rate in order to insure that only one PCR product was 
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amplified. The primers for the EGFR ligands have been previously published (Table 

1, appendix) (132). Beta-actin was amplified as an internal standard using 

QuantumRNA beta-Actin primers (Ambion, Austin, TX). 

 

 

Table 1 PCR Primers for EGFR Ligands 

    
Ligand bp primer sequences 
Amphiregulin 266 5' GGCTCAGGCCATTATGC 3' 

5' ACCTGTTCAACTCTGACTGA 3' 
 

Betacellulin 251 5' CTGCAAAGTGCCTTGCTCA 3' 
5' TGACTAGTAATCCTGGTGAC 3' 
 

EGF 101 5' AGCAATTGGTGGTGGATG 3' 
5' ACTCTTTGCAAAAGTTGTC 3' 
 

Epiregulin 238 5' CAAAGTGTAGCTCTGACATG 3' 
5' CTGTACCATCTGCAGAAATA 3' 
 

HB-EGF 126 5' GTGCCTAGACTGTTACTTTG 3' 
5' GAAATGTAGACAGACATTAAAT 3' 
 

TGFα 528 5' GCCCGCCCGTAAAATGGTCCCCTC 3' 
5' CACCTGGCCAAACTCCTCCTCTGGG 3' 
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2.3 Results 

2.3.1 EGFR and ErbB2 are recruited to adherent sites of gonococci in 

genital epithelial cells. 

Previous studies have shown that N. gonorrhoeae and N. meningitidis recruit 

EGFR (87) and ErbB2 (59), respectively, to the bacterial adherent sites in epithelial 

or endothelial cells. To examine how these two receptors are involved in the 

interaction of gonococci with genital epithelial cells, I compared the cellular 

distribution of EGFR and ErbB2 in human endometrial epithelial cells (HEC-1-B) 

and human cervical epithelial cells (ME180) before and after incubation with live and 

killed N. gonorrhoeae strain MS11MKC (MKC). The epithelial cells grown on glass 

coverslips were inoculated with live or gentamicin-killed MKC for 5 h. The cells then 

were fixed and stained for EGFR, ErbB2 and the bacteria without permeabilization of 

the epithelial cells. In uninfected cells, both EGFR and ErbB2 were found evenly 

distributed on the surface of HEC-1-B and ME180 cells (Fig. 3A-D and data not 

shown). After incubation with MKC, both EGFR and ErbB2 accumulated and 

surrounded the gonococci at the surfaces of HEC-1-B (Fig. 3E-H) and ME180 cells 

(Fig. 3Q-T). Gentamicin-killed MKC adhered to the surface of both cell lines as 

diplococci, (Fig. 3I and data not shown). Neither EGFR nor ErbB2 accumulated or 

localized around the adherent gentamicin-killed MKC (Fig. 3I-L). This indicates that 

N. gonorrhoeae induces the recruitment of EGFR and ErbB2 to the site of bacterial 

adherence, and that this recruitment requires the viability of gonococci. However, 

since the gonococci do not appear to colocalize with EGFR and ErbB2 (Fig. 3E-H 

and 3Q-T), this suggests that gonococci do not bind directly to these two receptors.  
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EGFR and ErbB2 have been reported to localize predominately at the 

basolateral surface (75, 151), while gonococci initiate infection at the apical surface 

of polarized epithelial cells. All previous findings that EGFR and ErbB2 are recruited 

to gonococcal adherent sites are based on unpolarized epithelial cells. In order to 

investigate if basolaterally located EGFR and ErbB2 are recruited to the adherent 

gonococci on the apical surface, I polarized HEC-1-B cells by growing them on 

transwell filters, before infecting them with gonococci from the apical side. 

Polarization of the HEC-1-B cells was monitored by transepithelial resistance (TER) 

and confirmed by distinct cellular distribution of zonula occludens (ZO)-1, a marker 

protein of the tight junction that divides the apical and basolateral plasma membrane 

(Fig. 4A-B). The distribution of EGFR and ErbB2 was analyzed using confocal 

microscopy. In uninfected polarized HEC-I-B cells, both EGFR and ErbB2 were 

found predominately at the lateral surface below the tight junction (Fig. 4C and E, 

yellow arrows), but not at the apical surface of polarized HEC-1-B cells (Fig. 4C and 

E, white arrows), as reported previously in other types of polarized epithelial cells 

(75, 151). This further confirms that these HEC-1-B cells were polarized. After 

incubation with MKC, EGFR and ErbB2 were found at both the apical and 

basolateral surfaces (Fig. 4D and F). Particularly, EGFR and ErbB2 were 

accumulated under gonococci at the apical surface (Fig. 4D and F, white arrows). 

Gonococci had no significant effect on the TER of polarized HEC-1-B cells (data not 

shown). This result indicates that gonococcal infection induces the translocation of 

both EGFR and ErbB2 from the basolateral to apical surface and recruits them to the 

site of adherent gonococci at the apical surface. 
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Figure. 3. Live, but not killed, N. gonorrhoeae causes redistribution of EGFR 
and ErbB2 at the epithelial cell surface. HEC-1-B (A-P) or ME180 (Q-T) cells 
were pretreated with (M-P) or without EGFR inhibitor AG1478 and then incubated 
with live or gentamicin-killed MKC Pil+ Opa+ for 5 h. Uninfected HEC-1-B cells (A-
D) served as a control. The cells then were fixed and stained with gonococcal 
antiserum, anti-EGFR mAb, anti-ErbB2 mAb, and corresponding secondary 
antibodies. Optical sections were acquired using a confocal microscope (Zeiss LSM 
510). Shown are representative images of single optical sections from three 
independent experiments. Bar, 5 µm. 
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Figure. 4. N. gonorrhoeae recruits EGFR and ErbB2 from the basolateral to the 
apical surface beneath bacterial adherent sites in polarized epithelial cells. (A) A 
diagram shows the tight junction (red) dividing the apical (black) and basolateral 
(green) surfaces. (B-F) HEC-1-B cells were grown on transwells until transepithelial 
resistance peaked. Polarized HEC-1-B cells were incubated with (D and F) or without 
MKC Pil+ Opa+ (B, C and E) in the apical chamber for 5 h. Then cells were fixed and 
stained for gonococci, EGFR (C and D), ErbB2 (E and F), and/or the tight junction 
marker ZO1 (B). Series of images in Z-axes of cells were acquired at 1.0 (B) or 0.5 
µm (C-F) per optical section using a Zeiss LSM 510 confocal microscope. Shown are 
representative images of xy, xz and yz optical sections from three independent 
experiments. Yellow arrows point to the lateral staining of EGFR and ErbB2. White 
arrows point to the apical surfaces and EGFR or ErbB2 staining that concentrates 
beneath the gonococci adhered to the apical surface of the HEC-1-B cells. Bar, 5 µm. 
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2.3.2 Kinase inhibitors of ErbB receptors alter N. gonorrhoeae invasion into 

epithelial cells.  

In order to investigate the role of EGFR and ErbB2 in the invasion of N. 

gonorrhoeae into human epithelial cells, I performed gentamicin protection assays 

using inhibitors specific for the tyrosine kinases of the two ErbB family receptors. 

HEC-1-B or ME180 cells were treated with AG1478, an EGFR kinase inhibitor, or 

AG825, an ErbB2 kinase inhibitor, prior to their incubation with MKC. As shown in 

Fig. 5, inhibition of EGFR kinase activity with AG1478 significantly reduced 

invasion of MKC into both HEC-1-B (Fig. 5A) and ME180 cells (Fig. 5C). In ME180 

cells there was a dose dependent decrease in the invasion level of MKC (80% at 5 

µM) (Fig. 5C), whereas the invasion of MKC into HEC-1-B cells was more sensitive 

to the inhibitor and showed significant reductions at nanomolar concentrations (Fig. 

5A). In contrast, inhibition of ErbB2 kinase activity with AG825 dramatically 

increased the invasion of MKC, up to 6-fold, in HEC-1-B cells (Fig. 5B), but had no 

significant effect on MKC invasion into ME180 cells (Fig. 5D). In contrast to their 

effects on gonococcal invasion, both inhibitors had no significant effect on adherence 

of MKC to HEC-1-B and ME180 cells (Fig. 5E-F) and the recruitment of EGFR and 

ErbB2 to the site of bacterial attachment (Fig. 3M-P and data not shown). 

Furthermore, there were no detectable effects of the inhibitors on bacterial viability 

and growth (data not shown). Different sensitivities of gonococcal invasion to the 

inhibitors in two different cell lines implicate differential expression levels of EGFR 

and ErbB2 in HEC-1-B and ME180 cells. Indeed, I found that ME180 cells, which 

required a much higher concentration of the EGFR inhibitor to reduce gonococcal 
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invasion, expressed a 17-fold higher protein level of EGFR and a 5-fold higher 

protein level of ErbB2 than HEC-1-B cells (Fig. 5G). These results suggest that the 

kinase activity of EGFR is required for efficient invasion of gonococci into 

endometrial and cervical epithelial cells, but the kinase activity of ErbB2 has a 

negative regulatory role in gonococcal invasion. Neither EGFR nor ErbB2 are 

essential for gonococcal adherence to epithelial cells. 

 

 2.3.3 N. gonorrhoeae infection induces the phosphorylation of EGFR and 

ErbB2. 

The effect of EGFR and ErbB2 kinase inhibitors on the invasion of gonococci 

into epithelial cells suggests the involvement of these receptors in the gonococcal 

invasion process. Therefore, I examined whether gonococcal infection induces 

activation of the two ErbB family receptors. The activation of EGFR and ErbB2 was 

monitored by their tyrosine phosphorylation. Lysates were prepared from HEC-1-B 

cells that had been incubated with MKC for up to 6 h and were subjected to 

immunoprecipitation with a monoclonal antibody (mAb) specific for 

phosphotyrosine. The immunoprecipitates were analyzed using western blot, probing 

for EGFR and ErbB2. As shown in Fig. 6, gonococci induced the tyrosine 

phosphorylation of both EGFR and ErbB2. By 3 h post gonococcal inoculation, the 

phosphorylation levels of EGFR had doubled, as compared to uninfected control 

cells. The phosphorylated EGFR levels continued to increase until 4 h post infection, 

reaching a 3-fold increase over uninfected levels, and remained elevated at 6 h post 

inoculation. The phosphorylation levels of ErbB2 followed the same temporal  
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Figure. 5. ErbB kinase inhibitors alter gonococcal invasion. (A-D) To quantify 
invaded bacteria, HEC-1-B (A and B) or ME180 (C and D) were preincubated with 
either the EGFR kinase inhibitor AG1478 (A and C) or the ErbB2 kinase inhibitor 
AG825 (B and D) before the addition of MKC Pil+ Opa+. After incubating with the 
bacteria for 6 h, the epithelial cells were treated with gentamicin, washed and lysed to 
determine the number of invaded (gentamicin resistant) bacteria. (E-F) To quantify 
the number of adherent bacteria, HEC-1-B (E) and ME180 (F) cells were pretreated 
with the inhibitors (5 µM) and incubated with MKC for 2 h. Cells were washed and 
lysed to quantify the bacteria. The data are plotted as percentages of the gonococci 
invaded into (A-D) or adhered to (E and F) untreated cells. Shown are the mean 
percentages (± SD) from three independent experiments with six replicates per 
experiment. *P < 0.05 (as compared with no inhibitor). (G) Equal amounts of ME180 
and HEC-1-B cell lysates were analyzed by SDS-PAGE and western blot, probing for 
EGFR and ErbB2. The blots were stripped and probed for β-tubulin as normalization 
controls. The blots were quantified by densitometry. Shown are representative blots 
and ratios of EGFR and ErbB2 expression between ME180 (M) and HEC-1-B cells 
(H). 

B 

C 
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pattern as those of EGFR, but its increase was more subtle. Phosphorylation levels of 

ErbB2 reached their maximum level at 4 h, but returned to near control levels by 6 h 

post inoculation (Fig. 6). 

 

2.3.4 Anti-EGFR antibody inhibits N. gonorrhoeae invasion, but not their 

adherence to epithelial cells.  

Our findings that gonococci induce the activation of EGFR and ErbB2 

tyrosine kinases and that the inhibitor of EGFR kinase reduced gonococcal invasion 

indicate that the activation of EGFR kinase is important for gonococcal invasion of 

epithelial cells. I hypothesized that gonococci either activate these receptors by 

binding directly to EGFR and/or ErbB2, or by increasing the levels of the receptor’s 

ligands. In order to investigate these possibilities, I preincubated ME180 cells with a 

mAb specific for the extracellular ligand binding domain of EGFR, which blocks the 

binding of ligands to EGFR (122). Adherence and gentamicin protection invasion 

assays then were performed. The treatment of anti-EGFR mAb had no influence on 

the ability of gonococci to adhere to ME180 cells (Fig. 7A). Microscopic studies 

revealed no differences in the size or number of gonococcal clusters formed on the 

surface of ME180 cells that were treated with or without anti-EGFR mAb (Fig. 7C). 

Anti-EGFR mAb at a concentration of 10 µg/ml, however, inhibited 50% of the 

gonococcal invasion as compared to a control mAb (Fig. 7B). These results suggest 

that the binding of ligand(s) to EGFR is involved in gonococcal invasion. 
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Figure. 6. N. gonorrhoeae infection induces the tyrosine phosphorylation of 
EGFR and ErbB2. HEC-1-B cells were incubated with MKC Pil+ Opa+ for up to 6 
h. The cells were lysed and subjected to immunoprecipitation with anti-
phosphotyrosine mAb 4G10. The cell lysates were analyzed by SDS-PAGE and 
western blot, probing for EGFR. ErbB2 was probed after stripping. β-tubulin in cell 
lysates was analyzed as normalization controls. The blots were quantified by 
densitometry, and the data are plotted as percentages of uninfected epithelial cell 
controls. Shown are representative blots (A) and the average percentages (B) from 
three independent experiments. 
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Figure. 7. Interference with EGFR ligand binding reduces gonococcal invasion. 
(A-B) ME180 cells were pretreated with either 10 µg/ml anti-EGFR mAb that 
prevents EGFR ligands from binding to EGFR or an isotype control mAb and 
incubated with MKC Pil+ Opa+ for 6 h. The number of epithelial cell-associated 
bacteria (A) or gentamicin-resistant invaded bacteria (B) was determined. The results 
are plotted as a percent of the bacteria adhered to and invaded into cells treated with 
the control mAb. Shown are mean values (± SD) from three independent experiments 
with replicates of six per experiment. *P < .05 (as compared to untreated). (C) 
ME180 cells that were incubated with anti-EGFR mAb and the bacteria as described 
above were fixed and stained with DAPI for visualization of nucleic acids and anti-
ErbB2 mAb. Images were acquired using a fluorescence microscope. Arrows point to 
gonococcal clusters. Bar, 5 µm. 
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2.3.5 N. gonorrhoeae infection increases the transcription of a subset of EGFR 

ligands.  

To test whether gonococci can transactivate EGFR and ErbB2 by increasing 

the expression of the ligands, I quantified mRNA levels of all six ligands that EGFR 

binds in HEC-1-B cells using real time-PCR. The transcription levels were 

normalized against the mRNA level of actin. The mRNA levels for heparin binding 

epidermal growth factor-like growth factor (HB-EGF) and amphiregulin dramatically 

increased after gonococcal infection (Fig. 8). HB-EGF mRNA transcripts had the 

largest increase, reaching 30-fold that of the levels in uninfected cells (Fig. 8). 

Amphiregulin transcripts increased 4.5-fold as compared to uninfected control cells. 

TGF-α transcripts steadily increased over time and had doubled that of uninfected 

cells by 8 h. The remaining three ligands, EGF, epiregulin, and betacellulin were 

either down-regulated or only marginally increased after infection, in comparison 

with the levels in uninfected cells. This indicates that gonococcal infection induces 

the transcription of a subset of EGFR ligands. 

2.3.6 Inhibition of EGFR ligand cleavage inhibits N. gonorrhoeae 

invasion without altering their adherence.  

The ligands for EGFR are expressed initially as transmembrane precursors and are 

shed from the plasma membrane after proteolytic cleavage by members of the MMP 

and ADAM families when needed (58). Many MMPs, including MMP-1, -2, -7, -9, 

and -13, bind to the heparan sulfate moieties that decorate cell surface heparan sulfate 

proteoglycans (HSPG) and/or are in the extracellular matrix (160). MMP-7 can be 

removed from rat uterus tissue by washing with heparin. It is presumed that other  
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Figure. 8. N. gonorrhoeae infection increases transcription of a subset of EGFR 
ligands. HEC-1-B cells were incubated with MKC Pil+ Opa+ at a MOI of 5 for up to 
8 h. Total RNA was extracted and reverse transcribed. The mRNA levels of six 
EGFR ligands were quantified by real-time PCR. β-actin was used as an internal 
control for normalization. Shown are representative results from two independent 
experiments. 
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heparan sulfate bound MMPs also can be removed in this manner (160), suggesting 

that heparin washes can be used to deplete heparan sulfate bound MMPs at the cell 

surface in order to prevent the cleavage of HB-EGF and other ErbB ligands. Previous 

studies have shown that including heparin during the incubation of gonococci with 

epithelial cells inhibits gonococcal adherence, due to inhibition of Opa binding to 

HSPG on the surface of epithelial cells. I have made a similar observation (data not 

shown). In order to determine the effect of the heparin washes on gonococcal 

invasion, free heparin was removed by extensive washes with serum free media after 

the heparin washes and before adherence and invasion analyses. After removing free 

heparin before adherence analysis, heparin washes had no significant effect on the 

adherence of gonococci to either HEC-1-B or ME180 cells (Fig. 9A). The heparin 

washes, however, inhibited the invasion of gonococci into both HEC-1-B and ME180 

cells by 75% (Fig. 9A). This suggests that the cleavage of EGFR ligands is important 

for gonococcal invasion into epithelial cells. 

To confirm that the heparin washes removed heparin sulfate-associated 

MMPs, consequently preventing the shedding of EGFR ligands, I determined the 

levels of cleaved, soluble HB-EGF (sHB-EGF). HEC-1-B cells that were subjected to 

either the heparin wash or medium wash were incubated with MKC for varying 

lengths of time. The HEC-1-B/MKC co-culture media was analyzed for sHB-EGF by 

ELISA. There was no detectable sHB-EGF in the co-culture media from HEC-1-B 

cells that were subjected to either the medium wash or the heparin wash (data not 

shown). Because the sHB-EGF is often found associated with heparin sulfate 

moieties on the cell surface but not found in the supernatant (156), I looked for cell-
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associated sHB-EGF. HEC-1-B cells that were subjected to either the heparin wash or 

medium wash were incubated with MKC for varying lengths of time and lysed. The 

cell lysates were analyzed using non-reducing SDS-PAGE, and sHB-EGF was 

detected by western blotting using a biotinylated anti-HB-EGF antibody. In the 

lysates generated from cells subjected to the medium wash, gonococcal infection 

dramatically increased the amount of sHB-EGF. The levels of sHB-EGF increased 

with time and peaked at 4 h (Fig. 9B and C). This is consistent with the finding that 

gonococcal infection increases the transcripts of HB-EGF. Importantly, the heparin 

wash significantly reduced gonococci-induced production of sHB-EGF (Fig. 9B and 

C). This further supports our hypothesis that gonococci activate EGFR by inducing 

the production of EGFR ligands. 
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Figure. 9. Inhibition of EGFR ligand cleavage from epithelial cells by heparin 
washes reduces gonococcal invasion. (A) HEC-1-B and ME180 cells were washed 
with 5 mg/ml heparin to remove heparin-bound MMPs, and then were washed with 
serum-free media to remove all traces of free heparin. Heparin washed or media 
washed epithelial cells were incubated with MKC Pil+ Opa+ for 6 h. The number of 
epithelial cell-associated (adherent) and gentamicin-resistant (invasive) bacteria was 
determined. The results are plotted as a percent of the media washed control. Shown 
are the mean values ± SD generated from three independent experiments with 
replicates of six per experiment. (B) Lysates were prepared from media washed or 
heparin washed HEC-1-B cells that had been incubated with MKC Pil+ Opa+ for up to 
6 h. The lysates were subjected to western blot, probing for HB-EGF. The blots were 
stripped and reblotted for β-tubulin, which served as a loading control. The blots 
were quantified by densitometry. The data was plotted as a percentage of the maximal 
amount of sHB-EGF in the cells exposed to the bacteria (C). Shown are 
representative blots (B) and the mean values (± SD) of three independent experiments 
(C). *P < 0.05 (as compared to media washed). 
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2.4 Discussion 

In this study I investigated the role of EGFR, a common signaling receptor on 

the epithelial cell surface, in the invasion of N. gonorrhoeae into genital epithelial 

cells. Our results demonstrate that N. gonorrhoeae induces the activation of EGFR 

and that this activation is required for gonococcal invasion into epithelial cells. Our 

results further demonstrate that gonococci activate EGFR by increasing the gene 

expression and shedding of EGFR ligands, rather than interacting directly with 

EGFR. This uncovers a mechanism by which N. gonorrhoeae activates EGFR for 

their invasion. 

Gonococci-induced EGFR activation is demonstrated by the tyrosine 

phosphorylation of EGFR and its dimerization partner ErbB2 and their recruitment to 

the site of gonococcal adherence. The recruitment of EGFR to gonococcal adherent 

sites has been observed previously (87). However, all earlier studies have used 

unpolarized epithelial cells, and therefore it was unclear whether such recruitment 

would occur in vivo, where genital epithelial cells are polarized with distinct apical 

and basolateral surfaces. N. gonorrhoeae establishes adherence at the apical surface 

of polarized epithelial cells, while EGFR predominately is expressed at the 

basolateral surfaces (75, 151). Here I show that EGFR and ErbB2, which are 

preferentially expressed on the lateral surface of polarized HEC-1-B cells, were 

translocated to the apical surface upon gonococcal adherence. This supports the 

notion that N. gonorrhoeae can recruit EGFR and ErbB2 in both polarized and 

unpolarized epithelial cells. 
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In addition, I found that the recruitment of both EGFR and ErbB2 is 

dependent upon the viability of gonococci, as gentamicin-killed gonococci are unable 

to induce the recruitment. The mechanistic reason for the inability of gentamicin-

killed gonococci to recruit EGFR and ErbB2 is unclear. A major difference between 

live and killed gonococci is that while the killed bacteria are able to adhere to 

epithelial cells, they are unable to form microcolonies on or invade into epithelial 

cells (13). The formation of microcolonies may be essential to induce the 

redistribution of EGFR and ErbB2 simply by the physical impact of the microcolony 

on the epithelial cell surface, which could induce intracellular signaling. Pil- 

gonococci that have all opa genes deleted do not form the typical microcolony; 

instead they attach to the surface of HEC-1-B and ME180 cells primarily as 

individual or small clusters of diplococci, appearing similar to killed gonococci that 

express both pili and Opa (unpublished data). In the absence of both pili and Opa, 

gonococci invade at least two logs less well than gonococci expressing either 

structure individually (138). This lends credence to the idea that microcolony 

formation is important for the invasion of gonococci into epithelial cells. A second 

possibility is killed gonococci are unable to synthesize new proteins and surface 

molecules, even though initially expressing the same surface structures as the live 

gonococci. The requirement of newly synthesized proteins and other molecules for 

gonococcal invasion has been suggested by previous observations that inhibition of 

bacterial protein synthesis with chloramphenicol inhibits gonococcal invasion (53), 

and that pre-incubation of the bacteria with fixed HEC-1-B cells, which potentially 

alters the expression of bacterial molecules, increases gonococcal invasion ability 
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(20). The third possibility is that killed gonococci would be unable to retract their pili, 

as this is an ATP driven event. Pilus retraction has been shown to induce signaling 

and to be important for the invasion process (88). 

Our finding that the EGFR kinase inhibitor significantly reduced gonococcal 

invasion indicates an important role of EGFR activation in gonococcal invasion. Our 

data further showed that while gonococci induce the activation of both EGFR and 

ErbB2, blocking EGFR and ErbB2 kinases have different effects on gonococcal 

invasion. Prevention of EGFR kinase activation inhibits gonococcal invasion into 

epithelial cells. However prevention of ErbB2 kinase activity either had no effect 

(ME180 cells) or significantly increased (HEC-1-B) the invasive ability of gonococci. 

EGFR and ErbB2 are two of four members of the ErbB family of receptor 

tyrosine kinases. Upon ligand binding, dimerized ErbB receptors phosphorylate each 

other. While ErbB2 does not bind any ligand, it is the preferred dimerization partner 

of EGFR because its ectodomain is locked in the active conformation for 

dimerization (47, 142). ME180 cells express 17-fold more EGFR and 5-fold more 

ErbB2 than HEC-1-B cells. These differences in expression levels provide an 

explanation for the different sensitivities of HEC-1-B and ME180 cells to the EGFR 

and ErbB2 kinase inhibitors. In addition, the differences in EGFR and ErbB2 

expression levels would change the molecular ratios of EGFR to ErbB2, consequently 

altering the nature of ErbB dimers formed on the surface of the two cell lines in 

response to ligand binding. HEC-1-B cells have a higher ErbB2:EGFR ratio, thus are 

expected to generate more ErbB2:EGFR heterodimers than ME180 cells. ME180 

cells on the other hand have a higher EGFR:ErbB2 ratio, and are expected to generate 
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more EGFR:EGFR homodimers than HEC-1-B cells. The two different dimers 

formed by ligand binding, EGFR:EGFR and EGFR:ErbB2, could activate different 

signaling cascades because their cytoplasmic tails contain different numbers of 

tyrosine phosphorylation sites and bind to different signaling molecules (158). While 

both EGFR and ErbB2 are essential for epithelial cell survival and proliferation, 

activation of ErbB2 has been shown to disrupt apical-basal polarity and tight 

junctions by ErbB2’s direct association with the Par polarity complex (2). Thus, 

while both EGFR and ErbB2 are activated by gonococci, the two receptors could play 

roles in different steps of the infection. Our finding of enhanced gonococcal invasion 

in the absence of ErbB2 kinase suggests that the kinase activity of ErbB2 is not 

essential and may be inhibitory to gonococcal invasion, but it does not exclude 

possible roles for ErbB2 in other cellular processes of gonococcal infection, such as 

disrupting the tight junction for gonococcal transmigration across the epithelium. 

Furthermore, the expression levels of different ErbB family receptors could be varied 

at different genital tissue locations, and their expression levels can be further 

regulated by sex hormones that control the menstrual cycle (24, 84). As an 

opportunistic pathogen, the ability of N. gonorrhoeae to activate multiple members of 

ErbB receptors may allow the bacteria to establish infection at different locations of 

the genital tissue and different stages of the menstrual cycle using different 

mechanisms. 

While the recruitment of EGFR to N. gonorrhoeae has been reported in the 

past, how the bacteria activate EGFR was unknown. Gonococci either may bind 

directly to EGFR or induce the expression and secretion of EGFR ligands thereby 
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transactivating it. The results from this study argue against a direct interaction of 

gonococci with EGFR as the mechanism for EGFR activation. First, killed gonococci 

failed to recruit EGFR and ErbB2, even through they can adhere to the epithelial cell 

surface. Second, confocal microscopic studies revealed that EGFR and ErbB2 were 

adjacent to, but did not appear to colocalize with the bacteria. Our finding that 

gonococci not only induce HB-EGF transcription, but also its shedding supports a 

ligand driven activation of EGFR by N. gonorrhoeae. EGFR ligands are expressed by 

many cell types, including epithelial and endothelial cells, and function in an 

endocrine, paracrine, autocrine or juxtacrine fashion. These ligands are expressed on 

the cell surface as transmembrane precursor proteins and are shed from the surface of 

cells by zinc metalloproteinases, either of the MMP or ADAM families. This study 

found that removal of several MMPs from the epithelial cell surface by sequential 

heparin washes inhibited not only the shedding of HB-EGF, but also the invasion of 

gonococci into epithelial cells. These results demonstrate that gonococci activate 

EGFR by inducing the expression and surface cleavage of EGFR ligands, a 

transactivation mechanism. 

Transactivation of EGFR has been shown to occur under many circumstances 

(28, 67, 146, 162). HB-EGF ectodomain shedding is a major pathway used by the 

epithelia to activate wound healing (156). In polarized cells, transmembrane HB-EGF 

binds to EGFR on adjacent cells in a juxtacrine manner preventing proliferation. The 

cell-cell junction disruption caused by a wound causes the ectodomain shedding of 

HB-EGF, inducing cell proliferation. Recently pathogens have been shown to activate 

EGFR by activation of HB-EGF shedding. Both P. aeruginosa and H. pylori have 
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been shown to transactivate EGFR in corneal and gastric epithelial cells respectively 

via HB-EGF shedding (157, 161), and this activation was able to inhibit apoptosis of 

the epithelial cells. 

In this study, I used heparin washes to remove MMPs that are responsible for 

cleaving membrane-associated EGFR ligands. Heparin previously has been shown to 

interfere with the Opa-mediated binding of gonococci to the epithelial cell surface, 

consequently preventing gonococci from adhering to epithelial cells (144). In our 

study, in order to examine the effect of the heparin washes on gonococcal invasion, I 

removed the remaining heparin from the cells by multiple washes after the heparin 

wash and before the addition of the gonococci. As I hypothesized, under such 

treatment conditions I only detected the effect of the heparin washes on the 

gonococci's ability to invade into, but not their ability to adhere to the epithelial cells. 

As an in vitro study, I have used cancer epithelial cell lines that have 

originated from genital tissue to study the role of EGFR in gonococcal invasion. Over 

expression of the ErbB family of receptors is common in epithelial cell cancers. The 

results generated from an epithelial cell line that expresses much higher levels of 

ErbB receptors than normal epithelial cells may not reflect what occurs in vivo. To 

address this potential issue, I used two different cell lines that express different levels 

of EGFR and ErbB2. While HEC-1-B cells express much lower levels of EGFR and 

ErbB2 than ME180 cells, the two cell lines behaved similarly in most of the analyses. 

The higher sensitivity of HEC-1-B cells to EGFR and ErbB2 inhibitors in gonococcal 

invasion than ME180 cells further argue against a significant impact of EGFR and 

ErbB2 expression levels on our conclusion. 
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Taken together, the results of this study not only demonstrate that EGFR 

activation is required for N. gonorrhoeae invasion, but also reveal the mechanism by 

which N. gonorrhoeae activates EGFR, transactivation by increasing the gene 

expression and surface shedding of EGFR ligands. EGFR is a key surface receptor on 

epithelial cells, and its signal transduction function is essential for epithelial cell 

survival and proliferation. This study demonstrates that N. gonorrhoeae has the 

capability to co-opt host signaling through an indispensable receptor for their 

invasion. Activation of EGFR leads to many different outcomes depending on cell 

types and their microenvironment. Thus, hijacking the EGFR signaling pathway 

could be a common mechanism for pathogens to drive their invasion and intracellular 

survival. Further studies are required to understand how gonococci are able to induce 

the expression and surface cleavage of EGFR ligands and how EGFR signaling 

mediates gonococcal invasion. 
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Chapter 3: ErbB receptor mediated signaling regulates 
Neisseria gonorrhoeae invasion of genital epithelial cells 
 

3.1 Introduction 

Many pathogenic bacteria, including Shigella, Salmonella, Yersinia and 

Listeria, are able to make their entry into host cells by the induction of signaling 

events that leads to the actin cytoskeleton reorganization and pathogen phagocytosis 

(32). Neisseria gonorrhoeae, the causative agent of gonorrhea, also has been shown 

to be dependent upon actin for its invasion into epithelial cells (114, 127). To have 

adapted to ever varying host environment, N. gonorrhoeae has evolved many means 

to invade host epithelial cells. OpaA/30 mediates gonococcal invasion by binding to 

HSPG on the cell surface, activating phosphatidylcholine-specific phospholipase C 

and acidic sphingomyelinase (50). In the absence of Opa, pili retraction can induce 

the uptake of gonococci (87). Opsonization of LOS by complement factor C3b and 

subsequent conversion to C3bi induces the complement receptor 3 to internalize 

bound gonococci (38). Although N. gonorrhoeae has many means by which they can 

invade epithelial cells, all involve the actin cytoskeleton. Previous studies from 

several labs have shown that disruption of the actin cytoskeleton with cytochalasin B 

or D prevents invasion of N. gonorrhoeae into genital epithelial cells (114, 127).  

N. gonorrhoeae adherence to epithelial cells induces the accumulation of F-

actin beneath the bacterial microcolony, elongation of host cell microvilli to surround 

the microcolony, and cortical plaque formation, all of which are dependent upon host 

cytoskeletal rearrangement (34, 51, 86). The cortical plaques contain ezrin, a protein 
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that links the actin cytoskeleton with the membrane, along with the transmembrane 

proteins, EGFR (ErbB1), CD44v3 and ICAM-1, and unknown phosphorylated host 

proteins (36, 67, 68). In Chapter 2, I showed that ErbB2, as well as EGFR, is enriched 

beneath gonococcal microcolonies. 

EGFR and ErbB2 belong to a family of four closely related receptor tyrosine 

kinases. The ErbB receptor family contains an extracellular ligand binding domain, a 

transmembrane domain, an intracellular tyrosine kinase domain, and an intracellular 

hydrophilic domain that contains multiple tyrosine residues that can be 

phosphorylated (116, 158). There are eleven peptide ligands that bind differentially to 

the ErbB receptors. Upon binding to ligand, the receptors undergo either homo- or 

hetero-dimerization, which leads to trans-autophosphorylation of each other on 

tyrosine residues in the dimer. The phosphotyrosines serve as docking sites for 

proteins containing either SH2 (Src homology 2) or PTB (phosphotyrosine binding) 

domain. Different proteins dock on different phosphorylated tyrosines, initiating 

different signaling cascades that can lead to diverse outcomes, including proliferation, 

migration, differentiation, cell survival or adhesion. However, the exact role of EGFR 

and ErbB2 signaling in gonococcal invasion is not known. 

EGFR activation potentially induces rearrangement of the host actin 

cytoskeleton that is essential for the invasion of gonococci into epithelial cells. 

Ligand binding to EGFR leads to the activation of PI3K, PLCγ and MAP kinase 

signaling pathways, all of which are known to be able to regulate actin dynamics (19, 

70, 72, 119, 120). Actin cytoskeleton dynamics is under the control of a large number 

of actin binding proteins, which are regulated by signaling cascades, such as 
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phosphatidylinositide production and Ca2+ flux. PI3K and PLCγ are two key 

signaling molecules that control phosphatidylinositide metabolism. 

Phosphatidylinositides regulate the cellular location and actin binding activities of 

actin binding proteins (119). PLCγ hydrolyzes phosphatidylinositol 4,5-bisphosphate 

(PIP2) to produce inositol (1,4,5)P3 (IP3) and diacylglyceride (DAG). IP3 induces the 

release of Ca2+ from intracellular stores, which could trigger Ca++ influx from the 

extracellular pool (19). MAP kinase ERK signaling pathway regulates actin 

cytoskeleton dynamics by down-regulating the expression of ROCKI (Rho-associated 

kinase) and/or ROCKII (102, 120) and positively regulating Rnd3 expression (72). 

ROCK is an upstream negative-regulator of the actin binding protein cofilin, while 

Rnd3 is a negative-regulator of ROCK. 

In Chapter 2, I showed that gonococci transactivate EGFR and ErbB2 by 

increasing the expression and inducing the cleavage of HB-EGF, one of the ligands 

for EGFR and that the transactivation of EGFR was important for gonococcal 

invasion of genital epithelial cells. In this chapter I examine the activation of 

PI3K/AKT, PLCγ, and ERK, three signaling pathways induced by EGFR activation, 

in order to determine how EGFR transactivation induces gonococcal invasion into 

human endometrial and cervical epithelial cells, HEC-1-B and ME180. My studies 

show that all three signaling pathways are induced by gonococcal adherence. 

Additionally, my data suggests that PLCγ activation by EGFR supports the invasion 

of epithelial cells, while ERK and PI3K are not essential for gonococcal invasion. 
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3.2 Materials and Methods 

3.2.1 Bacterial strains and epithelial cell lines 

Neisseria gonorrhoeae strain MS11MKC (MKC) was maintained on 

gonococcal media base (GCK) with 1% Kellogg’s supplement (152). Piliated (Pil+), 

Opa-expressing (Opa+) variants were selected by their light refracting properties 

using a dissecting light microscope. The concentration of bacteria in suspension was 

determined spectrophotometrically and verified by viable plate count. Gonococci 

were killed by incubation with 100 µg/ml gentamicin sulfate at 37°C for 2 h, 

followed by overnight at 4°C. Before use, the killed gonococci were washed three 

times in serum free Eagle’s MEM. HEC-1-B cells, a human endometrial 

adenocarcinoma cell line (ATCC# HTB-113), were maintained in Eagle’s MEM 

supplemented with 10% fetal bovine serum (FBS). ME180 cells, a human cervical 

epidermal carcinoma cell line (ATCC# HTB-33), were maintained in RPMI1640 

supplemented with 10% FBS.  

 

3.2.2 Inhibitors and antibodies 

AG1478, an EGFR kinase inhibitor, AG825, an ErbB2 kinase inhibitor, 

LY294002, wortmannin, BAPTMA/AM, 2-APB and U0126 were purchased from 

Calbiochem (San Diego, CA). Anti-EGFR (1005) and anti-ErbB2 (C-18) antibodies 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-β-tubulin 

antibody (SAP 4G5), rabbit polyclonal anti-PLCγ1 antibody, and 100× proteinase 

inhibitor cocktail were purchased from Sigma (St. Louis MO). Anti-phosphotyrosine 
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mAb (4G10) was purchased from Millipore (Temecula, CA). Anti-pERK (E10), anti-

pAKT (D94), and rabbit polyclonal anti-AKT, anti-pERK and anti ERK antibodies 

were purchased from Cell Signaling Technology (Danvers, MA). 

 

3.2.3 Bacterial invasion assays 

Epithelial cells (5×104/well) were seeded in 96-well plates and incubated at 

37°C in 5% CO2. After 24 h, cells were cultured in serum-free medium overnight. 

Cells were pre-incubated with AG1478 and AG825 for 2 h, wortmannin, LY294002 

and U0126 for 1 h or BAPTMA/AM and 2-APB for 30 min. Next, cells were 

incubated with MKC P+O+ at an MOI of 5 for 6 h at 37°C. For invasion assays, cells 

were washed with serum-free medium and then incubated with 50 µg/ml gentamicin 

for 1.5 h at 37°C. After extensively washing to remove the remaining gentamicin, 

bacteria that had invaded were quantified by lysing the epithelial cells with 1% 

saponin and plating the cell lysates on GCK plates. The significance of differences 

was assessed using the Student's t-test for independent population means. 

 

3.2.4 Immunoblotting 

Epithelial cells were seeded at 1×106 in 6-well dishes. After 24 h, the cells 

were serum-starved overnight and incubated with MKC P+O+ at an MOI of 5 for up 

to 6 h. The cells then were washed with ice-cold PBS and lysed in 75 µl RIPA buffer 

(1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 

1 mM EGTA, 2 mM EDTA, 1 mM Na3VO4, 50 mM NaF, 10 mM Na4P2O7, 1× 

proteinase inhibitor cocktail (Sigma). Cell lysates were mixed 1:1 with denaturing 
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loading buffer. Lysates were separated through SDS-polyacrylamide gels (Bio-Rad, 

Hercules, CA), analyzed by western blot, and visualized using Western Lightning 

chemiluminescence substrate (Perkin Elmer, Boston, MA). Images were acquire and 

digitized directly using Fujifilm LAS-3000 (Valhalla, NY) or acquired with x-ray 

film. Blots were stripped with Restore western blot stripping solution (Pierce, 

Rockford, IL) and reprobed with anti-β-tubulin antibody. The blots were quantified 

by densitometry using MultiGauge software from Fujifilm. 

 

3.2.5 Immunoprecipitation 

Epithelial cells were seeded at 1×106 in 6-well dishes. After 24 h, the cells 

were serum-starved overnight and incubated with MKC P+O+ at an MOI of 5 for up 

to 6 h. The cells then were washed with ice-cold PBS and lysed in 1% Triton-X 100 

lysis buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM MgCl2, 1 mM EGTA, 2 

mM EDTA, 1 mM Na3VO4, 50 mM NaF, 10 mM Na4P2O7, 1× proteinase inhibitor 

cocktail). The lysates were sonicated and centrifuged at 4°C. The supernatants were 

subjected to immunoprecipitation using anti-phosphotyrosine mAb and Protein G 

conjugated sepharose beads (GE Healthcare, Piscataway, NJ). The 

immunoprecipitates were analyzed using SDS-PAGE and western blot, probing for 

PLCγ using a specific antibody. 
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3.3 Results 

3.3.1 N. gonorrhoeae activates the MAP kinase ERK via transactivation 

of EGFR.  

I have shown in Chapter 2 that gonococci transactivate EGFR and that this 

transactivation is necessary for their invasion into epithelial cells. EGFR activation 

can induce multiple signaling pathways, including the MAP kinase ERK. To analyze 

the activation of the MAP kinase ERK in response to gonococcal infection by its 

phosphorylation, lysates were prepared from HEC-1-B endometrial epithelial cells 

and ME180 cervical epithelial cells that had been incubated with live or killed MKC 

P+O+ for up to 7 h. The lysates were analyzed using western blot, probing for 

phosphorylated ERK (pERK). As shown in Fig. 1 gonococci induced the 

phosphorylation of ERK in both cell lines. HEC-1-B cells have a certain level of 

constitutive ERK phosphorylation (Fig. 10B, 0 h) in the absence of the bacteria, while 

a basal level of pERK was almost undetectable in ME180 cells (Fig 10A, 0 h). After 

the addition of live MKC, levels of pERK increased steadily for 4 h and remained 

augmented throughout the assay (6 or 7 h). In contrast, epithelial cells that were 

incubated with killed MKC showed very little increase (HEC-1-B) or no increase 

(ME180) in pERK. This suggests that induction of ERK activation by gonococci is 

dependent on the viability of the bacteria, as only the live Pil+ Opa+ gonococci 

induced a sustained increase in pERK. 

To investigate whether gonococci-induced activation of ERK was due to the 

transactivation of EGFR or ErbB2 by the bacteria, I examined the effect of EGFR  
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C. HEC-1-B     D. ME180 

 
 
Figure 10. N. gonorrhoeae infection activates MAP Kinase ERK. ME180 (A) or 
HEC-1-B (B) cells were infected with either live or gentamicin-killed MKC Pil+ Opa+ 
at an MOI of 5 or incubated with serum-free media as the control for up to 6 h. At 
each hour the cells were lysed and an aliquot was analyzed by SDS-PAGE and 
western blot, probing for pERK. The blots were stripped and reprobed for total ERK 
as loading controls. Shown are representative blots from at least three independent 
experiments. Densitometry of pERK activation in HEC-1-B (C) and ME180 (D). 
Data is shown as the mean of the independent experiments ± SEM. 
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and ErbB2 kinase inhibitors on gonococcal induced ERK activation. HEC-1-B and 

ME180 cells were preincubated with AG1478, an EGFR kinase inhibitor, or AG825, 

an ErbB2 kinase inhibitor, before the addition of MKC P+O+. As shown in Fig. 11, 

the EGFR inhibitor AG1478 was able to abolish most of the constitutive ERK 

phosphorylation and gonococcal induction of ERK phosphorylation in both HEC-1-B 

and ME180 cells. In contrast to the EGFR kinase inhibitor, the ErbB2 kinase inhibitor 

AG825 had no effect on the gonococcal induced activation of ERK in either cell line. 

Taken together the data here suggests that N. gonorrhoeae activates the ERK 

signaling pathway via their transactivion of EGFR kinase.  

 

3.3.2 N. gonorrhoeae activates PI3K by transactivation of EGFR.  

The PI3K signaling pathway is one of the major downstream signaling 

pathways of EGFR and ErbB2. PI3K has been shown by others to be activated in 

response to gonococcal inoculation (158). I investigated whether PI3K activation was 

dependent on gonococci induced transactivation of EGFR. I assessed the activation of 

the PI3K pathway in HEC-1-B cells by phosphorylation of AKT, a downstream 

effector of PI3K. AKT is activated by binding to PIP3 followed by its subsequent 

phosphorylation by PDK1 and PDK2 (phosphoinositide dependent kinase). As shown 

in Fig. 12, uninfected HEC-1-B cells have a certain level of intrinsic phosphorylated 

AKT (pAKT). After incubation with MKC Pil+ Opa+, the levels of pAKT increased 

steadily for the first 2 h and remained at the heightened level up to 6 h post 

inoculation. Recently it has been suggested that gonococci induced AKT 

phosphorylation is dependent on myosin light chain kinase (MLCK), 
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C. HEC-1-B     D. ME180 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. N. gonorrhoeae-induced ERK activation depends on signaling through 
EGFR. HEC-1-B (A) or ME180 (B) cells were preincubated with either AG825 (5 µM), an 
ErbB2 inhibitor, or AG1478 (5 µM), an EGFR inhibitor, for 2 h prior to the addition of MKC 
Pil+ Opa+ at an MOI of 5 or with serum-free media as the control for up to 6 h. U indicates the 
untreated sample in the absence of gonococci. At each hour the cells were lysed and an 
aliquot of the cell lysate was analyzed by SDS-PAGE and western blot, probing for pERK. 
The blots were stripped and reprobed for total ERK as loading controls. Shown are 
representative blots from at least three independent experiments. Densitometry of pERK 
activation in HEC-1-B (C) and ME180 (D). Data is shown as the mean of the independent 
experiments ± SEM. 100% is the maximum pERK level in no inhibitor treated cells. 
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instead of PI3K activation (36). In order to determine if the phosphorylation of AKT 

was dependent on PI3K activation, I preincubated HEC-1-B and ME180 cells with 

the PI3K inhibitors LY294002 and wortmannin before the inoculation with MKC. 

Although wortmannin is considered to be a PI3K inhibitor (IC50 1-10 nM), it also can 

inhibit PI4K (IC50 200 nM) and MLCK (IC50 200 nM) at higher concentrations (3, 40, 

96). LY294002, however, has not been found to have any other inhibitory activities. I 

find that in PI3K inhibitor-treated HEC-1-B cells, there is no detectable level of 

pAKT before or after the inoculation of the bacteria with use of either inhibitor 

(Fig.12). The concentration of wortmannin that inhibited gonococcal induced AKT 

phosphorylation was 50 nM, well below the published IC50 for MLCK and PI4K. 

This suggests that activation of AKT in HEC-1-B cells is dependent on PI3K 

activation. 

In order to investigate whether gonococci induced AKT activation requires 

EGFR or ErbB2 mediated signaling, HEC-1-B and ME180 cells were incubated with 

EGFR and ErbB2 kinase inhibitors, AG1478 or AG825, respectively. The EGFR 

inhibitor abolished most of the constitutive pAKT levels in both cell lines. In the 

presence of the EGFR kinase inhibitor, gonococcal inoculation failed to increase the 

levels of pAKT in HEC-1-B and ME180 cells (Fig. 13). The ErbB2 inhibitor, 

however, had no effect on both the constitutive pAKT and gonococci induced pAKT 

in HEC-1-B and ME180 cells. These results suggest that gonococci induce PI3K-

dependent AKT activation in epithelial cells and this activation is due to the 

gonococcal induced transactivation of EGFR, but not ErbB2. 
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Figure 12. N. gonorrhoeae infection induces PI3K-dependent activation of AKT. 
HEC-1-B cells were preincubated with either LY294002 (5 µM) or wortmannin (50 
nM), two PI3K inhibitors, for 30 min prior to the addition of MKC Pil+ Opa+ at an 
MOI of 5 or with serum-free media as the control for up to 6 h. U indicates the 
untreated sample in the absence of gonococci. At each hour the cells were lysed and 
an aliquot of the cell lysate was analyzed by SDS-PAGE and western blot, probing 
for pAKT. The blots were stripped and reprobed for total AKT and β-tubulin as 
loading controls. Shown is a representative blot from three independent experiments.  
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    C. HEC-1-B         D. ME180 

 
 

 
Figure 13. N. gonorrhoeae infection activates AKT via EGFR. HEC-1-B (A) or 
ME180 (B) cells were preincubated with either 5 µM AG825, an ErbB2 inhibitor, or 
(5 µM) AG1478, an EGFR inhibitor, for 2 h prior to the addition of MKC Pil+ Opa+ at 
an MOI of 5 or with serum-free media as the control for up to 6 h. U indicates the 
untreated sample in the absence of gonococci. At each hour the cells were lysed and 
an aliquot of the cell lysate was analyzed by SDS-PAGE and western blot, probing 
for pAKT. The blots were stripped and reprobed for total AKT as loading controls. 
Shown are representative blots from at least three independent experiments. 
Densitometry of pAKT activation in blot A HEC-1-B (C) and blot B ME180 (D). 
100% is the maximum pAKT level in no inhibitor treated cells. 
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3.3.3 The expression of pili or Opa is required for N. gonorrhoeae to 

induce ERK and AKT activation.  

Others and we previously have shown that expression of Opa and pili together 

enhances the gonococci’s ability to invade ME180 cells (39, 104). When gonococci 

express only Opa or pili individually, gonococcal invasion is reduced to ~50% of 

what is seen with gonococci expressing both (138). It has been reported recently that 

in the absence of Opa, gonococci induce ERK activation through PilT induced 

retraction of their pili (46). Based on these observations, here I ask whether Opa and 

pili play a role in the activation of ERK and AKT. I incubated ME180 cells with 

different variants of N. gonorrhoeae MKC, including P+O+, P-O+, P+
∆O, P-

∆O or 

killed P+O+, and examined the effect of differential expression of pili and Opa on the 

gonococci's ability to induce the activation of ERK and AKT. Neither gentamicin 

killed MKC P+O+, which cannot invade (11), nor MKC P-
∆O, which invade 100-fold 

less well than P+O+ (138), were able to induce ERK or AKT phosphorylation up to 6 

h post-inoculation (Fig. 14). The two MKC variants that express either pili or Opa 

individually were able to induce activation of ERK and AKT in ME180 cells. 

Although P+O+, P-O+ and P+∆O gonococci activated ERK to comparable levels in 

ME180 cells, the timing of the pERK increase was slightly varied between the three 

(Fig. 14). In ME180 cells incubated with the P+O+ variant, ERK phosphorylation 

increased steadily over the 6 h. In cells incubated with the P+
∆O variant, ERK 

phosphorylation rose more rapidly than that in cells incubated with the P+O+ variant, 

while inoculation of the P-O+ variant increased ERK phosphorylation later than both 

the P+O+ and P+O- variants (Fig. 14).  
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The effects of Opa and/or pili expression on the induction of pAKT mirrored 

those of pERK induction. Neither the killed MKC P+O+ nor the P-∆O variant altered 

pAKT levels in ME180 cells (Fig. 14). MKC P+O+, P-O+, and P+∆O variants all 

induced AKT phosphorylation, but in different temporal patterns. The P+
∆O variant 

activated AKT earliest, followed by the P+O+ and then P-O+ variant, which is similar 

to the pattern of ERK activation induced by the different variants of gonococci. These 

results together suggest that gonococcal induced ERK and AKT activation is 

dependent upon the expression of either pili or Opa, and expression of pili and Opa 

regulates the timing of ERK and AKT activation. 

 

3.3.4 N. gonorrhoeae activates PLCγγγγ. 

Another major downstream signaling pathway of EGFR and ErbB2 is PLCγ. 

Activation of PLCγ via EGFR has been shown to be important for actin-dependent 

cell motility and wound healing (21) and is induced by HB-EGF. Because I had 

difficulty in obtaining antibodies against activated (phosphorylated) PLCγ, I first 

assessed whether gonococci could induce phosphorylation of a protein around the 

molecular weight of PLCγ (155 kDa). Lysates were prepared from HEC-1-B cells 

that had been incubated with MKC Pil+ Opa+ for up to 6 h. The lysates were analyzed 

using western blot, probing for phosphorylated tyrosine (pY). As shown in Fig. 15A, 

gonococci induced the phosphorylation of a doublet of proteins of 155 kDa in range. 

Both of the phosphorylated bands in the doublet increased in intensity over the 6 h of 

incubation with the bacteria. This is consistent with a previous report that HB-EGF  
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Figure 14. N. gonorrhoeae must express either pili or Opa to activate ERK and 
AKT. ME180 cells were infected with either live MKC variants expressing P+O+, P-

O+, P+
∆O or P-

∆O or gentamicin-killed MKC P+O+ at an MOI of 5 or with serum-free 
media as the control for up to 6 h. At each hour the cells were lysed and an aliquot of 
the cell lysate was analyzed by SDS-PAGE and western blot, probing for pERK. The 
blots were stripped and reprobed for pAKT, followed by total ERK and β-tubulin as 
loading controls. Shown are representative blots from three independent experiments.  
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induces the phosphorylation of a doublet with an observed size of 135 and 150 kDa in 

NIH 3T3 epithelial cells (14). To determine whether phosphorylation of these 

proteins is dependent on gonococcal transactivation of EGFR, HEC-1-B cells were 

incubated with the EGFR kinase inhibitor AG1478 prior to being inoculated with 

MKC P+O+. The EGFR inhibitor reduced the constitutive phosphorylation level of the 

lower band in the doublet and blocked gonococcal induced the phosphorylation of 

both bands in the doublet (Fig. 15C). 

 As another measure of determining whether PLCγ is activated in response to 

gonococci, lysates were prepared from HEC-1-B cells that either had or had not been 

incubated with MKC for 4 h and were subjected to immunoprecipitation with a 

monoclonal antibody (mAb) specific for phosphotyrosine. The immunoprecipitates 

were analyzed using western blot, probing for PLCγ. As shown in Fig. 15D, 

gonococci induced the tyrosine phosphorylation of PLCγ. These results confirm that 

gonococci induce PLCγ activation in epithelial cells and suggest that PLCγ activation 

may be due to the gonococcal induced transactivation of EGFR. 

 

3.3.5 Ca2+ flux, but not ERK and PI3K activation, is essential for 

gonococcal invasion. 

To investigate whether signaling cascades initiated by gonococci induced 

transactivation of EGFR are involved in gonococcal invasion, I examined the effects 

of inhibitors specific for ERK, PI3K, and Ca++ signaling, the downstream effect of 

PLCγ activation, using gentamicin protection assays. I used BAPTA/AM and 2-APB 

to inhibit Ca2+ flux. BAPTA/AM, a cell permeable calcium chelator, is  
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Figure 15. N. gonorrhoeae infection activates PLCγγγγ. HEC-1-B cells were infected 
with either MKC Pil+ Opa+ at an MOI of 5 or incubated with serum-free media as the 
uninfected control (U) for up to 6 h. (A, C and D). At each hour the cells were lysed 
and an aliquot was analyzed by SDS-PAGE and western blot, probing for 
phosphotyrosine (A and C). The blots were stripped and reprobed for β-tubulin as 
loading controls. (B) Densitometry analysis was done on blot A for the two bands 
that are present after the addition of gonococci. The lower band is p135 and the upper 
band is p155. (D) After the addition of MKC, the cells were lysed at each hour and 
the cell lysates were subjected to immunoprecipitation with anti-phosphotyrosine 
mAb 4G10. The cell lysates were analyzed by SDS-PAGE and western blot, probing 
for PLCγ.  
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hydrolyzed by esterases once inside the cell and becomes trapped inside as the active 

calcium chelator BAPTA. 2-APB is an inhibitor of IP3-induced Ca2+ release. HEC-1-

B cells were incubated with the two calcium flux inhibitors before inoculating the 

cells with gonococci. Chelation of intracellular Ca2+ by BAPTA/AM reduced 

invasion of MKC P+O+ in a dose dependant manner (70% at 100 µm) (Fig. 16A), and 

2-APB inhibited gonococcal invasion of HEC-1-B cells by greater than 90% (Fig. 

16B). To investigate whether PI3K activation is important in gonococcal invasion, I 

used two inhibitors, wortmannin and LY294002. Wortmannin is able to inhibit 90% 

of gonococcal invasion into HEC-1-B cells at concentration as low as 50 nM (Fig. 

16C). LY294002, however, had no significant effect on gonococcal invasion (Fig. 

16D). Since wortmannin, but not LY294002, is known to inhibit other signaling 

pathways in addition to PI3K, our results suggest that wortmannin inhibits 

gonococcal invasion by interfering with one of the other signaling pathways, but not 

by inhibiting PI3K. To study ERK’s role in gonococcal invasion, HEC-1-B cells were 

preincubated with U0126, an inhibitor of ERK activation, before the inoculation of 

the bacteria. U0126 has no effect on gonococcal invasion at concentrations near its 

IC50, but increases the amount of gonococcal invasion into HEC-1-B cells at very 

high doses of U0126 (>5 µM, approximately 100× its IC50). 

Taken together, these results do not support a role for ERK or PI3K signaling 

in gonococcal invasion of epithelial cells, but rather suggest that Ca2+ signaling is 

important for gonococcal invasion into HEC-1-B cells and that the Ca2+ signaling is 

likely to be induced by PLCγ activation. 
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Figure 16. The effects of Calcium flux, PI3K, and ERK inhibitors on gonococcal 
invasion. To quantify invaded bacteria, HEC-1-B cells were preincubated with either 
the inhibitors as indicated before the addition of MKC Pil+ Opa+. After incubating 
with the bacteria for 6 h, the epithelial cells were treated with gentamicin, washed, 
and lysed to determine the number of gentamicin resistant bacteria as invaded 
bacteria. Shown are the mean percentages (± SD) from three independent 
experiments with six replicates per experiment. *P < 0.05 (as compared with no 
inhibitor).  
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3.4 Discussion 

Epithelial cells, unlike phagocytic cells of the immune system, are designed to 

create a physical barrier for pathogens, but not engulf bacteria by phagocytosis. N. 

gonorrhoeae has devised means by which it can manipulate the host epithelial cells to 

induce its uptake. The invasion of gonococci into epithelial cells of the female 

reproductive tract has been shown to be an actin-dependent process (114, 127). I 

showed in Chapter 2 that gonococci transactivate EGFR and that the kinase activity 

of EGFR was important for gonococcal invasion. One of the known effects of EGFR 

activation is regulation of actin dynamics. 

EGFR, a receptor tyrosine kinase, is activated by ligand binding to its 

extracellular domain. Ligand binding induces EGFR dimerization with either itself or 

another ErbB family member and trans-autophosphorylates intracellular tyrosine 

residues in the dimer, leading to the activation of multiple signaling pathways inside 

the cell. This leads to diverse outcomes dependent upon the dimerization partner, the 

ligand, and the timing and duration of the ligand binding. ERK, PI3K/AKT and 

PLCγ, three major signal transduction pathways downstream of EGFR, all have been 

implicated to be able to regulate actin organization. I show here that all three 

pathways are activated in genital epithelial cells by gonococcal inoculation. The 

activation of these three pathways in HEC-1-B and ME180 cells by gonococci has 

two characteristics. First, the activation of both ERK and PI3K/AKT was sustained 

for at least 6 hr. Second, activation of ERK and AKT was induced through EGFR. In 

the previous chapter I showed that gonococci induce the transcription and shedding of 

HB-EGF and that gonococcal-induced shedding of the growth factor HB-EGF 
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activates EGFR. Thus, HB-EGF mediated transactivation of EGFR leads to the 

sustained activation of ERK and AKT.  

In this study, I show that activation of ERK and AKT is induced by N. 

gonorrhoeae that express either pili or Opa, but not by the bacteria that lose both 

surface structures. This suggests a role for both pili and Opa in gonococci-induced 

EGFR transactivation. There are two possible explanations for the role of pili and 

Opa in this process. First, the expression of either pili or Opa allows the bacteria to 

form microcolonies on the epithelial cell surface. Mechanical stresses generated by 

the microcolonies on the surface membrane of epithelial cells might trigger EGFR 

transactivation and the activation of EGFR downstream signal molecules The second 

possibility is that the direct interaction of pili or Opa with host cells or indirect 

interaction of pili and Opa with host cells through other bacterial surface molecules 

induces the transactivation of EGFR, and ERK and AKT activation. The results from 

my studies support the idea that the formation of microcolonies is important for the 

transactivation of EGFR leading to ERK and AKT signaling, as killed gonococci that 

express both pili and Opa adhere to the epithelial cell surface, but are unable to form 

microcolonies and induce ERK and AKT activation. Furthermore, the hypothesis of 

microcolony-dependent EGFR transactivation does not exclude the possible 

involvement of other gonococcal surface structures in addition to pili and Opa. 

The results from this study suggests that N. gonorrhoeae induces the 

activation of PLCγ and that the Ca2+ signal induced by the PLCγ pathway is essential 

for the uptake of gonococci by epithelial cells. PLCγ induces a calcium flux by 

cleaving PIP2 to produce IP3 that induces the Ca2+ release from ER (19). This study 
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shows that chelation of intracellular Ca2+ and inhibition of intracellular Ca2+ release 

inhibits gonococcal invasion. PLCγ can activate PKC via its product DAG and Ca2+ 

flux. The PKC inhibitor, staurosporine, failed to inhibit gonococcal invasion into 

HEC-1-B cells, suggesting that PKC activation is not essential for gonococcal 

invasion into HEC-1-B cells (149). Therefore, gonococci induced PLCγ activation is 

likely to contribute to gonococcal invasion by causing the release of intracellular Ca2+ 

but not via activation of PKC. 

N. gonorrhoeae induced Ca2+ fluxes have been reported previously (4, 5, 76, 

95),. These studies suggested that the porin, PorB, and pilus retraction under the 

control of PilT contribute to the induction of Ca2+ flux. PorB, upon inserting itself 

into the membrane of host epithelial cells, induces a Ca2+ influx that occurs within 2 

min (4, 95), while pilus retraction causes the release of Ca2+ from intracellular stores 

within 10 min (5, 76). It also has been shown that the pilus retraction induced Ca2+ 

flux is dependent upon the PorB Ca2+ influx preceding it (6). PLCγ activation is 

detected at a much later time after the initial PorB and pilus induced Ca2+ fluxes. This 

suggests that PLCγ induced Ca2+ flux may play a different role from the PorB/PilT 

induced Ca2+ fluxes in gonococcal invasion.  

How these gonococci induced signaling pathways mediate the bacterial 

invasion is not known. These signaling pathways can potentially initiate and/or 

regulate the rearrangement of the host actin cytoskeleton that is essential for the 

invasion of gonococci into epithelial cells. Signaling cascades regulate actin 

cytoskeleton dynamics via actin regulatory proteins, including gelsolin and villin. The 

gelsolin family of actin binding proteins is Ca2+ regulated. Gelsolin, under high Ca2+ 
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concentrations, severs F-actin (159). The gelsolin family proteins, villin, advillin and 

supervillin, sever and promote depolymerization of F-actin under high Ca2+ 

concentrations. In addition, these three actin binding proteins are able to bundle F-

actin, creating microvilli. Since gonococci are known to induce elongation of 

epithelial cell microvilli, any of these three microvilli inducing proteins could 

contribute to this process. Villin is particularly intriguing among the gelsolin family 

proteins, since its expression is restricted to epithelial cells, primarily of the 

gastrointestinal and urogenital tracts. In addition to having actin severing activity, 

villin, under high Ca2+ concentrations, also can promote actin nucleation by 

triggering the Arp2/3 complex.(99). 

The results from this study show that both PI3K inhibitors, wortmannin and 

LY294002, inhibit gonococci-induced PI3K activation as assessed by AKT 

phosphorylation, but have opposing effects in gonococcal invasion. Wortmannin, but 

not LY294002, inhibits gonococcal invasion. A similar phenomenon has been 

reported previously for N. gonorrhoeae invasion of pex cells (36), and the activity of 

wortmannin in inhibiting uptake of gonococci by pex cells had been attributed to the 

inhibition of myosin light chain kinase instead of PI3K. Different from LY294002, 

wortmannin, at high concentrations (IC50 200 - 300 nM), has been shown to inhibit 

MAP kinase, myosin light chain kinase, PI4K and phospholipase D. Although the 

lowest concentration of wortmannin (50 nM) used in this study would not be 

expected to affect these other enzymes, it is possible that it acted on one of them or 

another yet unknown kinase. Therefore, these results argue against a role for PI3K in 

gonococcal invasion. 
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Our finding that gonococcal invasion of epithelial cells via transactivation of 

EGFR is not dependent upon its ERK or PI3K/AKT activation suggests that the 

activation of these signaling pathways has another role in gonococcal disease. EGFR 

stimulation is known to produce cell survival and anti-apoptotic signals. Growth 

factor withdrawal conversely stimulates apoptosis (80). Helicobacter pylori and 

Pseudomonas aeruginosa both have been shown to transactivate EGFR via inducing 

the shedding of the EGFR ligand, HB-EGF, from the plasma membrane, leading to 

the prevention of apoptosis in the host epithelial cell (157, 161). This supports the 

possibility that EGFR signaling, in addition to its importance for invasion, also 

protects the host epithelial cell from apoptosis. 

Apoptosis of bacterially infected host cells is one of the host defense 

mechanisms against a pathogen. Several intracellular pathogens have been shown to 

propagate intracellular replication via inhibiting apoptosis of their host cells. There is 

increasing evidence that N. gonorrhoeae is capable of inhibiting apoptosis of their 

host cell, which is associated with persistence of the infection. In the Fallopian tubes, 

N. gonorrhoeae prevents apoptosis of the epithelial cells that they invade, while 

inducing apoptosis of the ciliated cells that they do not invade. It has been reported by 

several groups that N. gonorrhoeae can protect epithelial cell lines from apoptosis in 

vitro. Wild type gonococci inhibited, whereas the noninvasive ∆pilT induced 

apoptosis of A431 cells (57). N. gonorrhoeae infection did not induce apoptosis of 

primary urethral epithelial cells (UEC) and End/E6E7 cells, a primary endocervical 

cell line that had been transformed with E6 and E7 proteins from HPV (human 

papiloma virus). (12, 43), but protected these cells from staurosporine induced 
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apoptosis. The anti-apoptosis function of gonococci was further supported by recent 

finding that P+O- gonococci downregulated the expression of the proapoptotic 

proteins BAD and BIM in T84 colorectal epithelial cells in an ERK dependent 

manner (60).  

Gonococcal transactivation of EGFR induces sustained activation of both 

ERK and AKT. Sustained ERK activation is associated with transcriptional 

downregulation of the proapoptotic proteins BAD and BIM (111), ERK-induced 

phosphorylation of BAD, BIM and other BH3-only family proteins can trigger the 

ubiquitination and proteosomal degradation of them (41). AKT is known to induce 

the activation of NF-κB, an activator of anti-apoptotic genes. Gonococcal infection of 

UECs and End/E6E7 cells was found to increase the transcript expression of bfl-1 and 

c-IAP-2 in an NF-κB dependent manner (11, 43). 

Based on these reports, I would postulate that in HEC-1-B and ME180, the 

two epithelial cell lines used in this study, gonococcal-induced sustained activation of 

ERK and AKT would downregulate proapoptotic proteins (BH3-only family 

proteins) and upregulate anti-apoptotic proteins, Bfl-1 and c-IAP, all contributing to 

host cell survival.  

The results of this study demonstrate the requirement for Ca2+ flux in N. 

gonorrhoeae invasion, and also suggest that PLCγ activation induced by 

transactivation of EGFR contributes to this Ca2+ flux. This study also suggests that 

EGFR transactivation may have additional effects on the infection process by 

promoting the survival of intracellular gonococci by the prevention of host cell 

apoptosis via the ERK and AKT signaling pathways. EGFR signal transduction is 
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essential for epithelial cell survival and proliferation. By the activation of this one 

receptor, EGFR, gonococci have developed means by which they can ensure their 

survival. Future studies will further examine the relationship between PLCγ 

activation and N. gonorrhoeae induced transactivation of EGFR, the role of pili and 

Opa in gonococcal induced PLCγ activation, and the role of transactivation of EGFR 

in protection of host cells from apoptosis. 
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Chapter 4 Conclusions 

 

4.1 Summary and General Discussion 

Neisseria gonorrhoeae is an obligate parasite of humans that has no other 

natural host. It causes significant disease in the U.S. and worldwide, with gonorrhea 

being the second most commonly reported infectious disease in the US. Infected 

women are typically asymptomatic, thus allowing them to become chronically 

infected. Chronic infection heightens the risk of serious sequelae, which can include 

PID and DGI. Consequences of PID include scarring of the reproductive organs, 

resulting in chronic pelvic pain, ectoptic pregnancy and infertility. Additionally, the 

significance of this disease is exacerbated by the findings that gonococcal infection 

increases the risk of HIV transmission (42).  

N. gonorrhoeae primarily infects epithelial cells of the genitourinary tract of 

both men and women. Productive infection by gonococci of genital epithelial cells 

consists of four sequential steps: adherence, invasion, intracellular survival, and 

exocytosis. Only a small subpopulation of adherent gonococci is able to invade 

epithelial cells. The establishment of this intracellular niche protects the bacteria from 

immune surveillance. Additionally the ability to adapt to a constantly changing 

environment in the female reproductive tract, as older cells are shed and newer 

epithelial cells differentiate, seems essential for the establishment of chronic infection 

in women. 
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The goal of this study was to gain a better understanding of the host signaling 

events that N. gonorrhoeae induces and that are essential for gonococcal invasion of 

genital epithelial cells of the female reproductive tract. This study was designed with 

an inside-out approach in order to investigate mechanisms that lead to gonococcal 

invasion of genital epithelial cells. Through this approach I found that gonococci 

induce the activation of EGFR and ErbB2 and recruitment of them from the 

basolateral surfaces to gonococcal clusters at the apical surface of the epithelial cells. 

Gonococci activate EGFR via inducing the expression and surface release of EGFR 

ligand. This gonococci-induced activation of EGFR kinase is important for 

gonococcal invasion. Activation of EGFR kinase leads to phosphorylation of EGFR 

and ErbB2, which induces signaling pathways, including PI3K, PLCγ, and MAP 

kinase ERK. Gonococcal variants that express either pili or Opa are able to activate 

ERK and PI3K/AKT in an EGFR-dependent manner. This suggests that pili and Opa-

mediated invasion may converge at EGFR activation. Among these EGFR 

downstream signaling pathways, Ca2+ influx that is induced by PLCγ activation, but 

not PI3K and ERK, is required for gonococcal invasion. 

Both pili and Opa proteins have been suggested to be both adhesins and 

invasins. Pili-induced invasion and Opa-induced invasion of epithelial cells have 

been described in multiple studies (30, 44, 51, 53, 77, 118, 125, 136). The role of pili 

and Opa in invasion has been suggested in studies using gonococcal variants that 

expressed either pili or Opa, without the other adhesion. In the absence of pili and 

Opa expression, gonococci invade very poorly, but also adhere very poorly. This 

clearly supports both pili and Opa proteins as adhesins, but does not provide evidence 
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that either is an invasin. Although it is possible that adhesins also can serve as 

invasins, the evidence that either pili or Opa is an invasin is lacking.  

 This study shows that activation of and signaling through EGFR is important 

for gonococcal invasion of genital epithelial cells. Furthermore, adherence to 

epithelial cells via either Opa or pili leads to EGFR activation, although neither is 

sufficient to trigger the activation of EGFR, since killed gonococci that express both 

pili and Opa do not activate EGFR and invade epithelial cells (13). It previously has 

been shown that gonococci cultured with fixed epithelial cells reduced the time 

needed for maximal invasion from six to two hours (20). This suggests that 

expression of invasion promoting factors is induced in the bacteria when grown with 

epithelial cells. Requirement for bacterial viability in addition to the expression of pili 

or Opa and enhanced invasion ability of gonococci preincubated with fixed epithelial 

cells support that additional bacterial factors are responsible for invasion. 

Exactly what induces the recruitment of EGFR and ErbB2 to the gonococcal 

microcolonies is not clear. The clustering of EGFR does not appear to be an actin 

mediated event since cytochalasin D, an actin perturbing agent, prevents the 

formation of the actin cortical plaque beneath the microcolonies, but does not affect 

the recruitment of EGFR to the site of the microcolonies (87). It was suggested that 

this may be due to a cytochalasin D insensitive pool of actin, but the lack of F-actin 

localization with the EGFR surrounding the microcolonies argues against this. The 

EGFR kinase inhibitor AG1478 does not have an effect on EGFR or ErbB2 

recruitment to the gonococcal microcolony. This implies that EGFR signaling is not 

required for EGFR and ErbB2 recruitment. The surface distribution of EGFR can be 
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regulated by ligand binding and dimerization formation, but EGFR and ErbB2 

recruitment appears to precede the binding of ligand. Heparin washes of HEC-1-B 

cells prevent the release of cleaved soluble HB-EGF, but have no effect on EGFR and 

ErbB2 recruitment to the gonococcal microcolony. Taken together, these results 

suggest that EGFR and ErbB2 recruitment to the gonococcal microcolony is neither 

actin mediated nor dependent on the function of EGFR. 

EGFR can activate multiple signaling pathways. Two of these pathways that 

have been shown to be important for gonococcal invasion are Src kinase and Ca2+ 

flux. I was not able to detect any changes in Src activation in HEC-1-B cells that 

were inoculated with gonococci. This study suggests that the gonococci induced 

transactivation of EGFR activates of PLCγ, and the expected Ca2+ flux activated by 

PLCγ may be the source of the Ca2+ flux necessary for gonococcal invasion. 

EGFR signal transduction also activates ERK and AKT signal pathways. 

Neither of these pathways is vital for gonococcal invasion of epithelial cells. Both of 

these pathways are known to be important for cell survival and anti-apoptosis in 

general. A review of the Neisseria literature suggests that many prosurvival or anti-

apoptotic genes are induced by gonococci through either ERK or PI3K/AKT 

signaling (11, 60, 79). Furthermore, an increasing number of studies imply that N. 

gonorrhoeae can prevent the apoptosis of the epithelial cells that they invade. These 

suggest that ERK and AKT signaling induced by gonococcal transactivation of EGFR 

may be important for the survival of the infected epithelial cells and intracellular 

gonococci. Thus gonococci-induced transactivation of EGFR has double functions in 
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gonococcal infection, inducing its invasion into epithelial cells and ensuring its 

intracellular survival by preventing apoptosis. 

The data presented in this dissertation furthers the understanding of cellular 

mechanism by which gonococci infect genital epithelial cells. Based on the data 

presented here along with the published literature, I postulate a working model of N. 

gonorrhoeae invasion of genital epithelial cells (Fig. 17). When women are exposed 

to Pil+ Opa+ gonococci, initially pili adhere to the surface of epithelial cells. Through 

retraction of their pili, the gonococci move closer and establish intimate interaction 

with the epithelial cell surface via their Opa proteins and LOS. Gonococci form 

microcolonies on the epithelial cell surface over time through replication and the 

fusion of smaller gonococcal clusters. The interaction with epithelial cells induces the 

expression of new gonococcal invasion factor(s) in the bacteria. The induction of this 

new factor(s) and possibly the action of the microcolony trigger the activation of 

heparin-bound MMPs. The activated MMPs cleave EGFR ligands, including HB-

EGF, that transactivate EGFR. EGFR activation induces several signaling cascades, 

including PLCγ-mediated Ca2+ flux. This Ca2+ flux induces actin cytoskeletal 

rearrangements through Ca2+-responding actin regulators, resulting in the uptake of 

gonococci. EGFR transactivation also induces ERK and AKT signaling pathways that 

protect the infected epithelial cell from apoptosis, promoting N. gonorrhoeae's 

intracellular survival. 
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Figure 17. Working Model of N. gonorrhoeae invasion into genital epithelial cells. 
Gonococci that express either pili or Opa adhere to the surface of the epithelial cells 
forming microcolonies, causing the recruitment of EGFR and ErbB2. Heparin-bound 
MMPs become activated, cleaving HB-EGF to bind to its receptor EGFR and initiating 
downstream signaling events. PLCγ is activated downstream of EGFR inducing a Ca2+ 
flux that causes actin reorganization leading to the invasion of gonococci. ERK and 
AKT also are activated downstream of EGFR leading to survival of the gonococci 
within the host epithelial cell.  
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4.2 Future Directions 

 The study described here supports the idea that EGFR signaling is important 

for gonococcal invasion and intracellular survival. Further studies are required to 

understand how gonococci are able to induce the expression and surface cleavage of 

EGFR ligands and how EGFR signaling mediates gonococcal invasion. In addition, 

gonococcal invasins that are induced by interacting with host cells and required for 

gonococcal invasion should be identified. 

This study suggests that PLCγ activation by gonococcal transactivation of 

EGFR is important for gonococcal invasion. Additional studies are required to 

definitively link PLCγ activation with N. gonorrhoeae induced transactivation of 

EGFR and the Ca2+ flux that is required for gonococcal invasion. The time course of 

gonococci-induced PLCγ activation, the effect of gonococcal viability on this 

activation, the dependency of this activation on the transactivation of EGFR, and the 

role of pili and Opa in gonococcal induced PLCγ activation should be examined. 

Phosphorylation of EGFR tyrosine 992 has been shown to be critical to the activation 

of PLCγ. The binding of PLCγ to EGFR pY992 via its SH2 domain leads to its 

phosphorylation and activation. We could test the effect of over expression of an 

available dominant-negative EGFR Y992 mutant in HEC-1-B and/or ME180 cells on 

gonococcal invasion(155). Mutating Y992 has been shown not to interfere with cell 

growth. It may be necessary to simultaneously knock-down the endogenous wt EGFR 

by siRNA in order to examine the effect the EGFR mutant, since the expression of 

EGFR in both HEC-1-B and ME180 cells is very high. There are two possible 



 

 89

problems with this approach. The first is that PLCγ also has been reported to bind to 

the pY1173 of EGFR, although activation of the ERK pathway via the adaptor SHC 

typically occurs via binding to this site. The second potential problem is that EGFR 

has been shown to activate PLCγ indirectly. PLCγ has been shown to be activated by 

PI3K by direct binding to its product PIP3, at the plasma membrane. Since loss of 

PI3K activity with LY294002 does not inhibit invasion, it is possible that loss of 

EGFR to PLCγ signaling may enhance EGFR to PI3K signaling thus leading to some 

PLCγ activity. 

 This study did not address the role of Src kinase in gonococcal invasion, 

which has been shown to be important for gonococcal invasion. Since Src activation 

was not significantly altered after the incubation of gonococci with HEC-1-B cells, its 

activation is likely not induced by gonococci in our experimental system. Src kinase 

is able to phosphorylate EGFR at Y845 and Y1101 that are not the phosphorylation 

target of EGFR tyrosine kinase. If the Src kinase activity that is required for 

gonococcal invasion involves phosphorylation of EGFR, we could follow the 

phosphorylation of Y845 by western blot using a commercially available antibody. 

There are currently no commercially available antibodies to pEGFR Y1101. 

 LPA (lysophosphatidic acid) binding to its G-protein coupled receptors is 

known to activate Src and EGFR tyrosine kinases (27, 78, 105, 140). Gonococci 

express phospholipase D (PLD) an enzyme that hydrolyzes phosphatidylcholine to 

generate choline and phosphatidic acid (PA) (36). PA can then be converted to LPA 

by phospholipase A (PLA) within epithelial cells. PLD has been shown to be 

important for gonococcal invasion as ∆PLD mutants were unable to invade (39). The 
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addition of extracellular PLD to the media is able to compensate in the invasion of 

∆PLD mutants. It is possible that gonococcal PLD is necessary for gonococcal 

mediated transactivation of EGFR. This hypothesis can be investigated by examining 

the effect of purified gonococcal PLD on the phosphorylation of EGFR and the effect 

of ∆PLD mutants on their ability to transactivate EGFR. 

 The studies described in this thesis are only a beginning, but should be helpful 

in furthering our understanding of how gonococci are able to induce the expression 

and surface cleavage of EGFR ligands and how EGFR signaling mediates gonococcal 

invasion. Additional directions of this work might entail understanding if and how 

ERK and AKT activation is able to prevent host cell apoptosis. 
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Appendix 
 
 
A.1 MMP Inhibitors 

In Chapter 2 I showed that inhibition of heparin-bound MMPs with heparin 

washes inhibits gonococcal invasion into HEC-1-B and ME180 cells. Loss of 

heparin-bound MMPs resulted in the prevention of the cleavage of membrane bound 

HB-EGF to the soluble form. Here I examined the role of MMP activation in 

gonococcal invasion by inhibiting MMP activity with the use of four MMP inhibitors. 

The MMP inhibitors, Batimastat, Marimastat, TAPI-1 and GM6001, vary in their 

specificity to various MMPs (Table 2). The inhibitor TAPI-1 in addition to being an 

MMP inhibitor also inhibits ADAM17/TACE (TNFα-converting enzyme). TACE has 

been shown in some cell lines to cleave membrane bound HB-EGF (134). The results 

of the MMP inhibition were mixed and fell into three categories based on the 

epithelial cell being invaded. The first category included heparin washes and 

Batimastat. Batimastat was able to significantly inhibit invasion of gonococci into 

both HEC-1-B and ME180 cells (Fig. 18 A and B). The second category included 

Marimastat and TAPI-1; these two inhibitors had no effect on the invasion of 

gonococci into HEC-1-B cells (Fig. 18 E and G), but significantly increased 

gonococcal invasion of ME180 cells (Fig. 18 F and H). GM6001 alone comprised the 

final category and had no effect on gonococcal invasion of HEC-1-B and ME180 

cells. Because ME180 cells express CEACAM while HEC-1-B cells do not, I thought 

it was possible that MMP inhibition in ME180 cells might enhance invasion by Opa 

mediated mechanisms. To test this gentamicin protection assays were done in ME180 



 

 92

cells using TAPI-1 and MKC variants that expressed P+O+, P+
∆O or P-O+

. TAPI-1 

doubled invasion of all three variants into ME180 cells (Fig. 18 I). Although the 

increase in invasion as compared to no inhibitor was statistically significant for all 

three variants, there was no difference in the TAPI-1 induced increase in invasion 

between the three gonococcal pili and Opa variants. 

It is not clear why some of the MMP inhibitors can block gonococcal invasion 

while others have no effect or increase invasion. Marimastat was originally 

synthesized as a structural relative to Batimastat, but that had better solubility. The 

two inhibitors have the same MMP specificities with slight differences in their IC50. 

As similar as Batimastat and Marimastat are, they have a quite marked difference in 

their ability to inhibit gonococcal invasion. Many of the MMP inhibitors that were 

used here have overlapping specificities, but no clear pattern emerges when trying to 

distinguish which MMPs may be important. It may be necessary to determine if the 

MMP inhibitors are preventing HB-EGF cleavage as is the case for heparin washes. 

Additionally, differences between invasion of ME180 and HEC-1-B cells in the 

presence of the different MMP inhibitors may have to do with which EGF ligand is 

being cleaved. Data from this work suggest that HEC-1-B cells cleave HB-EGF to 

transactivate EGFR. RT-PCR of gonococci stimulated HEC-1-B cells shows that 

mRNA for HB-EGF is upregulated 30-fold and amphiregulin is upregulated 5-fold. 

However, RT-PCR analysis of ME180 shows that gonococci upregulate amphiregulin 

90-fold, with no significant change in HB-EGF expression (104). 
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Figure 18. The effects of MMP and ADAM inhibitors on gonococcal invasion. To 
quantify invaded bacteria, HEC-1-B cells (A, C, E and G) or ME180 (B, D, F, H and 
I) were preincubated for 30 min with the inhibitors as indicated before the addition of 
MKC Pil+ Opa+ or MKC variants as indicated (I). After incubating with the bacteria 
for 6 h, the epithelial cells were treated with gentamicin, washed, and lysed to 
determine the number of gentamicin resistant bacteria as invaded bacteria. Shown are 
the mean percentages (± SD) from two independent experiments with six replicates 
per experiment. *P < 0.01 (as compared with no inhibitor).  
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Table 2. MMP Inhibitor data summary 
 

Inhibitor  IC50 HEC-
1-B 

ME180 Reference  

Heparin   +++ +++ (160) 
 MMP-1 

MMP-2 
MMP-7 
MMP-9 
MMP-13 

    

Batimastat   +++ ++ (29, 150) 
 MMP-1  

MMP-2  
MMP-9  
MMP-7  
MMP-3  

3 nM 
4 nM 
4 nM 
6 nM 

20 nM 

   

Marimastat   N.C. – (113) 
 MMP-9 

MMP-1 
MMP-2 
MMP-14 
MMP-7 
MMP-3 

3 nM 
5 nM 
6 nM 
9 nM 

13 nM 
230 nM 

   

TAPI-1   N.C. – (26, 92) 
 TACE/ADAM17  

MMPs 
       

 
 

3-10 µM 

   

GM6001*    N.C. N.C. (45, 46) 
 MMP-1 

MMP-2 
MMP-3 
MMP-8 
MMP-9 

0.4 nM 
0.5 nM 
27 nM 
0.1 nM 
0.2 nM 

   

  
MMP inhibitors are listed with the specific MMPs that they inhibit along with the 
IC50 concentration for that particular MMP for the purified metalloproteinase. 
Heparin was purchased from Sigma, Batimastat and Marimastat were purchased form 
Tocris Bioscience (Ellisville, Missouri), and GM6001 was purchased form 
Calbiochem. 
*Data for GM6001 is given as Ki. 
+ Inhibition of gonococcal invasion. 
– Increase in gonococcal invasion. 
N.C. No change in gonococcal invasion. 
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A.2 Myosin Light Chain Kinase 

 Invasion of gonococci into pex (immortalized primary cervical) cells has been 

suggested to be influenced by myosin light chain kinase (MLCK) activity. 300 nM 

ML-7, an MLCK inhibitor, was able to inhibit 85% of gonococcal invasion into pex 

cells. ML-7 activity toward the inhibition of gonococcal invasion is partially due to 

the loss of gonococcal adherence (50%) at this concentration. MLCK is a CaMK 

(calmodulin kinase), which is a family of calmodulin binding kinases that are 

activated in response to Ca2+ fluxes. Since I have shown in Chapter 3 that Ca2+ fluxes 

are important for gonococcal invasion of epithelial cells, it seemed plausible that this 

was due to the activation of MLCK. HEC-1-B and ME180 cells were preincubated 

with 1 or 10 µM MLCK before the addition of MKC P+O+. As shown in Fig. 19, 

neither concentration was able to inhibit the invasion of gonococci into either HEC-1-

B or ME180 cells. At very high concentrations (50 µM) MLCK inhibits cytokinesis 

(128). When invasion assays were performed using HEC-1-B and ME180 with 50 

µM MLCK, the cells rounded up and lost cell-cell contact. After the multiple washes 

that are done for the gentamicin protection assays, most of the HEC-1-B and ME180 

cells were washed away making it impossible to perform the assays at this very high 

concentration of ML-7. Cancer cells are known to be less sensitive to some inhibitors 

than primary cells. It is possible that this could explain the difference in sensitivity to 

ML-7. Since I used 33-fold more ML-7 with the HEC-1-B and ME180 cells than was 

used with pex cells, and since invasion was inhibited 85% in pex cells, I would have 

expected to be able to see some inhibition of invasion in HEC-1-B or ME180 cells 
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with ML-7. Although I never confirmed that 10 µM MLCK inhibited MLCK in 

HEC-1-B or ME180 cells, the rounding up of the epithelial cells seen at 50 µM 

MLCK, being phenotypically consistent with blockade of cytokinesis, suggests that 

ML-7 does affect MLCK in HEC-1-B and ME180 cells. Taken together this suggests 

that MLCK activity is not essential for gonococcal invasion into HEC-1-B and 

ME180 cells. 

 

 

 

 

 

 

 

Figure 19. The effects of MLCK inhibition on gonococcal invasion. To quantify 
invaded bacteria, HEC-1-B cells (A) or ME180 (B) were preincubated for 30 min 
with the MLCK inhibitor, ML-7, at the indicated concentration before the addition of 
MKC Pil+ Opa+ at an MOI of 5. After incubating with the bacteria for 6 h, the 
epithelial cells were treated with gentamicin, washed, and lysed to determine the 
number of gentamicin resistant bacteria as invaded bacteria. Shown are the mean 
percentages (± SD) from three independent experiments with four or five replicates 
per experiment.  



 

 97

A.3 PLCγ.γ.γ.γ. 

Chapter 3 suggests that PLCγ activation may be responsible for the Ca2+ flux 

that is needed for gonococcal invasion into HEC-1-B and ME180 cells. U71322 is the 

only known inhibitor of PLCγ activation. U71322 inactivates itself quickly in the 

presence of cells by cross-linking to cell surface proteins, and is inactivated within 20 

min (153). Because of this it has not been able to inhibit PLCγ activation in a number 

of studies. Because I did not know when PLCγ activation initially occurs in response 

to gonococci, I devised two strategies to test U71322's influence on gonococcal 

invasion. First, I added U71322 only once at a high dose at 0, 1, 2, 3 or 4 hours 

during the invasion assay with MKC P+O+. Second, I added multiple doses of 

U71322 hourly throughout the invasion assay from 2-4 hr. As shown in Fig 20, 

U71322 had no effect on the invasion of gonococci into HEC-1-B or ME180 cells 

under any of the conditions tested. Since it is unclear whether or not the conditions 

tested, either a single dose or multiple doses of U71322, was able to inhibit 

gonococcal induced PLCγ activation, the importance of PLCγ activation can not yet 

be definitively linked to gonococcal invasion of epithelial cells. 



 

 98

 

 

 

 

 

 

Figure 20. The effects of PLCγγγγ inhibition on gonococcal invasion. MKC Pil+ Opa+ 
was added at a MOI of 5 at 0 h to HEC-1-B cells (A) or ME180 (B) in the presence or 
absence (U) of 1 µM PLCγ inhibitor, U71322,. The inhibitor was either added as a 
single dose at the hour indicated or as three 1 µM doses added hourly from 2- 4 hrs. 
To quantify invaded bacteria, after 6 h incubation with the bacteria, the epithelial 
cells were treated with gentamicin, washed, and lysed to determine the number of 
gentamicin resistant bacteria as invaded bacteria. Shown are the mean percentages (± 
SD) from three independent experiments with four or five replicates per experiment.  
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A.4 Tyrosine Kinase Inhibitor AG126 

 AG126 is a general tyrosine kinase inhibitor that has been shown to inhibit 

LPS induced TNFα synthesis and ERK phosphorylation. Exactly how AG126 is able 

to do this is not clear. AG126 was tested to see whether it could inhibit the invasion 

of MKC Pil+ Opa+ into HEC-1-B cells. AG126 significantly inhibits gonococcal 

invasion of HEC-1-B cells that is dose dependent (Fig. 21A). At 200 µM, the highest 

dose tested, AG126 inhibits 90% of gonococcal invasion. Since one of the 

downstream modes of action of AG126 is prevention of ERK activation, I determined 

whether AG126 is able to inhibit gonococcal induced ERK activation. HEC-1-B cells 

that had been preincubated with 200 µM AG126 were inoculated with MKC Pil+ 

Opa+ at an MOI of 5 for up to 6 h. Cells were lysed and were analyzed using western 

blot, probing for phosphorylated ERK. The tyrosine kinase inhibitor AG126 had no 

effect on the levels of activated ERK (pERK) in HEC-1-B cells inoculated with 

gonococci (Fig. 21B). The data presented in Chapter 3, suggests that pERK activation 

does not influence gonococcal invasion of epithelial cells. The data presented here 

does not oppose the pERK data presented earlier, since the mode of action of AG126 

is not prevention of pERK activity. AG126 is synthesized from the naturally 

occurring tyrosine kinase inhibitor erbstatin (91).. Erbstatin has been shown to be an 

inhibitor of EGFR and ErbB2 activation. Thus it is possible that AG126 is able to 

inhibit gonococcal invasion of HEC-1-B cells by activity toward EGFR and ErbB2. 
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Figure 21. The effects tyrosine kinase inhibitor AG126 on gonococcal invasion. 
(A) To quantify invaded bacteria HEC-1-B cells were preincubated for 30 min with 
the tyrosine kinase inhibitor AG126, at the indicated concentrations before the 
addition of MKC Pil+ Opa+ at an MOI of 5. After incubating with the bacteria for 6 h, 
the epithelial cells were treated with gentamicin, washed, and lysed to determine the 
number of gentamicin resistant bacteria as invaded bacteria. Shown are the mean 
percentages (± SD) from three independent experiments with six replicates per 
experiment. *P < 0.01 (as compared with no inhibitor). (B) HEC-1-B cells were 
treated with 200 µM AG126 for 30 min, prior to the addition of MKC. At each hour 
the cells were lysed and an aliquot of the cell lysate was analyzed by SDS-PAGE and 
western blot, probing for pERK. The blots were stripped and reprobed for total ERK 
and β-tubulin as loading controls. Shown are representative blots from two 
independent experiments. 
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