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The prevalence of Autism Spectrum Disorder (ASD) diagnoses in the United 

States has increased dramatically over the past 20 years, fueling investigations into 

possible environmental triggers for the disorder. Exposures to pesticides, persistent 

pollutants, prescription medications, and heavy metals through various routes have been 

examined, but very few studies have examined the potential role of chronic inhalation of 

hazardous air pollutants (HAPs) in the etiology of ASD. This thesis was designed to 

examine possible relationships between HAPs and ASD prevalence on a statewide level 

for the U.S., with sub-analyses on a finer, countywide level within the state of Maryland. 

Findings suggest consistent, positive associations between ASD prevalence and HAPs at 

the statewide level for the U.S. The findings do not persist at the county level in the 

Maryland sub-analyses. These results reinforce the concept of ASD as a spectrum of 

phenotypes best explained through multifactorial etiological models. 
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Chapter 1: Introduction 

1.1 Increased incidence and prevalence of Autism 

Spectrum Disorder  

The prevalence and cumulative incidence of Autism Spectrum Disorder (ASD) 

diagnoses in the United States (U.S.) has increased dramatically over the past 20 to 30 

years (Bertrand et al., 2001; Newschaffer, Falb, & Gurney, 2005; McDonald & Paul, 

2010). Despite the broadened diagnostic criteria, increased awareness of the disorder, and 

potential for diagnostic substitution, the possibility that a true increased incidence of 

ASD underlies these diagnoses cannot be dismissed. Studies have shown that these 

diagnostic artifacts only account for a portion of the increased prevalence (Blaxill, 

Baskin, & Spitzer, 2003; Croen & Grether, 2003; Hertz-Picciotto & Delwiche, 2009; 

Newschaffer et al., 2005). 

 A strong genetic component of ASD has been established (Bailey et al., 1995; Le 

Couteur et al., 1996). However, genetic mechanisms alone cannot account for the 

remaining unexplained, large, and relatively rapid increase in ASD diagnoses. This 

suggests that exposure to exogenous agents, particularly during critical prenatal or early 

post-natal windows of development, may play a role in the expression of genetic 

susceptibility (Hertz-Picciotto et al., 2009; McDonald et al., 2010). This gene-

environment model of ASD is complicated by the probable involvement of multiple 

genes and environmental factors.  
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1.2 Potential exogenous risk factors 
 
 Currently approximately 80,000 chemicals are in use or commerce in the U.S., of 

which about 3,000 are produced or imported in excess of 1 million pounds per year. Of 

these high production volume chemicals, 43% have not undergone the basic, minimum 

toxicity screening, and only about 7% have a full set of basic test data 

(U.S.Environmental Protection Agency [EPA], 1998). Thus, exposure effects, including 

neurodevelopmental effects on the unborn, remain unknown for the majority of these 

contaminants, some of which are ubiquitous in the environment, and some of which are 

known to cross the placenta. Prenatal exposure to many of these contaminants has been 

verified by examination of newborns’ cord blood. The Environmental Working Group 

reported an average of 200 pollutants present in the umbilical cord blood of babies born 

in U.S. hospitals. A total of 287 chemicals were found, of which 217 are neurotoxins and 

208 are teratogens or developmental toxicants to animals (Environmental Working 

Group, 2005). Furthermore, toxicological testing is primarily conducted on individual 

chemicals, and knowledge of effects of multiple exposures is lacking. Additive or 

synergistic effects of multiple xenobiotic agents, along with cumulative impacts of other 

stressors such as poverty, diet, and stress, may be instrumental in the development of 

complex disorders such as ASD.   

 Postulated biological mechanisms for environmentally-mediated ASD 

development include endocrine disruption, infection, and impaired metabolic and 

excretory functioning, which may lead to oxidative stress, immune dysregulation and 

inflammation,  neurotransmitter imbalances, or direct neurological or 

neurodevelopmental toxicity effects (structural anomalies or damage) (Lawler, Croen, 
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Grether, & Van de Water, 2004). Metals, pesticides, organic solvents, and persistent 

pollutants such as polybromiated diphenyl ether (PBDE) and polychlorinated biphenyls 

(PCBs) have come under scrutiny with regard to their biologically plausible contributions 

to the risk for ASD (Lawler et al., 2004; Newschaffer et al., 2007). The following sub-

section provides a brief overview of some of the existing research on a few of these 

contaminants with regard to the development of ASD or the symptoms often exhibited by 

individuals with ASD. 

1.2.1 Commonly researched neurodevelopmental toxicants and 
suspected ASD risk factors 
 
Heavy metals 
 
 Heavy metals, particularly lead and mercury, are known neurotoxicants, and have 

been researched extensively with regard to developmental delays and disabilities.  

 Mercury. Acute methylmercury poisoning events in Japan and Iraq resulted in 

severe, adverse neurodevelopmental effects to children (Harada, Akagi, Tsuda, Kizaki, & 

Ohno, 1999; Amin-zaki, Majeed, Clarkson, & Greenwood, 1978), and studies of 

exposure through diet have also indicated adverse cognitive and neurobehavioral effects 

(Grandjean et al., 1997; Debes, Budtz-Jorgensen, Weihe, White, & Grandjean, 2006; 

Oken et al., 2008). Ethylmercury exposure through routine childhood-administered 

thimerosal-containing vaccines has been studied extensively, and the medical and 

scientific communities’ consensus is that no causal association with ASD has been 

established (Immunization Safety Review Committee, 2004; Oken et al., 2008). 

However, as a preventative measure, as of 2001 thimerosal has been removed as a 
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preservative from most routine childhood vaccines (U.S.Food and Drug Administration, 

2003). 

 Lead.  Elevated blood lead concentrations, even at levels below 10 µg/dL, the 

Centers for Disease Control and Prevention (CDC) recommended maximum level, 

reduces intelligence quotient (IQ) levels (Jusko et al., 2008), leads to cognitive and 

attention deficits (Chiodo, Jacobson, & Jacobson, 2004; Despres et al., 2003; Chiodo et 

al., 2007; Surkan et al., 2007), and has been linked to increased impulsivity and 

hyperactivity (Thomson et al., 1989; Silva, Hughes, Williams, & Faed, 1988; 

Mendelsohn et al., 1998). Many individuals with ASD present with some or all of these 

symptoms.  

 A small number of published case reports have suggested a possible association of 

lead exposure and ASD. Two children with severe lead poisoning were reported as 

having developed ASD symptoms (Lidsky & Schneider, 2005), and another case study 

presented one young child with ASD who was found to have elevated blood lead levels, 

the reduction of which corresponded with decreased severity of ASD symptoms 

(Eppright, Sanfacon, & Horwitz, 1996). However, environmental lead levels have 

decreased over the past 30 years while ASD diagnoses have increased, which is 

counterintuitive to a causal relationship.  

Plasticizers 
 
 Plastics and associated production compounds such as plasticizers are now a 

ubiquitous presence in modern society, comprising a myriad of common products of 

everyday use (Jaakkola & Knight, 2008). 
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 Phthalates.  Exposure to phthalates from polyvinyl chloride flooring were linked 

with risk of ASD among a study population of young children in Sweden (Larsson, 

Weiss, Janson, Sundell, & Bornehag, 2009). These plasticizers acted as androgen 

disruptors in males in animal studies, and they have also been found to induce allergic 

responses in children (Jaakkola et al., 2008; Wilson, Blystsone, Hotchkiss, Rider, & 

Grey, Jr., 2009).  

 Bisphenol A.  Another plasticizer and endocrine disruptor found in numerous 

common household products including water bottles and baby bottles is bisphenol A. 

Average levels of this organic compound in humans have been found to surpass 

corresponding harmful levels in animals in toxicological studies (vom Saal et al., 2008), 

and a panel of scientific experts concluded that this level of exposure was of cause for 

some concern with regard to adverse neurodevelopmental and neurobehavioral effects 

among infants (vom Saal et al., 2008). 

Persistent organic pollutants 
 
 Polychlorinated biphenyls (PCBs).  Polychlorinated biphenyls (PCBs) represent a 

group of chlorinated compounds that were once used as cooling and insulating fluids in 

electronics, but that were banned in the 1970s due to toxicity concerns and issues of 

persistence in the environment. Despite this ban, PCBs have continued to bioaccumulate 

in the food supply, and remain widespread in the environment. Impaired cognitive, 

learning, and memory skills, as well as motor skills, have been observed in association 

with exposure to PCBs in a number of studies worldwide (Nakajima et al., 2006; Schantz, 

Widholm, & Rice, 2003; Grandjean et al., 2007; Jacobson & Jacobson, 1996). 
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 Brominated Flame Retardants.  Production of brominated flame retardants such 

as polybrominated diphenyl ethers (PBDEs), has dramatically increased concomitantly 

with the increase in ASD prevalence (Birnbaum & Staskal, 2004), and studies show 

increasing concentrations of these chemicals in maternal and fetal blood in the U.S. 

(Environmental Working Group, 2005; Mazdai, Dodder, Abernathy, Hites, & Bigsby, 

2003). PBDEs are similar in structure to PCBs and also bioaccumulate in adipose tissue 

and breast milk. PBDE disruption of thyroid-regulated brain cell growth and connectivity 

processes may adversely affect neurodevelopment and behavior (Legler, 2008; Costa & 

Giordano, 2007), and consideration of PBDEs as a potential risk factor for ASD has been 

postulated (Messer, 2010). 

Pesticides.  Prenatal pesticide exposure has also been linked with ASD and 

neurodevelopmental delay. A significant, approximately 2-fold increase in risk of 

pervasive developmental disorder for each 10-fold increase in total maternal and child 

urinary dialkylphosphate metabolites was observed among farm-working families in one 

study (Eskenazi et al., 2007). Prenatal residential proximity to agricultural application of 

organochlorine pesticides was found to be significantly associated with ASD among non-

farm-working families. Moreover, the critical period of prenatal exposure was determined 

to coincide with the development of the central nervous system (Roberts et al., 2007). 

Environmental tobacco smoke (prenatal exposure) 
 
 A Swedish case-control study found that daily maternal smoking during 

pregnancy was associated with an elevated risk for ASD (Hultman, Sparen, & 

Cnattingius, 2002). In addition, links between maternal smoking and slowed fetal growth 

and low birth weight have been well-documented (Brooke, Anderson, Bland, Peacock, & 
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Stewart, 1989), and an association between low birth weight and risk for ASD has been 

reported (Hultman et al., 2002; Schendel & Bhasin, 2008). Due to well-established 

adverse birth effects resulting from prenatal exposure to tobacco smoke, studies of 

prenatal exposures with regard to the development of ASD need to account for any 

confounding effects of maternal smoking.  

1.2.2 Chronic inhalation exposures: Ambient air 
 
 Many of the known or suspected neurotoxicants reviewed in the preceding sub-

section have been investigated in epidemiological and toxicological studies via ingestion, 

injection, dermal, or indoor inhalation routes of exposure. In addition, most of the limited 

toxicological testing of the high production volume chemicals has focused on acute, 

rather than chronic toxicity (Environmental Defense Fund, 1997). Yet many of these 

compounds are also released from mobile and stationary sources into outside ambient air, 

representing a source of chronic inhalation exposure to the general population.  

 A number of studies indicate an association of ambient criteria air pollutants, 

particularly particulate matter, carbon monoxide, and sulfur dioxide, with low birth 

weight (Wang, Ding, Ryan, & Xu, 1997; Maisonet, Bush, Correa, & Jaakkola, 2001). 

Low birth weight, in turn, is linked to ASD risk in a few studies (Hultman et al., 2002; 

Schendel et al., 2008). In addition, prenatal exposure to polycyclic aromatic 

hydrocarbons (PAHs), a component of particulate matter, has been linked with poor fetal 

growth and low birth weight (Choi et al., 2006) and with impaired cognitive functioning 

in young children (Perera et al., 2009).   

 However, few studies have examined the presence of hazardous air pollutants 

(HAPs) as a potential contributor to ASD development. Those studies that have 
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investigated this possibility have focused on just one or a select few pollutants, and have 

examined associations only within small geographical areas.  

 In one such study, Texas school districts with high levels of environmentally 

released mercury, as reported by the Environmental Protection Agency’s (EPA’s) Toxic 

Release Inventory, were associated with greater ASD prevalence, as recorded by the 

Texas Education Agency, in a cross-sectional, ecological study (Palmer, Blanchard, 

Stein, Mandell, & Miller, 2006). A follow-up study indicated a dose-response 

relationship between a school district’s proximity to major sources of environmentally 

released mercury and ASD rates of the district’s kindergarteners 5 years later (Palmer, 

Blanchard, & Wood, 2009).  

 Whereas Palmer’s studies used emissions estimates to assess exposure to 

mercury, a case-control study of HAPs and ASD prevalence in the San Francisco Bay 

Area of California used average modeled estimates of ambient concentrations for the 

exposure assessment for 19 separate air toxics. The latter investigation documented that 

early childhood exposures to higher ambient concentrations of some chlorinated solvents, 

diesel particulate matter, and metals, particularly cadmium and mercury, were spatially 

associated with subsequent ASD prevalence (Windham, Zhang, Gunier, Croen, & 

Grether, 2006).  

1.3 Study intent 
 
 For this thesis we examined the spatial relationship between ASD prevalence and 

all EPA-modeled HAPs concentrations (µg/m3) at the statewide level for all U.S. states, 

and performed a sub-analysis at the county level within the state of Maryland, using two 

different study populations for each analysis. The use of two separate study populations 
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for both the statewide U.S. and the county level Maryland analyses allowed for 

consistency checks of any observed relationships. An ecological study design was 

employed with the hypothesis that ASD prevalence is spatially, positively correlated with 

prenatal distributions of HAPs with known neurotoxicity or developmental toxicant 

properties, in particular, solvents, heavy metals, and polycyclic organic matter or diesel 

particulate matter. Relevance of any correlation was further investigated with the 

derivation of predictive models for ASD prevalence based upon prenatal HAPs 

distributions.  
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Chapter 2: Background 

2.1 Autism Spectrum Disorder  

2.1.1 Definition  
 

Autism Spectrum Disorder (ASD) represents a broad range of complex 

neurodevelopmental disabilities primarily characterized by impaired language, 

communication and social interaction skills, and by abnormally restricted and repetitive 

behaviors (American Psychiatric Association, 2000). Specifically, five separate diagnoses 

covering a broad spectrum of functioning ability are listed under the umbrella term 

“Pervasive Developmental Disorders” in the 4th edition of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM IV), and together they comprise what is referred to as 

Autism Spectrum Disorder. They are: Autistic Disorder or “classic autism”, Pervasive 

Developmental Disorder-Not Otherwise Specified (PDD-NOS) or “atypical autism”, 

Asperger Syndrome, Rett Syndrome, and Childhood Disintegrative Disorder (American 

Psychiatric Association, 2000).  

There exists some debate about whether or not the latter two diagnoses belong in 

this grouping due to etiological (Rett syndrome) and developmental (Childhood 

Disintegrative Disorder) distinctions, and they are sometimes not included in case 

definitions for epidemiological research purposes (Newschaffer, Fallin, & Lee, 2002). 

Proposed revisions for the DSM V include the removal of Rett Syndrome due to its 

genetic origin, and the merging of the other four diagnoses into one official Autism 

Spectrum Disorder diagnosis (American Psychiatric Association, 2010). 
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2.1.2 Demographics of ASD  
 
Gender 
 

Males are disproportionately affected by ASD. The CDC’s Autism and 

Developmental Disabilities Monitoring Network (ADDM) estimated that 1 in 70 boys in 

the U.S. had ASD in 2006 (Centers for Disease Control and Prevention [CDC], 2009), 

and a study that examined data from the 2007 National Survey of Children’s Health 

(NSCH) estimated the prevalence among boys to be as low as 1 in 58 (Kogan et al., 

2009). Numerous studies have documented the prevalence among boys to be 

approximately 4 times higher than among girls (Kogan et al., 2009; CDC, 2009; 

Fombonne, 2003). This sex ratio is modified, however, by the level of cognitive 

impairment. A prevalence study within the metropolitan area of Atlanta, Georgia, 

reported that the male to female ratio among those more cognitively impaired dropped 

from 4.4:1 to 1.3:1 (Yeargin-Allsopp et al., 2003). Similarly, (Fombonne, 2005) reported 

that the male to female ASD ratio neared 2:1 among individuals with more severe 

intellectual disability, as opposed to 5.5:1 among those without.  

Race and ethnicity 
 

There have been mixed findings with regard to variation in ASD prevalence by 

race and ethnicity, although some U.S. studies report a lower prevalence among Hispanic 

children, as compared with non-Hispanic white and non-Hispanic black children 

(Schieve, Rice, Boyle, Blumberg, & Visser, 2006; CDC, 2009). Kogan et al. (2009) 

documented lower prevalence among non-Hispanic black and non-Hispanic multiracial 

children than non-Hispanic white children, whereas a California study reported a higher 

risk of having a child with ASD among black women (Croen, Grether, & Selvin, 2002). 
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Socioeconomic factors 
 

Whereas epidemiological and surveillance studies performed prior to 1980 

consistently reported decreased risk for ASD among families of lower socioeconomic 

status, as measured by income or level of parental education, studies thereafter have not 

found consistent associations when controlling for case ascertainment, case definition, 

and other artifacts (Bhasin & Schendel, 2007; Fombonne, 2003; Lauritsen, Pedersen, & 

Mortensen, 2004). Despite the mixed findings, and despite a possibly artifactual 

relationship with ASD, socioeconomic status remains an important potential confounder 

in any investigation of disease or disorder determinants (Muennig, Franks, Jia, Lubetkin, 

& Gold, 2005).   

Rural vs. urban residence 
 

Previous research has indicated an association of urban residence with increased risk 

for ASD in multiple countries (Lauritsen, Pedersen, & Mortensen, 2005; Palmer et al., 

2006; Williams, Higgins, & Brayne, 2006; Hoshino, Kumashiro, Yashima, Tachibana, & 

Watanabe, 1982). However, the association may be attributed to higher concentrations of, 

and access to, specialists, and therefore, to diagnoses, in urban areas; additionally, cross-

sectional studies are unable to detect post-diagnoses rural-to-urban migration. Families 

may move to urban areas in order to seek better treatment or access to more services and 

resources.  

 Findings from California studies that link pesticide exposure and risk for ASD 

among farm-working families and families living in close proximity to sites of heavy 

application suggest potential risks of rural residency as well (Eskenazi et al., 2007; 

Roberts et al., 2007).  
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 Whether proximity to rural areas of heavy pesticide use is truly associated with 

increased risk for ASD, and whether increasing urbanicity is truly or artifactually 

associated with increased ASD prevalence, this urban vs. rural factor is a potential 

confounder in ASD prevalence studies (Lewandowski, 2006; Palmer et al., 2009). 

2.1.3 ASD prevalence and incidence trends  
 
 There has been a ten-fold increase in the number of children with Autism 

Spectrum Disorder (ASD) diagnoses within the last 20 to 30 years (Blaxill, 2004). 

Between 5 and 10 children per 10,000 were reported as diagnosed on the spectrum of 

autistic disorders in the U.S. during the 1970s and 1980s (Blaxill, 2004). The CDC’s 

ADDM 2006 surveillance study estimated that 1 in 110 U.S. children had an ASD 

diagnosis, for a population prevalence estimate of approximately 1% (CDC, 2009).  

 This estimate was based on data collected on 8-year-olds in 11 surveillance sites. 

The age of 8 years was selected as the index age for prevalence monitoring because by 

that age most cases have been diagnosed, and the diagnoses tend to be more reliable 

(CDC, 2009; Lord et al., 2006; Eaves & Ho, 2004; Wiggins, Baio, & Rice, 2006). In 

addition, numerous epidemiological studies found peak ASD prevalence among 8-year-

olds in the various study populations (Yeargin-Allsopp et al., 2003; Fombonne, 2003). 

An ASD prevalence study that used 2007 NSCH parent-reported data on children aged 3 

to 17 years documented the number of affected children as 1 in 91 (Kogan et al., 2009).  

 Available data on cumulative incidence trends of Autistic Disorder also reveals a 

steady and sizable increase by birth cohort in California, the U.S., Denmark, and Japan 

since the late 1980s and early 1990s (Hertz-Picciotto et al., 2009; McDonald et al., 2010). 
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 Numerous epidemiological studies have established that some of this observed 

increased prevalence and cumulative incidence is due to greater public and professional 

awareness of the spectrum of disorders, which facilitates diagnoses made at earlier ages 

as well as potential detection bias, and to broadened or substituted diagnostic criteria 

(Fombonne, 2005; Shattuck, 2006; Lauritsen et al., 2004). However, results from several 

other studies indicate that the magnitude of the increase in ASD cannot be solely 

attributed to artifacts.  

 Researchers at the University of California-Davis, examining ASD prevalence 

trends with administrative records from a state services agency, documented a 600 to 

700% increase in diagnosed cases of autism in California since 1990 (Hertz-Picciotto et 

al., 2009). Younger age at diagnosis due to increased awareness accounted for 24% of 

this increase, increased diagnoses of milder cases accounted for 56%, and changes in 

state reporting of the disorder accounted for 120%. This left 400 to 500% of the increased 

diagnoses unexplained. Differential migration may have played a minor role in this 

increase, but the possibility of a true increase in ASD prevalence could not be rejected. 

Another group of researchers examined the ASD prevalence trends in California between 

1987 and 1994 and concluded that the observed increase was a result of diagnostic 

substitution (Croen, Grether, Hoogstrate, & Selvin, 2002). However, they retracted this 

conclusion based upon the limitations of their original data and analyses (Croen et al., 

2003).  

 The CDC (2009) reported that the average prevalence of ASD diagnoses 

identified among children aged 8 years increased 57% in 10 ADDM surveillance sites 

between 2002 and 2006. Although improved ascertainment and younger age at diagnoses 
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accounted for some of the prevalence increases documented in the ADDM sites, the CDC 

concluded that a true increase in ASD prevalence could not be ruled out.  

 One examination of special education data from 1984 to 2003 concluded that the 

increased prevalence of ASD in the U.S. public school system was due to diagnostic 

shifting or substitution (Shattuck, 2006). However, a review of national special education 

data for years 1992 through 2001 data using different methodology found no evidence for 

autism diagnostic substitution for any other disabilities (Newschaffer et al., 2005).   

Lastly, the examination of worldwide cumulative incidence trends for Autistic 

Disorder, independent of the milder phenotypes, found consistent and rapid increases in 

each available dataset since the late 1980s (McDonald et al., 2010). Thus, this worldwide 

trend also could not be attributed solely to the broadened definition of ASD. Indeed, 

some researchers view the phenomenon as part of an overall trend of increasing 

neurodevelopmental disorders among children (Atladottir et al., 2007). 

2.1.4 Genetics of ASD 
 
 Such a rapid rise in ASD cases cannot be explained by sudden genetic changes in 

the population, and Hertz-Picciotto et al. (2009) stress the need for further research of 

suspect environmental causative agents. However, there is a strong and well-established 

genetic basis for ASD. Approximately 10% of ASD cases are accounted for by single 

gene disorders such as Angelman syndrome and Fragile X syndrome, although each of 

these known causes accounts for no more than 1-2% or less of cases (Abrahams & 

Geschwind, 2008). Early twin studies made a compelling case for a strong hereditary 

component of Autistic Disorder. One such study observed a monozygotic concordance 

rate of approximately 60% among the twin participants, while zero concordance was 
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found between dizygotic twins (Bailey et al., 1995). When the twins were reevaluated for 

broadened autistic phenotypes including cognitive, communicative, and/or social deficits, 

monozygotic concordance increased to 92% and dizygotic concordance to 10% (Bailey et 

al., 1995; Le Couteur et al., 1996). Family studies indicate an overall recurrence risk 

estimate range of 2% to 8.6% among non-twin siblings of individuals with autistic 

disorder (Bailey, Palferman, Heavey, & Le Couteur, 1998; Ritvo et al., 1989). The higher 

estimates were found by Ritvo et al., including the highest risk estimate of 14.5%, 

specifically for siblings of affected females. Another family study found that 

approximately 20% of non-twin siblings of affected individuals demonstrate some 

features associated with the broad autism phenotype (Piven, Palmer, Jacobi, Childress, & 

Arndt, 1997). 

 Despite these compelling findings, monozygotic concordance is less than 100%. 

This fact, along with the variation in the severity of impairment and range of symptoms 

observed among concordant siblings, is indicative of etiologic contributions from 

environmental factors to the development of ASD in genetically susceptible individuals. 

In addition, the possibility that gene-environment interactions account for some of the 

genetic risk component for ASD suggests that actual quantitative estimates of heritability 

are unknown and possibly overestimated (Newschaffer et al., 2007).  

2.1.5 Challenges to epidemiological research on environmental risk 
factors for ASD 
 
 Evidence of a broad autism phenotype among families suggests a polygenic 

model of ASD heritability. While several promising candidate autism risk genes have 

been receiving much attention, no single gene has been consistently identified as 
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causatively associated with ASD etiology. The search for the most salient environmental 

risk factors is similarly complex, as evidenced by un-replicated or mixed findings for 

many putative causal agents throughout much of the literature.  

 Several issues prove challenging, including the lack of an animal biological model 

of ASD that can be generalized to fit all cases, with a definitive biologic marker for 

diagnosis, and the broadened definition of autism, both of which result in inconsistencies 

in case definition and ascertainment from study to study.  

 In addition, accurate exposure assessment is problematic for many environmental 

epidemiology investigations, and is especially so for ASD etiological research because 

the critical window of exposure remains unknown. Researchers have yet to discover 

whether environmental agents cause de novo gene mutations in children or epigenetic 

effects (changes in gene expression that are heritable).  

 Moreover, despite the increasing prevalence of ASD, it remains a relatively rare 

health outcome, affecting approximately 1% of the population (CDC, 2009), and thus, 

epidemiological studies have limited power to detect causal associations.  

Further complicating ASD etiologic research is the fact that environmental risk 

factors for ASD may include an individual’s social, emotional, and economic 

environments, as well as other potential factors such as birth order, parental age, and viral 

infections, along with exogenous chemical contaminants. It is possible that no single 

environmental risk factor will be identified as essential or sufficient for developing ASD.  

2.2 Hazardous Air Pollutants (HAPs) 
 
 The federal Clean Air Act of 1970 (Pub. L. 91-604, 84 Stat. 1676) required the 

EPA to establish national health-based standards, the National Ambient Air Quality 
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Standards (NAAQS) for six common criteria pollutants (ozone, particulate matter, carbon 

monoxide, nitrogen oxides, sulfur dioxide, and lead) due to their ubiquitous presence in 

most communities and their ability to disperse over large areas. The EPA also regulates 

an additional 188 air contaminants as listed in section 112 of the 1990 Clean Air Act 

Amendments (Pub. L. 101-549, 104 Stat. 2468). These are pollutants associated with 

serious threats to human health, including known or suspected carcinogens, teratogens, 

and neurotoxins, and are known as hazardous air pollutants (HAPs) or “air toxics”. 

Unlike the ubiquity of criteria air pollutants, HAPs that are present in a community tend 

to originate from sources within that community. EPA regulates these air toxics by 

requiring the maximum degree of emission reduction, known as maximum achievable 

control technology (MACT) that a source, such as a factory or power plant, must employ. 

States and local authorities may establish their own HAPs standards and may opt to 

regulate more than the 188 listed under the Clean Air Act, yet there are no national, 

health-based standards for HAPs.  

 Chronic exposure to neurotoxicants and developmental toxicants in ambient air is 

of particular concern to women of childbearing age and young children. Comprehensive 

monitoring of HAPs is not feasible, so in an effort to assess the spatial distribution, 

ambient and exposure concentrations, and potential human health risks associated with 

HAPs exposure, EPA developed the National-Scale Air Toxics Assessments (NATA). 

NATA databases provide a snapshot of potential average HAPs exposure and health risks 

in a given year at the census tract, county, state, and national levels, and have been 

generated every three years beginning in 1996.  
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 The ongoing NATA evaluations utilize general emissions inventories from 

several outside stationary and mobile sources including the Toxic Release Inventory and 

state and local agencies’ air toxics inventories. The annual ambient concentration of each 

HAP is then estimated by incorporating meteorological data, atmospheric decay, 

secondary formation, and deposition estimates into a Gaussian dispersion model, the 

Assessment System for Population Exposure Nationwide (ASPEN) (Rosenbaum et al., 

1999). The 1996 NATA provided emissions data and modeled concentration estimates 

for 33 out of the Clean Air Act’s list of 188 air toxics plus diesel particulate matter, and 

the 1999 NATA provided emissions data for 176 of the HAPs plus diesel particulate 

matter, and modeled concentration estimates for 80 HAPs plus diesel particulate matter 

(EPA, 1996c; EPA, 1999d). 

 Uncertainties and limitations with regard to the NATA assessments are addressed 

thoroughly by EPA (EPA, 1996b; EPA, 1999a; Rosenbaum et al., 1999). Comparisons of 

some of EPA’s ASPEN estimates of HAPs concentrations with personal and monitored 

measurements have indicated that the modeled estimates tend to underestimate actual 

concentrations, but that for some volatile organic compounds, especially benzene, the 

modeled concentrations provide a decent surrogate for exposure (EPA, 1996a; EPA, 

1999b; Rosenbaum et al., 1999; Payne-Sturges, Burke, Breysse, Diener-West, & 

Buckley, 2004)  

Payne-Sturges et al. (2004) acknowledged the dearth of actual comprehensive 

monitoring data for the majority of HAPs, and especially of personal exposure data, and 

concluded that EPA’s modeled estimates are an important tool for assessing public health 

risks associated with HAPs. Indeed, several studies have used the NATA modeled 
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estimates of air toxics in public health research (Windham et al., 2006; Apelberg, 

Buckley, & White, 2005; Morello-Frosch, Woodruff, Axelrad, & Caldwell, 2000). 

Chapter 3: Methods 

3.1 Data sources 

3.1.1 Exposure assessment: HAPs  
 
 We selected median statewide concentration estimates (µg/m3) of the 33 HAPs 

plus diesel particulate matter and 80 HAPs plus diesel particulate matter from the U.S. 

Environmental Protection Agency’s 1996 and 1999 National-Scale Air Toxics 

Assessments (NATA), respectively, as proxies for prenatal or early childhood exposures. 

The HAPs modeled for each NATA assessment are shown in Tables 1 and 2. Total 

median concentrations were selected in order to provide more representative statewide 

estimates that were less influenced by extremes.  

 NATA estimated, countywide 1996 and 1999 HAPs concentrations were selected 

as proxies for prenatal or early childhood exposures for the Maryland sub-analysis. Total 

median concentrations were used in the sub-analysis as well.  

 In order to account for highly correlated compounds and to reduce data 

dimensions of the large number of HAPs, we used a statistical approach called principal 

component analyses (PCA). PCA reduced the datasets of large numbers of HAPs into a 

fewer number of uncorrelated components (linear combinations of the HAPs) that 

explained most of the variation seen in the original data. The principal components were 

then used in subsequent regression analyses. 

Data from the two different NATA datasets were not compared for temporal 

trends. Rather, they provided a way to check for consistency of any associations between 

 20



 

prenatal HAPs exposures and subsequent ASD prevalence that were observed in both 

spatial analyses.  

3.1.2 Outcome of interest: ASD prevalence  
 
 Our outcome variable was ASD prevalence among children aged 8 years by state 

(and by county for the sub-analysis) during the school years 2004-2005 and 2007-2008. 

The 1996 and 1999 NATA HAPs data reflects approximate prenatal and early childhood 

exposures for those study populations. 

 Statewide ASD prevalence in school years 2004-2005 and 2007-2008 among 8-

year-olds were calculated using U.S. Department of Education, Office of Special 

Education Programs (OSEP) administrative data. Each state conducts annual counts of 

children receiving special education services under 13 primary disability categories as 

defined by the Individuals with Disabilities Education Act of 1990 (IDEA) (Pub. L. 101-

476, 104 Stat. 1142). Data collection must occur on the same date sometime between 

October 1 and December 1 each year. This data is made publicly available through the 

Data Accountability Center (DAC) which is funded through a cooperative agreement 

with OSEP (Data Accountability Center [DAC], 2004b; DAC, 2007b).  

The number of 8-year-olds served under the disability code “autism” comprised 

the numerators for our prevalence estimates for both school years in each state. The total 

number of second graders enrolled in each state for those years were used as 

denominators, and were derived from the National Center for Education Statistics 

(NCES) enrollment data (National Center for Education Statistics [NCES], 2004; NCES, 

2007). NCES is part of the U.S. Department of Education’s Institute of Education 

Sciences. Methodology for NCES data collection and limitations of use is covered in an 
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online Statistical Standards Program publication that was most recently updated in 2002 

(NCES, 2002). The use of total enrolled second graders rather than total enrolled 8-year-

olds as our prevalence denominator may introduce random bias; we felt this would not 

greatly affect the outcome of the study. 

 Numerators for the Maryland sub-analysis ASD prevalence estimates were 

derived from count data for 8-year-old children receiving special education services 

under the diagnostic code “autism” for the school years 2004-2005 and 2007-2008 by 

county, provided on special request by the Maryland State Department of Education 

(MSDE). Denominators were the total number of 8-year-olds enrolled in each of the 24 

counties during both of those school years, and were also obtained from MSDE. The data 

sets for the sub-analysis included data disaggregated by gender, and then separately by 

race/ethnicity.  

 In order to increase the power of our analyses, we combined the calculated female 

ASD prevalence data with the calculated male ASD prevalence data doubling our sample 

sizes to 48 for both 2004 and 2007. The new dataset was named Combined data 1. 

Gender was then included as a dichotomous variable (0=female, 1=male) in the 

subsequent linear regression models using this combined data for Maryland analyses.  

 The original count data revealed that ASD prevalence was much higher among 

white 8-year-olds than those of other races/ethnicities for both 2004 and 2007 in most 

Maryland counties, and both case and enrollment counts for Asian/Pacific Islanders and 

Native Americans were extremely low. Thus, we condensed the five race/ethnicity 

classifications, namely, White, Black, Latino, Asian/Pacific Islander, and Native 

American, into two categories, White and Non-white. The resultant ASD prevalence data 
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derived for both White and Non-white were combined for a total sample size of 48. The 

new dataset was named Combined data 2. Ethnicity was then included as a dichotomous 

variable (0=white, 1=non-white) in the subsequent linear regression models using this 

combined data for a separate set of Maryland analyses.  

3.1.3 Potential confounder: smoking prevalence 
  
 State-specific smoking prevalence among adults, measured as a percentage, was 

obtained from the CDC’s Behavioral Risk Factor Surveillance System (BRFSS) for 1996 

and for 1999 (CDC, 1996; CDC, 1999). The BRFSS is an annual, random-digit-dialed, 

telephone health survey of U.S. adults which tracks health conditions and risk behaviors. 

Smoking prevalence represents data on adults 18 years of age and older who reported 

smoking at least 100 or more cigarettes in their lifetime, and who reported smoking every 

day or some days at the time of the survey, defined as “current smokers”, weighted 

according to state population. 

 County-specific smoking prevalence among adults in 1996 and 1999, measured as 

percentages, were obtained from the Maryland Behavioral Risk Factor Surveillance 

System (MD BRFSS), a telephone survey administered annually through the Maryland 

Department of Health & Mental Hygiene (Maryland Department of Health & Mental 

Hygiene [MDHMH], 1996; MDHMH, 1999). Smoking prevalence represents data on 

individuals at least 18 years of age who reported smoking 100 or more cigarettes in their 

lifetime, and who reported smoking every day or some days at the time of the survey, 

defined as “current smokers”, weighted according to county population. 

 Smoking prevalence data for 1996 was not available for Kent and Somerset 

Counties, and smoking prevalence data for 1999 was not available for Dorchester, Kent, 
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and Somerset Counties. For these counties, smoking prevalence data from the nearest 

available year were substituted. 

3.1.4 Potential confounder: percentage living in poverty   
  
 Socioeconomic indicators were measured as the percentage of all persons living 

in poverty, by state (and by county for the sub-analysis) for both 1996 and 1999. Data 

was obtained from the U.S. Census Bureau’s Small Area Income and Poverty Estimates 

(SAIPE) program which provides annual estimates of income and poverty statistics for 

every state and county (U.S.Census Bureau, 2007a). The model-based estimates are 

derived from combining data from administrative records, the decennial census, 

intercensal population estimates, and the American Community Survey, and are regarded 

as more representative of current conditions than the estimates from the decennial census 

survey. SAIPE methodology, uncertainties, and limitations are addressed by the U.S. 

Census Bureau in detail (U.S.Census Bureau, 2007b). 

The percentages of all persons living in poverty by county in 1996 were not 

available from SAIPE, so we used the 1995 poverty data for the Maryland 1996 sub-

analyses. It is unlikely that county level economic circumstances had changed drastically 

in the span of that one year. 

3.1.5 Potential confounder, Maryland sub-analyses: rural/urban 
designation   
 

Each Maryland county’s urban or rural status, as defined by EPA, was accounted 

for in our sub-analyses. This urbanicity factor was included as a dichotomous variable in 

the regressions (0=rural, 1=urban). EPA defined a county as "urban" if it either included a 

metropolitan statistical area with a population greater than 250,000 or the U.S. Census 
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Bureau designated more than 50 percent of the population as "urban." The 1996 National-

Scale Air Toxics Assessment used 1990 census data, and the 1999 National-Scale Air 

Toxics Assessment used 2000 census data, for these determinations.  

3.2 Statistical analysis 
 

All HAP, outcome, and confounding variables’ distributions with long right tails 

were log-transformed, and all variables were standardized (µ=0, sd=1) prior to analyses. 

PCA, univariate and multiple regressions, and regression diagnostics were performed 

using STATA IC, version 10.0 for Windows (Stata Corp., TX), and statistical 

significance was set at p<0.05. 
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Chapter 4: Results 
 

The hazardous air pollutants modeled in the 1996 and 1999 National-Scale Air 

Toxics Assessments and used in this study’s analyses are shown in Tables 1 and 2. 

 
Table 1-Hazardous Air Pollutants (HAPs) modeled in EPA’s 1996 NATA 
 

 1996 National Air Toxics Assessment HAPs 1996 
Acetaldehyde 
Acrolein 
Acrylonitrile 
Arsenic Compounds 
Benzene 
Beryllium Compounds 
1,3-Butadiene 
Cadmium Compounds 
Carbon Tetrachloride 
Chloroform 
Chromium Compounds 
Coke Oven Emissions 
1,3-Dichloropropene 
Diesel Particulate Matter 
Ethylene Dibromide 
Ethylene Dichloride 
Ethylene Oxide 

Formaldehyde 
Hexachlorobenzene 
Hydrazine 
Lead Compounds 
Manganese Compounds 
Mercury Compounds 
Methylene Chloride 
Nickel Compounds 
Perchloroethylene 
Polychlorinated Biphenyls (PCBs) 
7-PAH 
Polycyclic Organic Matter (POM) 
Propylene Dichloride 
Quinoline 
1,1,2,2-Tetrachloroethane 
Trichloroethyle e n

         Vinyl Chloride 
 
 
 
Table 2-Hazardous Air Pollutants (HAPs) modeled in EPA’s 1999 NATA 
 

1999 National Air Toxics Assessment HAPs 
Acetaldehyde  
Acetonitrile  
Acrolein  
Acrylamide  
Acrylic acid  
Acrylonitrile  
Allyl chloride  
Aniline  
Antimony compounds  
Arsenic compounds        
(inorganic, may include 
arsine) 
Benzene  
Benzidine  
Benzotrichloride  
Benzyl chloride  
Beryllium compounds  
Bis(2-ethylhexyl)phthalate 
Bis(chloromethyl)ether 
1,3-Butadiene  
Cadmium compounds  
Carbon tetrachloride  

Chlorine 
Chloroform  
Chloroprene  
Chromium VI  
Cobalt compounds 
Coke Oven emissions  
Cyanide compounds  
1,2-Dibromo-3-chloropropane 
Dichloroethyl ether  
1,3-Dichloropropene  
Diesel particulate matter 
Diethanolamine  
Dimethyl formamide  
2,4-Dinitrotoluene  
1,4-Dioxane  
Epichlorohydrin  
Ethyl acrylate  
Ethyl carbamate  
Ethylene dibromide  
Ethylene dichloride  
Ethylene oxide 

Formaldehyde   
Glycol ethers  
Hexachlorobenzene  
Hexachloroethane  
Hexamethylene-1,6-
diisocyanate 
Hydrazine  
Hydrochloric acid  
Hydrofluoric acid  
Lead compounds  
Maleic anhydride  
Manganese compounds 
Mercury  
Methyl bromide  
Methyl chloride  
4,4'-Methylene bis(2-    
chloroaniline) 
Methylene chloride  
4,4'-Methylenedianiline 
Methylene diphenyl 
diisocyanate 
Naphthalene  

n-Hexane 
Nickel compounds  
n-Nitrosodimethylamine 
o-Toluidine  
p-Dichlorobenzene  
p-Dimethylaminoazobenzene 
Perchloroethylene  
Phosgene  
Polychlorinated biphenyls 
Polycyclic Organic Matter 
Propylene dichloride  
Propylene oxide  
Quinoline  
1,1,2,2-Tetrachloroethane 
Titanium tetrachloride  
Toluene  
2,4-Toluene diamine  
2,4-Toluene diisocyanate 
1,1,2-Trichloroethane  
Vinyl chloride  
Xylenes (isomers and mixture) 
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4.1 United States Analyses 

4.1.1 1996 HAPs distributions and 2004 ASD Prevalence 
 
General characteristics of the data 
 
 Complete data was available for 47 states and the District of Columbia. NATA 

did not include HAPs estimates for Alaska nor Hawaii in 1996, and special education 

data for the state of Wyoming had been suppressed for reasons of confidentiality. 

Summary statistics of ASD, poverty, and smoking distributions, including the mean, 

standard deviation, minima, maxima, median, and interquartile range, by geographic 

region, are shown in Table 3, along with the total U.S. mean. Mean ASD prevalence was 

highest in the Northeast and Midwest, consistent with the findings from an examination 

of parent-reported prevalence by region (Kogan et al., 2009). ASD prevalence among 8-

year-olds in the 2004-2005 school year varied from a low of 13.7 per 10,000 in New 

Mexico to the highest prevalence, 104 per 10,000, in Minnesota.  

 At 6.3%, New Hampshire had the lowest percentage of persons living in poverty 

in 1996, and the District of Columbia had the highest, at 21.9%. The percentage of adult 

smokers in 1996 was lowest in Utah, at 15.9%, and highest in Kentucky, at 31.6%.  

 Summary statistics for 31 of the 34 statewide 1996 HAPs distributions, by 

geographic region, are in Table 4, along with the total U.S. median concentrations. Coke 

oven emissions, ethylene dibromide, and polychlorinated biphenyls were dropped from 

analysis because of zero variance. The HAPs with the highest upper limit concentrations 

in each of four regions were diesel particulate matter, formaldehyde, benzene, 

acetaldehyde, and carbon tetrachloride. These same HAPs also had the highest median 

concentrations in each region. Carbon tetrachloride had near zero variance. Figure 1 
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compares the regional median concentrations of these HAPs, excluding carbon 

tetrachloride.  

 

Figure 1. 

1996 HAPs with highest median concentrations (ug/m3), by U.S. Region
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Dimensionality reduction of 1996 U.S. HAPs 
 
 Principal component analysis generated 31 independent components, and we 

selected the first 4 which accounted for over 85% of the total variance in the HAPs data. 

Component one (pc1) accounted for approximately 69% of the variance alone. Most of 

the 31 HAPs in pc1 had similar component loadings. Moreover, the ten HAPs with the 

highest component loadings for pc1 could not be neatly defined by a single chemical 

family. Rather, they included 2 halogenated hydrocarbons, 4 metals, 2 aldehydes, an 

aromatic hydrocarbon, and diesel particulate matter. Table 9 lists the HAPs with the 

highest component loadings that comprised the principal components significantly 

associated with ASD prevalence in the U.S. 1996/2004 analysis. HAPs that were also 

associated with ASD prevalence in Windham et al.’s (2006) study are labeled. 
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 None of the 4 principal components in this analysis were highly correlated with 

smoking or poverty prevalence.  

Regression analysis  
 

Univariate regressions, scatter plots, and diagnostics for the 4 pcs and the 

confounders revealed that the relationship between pc1 and ASD prevalence was 

significant and non-linear, and that poverty prevalence was significantly, inversely 

associated with ASD prevalence. A quadratic relationship between pc1 and ASD 

prevalence provided the best fit and improved the final multiple regression model. 

Figures 2 and 3 show 2004 ASD prevalence plotted against 1996 pc1 distribution and 

against 1996 poverty prevalence in the U.S., respectively. All other regressors did not 

have significant relationships with ASD prevalence in univariate analyses. The final 

multiple regression model, along with poverty prevalence and the quadratic function of 

pc1, retained pc2 and pc3. It explained approximately 48% of the variance in ASD 

prevalence in the U.S. in 2004. Table 10 presents the final models for each of our 

analyses.  
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Figure 2. 

 

 

Figure 3. 
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4.1.2 1999 HAPs distributions and 2007 ASD Prevalence 
 
General characteristics of the data 
 
 Complete data was available for 50 states. NATA estimates were available for 

Alaska and Hawaii in 1999, but special education data for the District of Columbia had 

been suppressed for reasons of confidentiality. Refer to Table 3 for summary statistics of 

ASD, poverty, and smoking distributions by geographic region, along with the total U.S. 

mean. The Northeast and the Midwest still had the highest ASD prevalence. ASD 

prevalence among 8-year-olds in the 2007-2008 school year varied from a low of 19.5 

per 10,000 in Iowa to the highest prevalence, 147 per 10,000 in Minnesota.  

 At 6.8%, Delaware had the lowest percentage of persons living in poverty in 

1999, and the Arizona had the highest, at 18.2%. While the District of Columbia was not 

included in this analysis, the percentage of persons of all ages living in poverty in 1999 

dropped to 17.3. The percentage of adult smokers in 1999 was lowest in Utah, at 13.9%, 

and highest in Nevada, at 31.5%. 

 Summary statistics for 77 of the 81 statewide 1999 HAPs distributions, by 

geographic region, are in Table 5, along with the total U.S. median concentrations. Bis(2-

ethylhexyl)phthalate, hexachloroethane, n-nitrosodimethylamine, and p-

dimethylaminoazobenzene were dropped from analysis for zero variance. For each 

region, the HAPs with the highest median and upper limit concentrations were toluene, 

xylenes, benzene, acetaldehyde, formaldehyde, methyl chloride, and diesel particulate 

matter. Figure 4 compares the regional median concentrations of these HAPs. Toluene, 

xylenes, and methyl chloride were not estimated in the 1996 NATA.  
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Figure 4. 

1999 HAPs with highest median concentrations (ug/m3), by U.S. Region
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Dimensionality reduction of 1999 U.S. HAPs 
 
 Principal component analysis generated 49 independent components, and we 

selected the first 3 which cumulatively accounted for approximately 63% of the total 

variance in the 1999 HAPs data. Component one (pc1) accounted for approximately 48% 

of the variance alone. The HAPs with the highest component loadings in pc1 represented 

various chemical families. Table 9 lists the HAPs with the highest component loadings of 

the statistically significant components for the U.S. 1999/2007 analysis that were also 

consistent with the 1996/2004 significant HAPs components. HAPs that were also 

associated with ASD prevalence in Windham et al.’s (2006) study are labeled.  

 None of the 3 principal components in this analysis were highly correlated with 

smoking or poverty prevalence.  

Regression analysis 
 
 Univariate regressions, scatter plots, and diagnostics for the 3 pcs and the 

confounders revealed that the relationship between pc1 and ASD prevalence was 

 32



 

significant and non-linear. A quadratic relationship between pc1 and ASD prevalence 

provided the best fit and improved the final regression model. Figure 5 shows 2007 ASD 

prevalence plotted against 1999 pc1 distribution in the U.S. All other regressors did not 

have significant relationships with ASD prevalence in univariate analyses. The final 

regression model contained only the quadratic function of pc1, and is presented in Table 

10. This model explained approximately 29% of the variance in ASD prevalence in the 

U.S. in 2007. 

Figure 5. 

 

4.2 Maryland Analyses 

4.2.1 1996 HAPs distributions and 2004 ASD Prevalence 
 
General characteristics of the data 
 
 Complete data was available for all 24 Maryland counties. Summary statistics of 

the poverty and smoking distributions, as well as both Combined data 1 and Combined 
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data 2 ASD distributions, including the mean, standard deviation, minima, maxima, 

median, and interquartile range, are shown in Table 6.  

 ASD prevalence among Maryland 8-year-olds in the 2004-2005 school year was 

disproportionately greater among males. Ten counties had zero female ASD prevalence 

estimates, and two counties had zero female and male prevalence estimates. The 12 

highest county ASD prevalence estimates were among males, with male ASD prevalence 

in Howard County ranked the highest at 2.07% or 1 in 48.  

 Higher ASD prevalence was observed among white Maryland 8-year-olds in the 

2004-2005 school year than was observed among children in the other 4 racial/ethnic 

groups. However, after combining those 4 groups into one “Non-white” category, the 

discrepancy attenuated, and in some counties, the Non-white ASD prevalence estimates 

were greater than the White ASD prevalence estimates. Ten counties had zero Non-white 

ASD prevalence estimates, and two counties had zero Non-white and White prevalence 

estimates. Of the 10 highest county ASD prevalence estimates, 3 were among children of 

Non-white ethnicity, including the highest ASD prevalence in Howard County, at 1.35% 

or 1 in 74.  

 At 3.7%, Howard County had the lowest percentage of persons living in poverty 

in 1996, and Baltimore City had the highest, at 24%. The percentage of adult smokers in 

1996 was lowest in Garrett County, at 13.7%, and highest in Wicomico County, at 

34.2%. Fourteen counties were classified as “urban” and 10 classified as “rural”.  

 Summary statistics for 31 of the 34 Maryland county-level 1996 HAPs 

distributions are in Table 7. Coke oven emissions, ethylene dibromide, and 

polychlorinated biphenyls were dropped from analysis for zero variance. The HAPs with 
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the highest upper limit concentrations were acetaldehyde, benzene, diesel particulate 

matter, and formaldehyde. Benzene, diesel particulate matter, and formaldehyde had the 

highest median concentrations. 

Dimensionality reduction of 1996 Maryland County-level HAPs 
 
 Principal component analysis generated 23 independent components, and we 

selected the first 3 which cumulatively accounted for over 90% of the total variance in 

the HAPs data. Component one (pc1) accounted for approximately 78% of the variance 

alone. The HAPs with the highest component loadings for pc1 were varied, and consisted 

of 3 aldehydes, a metal, a halogenated hydrocarbon, an epoxide, an aromatic 

hydrocarbon, and polycyclic organic matter.  

None of the 3 principal components in this analysis were highly correlated with 

smoking or poverty prevalence. 

Regression analyses  
 
 None of the 3 principal components were found to be significantly associated with 

ASD prevalence using Combined data 1. Univariate regressions showed that gender was 

significantly associated with ASD prevalence, whereas poverty prevalence, smoking 

prevalence, and urbanicity were not. Poverty prevalence became marginally, inversely, 

significant when included in the multiple regression model with gender. The best 

explanatory model of Maryland’s 2004 ASD prevalence using Combined data 1 was thus 

driven mainly by gender. Table 10 presents the model results. 

Using our Combined data 2, we still did not find any of the 3 principals 

components to be significantly associated with ASD prevalence. ASD Prevalence 

regressed solely on poverty prevalence yielded a significant model (p=0.0095) that 
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explained 15.8% of variance after adjustment, and prevalence regressed solely on 

smoking prevalence yielded a model (p=0.0304) that explained 10.5% of variance after 

adjustment. The best model retained only poverty prevalence, and the results are shown 

in Table 10. 

4.2.2 1999 HAPs distributions and 2007 ASD Prevalence 
 
General characteristics of the data 
 
 Complete data was available for all 24 Maryland jurisdictions. Summary statistics 

of the Combined data 1 and Combined data 2 ASD distributions, and the poverty and 

smoking distributions, including the mean, standard deviation, minima, maxima, median, 

and interquartile range, are shown in Table 6.  

 ASD prevalence among Maryland 8-year-olds in the 2007-2008 school year was 

disproportionately greater among males. Nine counties had zero female ASD prevalence 

estimates, and one county had zero female and male prevalence estimates. The 20 highest 

county ASD prevalence estimates were among males, with male ASD prevalence in 

Allegany County ranked the highest, at 2.32%.  

 Higher ASD prevalence was observed among white Maryland 8-year-olds in the 

2007-2008 school year than was observed among children in the other 4 racial/ethnic 

groups. However, after combining those 4 groups into one “Non-white” category, the 

discrepancy attenuated, and in some counties, the Non-white ASD prevalence estimates 

were greater than the White ASD prevalence estimates. Six counties had zero Non-white 

ASD prevalence estimates, and one county had zero Non-white and White prevalence 

estimates. Of the 10 highest county ASD prevalence estimates, 4 were among children of 
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Non-white ethnicity, including the highest ASD prevalence in Worcester County, at 

1.57%.  

 At 3.9%, Howard County had the lowest percentage of persons living in poverty 

in 1996, and Baltimore City had the highest, at 18.5%. The percentage of adult smokers 

in 1996 was lowest in Montgomery County, at 12.2%, and highest in Cecil County, at 

36.1%. Fourteen counties were classified as “urban” and 10 classified as “rural”.  

 Summary statistics for 72 of the 81 Maryland county-level 1999 HAPs 

distributions are in Table 8. Benzidine, bis(2-ethylhexy)phthalate, coke oven emissions, 

1,2-dibromo-3-chloropropane, hexachloroethane,  4,4'-methylene bis(2-chloroaniline), n-

nitrosodimethylamine, p-dimethylaminoazobenzene, and 2,4-toluene diamine were 

dropped from analysis for zero variance. The HAPs with the highest upper limit 

concentrations were acetaldehyde, benzene, diesel particulate matter, formaldehyde, 

methylchloride, n-hexane, toluene, and xylenes. With the exception of n-hexane, these 

same HAPs also had the highest median concentrations. 

Dimensionality reduction of 1999 Maryland County-level HAPs 
 
 Principal component analysis generated 23 independent components, and we 

selected the first 4 which cumulatively accounted for over 84% of the total variance in 

the HAPs data. Component one (pc1) accounted for approximately 63% of the variance 

alone. The HAPs with the highest component loadings for pc1 consisted of 2 aldehydes, 1 

metal, 4 aromatic hydrocarbons, 2 epoxides, 2 halogenated hydrocarbons, 1 halogenated 

aromatic hydrocarbon, and organic compounds used in the production of polyurethane 

and synthetic rubber.  
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 Smoking prevalence was found to be moderately correlated with pc2 (r=0.4654). 

Poverty prevalence was not correlated any of the principal components.  

Regression analyses  
 
 In univariate regressions, only gender was found to be a good predictor of 2007 

ASD prevalence using Combined data 1. Inclusion of poverty and urbanicity in the 

multiple regression with gender provided the best explanatory model (p=0.0000, adjusted 

R-squared =0.8175), yet it is clear that most of the explanatory power is derived from 

gender. The model results are presented in Table 10. 

None of the predictors, including the 4 HAPs components, had significant 

associations with Combined data 2 ASD prevalence, and no satisfactory models were 

constructed for 2007 ASD prevalence using this combined dataset. 
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Table 3-ASD, poverty, and smoking distribution statistics, by U.S. region  
 

US 1996/2004        
ASD prevalence    
per 10,000 Mean1 Std. Dev. Min Max P50 IQR US 

Mean2 
Northeast 55.2 11.1 36.8 72.2 57.3 5.3 
Midwest 47.8 22.1 24.7 104 43.4 25.4 
West 39.4 22.5 13.7 95.1 36.4 11 
South 36.1 10.4 18.1 63.1 34.6 11.7 

43.3 

Poverty 
prevalence        

Northeast 10.7% 2.76% 6.3% 16.3% 11.0% 2.8% 
Midwest 10.8% 1.57% 8.7% 13.0% 11.2% 2.75% 
West 13.4% 3.65% 9.4% 20.6% 12.1% 5.8% 
South 16.1% 3.69% 9.7% 21.9% 16.7% 3.4% 

13.2% 

Smoking 
prevalence        

Northeast 23.6% 1.15% 21.9% 25.3% 23.4% 1.7% 
Midwest 24.4% 2.85% 20.6% 28.7% 24.2% 4.65% 
West 22.2% 3.28% 15.9% 28.2% 22.9% 2.3% 
South 24.3% 2.87% 20.3% 31.6% 24.2% 3.2% 

23.8% 

 
 
 

US 1999/2007        
ASD prevalence    
per 10,000 Mean1 Std. Dev. Min Max P50 IQR US 

Mean2 
Northeast 89.5 20.4 61.7 125 91.4 17.9 
Midwest 66.8 32.8 19.5 147 65.7 36.2 
West 54.6 23.6 30.7 124 49 18.6 
South 51 15 27.8 89 47.1 19.1 

62.7 

Poverty 
prevalence        

Northeast 9.67% 2.06% 6.8% 13.7% 9.80% 2.5% 
Midwest 9.89% 1.39% 7.5% 11.7% 10.0% 2.6% 
West 11.8% 2.77% 8.5% 18.2% 11.3% 3.8% 
South 13.4% 3.05% 8.0% 18.3% 13.2% 3.0% 

11.4% 

Smoking 
prevalence        

Northeast 22.0% 1.26% 19.4% 23.3% 22.4% 0.9% 
Midwest 23.9% 2.48% 19.5% 27.6% 23.6% 3.7% 
West 22.3% 4.33% 13.9% 31.5% 22.0% 3.9% 
South 24.0% 2.45% 20.3% 29.7% 23.6% 2.8% 

23.1% 

 
1 Regional mean  
2 Total U.S. mean  
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Table 4-Regional distribution of HAPs, Statewide levels, for U.S., 1996, in µg/m3 

   
Northeast 
HAPs Mean Std. Dev. Min Max P501 IQR US P502

acetaldehyde 7.05E-01 4.97E-01 1.30E-01 1.66E+00 6.63E-01 5.11E-01 4.30E-01
acrolein 1.07E-01 6.00E-02 4.61E-02 2.41E-01 1.00E-01 4.47E-02 6.71E-02
acrylonitrile 1.79E-03 2.03E-03 1.77E-05 6.12E-03 7.44E-04 1.66E-03 4.44E-04
arsenic compounds 6.36E-05 4.40E-05 6.67E-06 1.38E-04 6.29E-05 6.88E-05 4.92E-05
benzene 1.23E+00 3.68E-01 7.12E-01 1.84E+00 1.27E+00 4.67E-01 1.08E+00
beryllium 1.23E-05 9.10E-06 1.02E-06 2.78E-05 1.20E-05 1.15E-05 7.74E-06
1,3-butadiene 4.91E-02 2.36E-02 1.73E-02 9.30E-02 5.62E-02 2.88E-02 4.65E-02
cadmium compounds 9.52E-05 9.05E-05 4.79E-06 2.87E-04 8.05E-05 1.07E-04 3.33E-05
carbon tetrachloride 8.80E-01 7.07E-04 8.80E-01 8.82E-01 8.80E-01 0.00E+00 8.80E-01
chloroform 8.72E-02 3.99E-03 8.33E-02 9.51E-02 8.60E-02 1.10E-03 8.42E-02
chromium compounds 1.33E-03 1.04E-03 5.03E-05 2.57E-03 1.61E-03 1.84E-03 4.14E-04
1,3-dichloropropene 8.20E-02 6.36E-02 8.40E-03 2.11E-01 8.52E-02 7.08E-02 4.35E-02
diesel particulate matter 2.01E+00 1.20E+00 3.80E-01 3.90E+00 2.03E+00 1.23E+00 1.17E+00
ethylene dichloride 6.13E-02 2.69E-04 6.10E-02 6.17E-02 6.11E-02 4.00E-04 6.11E-02
ethylene oxide 1.79E-03 1.62E-03 6.47E-06 5.26E-03 1.58E-03 1.81E-03 1.05E-03
formaldehyde 1.14E+00 6.21E-01 4.77E-01 2.46E+00 1.10E+00 5.59E-01 7.42E-01
hexachlorobenzene 9.31E-05 1.72E-07 9.30E-05 9.35E-05 9.30E-05 0.00E+00 9.30E-05
hydrazine 2.63E-06 4.00E-06 7.35E-10 1.20E-05 3.78E-07 4.40E-06 1.75E-08
lead compounds 3.60E-03 4.25E-03 1.78E-04 1.32E-02 2.45E-03 2.90E-03 1.06E-03
manganese compounds 1.62E-03 1.10E-03 4.26E-04 3.75E-03 1.50E-03 1.72E-03 1.06E-03
mercury compounds 2.03E-03 5.32E-04 1.53E-03 3.21E-03 1.94E-03 4.20E-04 1.61E-03
methylene chloride 4.38E-01 2.16E-01 1.72E-01 7.84E-01 4.42E-01 3.18E-01 2.73E-01
nickel compounds 1.52E-03 1.19E-03 6.94E-05 3.18E-03 1.48E-03 1.71E-03 5.61E-04
PAH-7 3.79E-03 2.53E-03 1.01E-03 9.18E-03 3.83E-03 2.47E-03 2.02E-03
perchloroethylene 2.87E-01 1.24E-01 1.49E-01 5.20E-01 3.01E-01 1.29E-01 1.95E-01
polycyclic organic matter 6.98E-02 5.39E-02 1.04E-02 1.83E-01 6.99E-02 5.04E-02 4.25E-02
propylene dichloride 1.08E-04 1.24E-04 1.00E-06 3.68E-04 4.04E-05 9.85E-05 2.38E-05
quinoline 5.89E-07 5.41E-07 6.40E-09 1.58E-06 5.34E-07 6.23E-07 1.28E-07
1,1,2,2-tetrachloroethane 8.58E-04 1.04E-03 4.35E-06 3.24E-03 3.20E-04 7.94E-04 1.73E-04
trichloroethylene 1.66E-01 9.38E-02 8.40E-02 3.84E-01 1.56E-01 8.15E-02 1.01E-01
vinyl chloride 2.47E-03 2.74E-03 1.18E-05 8.29E-03 1.17E-03 2.66E-03 6.15E-04  
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Midwest 
HAPs Mean Std. Dev. Min Max P501 IQR US P502

acetaldehyde 3.43E-01 2.90E-01 2.61E-02 1.04E+00 3.05E-01 3.54E-01 4.30E-01
acrolein 5.69E-02 4.54E-02 5.53E-03 1.37E-01 5.36E-02 6.30E-02 6.71E-02
acrylonitrile 6.17E-04 8.97E-04 1.79E-05 3.17E-03 2.49E-04 7.59E-04 4.44E-04
arsenic compounds 5.13E-05 3.68E-05 1.46E-06 1.06E-04 5.93E-05 5.89E-05 4.92E-05
benzene 1.03E+00 3.93E-01 5.21E-01 1.64E+00 1.03E+00 7.25E-01 1.08E+00
beryllium 7.16E-06 5.07E-06 3.16E-07 1.67E-05 7.73E-06 7.26E-06 7.74E-06
1,3-butadiene 5.00E-02 5.00E-02 3.45E-03 1.91E-01 4.58E-02 4.66E-02 4.65E-02
cadmium compounds 8.87E-05 1.24E-04 1.06E-06 4.55E-04 5.30E-05 8.49E-05 3.33E-05
carbon tetrachloride 8.80E-01 2.89E-04 8.80E-01 8.81E-01 8.80E-01 0.00E+00 8.80E-01
chloroform 8.41E-02 1.07E-03 8.30E-02 8.66E-02 8.38E-02 1.50E-03 8.42E-02
chromium compounds 1.08E-03 1.02E-03 6.38E-06 2.73E-03 9.32E-04 1.82E-03 4.14E-04
1,3-dichloropropene 3.90E-02 2.75E-02 9.52E-04 9.56E-02 4.30E-02 3.46E-02 4.35E-02
diesel particulate matter 1.13E+00 6.26E-01 2.73E-01 2.25E+00 9.93E-01 9.33E-01 1.17E+00
ethylene dichloride 6.12E-02 2.15E-04 6.10E-02 6.17E-02 6.11E-02 2.00E-04 6.11E-02
ethylene oxide 1.50E-03 2.02E-03 2.78E-05 7.54E-03 9.76E-04 1.40E-03 1.05E-03
formaldehyde 6.84E-01 3.59E-01 2.97E-01 1.60E+00 6.60E-01 4.05E-01 7.42E-01
hexachlorobenzene 9.31E-05 4.92E-08 9.30E-05 9.31E-05 9.31E-05 1.00E-07 9.30E-05
hydrazine 3.58E-08 3.90E-08 0.00E+00 1.29E-07 2.47E-08 5.17E-08 1.75E-08
lead compounds 1.74E-03 1.83E-03 3.60E-05 6.37E-03 1.27E-03 2.13E-03 1.06E-03
manganese compounds 1.42E-03 1.52E-03 4.47E-05 5.49E-03 9.65E-04 9.54E-04 1.06E-03
mercury compounds 1.63E-03 1.02E-04 1.51E-03 1.81E-03 1.62E-03 1.45E-04 1.61E-03
methylene chloride 2.91E-01 1.24E-01 1.52E-01 6.00E-01 2.75E-01 1.39E-01 2.73E-01
nickel compounds 9.82E-04 8.39E-04 1.12E-05 2.31E-03 9.72E-04 1.42E-03 5.61E-04
PAH-7 1.88E-03 1.91E-03 1.95E-04 6.94E-03 1.43E-03 1.71E-03 2.02E-03
perchloroethylene 2.31E-01 1.11E-01 1.41E-01 5.47E-01 2.06E-01 7.35E-02 1.95E-01
polycyclic organic matter 6.11E-02 7.96E-02 2.71E-03 2.99E-01 4.12E-02 4.72E-02 4.25E-02
propylene dichloride 3.18E-05 4.51E-05 1.09E-06 1.61E-04 1.34E-05 3.45E-05 2.38E-05
quinoline 2.51E-07 2.93E-07 0.00E+00 8.57E-07 1.23E-07 4.39E-07 1.28E-07
1,1,2,2-tetrachloroethane 2.48E-04 3.84E-04 9.33E-06 1.37E-03 9.46E-05 2.61E-04 1.73E-04
trichloroethylene 1.44E-01 1.02E-01 8.14E-02 4.27E-01 1.08E-01 3.71E-02 1.01E-01
vinyl chloride 8.30E-04 1.13E-03 2.30E-05 4.00E-03 3.18E-04 1.06E-03 6.15E-04  
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West 
HAPs Mean Std. Dev. Min Max P501 IQR US P502

acetaldehyde 4.03E-01 2.97E-01 5.41E-02 1.10E+00 4.02E-01 3.34E-01 4.30E-01
acrolein 6.99E-02 3.28E-02 3.11E-02 1.44E-01 6.47E-02 3.82E-02 6.71E-02
acrylonitrile 1.20E-03 2.56E-03 9.57E-06 8.19E-03 1.80E-04 3.77E-04 4.44E-04
arsenic compounds 3.98E-05 2.50E-05 2.62E-06 8.66E-05 4.78E-05 3.47E-05 4.92E-05
benzene 1.09E+00 3.29E-01 6.01E-01 1.49E+00 1.09E+00 6.17E-01 1.08E+00
beryllium 7.54E-06 6.68E-06 3.74E-07 2.21E-05 5.79E-06 8.29E-06 7.74E-06
1,3-butadiene 4.56E-02 2.22E-02 1.19E-02 8.34E-02 4.48E-02 2.82E-02 4.65E-02
cadmium compounds 2.35E-05 2.11E-05 1.64E-06 7.27E-05 1.87E-05 1.97E-05 3.33E-05
carbon tetrachloride 8.80E-01 0.00E+00 8.80E-01 8.80E-01 8.80E-01 0.00E+00 8.80E-01
chloroform 8.40E-02 9.07E-04 8.31E-02 8.60E-02 8.37E-02 9.00E-04 8.42E-02
chromium compounds 5.68E-04 5.74E-04 1.12E-05 1.53E-03 3.58E-04 1.05E-03 4.14E-04
1,3-dichloropropene 5.02E-02 4.37E-02 1.95E-03 1.55E-01 4.58E-02 5.23E-02 4.35E-02
diesel particulate matter 8.57E-01 6.27E-01 1.34E-01 2.33E+00 8.20E-01 7.55E-01 1.17E+00
ethylene dichloride 6.12E-02 4.13E-04 6.10E-02 6.23E-02 6.10E-02 1.00E-04 6.11E-02
ethylene oxide 9.05E-04 8.68E-04 3.21E-05 2.95E-03 7.00E-04 7.67E-04 1.05E-03
formaldehyde 7.83E-01 3.22E-01 4.10E-01 1.51E+00 7.51E-01 4.47E-01 7.42E-01
hexachlorobenzene 9.30E-05 5.16E-08 9.30E-05 9.31E-05 9.30E-05 1.00E-07 9.30E-05
hydrazine 1.55E-08 2.40E-08 1.15E-10 8.10E-08 9.27E-09 1.25E-08 1.75E-08
lead compounds 1.32E-03 1.31E-03 7.00E-05 4.37E-03 8.55E-04 1.61E-03 1.06E-03
manganese compounds 1.52E-03 1.12E-03 7.46E-05 3.29E-03 1.24E-03 2.25E-03 1.06E-03
mercury compounds 1.59E-03 9.92E-05 1.51E-03 1.85E-03 1.57E-03 8.00E-05 1.61E-03
methylene chloride 2.75E-01 1.21E-01 1.55E-01 5.65E-01 2.50E-01 1.37E-01 2.73E-01
nickel compounds 6.00E-04 5.75E-04 1.83E-05 1.87E-03 4.53E-04 8.34E-04 5.61E-04
PAH-7 2.86E-03 2.11E-03 4.16E-04 7.52E-03 2.96E-03 2.47E-03 2.02E-03
perchloroethylene 2.15E-01 8.89E-02 1.42E-01 4.45E-01 1.90E-01 6.40E-02 1.95E-01
polycyclic organic matter 4.67E-02 3.79E-02 6.28E-03 1.36E-01 4.48E-02 4.36E-02 4.25E-02
propylene dichloride 7.15E-05 1.54E-04 5.74E-07 4.94E-04 1.12E-05 2.22E-05 2.38E-05
quinoline 1.17E-06 3.49E-06 1.21E-09 1.11E-05 5.41E-08 9.44E-08 1.28E-07
1,1,2,2-tetrachloroethane 6.40E-04 1.40E-03 3.96E-06 4.50E-03 8.93E-05 1.96E-04 1.73E-04
trichloroethylene 1.03E-01 2.36E-02 8.15E-02 1.47E-01 9.42E-02 2.33E-02 1.01E-01
vinyl chloride 1.68E-03 3.59E-03 1.08E-05 1.15E-02 2.59E-04 5.15E-04 6.15E-04  
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South 
HAPs Mean Std. Dev. Min Max P501 IQR US P502

acetaldehyde 5.23E-01 2.58E-01 2.32E-01 1.10E+00 4.52E-01 3.27E-01 4.30E-01
acrolein 8.14E-02 3.17E-02 4.11E-02 1.60E-01 8.00E-02 3.04E-02 6.71E-02
acrylonitrile 5.19E-04 2.86E-04 1.03E-04 1.17E-03 4.72E-04 3.47E-04 4.44E-04
arsenic compounds 6.60E-05 4.44E-05 1.64E-05 1.66E-04 4.90E-05 2.60E-05 4.92E-05
benzene 1.10E+00 2.95E-01 7.54E-01 1.82E+00 1.07E+00 2.97E-01 1.08E+00
beryllium 9.96E-06 7.94E-06 2.76E-06 3.11E-05 7.18E-06 8.41E-06 7.74E-06
1,3-butadiene 4.86E-02 1.98E-02 2.05E-02 9.85E-02 4.75E-02 1.96E-02 4.65E-02
cadmium compounds 4.61E-05 4.74E-05 9.47E-06 1.87E-04 3.29E-05 2.08E-05 3.33E-05
carbon tetrachloride 8.80E-01 3.32E-04 8.80E-01 8.81E-01 8.80E-01 0.00E+00 8.80E-01
chloroform 8.47E-02 1.44E-03 8.34E-02 8.83E-02 8.44E-02 1.40E-03 8.42E-02
chromium compounds 4.56E-04 4.12E-04 8.66E-05 1.68E-03 3.11E-04 2.14E-04 4.14E-04
1,3-dichloropropene 5.43E-02 4.03E-02 1.73E-02 1.70E-01 3.68E-02 4.15E-02 4.35E-02
diesel particulate matter 1.40E+00 6.60E-01 6.45E-01 2.85E+00 1.20E+00 2.90E-01 1.17E+00
ethylene dichloride 6.11E-02 1.06E-04 6.10E-02 6.14E-02 6.11E-02 1.00E-04 6.11E-02
ethylene oxide 1.82E-03 2.04E-03 5.05E-04 8.46E-03 1.26E-03 8.34E-04 1.05E-03
formaldehyde 8.58E-01 3.19E-01 5.39E-01 1.72E+00 7.47E-01 2.34E-01 7.42E-01
hexachlorobenzene 9.30E-05 5.88E-08 9.30E-05 9.32E-05 9.30E-05 0.00E+00 9.30E-05
hydrazine 4.49E-08 8.37E-08 2.57E-09 3.52E-07 1.84E-08 2.34E-08 1.75E-08
lead compounds 1.52E-03 1.54E-03 2.56E-04 6.34E-03 9.53E-04 1.00E-03 1.06E-03
manganese compounds 1.19E-03 5.64E-04 5.18E-04 2.49E-03 1.03E-03 5.28E-04 1.06E-03
mercury compounds 1.72E-03 2.64E-04 1.53E-03 2.49E-03 1.61E-03 6.00E-05 1.61E-03
methylene chloride 2.89E-01 8.52E-02 1.89E-01 5.41E-01 2.71E-01 6.50E-02 2.73E-01
nickel compounds 7.39E-04 8.39E-04 1.53E-04 3.75E-03 4.87E-04 2.96E-04 5.61E-04
PAH-7 2.44E-03 1.42E-03 1.25E-03 6.00E-03 2.10E-03 9.90E-04 2.02E-03
perchloroethylene 2.22E-01 6.79E-02 1.60E-01 4.24E-01 1.91E-01 5.60E-02 1.95E-01
polycyclic organic matter 4.50E-02 2.53E-02 1.89E-02 1.14E-01 4.12E-02 2.04E-02 4.25E-02
propylene dichloride 2.93E-05 1.71E-05 6.28E-06 6.42E-05 2.41E-05 2.36E-05 2.38E-05
quinoline 1.93E-07 1.69E-07 2.61E-08 7.10E-07 1.38E-07 8.90E-08 1.28E-07
1,1,2,2-tetrachloroethane 2.12E-04 1.31E-04 3.76E-05 5.04E-04 1.79E-04 1.69E-04 1.73E-04
trichloroethylene 1.06E-01 2.29E-02 8.58E-02 1.86E-01 1.01E-01 9.00E-03 1.01E-01
vinyl chloride 1.90E-03 5.16E-03 1.32E-04 2.19E-02 6.48E-04 4.88E-04 6.15E-04  
 
1 Regional median concentration 
2 Total U.S. median concentration 
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Table 5- Regional distribution of HAPs, Statewide levels, for U.S., 1999, in µg/m3 
 
Northeast 

 

HAPs Mean Std. Dev. Min Max P501 IQR P502

acetaldehyde 1.31E+00 4.56E-01 6.51E-01 1.89E+00 1.35E+00 6.27E-01 1.05E+00
acetonitrile 3.51E-04 3.56E-04 1.62E-05 9.93E-04 2.26E-04 3.41E-04 6.48E-05
acrolein 9.64E-02 7.54E-02 1.69E-02 2.71E-01 8.01E-02 6.24E-02 5.07E-02
acrylamide 1.71E-07 1.98E-07 4.25E-09 5.56E-07 9.69E-08 1.93E-07 2.44E-08
acrylic acid 2.94E-05 4.74E-05 2.74E-07 1.49E-04 1.26E-05 2.91E-05 2.47E-06
acrylonitrile 1.07E-03 1.19E-03 4.53E-05 4.02E-03 7.55E-04 7.69E-04 4.31E-04
allyl chloride 1.41E-05 1.91E-05 6.99E-07 4.94E-05 5.36E-06 4.97E-06 2.86E-06
aniline 1.80E-04 4.88E-04 1.49E-07 1.48E-03 6.10E-06 3.73E-05 1.56E-06
antimony compounds 3.59E-05 4.63E-05 1.22E-07 1.42E-04 3.11E-05 4.79E-05 5.25E-06
arsenic compounds 6.59E-05 3.59E-05 8.48E-06 1.16E-04 6.75E-05 2.79E-05 3.04E-05
benzene 1.16E+00 4.25E-01 5.69E-01 1.91E+00 1.24E+00 4.81E-01 9.58E-01
benzidine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
benzotrichloride 5.72E-08 7.21E-08 1.65E-09 2.21E-07 3.12E-08 5.16E-08 7.37E-09
benzyl chloride 9.43E-06 1.55E-05 3.05E-07 4.98E-05 4.66E-06 6.23E-06 1.69E-06
beryllium 5.79E-05 6.64E-05 3.12E-06 1.73E-04 3.08E-05 1.72E-05 4.40E-06
bis(chloromethyl)ether 7.36E-09 7.63E-09 2.49E-10 2.02E-08 5.11E-09 8.46E-09 1.10E-09
1,3-butadiene 1.29E-01 1.22E-01 1.23E-02 4.27E-01 1.23E-01 8.54E-02 6.53E-02
cadmium compounds 5.03E-05 2.68E-05 6.71E-06 8.54E-05 6.15E-05 2.91E-05 1.62E-05
carbon tetrachloride 2.71E-01 7.07E-04 2.70E-01 2.72E-01 2.71E-01 1.00E-03 2.70E-01
chlorine 4.45E-04 3.70E-04 3.13E-06 8.97E-04 3.19E-04 7.19E-04 4.16E-04
chloroform 7.84E-02 2.76E-02 3.97E-02 1.21E-01 7.91E-02 4.16E-02 5.75E-02
chloroprene 1.36E-05 1.05E-05 1.09E-06 3.07E-05 1.37E-05 9.53E-06 5.09E-06
chromium IV 8.82E-05 4.76E-05 5.04E-06 1.81E-04 9.48E-05 3.68E-05 5.38E-05
cobalt compounds 3.12E-05 4.16E-05 1.89E-07 1.08E-04 1.44E-05 1.50E-05 1.23E-05
coke oven emissions 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
cyanide compounds 5.88E-02 3.35E-02 7.19E-03 1.17E-01 6.06E-02 4.06E-02 3.71E-02
1,2-dibromo-3-chloropropane 1.36E-06 2.70E-06 0.00E+00 6.60E-06 0.00E+00 0.00E+00 0.00E+00
dichloroethyl ether 6.87E-07 2.03E-06 2.07E-10 6.11E-06 4.36E-09 7.54E-09 1.10E-09
1,3-dichloropropene 8.38E-02 4.99E-02 9.24E-03 1.53E-01 7.90E-02 4.25E-02 5.00E-02
diesel particulate matter 9.13E-01 6.08E-01 1.09E-01 1.80E+00 9.24E-01 9.88E-01 7.23E-01
diethanolamine 6.81E-06 1.47E-05 1.13E-08 4.51E-05 5.90E-07 3.57E-06 5.91E-07
dimethyl formamide 4.12E-03 4.06E-03 2.72E-04 1.33E-02 3.27E-03 3.48E-03 1.59E-03
2,4-dinitrotoluene 1.37E-05 1.02E-05 1.76E-06 3.27E-05 1.07E-05 1.26E-05 5.90E-06
1,4-dioxane 6.42E-05 9.84E-05 1.42E-06 2.63E-04 1.58E-05 3.51E-05 1.01E-05
epichlorohydrin 2.19E-05 3.43E-05 2.24E-07 9.94E-05 3.73E-06 3.07E-05 1.40E-06
ethyl acrylate 2.46E-05 3.56E-05 1.64E-07 9.73E-05 4.14E-06 3.82E-05 1.12E-06
ethyl carbamate 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
ethylene dibromide 2.45E-02 9.98E-03 5.34E-03 3.49E-02 2.95E-02 1.36E-02 1.82E-02
ethylene dichloride 3.90E-02 1.08E-02 1.83E-02 5.00E-02 4.45E-02 1.49E-02 3.29E-02
ethylene oxide 2.87E-03 3.12E-03 1.94E-05 8.09E-03 1.39E-03 3.14E-03 6.65E-04
formaldehyde 1.43E+00 5.04E-01 6.45E-01 2.14E+00 1.53E+00 7.40E-01 1.13E+00
glycol ethers 7.12E-02 6.72E-02 5.09E-03 2.33E-01 5.27E-02 4.15E-02 3.36E-02
hexachlorobenzene 2.44E-07 2.01E-07 5.12E-08 6.18E-07 1.75E-07 2.33E-07 1.66E-07
hexamethylene-1,6-diisocyanate 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
hydrazine 1.04E-05 2.90E-05 8.51E-10 8.76E-05 2.70E-07 1.08E-06 7.35E-09
hydrochloric acid 7.72E-02 5.09E-02 5.86E-03 1.73E-01 6.66E-02 5.45E-02 6.72E-02
hydrofluoric acid 5.28E-03 5.23E-03 1.75E-04 1.54E-02 3.39E-03 4.38E-03 4.83E-03
lead compounds 1.83E-03 1.37E-03 1.42E-04 4.44E-03 1.60E-03 1.88E-03 1.10E-03
maleic anhydride 1.72E-03 5.09E-03 1.57E-07 1.53E-02 5.63E-06 1.58E-05 1.36E-06
manganese compounds 5.52E-04 4.46E-04 1.44E-04 1.34E-03 5.57E-04 4.69E-04 4.49E-04
mercury 1.58E-03 5.29E-05 1.51E-03 1.65E-03 1.59E-03 9.00E-05 1.52E-03
methyl bromide 1.61E-01 7.27E-02 5.23E-02 2.69E-01 1.52E-01 6.40E-02 1.02E-01
methyl chloride 1.20E+00 5.27E-03 1.20E+00 1.21E+00 1.20E+00 1.00E-02 1.20E+00
4,4'-methylene bis(2-chloroaniline) 3.07E-07 6.74E-07 0.00E+00 1.96E-06 0.00E+00 0.00E+00 0.00E+00
methylene chloride 4.91E-01 1.98E-01 1.59E-01 7.58E-01 5.16E-01 2.23E-01 3.80E-01
4,4'-methylenedianiline 4.42E-06 1.32E-05 1.48E-09 3.95E-05 2.81E-08 9.46E-08 1.19E-08
methylene diphenyl diisocyanate 9.06E-06 8.10E-06 8.37E-08 2.62E-05 1.00E-05 1.00E-05 5.95E-06
naphthalene 6.28E-02 4.99E-02 8.96E-03 1.81E-01 5.61E-02 1.57E-02 3.23E-02
n-hexane 5.39E-01 4.57E-01 8.60E-02 1.60E+00 4.98E-01 3.47E-01 3.72E-01
nickel compounds 2.33E-03 3.86E-03 1.03E-04 1.25E-02 9.06E-04 9.09E-04 3.32E-04
o-toluidine 1.93E-07 2.59E-07 1.61E-08 8.16E-07 7.71E-08 2.55E-07 5.75E-08
p-dichlorobenzene 3.98E-02 2.35E-02 4.69E-03 7.84E-02 4.00E-02 3.14E-02 2.21E-02
perchloroethylene 2.03E-01 1.45E-01 3.89E-02 5.43E-01 1.99E-01 9.30E-02 1.27E-01
phosgene 6.54E-08 9.83E-08 1.57E-09 3.08E-07 3.00E-08 5.02E-08 1.08E-08
polychlorinated biphenyls 4.03E-04 2.24E-05 3.80E-04 4.54E-04 3.99E-04 2.60E-05 3.95E-04
polycyclic organic matter 1.96E-02 1.30E-02 6.91E-03 4.74E-02 1.49E-02 5.40E-03 9.39E-03
propylene dichloride 2.13E-02 6.08E-03 9.65E-03 2.76E-02 2.42E-02 8.30E-03 1.73E-02
propylene oxide 1.13E-03 1.39E-03 1.43E-04 3.99E-03 4.57E-04 3.22E-04 4.01E-04
quinoline 3.42E-07 3.24E-07 1.19E-08 8.86E-07 2.93E-07 3.90E-07 6.70E-08
1,1,2,2-tetrachloroethane 5.95E-02 1.83E-02 2.44E-02 7.80E-02 7.10E-02 2.49E-02 4.78E-02
titanium tetrachloride 9.42E-06 2.80E-05 4.21E-09 8.41E-05 7.97E-08 1.32E-07 2.18E-08
toluene 2.27E+00 1.22E+00 5.93E-01 4.34E+00 2.35E+00 1.42E+00 1.72E+00
2,4-toluene diamine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,4-toluene diisocyanate 4.04E-03 3.67E-03 8.09E-04 1.01E-02 1.81E-03 6.15E-03 7.73E-04
1,1,2-trichloroethane 5.24E-06 7.64E-06 1.20E-07 2.21E-05 2.65E-06 2.25E-06 8.28E-07
vinyl chloride 5.75E-02 2.50E-02 1.16E-02 8.87E-02 6.95E-02 3.41E-02 4.10E-02
xylenes 1.65E+00 9.40E-01 4.89E-01 3.55E+00 1.65E+00 7.60E-01 1.25E+00  
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Midwest 

HAPs Mean Std. Dev. Min Max P501 IQR P502

acetaldehyde 9.40E-01 3.25E-01 5.25E-01 1.63E+00 9.39E-01 4.66E-01 1.05E+00
acetonitrile 7.31E-05 6.97E-05 2.04E-06 2.54E-04 5.37E-05 7.40E-05 6.48E-05
acrolein 3.81E-02 2.83E-02 3.57E-03 9.91E-02 3.85E-02 3.76E-02 5.07E-02
acrylamide 5.48E-08 6.45E-08 0.00E+00 1.67E-07 2.82E-08 1.03E-07 2.44E-08
acrylic acid 2.37E-05 6.54E-05 7.60E-10 2.30E-04 2.26E-06 8.40E-06 2.47E-06
acrylonitrile 5.27E-04 7.17E-04 1.26E-05 2.59E-03 2.98E-04 5.49E-04 4.31E-04
allyl chloride 2.59E-06 1.50E-06 9.41E-08 4.64E-06 2.75E-06 2.06E-06 2.86E-06
aniline 3.31E-06 4.42E-06 0.00E+00 1.51E-05 1.51E-06 3.85E-06 1.56E-06
antimony compounds 2.69E-05 3.72E-05 2.44E-09 1.24E-04 9.64E-06 3.69E-05 5.25E-06
arsenic compounds 3.15E-05 2.76E-05 4.51E-07 8.26E-05 2.71E-05 3.63E-05 3.04E-05
benzene 8.46E-01 3.47E-01 2.81E-01 1.36E+00 9.34E-01 4.83E-01 9.58E-01
benzidine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
benzotrichloride 1.35E-08 1.67E-08 0.00E+00 5.86E-08 8.20E-09 1.78E-08 7.37E-09
benzyl chloride 1.72E-05 2.83E-05 4.81E-08 8.23E-05 3.23E-06 1.57E-05 1.69E-06
beryllium 4.55E-06 2.94E-06 2.21E-07 9.50E-06 4.89E-06 4.24E-06 4.40E-06
bis(chloromethyl)ether 2.13E-09 2.49E-09 0.00E+00 8.54E-09 1.34E-09 2.92E-09 1.10E-09
1,3-butadiene 6.03E-02 4.06E-02 2.06E-03 1.35E-01 6.45E-02 5.85E-02 6.53E-02
cadmium compounds 6.79E-05 1.25E-04 3.59E-07 4.43E-04 2.11E-05 7.54E-05 1.62E-05
carbon tetrachloride 2.70E-01 0.00E+00 2.70E-01 2.70E-01 2.70E-01 0.00E+00 2.70E-01
chlorine 2.24E-03 3.12E-03 7.94E-08 8.97E-03 6.28E-04 3.00E-03 4.16E-04
chloroform 5.64E-02 1.71E-02 3.24E-02 9.47E-02 5.57E-02 2.03E-02 5.75E-02
chloroprene 4.73E-06 3.38E-06 1.54E-07 1.23E-05 4.57E-06 4.12E-06 5.09E-06
chromium IV 7.81E-05 7.03E-05 6.74E-07 2.18E-04 7.43E-05 1.12E-04 5.38E-05
cobalt compounds 3.02E-05 3.18E-05 1.03E-08 9.65E-05 2.44E-05 3.99E-05 1.23E-05
coke oven emissions 4.62E-04 1.60E-03 0.00E+00 5.54E-03 0.00E+00 0.00E+00 0.00E+00
cyanide compounds 3.00E-02 2.01E-02 1.24E-03 6.64E-02 2.88E-02 2.77E-02 3.71E-02
1,2-dibromo-3-chloropropane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
dichloroethyl ether 1.73E-09 2.42E-09 0.00E+00 8.58E-09 7.84E-10 1.75E-09 1.10E-09
1,3-dichloropropene 4.94E-02 3.80E-02 1.13E-03 1.20E-01 4.26E-02 6.18E-02 5.00E-02
diesel particulate matter 7.66E-01 3.28E-01 2.80E-01 1.36E+00 7.59E-01 4.71E-01 7.23E-01
diethanolamine 6.13E-06 1.37E-05 1.32E-10 4.86E-05 1.38E-06 3.73E-06 5.91E-07
dimethyl formamide 1.53E-03 1.10E-03 3.45E-05 4.00E-03 1.59E-03 1.20E-03 1.59E-03
2,4-dinitrotoluene 5.34E-06 3.26E-06 1.98E-07 1.10E-05 5.67E-06 4.10E-06 5.90E-06
1,4-dioxane 3.54E-05 8.48E-05 2.01E-07 3.03E-04 1.10E-05 1.60E-05 1.01E-05
epichlorohydrin 1.16E-04 3.95E-04 3.18E-08 1.37E-03 1.46E-06 2.15E-06 1.40E-06
ethyl acrylate 1.59E-05 4.49E-05 1.65E-08 1.57E-04 9.59E-07 2.76E-06 1.12E-06
ethyl carbamate 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
ethylene dibromide 1.62E-02 8.94E-03 2.09E-08 2.85E-02 1.77E-02 1.22E-02 1.82E-02
ethylene dichloride 2.91E-02 1.15E-02 2.65E-03 4.30E-02 3.15E-02 1.32E-02 3.29E-02
ethylene oxide 1.96E-03 2.53E-03 2.16E-05 6.63E-03 4.27E-04 3.87E-03 6.65E-04
formaldehyde 9.83E-01 3.85E-01 3.12E-01 1.70E+00 1.04E+00 4.81E-01 1.13E+00
glycol ethers 6.52E-02 5.86E-02 9.53E-04 1.65E-01 5.55E-02 9.12E-02 3.36E-02
hexachlorobenzene 1.22E-07 8.50E-08 2.85E-08 2.63E-07 1.04E-07 1.49E-07 1.66E-07
hexamethylene-1,6-diisocyanate 7.35E-06 1.88E-05 0.00E+00 6.23E-05 0.00E+00 2.78E-07 0.00E+00
hydrazine 2.30E-08 4.04E-08 0.00E+00 1.36E-07 7.35E-09 1.80E-08 7.35E-09
hydrochloric acid 9.40E-02 1.03E-01 1.21E-03 3.54E-01 6.65E-02 1.01E-01 6.72E-02
hydrofluoric acid 7.20E-03 5.80E-03 8.54E-06 1.77E-02 5.73E-03 6.06E-03 4.83E-03
lead compounds 1.69E-03 1.58E-03 3.11E-05 5.97E-03 1.66E-03 1.52E-03 1.10E-03
maleic anhydride 1.70E-03 5.86E-03 0.00E+00 2.03E-02 1.41E-06 8.39E-06 1.36E-06
manganese compounds 8.76E-04 1.02E-03 8.38E-06 3.35E-03 5.70E-04 1.12E-03 4.49E-04
mercury 1.55E-03 5.96E-05 1.50E-03 1.72E-03 1.53E-03 4.50E-05 1.52E-03
methyl bromide 1.00E-01 5.00E-02 4.07E-02 2.11E-01 9.74E-02 4.46E-02 1.02E-01
methyl chloride 1.20E+00 2.89E-03 1.20E+00 1.21E+00 1.20E+00 0.00E+00 1.20E+00
4,4'-methylene bis(2-chloroaniline) 3.07E-07 1.06E-06 0.00E+00 3.68E-06 0.00E+00 0.00E+00 0.00E+00
methylene chloride 3.35E-01 1.78E-01 8.54E-03 6.53E-01 3.65E-01 2.00E-01 3.80E-01
4,4'-methylenedianiline 1.30E-06 3.63E-06 0.00E+00 1.25E-05 1.59E-08 3.29E-08 1.19E-08
methylene diphenyl diisocyanate 1.73E-05 2.61E-05 0.00E+00 9.39E-05 1.03E-05 1.68E-05 5.95E-06
naphthalene 3.06E-02 2.08E-02 1.37E-03 6.04E-02 3.29E-02 3.34E-02 3.23E-02
n-hexane 3.14E-01 1.95E-01 1.38E-02 6.84E-01 3.24E-01 2.15E-01 3.72E-01
nickel compounds 4.75E-04 4.01E-04 4.25E-06 1.14E-03 4.82E-04 6.81E-04 3.32E-04
o-toluidine 8.01E-08 9.42E-08 2.87E-09 3.52E-07 5.71E-08 6.41E-08 5.75E-08
p-dichlorobenzene 2.17E-02 1.78E-02 5.64E-04 6.07E-02 2.05E-02 1.53E-02 2.21E-02
perchloroethylene 1.22E-01 8.50E-02 1.63E-03 3.05E-01 1.20E-01 7.27E-02 1.27E-01
phosgene 1.65E-08 1.95E-08 0.00E+00 6.52E-08 9.37E-09 2.19E-08 1.08E-08
polychlorinated biphenyls 3.93E-04 1.09E-05 3.82E-04 4.17E-04 3.92E-04 1.60E-05 3.95E-04
polycyclic organic matter 8.55E-03 6.19E-03 9.50E-04 1.95E-02 8.88E-03 1.05E-02 9.39E-03
propylene dichloride 1.57E-02 6.37E-03 9.52E-04 2.34E-02 1.70E-02 7.30E-03 1.73E-02
propylene oxide 4.05E-04 4.70E-04 3.12E-05 1.54E-03 2.06E-04 3.11E-04 4.01E-04
quinoline 3.82E-07 7.87E-07 0.00E+00 2.80E-06 6.15E-08 4.11E-07 6.70E-08
1,1,2,2-tetrachloroethane 4.30E-02 1.91E-02 1.54E-05 6.65E-02 4.72E-02 2.24E-02 4.78E-02
titanium tetrachloride 3.21E-08 4.56E-08 0.00E+00 1.62E-07 1.40E-08 3.30E-08 2.18E-08
toluene 1.43E+00 9.38E-01 7.84E-02 2.95E+00 1.68E+00 1.18E+00 1.72E+00
2,4-toluene diamine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,4-toluene diisocyanate 1.41E-03 1.74E-03 4.74E-05 5.60E-03 5.06E-04 2.32E-03 7.73E-04
1,1,2-trichloroethane 1.28E-06 1.23E-06 1.12E-08 3.45E-06 8.20E-07 2.34E-06 8.28E-07
vinyl chloride 3.65E-02 2.06E-02 2.07E-05 6.45E-02 4.03E-02 2.79E-02 4.10E-02
xylenes 1.09E+00 5.95E-01 2.24E-01 1.97E+00 1.27E+00 8.13E-01 1.25E+00  
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West 
HAPs Mean Std. Dev. Min Max P501 IQR P502

acetaldehyde 9.66E-01 3.52E-01 5.62E-01 1.80E+00 9.47E-01 4.97E-01 1.05E+00
acetonitrile 1.06E-04 2.17E-04 2.81E-06 8.42E-04 3.87E-05 6.40E-05 6.48E-05
acrolein 6.69E-02 5.68E-02 9.21E-03 2.02E-01 5.15E-02 6.09E-02 5.07E-02
acrylamide 1.68E-08 1.79E-08 0.00E+00 4.62E-08 6.41E-09 3.26E-08 2.44E-08
acrylic acid 1.14E-06 1.18E-06 1.12E-09 2.80E-06 7.48E-07 2.35E-06 2.47E-06
acrylonitrile 1.57E-03 3.44E-03 1.49E-05 1.29E-02 3.14E-04 5.61E-04 4.31E-04
allyl chloride 2.09E-06 2.16E-06 0.00E+00 7.28E-06 1.66E-06 1.62E-06 2.86E-06
aniline 7.46E-07 8.67E-07 0.00E+00 2.82E-06 3.91E-07 1.42E-06 1.56E-06
antimony compounds 3.11E-05 6.98E-05 4.51E-09 2.42E-04 7.15E-07 2.67E-05 5.25E-06
arsenic compounds 5.95E-05 1.05E-04 1.31E-06 3.66E-04 1.25E-05 6.16E-05 3.04E-05
benzene 9.10E-01 4.01E-01 3.55E-01 1.62E+00 9.61E-01 4.76E-01 9.58E-01
benzidine 9.07E-12 3.39E-11 0.00E+00 1.27E-10 0.00E+00 0.00E+00 0.00E+00
benzotrichloride 7.81E-09 8.79E-09 0.00E+00 2.39E-08 4.36E-09 1.53E-08 7.37E-09
benzyl chloride 4.26E-06 8.38E-06 6.60E-08 2.52E-05 8.28E-07 9.36E-07 1.69E-06
beryllium 3.00E-06 2.57E-06 7.51E-07 9.11E-06 2.01E-06 3.37E-06 4.40E-06
bis(chloromethyl)ether 1.05E-09 1.31E-09 0.00E+00 3.93E-09 3.79E-10 1.96E-09 1.10E-09
1,3-butadiene 7.93E-02 5.29E-02 7.61E-03 1.84E-01 8.45E-02 9.75E-02 6.53E-02
cadmium compounds 4.65E-05 1.07E-04 1.55E-06 4.08E-04 8.00E-06 3.08E-05 1.62E-05
carbon tetrachloride 2.70E-01 1.34E-03 2.70E-01 2.75E-01 2.70E-01 0.00E+00 2.70E-01
chlorine 7.57E-03 2.42E-02 2.78E-08 9.12E-02 2.42E-04 8.09E-04 4.16E-04
chloroform 6.29E-02 2.38E-02 3.80E-02 1.17E-01 5.95E-02 2.83E-02 5.75E-02
chloroprene 4.77E-06 4.73E-06 2.37E-07 1.47E-05 3.02E-06 7.90E-06 5.09E-06
chromium IV 8.90E-05 1.07E-04 1.21E-06 3.03E-04 4.71E-05 1.60E-04 5.38E-05
cobalt compounds 1.03E-04 3.17E-04 1.00E-08 1.19E-03 1.32E-06 2.26E-05 1.23E-05
coke oven emissions 1.31E-04 4.92E-04 0.00E+00 1.84E-03 0.00E+00 0.00E+00 0.00E+00
cyanide compounds 4.94E-02 7.52E-02 3.21E-03 2.93E-01 2.67E-02 2.85E-02 3.71E-02
1,2-dibromo-3-chloropropane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
dichloroethyl ether 9.34E-10 1.15E-09 0.00E+00 3.48E-09 3.37E-10 1.71E-09 1.10E-09
1,3-dichloropropene 5.98E-02 4.66E-02 2.97E-03 1.55E-01 5.52E-02 8.37E-02 5.00E-02
diesel particulate matter 5.03E-01 3.38E-01 7.26E-02 1.17E+00 4.92E-01 5.29E-01 7.23E-01
diethanolamine 3.00E-06 7.73E-06 1.72E-10 2.72E-05 5.07E-08 6.94E-07 5.91E-07
dimethyl formamide 1.63E-03 1.73E-03 3.57E-05 6.48E-03 1.31E-03 1.76E-03 1.59E-03
2,4-dinitrotoluene 4.30E-06 4.93E-06 0.00E+00 1.55E-05 2.75E-06 4.77E-06 5.90E-06
1,4-dioxane 7.39E-05 2.23E-04 4.44E-07 8.41E-04 4.96E-06 9.33E-06 1.01E-05
epichlorohydrin 2.05E-06 3.44E-06 4.61E-08 1.01E-05 6.27E-07 1.36E-06 1.40E-06
ethyl acrylate 9.52E-07 1.64E-06 0.00E+00 6.28E-06 3.60E-07 1.05E-06 1.12E-06
ethyl carbamate 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
ethylene dibromide 2.10E-02 1.36E-02 1.72E-03 4.07E-02 2.42E-02 2.85E-02 1.82E-02
ethylene dichloride 3.51E-02 1.47E-02 1.44E-02 5.58E-02 3.84E-02 3.04E-02 3.29E-02
ethylene oxide 7.69E-04 9.84E-04 2.48E-05 2.94E-03 2.14E-04 8.85E-04 6.65E-04
formaldehyde 1.21E+00 4.95E-01 5.10E-01 2.39E+00 1.25E+00 6.55E-01 1.13E+00
glycol ethers 6.40E-02 1.36E-01 1.36E-03 5.28E-01 2.41E-02 2.62E-02 3.36E-02
hexachlorobenzene 1.95E-07 3.85E-07 2.48E-10 1.25E-06 2.96E-08 1.31E-07 1.66E-07
hexamethylene-1,6-diisocyanate 1.75E-06 5.12E-06 0.00E+00 1.87E-05 0.00E+00 0.00E+00 0.00E+00
hydrazine 2.27E-08 5.96E-08 0.00E+00 2.28E-07 3.01E-09 1.53E-08 7.35E-09
hydrochloric acid 4.59E-02 5.48E-02 4.28E-03 2.11E-01 2.62E-02 6.02E-02 6.72E-02
hydrofluoric acid 3.07E-03 3.57E-03 4.33E-06 1.11E-02 2.26E-03 4.20E-03 4.83E-03
lead compounds 1.60E-03 2.30E-03 1.02E-04 8.81E-03 7.69E-04 2.04E-03 1.10E-03
maleic anhydride 1.55E-06 2.83E-06 0.00E+00 1.08E-05 5.25E-07 1.79E-06 1.36E-06
manganese compounds 1.63E-03 3.18E-03 7.59E-06 1.14E-02 1.54E-04 1.19E-03 4.49E-04
mercury 1.55E-03 8.84E-05 1.50E-03 1.76E-03 1.51E-03 1.00E-05 1.52E-03
methyl bromide 1.12E-01 6.61E-02 4.32E-02 2.95E-01 1.08E-01 7.70E-02 1.02E-01
methyl chloride 1.25E+00 1.62E-01 1.20E+00 1.81E+00 1.20E+00 1.00E-02 1.20E+00
4,4'-methylene bis(2-chloroaniline) 9.36E-13 3.50E-12 0.00E+00 1.31E-11 0.00E+00 0.00E+00 0.00E+00
methylene chloride 3.82E-01 2.42E-01 9.54E-02 1.03E+00 4.07E-01 3.06E-01 3.80E-01
4,4'-methylenedianiline 1.11E-08 1.78E-08 0.00E+00 6.72E-08 4.23E-09 1.42E-08 1.19E-08
methylene diphenyl diisocyanate 3.01E-05 9.65E-05 2.85E-12 3.64E-04 9.05E-07 7.08E-06 5.95E-06
naphthalene 3.30E-02 2.92E-02 3.03E-03 1.01E-01 2.67E-02 3.15E-02 3.23E-02
n-hexane 3.33E-01 3.24E-01 2.48E-02 1.30E+00 2.79E-01 3.22E-01 3.72E-01
nickel compounds 3.19E-04 5.67E-04 8.06E-06 2.21E-03 1.44E-04 1.72E-04 3.32E-04
o-toluidine 3.82E-08 3.80E-08 0.00E+00 1.18E-07 2.35E-08 5.20E-08 5.75E-08
p-dichlorobenzene 3.02E-02 3.68E-02 1.50E-03 1.49E-01 2.46E-02 2.74E-02 2.21E-02
perchloroethylene 1.91E-01 1.94E-01 1.49E-02 7.81E-01 1.74E-01 1.70E-01 1.27E-01
phosgene 3.58E-07 1.28E-06 1.48E-12 4.80E-06 6.97E-09 2.20E-08 1.08E-08
polychlorinated biphenyls 4.02E-04 4.22E-05 3.80E-04 5.14E-04 3.82E-04 1.80E-05 3.95E-04
polycyclic organic matter 2.81E-02 7.18E-02 2.09E-03 2.75E-01 4.40E-03 9.47E-03 9.39E-03
propylene dichloride 1.90E-02 8.22E-03 7.48E-03 3.06E-02 2.11E-02 1.72E-02 1.73E-02
propylene oxide 4.10E-04 3.77E-04 3.81E-05 1.34E-03 3.01E-04 2.35E-04 4.01E-04
quinoline 5.50E-08 6.05E-08 0.00E+00 1.80E-07 3.21E-08 9.35E-08 6.70E-08
1,1,2,2-tetrachloroethane 5.33E-02 2.56E-02 1.77E-02 8.82E-02 5.85E-02 5.23E-02 4.78E-02
titanium tetrachloride 3.40E-06 1.02E-05 0.00E+00 3.79E-05 2.05E-08 6.06E-08 2.18E-08
toluene 1.85E+00 1.64E+00 1.32E-01 5.35E+00 1.64E+00 1.52E+00 1.72E+00
2,4-toluene diamine 4.24E-11 1.59E-10 0.00E+00 5.94E-10 0.00E+00 0.00E+00 0.00E+00
2,4-toluene diisocyanate 4.57E-04 5.42E-04 2.65E-06 1.85E-03 2.12E-04 4.73E-04 7.73E-04
1,1,2-trichloroethane 3.22E-06 6.86E-06 1.85E-08 2.11E-05 3.20E-07 1.20E-06 8.28E-07
vinyl chloride 4.84E-02 3.26E-02 3.26E-03 9.84E-02 5.41E-02 6.43E-02 4.10E-02
xylenes 1.54E+00 1.71E+00 2.54E-01 6.79E+00 1.16E+00 9.65E-01 1.25E+00  
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South 
HAPs Mean Std. Dev. Min Max P501 IQR P502

acetaldehyde 1.07E+00 2.15E-01 7.57E-01 1.57E+00 1.07E+00 3.32E-01 1.05E+00
acetonitrile 9.28E-04 2.25E-03 2.30E-05 8.32E-03 7.14E-05 1.44E-04 6.48E-05
acrolein 6.05E-02 3.18E-02 2.42E-02 1.49E-01 5.24E-02 3.54E-02 5.07E-02
acrylamide 8.08E-08 1.24E-07 7.27E-10 4.50E-07 2.68E-08 8.74E-08 2.44E-08
acrylic acid 4.84E-05 1.48E-04 9.08E-07 5.82E-04 5.89E-06 2.02E-05 2.47E-06
acrylonitrile 3.93E-04 1.87E-04 1.00E-04 7.39E-04 4.24E-04 2.22E-04 4.31E-04
allyl chloride 6.37E-06 9.28E-06 1.39E-06 3.91E-05 4.19E-06 3.66E-06 2.86E-06
aniline 1.84E-05 3.79E-05 2.94E-07 1.37E-04 1.98E-06 1.13E-05 1.56E-06
antimony compounds 2.67E-05 4.33E-05 3.46E-07 1.60E-04 7.67E-06 3.03E-05 5.25E-06
arsenic compounds 4.47E-05 3.08E-05 8.70E-06 1.35E-04 3.91E-05 4.00E-05 3.04E-05
benzene 9.47E-01 2.16E-01 6.35E-01 1.35E+00 9.54E-01 2.84E-01 9.58E-01
benzidine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
benzotrichloride 2.63E-08 6.31E-08 1.35E-09 2.52E-07 7.84E-09 1.45E-08 7.37E-09
benzyl chloride 9.02E-05 3.40E-04 7.81E-07 1.32E-03 1.91E-06 1.38E-06 1.69E-06
beryllium 7.42E-06 7.19E-06 2.11E-06 2.92E-05 4.37E-06 3.94E-06 4.40E-06
bis(chloromethyl)ether 2.34E-09 3.16E-09 2.22E-10 1.26E-08 1.29E-09 1.90E-09 1.10E-09
1,3-butadiene 6.46E-02 3.43E-02 1.86E-02 1.24E-01 5.62E-02 5.52E-02 6.53E-02
cadmium compounds 2.18E-05 2.01E-05 4.92E-06 7.62E-05 1.34E-05 1.20E-05 1.62E-05
carbon tetrachloride 2.70E-01 4.58E-04 2.70E-01 2.71E-01 2.70E-01 1.00E-03 2.70E-01
chlorine 1.33E-03 2.25E-03 2.38E-05 8.34E-03 3.17E-04 1.56E-03 4.16E-04
chloroform 5.80E-02 1.30E-02 4.35E-02 9.31E-02 5.54E-02 1.97E-02 5.75E-02
chloroprene 7.06E-06 3.53E-06 2.56E-06 1.42E-05 6.90E-06 6.43E-06 5.09E-06
chromium IV 6.73E-05 6.83E-05 2.42E-05 2.83E-04 4.49E-05 2.17E-05 5.38E-05
cobalt compounds 1.71E-05 1.81E-05 1.37E-06 7.72E-05 1.31E-05 1.33E-05 1.23E-05
coke oven emissions 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
cyanide compounds 4.22E-02 1.84E-02 2.22E-02 7.80E-02 4.09E-02 2.11E-02 3.71E-02
1,2-dibromo-3-chloropropane 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
dichloroethyl ether 1.97E-07 7.13E-07 3.76E-10 2.77E-06 1.42E-09 1.91E-09 1.10E-09
1,3-dichloropropene 4.25E-02 2.10E-02 1.80E-02 9.58E-02 4.24E-02 2.99E-02 5.00E-02
diesel particulate matter 7.92E-01 2.89E-01 4.73E-01 1.49E+00 7.38E-01 2.44E-01 7.23E-01
diethanolamine 2.20E-06 3.61E-06 1.82E-08 1.26E-05 6.46E-07 3.60E-06 5.91E-07
dimethyl formamide 1.70E-03 1.02E-03 5.87E-04 4.06E-03 1.50E-03 1.25E-03 1.59E-03
2,4-dinitrotoluene 6.90E-06 2.95E-06 2.35E-06 1.34E-05 6.81E-06 4.75E-06 5.90E-06
1,4-dioxane 8.87E-05 2.09E-04 4.80E-06 8.08E-04 1.31E-05 2.76E-05 1.01E-05
epichlorohydrin 4.93E-06 1.26E-05 6.13E-07 5.04E-05 1.75E-06 1.25E-06 1.40E-06
ethyl acrylate 8.76E-06 1.39E-05 4.68E-07 4.65E-05 1.39E-06 1.87E-05 1.12E-06
ethyl carbamate 9.73E-08 3.77E-07 0.00E+00 1.46E-06 0.00E+00 0.00E+00 0.00E+00
ethylene dibromide 1.70E-02 7.94E-03 5.50E-03 3.08E-02 1.45E-02 1.24E-02 1.82E-02
ethylene dichloride 3.17E-02 9.29E-03 1.85E-02 4.90E-02 2.86E-02 1.48E-02 3.29E-02
ethylene oxide 2.05E-03 2.77E-03 2.75E-04 9.44E-03 7.04E-04 1.92E-03 6.65E-04
formaldehyde 1.13E+00 2.90E-01 7.57E-01 1.67E+00 1.08E+00 4.37E-01 1.13E+00
glycol ethers 3.73E-02 1.51E-02 1.83E-02 6.85E-02 3.22E-02 2.23E-02 3.36E-02
hexachlorobenzene 3.76E-07 1.98E-07 7.67E-08 7.38E-07 3.58E-07 2.36E-07 1.66E-07
hexamethylene-1,6-diisocyanate 1.63E-05 4.61E-05 0.00E+00 1.70E-04 0.00E+00 2.18E-06 0.00E+00
hydrazine 2.92E-08 8.16E-08 3.68E-10 3.23E-07 5.90E-09 1.69E-08 7.35E-09
hydrochloric acid 1.28E-01 1.29E-01 3.09E-02 5.59E-01 1.00E-01 9.14E-02 6.72E-02
hydrofluoric acid 1.45E-02 1.55E-02 1.12E-03 6.56E-02 1.37E-02 1.22E-02 4.83E-03
lead compounds 1.14E-03 4.79E-04 6.05E-04 2.18E-03 1.00E-03 8.49E-04 1.10E-03
maleic anhydride 6.26E-06 9.12E-06 3.33E-07 3.30E-05 1.40E-06 1.16E-05 1.36E-06
manganese compounds 5.99E-04 3.79E-04 1.31E-04 1.65E-03 4.59E-04 2.90E-04 4.49E-04
mercury 1.55E-03 7.76E-05 1.51E-03 1.80E-03 1.52E-03 3.00E-05 1.52E-03
methyl bromide 1.05E-01 3.49E-02 6.47E-02 1.77E-01 9.99E-02 4.00E-02 1.02E-01
methyl chloride 1.20E+00 8.28E-03 1.20E+00 1.23E+00 1.20E+00 1.00E-02 1.20E+00
4,4'-methylene bis(2-chloroaniline) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
methylene chloride 3.55E-01 1.04E-01 2.06E-01 5.75E-01 3.44E-01 1.49E-01 3.80E-01
4,4'-methylenedianiline 1.43E-08 1.77E-08 2.20E-09 7.24E-08 7.24E-09 1.14E-08 1.19E-08
methylene diphenyl diisocyanate 1.90E-04 6.95E-04 4.22E-07 2.70E-03 6.52E-06 7.53E-06 5.95E-06
naphthalene 2.81E-02 8.47E-03 1.32E-02 4.01E-02 3.01E-02 1.18E-02 3.23E-02
n-hexane 3.76E-01 1.27E-01 1.70E-01 5.55E-01 3.87E-01 2.00E-01 3.72E-01
nickel compounds 4.33E-04 2.99E-04 1.37E-04 1.40E-03 3.37E-04 2.58E-04 3.32E-04
o-toluidine 7.91E-08 4.93E-08 1.48E-08 2.02E-07 7.90E-08 6.29E-08 5.75E-08
p-dichlorobenzene 2.24E-02 1.19E-02 9.05E-03 5.16E-02 2.12E-02 1.50E-02 2.21E-02
perchloroethylene 1.16E-01 4.87E-02 5.19E-02 2.21E-01 1.00E-01 7.40E-02 1.27E-01
phosgene 1.06E-05 4.11E-05 2.10E-09 1.59E-04 9.85E-09 9.24E-09 1.08E-08
polychlorinated biphenyls 4.09E-04 1.94E-05 3.83E-04 4.47E-04 4.02E-04 3.70E-05 3.95E-04
polycyclic organic matter 1.02E-02 4.56E-03 3.53E-03 1.85E-02 9.69E-03 5.51E-03 9.39E-03
propylene dichloride 1.66E-02 4.66E-03 9.75E-03 2.47E-02 1.51E-02 7.40E-03 1.73E-02
propylene oxide 6.75E-04 5.31E-04 1.89E-04 2.11E-03 5.04E-04 4.71E-04 4.01E-04
quinoline 1.17E-07 1.41E-07 1.74E-08 5.83E-07 7.37E-08 8.10E-08 6.70E-08
1,1,2,2-tetrachloroethane 4.56E-02 1.43E-02 2.48E-02 7.05E-02 4.12E-02 2.22E-02 4.78E-02
titanium tetrachloride 1.66E-06 4.59E-06 6.45E-09 1.64E-05 2.02E-08 3.21E-08 2.18E-08
toluene 1.65E+00 5.46E-01 8.07E-01 2.77E+00 1.73E+00 6.90E-01 1.72E+00
2,4-toluene diamine 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2,4-toluene diisocyanate 1.61E-03 1.94E-03 1.31E-04 7.84E-03 1.10E-03 1.53E-03 7.73E-04
1,1,2-trichloroethane 3.64E-06 7.54E-06 3.97E-07 3.04E-05 8.22E-07 2.45E-06 8.28E-07
vinyl chloride 4.03E-02 2.19E-02 1.27E-02 9.45E-02 3.23E-02 2.69E-02 4.10E-02
xylenes 1.23E+00 3.36E-01 6.95E-01 1.94E+00 1.24E+00 5.17E-01 1.25E+00  

1 Regional median concentration 
2 Total U.S. median concentration 
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Table 6-ASD, poverty, and smoking distribution statistics, for Maryland 
 

MD 1996/2004 Mean Std. Dev. Min Max P50 IQR 
ASD prevalence 
per 10,000       

     Combined data 1 51.9 51.9 0 207 36.9 74.8 
     Combined data 2 50.7 43.2 0 135 44.5 81.2 
Poverty prevalence 10.0% 5.29% 3.7% 24.0% 8.65% 6.75% 
Smoking prevalence 22.4% 5.57% 13.7% 34.2% 22.1% 8.2% 

 
 
 
 
 

MD 1999/2007 Mean Std. Dev. Min Max P50 IQR 
ASD prevalence 
per 10,000       

     Combined data 1 73.8 70.9 0 232 41.5 122 
     Combined data 2 73.9 43.2 0 157 81.9 66.6 
Poverty prevalence 8.82% 4.02% 3.9% 18.5% 7.6% 5.35% 
Smoking prevalence 23.3% 5.03% 12.2% 36.1% 22.7% 6.05% 
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Table 7-Distribution of HAPs, county level, for MD, 1996, in µg/m3 
  
HAPS Mean Std. Dev. Min Max P50 IQR
acetaldehyde 5.09E-01 3.89E-01 8.90E-02 1.61E+00 4.61E-01 5.59E-01
acrolein 7.88E-02 5.39E-02 2.10E-02 2.36E-01 6.40E-02 7.18E-02
acrylonitrile 5.90E-04 5.43E-04 4.64E-05 1.89E-03 4.19E-04 4.67E-04
arsenic compounds 1.39E-04 3.29E-04 6.13E-06 1.54E-03 3.76E-05 6.43E-05
benzene 1.08E+00 5.35E-01 5.95E-01 2.96E+00 8.95E-01 6.21E-01
beryllium 7.61E-06 7.53E-06 6.99E-07 3.38E-05 5.33E-06 7.34E-06
1,3-butadiene 3.98E-02 4.05E-02 1.01E-02 2.00E-01 2.64E-02 4.00E-02
cadmium compounds 4.93E-05 5.49E-05 2.24E-06 2.12E-04 2.27E-05 7.86E-05
carbon tetrachloride 8.80E-01 3.77E-04 8.80E-01 8.81E-01 8.80E-01 0.00E+00
chloroform 8.49E-02 1.57E-03 8.32E-02 8.93E-02 8.45E-02 2.25E-03
chromium compounds 2.63E-04 2.94E-04 2.52E-05 1.38E-03 1.58E-04 3.42E-04
1,3-dichloropropene 5.41E-02 5.79E-02 4.47E-03 2.62E-01 3.48E-02 6.54E-02
diesel particulate matter 1.88E+00 6.49E-01 8.11E-01 3.45E+00 1.79E+00 9.00E-01
ethylene dichloride 6.11E-02 7.43E-05 6.10E-02 6.12E-02 6.11E-02 1.00E-04
ethylene oxide 1.36E-03 2.37E-03 4.98E-05 1.17E-02 7.38E-04 1.21E-03
formaldehyde 9.23E-01 5.10E-01 4.03E-01 2.49E+00 8.06E-01 6.96E-01
hexachlorobenzene 9.31E-05 5.05E-08 9.30E-05 9.31E-05 9.31E-05 1.00E-07
hydrazine 3.84E-08 8.13E-08 2.34E-11 3.78E-07 4.98E-09 2.79E-08
lead compounds 1.63E-03 1.95E-03 6.06E-05 6.44E-03 8.28E-04 2.37E-03
manganese compounds 1.18E-03 1.33E-03 8.10E-05 4.76E-03 6.29E-04 1.32E-03
mercury compounds 1.80E-03 3.06E-04 1.51E-03 2.77E-03 1.75E-03 4.45E-04
methylene chloride 2.81E-01 1.22E-01 1.61E-01 6.84E-01 2.57E-01 1.74E-01
nickel compounds 6.65E-04 8.75E-04 4.80E-05 4.08E-03 3.05E-04 8.78E-04
PAH-7 2.26E-03 1.80E-03 5.77E-04 8.46E-03 1.91E-03 2.19E-03
perchloroethylene 2.11E-01 8.17E-02 1.44E-01 5.04E-01 1.82E-01 7.80E-02
polycyclic organic matter 3.94E-02 3.72E-02 6.38E-03 1.70E-01 2.94E-02 4.40E-02
propylene dichloride 3.41E-05 3.31E-05 2.92E-06 1.12E-04 2.20E-05 2.92E-05
quinoline 2.03E-07 3.18E-07 5.27E-10 1.49E-06 7.56E-08 2.50E-07
1,1,2,2-tetrachloroethane 2.65E-04 2.74E-04 2.09E-05 9.76E-04 1.53E-04 2.21E-04
trichloroethylene 1.00E-01 2.18E-02 8.18E-02 1.70E-01 9.12E-02 2.57E-02
vinyl chloride 1.27E-03 2.61E-03 8.87E-05 1.32E-02 5.69E-04 7.57E-04  
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Table 8-Distribution of HAPs, county level, for MD, 1999, in µg/m3 

HAPs Mean Std. Dev. Min Max P50 IQR
acetaldehyde 1.09E+00 4.60E-01 6.29E-01 2.46E+00 9.73E-01 6.83E-01
acetonitrile 1.71E-04 3.79E-04 1.02E-05 1.93E-03 7.49E-05 1.32E-04
acrolein 5.35E-02 4.23E-02 1.17E-02 1.81E-01 4.10E-02 6.36E-02
acrylamide 4.65E-07 1.38E-06 2.64E-11 6.16E-06 2.85E-08 8.06E-08
acrylic acid 1.36E-05 1.96E-05 5.51E-09 6.95E-05 2.72E-06 1.88E-05
acrylonitrile 4.89E-04 3.54E-04 7.31E-05 1.23E-03 3.62E-04 5.91E-04
allyl chloride 4.17E-06 3.73E-06 3.35E-07 1.75E-05 3.28E-06 4.56E-06
aniline 1.91E-06 3.44E-06 2.87E-09 1.65E-05 8.24E-07 1.64E-06
antimony compounds 7.83E-05 1.38E-04 5.49E-09 5.06E-04 1.52E-05 7.13E-05
arsenic compounds 6.27E-05 1.23E-04 3.20E-06 6.29E-04 3.03E-05 3.70E-05
benzene 8.96E-01 4.36E-01 4.07E-01 2.23E+00 8.20E-01 6.13E-01
benzotrichloride 1.47E-08 1.71E-08 4.19E-11 5.73E-08 9.32E-09 1.44E-08
benzyl chloride 1.57E-05 6.90E-05 1.37E-07 3.43E-04 1.39E-06 2.03E-06
beryllium 1.02E-05 1.03E-05 1.59E-06 5.22E-05 8.50E-06 9.06E-06
bis(chloromethyl)ether 2.41E-09 2.81E-09 6.87E-12 9.40E-09 1.53E-09 2.36E-09
1,3-butadiene 5.40E-02 5.59E-02 4.68E-03 2.16E-01 3.45E-02 6.89E-02
cadmium compounds 6.32E-05 8.26E-05 2.25E-06 3.80E-04 4.43E-05 8.50E-05
carbon tetrachloride 2.70E-01 4.59E-04 2.70E-01 2.71E-01 2.70E-01 1.00E-03
chlorine 4.91E-04 9.78E-04 1.87E-08 4.85E-03 1.91E-04 5.96E-04
chloroform 6.30E-02 2.80E-02 3.51E-02 1.35E-01 5.78E-02 3.56E-02
chloroprene 6.14E-06 4.62E-06 6.49E-07 1.60E-05 5.02E-06 7.50E-06
chromium IV 5.31E-05 8.09E-05 2.21E-06 3.66E-04 3.14E-05 4.14E-05
cobalt compounds 1.29E-05 1.79E-05 3.23E-08 8.57E-05 6.39E-06 1.32E-05
cyanide compounds 4.35E-02 3.31E-02 8.58E-03 1.54E-01 3.35E-02 3.89E-02
dichloroethyl ether 4.35E-08 2.01E-07 5.21E-12 9.98E-07 1.31E-09 2.56E-09
1,3-dichloropropene 4.80E-02 4.99E-02 5.60E-03 2.21E-01 3.28E-02 5.44E-02
diesel particulate matter 1.03E+00 3.88E-01 4.42E-01 2.06E+00 9.51E-01 5.76E-01
diethanolamine 7.14E-07 1.16E-06 6.06E-11 3.65E-06 9.80E-08 1.26E-06
dimethyl formamide 1.64E-03 1.98E-03 1.54E-04 8.92E-03 9.56E-04 1.73E-03
2,4-dinitrotoluene 8.32E-06 5.83E-06 7.39E-07 2.12E-05 7.47E-06 1.01E-05
1,4-dioxane 2.01E-05 5.85E-05 8.41E-07 2.96E-04 6.19E-06 1.23E-05
epichlorohydrin 1.25E-06 9.05E-07 1.34E-07 3.10E-06 1.07E-06 1.47E-06
ethyl acrylate 2.65E-06 4.82E-06 7.25E-08 1.94E-05 8.47E-07 1.56E-06
ethyl carbamate 1.86E-06 3.95E-06 0.00E+00 1.78E-05 0.00E+00 2.02E-06
ethylene dibromide 1.39E-02 1.09E-02 4.41E-08 3.63E-02 1.30E-02 1.29E-02
ethylene dichloride 2.68E-02 1.24E-02 5.28E-03 5.12E-02 2.64E-02 1.38E-02
ethylene oxide 4.99E-03 5.88E-03 5.59E-04 2.74E-02 2.85E-03 6.10E-03
formaldehyde 1.05E+00 5.09E-01 4.72E-01 2.41E+00 9.26E-01 7.99E-01
glycol ethers 2.48E-02 2.88E-02 1.51E-03 1.13E-01 1.60E-02 2.89E-02
hexachlorobenzene 8.47E-07 8.30E-07 4.52E-08 3.23E-06 5.06E-07 7.66E-07
hexamethylene-1,6-diisocyanate 3.84E-05 6.47E-05 0.00E+00 3.04E-04 1.30E-05 5.56E-05
hydrazine 1.64E-08 2.66E-08 1.24E-11 1.13E-07 5.18E-09 1.45E-08
hydrochloric acid 1.36E-01 1.03E-01 9.32E-03 3.76E-01 1.03E-01 1.59E-01
hydrofluoric acid 1.21E-02 1.10E-02 3.17E-05 4.03E-02 1.03E-02 1.51E-02
lead compounds 1.79E-03 1.32E-03 3.33E-04 6.88E-03 1.68E-03 1.54E-03
maleic anhydride 4.73E-06 6.45E-06 3.38E-09 2.60E-05 1.14E-06 6.91E-06
manganese compounds 1.51E-03 2.16E-03 1.70E-05 8.30E-03 3.71E-04 2.51E-03
mercury 1.64E-03 2.14E-04 1.50E-03 2.53E-03 1.57E-03 1.65E-04
methyl bromide 1.09E-01 7.14E-02 4.71E-02 3.53E-01 8.63E-02 8.05E-02
methyl chloride 1.20E+00 3.77E-03 1.20E+00 1.21E+00 1.20E+00 0.00E+00
methylene chloride 3.20E-01 2.16E-01 3.58E-02 9.29E-01 2.89E-01 3.09E-01
4,4'-methylenedianiline 1.35E-08 1.58E-08 3.35E-11 5.32E-08 8.46E-09 1.30E-08
methylene diphenyl diisocyanate 4.64E-05 1.69E-04 2.09E-09 8.46E-04 5.38E-06 1.72E-05
naphthalene 1.85E-02 1.36E-02 2.72E-03 5.75E-02 1.62E-02 2.01E-02
n-hexane 3.15E-01 2.44E-01 6.44E-02 1.12E+00 2.52E-01 3.36E-01
nickel compounds 3.73E-04 3.11E-04 3.91E-05 1.33E-03 2.98E-04 4.46E-04
o-toluidine 8.32E-08 7.56E-08 3.35E-09 3.25E-07 6.47E-08 1.01E-07
p-dichlorobenzene 2.61E-02 2.69E-02 3.03E-03 1.19E-01 1.82E-02 3.02E-02
perchloroethylene 1.09E-01 9.12E-02 4.82E-03 3.74E-01 9.13E-02 1.11E-01
phosgene 2.46E-06 1.19E-05 3.84E-11 5.87E-05 8.99E-09 1.38E-08
polychlorinated biphenyls 4.28E-04 3.84E-05 3.85E-04 5.35E-04 4.16E-04 4.50E-05
polycyclic organic matter 2.40E-02 4.01E-02 2.57E-03 1.94E-01 1.22E-02 1.30E-02
propylene dichloride 1.44E-02 6.94E-03 2.38E-03 2.80E-02 1.42E-02 7.70E-03
propylene oxide 7.79E-04 7.37E-04 9.66E-05 3.06E-03 4.96E-04 1.10E-03
quinoline 1.08E-07 1.28E-07 2.70E-10 4.29E-07 6.80E-08 1.05E-07
1,1,2,2-tetrachloroethane 3.88E-02 2.12E-02 2.22E-03 8.04E-02 3.83E-02 2.35E-02
titanium tetrachloride 6.78E-06 1.09E-05 1.07E-10 3.83E-05 3.17E-08 1.22E-05
toluene 1.56E+00 1.23E+00 3.51E-01 5.70E+00 1.22E+00 1.54E+00
2,4-toluene diisocyanate 4.01E-03 3.71E-03 2.22E-04 1.53E-02 2.92E-03 4.33E-03
1,1,2-trichloroethane 7.79E-05 2.51E-04 1.09E-07 1.25E-03 3.81E-06 4.66E-05
vinyl chloride 3.14E-02 2.42E-02 9.78E-05 8.18E-02 2.99E-02 2.94E-02
xylenes 1.21E+00 7.64E-01 4.11E-01 3.76E+00 9.37E-01 9.81E-01  
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Table 9-HAPs with highest component loadings in principal components significantly 
associated with ASD prevalence  
 
U.S. 1996  
   pc1 (69% of HAPs variance)  
HAP Chemical Family 
   acetaldehyde aldehyde 
   formaldehyde aldehyde 
   benzene aromatic hydrocarbon 
   beryllium metal 
   cadmium compounds* metal 
   lead compounds† metal 
   nickel compounds* metal 
   methylene chloride* halogenated hydrocarbon 
   1,3-dichloropropene halogenated hydrocarbon 
   diesel particulate matter† hydrocarbon mixture 
  
  
  
U.S. 1999  
   pc1 (48% of HAPs variance)  
HAP٨ Chemical Family 
   acetaldehyde aldehyde 
   benzene aromatic hydrocarbon 
   cadmium compounds* metal 
   lead compounds† metal 
   1,3-dichloropropene halogenated hydrocarbon 
 
 
 
* Statistically significant in Windham et al. (2006)  
† Moderately significant in Windham et al.  (2006) 
٨ Consistent with HAPs with high component loadings in pc1 for 1996. 
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Table 10-Results of regression models for ASD prevalence 
 

Variable Coef. Standard error p-value Sequential R2
adj 

Model for US 2004 ASD prev.   0.0000 0.4791 
HAPs  pc1 0.126 0.027 0.000 
HAPs  pc2 -0.315 0.131 0.021 
HAPs  pc3 -0.419 0.107 0.000 
HAPs pc1^2 0.024 0.007 0.002 

0.2661 

Poverty prevalence -0.459 0.106 0.000 0.1747 
            Constant -0.498 0.184 0.010 - 
     
     
Model for US 2007 ASD prev.   0.0001 0.2885 

HAPs pc1 0.099 0.021 0.000 
 HAPs pc1^2 0.003 0.002 0.204 0.2885 

 Constant -0.106 0.145 0.469 - 
     
     

MD 2004 ASD prev. combined data 1   0.0000 0.5197 
Gender 1.534 0.243 0.000 0.4862 
Poverty prevalence -0.223 0.122 0.076 -0.0271 

            Constant -0.995 0.196 0.000 - 
     
     
MD 2004 ASD prev. combined data 2   0.0095 0.1577 

Poverty prevalence -0.434 0.158 0.010 0.1577 
 Constant -0.080 0.156 0.609 - 
     
     
MD 2007 ASD prev. combined data 1   0.0000 0.8175 

Gender 1.779 0.143 0.000 0.7933 
Poverty prevalence -0.208 0.088 0.023 -0.0201 
Urbanicity -0.448 0.191 0.025 0.0484 

  Constant -0.770 0.175 0.000 - 
     
     
MD 2007 ASD prev. combined data 2     

No satisfactory models     
 
 
 
 
 
 

 52



 

Chapter 5: Discussion 

5.1 U.S. Analyses 
 
 We observed a significant, positive association between hazardous air pollutants 

and U.S. ASD prevalence on a statewide level for the two separate study populations 

examined. The significant principal components in our two U.S. analyses both had 

quadratic relationships with ASD prevalence. This may indicate that there is a certain 

exposure threshold among those who are genetically susceptible to ASD with regard to 

HAPs.  

 There is a dearth of research on HAPs and ASD prevalence with which to 

compare our results. Our findings did not support Palmer et al.’s (2006 & 2009) findings 

with regard to ambient mercury and ASD prevalence. Cadmium, lead, methylene 

chloride, and nickel featured prominently in both the Windham et al. (2006) study and 

our study, although cadmium was the only one with statistical significance in both.  

 The HAPs that were most effectively captured by our principal components, and 

that featured significantly in our regression models for both the 1996/2004 and the 

1999/2007 analyses, were acetaldehyde, benzene, cadmium compounds, lead compounds, 

and 1,3-dichloropropene. Brief overviews of some of the health-related data available on 

these five HAPs are provided in the following subsections. It should be noted that many 

more HAPs were estimated in the 1999 NATA than were in the 1996 NATA, and thus, 

there is a possibility that additional HAPs would have been found significant in both of 

our two study populations had 1996 estimates been available.  
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5.1.1 Health-related data for prominent, consistent HAPs 
 
Acetaldehyde 
 
 The largest sources of emitted acetaldehyde, as used in the NATA estimations, 

were from the combustion of fuels from mobile sources (EPA, 1996c; EPA, 1999d). EPA 

has classified it has a Group B2 probable human carcinogen (EPA, 1999c), and chronic 

exposure effects include symptoms similar to those associated with alcoholism (The 

Merck Index, 1989). Studies have investigated health effects of acetaldehyde, particularly 

as an intermediate metabolite of ethanol, and have found that chronic exposure to 

acetaldehyde is associated with the inhibition of cell growth, and may also affect proper 

regulation of cell division and apoptosis (Zimmerman, Crawford, Dahl, Simon, & 

Mapoles, 1995). Other studies indicated that acetaldehyde stimulates the production of 

auto-antibodies, leading to adverse immune responses (Pietrzak, Shanley, & Kroon, 

1995), and autoimmune responses have been postulated as possible mechanisms for the 

development of ASD (Lawler et al., 2004). Acetaldehyde has also been shown to have 

teratogenic effects. Neural tube closure abnormalities and developmental delay were 

observed in mice following prenatal acetaldehyde exposure (O'Shea & Kaufman, 1979; 

O'Shea & Kaufman, 1981).  

However, peer-reviewed studies linking acetaldehyde to ASD are scarce, and 

propose various indirect mechanisms of effect. One such postulated mechanism involves 

the cholinergic system of the basal forebrain, which is associated with learning and 

cognitive development, and with the ability to focus and respond appropriately to the 

environment (Lam, Aman, & Arnold, 2005). Reports of neuropathological abnormalities 

of cholinergic neurons in some individuals with autism have led to speculation the 
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possible role of the reduced release of the neurotransmitter acetylcholine, which is critical 

to proper functioning of the cholinergic system, in the development of ASD (Lam et al., 

2005). Decreased release of acetylcholine, has in turn, been linked with higher 

acetaldehyde concentrations in the body (Jamal et al., 2007).  

Benzene 
 

The largest emitted sources of benzene, as used in the NATA estimates, were 

from mobile sources (EPA, 1996c; EPA, 1999d). Benzene is an EPA classified Group A 

carcinogen and causes blood disorders and chromosomal aberrations in humans (EPA, 

2000b). Research on developmental effects on humans has been inconclusive, but animal 

studies have observed low birth weight among the offspring of maternal animals exposed 

to benzene. The offspring of women occupationally exposed to solvents during 

pregnancy showed cognitive, motor, and behavioral impairment as compared with 

unexposed children in the study by Laslo-Baker et al. (2004), although benzene was not 

specifically listed as one of the common exposure solvents in the study.  Xylenes and 

hexane were listed as common occupational solvent exposures in the study, however, 

and, although not modeled for ambient concentrations in the 1996 NATA, they were in 

1999. Both were observed to be associated with our 2007 ASD prevalence by way of pc1.  

Only very indirect associations between ASD and benzene exposure have been 

reported. Researchers investigating possible impairment of detoxification capabilities in 

children with ASD have found elevated body burdens of a number of solvents, including 

benzene and xylene, in diagnosed children (Edelson & Cantor, 1998). A cross-sectional 

Minnesota study found increased prevalence of ASD in school districts with at least one 

National Priority List (NPL) Superfund site within a 10-mile radius, as compared with 
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districts with no such sites within that radius (DeSoto, 2009). The most frequently found 

toxins at NPL sites include benzene, as well as cadmium and lead, two other 

contaminants which featured significantly in our analyses (Agency for Toxic Substances 

and Disease Registry, 2007).  

Lead 
 
 Lead, as addressed in Chapter 1, has been well-established as a neurotoxicant. 

However, environmental lead has decreased dramatically over the fast few decades while 

ASD diagnoses have increased. It is likely that in any observed spatial association of 

ambient lead with ASD prevalence, lead would be a proxy for other highly correlated and 

potentially causal contaminants.  

Cadmium 
 
 Cadmium, another heavy metal, has been found associated with impaired learning 

ability and aberrant behavior in animals prenatally exposed (Agency for Toxic 

Substances & Disease Registry, 2008). Findings with regard to human 

neurodevelopmental effects have been mixed. However, a dose-dependent relationship 

between urinary cadmium levels and the impairment of certain neurobehavioral functions 

such as concentration, equilibrium, and psychomotor functions, and increased signs of 

peripheral neuropathy, were reported among workers in a cadmium production plant as 

compared with a control group. The findings persisted after adjustment for age, exposure 

to other neurotoxicants, and existing renal impairment  (Viaene et al., 2000). Cadmium 

exposure has also been associated with impaired fetal growth and low birth weight 

(Kuhnert, Kuhnert, Debanne, & Williams, 1987), and is a suspected endocrine disruptor. 
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1,3-Dichloropropene 
 
 No studies have been performed to observe human developmental or 

neurodevelopmental effects of 1,3-dichloropropene exposure. However, exposure has 

been linked to low birth weight and fewer offspring in rats (EPA, 2000a). Its primary use 

is as a nematocide, and EPA has classified it as a Group B2 probable carcinogen.  

5.2 Maryland analyses 
 
 Our findings for the U.S. analyses were not supported by the findings from our 

Maryland sub-analyses. Poverty prevalence and especially gender were the prominent 

predictors of variance of ASD prevalence throughout the state. Increased risk associated 

with the male gender and with higher social class unadjusted for artifacts are findings that 

are consistent with the existing literature. However, unlike in the U.S. analyses, none of 

the principal components of HAPs were associated with ASD prevalence.  

One reason for this may be that the NATA methods for long-term estimates allow 

for broad geographic coverage, but do not capture peak spatial and temporal 

concentrations which may have more effect on smaller geographic areas (EPA, 1996b; 

EPA, 1999a). Another possibility is that there may be less variance in HAPs distribution 

across Maryland counties as compared with distributions across states. Also, mobility 

between counties may often be greater than between most states, and many children may 

be enrolled in schools in counties that they do not reside in. The possibility that our U.S. 

analyses findings are spurious must also be considered. 
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 Had significant associations been observed between certain HAPs and ASD 

prevalence in the sub-analyses, interpretive caution would be warranted due to the small 

sample sizes of theses analyses, especially with regard to the disaggregated data.  
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5.3 Study Limitations 
 
 The mobility factor, and thus, possible misclassification of exposure, is one of the 

primary limitations of this study. The location of the school of attendance does not 

necessarily equate to the location of prenatal residence or birth. According to the U.S. 

Census Bureau, approximately 16% of the entire U.S. population moves in a given year, 

but most moves are within-county. However, approximately one-third of 20 to 29 year 

olds moved (U.S.Census Bureau, 2001). Another study in Texas that found about one-

third of mothers moved between conception and delivery (Canfield, Ramadhani, 

Langlois, & Waller, 2006). 

 Families with children with ASD may also move post-diagnosis, to counties or 

cities with better access to therapeutic services or schools with better resources for 

special needs students. These counties may be in areas with higher ambient 

concentrations of HAPs, such as many urban areas. However, we did not observe any 

statistically significant association of ASD prevalence with urbanicity in our Maryland 

sub-analyses.  

 Counties with better access to service resources, and with better schools, may also 

define areas with lower prevalence of poverty. For example, this may explain the 

relatively high prevalence of ASD in Howard County. The percentage of people of all 

ages in Maryland living in poverty were not only lowest in Howard County in 1996 and 

1999, but also in 2004 and 2007 (U.S.Census Bureau, 2007a). The observed association 

between ASD prevalence and poverty prevalence might also be explained as an artifact of 

case ascertainment.  
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 Case ascertainment presents another area of potential misclassification in this 

study. Case ascertainment, as derived from educational administrative data, was not 

standardized across states. Under IDEA there are 13 different diagnostic eligibility codes 

available for states’ use in administering services to students. Depending on the state and 

on the year, children with ASD and co-morbid disorders may be classified under the 

“multiple disabilities” code, or under another diagnostic code (DAC, 2004a; DAC, 

2007a). Even those without co-morbid disorders may be served under different 

categories, or not served at all, depending on the eligibility criteria used by the particular 

state (Yeargin-Allsopp et al., 2003). Within-state discrepancies have also been reported 

on a county level, district level, and even on a school level basis, attributed to available 

resources (Palmer, Blanchard, Jean, & Mandell, 2005). However, despite the potential for 

state-discretion misclassification errors, some research suggests that, overall, ASD 

diagnoses have been made with reliability and specificity in the field (Jick, Kaye, & 

Black, 2003; Hill et al., 2001; Mahoney et al., 1998). 

 “Autism” was introduced as a separate eligibility code under the IDEA in 1990. 

Several studies since have indicated that diagnostic substitution ensued. Shattuck (2006), 

in a review of state-by-state data trends between 1984 and 2003, reported concomitant 

decreases in the number of children coded under “mental retardation” and “specific 

learning disability” as those coded under “autism” increased. However, a study that used 

nationally aggregated cohort data trends reported no concomitant decrease in 

classifications of “mental retardation” and “speech/language impairment” (Newschaffer 

et al., 2005). Shattuck (2006) also acknowledged that any discovery of diagnostic shift 
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with regard to the autism category does not necessarily preclude the role of 

environmental risk factors in ASD etiology. 

 Any diagnostic shifting that has indeed occurred may also be attributed to another 

relatively new category, “developmental delay”, which has been experiencing dramatic 

growth as well (Shattuck, 2006). In fact, federal law in 1997 allowed states the option to 

extend eligibility under the “developmental delay” category to include children ages 6-9 

years, whereas it was previously limited to children under 6 years of age (Pub. L. No. 

105-17, 111 Stat. 37). This extension may have contributed to an underestimation of 8-

year-olds with ASD in our study (DAC, 2004a; DAC, 2007a; Yeargin-Allsopp et al., 

2003).  

 Underestimation of ASD prevalence must also be attributed to the fact that our 

data excludes counts from private and charter schools, as well as children in residential 

placements and other institutions. Lastly, the child count data is measured at a point-in-

time, and does not represent a cumulative count of all students served throughout the 

school year. It is possible that more children are served throughout the year than are 

collected from count reports.  

 Underestimation of exposure is another limitation of this study. Comparison of 

some NATA estimates with monitored data and with personal exposure measurements 

have consistently found that the NATA models underestimate the majority of the HAPs’ 

actual ambient concentrations as well as actual personal exposure (Payne-Sturges et al., 

2004; Rosenbaum et al., 1999; EPA, 1996a; EPA, 1999b). NATA reports a “level of 

confidence” for each HAP’s ASPEN-modeled estimates. Benzene receives a high level of 

confidence, while most of the heavy metals, including cadmium, lead, and beryllium, are 
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rated at low levels. Acetaldehyde and formaldehyde receive medium levels of confidence 

(EPA, 1996b).  

 It is important to note that NATA estimated HAPs reflect only inhalation 

exposures from ambient air, and thus do not represent total possible exposures to these 

contaminants. Dermal, ingestion, and injection exposures are not accounted for, as well 

as inhalation of indoor exposures. Indoor sources factor heavily into personal exposures, 

especially occupational sources and smoking and environmental tobacco smoke (ETS). 

Much of the general population’s exposures to benzene, acetaldehyde, cadmium, lead, 

and many other contaminants featured significantly in our regression models come from 

smoking and ETS. However, smoking prevalence was not observed to be significantly 

associated with ASD prevalence at an ecological level in our analyses.  

 Due to the ecological design of our analyses, no causal associations between 

HAPs and ASD prevalence can be made.   

 Lastly, other study limitations include those specific to the data sources we used, 

which are addressed in detail by those particular sources, and to which we have provided 

references to throughout this study. 

5.4 Study Strengths 
 
 Strengths of this study include the examination of two separate study populations 

for both the U.S. and the Maryland analyses in order to seek consistency in findings. We 

also sought to validate any findings from the U.S. analyses on a finer scale with our 

Maryland sub-analyses.  

In addition, we strived to improve exposure assessment estimates by using the 

NATA’s ASPEN modeled estimates as surrogates of exposure, which incorporate 
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meteorological, decay, deposition, secondary formation, and other data, into the models, 

along with emissions from not only major and area point sources, but also on-road and 

non-road mobile sources, and background contributions. To further improve exposure 

assessment, we selected median, rather than average, ambient concentrations to best 

represent statewide and county-level estimates with reduced influence from outliers.  

 Principal component analysis is an excellent tool for exploratory research which 

provides a scientifically rigorous method of data dimensionality reduction that reflects 

both the common and unique variability of the data. In our study, using principal 

component analysis provided a more realistic assessment of HAPs exposure than the 

mere selection of individual or a small assortment of HAPs would have, because it 

reflected the highly correlative nature of the air toxics.  

 Lastly, we accounted for any potential confounding effects of poverty prevalence, 

smoking prevalence, and, in our sub-analyses, urbanicity, gender, and ethnicity.   
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Chapter 6: Conclusion 
 
 This study provides the first ecological examination of HAPs distribution in 

relation to ASD prevalence, by state, for the U.S. We observed a significant, positive 

association, but it did not endure at the county-level for the Maryland sub-analysis.  

 The likelihood that development of ASD results from a web of interactions 

between multiple genes and environmental factors specific to each individual child, 

presents challenges to the investigation of those potential environmental risk factors, 

especially through ecological analyses.  

 Large, comprehensive case-control studies such as U.C. Davis’s Childhood 

Autism Risks from Genetics and the Environment (CHARGE) study, or longitudinal 

studies such as the National Children’s Study are better suited to determine potential 

causative factors. Individual exposure and case ascertainment data, along with 

biomonitoring data, and other physical, genetic, and modifying factors, can be obtained 

from these types of studies. The National Children’s Study, funded by Congress and a 

consortium of federal agencies, will follow more than 100,000 children from before birth 

through age 21. Assuming an ASD prevalence of 1 in 100 children, there may be 

approximately 1,000 children in the study cohort expected to receive an ASD diagnosis, 

and a nested case-control study could be efficiently designed.  

 It is possible that prenatal exposure to air toxics may contribute to an individual’s 

overall risk of ASD. Future research should continue to include this exposure as part of a 

comprehensive assessment of environmental risks for development of ASD. 
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