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Abstract: Multiple imputation (MI) is a popular approach to handling missing data, 

however, there has been limited work on diagnostics of imputation results. We 

propose two diagnostic techniques for imputations based on the propensity score (1) 

compare the conditional distributions of observed and imputed values given the 

propensity score; (2) fit regression models of the imputed data as a function of the 

propensity score and the missing indicator. Simulation results show these diagnostic 

methods can identify the problems relating to the imputations given the missing at 

random assumption. We use 2002 US Natality public-use data to illustrate our 

method, where missing values in gestational age and in covariates are imputed using 

Sequential Regression Multiple Imputation method.   
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Chapter 1: Introduction 

Missing data is a ubiquitous problem in the analysis of survey data. Missing data for 

individual variables can occur due to nonresponse for sensitive or difficult items (e.g. 

income measures), mistakes in responding to survey questions (e.g. incorrect skips) or 

nonresponse to complete phases of a multi-phase survey (e.g. refusal of medical 

examination in NHANES). Two potential problems with the analysis of incomplete data 

are: (1) loss of information or power due to missing data; and (2) potential bias due to 

systematic differences between observed data and the unobserved data (Barnard and 

Meng, 1999).  

1.1 Missing Data Mechanisms 

There are three types of missing data mechanisms: missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR 

occurs if the probability of missingness is the same for all units and missing occurs 

completely at random. In other words, a missing response is independent of both 

observed and missing values (Rubin 1976; Little and Rubin, 2002). A second condition is 

MAR, where missingness depends on only the observed characteristics of a participant, 

but not on the missing values themselves (Rubin 1976; Little and Rubin, 2002). Lastly, 

MNAR mechanism implies that missingness is related to the unobserved values of the 

variables with missing data. In such situation, the probability of missingness varies and 

cannot be characterized by available predictors (Rubin 1976; Little and Rubin, 2002).  
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1.2 Existing Approaches to Missing Data 

There are several approaches to handling missing data. The most simple and convenient 

method is complete case analysis, by which only individuals with complete information 

on all variables are included in the statistical analysis. Available case analysis (pairwise 

deletion) includes all available data under analysis, instead of removing the entire cases 

that have missing values on any of the variables. However, the inference may base on 

different subjects for different estimators. The main drawback of these two methods is 

that MCAR assumption must be held. Otherwise, they may lead to biased results.   

Maximum likelihood estimation method obtains the maximum likelihood parameter 

estimates of interest by maximizing the observed data likelihood given that the missing 

values are MAR. The disadvantages of this method are that it requires fairly sophisticated 

computations and they are specific to the model being applied.  

Imputation procedures are techniques for assigning plausible values to missing data. 

Imputation techniques range from the simplest mean imputation to multiple imputation 

(MI), all of which produce a completed data set that can be analyzed using standard 

complete data software procedures. Furthermore, unlike maximum likelihood estimation 

that is problem-specific and may require totally different and complicated computational 

procedures to for different models, using the same imputation approach to handling 

missing data on public-use datasets provides consistency across different scientific 

questions (Parker and Schenker,2007).  

Single imputation methods, including mean imputation, regression imputation, hot-deck 

imputation, stochastic imputation, can be viewed as precursors of multiple imputation. 

For single imputation, only one plausible value is imputed for each missing observation. 
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The main disadvantage of this method is that the imputed values are treated as if they 

were true values, so that it fails to account for the added uncertainty due to the 

assignment of a plausible, yet not actual, value for each missing value. Therefore, the 

parameter estimate and variance may be underestimated.   

1.3. Multiple Imputation  

The ideas of multiple imputation for missing data were first proposed by Donald Rubin in 

1977 and now a variety of statistical software packages have capabilities to conduct MI.  

Multiple imputation method meets two requirements to develop accurate parameter 

estimates and variances: (1) the imputation should be model-based in a way that the 

distributions of the variables and the relationships among the variables can be captured; 

(2) the imputation method should account for the uncertainty in the imputed values. The 

multiple repetitions of imputation procedures enable the estimation of variance that is 

added due to imputing missing values in the data set. 

Multiple imputation, an extension of the single imputation method, comprises three steps: 

(1) each missing value is replaced by a set of K>1 plausible values to generate K 

complete data sets (Sinharay and Russell, 2001). The critical component of this step is the 

imputation model selection, which is defined by a set of variables available to the 

imputation process and the distributional assumptions; (2) each of K complete data sets 

are then analyzed using standard statistical analyses. The results are K point estimates 

and their corresponding estimated variances; (3) the results from the K completed data 

sets are combined to create parameter estimates and standard errors. Estimates of 

population parameter are computed using an average of the parameter estimates of l=1, 

…, K completed data set from step 2 



 

 4 

 

θ =
1

K
  θl

 K
l=1  , 

where θl
 =estimate of θ from the completed data set l=1, … , K. 

The corresponding variance for θ  is estimated by a simple combination of the average of 

the K variance estimates and the variance of the K point estimates.   

var(θ ) =U +  
K+1

K
 × B, 

where U  = within-imputation variance= 
1

K
 var(θl

 )K
l=1 ,   

           B=between-imputation variance=
1

K−1
 (θl

 − θ )K
l=1 . 

Rubin (1987) showed that the efficiency of an estimate in MI analysis is approximately 

(1 +
γ

K
)−1 , 

where  γ is the fraction of missing values and K is the number of multiple repetitions of 

the imputation process. For example, consider a dataset with 25% missing values, K=5 

imputations gives 95.2% efficiency. Virtually all of the desirable efficiency can be 

achieved by using K=5 to K=10 independent repetitions of the imputation process. 

The success of MI depends on two required assumptions. First, an important step in 

generating multiple imputations is to assume an imputation model, which is defined by a 

set of variables and the distributional assumption.  The selection of variables to include in 

the imputation model directly affects the quality of imputations. A general rule of thumb 

is to incorporate as many as possible the available data and the possible variables 

correlated with the analysis variables, and at the same time keep the model building and 

fitting feasible (Barnard and Meng, 1999). Usually, the set of variables included in the 

imputation model for an MI analysis is much larger and broader in scope than the 

variables required for the analytic model. Failure to include one or more variables in the 
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imputation model can yield less accurate imputed values. Except for the selection of 

variables, in order to generate imputations, one must assume a probability model on the 

complete data. This multivariate model must preserve the associations among the many 

variables included in the imputation model. A variety of algorithms like Markov Chain 

Monte Carlo (MCMC) method, or Sequence Regression Model, can be used to generate 

the imputations.  

Second, MI assumes that the missing data are missing at random (MAR), that is, the 

probability that an observation is missing only depends on the observed values, but not on 

the missing value (Rubin, 1976). Let Y be a data matrix, Ymis be the missing part of Y 

and Yobs be the observed part of Y. Suppose M is a missing data indicator matrix of the 

same dimension of Y, where the elements are zero or one depending on whether the 

corresponding elements of Y are observed or missing. MAR implies that P M Y =

P M Yobs  . In principle, it is impossible to test the assumption of MAR without 

additional data collection, since information that would be used to make such a test is 

unavailable (Abayomi, Gelman and Levy 2008). Therefore, due to the belief that imputed 

values are merely the guesses of the unobserved data, which are unknown, few attempts 

have been made to check the quality of imputed data.  

We propose a diagnostic method based on the propensity score to check the quality of 

multiple imputations described in Section 2, and conduct a simulation study to show how 

this diagnostic method can serve as a reliable method for assessing the problems relating 

to the imputation model given the assumption of MAR in Section 3. Then we apply this 

diagnostics method to imputations of gestational age in 2002 US Natality public-use data 

in Section 4. We conclude the thesis in Section 5.  
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Chapter 2: Diagnostic Method for Multiple Imputation 
 

2.1 Existing Diagnostics for Multiple Imputation 

Abayomi, Gelman and Levy (2008) developed diagnostics for random imputations, based 

on two arguments: (a) imputations can be checked by using a standard of reasonability: 

the differences between observed and missing values and the distribution of the 

completed data as a whole can be checked to see whether they make sense in the context 

of the problem being studied; (b) imputations are typically generated by using models 

that are fitted to observed data, and the fit of these models can be checked.  

They first checked if there were unusual patterns that might suggest problems with 

imputation (e.g. the histogram of the completed data of a variable was bimodal because 

the imputed data markedly differed from the observed data). Next, they compared and 

flagged the difference between the distributions of observed and imputed data values. 

Finally, they checked the fit of the observed data to the imputation model that was used 

to create the imputations (check whether the pattern of residuals versus expected values 

was random). The non-random pattern of residual plots may flag the problems in terms of 

the violation of the missingness assumptions, and thus the imputation model.  

One limitation of their methods is that it only works well if there are dramatic differences 

between the imputed and observed data. However, differences in distributions do not 

necessarily suggest a problem with the imputations or a violation of MAR, because such 

differences might be explained by other variables in the data set. We will illustrate this 

issue in detail in the simulation study. 
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2.2 Diagnostics Based on the Propensity Score 

Propensity score is a conditional probability of assignment to a particular group given a 

vector of observed covariates (Rubin, 1983). The key attribute of the propensity score is 

that adjustment for the scalar propensity score is sufficient to remove bias due to all 

observed covariates (Rubin, 1983). Therefore, the basic idea of our diagnostic method is 

that for multiple imputation assuming MAR, the observed data and the imputed data have 

the same conditional distribution given on the propensity score. If the two distributions 

differ, it suggests that the imputation results are questionable.  

Let (Y, X1, X2, …, Xp) be a vector of variables with Y having missing values and X1, X2, 

…, Xp fully observed variables. Let m denote a missing indicator with m=1 when Y is 

missing and m=0 when Y is observed. The propensity score, or the probability of 

missingness, is denoted as P. 

logit (P)= logit (P (m=1) | X1, X2, …, Xp)) 

 The missingness of Y only depends on X1, X2, …, Xp.  Thus, the missing data 

mechanism is MAR. We construct a set of imputations by using multiple imputation 

procedure (PROC MI in SAS 9.1), and then apply the diagnostic method to the imputed 

data sets. The estimates of the propensity score can be obtained by fitting a logistic 

regression model of m on X1, X2, …, Xp, yielding the predicted values of m.  

The first diagnostics is to compare the distributions of the imputed and observed values 

against the propensity score. We look for differences in the conditional distributions, 

which suggest the inaccuracy of the imputations because the missingness of Y is not a 

random sample of the original data given on the same propensity score.  
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We then fit regression models of Y (Yobs+Yimp) as a function of the propensity score (P) 

and the missing indicator (m). An insignificant association between m and Y implies that 

the missingness of Y is independent of the values of this variable after adjusting for the 

propensity score. If the missingness can completely be explained by the propensity score, 

it indicates the MAR assumption holds true and the imputation model used to generate 

imputations enables to preserve the associations among all available variables in the data 

set.     

The following is the flowchart of our diagnostic method. 
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Chapter 3: Simulation Study 

We illustrate our method by a simulation study. We generate a dataset with 500 subjects. 

Table 1 and 2 show the models we use to generate the data, to create the missing values, 

to estimate propensity score, and to impute missing data. The following procedures 

describe how we conduct the simulation with data set 1 as an example. 

(1) Generate a dataset with a sample size of 500 and three variables (Y, X1, X2) based 

on the following model: 

Y =  1 + X1 + 2 ∗ X2 + ε, where X1, X2, and ε all follow standard normal 

distribution with mean 0 and variance 1. In addition, create another ten variables 

X3, X4,…, X12 in the data set, all of which follow either a normal or a uniform 

distribution. 

(2) Generate missing values of Y from the response propensity model:  

logit (P (m=1|X1, X2)) = γ0 + γ 1*X1+ γ 2*X2. The different percentage of missing 

values depends on the arbitrary assignments of parameters γ 0, γ 1, and γ 2.  The 

missingness of Y only depends on the values of X1 and X2, thus, the missing 

mechanism is MAR. 

(3) Impute missing values and develop 5 completed data sets by fitting a correct 

model of Y given X1 and X2 using PROC MI procedure in SAS9.1, denoted as 

[X1, X2].   

(4) Impute missing values and develop 5 new completed data sets by using an 

overfitted model of Y given X1, X2 ,…, X12, denoted as [X1, X2, …, X12] 
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(5) Impute missing values and develop another 5 completed data sets by fitting an 

incorrect model of Y only given X1, denoted as [X1].   

(6) Estimate two sets of propensity scores by fitting a correct logistic regression 

model of m given X1 and X2 and by fitting a overfitted regression model of m 

given X1, X2 ,…, X12. 

(7) Plot the true propensity scores versus two sets of estimated propensity scores from 

Step 6 and plot the estimated propensity scores from the correct model against the 

ones from the overfitted model.  

(8) Plot three sets of Ys from Step 3-5 against the estimated propensity scores from 

the correct model (red: Yobs; blue: Yimp). Compare the distribution of the imputed 

Ys and observed Ys. In addition, true values of Ys (from step 1) versus the 

propensity score are plotted as well.  

(9) Plot the observed and imputed Ys from step 3 and 5 against one of covariates 

(X1). Then plot the histograms of Y to compare the distributions of Y at two 

levels of missingness as Abayomi et al. (2008) did. 

(10) Fit a linear regression model of Y from step 3, 4 and 5 on the estimated 

propensity score and m. The results from the 5 completed data sets are combined 

to create parameter estimates and standard errors using PROC MIANALYZE 

procedure in SAS 9.1. 

Diagnostic methods are applied not only across percentage of missingness (from low to 

high), but also across three different mean functions of Y. Repeat step 2 to step 10, 

except changing the propensity model, correct imputation model, overfitted and incorrect 

imputation model correspondingly as shown in Table 1 and 2.  
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The simulation study compares the conditional distributions of the observed and imputed 

Ys given the propensity score when the imputations are created from correct, overfitted 

or incorrect imputation model. Theoretically the similarities of the patterns between the 

observed and imputed Ys suggest the high quality of imputations. Furthermore, fitting 

regression models of Y (created by correct, overfitted or incorrect model) on the 

propensity score and m will quantitatively check the effectiveness of our diagnostic 

method.  

The purpose of using overfitted imputation model to generate imputations is to test the 

robustness of our diagnostic method. Practically, there is no way to know the correct 

imputation model, a determinant factor affecting the quality of imputations. Overfitted 

imputation model can be a common situation in real imputation process, because by 

following the general rule we usually incorporate as many as possible the variables that 

might be associated with Y. Estimating the propensity score by fitting the overfitted 

model is also due to the fact that the correct propensity model is always unknown in 

practice. Therefore, the scatter plots of propensity scores and a regression model of Y on 

the propensity score from the overfitted model and m are used to test the reliability of our 

diagnostic method. 

The scatter plots of the true propensity score versus the estimated propensity score from 

the correct propensity model and the overfitted propensity model are shown in Figure 1 

and Figure 2 respectively, blue points when Ys are missing and red when Ys are 

observed. Figure 3 shows the scatter plots of the propensity score from the correct model 

versus the ones from the overfitted model. In each scatter plot, although there is a larger 

variation among the points in Figure 2 and 3 because of the noise in the overfitted model, 
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all of the points almost lie on a 45-degree straight line. It suggests that the estimated 

propensity scores either from the correct or the overfitted model are reliable to reflect the 

true probability of missingness of Y.   

The results from this simulation study support our statement that the graphical 

diagnostics proposed by Abayomi et al. (2008) has its own limitation. Figure 5 shows the 

histograms of the completed data of Y (from Step 3 and 5) at two levels of missingness. 

These histograms illustrate that the distributions of Y can be different between observed 

and imputed values. The distributions of observed and imputed Ys against one of the 

covariates in the imputation model are plotted in Figure 4. In these scatter plots, some 

deviations between observed and imputed Ys do exist under MAR. Such differences can 

come from the effects of other variables on the missingness of Y in the data set. For 

example, in Figure 4 (when μy =1+X1+2*X2), due to the effect of X1, the larger values of 

Y are more likely to be missing than the smaller values of Y. Therefore, such differences 

between observed and imputed data can not necessarily flag the potential problems 

relating to the imputation model. 

Our graphical diagnostics can avoid this problem by adjusting for the propensity score. 

The conditional distributions of Y given the propensity score can actually remove the 

overall effects of the covariates in the data set. Figure 6 plots three sets of Ys versus the 

estimated propensity score. These bivariate scatter plots, including the smooth curves, 

present the comparisons of conditional distributions of the imputed and the observed Ys 

given the propensity score. Observed data are shown in red and imputed data in blue. Our 

diagnostics can be applied to each of 5 completed data sets. In this paper, we only show 

the plots for a single randomly chosen completed data set. There are obvious differences 
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between the distributions of the observed and imputed Ys conditional on the propensity 

score, when the missing values are imputed using incorrect imputation model (Figure 

6(d)). In contrast, when the correct (Figure 6(a)) or overfitted imputation models (Figure 

6(c)) are used to generate MIs, there are only slight deviations between two curves. 

Additionally, these patterns of distribution are similar to the true distributions when we 

plot the true Ys against the propensity score (Figure 6(e), blue: m=1; red: m=0). When 

the estimated propensity scores from the overfitted model are applied in the scatter plot 

(Figure 6(b)), they show the similar results. 

Results of fitting linear regression model of completed Y on propensity score and m are 

shown in Table 3. When the correct or overfitted imputation model is used to impute 

missing values, from low (16%) to high (64%) percentage of missing values across three 

mean functions of Y and no matter if the propensity scores are estimated from correct or 

overfitted models, the effect of the missing indicator is insignificant, while the propensity 

score has a significant association with Y. However, when the incorrect imputation model 

is implemented to create imputations, in most of cases in this simulation study, both the 

propensity score and the missing indicator have significant effects on the values of Y.     

This simulation study is empirical evidence that our graphical diagnostic approach to 

checking the imputation model is robust. It can be functioned as indirect method to 

identify potential problems relating to the imputation model. Obvious deviations between 

distributions of observed and imputed values conditional on the propensity score do occur 

when the imputation model that is used to generate imputations fails to preserve the 

associations of all important variables. Then this model would be flagged because of the 

marked differences.   
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In addition to the graphic presentation of observed and imputed data, we fit a regression 

model of the completed Y as a function of the propensity score and the missing indicator. 

The results suggest that we can assess the goodness of imputations by examining the 

relationship of m with Y. Given the assumption of MAR, the statistically significant 

effect of m on Y, after adjusting for the propensity score, indicates a deficiency in the 

imputation model, which fails to preserve all the associations among the variables with 

the dependent variable. Thus the model underlying the inaccurate imputations should be 

suspected.  

The results from Figure 6 (c) and Table 3 confirm the notion that the inclusion of as 

many as possible the variables in the imputation model can improve the imputations, 

even though it might be overfitted. When missing values are imputed by using the 

overfitted model, there is no significant difference in the conditional distribution given 

propensity score between observed and imputed Y. Moreover, the insignificant effect of 

m indicates the sufficiency of imputation model to capture the associations among all 

variables.  

This simulation study illustrates where and how our diagnostics can serve as effective 

method for assessing the imputation model that is used to generate the imputed data given 

the assumption of MAR. In both steps of diagnostic procedures, the graphical display and 

statistical analysis based on the propensity score can flag the inaccurate imputation 

model. 
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Chapter 4: Application to 2002 US Natality Public-Use Data 

4.1 Data Source: the 2002 Natality Public-Use Data 

We apply our method to 2002 US Natality public-use dataset produced by the National 

Center for Health Statistics (NCHS). The NCHS collects Natality data from Standard 

Certificate of Live Birth for all living births in the United States every year and releases 

them to the public. The 1989 version of US Standard Certificate of Live Birth provides a 

wide variety of information on maternal and infant health characteristics, including 

information on general items, occurrence, residence, prenatal, child, mother, pregnancy 

history, father, medical and health data (NCHS, 2002). The 2002 public-use Natality data 

consists of 4,027,376 live births within the United States to residents and non-residents. 

Our study sample includes a subset of 2002 US Natality data. We randomly select 40,274 

newborns, 19,730 females (48.99%) and 20,544 males (51.01%).  

4.2 Variable of Interests: Gestational Age (DGESTAT) 

The high incidence rate and consequences of preterm births make it necessary to 

correctly determine the important factors that affect preterm delivery in order to establish 

guidelines for monitoring and treatment plans for expectant mothers who are most 

susceptible to preterm labor (Hammad, 2009 ).  However, missing data and inaccurate 

information on gestational age have affected the utility of the US Natality public-used 

datasets (Parker and Schenker, 2007).  

The period of gestation is defined as beginning with the first day of the last normal 

menstrual period (LMP) and ending with the day of the birth (NCHS, 2002). In 2002 

Natality file, gestational age information contains four parts:  (a) computed using date of 
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birth of child and last normal menses; (b) imputed from LMP date; (c) the clinical 

estimate; or (d) unknown when there is insufficient data to impute or no valid clinical 

estimate (NCHS, 2002). The primary measure (Part (a)) used to determine the gestational 

age of the newborn is the interval between the first day of the mother’s LMP and the date 

of birth. It is subject to error due to reasons including imperfect maternal recall or 

misidentification of the LMP because of post conception bleeding, delayed ovulation, or 

intervening early miscarriage (Martin, et al., 2003). The clinical estimate is used in three 

situations: (1) if the LMP date is not reported; (2) when the computed gestation is outside 

the 17-47 code range; (3) normal weight births come with apparently short gestations and 

very-low-birth weight births reported to be full term. There are 4.6 percent of the births in 

2002 Natality data based on the clinical estimate of gestation. The NCHS also publishes 

the imputed weeks of gestation for records with missing day of LMP when there is a 

valid month and year. Although LMP-based gestational ages are edited for obvious 

inconsistence with the infant’s plurality and birth weight, reporting problems for this item 

persist and may occur more frequently among some subpopulations and among births 

with shorter gestations (Alxandra & Allen, 1996). Some research is ongoing to address 

these data deficiencies. 

In order to avoid dealing with the intricacies of misspecified gestational ages, we set 

gestational age (DGESTAT in the data set) to missing if computed gestation is different 

from its clinical estimate by more than 2 weeks or they are replaced with the clinical 

estimations or the imputed gestational age created by the NCHS. After these alterations, 

there are 18.69% missing values for DGESTAT among all subjects in the final dataset 

used in the analysis. 
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4.3 Multiple Imputation using Sequential Regressions 

2002 US Natality public-use data set consists of 213 variables, including the recoded 

ones. They have many types of variables, such as continuous (birth weight, age of 

mother, etc.), categorical (race of mother, marital status, etc.), count (number of prenatal 

visits), or mixed variables (number of cigars per day, number of drinks per week). Some 

of these variables have small percentages of missing values which need to be imputed as 

well. In addition, there are certain reasonable bounds for specific variables with missing 

values, which must be incorporated in the imputation process. For example, the imputed 

values for “Age of Mother” must be greater than 10 and less than 54 and imputations for 

“Age of Father” must be greater than 10.  

Because of the complex data structure of US Natality public-use file, we choose 

sequential regression multiple imputation (SRMI) method by using publicly available 

software (IVEware, available at http://www.isr.umich.edu/src/smp/ive) to handle both 

missing and implausible gestational ages, as well as missing values in the covariates. The 

basic strategy of SRMI is to create imputations through a sequence of multiple 

regressions on a variable by variable basis, varying the type of regression model by the 

type of variable being imputed. Covariates include all other variables observed or 

imputed for that individual (Raghunathan, et al., 2001). SRMI imputes the least missing 

variables before the most missing at each round of the procedure and then continued in a 

cyclical manner, each time overwriting previously drawn values, building 

interdependence among imputed values and exploiting the correlational structure among 

covariates (Raghunathan, et al., 2001).   

http://www.isr.umich.edu/src/smp/ive
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The rule for the selection of variables in the imputation model is to include as many as 

possible the variables that are possibly correlated with the period of gestation. Therefore, 

the imputation model in our study includes variables from all 10 categories regarding the 

newborn and maternal characteristics mentioned above. Some of the variables are 

summed into one category to be used in the imputation model. These summary variables 

include: the total number of medical risk factors (MEDRK), the total number of obstetric 

procedures (OBSTET), the total number of complications of labor or delivery (LABOR), 

the total number of abnormal conditions of the newborn (NEWBN), and the total number 

of congenital anomalies (CONGN). Descriptive statistics for all variables included the 

imputation model are listed in Table 6 (categorical variables) and Table 7 (continuous, 

count and mixed variables). Three variables (Number of Live Birth, Now Living; 

Number of Live Birth, Now Dead; Number of Other Termination) and five summary 

variables are classified as categorical variables, because high percentages of value 0 of 

these variables can lead to unstable results in the SRMI procedures if they are treated as 

continuous or count variables.  

The Pearson correlation for continuous variables and Spearman correlation for five 

discrete variables (CORR procedure in SAS 9.1) are used to check the possible 

colinearity. Correlation matrixes are shown in Table 4 and Table 5 respectively.  As can 

be seen is Table 5, two pairs of variables (Number of Live Births, Now Living (NLBNL) 

vs. Detailed Total Birth Order (DTOTORD), Number of Live Births, Now Living 

(NLBNL) vs. Detailed Live Birth Order (DLIVORD) are highly correlated (|r|=0.876, 

0.994), which imply that there is possible colinearity between two variables. Thus, both 

DTOTRORD and DLIVORD are excluded from the imputation model.  
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4.4 Diagnostic Procedures for Imputations of Gestational Age 

We created M=5 SRMIs, repeating the process with 10 iterations (seed=2010). We 

assume MAR, and estimate the propensity scores by fitting a logistic regression of the 

missing indicator on all variables in the imputation model without any missing values. 

The variables used in the propensity model are presented in Table 8.  

We apply two steps of our diagnostic method to 5 sets of SRMIs as follows: 

(1) Plot the gestational age (DGESTAT) vs. propensity scores (red: observed values, 

blue: imputed values). 

(2) Fit a linear regression model of gestational age (DGESTAT) on the propensity score 

(P) and the missing indicator (m) for 5 imputed data sets. Then the results from 5 data 

sets are combined to create one parameter estimates and corresponding standard errors by 

using PROC MIANALYZE in SAS 9.1 as the methods described earlier.     

Figure 7 provides a snapshot of the distributions of the observed and imputed gestational 

age against the propensity score. There is no significant difference between red and blue 

curves and the patterns of two sets of points are quite similar, although the variation of 

imputed values is slightly smaller than that of observed values.  

Results from the regression model are summarized in Table 9. All p-values of m are 

greater than 0.05, in other words, m has insignificant effect on the values of gestational 

age after adjusting for the propensity score. It implies that the imputation model we 

created enables to preserve the associations among all variables with gestational age 

given MAR and, thus, the missingness of DGESTAT can totally explained by the 

propensity score. By applying two steps of checking procedures, we can conclude that the 
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imputations under our imputation model can sufficiently reflect the true distribution of 

gestational age for those newborns with missing values.    
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Chapter 5:  Discussion 
 

Very little attention has been given to the development of diagnostic techniques for 

multiple imputation (Abayomi, Gelman & Levy, 2008). The aim of this research is to 

develop diagnostic method based on the propensity score to identify potential problems 

with the imputations. We propose two steps of diagnostic method for imputations: (1) 

comparisons of the distributions of observed and imputed data against propensity scores, 

which are used to reveal differences between the observed and imputed data; and (2) 

fitting regression model of completed data on the propensity score and the missing 

indicator. In addition, we apply our method to the 2002 US public-use Natality data 

published by the NCHS.  

In simulation study, when the missing values are imputed by using incorrect imputation 

model, there are apparent differences between the conditional distributions of the 

observed and imputed Ys given the propensity score, and a significant association is 

found between the values of Y and the missing indicator (P<0.05). In contrast, when the 

correct or overfitted imputation model is used to generate MIs, the distributions of the 

observed and imputed data conditional on the propensity score are similar, and the values 

of Y are independent of m (P>0.05). These results suggest we can flag potential problems 

with the underlying imputation model that is used to create imputations. Additionally, the 

propensity scores estimated from the correct or overfitted propensity model are proved to 

be reliable and will not affect the diagnostic results. 

A recent study conducted by Abayomi, et al. (2008) considered diagnostics for 

imputations in three steps as described in the introduction. Our simulation study confirms 
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the limitation of their graphical methods. They can work well only for the extreme 

departures between observed and imputed values. However, as shown in Figure 4 and 

Figure 5, deviations can be expected under MAR and they do not necessarily indicate 

problems with the imputation model. Such deviation is due to the effect of other variables 

in the dataset on the probability of missingness.  

The key property of our diagnostic method is that the adjustment for the propensity score 

is sufficient to remove the effects of all other covariates that contribute to the probability 

of missingness. Therefore, assuming MAR, our graphical display conditioning on the 

propensity score is more robust than the marginal distribution of the completed data or 

the conditional distribution given only one variable as described in Abayomi’s research.         

In application to 2002 US Natality file, the results show the similarities of the conditional 

distributions given propensity score between observed and imputed gestational age and 

the insignificant effect of the missing indicator on gestational age. All of the results 

suggest the high quality of the imputations we create, that is, the missingness of 

gestational age can be totally explained by the propensity score.  

In Natality file, gestation age is subject to two problems: missing data and implausible 

data. Therefore, the imputation for US Natality data is complicated by the uncertainty 

about which records need to be imputed due to implausible values (Parker and Schenker, 

2007). We simplified this issue by setting the records with over two-week difference 

between computed and clinical estimate as missing data. Attempts have been made by 

Parker and Schenker (2007) to use multiple imputation technique for imputing missing 

and implausible gestational age values. Multiple imputation is an appropriate technique to 

handle missing data, which takes into account both the relationships among the variables 
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and the uncertainty added from the imputation, thus it can yield more valid statistical 

results relating to gestational age in future analytical studies. We use SRMI, which is an 

extension of MI in which the missing values of each variable are imputed conditionally 

on all the other variables in the data set and the types of regression models used depend 

on the type of variable being imputed. Moreover, it can incorporate restrictions to a 

relevant subpopulation for some variables and logical bounds for the imputed data. In 

addition to the imputation techniques, to improve the quality of imputations, our 

imputation model includes variables from 10 categories with respects to both the 

newborn and the maternal characteristics. Because of these efforts, our diagnostic method 

identifies the imputations we create with high quality.        

The findings in this study contribute to the ongoing search to identify reasonable and 

reliable diagnostic techniques to check the quality of multiple imputation. An important 

assumption of these diagnostics is the missing at random. Nevertheless, in this study, the 

MAR assumption cannot be approved. Another limitation in this study is the nonlinear 

relationship between the values of the dependent variable and the propensity score. The 

scatter plots in Figure 6 show the curvilinear, rather than linear, relationship between Y 

and the propensity score. The future research can extend our method by using smoothing 

spline to model the relationship between Y and the propensity score. Furthermore, a 

quantitative test can be employed to numerically compare the conditional distribution of 

the observed and the imputed data given the propensity score. 
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Appendix 

Table 1: Summary of mean function of Y, correct, overfitted and incorrect imputation model. 

Mean Function 

μy = 

Imputation Model, Y= 

Correct Overfitted Incorrect 

1+X1+2*X2  β0 +β1*X1+β2*X2 

[X1,X2] 

β0 +β1*X1+β2*X2+ …+β12*X12
 

[X1,X2,… , X12] 

β0 +β1*X1 

[X1] 

1+2* X1+2*X2+3*X1X2 β0 +β1*X1+β2*X2+β3* X1X2 

[X1,X2, X1X2] 

β0 +β1*X1+β2*X2+…+ 

β12*X12+β13* X1X2 

[X1,X2, …, X12,X1X2] 

β0 +β1*X1+β2*X2 

[X1,X2] 

1+2* X1+2*X2+3*X1
2
 β0 +β1*X1+β2*X2+β3* X1

2 

[X1,X2, X1
2
]

 

β0 +β1*X1+β2*X2+…+ 

β12*X12+β13* X1
2
 

[X1,X2, …, X12, X1
2
] 

β0 +β1*X1+β2*X2 

[X1,X2] 
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Table 2: Summary of mean function of Y, true propensity score function, percentage of missing of Y, correct and overfitted 
propensity model. 

Mean Function 

μy = 

True Propensity Function 

logit (P)= 

 M 

(%) 

Propensity Model 

logit (P)=logit (m=1|X1, X2,…, Xp) 

Correct Overfitted 

1+X1+2*X2 -2+X1+X2 15.8 β0 +β1*X1+β2*X2 β0 +β1*X1+β2*X2+ …+β12*X12 

-2+3*X1+X2 26.0 

X1 48.6 

1+X1+X2 64.0 

1+2* X1+2*X2+3*X1X2 -2+2* X1+2*X2+3*X1X2 23.6 β0 +β1*X1+β2*X2+β3* X1X2 β0 +β1*X1+β2*X2+…+ β12*X12+β13* 

X1X2 
1+3* X1-3*X2-4*X1X2 54.2 

1+2* X1+3*X2-4*X1X2 63.6 

1+2* X1+2*X2+3*X1
2
 -4+3* X1+X2+X1

2 
16.2 β0 +β1*X1+β2*X2+β3* X1

2 
β0 +β1*X1+β2*X2+…+ β12*X12+β13* X1

2
 

-1+5* X1+1*X2-2*X1
2 

33.8 

2+X1+X2-2*X1
2 

59.0 
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Table 3: Regression of Y (Yobs+Yimp) on the propensity score (p-score) and the missing indicator (m): three imputation models are 

fitted to impute missing data, and two propensity models are used to estimate p-scores. 

 Imputation Model Propensity Model 

Model 1*: Correct Model 2*: Overfitted Model 3*: Incorrect Model 4*: Overfitted 

Mean Function M% Variable β p-value β p-value β p-value β  p-value 

Y=1+X1+2*X2+ε 15.8% p-score 11.76 <0.0001 11.71 <0.0001 9.57 <0.0001 10.42 <0.0001 

m 0.07 0.7456 0.10 0.6972 -1.33 0.0005 0.13 0.7153 

26.0% p-score 4.56 <0.0001 4.52 <0.0001 3.68 <0.0001  4.23 <0.0001 

m -0.09 0.7828 0.01 0.9738 -1.01 0.0050 0.07 0.8533 

48.6% p-score 5.43 <0.0001 5.32 <0.0001 4.44 0.0007 4.78 <0.0001 

m -0.02 0.9480 0.08 0.7777 0.10 0.7643 -0.05 0.8258 

64.0% p-score 7.72 <0.0001 7.95 <0.0001 3.59 <0.0001 7.25 <0.0001 

m 0.04 0.8304 0.09 0.7344 -0.83 0.0101 -0.04 0.8343 

 
Y=1+2*X1+2*X2+3*X1*X2+ε 23.6% p-score 10.31 <0.0001 10.27 <0.0001 5.59 <0.0001 10.01 <0.0001 

m 0.15 0.7518 0.04 0.9363 -2.34 0.0044 0.15 0.7520 

54.2% p-score -4.35 <0.0001 -4.33 <0.0001 1.20 0.4018 -4.24 <0.0001 

m -0.07 0.9005 0.05 0.9401 1.78 0.0279 0.00 0.9993 

63.6% p-score 0.73 0.3903 0.74 0.3909 2.53 0.0102 0.81 0.3583 

m 0.05 0.9434 0.13 0.8560 1.84 0.0818 -0.06 0.9381 

 
Y=1+2*X1+2*X2+3*X1

2+ε 16.2% p-score 13.54 <0.0001 13.31 <0.0001 2.58 0.0095 13.25 <0.0001 

m -0.18 0.8152 -0.29 0.7128 -3.16 0.0001 -0.14 0.8564 

33.8% p-score 5.33 <0.0001 5.25 <0.0001 3.92 0.0018 5.13 <0.0001 

m 0.08 0.9137 0.11 0.8747 0.09 0.9578 0.06 0.9308 

59.0% p-score -5.74 <0.0001 -5.84 <0.0001 -2.89 0.0640 -5.55 <0.0001 

m -0.01 0.9844 -0.05 0.9347 3.57 <0.0001 0.05 0.9417 

Model 1: Imputations are created by fitting correct imputation model. Propensity score is estimated by fitting correct model 

Model 2: Imputations are created by fitting overfitted imputation model. Propensity score is estimated by fitting correct model 

Model 3: Imputations are created by fitting incorrect imputation model. Propensity score is estimated by fitting correct model 

Model 4: Propensity score is estimated by fitting overfitted propensity model. Imputations are created by fitting correct imputation model. 
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Table 4: Correlation matrix among all continuous variables. 

 BIRWT DMAGE DFAGE FMAPS WTGAIN NPREVIS CIGAR DRINK MEDRK NEWBN LABOR OBSTET CONGN 

BIRWT 1.000 **0.068 **0.040 **0.278 **0.175 **0.107 **-0.092 -0.007 **-0.101 **-0.163 **-0.074 **0.029 **-0.046 

DMAGE  1.000 **0.758 0.003 **-0.072 **0.107 **-0.062 **0.020 **0.052 0.007 **0.013 *0.012 -0.006 

DFAGE   1.000 -0.009 **-0.063 **0.062 **-0.042 **0.024 **0.042 0.006 0.009 0.005 0.000 

FMAPS    1.000 **0.026 **0.067 -0.009 0.005 **-0.062 **-0.231 **-0.131 -0.010 **-0.104 

WTGAIN     1.000 **0.092 **-0.022 0.008 **-0.015 **-0.016 **0.034 **0.036 **-0.018 

NPREVIS      1.000 **-0.044 **-0.041 -0.003 **-0.048 **-0.025 **0.032 **-0.023 

CIGAR       1.000 **0.090 **0.041 **0.017 **0.016 *0.012 0.004 

DRINK        1.000 0.004 0.005 0.004 -0.001 -0.001 

MEDRK         1.000 **0.181 **0.176 **0.196 **0.042 

NEWBN          1.000 **0.196 **0.084 **0.117 

LABOR           1.000 **0.176 **0.039 

OBSTET            1.000 **0.026 

CONGN             1.000 

*             P<0.01 

**           0.01<P<0.05 

 

Table 5: Spearman correlation coefficients and p-values. 

Spearman Correlation Coefficients 

Prob >|r| under H0: Rho=0 

 NLBNL NLBND NOTERM DTOTORD DLIVORD 

NLBNL 1.0000 0.0691 

<.0001 

0.1451 

<.0001 

0.8756 

<.0001 

0.9937 

<.0001 

NLBND  1.0000 0.0425 

<.0001 

0.1492 

<.0001 

0.1691 

<.0001 

NOTERM   1.0000 0.5474 

<.0001 

0.1479 

<.0001 

DTOTORD    1.0000 0.8817 

<.0001 

DLIVORD     1.0000 
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Table 6: Categorical variables included in the imputation model. 

Variable 

Name 

Definition of 

Variable 
Category Definition of Categories Freq Percent 

RESTATUS Residents status 

1 Residents 30106 74.75 

2 Intrastate nonresidents 9230 22.92 

3 Interstate nonresidents 884 2.19 

4 Foreign residents 54 0.13 

PLDEL3 Place of delivery  

1 In hospital 39909 99.09 

2 Not in a hospital 363 0.90 

. Unknown or not stated 2 0.00 

REGNRES 
Region of 

residence 

0 Foreign residents 54 0.13 

1 Northeast 6786 16.85 

2 Midwest 8767 21.77 

3 South 14813 36.78 

4 West 9853 24.46 

CITRSPOP 

Population size 

of city of 

residence 

0 >=1,000,000  3500 8.69 

1 Place of 500,000  to  

1,000,000 

1821 4.52 

2 Place of 250,000 to 500,000 3085 7.66 

3 Place of 100,000 to 250,000 3776 9.38 

9 All other areas in the U.S. 28038 69.62 

z Foreign residents 54 0.13 

METRORES Metropolitan 

1 Metropolitan county 33209 82.46 

2 Nonmetropolitan county 7011 17.41 

z Foreign residents 54 0.13 

CNTRSPOP 

Population size 

of county of 

residence 

0 >=1,000,000  10243 25.43 

1 Place of 500,000  to  

1,000,000 

7528 18.69 

2 Place of 250,000 to 500,000 6113 15.18 

3 Place of 100,000 to 250,000 6330 15.72 

9 All other areas in the U.S. 10006 24.84 

z Foreign residents 54 0.13 

MRACE3 Race of Mother 

1 White 31861 79.11 

2 Races other than White or 

Black 

2554 6.34 

3 Black 5859 14.55 

MEDUC6 
Education of 

mother 

1 0 – 8 years 2397 5.95 

2 9 – 11 years 6061 15.05 

3 12 years 12324 30.60 

4 13 – 15 years 8651 21.48 

5 16 years and over 10288 25.55 

. Not stated 553 1.37 

DMAR 
Marital status of 

mother 

1 Married 26768 66.46 

2 Unmarried 13506 33.54 

. Unknown or not stated 0 0.00 

MPLBIRR 
Place of birth of 

mother 

1 Native born 30712 76.26 

2 Foreign born 9476 23.53 

. Unknown or not stated 86 0.21 
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Table 6 (cont.): Categorical variables included in the imputation model. 

Variable 

Name 

Definition of 

Variable 
Category Definition of Categories Freq Percent 

ADEQUACY 
Adequacy of 

care 

1 Adequate 29464 73.16 

2 Intermediate 7179 17.83 

3 Inadequate 2018 5.01 

. Unknown 1613 4.01 

MPRE5 
Month prenatal 

care began 

1 1
st
 trimester 33040 82.04 

2 2
nd

 trimester 5017 12.46 

3 3
rd

 trimester 1056 2.62 

4 No prenatal care 374 0.93 

. Unknown or not stated 787 1.95 

DFRACE4 Race of father 

1 White 28186 69.99 

2 Races other White, Black or 

unknown 

2107 5.23 

3 Black 4333 10.76 

. Unknown or not stated 5648 14.02 

CSEX Sex 
1 Male 20544 51.01 

2 Female 19730 48.99 

DPLURAL Plurality 

1 Single 38940 96.69 

2 Twin 1267 3.15 

3 Triplet 62 0.15 

4 Quadruplet 5 0.01 

5 Quintuplet or higher 0 0.00 

DELMETH5 
Method of 

delivery 

1 Vaginal (excludes vaginal after 

previous C-section) 

28974 71.94 

2 Vaginal birth after previous C-

section 

589 1.46 

3 Primary C-section 6328 15.71 

4 Repeat C-section 4130 10.25 

. Not stated 253 0.63 

NLBNL 

Number of live 

birth, now 

living 

0 No live birth, now living 16166 40.14 

1 One live birth, now living 13303 33.03 

2 Two live births, now living 6574 16.32 

3 Three live births, now living 2585 6.42 

4 Four live births, now living 894 2.22 

5 Five live births, now living 349 0.87 

6 Six live births, now living 155 0.38 

7 Seven live births, now living 86 0.21 

8 Eight live births, now living 31 0.08 

9 Nine live births, now living 21 0.05 

10 Ten live births, now living 14 0.03 

11 Eleven live births, now living 8 0.02 

12 Twelve live births, now living 5 0.01 

13 Thirteen live births, now living 2 0 

. Not stated 81 0.2 
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Table 6 (cont.): Categorical variables included in the imputation model. 

Variable Name 
Definition of 

Variable 
Category Definition of Categories Freq Percent 

NLBND 
Number of live 

births, now dead 

0 No live birth, now dead 39515 98.12 

1 One live birth, now dead 549 1.36 

2 Two live births, now dead 73 0.18 

3 Three live births, now dead 15 0.04 

4 Four live births, now dead 7 0.02 

5 Five live births, now dead 1 0 

6 Six live births, now dead 1 0 

9 Nine live births, now dead 3 0.01 

. Not stated 110 0.27 

NOTERM 

Number of 

other 

termination 

0 No other termination 30572 75.91 

1 One other termination 6463 16.05 

2 Two other terminations 2062 5.12 

3 Three other terminations 682 1.69 

4 Four other terminations 226 0.56 

5 Five other terminations 76 0.19 

6 Six other terminations 44 0.11 

7 Seven other terminations 12 0.03 

8 Eight other terminations 9 0.02 

9 Nine other terminations 3 0.01 

10 Ten other terminations 3 0.01 

. Not stated 121 0.3 

MEDRK
1 Total number of 

medical risks 

0 No medical risk 27767 68.95 

1 One medical risk 9721 24.14 

2 Two medical risks 1975 4.9 

3 Three medical risks 399 0.99 

4 Four medical risks 58 0.14 

5 Five medical risks 15 0.04 

6 Six medical risks 4 0.01 

. Not stated 335 0.83 

OBSTET
2 

Total number of 

abnormal 

conditions 

0 No abnormal condition 2816 6.99 

1 One abnormal condition 8062 20.02 

2 Two abnormal conditions 17251 42.83 

3 Three abnormal conditions 9686 24.05 

4 Four abnormal conditions 2063 5.12 

5 Five abnormal conditions 193 0.48 

6 Six abnormal conditions 11 0.03 

. Not stated 192 0.48 

CONGN
3 

Total number of 

congenital 

anomalies 

0 No congenital anomaly 39276 97.52 

1 One congenital anomaly 341 0.85 

2 Two congenital anomalies 38 0.09 

3 Three congenital anomalies 6 0.01 

4 Four congenital anomalies 3 0.01 

. Not stated 610 1.51 
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Table 6 (cont.): Categorical variables included in the imputation model. 

Variable 

Name 

Definition of 

Variable 
Category Definition of Categories Freq Percent 

NEWBN
4 

Total number of 

newborn 

complications 

0 No newborn complication 36994 91.86 

1 One newborn complication 2545 6.32 

2 Two newborn complications 341 0.85 

3 Three newborn complications 60 0.15 

4 Four newborn complications 8 0.02 

. Not stated 326 0.81 

LABOR
5 

Total number of 

labor 

complications 

0 No labor complication 27159 67.44 

1 One labor complication 10118 25.12 

2 Two labor complications 2307 5.73 

3 Three labor complications 368 0.91 

4 Four labor complications 68 0.17 

5 Five labor complications 12 0.03 

6 Six labor complications 2 0 

. Not stated 240 0.6 

MEDRISK
1
: medical risk variables include anemia, cardiac disease, acute or chronic lung disease, etc. 

OBSTETRIC
2
: obstetric procedures include amniocentesis, electronic fetal monitor, induction of labor, etc. 

CONGNTL
3
: congenital anomalies include anencephalus, spina bifida, hydrocephalus, microcephalus, etc. 

NEWBORN
4
: newborn complications include anemia, birth injury, fetal alcohol, etc.  

LABCOMP
5
: labor complications include febrile, meconium, premature rupture of membrane, etc. 

 

 

Table 7: Continuous, count or mixed variables included in the imputation model. 

Variable 

Name 

Definition of Variable N N 

Miss 

Mean Std 

Dev 

Min Max Miss% 

Continuous variable 

DBIRWT Birth weight of child 

(gram) 40240 34 3297.12 604.87 227 6039 0.08% 

DMAGE Age of mother 40274 0 27.35 6.2 12 52 0.00% 

DFAGE Age of father 34936 5338 30.49 6.85 14 72 13.25% 

FMAPS Apgar score 31106 9168 8.91 0.75 0 10 22.76% 

WTGAIN Weight gain (lb) 32784 7490 30.89 13.8 0 98 18.60% 

Count variable 

NPREVIS Total number of 

prenatal visits 39239 1035 11.55 3.99 0 49 2.57% 

Mixed variable 

CIGAR Number of cigars/day 34318 5956 1.08 3.88 0 70 14.79% 

DRINK Number of 

drinks/week 34659 5615 0.04 0.71 0 84 13.94% 
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Table 8: Variables included in the propensity model and percent missing. 

Variable Definition of Variable Missing % Included 

Categorical Variables 

RESTATUS Residence status - Y 

PLDEL3 Place of delivery - Y 

REGNRES Region of residence - Y 

CITRSPOP Population size of city of residence - Y 

CNTRPOP Population size of county of residence - Y 

METRORES Metropolitan of residence - Y 

CSEX Sex of child - Y 

DPLURAL Plurality - Y 

MARCE3 Race of mother - Y 

MEDUC6 Education of mother 1.37% N 

DMAR Marital status of mother - Y 

MPLBIRR Place of birth of mother 0.21% N 

ADEQUACY Adequacy of care 4.01% N 

MPRE5 Month prenatal care began 1.95% N 

DFRACE Race of father 14.02% N 

DELMETH5 Method of delivery 0.63% N 

NLBNL Number of live births, now living 0.20% N 

NLBND Number of live births, now dead 0.27% N 

NOTERM Number of other termination 0.30% N 

MEDRK Total number of medical risks 0.83% N 

NEWBN Total number of newborn complications 0.81% N 

LABOR Total number of labor complications 0.60% N 

OBSTET Total number of abnormal conditions 0.48% N 

CONGN Total number of congenital anomalies 1.51% N 

Continuous Variables 

DBIRWT Birth weight of child 0.08% N 

DMAGE Age of mother - Y 

DFAGE Age of father 13.25% N 

FMAPS Apgar score 22.76% N 

WTGAIN Weight gain 18.60% N 

Count Variable 

NPREVIS Total number of prenatal visits 2.57% N 

Mixed Variables 

CIGAR Number of cigars/day 14.79% N 

DRINK Number of drinks/week 13.94% N 
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Table 9: Point estimates (Standard Errors) and p-values of linear regression coefficients 

for model of gestational age for complete cases, only variables without any missing 

values included in the propensity model. 

 

Imputation Propensity score Missing indicator 

β (SE) p-value β (SE) p-value 

1 -1.94 (0.26) <0.0001 0.02 (0.03) 0.5193 

2 -1.87 (0.26) <0.0001 0.01 (0.03) 0.7955 

3 -1.95 (0.26) <0.0001 0.01 (0.03) 0.8120 

4 - 1.99 (0.26) <0.0001 0.02 (0.03) 0.4176 

5 - 1.97 (0.26) <0.0001 0.01 (0.03) 0.7483 

Summary - 1.95 (0.26) <0.0001 0.01 (0.03) 0.6619 
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Figure 1: Scatter plots of true propensity score versus estimated propensity score. 

Propensity score is estimated by fitting correct model. 
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Figure 2: Scatter plots of true propensity score versus estimated propensity score. 

Propensity score is estimated by fitting overfitted model. 
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Figure 3: Scatter plots of propensity score from correct model versus propensity score 

from overfitted model. 
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Figure 4: Distribution of completed Y vs. X1. 
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(a) The observed and imputed Ys are plotted versus X1. Regression lines are produced with I=R 

operand to show the relationship between Ys and X1. Correct imputation models are fitted to 

generate the imputations of Y. 

(b) The observed and imputed Ys are plotted against X1. Incorrect imputation models are fitted to 

create imputations of Y. 

(c) The true Ys are plotted against X1 at two levels of the missingness (red: m=0, blue: m=1).  
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Figure 4 (Cont.): Distribution of completed Y vs. X2. 
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(a) The observed and imputed Ys are plotted versus X1. Regression lines are produced with I=R 

operand to show the relationship between Ys and X1. Correct imputation models are fitted to 

generate the imputations of Y. 

(b) The observed and imputed Ys are plotted against X1. Incorrect imputation models are fitted to 

create imputations of Y. 

(c) The true Ys are plotted against X1 at two levels of the missingness (red: m=0, blue: m=1).  
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Figure 5: Histograms of observed Y and imputed Y. 
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(a) Histogram with Kernel Curve is plotted to show the distribution of Ys (Top: Observed Ys; 

Bottom: Imputed Ys): correct imputation model is fitted to create imputations. 

(b) Histogram of Y (Top: Observed Ys; Bottom: Imputed Ys): incorrect imputation model is fitted to 

create imputations. 

(c) Histogram of Y at two levels of missingness (Top: m=0, Bottom: m=1). 
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Figure 5 (Cont.): Histograms of observed Y and imputed Y. 

m% Y=1+2*X1+2*X2+3*X1X2+ε 
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 Y=1+2*X1+2*X2+3*X1
2
+ε 

16.2% 

   

33.8% 

   

59.0% 

   

 (a)* [X1, X2, X1
2
] (b)* [X1, X2] (c)* 

(a) Histogram with Kernel Curve is plotted to show the distribution of Ys (Top: Observed Ys; 

Bottom: Imputed Ys): correct imputation model is fitted to create imputations. 

(b) Histogram of Y (Top: Observed Ys; Bottom: Imputed Ys): incorrect imputation model is fitted to 

create imputations. 

(c) Histogram of Y at two levels of missingness (Top: m=0, Bottom: m=1). 
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Figure 6: Distribution of completed Y versus the propensity score. 

m%             Y=1+X1+2*X2+ε 

15.8% 

     
26.0% 

     
48.6% 

     
64.0% 

     
 (a)* [X1, X2] (b)* [X1, X2] (c)* [X1,X2,…,X12] (d)* [X1] (e)* 

(a) Correct imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp) with 

smooth curves plotted to indicate a possible nonlinear relationship between Ys and the propensity score.  

(b) Correct imputation model and overfitted propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(c) Overfitted imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(d) Incorrect imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(e) True Ys are plotted versus the propensity scores from correct model at two levels of the missingness (red: m=0, blue: m=1) with smooth curves plotted. 
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Figure 6 (cont.): Distribution of completed Y versus the propensity score. 

m% Y=1+2*X1+2*X2+3*X1X2+ε  

23.6% 

     
54.2% 

     
63.6% 

     
 (a)* [X1, X2, X1X2] (b)* [X1, X2, X1X2] (c)* [X1, X2,…, X12, X1X2] (d)* [X1, X2] (e)* 

(a) Correct imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp) with 

smooth curves plotted to indicate a possible nonlinear relationship between Ys and the propensity score.  

(b) Correct imputation model and overfitted propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(c) Overfitted imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(d) Incorrect imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(e) True Ys are plotted versus the propensity scores from correct model at two levels of the missingness (red: m=0, blue: m=1) with smooth curves plotted. 
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Figure 6 (Cont.): Distribution of completed Y versus the propensity score. 

m% Y=1+2*X1+2*X2+3*X1
2
+ε     

16.2% 

     
33.8% 

     
59.0% 

 
    

 (a)* [X1, X2, X1
2
] (b)* [X1, X2, X1

2
] (c)* [X1, X2,…,X12, X1

2
] (d)* [X1, X2] (e)* 

(a) Correct imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp) with 

smooth curves plotted to indicate a possible nonlinear relationship between Ys and the propensity score.  

(b) Correct imputation model and overfitted propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(c) Overfitted imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(d) Incorrect imputation model and correct propensity model: observed and imputed Ys are plotted versus the propensity score (red: Yobs, blue: Yimp).  

(e) True Ys are plotted versus the propensity scores from correct model at two levels of the missingness (red: m=0, blue: m=1) with smooth curves plotted.
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Figure 7: Plots of gestational age (observed+imputed) versus propensity score: 

imputations are created by using Sequential Regression Multiple Imputation method. 

Only variables without missing value are included in the propensity model. 
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