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I explore the implications of reference-dependent preferences in sealed-bid auctions. In the 

first part, I develop a Prospect theory based model to explain bidding in first-price auctions. I 

show that bidding in induced-value first-price sealed-bid auctions can be rationalized as a 

combination of reactions to underlying ambiguity and anticipated loss aversion. Using data 

from experimental auctions, I provide evidence that in induced-value auctions with human 

bidders, this approach works well. In auctions with prior experience and /or against risk-neutral 

Nash rivals where ambiguity effects could be altogether irrelevant, anticipated loss aversion by 

itself can explain aggressive bidding. This is a novel result in the literature. Using data from 

experiments, I find that ambiguity effects become negligible in auctions with experienced 

human bidders against (i) experienced human rivals and (ii) Nash computer rivals, when loss 

aversion is taken in consideration. The estimates for loss aversion are similar in auctions with 

human bidders (with or without experience).   



 

 

         Next, I extend my approach of anticipated loss aversion to address bidding outcomes in 

first- and second-price sealed-bid auctions. As shown in first part, the model predicts 

overbidding in first-price induced-value auctions consistent with evidence from most laboratory 

experiments. However, substantially different bidding behavior could result in commodity 

auctions where money and auction item are consumed along different dimensions of the 

consumption space. Differences also result in second-price auctions. The study thereby 

indicates that transferring qualitative behavioral findings from induced-value laboratory 

experiments to the field may be problematic if subjects are loss averse and anticipate such 

losses at the time of bidding. 

                     Finally, I explore the effect of resale or procurement opportunities, to which 

bidders have heterogeneous market access, on bidding in first- price sealed-bid auctions. My 

models suggest that in auctions with resale, loss aversion causes underbidding with respect to 

the risk-neutral-Nash prediction. Bidders with greatest level of market access are least affected 

by loss aversion and therefore bid closer to the risk-neutral-Nash than bidders with smaller 

market access. In auctions with procurement, the effect of loss aversion is such that it causes 

overbidding (underbidding) for bidders with respect to the risk-neutral-Nash. Bidders with 

greatest level of market access are again least affected by loss aversion and therefore bid 

much conservatively and closer to the risk-neutral-Nash than bidders with very low market 

access. If market access is interpreted as a proxy for experience, the predictions of my model 

are qualitatively similar to the findings in List (2003, 2004).  Since these indirect effects are 

obtained without altering reference-dependent preferences, it raises the possibility that the 

effects obtained in List (2003, 2004) in field settings may not arise entirely due to the direct 

effect of experience on reference-dependent preferences. This calls for a more careful 

reexamination of the underlying issues.  
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Chapter 1: Reference-Dependent Preferences in Auctions  

In this dissertation, I explore the effect of reference-dependent preferences on bidding 

in auctions. Loss aversion is widely suspected as the primary influence that manifests 

in trading of various commodities – from chocolate bars to coffee mugs, coins, or 

sportscards – for money or other goods (Knetsch 1989; Tversky and Kahneman 1991; 

Kahneman, Knetsch, and Thaler 1990; Benartzi and Thaler 1995, Camerer 1995, List 

2003). In their formulation of the Prospect theory, Tversky and Kahneman (1991) 

assume the current endowment level as a fixed reference point. Any change from the 

reference point is interpreted as “gains” or “losses” by individuals and the disutility 

induced by “losses” are larger than the utility induced by “gains” producing a kink at 

the reference point. Such preferences reconcile the “endowment effect” obtained in 

the literature above.  

        The literature on consumer psychology has discussed how consumers get 

affected by reference prices in everyday transactions (Urbany, Bearden and 

Weilbaker 1988, Kalyanaram and Winer 1995, Mazumdar et al. 2005). Various 

experiments on online auctions suggest that bidders get influenced by auctions’ 

reserve prices (Ariely and Simonson 2003, H¨aubl and Popkowski Leszczyc 2003), 

Kamins et al. 2004, and Suter and Hardest, 2005). Such effects have also been 

observed in e-Bay “buy now” auctions where buy prices are believed to affect 

bidding decisions (Dodonova and Khoroshilov, 2004, Popkowski Leszczyc et al. 

2007, Shunda 2009). In such uncertain circumstances with anticipatory (forward-

looking) attitudes a fixed reference point based approach seems less plausible.  
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                 In such circumstances when bidders face uncertain payoff consequences, 

and “anticipate” uncertain outcomes, Kahnemann and Tversky (1979), Gul (1991) 

Sugden (2003) and Köszegi and Rabin (2006) suggested alternative formulation of 

reference points. While Kahnemann and Tversky (1979) and Gul (1991), propose the 

endogenously determined expected value of the prospect, Sugden (2003) assumes the 

reference to be given by the current endowment which might adjust over the time as a 

reference point. One another model with endogenous definition of reference points 

was proposed by Köszegi and Rabin (2006). The Köszegi and Rabin’s approach is 

more general and bears similarities with previous approaches in simpler 

environments
1
 and allows heterogeneous loss aversion for commodities that make the 

consumption bundle. This brings certain advantages that are apparent in commodity 

transactions where consumption space in multidimensional.  

                    I base the analysis in this dissertation on a model of loss aversion with 

endogenous reference points similar to Köszegi and Rabin (2006) to explore the 

effect on bidding in auctions. This is different from an approach with an exogenous 

fixed reference point in which winning the auction is interpreted as a “gain” while 

losing leaves the initial wealth unaffected. I argue that the reference point may get 

influenced by expected gains and therefore auction outcomes could be interpreted as 

“gains” or “losses.” It is plausible that a bidder who draws a high value and expects to 

win the auction interprets “not winning” as a “loss” and likewise that a bidder with 

low induced-value interprets winning the auction as a “gain.” In a sealed-bid auction, 

after placing a bid, bidders face a lottery of winning or losing the auction. The 

                                                
1 For example, with forward looking rational expectations based reference, it is equivalent to 

Kahnemann and Tversky (1979) and Gul (1991) in induced value first-price auction. 
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probabilities and potential payoffs depend on their own and other bidders’ bids. The 

final outcome is then evaluated with respect to any possible outcome from this lottery 

as a reference point.  

It is noteworthy that my approach though similar to Köszegi and Rabin (2006) is 

slightly different. In an auction where bidders have rational forward-looking 

expectations, the probability of various auction outcomes could be derived upon 

placing the bid. It is therefore natural to assume that the bidders anticipate the effects 

of bidding on both the reference as well as payoff distribution, i.e. both are chosen at 

the same time. This makes my approach slightly different from the Köszegi and 

Rabin (2006).
2
 Because of its anticipatory nature, my approach becomes equivalent 

to Kahnemann and Tversky (1979) and Gul (1991) in induced-value auctions and it is 

well suited to capture the effect of heterogeneous loss aversion in commodity 

auctions.  

I apply a more general Prospect theory approach which allows non-linear probability 

weighting and anticipated loss aversion to explore bidding in induced-value auctions 

(Chapter 2). In chapter 3, I apply a reference-dependent approach to derive potential 

differences in induced-value and commodity auctions. More specifically, I show that 

simultaneous presence of money and commodity loss aversion could influence 

bidding differently than money loss aversion alone. Finally, in chapter 4, I explore the 

effect of heterogeneous resale or procurement access on bidding.  

The dissertation extends the domain of loss averse preferences as applied in other 

contexts to auctions.  This rationalizes aggressive bidding in first-price auctions and 

                                                
2 This is discussed in greater detail in the following chapters. 
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yields some interesting implications for bidding in auctions in general. Highlighting 

potential differences between induced-value and commodity auctions adds to the 

current debate on the link between lab and field settings (e.g., Harrison and List 2004; 

Levitt and List 2007a, 2007b; List 2003). The findings more generally raise some 

concerns for transferring qualitative behavioral findings from the lab to the field.  

       Finally in chapter 4, I explore the effect of differences in trading intentions that 

arise due to heterogeneous access on bidding in auctions. While a formal treatment of 

how experience effects bidding directly could be more challenging, if market access 

is interpreted as a proxy for bidder experience, it becomes possible to analyze the 

indirect effects of experience on bidding in an auction with outside alternatives.  In 

auctions with resale, loss aversion causes underbidding with respect to the risk-

neutral-Nash predictions. Bidders with highest access over favorable prices are least 

affected by loss aversion and therefore bid closer to the risk-neutral-Nash than 

bidders with smaller access to favorable prices. In auctions with procurement, the 

attachment effect is such that it causes overbidding (underbidding) for bidders with 

respect to the risk-neutral-Nash. Bidders with greatest level of market access are 

again least affected by loss aversion and therefore bid much conservatively and closer 

to the risk-neutral-Nash than bidders with less favorable access to procurement prices. 

Thus, the predictions of my model are qualitatively similar to the findings in List 

(2003, 2004) which suggest that market experience attenuates the endowment effect. 

Since these indirect effects are observed without altering reference-dependent 

preferences, it raises the possibility that the effects obtained in List (2003, 2004) may 

not arise entirely due to direct effect of experience on such preferences. 
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Chapter 2: Reference-Dependent Preferences in First-Price 

Auctions 

1. Introduction 

Auctions have become extremely popular for transferring goods and services. Their 

use can be traced back to 500 B.C. in ancient Babylon. Since Vickrey (1961)
3
 

economists have tried to explore bidding and auction outcomes under various 

experimental settings.
4
 In induced-value first-price auctions, subjects bid in excess of 

the risk-neutral-Nash predictions in laboratory conditions (“Overbidding” Anomaly: 

Cox et al 1982, 1988, 1996; Harrison 1989). Although risk aversion can explain such 

aggressive behavior, skepticism surrounding risk aversion as the sole explanation has 

prompted scholars to explore other behavioral alternatives
5
 (Salo and Weber 1995, 

Goeree et al. 2002, Dorsey and Razzolini 2003, Morgan, Steiglitz and Reis 2003, 

Kagel 1995, Filiz-Ozbay and Ozbay 2007). In this paper I propose a different 

alternative which combines elements of Prospect theory: loss aversion and non-linear 

probability weighting. 

                  In first-price sealed-bid auctions, the probability of winning for a given 

bid depends on the joint distribution of induced-values, risk attitudes, and the 

unknown strategies of rival bidders. Thus, missing information about other bidders’ 

induced-values, risk posture, and/or bidding strategies exposes bidders to submit bids 

                                                
3 Vickrey (1961) provides the theoretical foundations of various auction mechanisms. 
4 There is a rich variation of laboratory and field experiments that employ various types of subjects and 

auctioned objects. 
5 Some other behavioral explanations include-nonlinear probability weighting (ambiguity aversion), 

spiteful preferences, regret aversion, etc. 
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in an inherently “ambiguous”
6
 environment. Ambiguity effects as captured in 

Ellsberg paradox (1961) have been observed in market experiments (Camerer and 

Kunreuther 1989, Sarin and Weber 1993)
7
 and could influence bidding in auctions as 

well (Salo and Weber 1995, Chen et al 2007)
8
. In auctions against human bidders, 

prior bidding experience
9
 could make it easier to derive missing information thereby 

reducing the level of ambiguity. Moreover, additional controls for missing 

information have been applied which present even smaller levels of ambiguity in 

these auctions. For example, when bidding against risk-neutral Nash computer 

bidders, there is no uncertainty about bidders’ risk attitudes and bidding strategies. 

Therefore, ambiguity effects should become smaller in these auction environments. 

While efforts have been made to explore the effect of ambiguity on bidding in first-

price auctions (Chen et al. 2007) some other behavioral explanations can’t explain 

overbidding in auctions against Nash computer bidders’.
10

 In this paper, I exploit the 

difference between bidding against human bidders versus computer bidders to 

demonstrate the existence of ambiguity effects as well as another determinant of 

behavior: loss aversion.   

                                                
6 Thus, ambiguity reflects a scenario where missing probabilistic information must be derived. 
7 In Sarin and Weber (1993) the market prices for ambiguous assets were consistently below the 

corresponding prices for equivalent unambiguous assets. An asset is a two-stage lottery with risk (well-

defined probabilities) and ambiguity (probabilities not well-defined). This effect was stronger when 

these assets were traded simultaneously. However there is weaker evidence that ambiguity affects 

insurance markets in Camerer and Kunreuther (1989). 
8 Ambiguity (unlike risk) better characterizes decision making in many real-world situations. E.g., the 

success rate of new drugs, insurance against previously unknown environmental hazards, terrorist 

activities, outcomes of R&D and success of new products in consumer goods markets (see references 
in Chen et al. 2007).  
9 In auctions where all bidders have prior experience and act similarly. 
10 Spiteful preferences or ambiguity aversion cannot explain why humans bid aggressively against 

computers whose bidding strategies are known, and therefore the objective probability of winning the 

auction conditional on bid can be derived fairly easily or conveyed to human bidders. 
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        I base the analysis in this paper on a model of loss aversion with endogenous 

reference points similar to Köszegi and Rabin (2006). This is different from an 

approach with an exogenous fixed reference point in which winning the auction is 

interpreted as a “gain” while losing leaves the initial wealth unaffected. I argue that 

the reference point may get influenced by expected gains and therefore auction 

outcomes could be interpreted as “gains” or “losses.” It is plausible that a bidder who 

draws a high value and expects to win the auction interprets “not winning” as a “loss” 

and likewise a bidder with low induced-value interprets winning the auction as a 

“gain.” This has been observed in other contexts. For example, loss aversion has been 

observed in trading of various commodities – from chocolate bars to coffee mugs, 

coins, or sportscards – for money or other goods (Knetsch 1989; Tversky and 

Kahneman 1991; Kahneman, Knetsch, and Thaler 1990; Benartzi and Thaler 1995, 

List 2003). I show that anticipated loss aversion by itself (irrespective of other 

behavioral explanations) can explain aggressive bidding in first-price auctions and 

captures an important behavioral influence on bidding. Thus, my approach provides a 

justification for aggressive bidding in auctions where ambiguity effects could be 

minimal or altogether absent. Other behavioral explanations-spiteful preferences, 

non-linear probability weighting, anticipated regret aversion, disappointment aversion 

- could also explain aggressive bidding just like anticipated loss aversion. Unlike a 

regret-based explanation (Filiz-Ozbay and Ozbay 2007), my approach does not rely 

on ex-post information to explain aggressive bidding; spiteful preferences (Morgan, 

Steiglitz and Reis 2003) can’t explain why human bidders bid aggressively against 

computer bidders. And finally, when the auction winner earns only the monetary 
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profit as in laboratory experiments,
11

 my approach is equivalent to the disappointment 

aversion model as in Gul (1991).
12

   

        Two prominent approaches to address ambiguity attitudes in the literature are the 

maximin expected utility (MMEU model) (Gilboa and Schmeidler 1989) and Choquet 

expected utility (CEU) model (Gilboa 1987, Schmeidler 1989). I take the CEU 

approach, which allows subjective distortion of objective probability measures to 

capture attitudes towards ambiguity, exactly as in Salo and Weber (1995) and Goeree 

et al (2002). I propose a model of endogenous expectations, similar to Köszegi and 

Rabin (2006), to accommodate reference-dependent preferences and attitudes towards 

ambiguity. This is consistent in the spirit of Prospect theory, which allows both non-

linear probability weighting and loss aversion.   

                  Theoretically, as special cases of my approach, either non-linear 

probability weighting or loss aversion can explain observed bidding outcomes. I show 

that when bidders are loss averse and fully anticipate potential “losses”, overbidding 

is justified even without non-linear probability weighting. Thus, I suggest loss 

aversion as an alternative explanation for aggressive bidding in auctions. When I rely 

on non-linear probability weighting alone, my approach is behaviorally equivalent to 

previous explanations that explain overbidding in terms of risk aversion or ambiguity-

aversion (Salo and Weber 1995; Goeree et al 2002).  

                                                
11 This is different in field where auction object is exchanged for a monetary price (bid).  In Lange and 

Ratan (2009) we discuss the differences that could arise between the auctions conducted in induced-
value (laboratory) settings and field in the context of the model, offered here. 
12 Since I allow nonlinear probability weighting, my approach differs from Gul’s approach; in the 

special case of linear probability weighting, the two approaches are similar. This equivalence breaks 

down in field auctions where the auction object is exchanged for the bid. The implications of a model 

based on loss aversion for various auction settings are further explored in Lange and Ratan (2009). 
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      Using data from First-price auction lab experiments, I provide evidence that the 

general approach that combines loss aversion and non-linear probability weighting 

provides a good fit for observed bids. This approach is capable of addressing the 

differences in ambiguity across auction environments and explains aggressive bidding 

in auctions with prior experience (with loss aversion) against (i) experienced human 

bidders and (ii) risk-neutral Nash-computer bidders. In these auctions, drawing 

probabilistic inferences (conditional on bids) is relatively easier, and ambiguity 

effects could be irrelevant,
13

 and therefore smaller deviations between subjective and 

objective probabilities are expected.
14

   

          I estimate the behavioral parameters in my models using experimental data 

(Cox et al 1982, Harrison 1989) and test the hypothesis for probability weighting 

under less ambiguous circumstances.  I provide evidence that in auctions against 

human bidders aggressive bidding can be rationalized as a combination of loss 

aversion and ambiguity-aversion; the estimates for loss aversion in auctions with 

human bidders (irrespective of prior experience) are similar, whereas probability 

weighting becomes less convex in auctions that present successively reduced levels of 

ambiguity. This results in smaller deviations between subjective and objective 

probabilities. When loss aversion is allowed, this yields an almost linear probability 

weighting in auctions with prior experience against (i) experienced human and (ii) 

risk-neutral Nash bidders.  

                                                
13 In an experiment reported in Dorsey and Razzolini (2003), the probability of winning conditional on 
bids is conveyed to the subjects. 
14 The evidence on ambiguity attitudes suggests that ambiguity aversion is more prevalent. In addition 

to the experiments that are replications of the Ellsberg paradox (Fox and Tversky 1998), Sarin and 

Weber (1993) find that the price of ambiguous two-stage lotteries is lower than equivalent 

unambiguous lotteries obtained through double-market auctions. 
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          In the following sections I motivate the general Prospect theory model for 

bidding in auctions (sections 2 and 3). I apply the model to auctions with risk-neutral 

Nash bidders (section 4), and analyze the experimental data in sections 5 and 6. 

Finally, I discuss my results and conclude (sections 7 and 8). 

2. Prospect Theory: Reference-Dependence and Non-linear 

Probability Weighting 

In this section I describe the behavioral assumptions in my approach to address 

bidding in laboratory first-price auctions. In laboratory auctions, values are induced 

and profits are paid in monetary units. Thus, consumption occurs in a single 

dimension.
15

  Following Köszegi and Rabin (2006), an individual’s utility ( | )u c r  

depends both on her consumption c  and her reference level r .  The “direct” 

consumption utility ( )v c  is obtained when realized consumption is the same as the 

reference level, i.e., ( ) ( | )v c u c c , and the individual utility when her consumption 

differs from her reference is defined as 

( | ) ( ) - max[0, ( ) - ( )]lu c r v c k v r v c     (1) 

with 0 lk . 
lk
 
is the scalar gradient which captures the sensation of “loss” when less 

favorable outcomes are realized.
16

 

Ex ante, both reference levels and consumption could be stochastic. Following 

Köszegi and Rabin (2006), the reference level is a probability measure G  over  

                                                
15 Unlike laboratory auctions where induced-values are induced in money and profits are paid in 

monetary units, in real auctions the object is awarded to the winner in return for money. In Lange and 

Ratan (2009), we discuss the implications arising from this difference when loss aversion associated 

with the object and money may differ. 
16 I normalize psychological “gains” to zero.   
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and consumption is drawn according to the probability measure H  over . Then, 

the individual’s overall expected utility over risky outcomes is given by 

( | ) ( | ) ( ) ( )U H G u c r dG r dH c    (2) 

In an equilibrium (for a first-price auction) captured by a strictly increasing 

symmetric bidding function, the bid determines the probability of winning and the 

consequent profits for a bidder.  Since no further action is possible after placing the 

bid, the bid not only defines the probability of consumption outcomes ( H ) but also 

defines the probability of reference outcomes ( G ). Thus, for a bidder with rational 

expectations H G , and the reference point G  is endogenously determined.
17

  

The other important feature of prospect theory is non-linear probability weighting 

(Kahneman and Tversky 1979). As discussed earlier, auction environments could 

vary in terms of underlying ambiguity. Two prominent approaches to address 

ambiguity attitudes in the literature are maximin expected utility (MMEU) (Gilboa 

and Schmeidler 1989) and Choquet expected utility (CEU) (Gilboa 1987, Schmeidler 

1989). In the MMEU model, decision makers have a set of priors over outcomes and 

choose the actions that maximize the minimum expected utility over the set of priors. 

In the CEU model, decision makers’ beliefs are represented by a set of non-additive 

probability measure (capacities).
18

 I take the CEU approach, which allows subjective 

                                                
17 Alternative reference-dependent models with endogenous definition of reference points are given by 

Sugden (2003) and Munro and Sugden (2003) who assume the reference to be given by the current 

endowment which might adjust over the time. One other fixed reference could be the weighted 

expected value of the prospect, which is also determined endogenously in one-shot games (Kahnemann 

and Tversky 1979). 
18

 Some recent contributions aim at characterizing ambiguity without restricting attention to specific 

decision models, or functional-form considerations. E.g., Klibanoff, Marinacci and Mukerji (2005). 
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distortion of objective probability measures to capture attitudes towards ambiguity.
19

 

Ambiguity effects should become smaller in auctions with prior bidding experience 

and/or against risk-neutral Nash bidders
20

, thereby producing smaller distortions of 

objective probabilities. I therefore assume that each bidder distorts the objective 

probability measure P  through the following probability weighting function as in 

Salo and Weber (1995) and Goeree et al (2002): 

( )P P  where 0   
21

                                                     (3) 

Under this assumption H  and G  in (2) could be non-linearly weighted measures of 

probability as defined in (3).
22

 Thus an individual solves the following program: 

max ( | )U H H                                                                 (4) 

This specification is however slightly different from the general setting discussed by 

Köszegi and Rabin (2006). In their approach, action takes place after a reference 

distribution has been formed. Given a reference distribution G , the individual 

therefore chooses ( )H G  to maximize ( | )U H G . In equilibrium, rational expectations 

then require that the consumption distribution is chosen such that it is consistent with 

                                                
19 Thus, I assume that probability distortions arise entirely as a response to ambiguity. This approach is 

similar to Salo and Weber (1995) and Goeree et al (2002). 
20 Since deriving missing information about rivals’ risk attitudes and equilibrium bidding strategies 

could become easier. 
21 

 
governs the elevation of the probability weighting function with respect to the 45-degree line. 

The 45-degree line describes linear probability weighting. ( )1  
 

implies overweighting 

(underweighting) of probability. This functional specification is a special case of the probability 

weighting function described in Prelec (1998): ( ) exp( ( log ) )P P      , in which 1  ; thus, 

my approach is less general. Moreover, in previous attempts to fit the more general form for bidding in 

first-price auctions, I found that 1  . Later I discuss other evidence in the literature that supports 

this functional form for uncertain circumstances where probabilities are derived and not known 

exclusively. 
22 Later, I show how the auction outcomes are weighted in my model. 
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the formulation of the reference point, i.e. ( )H G G .  In sealed-bid auction 

equilibrium, given the beliefs of bidders’ bidding strategies, a bid uniquely 

determines the probability of various auction outcomes for each bidder. This allows 

the formulation of a probability distribution over consumption and reference 

outcomes simultaneously. A rational bidder applies the same weighting to the 

objective probability measure associated with reference and consumption levels. This 

allows a complete specification of overall expected utility for a bidder who fully 

anticipates ensuing “losses” as defined in (4). 

3. The First-Price Auction Environment 

In this section I discuss the bidding problem in a first-price auction for a bidder with 

behavioral characteristics as described in the previous section. 

I consider n  bidders 1,...,i n  and assume symmetric behavioral preferences, i.e. that 

bidders share the same characteristics for loss aversion and probability weighting; this 

is common knowledge. In my framework, unique identification of risk preferences 

and non-linear probability weighting is not possible. Therefore, bidders are assumed 

to be risk-neutral in the numeraire consumption, i.e. ( )iv c c . In the laboratory 

auction, 
iv
 
is directly induced in monetary units. Each bidder draws her induced-

value 
iv
 

from a probability distribution defined by the distribution function F  

defined over [ , ]v v  ( 0v v  ); each bidder knows his induced-value, and knows that 

other bidders’ induced-values are also drawn independently from distribution F .
23

 

                                                
23 In laboratory auctions, overbidding beyond induced-value entails negative payoff and is always 

suboptimal.However, in Harrison (1989) this restriction is not imposed explicitly. 
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The bidding problem for a typical bidder in a laboratory first-price auction is 

described in figure 1. In equilibrium for symmetric bidders, which can be depicted 

through a strictly increasing bid function ( ) ( )j j jB v B v where j i  for all other 

bidders, a bid 
iB   for bidder i  defines her objective probability of winning the 

auction. This is weighted non-linearly by the bidder. Thus, a bidder can formulate an 

endogenous reference lottery for each feasible bid that captures his expectations 

(beliefs) of various auction outcomes. The auction outcome follows. Ex-ante, losing 

the auction could be interpreted as loss and weighted with respect to the endogenous 

reference formulated at the time of bidding. 

 

Figure 1: Bidding Problem in a First-Price Auction 

 

 

Note that a bidder’s reference is defined by her beliefs about the relevant outcomes 

held between the time she formulates her bid and shortly before the auction outcome 

Draw Value; Submit bid; 
Formulate  Reference

Reference

Action

Outcomes

Pr( )Lose

Pr( )Lose

Pr( )Win

Pr( )Win

Pr( )Win

Pr( )Lose

i iv B

i iv B

0

0
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is observed. The degenerate utility in a first -price sealed-bid auction that captures the 

gain-loss utility as described in (1) takes the following values:

 
 

- -

- - , 0
( | )

- ( - ) 0, -

0 0

i i i i

i i i i

PT

l i i i i

v B when c r v B

v B when c v B r
u c r

k v B when c r v B

when c r

 


 
 

 
  

 

The overall expected utility for a bidder with preferences as given in section 2 (based 

on conditions (1)-(4)) is given by: 

( , ) ( ( ))( ) ( ( ))(1 ( ( )))( )PT i i i i i l i i i iv B f B v B k f B f B v B       
          

(5) 

where ( )if B
 
and ( ( ))if B are the objective and weighted probability of winning for a 

given bid. The first term is the weighted expected direct consumption utility (value) 

and the second captures the psychological “losses” when the bidder unexpectedly 

loses the auction.
24

 Note that bidding yields nonnegative payoff for moderate levels 

of loss aversion; for high levels of loss aversion bidding 
i iB v  maximizes overall 

payoff.
25

 Also note that weighted expected value is also determined endogenously for 

an equilibrium bid and could be used as a fixed reference to evaluate the reference-

dependent utility of various outcomes (Kahnemann and Tversky 1979). This is 

equivalent to the lottery (Köszegi-Rabin) approach as discussed in the previous 

section and yields the same overall expected utility as in (5).
 26

As mentioned before, 

with linear probability weighting and induced-value (laboratory) settings where 

                                                
24 Note when there is no loss aversion, 0lk 

 
, this becomes a probability weighted model alone. In 

addition, when there is no probability weighting, this becomes a risk-neutral Nash model. 
25 The maximum payoff in this case is zero. 
26 In the fixed reference approach, only the auction outcome of not winning yields psychological loss 

with respect to the reference of the expected value for a given bid. 
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auction winner earns the monetary profit, my approach is equivalent to the 

disappointment aversion model as in Gul (1991).
27

   

It should be noted that (5) implies that a non-negative expected utility gain ( , )PT i iv B  

from participating in the auction can only result if 1 (1 ( ( )))l ik f B  . That is, auction 

yields positive utility only for bidders with ( ( )) 1 1/i lf B k   . If 1lk  , this condition 

holds for all bidders. If 1lk  , the condition implies only bidders with a sufficiently 

large probability to win derive positive payoff from placing positive bids.  

I restrict attention to symmetric monotonically increasing equilibria in pure strategies. 

In equilibrium, the chances of player i  to win are given by 1( )n

iH v . With the above 

argument, auction yields positive utility only if 1( ( )) 1 1/n

i lH v k    . Given (.) , the 

threshold value ˆ( )lv k  beyond which positive utility is realized is defined by  

1 ˆ( ( ( ))) max[0,1 1/ ]n

l lH v k k        (5a) 

Note that ˆ( )lv k v  if 1lk  . Bidders with ˆ[ ( ), ]j lv v k v  shall place positive 

equilibrium bids that yield positive overall payoff. Maximizing (5) with respect to 
iB  

yields a strictly increasing (optimal) bid function. 

 

                                                
27 In Gul’s model, disappointment could arise from paying a higher than expected price and/or losing 

the profit (based on higher price) due to losing the lottery. In a first-price auction, the price paid equals 

the bid in case of winning; so the only source of disappointment arises from not realizing the expected 

profit (certainty equivalent- ( )( )i i if B v B ) when the auction is lost which occurs with probability

(1 ( ))if B . The last term therefore fully captures the disappointment as discussed in Gul (1991). 
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Proposition 1: (-First Price Auction against Human bidders-) The unique 

monotonically increasing symmetric Bayesian Nash equilibrium (BNE) bid function 

for loss averse bidders who weigh probabilities non-linearly is 

1 1

ˆ( )

1 1

[1 (1 2 ( ( ))] ( ( ))

( ) ˆfor ( )
( ( ))[1 (1 ( ( )))]

ˆfor ( )

i

l

v

n n

l

v k

i PT i ln n

i l i

i i l

x k F x d F x

B v v v k
F v k F v

v v v k

 

 

 

 


 


 

 
 


 

Proof: See Appendix. 

 

It is clear from the above that (i) ˆ( )lv k
 
 varies with 

lk  and   and (ii) for bidders with 

ˆ( )i lv v k the equilibrium bid depends on 
lk  and  .

28
 Thus, for ˆ( )i lv v k

 
we can 

explore the marginal effects of changes in 
lk
  

and   on equilibrium bids.  

 

Proposition 2 (i) (-Effect of loss aversion-) Greater loss aversion yields aggressive 

bidding, i.e., 0PT

l

B

k





 (ii) (-Effect of probability weighting-) Greater   (more 

convex probability weighting) yields more aggressive bidding, i.e. , 0PTB







 except 

when 0.9951 1lk 
 
and bidders with very small induced-values such that 

2 2 2( ) 2 3 (1 ) (1 ) (1 ) ln 0i l i l l i l l l i iZ y k y k k y k k k y y       
 
(where ( 1)( ) n

i iy F v    ) bid 

less aggressively i.e.  0PTB







. 

Proof: See Appendix. 

                                                
28

 For ˆ( )i lv v k  equilibrium bid ( )i iB v v  does not depend on  
lk
 
and . 
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Intuitively, the tradeoff that determines the optimal bid for loss averse bidders differs 

from the tradeoff without loss aversion. Loss averse bidders are willing to pay a 

higher price to avoid the “losses” from not realizing the profits upon winning. This 

induces more aggressive bidding for any monotonic probability weighting. Thus, 

anticipated loss aversion by itself explains overbidding with respect to risk-neutral 

Nash equilibrium.
29

 For example, if the ambiguity confronting the bidder is smaller, 

(such that ambiguity effects could be smaller or altogether irrelevant
30

) then 

anticipated loss aversion would suffice to rationalize aggressive bidding.  

           Before I explore the effect of probability weighting on equilibrium bidding it is 

noteworthy that bidders could avoid “losses” in the following ways: (a) if the value 

draw is not high enough then bid upto their value to avoid “losses”, (b) and if the 

value draw is high enough they could either bid (i) more aggressively or (ii) less 

aggressively, in response to more convex probability weighting. In the latter scenario, 

when the value draw is high enough less aggressive bidding could happen because 

bid also affects the expectation of auction outcomes simultaneously. Higher   means 

lower elevation of the probability weighting curve and causes more aggressive 

bidding which suggests ambiguity-aversion (or bidder pessimism) in most 

circumstances except the following: when 0.9951 1lk 
 
some bidders with very small 

                                                
29 In addition to other behavioral influences that could justify aggressive bidding with respect to the 

RNNE bid. 
30 For example, in auctions with experienced bidders and/or against risk-neutral Nash bidding 

strategies, deriving missing information regarding the probability of winning for a bid could be easier. 

Such auctions therefore present smaller levels of ambiguity for a bidder. 
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induced-values could bid less aggressively. 
31

 Therefore, as a special case of 

Proposition 1, one can justify aggressive bidding entirely as a response to underlying 

ambiguity with non-linear probability weighting (without loss aversion 0lk  ). 

Aggressive bidding with respect to the RNNE would then suggest that “ambiguity-

aversion” or “bidder pessimism” causes underweighting the probability of winning 

for given bids (Salo and Weber 1995, Goeree. et al 2002). 

 

Proposition 3: Greater competition (more bidders) yields more aggressive bidding, 

i.e.,
( )

0PT iB v

n





 except when 0.9951 1lk 

 
and bidders with very small induced-

values such that 2 2 2( ) 2 3 (1 ) (1 ) (1 ) ln 0i l i l l i l l l i iZ y k y k k y k k k y y         
(where 

( 1)( ) n

i iy F v    ) bid less aggressively i.e. 
( )

0PT iB v

n





. 

Proof: See Appendix. 

 

The marginal response to greater competition is similar to the effect of probability 

weighting; as before, when value draw is high enough, bidders could avoid “losses” 

by bidding more or less aggressively, in response to more competition; this happens 

because their bid affects their expectation of auction outcomes simultaneously. The 

effect of greater competition is analogous to more convex probability weighting and 

causes aggressive bidding in most circumstances except the following: when 

                                                
31 For any bidder, more convex probability weighting, affects overall payoffs by affecting the weighted 

probability of winning, direct expected payoff and anticipated “losses”; for most bidders the net effect 

of more convex probability is such that it yields more aggressive bidding; however when 

0.9951 1lk  for some bidders with low induced-values the net effect could yields less aggressive 

bidding.  
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0.9951 1lk 
 

some bidders with very small induced-values could bid less 

aggressively. Thus, despite behavioral preferences, in most circumstances bidders 

respond to greater competition along conventional lines by bidding more 

aggressively.
32

 

In the following sections, I provide evidence that my approach which allows loss 

aversion performs quite well in induced-value auctions, but identifying suitable 

reference points
33

presents a major challenge in applying Prospect theory based 

approaches to other contexts, e.g., in common value auctions.  

           As discussed earlier, the general model is capable of addressing the differences 

in ambiguity across auction environments. Intuitively, ambiguity effects should 

become smaller in auctions where bidders have prior bidding experience against (i) 

experienced human bidders and (ii) risk-neutral Nash bidders, thereby producing 

smaller deviations between weighted and objective probabilities. I shall explore this 

hypothesis in the following section. It should be noted, however, that bidding against 

Nash risk-neutral bidders is not a special case of the equilibrium bid as discussed so 

far. Instead, it merely represents the best response of the player. In the following I 

derive the best response bid under given behavioral assumptions in these auctions.  

4. Auctions against Nash (risk-neutral) bidders 

In this section I address bidding in induced-value auctions against Nash risk-neutral 

computer bidders. In these auctions, bidders are informed ex-ante that other bidders 

                                                
32 Except when 0.9951 1lk 

 
  some bidders with very small induced-values the net effect of greater 

competition yields less aggressive bidding, as in the case of probability weighting before. 
33 How people develop reference points could be contextual and plausible reference points could differ 

under different circumstances. 
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always bid a certain fraction (the risk-neutral Nash bid) of their induced-values.
34

 The 

auction environment is the same except that bidders face Nash risk-neutral computer 

bidders. There is no uncertainty in these auctions about risk attitudes and equilibrium 

strategies that rival bidders employ. Thus, the ambiguity confronting the bidder 

becomes smaller in these auctions. Some other behavioral explanations for 

overbidding (considered in isolation) do not apply in these auctions. E.g., it is 

unlikely that humans will harbor spite against computer bidders; thus, spiteful 

preferences cannot explain aggressive bidding in these auctions. Similarly, the 

estimates of risk aversion obtained in these auctions are not similar to those observed 

in auctions against human bidders.
35

 Although combining risk aversion with spite 

could explain overbidding against risk-neutral Nash computerized bidders, such a 

model by itself is not capable of addressing the changes in ambiguity on bidding 

behavior in these auctions.
36

 The Prospect theoretic framework that I motivated 

earlier is capable of addressing changes in ambiguity on bidding in these auctions.  

Each bidder relies only on her induced characteristics, as described in the preference 

structure defined in (1)-(4).
37

 Consistent with the experimental setup, I assume that 

induced-values are drawn from a uniform distribution over the support [0,1]  . Since it 

is known that rival bidders’ bids are Nash (risk-neutral) best responses,
38

 the bidder 

                                                
34 In some variants of these experiments (Dorsey and Razzolini 2003), probability of winning, 

conditional upon bids was also shown to bidders. 
35 This is obvious by looking at the estimates of the probability-weighted model (no loss aversion) in 

auctions against risk- neutral Nash bidders (Table 5). Variations in probability weighting would 

therefore suggest variation in risk attitudes. 
36 Among other explanations, ambiguity aversion and risk aversion could also rationalize bidding 
outcomes in these auctions. However, uniquely identifying risk and ambiguity attitudes could be 

extremely difficult when they are modeled together.  
37 We don’t need to assume symmetric behavioral characteristics to derive the optimal bid response. 
38 For example, in a first-price auction with 4 bidders, computers always bid three-quarters of their 

induced-value. 
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need not take into account the strategic consequences of his bids. This yields the 

following overall expected utility for the bidder who maximizes expected payoffs: 

1 1 1max ( , ) (( ) ) (( ) )(1 (( ) ) ( )
i

n n n

PT i i i l i i i i
v B v

v B B k B B v B        

 
                   (7) 

where / ( 1)n n    , 1( )n

iB  , and 1(( ) )n

iB  

 
are the objective and weighted 

probability of winning conditional on bid. The first term is the weighted direct 

consumption utility (value) and the second captures the psychological “losses” when 

the bidder loses but had expected to win the auction. Given the risk-neutral-Nash 

opponent bidders, bidders can ensure winning by placing a bid- ( 1) /n v n . 

As before, (7) implies that a non-negative expected utility gain ( , )PT i iv B  from 

participating in the auction can only result if 1 (1 ( ( )))l ik f B  . That is, auction 

yields positive utility only for bidders with ( ( )) 1 1/i lf B k   . If 1lk  , this 

condition holds for all bidders. If 1lk  , the condition implies only bidders with a 

sufficiently large probability of winning shall derive positive payoff from the auction 

by placing positive bids.  

I restrict attention to symmetric monotonically increasing equilibria. In equilibrium, 

the chances of player i  to win, are given by 1 1( ) ( )n n

i iB H v   . With the above 

argument, auction yields positive utility only if 1( ( )) 1 1/n

i lH v k    . Given (.) , the 

threshold value ˆ( )lv k  beyond which positive utility is realized is defined by  

1 ˆ( ( )) max[0,1 1/ ]n

lH v k        (7a) 

Note that ˆ( )lv k v  if 1lk  . For bidders with ˆ( )i lv v k
 
bidding their induced-value 

ensures maximizes overall payoff. Bidders with ˆ[ ( ), ]j lv v k v  shall place positive 
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equilibrium bids that yield positive overall payoff. Maximizing (7) with respect to 
iB  

yields a strictly increasing (optimal) bid response function.
39

  

 

Proposition 4: (-First-price auction against Nash bidders-) The unique optimal bid 

for loss averse bidders who weigh probabilities non-linearly (against Nash risk-

neutral bidders) is captured through the following monotonic relationship:  

( 1)

( 1)

1- ( ) -1
ˆmin , for ( )

( 1) 1- 2 ( )

ˆfor ( )

n

i l l i
i i ln

i l l i

i i l

B k k B n
B v v v k

v n k k B n

B v v k







 





    
    

      




 

Proof: See Appendix. 

 

It is clear from the above that (i) ˆ( )lv k
 
 varies with 

lk  and   and (ii) for bidders with 

ˆ( )i lv v k
 
the equilibrium bid depends on 

lk  and  . For 
iv v , the optimal bid attains 

a corner solution i.e.  
( 1)

( 1)

1- ( ) -1

( 1) 1- 2 ( )

n

i l l i
i n

l l i

B k k B n
B v

n k k B n







 





 
  

  
. This suggests that 

beyond the threshold induced-value v  it is optimal for bidders to bid ( 1) /n v n

 

 

that ensures winning the auction. If a bidder chooses a bid below ( 1) /n v n  and 

anticipates “losses”, then her bid is adjusted against loss aversion. For bidders with 

ˆ( )i lv v k  equilibrium bid ( )i iB v v  does not depend on  
lk  and  . As a special case, 

when bidders are not loss averse and do not weigh probabilities non-linearly, this 

yields a best response in a Nash equilibrium. This allows characterizing the effect of 

loss aversion on bidding. 

                                                
39

 For all plausible parameters 
 
and 

lk  the payoff function has a unique interior or corner optimum. 
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Proposition 5: (i) (-Effect of Loss Aversion-) In auctions with induced-values 

(against Nash risk-neutral bidders), for ˆ( )l iv k v v   loss aversion induces more 

aggressive bidding, i.e.  0PT

l

B

k





 

(ii) (-Effect of probability weighting-) Greater   

(more convex probability weighting) yields more aggressive bidding i.e. 0PTB







 

except when  * 1lk k    and bidders such that 

( 1) ln( ) ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B

   
 

 


  

 
, bid less aggressively i.e. 0PTB







.  

Proof: See appendix. 

 

This suggests that loss aversion has no effect on bidding when bidders either have 

very high or low induced-values. Beyond a certain threshold induced-value v

 

 it is 

optimal to bid ( 1) /n v n  and ensure winning the auction against risk-neutral Nash 

computer bidders.
40

 Bidders with very low induced-values, avoid “losses” by bidding 

their upto their value. However, for most bidders with intermediate range of induced-

values, anticipated loss aversion justifies aggressive bidding, with or without non-

linear probability weighting. Since the role of probability weighting is limited in these 

auctions, loss aversion by itself provides a sufficient justification for aggressive 

bidding, as evident in auction outcomes obtained through laboratory experimentation. 

               While discussing the effect of probability weighting on bidding, it is 

important to understand that the effect of probability weighting in such auctions could 

                                                
40

 Note that, ( 1) /n v n  is the highest possible bid in a risk-neutral Nash model. 
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be limited. Nevertheless, just like in auction against human bidders, bidders could 

avoid “losses” in the following ways: (a) if the value draw is not high enough then bid 

upto their value to avoid “losses”, (b) and if the value draw is high enough they could 

either bid (i) more aggressively or (ii) less aggressively, in response to more convex 

probability weighting; this happens because bid affects the expectation of auction 

outcomes simultaneously. Higher   means lower elevation of the probability 

weighting curve and in most circumstances causes more aggressive bidding which 

suggests ambiguity-aversion (or bidder pessimism); except when * 1lk k    and for 

iv  such that 
( 1) ln( ) ( )

[1 (1 2 ( ))]
[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B

   
 

 


  

 
, more convex 

probability weighting causes less aggressive bidding. 

 

Proposition 6: (-Effect of greater competition-) For most human bidders (in most 

circumstances) greater competition yields more aggressive bidding i.e. 0PTB

n




  

except when  ˆ 1lk k   and bidders such that 

( 1)[ (1 ) ln( )] ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B

    
 

 

  
  

 
, bid less aggressively i.e. 

0PTB

n





.  

Proof: See Appendix 

 

The marginal response to greater competition (more bidders) is similar to the 

marginal effect of probability weighting; as before, bidders could bid more or less 
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aggressively, in response to greater competition; this happens because their bid also 

affects their expectation of auction outcomes simultaneously. The effect of greater 

competition is analogous to more convex probability weighting and in most 

circumstances causes more aggressive bidding; for  ˆ 1lk k   and for 
iv  such that 

( 1)[ (1 ) ln( )] ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B

    
 

 

  
  

 
, bidders bid less 

aggressively in response to greater competition. Thus, despite behavioral preferences, 

in most circumstances bidders respond to greater competition along conventional 

lines by bidding more aggressively. 

    In the following section I fit the general model with probability weighting and loss 

aversion and its restricted versions which take into account loss aversion and non-

linear probability weighting in isolation to explain bidding using data from auctions 

with (i) human bidders and (ii) risk-neutral Nash computer bidders. Note that the 

equilibrium bidding behavior as specified in Propositions 1 and 3 differs across these 

auctions. 

5. Empirical Analysis 

Data 

I use data from induced-value first-price auctions reported in Cox et al. (1982) and 

Harrison (1989).  Cox et al. (1982) reports 210 auctions with different number of 

bidders, totaling 1170 bids in first-price auctions.
41

 A description of the data in Cox et 

al. (1982) is provided in Table 1.  

                                                
41 I ignore auctions with 3 bidders in these experiments. The results for these auctions are considered 

anomalous, and breakdown of non-cooperative bidding is suspected (Cox et al. 1982) 
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[Table 1 here] 

The experiments in Cox et al. (1982) employed undergraduate students enrolled in 

introductory economics classes at the University of Arizona and Indiana University 

and were conducted over a number of years in the 1980s. The results based on this 

data have formed a benchmark for investigation of bidding outcomes in first-price 

auctions experiments (see Harrison 1989, Salo and Weber 1995, Goeree et al. 2002). 

The first-price auctions were conducted in sessions along with Dutch and second-

price auctions for single (hypothetical) objects. All sessions consisted of 30 sequential 

auctions (e.g., 10 Dutch, 10 first-price, and 10 Dutch). These auctions had the 

following features: Identifying variables include auction series, type of auction, 

observed bid/price, number of bidders, period, subject, and the support of the uniform 

distribution from which induced-values were drawn and induced.  Bidders were paid 

$3.00 for participation and a series of 30 auctions had an expected profit of $12. 

Thus, the total expected earnings were about $15 per subject. A session lasted for 

about one hour. Induced-values (in discrete multiples of 10 cents) were induced from 

uniform distributions with support over 0 and an upper limit that varied across 

different sets of auctions (see Table 2 for description). The number of bidders and the 

support from which induced-values were drawn (with replacement) were varied such 

that expected gains were similar across auctions. Overbidding beyond induced-values 

was not allowed, the object was awarded to the highest bidder at his bid, and the 

winning bid was displayed after the auction was concluded. The winner’s identity and 
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bid were not conveyed to the other bidders.
42

 The summary statistics of the data 

reported in Cox et al (1982) is provided in table 2. 

[Table 2 here] 

The series of auctions where bidders have prior experience of bidding in first-price 

auctions have a suffix “x” in the name (see Table 1).  Thus, for auctions with 4 and 5 

bidders, we can explore the effect of “experience” on behavioral parameters.  

I also use data from Harrison (1989) in addition to Cox et al. (1982). Six experimental 

sessions were conducted using the design indicated in Table 3. The general 

procedures follow those introduced by Cox, Smith and Walker (1985b) and Cox et al. 

(1988), and are broadly similar to Cox et al. (1982). All subjects were economics 

undergraduates at the University of Western Ontario and received $3 just for showing 

up at the experimental session. The expected profit for a session of 20 auctions was 

roughly $10. Therefore, total expected earnings were $13 for each subject. All 

experimental sessions had 4 bidders whose induced-values were drawn from a 

uniform distribution with lower and upper valuations of $0.01 (or 1 point) and $10.00 

(or 1000 points). A description of the data reported in Harrison (1989) is provided in 

Table 3.  

[Table 3 here] 

I restrict my analysis to auctions with dollar payoff and compare the auctions with 

auctions involving inexperienced human rival in the following treatments: (i) subject 

experience and (ii) use of computer-simulated “Nash risk-neutral bidders.” Subjects 

                                                
42 This is quite unlike in real first-price auctions where such information can be public. The non-

availability of ex-post information that becomes the basis of “regret” therefore weakens anticipated 

“regret” as an explanation for overbidding in these auctions (Filiz-Ozbay and Ozbay 2007). Note that 

my explanation is invariant to ex-post information structure in these auctions.  
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have a similar level of experience in series 1, 2, and 3, respectively. In auctions 

against risk-neutral Nash bidders, a computer entered risk-neutral Nash equilibrium 

bids for the 3 bidders that each human bidder faces in an auction.  Subjects were 

informed ex-ante that the computer would bid 75% of the valuation that it drew for 

each of the 3 simulated bidders. The auctions in Harrison (1989) are different from 

the auctions in Cox et al. (1982) in the following ways: Bidding beyond induced-

value is allowed in Harrison (1989).  Bidders (human or simulated) were assigned 

randomly in each period. This controls for the use of multi-period strategies that can 

be employed when this randomization procedure is not in use. Valuations vary across 

bidders in a given replication and across periods. Each replication in a given period 

also employs the same N valuations, since replications occur simultaneously in a 

given experiment. The summary statistics of the auctions in Harrison (1989) is 

provided in Table 4. 

[Table 4 Here] 

Pooling of data 

1.  Induced-value distributions were varied across auctions with varying 

numbers of bidders in Cox et al. (1982) such that expected gains from 

participation in auctions were roughly similar. In my framework this design 

may not have the desired effect. Also, auctions with different numbers of 

bidders may present unique levels of ambiguity. Therefore, I do not pool the 

data from all the auctions together.  

2. In Cox et al. (1982) there are two series of auctions, “fdf” and “dfd” each 

composed of 10 consecutive auctions of a type. For example, “fdf” represents 
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10 first-price, 10 dutch, and 10 first-price auctions, and “dfd” represents 10 

dutch, 10 first-price, and 10 dutch auctions. I pool data from 20 first-price 

auctions from the series “fdf” and 10 first-price auctions from the series “dfd”.  

         Similarly, data from 20 sequential first-price auctions are pooled 

together from Harrison (1989). As observed earlier, randomization procedures 

adopted in Harrison (1989) control for the use of multi-period strategies that 

can be employed when this randomization procedure is not in use. (1989).  

An overview of bidding behavior 

An overview of bidding across auctions in Cox et al. (1982) and Harrison (1989) (in 

tables 2 and 4) reveals the following: (a) in auctions with 4 bidders, the number of 

bids above the risk-neutral Nash (henceforth overbids) ranges between 81-91% in 

Harrison (1989), as compared to 77.5-82.5% in Cox et al. (1982); (b) and in auctions 

with 5 or more bidders in Cox et al. (1982), the number of overbids ranges between 

66-86%. For all auctions (a) the amount by which bids exceed the risk-neutral Nash 

bids (overbid
43

) in Harrison (1989) is also higher (around 22%) than in Cox et al. 

(1982) (around 16%) and (b) the percentage absolute deviation
44

 around RNNE is 

also higher in Harrison (19-24%)  than in Cox et al. (1982) (12-20%).  

            In Cox et al.(1982)(a) in the second set of auctions with 6 bidders (series b), 

the number of overbids is substantially lower (66.7%) than in any other auctions; the 

average percentage overbid is also the lowest among all auctions, whereas the 

average percentage bid below the risk neutral Nash (henceforth underbid) is similar to 

                                                
43 Overbid=(bid-RNNE)/RNNE; Underbid=(RNNE-bid)/RNNE. 
44 Absolute deviation=abs(bid-RNNE)/RNNE. 
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other auctions; (b) in the other set of auctions with 6 bidders (series a) the number of 

overbids is 78.3%, which is similar to other auctions, but the average percentage 

underbid is around 23%, which is somewhat high; (c) in both series of auctions with 6 

bidders, 4 out of 10 bidders bid below RNNE in 50% of the auctions; and (d) in 

auctions with 9 bidders, low valuation bidders tended to bid close to zero, which 

yields an unusually high average underbid of around 27% below RNNE; 4 out of 10 

bidders bid below RNNE 50% of the time. Clearly, observed bids reflect differences 

in auction procedures, payoffs, and bidder characteristics.  

    In Harrison (1989) prior experience seems to affect bidding in against human 

bidders and against Risk-neutral Nash bidders. The number of bids above RNNE 

declines from 91% in auctions with inexperienced bidders to 89% in auctions with 

experienced bidders. This further declines to 81% in auctions with experienced 

bidders who face Nash bidders (see Table 4). The average percentage overbid above 

the RNNE declines from 23% to 21% in auctions against human bidders. This 

declines further to 18% in auctions with experienced bidders against Nash bidders. 

The average percentage absolute deviation around RNNE declines from 24% to 21% 

in auctions against human bidders. This further declines to 19% in auctions with 

experienced bidders against Nash bidders.  

             Such effects are not obvious in auctions in Cox et al. (1982). In auctions with 

4 bidders, number of overbids increase from 77.5% with inexperienced bidders to 

82.5% with experienced bidders. However, average overbid (underbid) declines from 

16.3% (34.2%) to 15.5% (20.9%). This yields a decline in average absolute deviation 

around RNNE from 20% to 16.3%.  Thus, prior experience lowers absolute deviation 
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around RNNE. However, an opposite effect is observed in auctions with 5 bidders. 

Although the number of bids with prior experience above RNNE declines from 

86.7% to 80%, the average percentage overbid declines from 14.2% to 13.8%; the 

average percentage underbid however increases from 17.6 to 20.5%. The average 

percentage absolute deviation around RNNE increases from 14.6% to 15.1%. Clearly, 

the effect of experience in auctions with 5 bidders, in terms of average percentage 

absolute deviations around RNNE, is different from that observed in other auctions.  

Omitted Observations 

In Cox et al. (1982), I estimate the parameters for different levels of competition 

without pooling the data. In auctions with 9 bidders, bidders with low induced-values 

tend to bid close to zero, clearly suggesting that cognitive costs of bidding exceed 

potential gains from optimal bidding. All bids that suggest more than 20% absolute 

deviation around RNNE (most of these bids are underbids close to zero) are therefore 

ignored for estimation purposes. I ignore bids that exceed induced-values in Harrison 

(1989). In auctions against risk-neutral Nash bidders, only those bids that do not 

exceed the highest possible bid of 750 have been considered. Thus, the number of 

bids considered for estimation purposes are less than the number of bids reported in 

Harrison (1989). Outliers have been removed throughout. 

Estimation Procedure 

I use non-linear least squares estimation to minimize the squared errors between the 

observed and predicted bids to identify the behavioral parameters for the bidding 
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function in a symmetric Bayesian Nash equilibrium.
45

 This estimation has been done 

for the general model (outlined in Proposition 1) and the restricted versions of the 

general model which allow loss aversion and non-linear probability weighting in 

isolation. I have used MATLAB to implement a “Trust-region reflective Newton” 

search for the best-fitting parameters.
46

  

Estimates 

The combined results for all the auctions are listed in Table 5; the table lists estimated 

behavioral parameters for auctions with varying levels of experience, number of 

bidders, and nature of opponent bidders ( humans or risk-neutral Nash bidders). The 

estimates for auctions against risk-neutral Nash bidders are reported in the last set of 

rows in Table 5. 

[Table 5 here] 

i. Probability weighting and loss aversion in the general model 

The estimates of   are greater than 1 (and significantly different from zero in most 

cases
47

) in auctions against human bidders in both Cox et al. (1982) and Harrison 

(1989). Except for the auctions with 6 bidders in Cox et al. (1982), the estimates of 
 

are greater than 1.
48

 This yields convex probability weighting and therefore suggests 

                                                
45 If the errors between the predicted and observed bids are assumed independent identical normal 

random variables i.e. 2~ (0, )i NID   , then maximum likelihood and nonlinear least squares 

estimation are equivalent. ML estimates are consistent, asymptotically efficient and asymptotically 

normal; however, if this does not hold nonlinear least squares though not efficient remain consistent 

and asymptotically normal. 
46 The programming code underlying all the ensuing results is available upon request. 
47 Based on t-ratio. 
48 In auctions with 6 bidders (series B), the number of overbids is substantially lower (66.7%) than for 

any other auctions; the average overbid is also the lowest among all auctions, whereas the average 

underbid is similar to other auctions. In the other set of auctions with 6 bidders (series a) the number of 

overbids is 78.3%, which is similar to other auctions, but the average underbid is around 23%, which is 



34 

 

“ambiguity-aversion” along the lines of Salo and Weber (1995) and Goeree et al. 

(2002). In Harrison (1989), the estimates of   successively decline from 1.51 in 

auctions with inexperienced human bidders to 1.16 in auctions against human bidders 

and prior experience; this further declines to 1.01 in auctions against risk-neutral 

Nash bidders and prior experience. Note that a model based on risk-aversion alone 

cannot explain these changes.
49

  

The estimates of 
lk  are approximately close to 1 and significantly different from zero 

in most auctions against human bidders in Cox et al. (1982) and Harrison (1989). 

Except for auctions against risk-neutral Nash bidders in Harrison (1989), where the 

estimate for 
lk
 
is smaller but not significantly different from zero, the estimates are 

approximately close to 1, which supports loss aversion based on my model.  

ii. Probability weighting without loss aversion 

Although the estimates of   are greater than 1 and significantly different from zero in 

all auctions against human bidders for   in both Cox et al. (1982) and Harrison 

(1989), their magnitude is much larger. This yields more convex probability 

weighting and suggests larger deviations between the objective and weighted 

probabilities of auction outcomes.
50

 The estimates for auctions with 6 bidders in Cox 

et al. (1982) are much lower than the estimates for all other auctions. In Harrison 

                                                                                                                                      
somewhat high. In both series of auctions with 6 bidders, 4 out of 10 bidders bid below RNNE in 50% 

of the auctions. These auctions are therefore unusual and the estimates of 
 
which suggest 

overweighting (concave probability weighting), are somewhat out of order. 
49 Another aspect of the estimates for   relate to the deviation from 1 in the expected utility based 

models. In most auctions, when the estimates are greater than 1 in more than 50% cases (more than 

half of the auctions) they significantly improve the explanatory power of the model based on sum of 

squared errors and F-test. 
50 Also note than when loss aversion was considered the estimates for probability weighting were quite 

similar to each other which is not true when loss aversion is ignored. 
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(1989) the estimates of   decline from 3.02 in auctions with inexperienced bidders to 

2.32 in auctions with human bidders and prior bidding experience; this further 

declines to 1.70 in auctions against risk-neutral Nash bidders and prior experience. As 

before, a model based on risk-aversion alone cannot explain these changes. 

 

iii. Loss aversion without probability weighting 

The estimates of 
lk  for most auctions in Cox et al (1982), except for auctions with 6 

bidders (series B), are approximately close to 1 and significantly different from zero. 

The estimates of 
lk  in auctions in Harrison (1989) are 1.00, 1.01, and 0.91 

respectively and significantly different from zero. Thus, even when probability 

weighting is ignored, based on the estimates obtained for auctions in Harrison (1989), 

these estimates become smaller in auctions with smaller ambiguity levels (with 

human bidders and prior experience or Nash bidders).  

   The estimates for 
lk
 
are approximately close to 1 in models where loss aversion is 

allowed except for auctions against risk-neutral-Nash bidders in Harrison (1989) 

where the estimate is smaller than 1 and significantly different from zero.  

    The implied ratio of loss-gain utility is therefore close to 2. Tversky and Kahneman 

(1991)
51

 suggest a ratio of 2:1 for the “gains” and “losses” based on acceptable lottery 

gambles.
52

 The estimates I obtain suggest that the ratio of “gain-loss” utility is 

qualitatively similar to that observed in Tversky and Kahneman (1991) and reported 

                                                
51 “…these findings suggest that a loss aversion coefficient of about two may explain both risky and 

riskless choices involving monetary outcomes and consumption goods” (Tversky and Kahneman, 

1991, p.1053) 
52 As mentioned earlier, not winning the auction does not result in monetary “losses”; thus a ratio of 

“losses” to gains would be (1 ) /1lk
 
.  
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elsewhere (Ho, Lim and Camerer, 2006).
53

 Note that my model with linear 

probability weighting and 1lk   is equivalent to a model with risk-aversion with 

Arrow-Pratt coefficient of 0.5. This similarity is supported by the estimates obtained 

for   and 
lk , in auctions with least ambiguous circumstances. However, unlike the 

model based on risk-aversion (constant relative risk-aversion or CRRAM) alone, the 

general prospect theory model, can address changes in ambiguity levels; the estimates 

for probability weighting obtained across these auctions, are consistent with how 

individuals respond to changes in underlying circumstances.   

     In the following section, I state the results based on differences in estimates for   

and 
lk
 
obtained in auctions with prior bidding experience and/or against Nash risk-

neutral bidders; in section 7, I further discuss the implications of my results in the 

context of related literature. 

6. The effect of bidding experience and type of opponent bidders 

Ambiguity-aversion has attracted attention because individuals are typically not 

aware of precise probabilities in the real world. In auctions, the probability of 

winning for a given bid depends on bidders’ bidding strategies, which is not readily 

known in most induced-value auctions. Clearly, deriving probabilities in these 

auctions is a complicated task, and therefore ambiguity could affect bidding as in 

other market experiments (Sarin and Weber 1993, Salo and Weber 1995). As people 

become familiar and gain experience of bidding, deriving probabilities of various 

                                                
53 The estimated coefficient for loss aversion makes my model equivalent to a model with risk-aversion 

coefficient of 0.5 without nonlinear probability weighting; the generality due to nonlinear probability 

weighting adds to the explanatory power of my model over a model with risk-aversion alone.  
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outcomes could become easier.
54

 In my model, this could result in smaller deviations 

between subjective and objective probabilities under less ambiguous circumstances. 

The data for auctions where bidders have prior bidding experience and/or face risk-

neutral Nash bidders present an opportunity to explore these effects. Since these 

induced-value auctions are similar, besides variations in experience level and the 

nature of opponent bidders, as a preliminary hypothesis one could argue that changes 

in the underlying circumstances (ambiguity) are not likely to affect the degree of loss 

aversion (the gradient for loss aversion)
55

 
56

 In this section I discuss the experimental 

evidence which supports my hypothesis and suggests minimal role for non-linear 

probability weighting in auctions characterized by less ambiguous circumstances. 

Based on my discussion above, I propose the following hypothesis. 

 

Hypothesis: (a) The deviations between weighted and objective probabilities become 

smaller as auctions environments become less ambiguous, i.e, 

 exp exp exp

humanrivals humanrivals RNNrivals

in erienced erienced erienced     

whereas (b) the coefficient of loss-gain utility 
lk
 

is similar across auction 

environments. 

                                                
54 Such expertise is likely to develop faster in other contexts, e.g., in games of chance. 
55 Loss aversion may vary across commodities (Horowitz and McConnell 2002, Koszegi and Rabin 

2006) and could potentially depend on availability of substitutes and trading intentions (Kahneman, 
Knetsch and Thaler 1990; List 2003). 
56 The assumption in Kahnemann and Tversky (1979), which suggests that probability weighting and 

loss aversion are independent, is too simplistic. There is some literature that suggests that probability 

weighting and loss aversion could be related. Intuitively it is plausible that loss aversion could become 

smaller in less ambiguous circumstances (Chambers and Melkonyan 2008, Plott and Zeiler 2005).  
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Since my hypothesis pertains to both loss aversion and probability weighting, I shall 

focus only on the results from the general model to explore the effect of prior bidding 

experience against experienced human and risk-neutral Nash bidders
57

.  

I first test the following hypothesis for (gradient of) loss aversion using a generalized 

likelihood ratio test: 

, ,

0 1 0: , :i g j h

l lH k k H Not H  

where i,j=level of experience and g,h=nature of bidders. Then I test the following 

hypothesis for probability weighting:  

0 1 0: ; :g h

i jH H Not H   

If the first test does not reject the null hypothesis, I test the following hypothesis for 

probability weighting under the assumption that loss aversion remains the same for 

robustness: 

0 1 0: | ; :g h g h

i j li ljH k k H Not H    

The likelihood ratio has a 2

r  
distribution where r  is the number of restrictions 

imposed in the null hypothesis. On the basis of these tests (see Table 6), I obtain the 

following result (figures 1-5 in appendix for bidding functions and probability 

weighting functions, which are based on the estimates listed in Table 5, supplement 

the results below). 

 

Result 1.A: (-Less convex probability weighting due to experience-) Prior bidding 

experience reduces the non-linearity of probability weighting in auctions (i) against 

                                                
57 Going by the sum of squared residuals (SSE) alone, the restricted versions of the general model do 

not throw unambiguous evidence in favor of one approach over the other. As observed earlier, the 

similarity of estimates suffer, when either of these influences on behavior is ignored. 
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experienced human bidders and (ii) against risk-neutral Nash bidders. This yields 

smaller deviations between subjective and objective probabilities of equilibrium 

auction outcomes.  

 

This result addresses the effect of prior experience on bidding in auctions which 

present successively smaller levels of ambiguity as opponents change from (i) 

experienced human bidders to (ii) risk-neutral Nash bidders.  

First, I shall address the former auctions. The estimates for   are smaller in these 

auctions with 4 bidders and prior bidding experience (compared to auctions with 

bidders without experience) in Harrison (1989) and Cox et al. (1982). This decline is 

significant at the 1% level for auctions in Harrison (1989) and not significant for 

auctions with 4 bidders in Cox et al. (1982) (see Table 6). In auctions with 5 bidders, 

the increase in the estimate for 
 

for experienced bidders in Cox et al. (1982) 

contradicts my hypothesis but is not significant. If prior experience is expected to 

reduce deviations with respect to the risk-neutral Nash bid then the deviations 

obtained in auctions with 5 bidders belies the expectation, which parallels the 

movements obtained for   .  

    Next, in auctions against risk neutral Nash bidders (Harrison 1989), bidders have 

prior bidding experience as well. Thus, of all auctions under consideration, bidding in 

these auctions occurs in least ambiguous circumstances. In these auctions, the decline 

in the estimate for   as compared to auctions without prior bidding experience is 

significant. This supports my primary hypothesis about the effect of ambiguity on 

bidding in these auctions.  
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Result 1.B: (-Less convex probability weighting due to fixed opponents’ 

strategies-) In auctions with prior bidding experience against risk-neutral Nash 

bidders, fixing the opponents’ bidding strategies reduces the non-linearity of 

probability weighting (with and without loss aversion). This yields smaller 

deviations between subjective and objective probabilities of equilibrium auction 

outcomes.  

 

While the previous result compares the estimates for   with prior bidding 

experience, the auctions against risk-neutral Nash rivals differ from the auctions with 

human opponent bidders (with same experience levels) since the opponents bidding 

strategies are fixed. The focus of previous attempts (Salo and Weber 1995) to explain 

aggressive bidding relates to the ambiguous circumstances arising due to uncertain 

behavior of opponent bidders. The extra control in bidding against risk-neutral Nash 

bidders allows us to examine the implications for   using my approach. As before, in 

auctions against risk-neutral Nash bidders (Harrison 1989), the decline in the estimate 

for   as compared to auctions against human bidders, is significant.  

Thus, so far, as we move from auctions with inexperienced bidders to auctions with 

experienced bidders and risk-neutral Nash opponent bidders, the estimates of   

display significant downward movement with successively smaller levels of 

ambiguity. It is therefore appropriate to reflect on the role of ambiguity attitudes in 

auctions with least ambiguous circumstances, based on the estimates obtained for 

behavioral parameters. 
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Result 1.C: (-Linear probability weighting in least ambiguous circumstances-) In 

auctions, with prior bidding experience, against risk-neutral Nash bidders, by 

allowing loss aversion, an almost linear probability weighting is obtained. 

 

Without loss aversion, although non-linearity of probability weighting declines with 

successively smaller levels of ambiguity, the deviations between subjective and 

objective probabilities remain.  However, with loss aversion, I obtain almost linear 

probability weighting which suggests that aggressive bidding can be rationalized by 

loss aversion alone without invoking ambiguity effects.  

I shall now turn to the estimates for loss aversion observed in various auctions.  

 

Result 2.A: (-No effect on loss aversion due to experience-) Prior bidding 

experience has no effect on loss aversion in auctions against experienced human 

bidders.  

 

Result 2.B: (-Loss aversion declines in least ambiguous circumstances-) The 

degree of loss aversion obtained in auctions with prior bidding experience against 

risk-neutral Nash bidders is smaller than that obtained in auctions with human 

opponent bidders. 

 

The estimates for 
lk
 
are almost identical in all the auctions except in auctions against 

risk-neutral Nash bidders, where the estimated gradient for “losses” 
lk  is smaller. 
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This decline is significant when compared to the estimates obtained in auctions with 

human bidders in Harrison (1989). This allows a reflection of the possible 

shortcomings of my approach. In more general field settings, the degree of loss 

aversion may vary across commodities (Horowitz and McConnell 2002, Köszegi and 

Rabin 2006). It may be affected by the availability of market substitutes (Horowitz 

and McConnell 2002) or trading intentions (List 2003, 2004; Kahnemann, Knetsch 

and Thaler 1990). The difference in loss aversion obtained in induced-values settings 

(where the above do not apply) possibly suggests that behavioral influences, other 

than probability weighting and loss aversion, coexist. For example, if bidders display 

spite against human bidders and not against Nash bidders (computers), the differences 

in loss aversion as obtained are expected.
58

  

7. Further discussion of the empirical findings 

 In this section I discuss the significance of my findings in the context of the 

experimental literature on auctions as well as the experimental literature in general. I 

compare my findings to previous literature that explores probability weighting and 

loss aversion in experiments. 

Several studies on decision under risk show the tendency of subjects to overweigh 

small objective probabilities and underweight medium and large objective 

probabilities (Tversky and Kahneman 1992, Camerer and Ho 1994, Fox and Tversky 

1998, Gonzalez and Wu 1999). This pattern yields an inverted S-shaped probability 

                                                
58 The changes in estimates for 

 
and  

lk
 
(when considered in isolation) are also similar to the change 

in estimates obtained in the general model. 
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weighting function as in Kahneman and Tversky (1979).
59

In the real world actual 

probabilities may not be known precisely. Recent evidence (Barron and Erev 2003; 

Hertwig et al. 2004; Barron and Ursino 2007) suggests that the inverted S-shaped 

curve does not capture decision making under uncertainty where probabilities are 

typically derived through repeated sampling (experience)
60

.This literature suggests 

that individuals underweigh small probabilities under uncertainty, which is different 

from what they do under risky circumstances as reflected in the inverted S-shaped 

probability weighting (Prelec 1998, Wu and Gonzalez 1999).
61

 In an auction 

equilibrium, winning is a rare event for bidders with low induced-values. Thus, the 

estimated convex probability weighting in my models (with or without loss aversion) 

is consistent with this literature. As discussed earlier, this is also consistent with Salo 

and Weber (1995) and Goeree et al (2002) who suggest “ambiguity-aversion” in 

auctions.
62

 

The literature suggests loss aversion in various settings and provides experimental 

evidence for choices over trade of mugs, pens, candy bars, subscription for electric 

                                                
59 This function typically intersects the linear probability weighting function somewhere between 0.3 
and 0.4. 
60

 In these experiments subjects were asked to choose among two options; for example, when asked to 

choose between a sure $3 , and $4 with probability 0.8, and $0 with probability 0.2. In one treatment 

the probabilities are specified clearly (descriptive) and in the other the probabilities are derived by 

random sampling of the options (experience-based learning). The proportion of subjects who choose 

the risky ($4 with probability 0.8) option is significantly higher in the treatment with uncertainty 

(experience-induced learning). 
61 In experiments, underweighting of rare events could occur due to sampling errors. For example, 

people are likely to draw rare events less often than objective probability implies, especially if their 

samples are small. Barron and Ursino (2007) find that underweighting of rare events as observed in 

one-shot decisions is robust to removal of unrepresentative samples. This suggests that underweighting 

of rare events in experience-based decisions occurs due to overweighting of most recent outcomes. 
62 In Chen et al. (2007), ambiguity attitudes could get confounded with the pessimistic reasoning that 

applies to symmetric bidders. For example, when a rival’s induced-value distribution is unknown , a 

bidder with low valuation might assume that the rival also makes a similar assumption about his values 

(symmetry). This could produce lower bids in equilibrium. Thus the experimental design in Chen et al. 

(2007) does not separates “ambiguity attitudes” from such ex ante pessimistic reasoning.  
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services, job attributes, sportscards, etc.  (Knetsch 1989, Tversky and Kahneman 

1991, Kahneman, Knetsch, and Thaler 1990, Benartzi and Thaler 1995, List 2003). 

The estimate for the ratio of the slopes of the value function in two domains, for small 

and moderate “gains” and “losses” of money, is about 2:1 (Tversky and Kahneman 

1991).  In a slightly different context, Kahneman, Knetsch, and Thaler (1990) 

investigate loss aversion in a purely deterministic environment. In an experiment, half 

of a group of Cornell students are given a Cornell insignia coffee mug, while the 

other half are not. When mug owners are given an opportunity to trade and 

nonowners are given an opportunity to buy, Kahneman, Knetsch, and Thaler (1990) 

found that the reservation prices for the two groups were significantly different. 

Specifically, the ratio of the median of the reservation price of the sellers to the 

buyers is roughly 2.5:1. My findings are broadly consistent with this literature 

(Tversky and Kahneman, 1991; Ho, Lim and Camerer, 2006).
63

 

It is however important to emphasize that doubts have been raised in the literature 

about the robustness of loss aversion as a description of individual preferences. List 

(2003, 2004) provides evidence using field experiments that loss aversion attenuates 

with previous trading experience. Plott and Zeiler (2005) suggest that an endowment 

effect arises due to subject misconceptions (ambiguity) about experimental tasks. 

They suggest that when all known controls for subject misconceptions are employed 

                                                
63 Note however that because loss aversion is modeled slightly differently in my approach, this 

equivalence is not obvious. If ( ) 0; ( ) 0u x x for x x for x      . Therefore, 1lk   . 

Clearly, these estimates suggest 0lk  . My approach rules out very high levels of loss aversion so 

bidding remains acceptable.  
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the WTA-WTP disparity is not observed.
64

 The lessons from this literature suggest 

the following possibilities: (i) ambiguity affects loss aversion; (ii) trading intentions 

could affect choices such that loss aversion disappears and (iii) market experience, 

which could affect both ambiguity and/or trading intentions  and thereby loss 

aversion. My results that are obtained within the context of induced-value laboratory 

experiments add to this literature and provide support along the lines of List (2003, 

2004) which suggest that loss aversion could become smaller in the field. However, 

unlike List (2003, 2004), my results do not suggest that loss aversion will disappear 

completely. This might be due to the complexity of the auction environment. If 

cognitive capital that attenuates loss aversion develops slowly, then such learning is 

likely to be slower in auctions than in other simpler choice/trading environments as in 

List (2003, 2004). My results also suggest that ambiguity could affect loss aversion 

since the estimates for loss aversion are slightly smaller in auctions against risk-

neutral Nash bidders. However, in field auctions, even if ambiguity effects can be 

ruled out, trading intentions could still influence loss aversion. 
65

  

8. Conclusions  

In this chapter, I provide a model of bidding in first-price auctions that combines loss 

aversion and non-linear probability weighting. This approach applies to a wider 

domain of auction environments which differ in terms of levels of ambiguity. In 

auctions against human bidders, missing information about bidders’ risk postures and 

bidding strategies present greater levels of uncertainty (ambiguity) in comparison to 

                                                
64

 Although, recent research  raises doubts about the claims in Plott and Zeiler (2005) (see Isoni, 

Loomes and Sugden  2009 ) 

 
65 This is further explored in Ratan (2009). 
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bidding against risk-neutral Nash (computer) bidders. The analysis of experimental 

auction data suggests that aggressive bidding against inexperienced human bidders 

can be rationalized by anticipated loss aversion and ambiguity effects. Interestingly, 

my approach suggests that ambiguity effects become less relevant as levels of 

ambiguity decline with prior experience in auctions against (i) experienced human 

bidders and (ii) risk-neutral Nash bidders. When loss aversion is taken into account, 

the best-fitting parameters in auctions with smaller levels of ambiguity yield almost 

linear probability weighting.  

However, other behavioral explanations that induce aggressive bidding in these 

auctions may coexist with the influences that are prominent in my approach. For 

example, theoretically, risk aversion could be combined with spiteful preferences 

and/or non-linear probability weighting (ambiguity-aversion) to create a bidding 

response that is observationally equivalent to my approach. However, using this 

approach, in auctions against risk-neutral Nash bidders where ambiguity effects and 

spitefulness could be altogether irrelevant, the obtained level of aggregate risk 

aversion is still very high.
66

 This brings out the advantages of my approach over other 

approaches: it provides a reasonable account of aggregate bidding behavior, and 

addresses the role of ambiguity very well. The declining role of ambiguity effects in 

auctions that present successively smaller levels of ambiguity is consistent with the 

smaller levels of non-linear probability weighting obtained using my approach. This 

enhances the performance criteria for other behavioral approaches that can be applied 

                                                
66

 For example, using constant-risk-aversion approach and linear probability weighting (similar to that 

in obtained using my approach), the Arrow-Pratt measure for auctions in Harrison (1989) with prior 

experience in auctions against (a) human bidders and (b) risk-neutral Nash bidders varies between 

0.42-0.52. 
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in auction environments. Further research is required to disentangle the effects of 

various behavioral influences in auctions to attain this objective.  

More investigation of the indirect effects of ambiguity on loss aversion could possibly 

help refine the Prospect theory based accounts of behavior under risk and/or 

uncertainty. However, attaining these objectives within the complexity of auction 

environments could be difficult. 
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Chapter 3:  Multi-Dimensional Reference-Dependent 

Preferences in Sealed-bid Auctions: How (most) laboratory 

experiments differ from the field

 

1. Introduction 

In the previous chapter, I have shown that money loss aversion could explain 

aggressive bidding in induced-value auctions across auction environments in which 

bidders face human rivals to Nash computer rivals. However, commodity auctions 

also differ from induced-value auctions in the following respect: in commodity 

auctions the auction object is exchanged for monetary bid. This is important because 

transferring insights from laboratory experiments to inform structural models in the 

field can be problematic if individuals are loss averse in various dimensions of the 

consumption space in sealed-bid auctions. Moreover, the findings in the recent 

literature suggest that bidding in lab environments could differ from field settings 

(List 2003, 2004). We investigate the theoretical implications of reference-dependent 

preferences in commodity auctions (which are different from induced-value settings 

in the consumption space) and could therefore have altogether different effect on 

bidding in field settings as discussed in List (2003, 2004).  

Differences in moral considerations, the nature and extent of scrutiny, (social) 

context, subject pool, and differences in stakes have recently received increasing 

interest in the literature (e.g., Harrison and List 2004; Karlan 2005; Levitt and List 

                                                
 Coauthored with Andreas Lange: Games and Economic Behavior, 2010, Vol. 68(2), pp 634-645 
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2007a, 2007b) that could make transferring qualitative insights from the lab to field 

settings problematic. However, we argue that the nature of the traded commodities 

forms another significant difference between most laboratory and field settings:
67

 in 

most laboratory auction experiments both the induced-value of the item as well as the 

bids are measured in monetary units and therefore along a single dimension from the 

perspective of bidders.
68

 In almost all field settings, however, the auctioned item and 

payments form different dimensions of the consumption space.  

In this paper, we demonstrate that qualitatively different bidding behavior may result 

from these different dimensionalities of the relevant consumption space. For this, we 

explore first- and second-price auctions when bidders are loss averse. The 

phenomenon of loss aversion is well established in the experimental literature (for 

summaries, see Knetsch et al. 1991; Camerer 1995; Horowitz and McConnell 2002). 

We use a reference-dependent utility model with loss aversion based on Köszegi and 

Rabin (2006):
69

 after placing the bid, bidders expect to win the auction with some 

probability and therefore compare the outcome of the auction with this reference 

point. Our model predicts overbidding in induced-value experiments, but 

substantially different bidding behavior when a non-monetary item is auctioned. Our 

                                                
67 Harrison and List (2004) point out that this difference can be essential: “If the nature of the 

commodity itself affects behavior in a way that is not accounted for by the theory being applied, then 

the theory has at best a limited domain of applicability that we should be aware of, and at worse is 

simply false” (p.1012). 
68 The winning bidder receives the (induced) value which was randomly assigned to him minus the 

auction price (his bid in the first price auction; the highest bid of an opponent in the second-price 

auction). 
69 The reference dependence or status-quo bias of choice behavior has received considerable attention 

in the literature. It is usually discussed in a multi-dimensional setting, e.g. when describing differences 

in willingness-to-pay willingness-to-accept (see, e.g. Coursey et al. 1987; Knetsch 1989; Knetsch et al. 

1991; Kahneman et al. 1990; Bateman et al. 1997). Köszegi and Rabin (2006) provide a model with an 

endogenous determination of the reference point.  
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results thereby have implications for the interpretation of laboratory data as well as 

for transferring qualitative insights on bidding behavior to the field.  

The predicted overbidding in first-price sealed-bid auctions with induced-values is 

consistent with experimental findings which suggest that bidders in such auctions 

consistently bid in excess of the predictions of the risk-neutral-Nash (RNNE) model 

(Kagel 1995; Cox et al. 1982, 1988; Harrison 1989).  This overbidding anomaly has 

drawn considerable attention because explaining overbidding by risk-aversion would 

require bidders to be excessively risk-averse (Kagel 1995). Therefore, many 

alternative behavioral models have been suggested (e.g., Salo and Weber 1995; 

Goeree et al. 2002; Morgan, Steiglitz and Reis 2003; Dorsey and Razzolini 2003; 

Filiz-Ozbay and Ozbay 2007).
70

   

Our model of loss aversion provides one additional explanation for overbidding. 

Naturally, all the above behavioral motivations could exist simultaneously such that 

we do not intend to propose loss aversion as the single cause of overbidding. We 

focus the model on loss aversion only to demonstrate qualitative differences between 

induced-value and commodity auctions.  

Besides in first-price auctions, our model also predicts qualitative differences in 

second-price auctions. Here, loss aversion leads to truthful revelation of the 

underlying induced-value, while overbidding or underbidding may result if the 

                                                
70 Goeree et al. (2002) study noisy bidding behavior in a quantal response equilibrium along with non-

linear probability weighting and joy of winning as potential causes of overbidding. Dorsey and 
Razzolini (2003) compare auctions and lotteries and show that subjects’ overbidding is consistent with 

a misperception of probabilities of winning in auctions. Salo and Weber (1995) consider ambiguity-

aversion and Morgan et al. (2003) studies spiteful preferences as explanations for overbidding. Filiz-

Ozbay and Ozbay (2007) suggest that anticipation of loser’s regret could be the potential reason for 

overbidding.  
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auction item and payments form two different dimensions of the consumption space. 

It should be noted, however, that there is some experimental evidence for bid-shading 

even in induced-value second-price auctions (Kagel 1995; Kagel and Levin 1993). 

Our model is not able to predict such behavior.
71

 Bidding above or, less often, below 

a subject’s own value is typically explained by a lack of familiarity with the second-

price format and weak learning feedback mechanisms (Kagel et al. 1987; Kagel and 

Levin 1993; Harstad 2000).
72

  Similarly, the extent of over- and underbidding is 

reduced when bidders have time to introspect their actions (Aseff 2004). While not 

addressing such bid-shading, our theory predicts potential qualitative differences in 

bidding behavior in induced-value vs. commodity auctions. 

Out theory thereby indicates that findings on bidding behavior obtained in induced-

value experiments cannot necessarily be transferred to the field because of the multi-

dimensionality of the product space.
73

 Even though we demonstrate this 

dimensionality effect using a specific reference-dependent model in an auction 

setting, our findings more generally raise some concerns for transferring qualitative 

behavioral findings from the lab to the field. With this, we add to the current debate 

                                                
71 It should be noted that this is standard for most of the behavioral literature cited above: while models 

are explain overbidding in first price auctions, they generally do not affect the dominant strategy in 

second-price auctions. Exceptionally, a joy of winning hypothesis would be able to generate 

overbidding in second-price such auctions.  
72 Harstad (2000) shows that bidders with experience in English auctions may indeed bid closer to the 

Nash prediction than inexperienced bidders. In typical second-price lab experiments with a small 

number of bidders and uniform distribution of values, such information feedback is rather weak. 

Bidders are therefore less likely to be punished for overbidding, i.e. the chance of winning while 

paying a price which is still above the player’s value is rather small.  
73 It should again be noted that we do not claim that our behavioral assumption is able to serve as the 

single explanation of bidding anomalies in first- and second-price auctions. However, many subjects 

probably combine risk-aversion and potentially loss aversion with other behavioral motivations as 

discussed above. In this sense, our reference-dependent framework is sufficient to point out potential 

differences in qualitative model predictions between lab and field environments. 
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on the link between lab and field settings (e.g., Harrison and List 2004; Levitt and 

List 2007a, 2007b; List 2003).  

Our paper is structured as follows. We first lay out the underlying assumptions of our 

reference-dependent model in section 2. In section 3, we then examine the 

implications of loss aversion in auction settings where object and bids are valued 

along the same dimension or – alternatively – along separate dimensions. We study 

first-price auctions in section 3.1, second-price auctions in section 3.2, and then 

compare the revenues in section 3.3. We conclude by discussing the implications for 

the interpretation of laboratory data.  

2. Loss aversion and reference-dependent preferences  

Loss aversion as a cause for behavioral anomalies is widely discussed in the literature 

(e.g., Knetsch et al. 1991; Camerer 1995, Horowitz and McConnell 2002). Diverse 

studies show large disparities between willingness-to-pay (WTP) and willingness-to-

accept (WTA). As a stylized fact, the discrepancy is largest for non-market goods, 

smaller for ordinary induced goods, and smallest for money-valued items in 

experiments (Horowitz and McConnell 2002, Camerer 1995). Consistent with this 

finding, List (2003) indicates that experience and therefore the frequency of trades of 

a specific commodity can reduce the endowment effect. 

Endowment effects and the WTA/WTP gap can be explained by reference-dependent 

preferences, i.e. where the valuation of the final outcome depends on the reference 

point and subjects are averse to “losses”.  In their prospect theory, Tversky and 

Kahneman (1991) describe preferences by indifference curves with a kink at the 
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reference point. This reference point is often assumed to be the status quo 

consumption level, given by the endowment. However, if bidders are endowed with a 

lottery, i.e. face uncertain payoff consequences, “gains” and “losses” must be 

compared to this lottery as a reference point. Sugden (2003) and Köszegi and Rabin 

(2006) provide models allowing for such lotteries as reference points.  

We apply Köszegi and Rabin’s (2006) framework to auction environments.  After 

placing a bid, bidders basically face a lottery of winning or losing the auction. The 

probabilities and potential payoffs depend on their own and other bidders’ bids. The 

final outcome is then evaluated with respect to any possible outcome from this lottery 

as a reference point.  

Formally, we consider 1k   commodities, including a numeraire commodity 0 . An 

individual’s utility ( | )u c r  depends both on her consumption 
0 1( , ) kc c c    and 

her reference level 
0 1( , ) kr r r   . Consistent with Köszegi and Rabin (2006), 

we assume that utility is additively separable in the numeraire and the remaining 

dimensions: 

0 0 0 1 1 1( | ) ( | ) ( | )u c r u c r u c r       (1) 

Defining the consumption utility as ( ) ( | )t t t t tv c u c c  ( {0,1}t ), we assume 

( | ) ( ) max[0, ( ) ( )]t t t t t t t t t tu c r v c v r v c       (2) 
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with 0t  . That is, bidders are loss averse and loss aversion is linear in utility 

changes.
74

  

The parameter 0t   hereby measures the degree of loss aversion in dimension t . It 

directly relates to the ratio of loss-gain-utility given by (1 ) /1 t
. As a perhaps more 

familiar measure for loss aversion, the WTA/WTP-ratio is – at the margin –given by

0 1/ (1 )(1 )WTA WTP     .
75

 The finding that the ratio varies widely and depends 

on good characteristics
76

 implies the 
1  will depend on the specific auction item. 

Ex ante, both reference levels and consumption could be stochastic. Following 

Köszegi and Rabin (2006), the reference level is a probability measure G  over 
1k
 

and consumption is drawn according to the probability measure F  over 
1k
. Then, 

the individual’s expected utility over risky outcomes is given by 

( | ) ( | ) ( ) ( )U F G u c r dG r dF c    (3) 

                                                
74 For the case of two dimensional commodity space, this specification would lead to indifference 

curves with kinks at the reference level which reflects reference-dependence or status quo bias (see 

Knetsch et al. 1991). 
75 For a fixed reference point, the WTP for a small increase in consumption   is determined by 

0 0 0 1 1 1( | ) ( ( ) | ) ( | )u r r u r WTP r u r r       such that 

1 1 0 0 0'(0) '( ) /((1 ) '( ))WTP v r v r  . The WTA is given by 

0 0 0 1 1 1( | ) ( ( ) | ) ( | )u r r u r WTA r u r r      such that 
1 1 1 1 0'(0) '( )(1 ) / '( )WTA v r v r  . 

At the margin, the WTA/WTP ratio is therefore given by 
0 1'(0) / '(0) (1 )(1 )WTA WTP     . 

76 The ratio tends to be smaller the closer the good comes to an ordinary induced consumption good 

(Horowitz and McConnell 2002). For money lotteries, they find a ratio close to 2. However, there is 

some debate about assigning the degree of the observed ratios fully to loss aversion (Plott and Zeiler 

2005).  
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Bidders are assumed to have rational expectations in the formulation of reference and 

consumption probability. That is, the reference point is endogenously determined.
77

  

In our application to an auction setting, the bid affects a bidder’s chances to win the 

auctioned item and – in the first-price auction – her consumption of the numeraire in 

case of winning. By placing a bid, the bidder therefore not only changes the 

distribution of consumption levels ( F ) but also generates the reference distribution (

G ). The individual undertakes no further action after placing the bid. Rational 

expectations therefore imply F G  such that the bidders solves the following 

program: 

max ( | )F U F F .     (4) 

Note that the temporal structure is slightly different from Köszegi and Rabin (2006). 

In their case, bidders correctly anticipate their actions which take place after new 

information is received. The ex ante payoff distribution which incorporates these 

anticipated actions then forms the reference distribution. As a consequence, actions 

take place after a reference distribution has been formed and new information is 

received. Given a reference distribution G  the bidder therefore chooses ( )F G  to 

maximize ( | )u F G . Rational expectations then require consistency of the 

consumption distribution with the formulation of the reference distribution, i.e. 

( )F G G .   

In a sealed-bid auction, however, bidders’ bids directly affect their payoff 

distribution. After placing the bid, a rational bidder’s payoff expectations, i.e. her 

                                                
77 Alternative reference-dependent models with endogenous definition of reference points are given by 

Sugden (2003) and Munro and Sugden (2003) who assume the reference to be given by the current 

endowment which might adjust over the time.   
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reference distribution, directly depend on her action (bid) and her beliefs of rivals’ 

bidding strategies in equilibrium. Compared to these payoff expectations, bidders 

then realize the auction outcome and potential loss sensations when the auction 

results are announced.
78

 It is therefore natural to assume that the bidders anticipate the 

effects of bidding on both the reference as well as payoff distribution, i.e. that both 

are chosen at the same time. Rational expectations require that they coincide as in 

optimization program (4). 

3. The auction environment  

We consider n  bidders 1,...,i n . We assume symmetric preference structures as 

given in the previous section. For simplicity, bidders are assumed to be risk-neutral in 

the numeraire consumption, i.e. 
0 0 0( )v c c . We study two different auction 

environments: a commodity auction (CA) where a consumption bundle 
k  is 

auctioned off, and an induced-value auction (IV) where values of the auction item are 

induced in the numeraire (money) dimension. While (CA) resembles a naturally- 

occurring auction setting with homegrown values, the (IV) auction characterizes most 

of laboratory auction environments.  

In the commodity auction, the value of the auctioned item 
k  for bidder i  is 

measured in consumption utility gains 
1 1 1 1( ) ( ) 0i i iw v c v c      where 

1

ic  denotes 

the initial endowment of bidder i . Differently in the induced-value auction, iw  is 

directly induced as gain in the money dimensions. In both cases we assume that each 

                                                
78 The model thereby rests on the assumption that between placing the bid (or planning to place the 

bid) and the final realization of the auction outcome, a reference distribution is established 
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bidder knows her induced-value iw  and is informed that others’ values are drawn 

from a distribution ( )H   defined over [ , ]w w  ( 0w w  ). 

Bidders can place bids 
00 i ib c   where 

0

ic  denotes the available income of bidder i

. Throughout the paper, we assume that the budget constraint is not binding. We 

consider both first- and second-price independent induced-value auctions. 

3.1 First price auctions 

We first consider the commodity auction (CA) where the value of the auctioned item 

for bidder i  is given by 
1 1 1 1( ) ( ) [ , ]i i iw v c v c w w     . If bidder i  places a bid 

0ib  , her consumption in case of winning the auction is given by 
0 1( , )i i ic b c   , 

while the consumption in case of losing is given by the initial endowment 
0 1( , )i ic c . 

For a bidder with preferences as given in section 2 (conditions (1)-(4)), the expected 

utility gain from participating in the auction is therefore given by 

1,CA

0 1( , ) ( )( ) ( )(1 ( ))[ ]i i i i i i i i ib w f b w b f b f b b w        (5) 

where ( )i if f b  denotes the probability of winning of bidder i  when placing a bid 

ib . Besides the expected consumption utility ( )( )i i if b w b , equation (5) comprises 

expected “losses” in two dimensions: (i) (1 ( )) ( ) i i if b f b w : the bidder expects to win 

iw  with probability ( )if b  such that she experiences not winning as a loss with 

probability (1 ( )) if b . (ii) ( )(1 ( ))i i if b f b b : the bidder expects to lose and 

therefore not to pay 
ib  with probability (1 ( )) if b such that she experiences the 

payment of the price in case of winning the auction a loss with probability ( )if b .   
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It should be noted that (5) implies that a non-negative expected utility gain 

1,CA ( , )i ib w  from participating in the auction can only result if 

1 0[1 (1 ( ))] [1 (1 ( ))]i i i iw f b b f b      . That is, positive bids only will be placed 

by bidders with 
1( ) 1 1/if b   . If 

1 1  , this condition holds for all bidders. If 

1 1  , the condition implies only bidders with a sufficiently large probability to win 

place positive bids.  

As usual, we restrict our attention to symmetric monotonically increasing equilibria in 

pure strategies. In equilibrium, the chances of player i  to win, are therefore given by 

1( )n iH w . With the above argument, positive bids may only result if 

1

1( ) 1 1/n iH w    . The corresponding threshold value CA

Lw  we define by  

1

1( ) max[0,1 1/ ]n CA

LH w        (6) 

Note that CA

Lw w  if 
1 1  . Bidders with [ , ]j CA

Lw w w  place positive equilibrium 

bids.  

We obtain the following proposition: 

Proposition 1: (commodity first-price auction–CA) The unique monotonically 

increasing symmetric Bayesian Nash equilibrium bidding function for commodity 

auctions is given by 

1 1
1

1
1

1,CA
1 1 1

0 0

( )[1 (1 ( ))]1 (1 ( ))
if  

( ) 1 (1 ( )) ( )[1 (1 ( ))]

0 if  

L

w
n n

n
w CA

Ln n n

CA

L

H z H z dzH w
w w w

b w H w H w H w

w w



 

 


  

     
     





    

  (7) 
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Proof: see Appendix. 

Without any loss sensation (
0 1 0   ), the bidding function 1,CA ( )b   given in (7) 

reduces to the risk-neutral Nash bidding function. Loss aversion in money (
0 0  ) or 

in the commodity dimension (
1 0  ) will affect bids.  For example, consider the 

minimum bid 1,CA

1 0( ) max[0, (1 ) /(1 )]b w w      which is generally smaller than the 

minimal value w . More generally we obtain the following results: 

Proposition 2 (effects of loss aversion–CA). Equilibrium bids are decreasing in the 

degree of loss aversion 
0  in the numeraire (money) dimension. There exists 

ˆ0 1w   with 1 ˆ2 ( ) 1nH w   such that for increasing loss aversion 
1 0   in the 

commodity dimension, bids are decreasing if ˆw w  but increasing if ˆw w  as long 

as CA

Lw w .  

Proof: see Appendix. 

The comparative statics shows that the impact of loss aversion depends on the 

dimension in the commodity space in which “losses” occur: while loss aversion in the 

numeraire (payment) dimension has an unambiguously decreasing effect on bids, the 

qualitative impacts of loss aversion in the commodity dimension differ across the 

signal range [ , ]w w w .  

Intuitively, increasing the bid increases the potential loss of money in commodity 

auctions such that money loss aversion implies lower bids. Additionally, the potential 

loss of the commodity serves as a “bifurcating” force: If a bidder is likely to win to 
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start with, he can decrease chance of disappointment by increasing probability of 

winning. As a consequence, loss aversion leads to higher bids.  However, if a bidder 

is unlikely to win to start with, he can decrease expectations by further decreasing 

probability of winning, i.e. by bidding lower due to loss aversion. This bid reducing 

effect applies in particular for values with 1( ) 1/ 2nH w   which holds for any given 

value w  if n  is sufficiently large.  

We now turn to the induced-value (IV) auction, where individual values 
iw  are 

directly induced as gains in the money dimension. Here, a bidder with preferences as 

given in section 2 (conditions (1)-(4)), experiences the following expected utility gain 

from participating in the auction: 

1,IV

0( , ) ( )( ) ( )(1 ( ))( )i i i i i i i i ib w f b w b f b f b w b        (8) 

We again see that positive expected utility can only result if 
0( ) 1 1/if b   . Similar 

to the commodity auctions, this defines a threshold IV

Lw  for participation with positive 

bids: 1

0( ) max[0,1 1/ ]n IV

LH w    . Bidders with IV

i Lw w  who exist if 
0 1   can 

gain non-negative expected utility by bidding their own value, i.e. 
i ib w . 

Comparing conditions (5) and (8) we immediately see that the bidding behavior in the 

induced-value auction can be obtained from the preceding analysis of commodity 

auctions by setting CA

1 0   and CA

0 0   . In the induced-value auction, “losses” 

occur at a level 
i iw b  if player i  had expected to win but loses the auction. 

Correspondingly, bidders with a small chance of winning can obtain a non-negative 
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utility in IV auctions not only by (i) bidding zero and ensuring zero probability of 

winning, but also by (ii) bidding their own value, i.e. 
i ib w . 

Adapting Proposition 1 we immediately obtain the bidding function for induced-value 

auctions: 

Corollary 1 (induced-value first-price auction–IV). The unique continuous 

monotonically increasing symmetric Bayesian Nash equilibrium bidding function for 

induced-value auctions is given by 

1 1

0

1,IV
1 1

0

( )[1 (1 ( ))]
if  

( ) ( )[1 (1 ( ))]

if  

IV
L

w
n n

w IV

Ln n

IV

L

H z H z dz
w w w

b w H w H w

w w w





 

 

  
  

   





    (9) 

 

The minimal bid is given by 1,IV ( )b w w  and not affected by loss sensation. In 

general, however, we obtain the following result: 

Corollary 2 (effects of loss aversion–IV). Increases in the degree of loss aversion 

unambiguously increase bids in induced-value first-price auctions. Bids are therefore 

more aggressive than in the risk-neutral Nash equilibrium.  

Proof: see Appendix. 

In induced-value settings, our model therefore provides one potential explanation for 

overbidding in first-price sealed-bid auctions when compared to the risk-neutral-Nash 

prediction (e.g., Kagel 1995). Loss aversion thereby may complement other 

behavioral driving forces such as: risk-aversion, probability weighting or ambiguity-

aversion (Salo and Weber 1995), or loser’s regret (Filiz-Ozbay and Ozbay 2007). All 
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these different behavioral motivations could exist simultaneously such that we do not 

expect a single one to completely explain the data from laboratory experiments. As 

such, we do not neither anticipate nor intend to show that the described model 

perfectly fits observed data.
79

 Instead, we take evidence for loss aversion from 

numerous choice experiments as a basis for the claim that it may very well also affect 

bidding behavior in auctions. Concentrating on loss aversion, we see our contribution 

in demonstrating potential qualitative differences in bidding between induced-value 

and commodity auctions.  

As such, the effects of loss aversion in the money dimension in the induced-value 

auction are opposite from those in the commodity auction. While loss aversion in the 

money dimension would imply increased bids in the induced-value setting which 

applies in most lab experiments, bids could decrease if the consumption of the 

commodity occurs in a different dimension. The intuition behind this reversal of the 

impact of money loss aversion can be seen when considering how a subject might end 

up experiencing the money loss: in the induced-value setting, the loss (compared to 

expected payoff) occurs when losing the auction. Increasing the bid decreases the 

surplus ( w b ) and therefore decreases the potential loss of money. As a result, 

money loss aversion induces higher bids. This is different in the commodity auction 

                                                
79 Ratan (2008, Chapter 2 above) provides some evidence of the empirical validity of the reference-

dependent approach for explaining data from induced-value laboratory experiments. Using existing 

data from Cox et al. (1982) and Harrison (1989), he finds that loss aversion parameter 
0  between 0.9 

and 1.0 provide the best fit of the reference-dependent model to the respective data sets. The results are 

obtained using separate nonlinear least squares estimations to identify the loss aversion parameter 

based on a symmetric equilibrium bidding function for the different data sets and different number of 

bidders ( {4,5,6,9}n . The best fit loss aversion levels would correspond to a ratio of gain-loss-

utility close to 2, similar to the levels suggested by Tversky and Kahneman (1991). 

 



63 

 

setting. Here, the money loss occurs when winning the auction. Therefore, increasing 

the bid increases the potential loss of money in commodity auctions and money loss 

aversion implies lower bids.  

We summarize these results as follows: 

Corollary 3 (lab vs. field environment) Loss aversion has different qualitative 

implications on bidding behavior depending on whether or not payments are made in 

the same dimension of the commodity space as auction item is consumed. If being 

made in the same dimension (induced-value in laboratory setting), increasing loss 

aversion with respect to the numeraire induces bids to be more aggressive, while they 

become more conservative if consumption dimensions differ (commodity auctions).  

This result suggests overbidding in the field cannot necessarily be predicted on the 

basis of overbidding in induced-value experiments. Using a behavioral model of loss 

aversion, this substantiates the observation by Harrison and List (2004) that the 

applicability of theories may be limited if they do not explicitly account for the nature 

of traded commodities.  

3.2 Second-price auctions 

We next consider second-price sealed-bid auctions again first for commodity auction 

where the value of the auctioned item for bidder i  is given by 

1 1 1 1( ) ( )i i iw v c v c    . Values are again distributed in [ , ]w w  according to ( )H  .  

For given bidding strategies of the other bidders, bidder i ’s probability of winning 

with a bid of 
ib  is again denoted by ( )if b . The payment which bidder i  has to make 



64 

 

in this case, is however given by the second largest bid, i.e. the largest bid of a 

competitor and therefore follows the distribution ( )if b . Then, the expected utility 

including the loss sensation is given by 

2,CA

0
( ) ( ) ( )

0 1
( )

( , ) [ ] ( ) ( ) ( ) ( )

        (1 ( )) ( ) ( )(1 ( ))

i i

i

b b p
i i i

b w b w b w

b
i i i i

b w

b w w p df p p s df s df p

f b pdf p w f b f b



 

    

   

  



 (10) 

Here the first term gives the standard expected consumption utility when winning the 

auction. The second term reflects money losses when bidder i  wins the auction and 

has to pay p , while she expected to pay s p . Note that when paying p  

experienced “losses” are given by max[ ,0]p s . Due to the consistency of the 

reference and outcome distribution (see condition (5)), s  is also distributed with 

distribution ( )f s . The third term reflects money losses from winning the auction and 

paying p  when having expected to lose (with probability 1 ( )if b ). Finally, the last 

term again describes the “losses” suffered from not obtaining the auction commodity. 

Condition (10) implies that a positive bid only may result if 
1( ) 1 1/if b    for 

positive utility gains to be generated. Therefore, we again obtain a threshold value 

CA

Lw  as defined in (6), below which bidders place zero bids or do not participate in the 

auction. Note again that CA

Lw w  if 
1 1  , such that partial pooling at zero bids only 

occurs if 
1 1  .  

Bidder i  chooses 
ib  to maximize (11). Differentiating and simplifying (11) yields 

0 0 1
( )

2 ( ) (1 2 ( ))
ib

i i i i i

b w
w b b pdf p w f b         (11) 
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While it is well known that without loss aversion (
0 1 0   ) truthful bidding will 

result, condition (11) shows immediately that bidding behavior changes in our setting 

due to the assumed loss aversion. In particular, underbidding results at the lowest 

valuation (
1 0( ) max[0, (1 ) /(1 )]b w w     ).  

Proposition 3: (commodity second-price auction–CA) The unique monotonic 

symmetric Bayesian Nash equilibrium in commodity second-price auctions with loss 

averse bidders is given by 

1

2,CA 1

0

1 1 1 10 0

12

00

1 (1 2 ( ))
( )

1

2 2
   [1 (1 2 ( ))]exp ( ( ) ( )) ( )

1(1 )
CA
L

n

w
n n n n

w

H w
b w w

z H z H w H z dH z





 






   

 




 
    

  


  if  CA

Lw w   (12) 

and 2,CA ( ) 0b w   if  CA

Lw w .  

Proof: See Appendix. 

Bidders do not truthfully reveal their true value in order to reduce expected losses: the 

chance of experiencing “losses” from not obtaining the auction item can be decreased 

by lowering the reference probability of winning (low bid) or by increasing the 

probability of winning (high bid). From (11) it becomes obvious that the former is 

optimal for small value draws while the latter will result for high value draws. Along 

the money dimension, the effect of loss aversion is less straightforward. However, we 

can use condition (11) to generate the following comparative statics results.  

Proposition 4: (effects of loss aversion–second-price CA) If bidders are loss-

neutral in the money dimension (
0 0  ), bids are larger (smaller) than the value w  
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if 1( ) 1/ 2nH w   ( 1( ) 1/ 2nH w  ).  For money loss averse bidders (
0 1  ), bids 

decrease in commodity loss aversion 
1  for small valuation (in particular if 

1( ) 1/ 2nH w  ).  Equilibrium bids decrease in the degree of money loss aversion 
0  

for sufficiently small values w . In general, they can decrease or increase in 
0 . 

Proof: see Appendix. 

Proposition 4 shows that loss aversion in the commodity dimension can both increase 

or decrease bids depending on the signal range. Loss aversion therefore breaks the 

standard result of truthful revelation of values in second-price sealed-bid auctions: for 

high value bidders, overbidding can result, while underbidding is predicted for low 

value draws. 

We now turn again to the induced-value second-price auction. Here, the expected 

utility gain from participating in the auction is given by 

2,IV

0 0
( ) ( ) ( )

( , ) [ ( ) ( )] ( ) (1 ( )) ( ) ( )
i ib p b

i i i i i

b w b w b w
b w w p p s df s df p f b w s df s 

 
       

  
  

 (13) 

The bracket has the same interpretation as the first two terms in (10) and gives the 

utility gain from winning the auction at price p . Here, “losses” might be experienced 

because the bidder might have expected to pay a smaller price. Similarly, the second 

term describes the “losses” experienced from not winning the auction: the bidder 

might have expected to win at some price  is b  and therefore suffers “losses” of size 

iw s .   

Maximizing (13), we obtain  
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2,IV

0 0( , ) ( ) 1 2 ( ) '( ) 0i i i i i i

i
b w w b f b f b

b
 


       

  (14) 

which shows that, if placing a positive bid, bidders reveal their valuation truthfully 

despite loss aversion. Note, however, that (14) implies that positive expected utility 

can only result if 
0( ) 1 1/if b    such that bidders with IV

i Lw w  will place zero 

bids which eliminate their chances to win.  

Proposition 5: (induced-value second-price auction–IV) The unique monotonic 

symmetric Bayesian Nash equilibrium in induced-value second-price auctions with 

loss averse bidders is given by truthful revelation of valuations, i.e.  

2,IV
if  

( )
0 if  

IV

L

IV

L

w w w
b w

w w

 
 


   (15) 

Loss aversion at 
0 1   (i.e. 

Lw w ) therefore has no effects on bidding behavior in 

induced-value auctions. The different finding for commodity auctions (Proposition 4), 

again demonstrates that loss aversion gives one obstacle of transferring findings from 

induced-value settings to naturally-occurring auctions.  

3.3 Revenue equivalence 

To complete the analysis of equilibrium bidding, we finally discuss the potential 

revenue equivalence. For the induced-value auction (IV), Corollary 4 and Proposition 

5 imply that loss aversion does not change second-price bidding but increases bids in 

first-price auctions compared with the risk-neutral prediction. Expected revenues in a 

first-price auction with loss aversion therefore exceed those in a second-price auction. 
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Proposition 6: (revenue comparison–IV) Revenues in a first-price induced-value 

auction are larger than in a second-price auction if (symmetric) bidders are loss 

averse in the money dimension.  

This revenue-ranking is consistent with laboratory findings (e.g., Cox et al. 1982; 

Kagel and Levin 1993).
80

 The effects of loss aversion are different in commodity 

auctions (CA). Here, loss aversion changes bids in both auction formats. We obtain 

the following result on revenues: 

Proposition 7: (revenue comparison–CA) If bidders are not averse to losses in the 

numeraire dimension (
0 0  ), first- and second-price auctions are revenue-

equivalent in the commodity auction. For positive levels of 
0 , first-price auctions 

revenue-dominate second-price auctions.  

Proof: see Appendix.  

The proof relies on the fact that expected utility gains are identical in both auctions 

for any player (equation (5) and (10)). For 
0 0  , this difference in expected utility 

gains between the two auction formats coincides with the difference between 

expected payments and is zero. For 
0 0  , revenue equivalence is not guaranteed. 

Here, expected payments are larger in the first-price than in the second-price auction 

for all values of w . Expected revenues in the first-price auction therefore dominate 

those in second-price auctions in both induced-value auctions and commodity-

auctions.  

 

                                                
80 Note that risk-aversion generates the same qualitative revenue-ranking.  
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4 Conclusions 

In this paper, we discussed the effects of loss aversion with endogenous reference 

points on bidding behavior in first- and second-price sealed-bid auctions. We 

demonstrated that it is important to consider the multi-dimensionality of the 

commodity space: The effects of loss aversion qualitatively differ depending on 

whether the auction item is money (induced-value) or some consumption good which 

generates a loss sensation when an individual unexpectedly loses the auction. In 

particular, we showed that loss aversion in induced-value first-price auctions leads to 

bids in excess of the risk-neutral prediction, while underbidding may result in 

commodity auctions. 

The extent to which loss aversion affects bids in commodity auctions, may further 

depend on the characteristics of the auction item. Corresponding to varying ratios 

between willingness-to-pay and willingness-to-accept measures (Horowitz and 

McConnell 2002), we hypothesize that the effects of loss aversion in the commodity 

dimension are most prevalent in auctions of unique items. That is, if more 

opportunities exist to acquire close substitutes, the sensation of loss and therefore 

their impact on bidding behavior might be smaller.  

Our findings put a word of caution on transferring qualitative behavioral findings 

from induced-value laboratory experiments to the field. Besides other differences the 

auction environments (e.g., subject pools, value of traded goods), we find that the 

one-dimensionality of the commodity space in most laboratory experiments in itself 

may be problematic. That is, auction experiments may need to include more than just 

a money dimension in order to better understand economic behavior in the field. The 
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challenge will lie in designing such experiments while still keeping control over the 

underlying value distribution. 
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Chapter 4: Trading Intentions and Reference-Dependence in 

Auctions: Does Experience manifest through Heterogeneous 

Access to Outside Markets? 

1. Introduction 

In the previous chapters, I explored the effect of reference-dependent preferences on 

bidding in auctions. Given the relevance of commodity loss aversion, in this chapter, I 

explore the effect of reference-dependent preferences in the presence of resale or 

procurement opportunities on bidding in commodity auctions.  Such alternatives 

influence trading intentions and therefore are likely to alter the effect of commodity 

loss aversion on bidding.  

The main focus of this chapter is literature which suggests that experience has a direct 

effect on behavioral preferences.  List (2003, 2004) finds that while prospect theory 

applies well to less experienced traders the behavior of more experienced traders 

comes closer to the predictions of neoclassical theory. I explore whether similar 

effects on individual decisions could arise due to other unobservable features (besides 

prior market experience) that mimic experience. I show that heterogeneous access to 

outside markets could alter trading intentions
81

 thereby producing effects similar to 

those that could be attributed to the direct linkage between experience and 

                                                
81 This has been suggested in Kahneman, Knetsch, and Thaler (1990, p. 1328), who note "there are 

some cases in which no endowment effect would be expected, such as when goods are purchased for 

resale rather than for utilization." 
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preferences; such possibilities could arise in first-price sealed-bid auctions in the 

field, with anticipated loss aversion.  

Previous literature has discussed the effect of resale (Bikhchandani and Huang 1989, 

Gupta and Lebrun 1999, Haile 2001, 2003, Garrat and Troger 2003 etc) and outside 

procurement prices on bidding in auctions. In Bikhchandani and Huang (1989) and 

Haile (2001, 2003) uncertainty over induced-values gets resolved overtime and 

creates opportunities for resale among the participants in the first-stage auction.
 82

 The 

existence of posted prices at which a commodity can be procured outside the auction 

on bidding with reference-dependent preferences has received contemporary interest 

(Shunda 2009, Reynolds and Wooders 2005, Durham, Roelofs and Standifird, 2004, 

Mathews 2003a and Mathews and Katzman 2004). The focus of this literature is an 

eBay type buy-price auction in which the seller offers the commodity to the bidder at 

a given price in the pre-auction stage. I explore a different but relevant scenario 

where access to outside markets is uncertain.  

        In contrast to previous literature on auctions with resale where secondary 

markets have same participants, in my framework, resale opportunities could arise 

due to absence of all interested bidders in the auction. In such a scenario, although 

participants in the primary auction are well aware of absent bidders but might have 

unequal access to them. Thus, opportunities for resale arise due to reasons different 

from induced-value uncertainty or asymmetry between bidders in the first-stage 

auctions. In my framework with procurement outside the auction, the effect of outside 

                                                
82 In Gupta and Lebrun (1999), inefficient outcomes could arise due to asymmetric distribution of 

bidders’ valuation which creates opportunities for resale. 
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markets on bidding is different than in auctions with buy-price
83

 due to the 

simultaneous existence of outside markets to which bidders may have unequal access. 

Such heterogeneous access to outside markets could arise due to differences in prior 

market experience, bargaining ability, transactions costs, time committed to 

resale/procurement effort or other unobservable characteristics.  

           While a formal treatment of how experience affects bidding directly could be 

more challenging, if uncertain market access is interpreted as a proxy for bidder 

experience, it becomes possible to analyze the indirect effects of experience on 

bidding in an auction with outside alternatives. In recent years, following rapid 

advances in internet based communication search and transactions costs have gone 

down drastically thereby expanding the reach of consumers for everyday 

commodities (Lee 1998, Ariely and Lynch 2000) and could potentially affect auction 

outcomes. 

      I analyze the effect of experience on bidding within the context of reference-

dependent preferences to isolate the effect of trading intentions that arise due to 

heterogeneous market access. As shown in chapter 2, anticipated loss aversion can 

explain aggressive bidding in first-price auctions. As discussed in chapter 1, the 

literature on consumer psychology has discussed how consumers get affected by 

reference prices in everyday transactions. Such effects have been discussed in e-Bay 

“buy now” auctions where buy prices are believed to affect bidding decisions 

(Shunda 2009, Dodonova and Khoroshilov 2004, Popkowski Leszczyc et al. 2007).  

                                                
83

 In these auctions the primary interest is: (i) how do bidders behave regarding accepting or rejecting 

a transaction at the buy price in the first stage and (ii) how does it affect bidding in the second stage 

auction?  
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      In my approach with loss aversion, resale or procurement options affect 

equilibrium bidding such that there is a direct speculative effect on bidding (as in the 

expected utility framework) and forward-looking (anticipatory) behavior influences 

equilibrium bidding by affecting the “attachment” of a bidder to the commodity. Due 

to the additional behavioral effects, deviations arise with respect to the risk-neutral-

Nash predictions. In auctions with resale, “loss aversion” causes underbidding with 

respect to the risk-neutral-Nash prediction. Bidders with highest access over 

favorable prices are least affected by “loss aversion” and therefore bid closer to the 

risk-neutral-Nash than the bidders with smaller access to favorable prices. In auctions 

with procurement, the attachment effect is such that it may cause overbidding 

(underbidding) with respect to the risk-neutral-Nash. Bidders with greatest level of 

market access are again least affected by “loss aversion” and therefore bid much 

conservatively and closer to the risk-neutral-Nash than the bidders with less favorable 

access to procurement prices. Thus, the predictions of my model are qualitatively 

similar to the findings in List (2003, 2004) which suggest that market experience 

attenuates the endowment effect. Since these indirect effects are observed without 

altering reference dependent preferences, it raises the possibility that the effects 

obtained in List (2003, 2004) in field settings may not arise entirely due to direct 

effect of experience on such preferences. 

In the following sections I discuss the modern marketplace that makes outside 

markets relevant for auctions (section 2), describe a model of reference-dependent 

preferences (section 3) and discuss optimal bidding with resale or outside 
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procurement for first-price auctions (section 4). Then I discuss the findings in the 

context of the literature (section 5) and conclude (sections 6). 

2. The Modern marketplace: Multiple trading instruments, 

search and technological innovation 

In contemporary markets, everyday goods and intangible assets are traded via a 

multiplicity of mechanisms like auctions, posted prices and/or decentralized bilateral 

bargaining (chapter 5, Handbook of Experimental Economics). In recent times, lower 

search and transaction costs present a much wider marketplace to an individual 

consumer. Automobiles, government property, electronics, pollution permits, 

spectrum licenses, exploration rights etc are sold via auctions and other instruments in 

many countries.  

  While the simultaneous existence of auctions and posted prices has been discussed 

in the context of eBay buy price auctions, the sale of used cars, electronics and real 

estate through auctions and posted prices are commonplace.
84

 The buy price 

transactions account for a share of between 32% and 49% of the quarterly sales that 

range between $10.6 and $16.2 billion on eBay; sellers choose to augment their 

auction with a buy price in between 30% and 60% of online auctions, and, among 

those auctions with a buy price, between 10% and 40% end with a transaction at the 

buy price (Shunda 2009). A sizable number of 
2SO emissions permits worth millions 

of dollars have been sold both via auctions (spot and advance auctions) and induced 

                                                
84 Also notable among these are the sale of 

2SO emissions permits by EPA in the United States, 

simultaneously through auctions and permit markets 

(http://www.epa.gov/airmarkt/trading/buying.html, Schmalensee et al. 1998, Jaskow et al. 1998).   
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markets since 1993 by EPA (Jaskow et al. 1998) until now.
85

 While subsequent resale 

of emissions permits is widely reported by EPA and related literature, the relevance 

of cost reducing technological advances that provide the same services is especially 

relevant for EPA advance auctions.  

The access of individual consumers to outside markets and potentially cost reducing 

technological advances is determined by characteristics like search and transactions 

costs, experience and consumption plans. It is therefore natural that access to outside 

markets affects bidding in auctions. In this chapter, I focus on bidding in auctions in 

the context of outside markets. 

3. A Model of Reference-Dependent Preferences 

As before, an individual’s utility ( | )iu c r  depends both on her consumption 

2

0 1( , )c c c   and her reference level 2

0 1( , )r r r  .
86

 Consistent with Köszegi 

and Rabin (2006), I assume that utility is additively separable in the numeraire and 

commodity dimensions:
0 0 0 1 1 1( | ) ( | ) ( | )i i iu c r u c r u c r  . The “direct” consumption 

utility  ( ), 0,1i

t tv c t
 

is obtained when realized consumption is the same as the 

reference level, i.e., ( ) ( | )i i

t t t t tv c u c c , and the individual utility when her 

consumption differs from her reference is defined as :  

( | ) ( ) - max[0, ( ) - ( )]i i i i

t t t t t t t t t tu c r v c k v r v c     (1) 

                                                
85 http://www.epa.gov/airmarkt/trading/2009/09summary.html 
86 The consumption bundle for a bidder comprises of the auction commodity indexed by 1 and 

monetary payments indexed by 0. 
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with  0 , 0,1tk t  .
tk
 
is the scalar which captures the sensation of “loss” when 

less favorable outcomes are realized.
87

 I simplify by assuming that individuals 

experience “losses” only in the commodity dimension and not in money
88

 i.e. 
0 0k 

 

and 
10 k . 

The Auction environment: I consider an auction that has n  bidders with symmetric 

risk-neutral preferences. I assume that each bidder has the same consumption utility 

0v   for the commodity. Each bidder knows that (i) rivals’ have the same 

consumption utility and (ii) behavioral and/or risk preferences. There exists a resale 

or procurement market to which bidders have heterogeneous access (specified later). 

The auctioneer invites sealed-bids from bidders present at the auction and the 

commodity is awarded to the highest bidder in exchange for her (second highest) bid 

in the first (second) price auction. 

3.1 Stochastic Reference in Sealed-bid Auction 

Ex ante, auction outcomes are uncertain and depend on the rivals’ bidding strategies 

and other characteristics (references). Bidders who anticipate these outcomes may 

develop expectations regarding winning or losing; to the extent winning the auction is 

possible, “not winning” the auction could induce psychological “losses”. Following 

Köszegi and Rabin (2006), the reference level is a probability measure G  over 
2

 

                                                
87 Thus, psychological “gains” are normalized to zero.    
88 This is a suitable description for real world where day to day exposure to monetary transactions 

yields no loss aversion  in money dimension. 
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and consumption is drawn according to the probability measure F over 
2

. Then, 

the individual’s overall expected utility over risky outcomes is given by 

( | ) ( | ) ( ) ( )U F G u c r dG r dF c    (2) 

As in earlier chapters, I deviate from the Köszegi-Rabin formulation of overall 

expected utility. In an equilibrium (for a sealed-bid auction) captured by a strictly 

increasing symmetric bidding function, the bid determines the probability of winning 

and the consequent auction outcomes for a bidder.  Since no further action that affects 

auction outcomes is possible after placing the bid, the joint probability distribution 

over potential resale/trade and auction outcomes- F  (which is determined by the 

equilibrium bid) defines the distribution over potential consumption outcomes for a 

bidder with rational expectations, and also generates an identical probability 

distribution - G  over (reference) auction outcomes for a bidder with rational 

expectations. Therefore, in an auction with resale or procurement possibilities, an 

individual solves the following program: 

 
max ( | )

F
U F F                                                              (3) 

This specification is similar to the (anticipatory) approach taken in earlier chapters 

and different from the general setting discussed by Köszegi and Rabin (2006). 

 3.2 Heterogeneous access to outside Markets  

Individual bidders have heterogeneous access to prices in resale or procurement 

markets. Such differences may arise due to differences in individual characteristics 
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like experience, bargaining ability, transactions costs etc. among otherwise similar 

bidders. 

3.2.1 Resale outside the auction 

There exists a resale market in which a price t  is offered in exchange for the 

commodity. Let’s consider the equilibrium behavior of an auction winner who pays a 

bid Β with reference-dependent preferences when resale price is uncertain. Consider 

the utility from resale at price t
 

and no resale under the most unfavorable 

circumstances for resale (when no resale at price t
 
is the reference level)  

1( | ) iu resale at t No resale at t t B k v    

( | ) iu No resale No resale at t v B   

Clearly if t  is high enough then 

( | ) ( | )u resale at t No resale at t u No resale No resale at t ; this happens when 

1 1(1 )i it B k v v B t k v       . In such circumstances, trading is optimal. Now 

consider the utility from trading at price t  and not trading under the most favorable 

circumstances for trading (when trading at price t is the reference level) (since there 

is no money loss aversion) 

( | ) iu resale at t resale at t t B   

( | ) iu No resale resale at t v B   

Clearly if t v  , no resale is optimal.   

I assume that there exists a resale market in which only two prices are offered - 

0 m v  or 
1(1 )M v k  in exchange for the commodity. Thus, the exchange prices 

are such that in equilibrium each bidder is willing to exchange the commodity only at 
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the higher price M . However, bidders have heterogeneous access to prices. For a 

bidder, 
i  

is the probability of drawing the higher resale price M which is randomly 

chosen for bidder i  from a distribution H  over the interval [0,1]  
89

 and constitutes 

his private knowledge. It is common knowledge that rivals’ access over resale prices 

is determined independently (randomly) from the same distribution. Thus, 
i  takes a 

higher value for greater access to price M and yields higher probability for resale. 

3.2.2 Procurement outside the auction 

There exists a procurement market in which a price t  is offered in exchange for the 

commodity. Let’s consider the equilibrium behavior of an auction winner with 

reference-dependent preferences when procurement price is uncertain. Consider the 

utility from procurement at t
 

and no procurement under the most unfavorable 

circumstances for procurement (when no procurement at t
 
is the reference level)  

( | )u procurement at t No procurement at t v t   

( | ) 0u No procurement No procurement at t   

Clearly if t  is high enough then 

( | ) ( | ).u procurement at t No procurement at t u No procurement No procurement at t

 

This happens when v t . In such circumstances, procurement is optimal. Now 

consider the utility from procurement at t  and no procurement under the most 

                                                
89 The prices take only two values for simple exposition; alternatively it is likely that bidders with 

greater access draw higher prices with higher probability.  This generalization though useful is not 

required for drawing the main results. 
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favorable circumstances for procurement (when procurement at t  is the reference 

level) (since there is no money loss aversion) 

( | )u procurement at t procurement at t v t   

1( | )u No procurement procurement at t k v   

Clearly if 
1(1 )t v k  , no procurement is optimal.  I assume that there exists a 

procurement market in which only two prices are offered - 0 r v  or 
1(1 )R v k 

in exchange for the commodity. Thus, the procurement prices are such that in 

equilibrium each bidder is willing to procure the commodity only at the lower 

procurement price r . However, bidders have heterogeneous access to prices. For a 

bidder 
i  

is a probability of drawing the higher procurement price R  which is 

randomly chosen for bidder i  from a distribution H over the interval [0,1] . It is 

common knowledge that rivals’ access over prices is also chosen independently 

(randomly) from the same distribution. Thus,
 i  is defined such that it takes a lower 

value for more favorable access over procurement prices and the probability for 

outside procurement at price r  is 1 i  .  

4. First-Price Auction 

4.1 Auction with resale 

The decision process for a first-price-auction with resale is described in figure 7. 

Figure 7: Bidding Problem in First-price Auction with Resale Intentions 
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The ex-ante overall expected utility for a bidder is 
 

2

1 1

( , ) ( )(1 )( ) ( ) ( )

( )(1 ( ))(1 ) ( ) (1 )

PT i i i i i i i i

i i i i i i

B f B v B f B M B

k f B f B v k f B v

   

  

    

              (4)
 

where ( )if B denotes the probability of winning conditional on bid 
iB . The first-term 

and second terms are the expected (direct) consumption utility (net of monetary 

payments) realized when the auction is won and the commodity is kept or 

successfully traded. The third and fourth terms capture commodity loss aversion; this 

is realized when the bidder loses the auction but had expected to win and consume the 

commodity or when the bidder trades away the commodity when she expected to 

consume it upon winning. Given the high resale price, the level of access over 

favorable prices which varies for bidders determines the probability of resale. Thus, 

loss aversion affects bidders heterogeneously.  

Note that (4) implies that a non-negative expected utility gain ( , )PT i iB   from 

participating in the auction results only if  

Bid

(0,0)

i
1 i

( , )iv B

(0, )iM B

Win Lose
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(1 )i i iv M B     and  
1

(1 )
1 ( )(1 )

(1 )

i i i
i i

i

v M B
f B

k v

 




  
  


                 (4a) 

That is, positive bids will be placed only by bidders with sufficiently large access to 

the high resale price or high consumption utility.  

As usual, I restrict my attention to symmetric monotonically increasing equilibria in 

pure strategies. Let us assume that all opponents of bidder i  bid according to a 

strictly increasing bidding strategy ( )iB   (0,1)i  . When placing a bid 
iB , bidder 

i ’s probability of winning is therefore given by 1 1( ) ( ( ))i n if B H B B  . In 

equilibrium, the chances of player i  to win, are therefore given by 1( )n

iH  . From 

(4a) the following can be derived: when 
1 1k   , 1ˆ 0r   

90
and when 

1 1k  , positive 

bids will result only if 1

2

1

(1 ) ( )1
( ) [ ]

1 (1 )

n i i i
i

i i

v M B
H

k v

  


 

   
 

 
(this is 

straightforward  from (4a) ). Thus, the corresponding threshold value 1ˆ
r  is implicitly 

defined by  

1 1
1 1

1 1 2

1

ˆ ˆ(1 )1
ˆ( )

ˆ ˆ1 (1 )

n r r
r

r r

v M
H

k v

 


 

  
 

 
   (4b) 

Clearly, optimal bidding depends on the degree of loss aversion and access to resale 

prices. Bidders with 1ˆ[ ,1]i r   get non-negative expected utility gain ( , )PT i iB   

and place positive bids.  

                                                
90 Note that nonnegative expected overall utility implies 

1

1 1

1 1
1 ( )(1 ) 0

(1 )

ni i
i i

i

M B
Z H

k k v


 



   
       

   
; when ( ) 0iB  

1

1

1
( )(1 ) 0

(1 )

ni i
i i

i i

M B
H

k v


 

 

 
   

  
; when 

1 1k  and 0,i  therefore 0Z  . 
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Maximizing the expected payoff in (4) yields the following monotonic bid function: 

Proposition 1: (-First-price auction with resale-) For a uniform ( )H  , the 

monotonic Bayesian Nash equilibrium bid function for (symmetric) bidders with 

commodity loss aversion is given by  

1 1

1 1 1 1

ˆ ˆ 1

11 1

1

[(1 ) ] ( ) [(1 2 ( ))(1 ) 2 ( ) (1 )] ( )

( ) ˆif  
( ) ( )

ˆ0 if  

i i

r r

n n n n

i PT i rn n

i i

i r

x v xM dH x H x x H x x x dH x

B k v
H H

 

   
 

 

   

 


     


  

 

 
 

Proof: See Appendix 

The optimal bidding under the expected utility scenario with risk-neutral preferences 

is 

1

0

1

[(1 ) ] ( )

( )

i

n

n

i

x v xM dH x

H









 
 which is obtained by substituting 

1 0k   in above; it reflects 

the effect of speculation on bidding. Clearly, greater access to high resale price yields 

greater expected overall payoff to the bidder and causes higher bidding. For 
1 0k  , as 

0,i B v   91
 
i.e. the bidder with least access to the high resale price bids her 

consumption utility and derives zero expected payoff from the auction. With 

commodity loss aversion, we obtain underbidding compared to the risk-neutral-Nash 

bid function. Since, the high resale price more than compensates for loss aversion  

1(1 )M v k   each bidder anticipates to exchange the commodity at the high resale 

price. Since she will lose the commodity as a result of this exchange she tries to avoid 

                                                
91 This is derived from the bid function using L’ Hospital’s rule. 
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the commodity “losses” by bidding less. Due to loss aversion, as

10, max[0, (1 )]i iB v k     
92

; this reflects that only nonnegative bids are allowed. 

More generally the following is obtained: 

Proposition 2 (-Effect of loss aversion in first-price auction with resale-) 

For a uniform distribution ( )H  over resale prices, commodity loss aversion has a 

decreasing effect on bids i.e. 
1

0
B

k





.  

Proof: see Appendix. 

The effect of commodity loss-aversion on bids in this scenario is different from 

induced-value auctions without resale where money loss aversion yields overbidding 

(chapter 2) and from commodity auctions where the effect of commodity loss 

aversion on bids depends on induced consumption utility (chapter 3). Intuitively, for 

any given access over resale prices, the bidders are willing to exchange the 

commodity at the high resale price M and anticipate the ensuing commodity loss 

aversion; in the presence of sufficient competition, bidding less aggressively lowers 

their chances of winning the auction and experiencing ensuing commodity loss.  

4.2 Auction with outside procurement  

The decision process for a first-price-auction with procurement is described in figure 

8. 

                                                
92 This is derived from the bid function using L’ Hospital’s rule. 
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Figure 8: Bidding Problem in First-price Auction with procurement intentions 

 

 

The ex-ante overall expected utility for a bidder is 
 

2

1 1

( , ) ( )( ) (1 ( ))(1 )( )

( )(1 ( )) (1 ( )) (1 )

PT i i i i i i

i i i i i i

B f B v B f B v r

f B f B k v f B k v

  

  

     

              (5)
 

Where ( )if B denotes the probability of winning conditional on bid 
iB . The first-term 

and second terms are the expected (direct) consumption utility (net of monetary 

payments) realized when the commodity is won through the auction or the 

commodity is successfully  accessed and exchanged for a price r . The third and 

fourth terms capture commodity loss aversion; this is realized when the bidder loses 

the auction and could not procure the commodity but had expected to win commodity 

through the auction or procure the commodity upon losing. Given a relatively low 

procurement price r , access over procurement prices which varies for bidders, 

determines the probability of procurement. Thus, loss aversion affects bidders 

heterogeneously.  

( , )iv B

Bid 

( , )v r (0,0)

i1 i

win
lose



87 

 

Note that the reservation overall expected utility for the bidder equals 

1(1 )( ) (1 )i i iv r k v      due to outside procurement possibilities. Thus, (5) 

implies that participation in the auction exceeds the utility from just relying on 

outside procurement only if

               

1(1 ) [2 ( ) 1]i i i i i i iv r B k v f B         

        

(5a) 

Clearly, auction participation matters depends on: 
1k , distribution ( )H  , the number 

of bidders, among others. It is obvious that for moderate levels of loss-aversion, (5a) 

holds for bidders with any distribution ( )H  over prices. Bidders derive expected 

utility greater than the reservation level of utility by bidding above r , for very large 

and small levels of access to prices for any ( )H  and n . 
93

However, (5a) may not 

hold for intermediate range of 
i under certain ( )H  and n .  

As before, I restrict my attention to symmetric monotonically increasing equilibria in 

pure strategies such that there exists a strictly increasing bidding strategy ( )jB   

(0,1)j   and 1 1( ) ( ( ))i n if B H B B  . 
94

With the above argument, positive bids 

result only if 1

2

1

(1 )1
( ) 2n i i

i

i i

v r B
H

k v

 


 

   
   . 

95
 When ( )H  is uniform and 

2n  , we can guarantee that (5a) holds for all possible bidder types and bidding 

above r is optimal for all 0i  . As noted earlier, this is also true when 
1k  is 

sufficiently small as defined in (5a); even under such circumstances, optimal bidding 

                                                
93 This is easily shown by putting 

iB r in (5a) and taking limits as 0,1i  . 
94 In view of the above, therefore some level of generality is lost while deriving the main results. 
95 Note however that bidding r is as good as outside procurement without loss-aversion; however with 

loss-aversion the expectations associated with some positive chances of winning yields less expected 

overall utility than outside procurement. Therefore, it is optimal to bid zero with loss-aversion if the 

chances of winning are not high and outside procurement is possible.  
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depends on the degree of loss aversion and access to procurement prices. Maximizing 

the expected payoff in (5) yields the following monotonic bid function: 

 

Proposition 3:(-First price auction with procurement-) For a uniform ( )H  and 

2n  , the monotonic Bayesian Nash equilibrium bid function for (symmetric) bidders 

with commodity loss aversion is given by  

1 1 1 1

1

0 0

1 1

[ (1 )( )] ( ) [(1 2 ( )) 2(1 ( )) (1 )] ( )

( )
( ) ( )

i i

n n n n

i PT n n

i i

v x v r dH x k v H x x H x x x dH x

B
H H

 


 

   

 

      

 
 

 

Proof: See Appendix 

The optimal bidding under the expected utility scenario with risk-neutral preferences 

is 

1

0

1

[ (1 )( )] ( )

( )

i

n

n

i

v x v r dH x

H









  

 

which is obtained by substituting 
1 0k   in above and 

reflects the effect of (procurement) speculation on bidding. Higher access to the low 

procurement price r , makes winning the commodity in the auction less important and 

causes lower bidding. This is different from before where higher access to the 

favorable resale price causes higher bidding. As 0,i B r  
 
i.e., the bidder with 

almost certain access to the low procurement price bids only the low procurement 

price r with or without loss aversion.  

Under the circumstances, with loss aversion we obtain overbidding with respect to the 

risk-neutral-Nash bid function.  
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Proposition 4 (-Effect of loss aversion in first-price auction with procurement-) 

For a uniform distribution ( )H  over procurement prices and 2n  , bids are 

increasing in commodity loss aversion i.e. 
1

0
B

k





. 

Proof: see Appendix 

The comparative static shows that the impact of loss aversion depends on (i) the 

distribution of access to prices and (ii) number of bidders in the auction. Commodity 

“losses” are realized when the bidder loses the auction and could not procure the 

commodity but had expected to (i) procure the commodity upon losing or (ii) win 

commodity through the auction. The first type of losses always induces higher bids. 

The second type of losses could either cause higher or lower bids. If a bidder is likely 

to win to start with, she can decrease chances of disappointment by increasing 

probability of winning. As a consequence, loss aversion leads to higher bids.  

However, if a bidder is unlikely to win to start with, he can decrease expectations by 

further decreasing the probability of winning, i.e. by bidding lower due to loss 

aversion. The overall effect on bidding depends on the net of these effects (this is 

discussed in the proof for proposition 4).  

Nevertheless, for a uniform ( )H  over procurement prices and 2n   , commodity 

loss aversion always induces higher bidding. 
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5. The Role of Market Access  

The heterogeneous access to prices influences bidding in auction with resale or 

procurement possibilities. The risk-neutral-Nash equilibrium bids capture the direct 

speculative effect of prices in outside markets. The deviations from risk-neutral-Nash 

bids arise due to loss aversion  and depend on (i) access to prices in outside markets 

and (ii) the level of competition. The bidders with favorable access to prices bid 

closer to the predictions of the risk-neutral-Nash bids. In general, we obtain the 

following:  

Proposition 5: For a uniform distribution ( )H  of market access over resale 

prices, in (first price) auctions, deviations from risk-neutral-Nash equilibrium 

due to commodity loss aversion decline with greater access to high resale prices 

i.e.  
( ( ) ( ))

0RN i PT i

i

B B 



 



 

Proof: See Appendix 

This applies to first- price auctions. Greater access to high resale price induces lesser 

expectation of retaining the commodity for consumption, which yields a smaller 

effect of commodity loss aversion on bidding in auction. Thus, deviations from the 

risk-neutral-Nash prediction become smaller with greater access to high resale prices. 

Thus, greater access to resale prices affects trading intentions such that the effects are 

similar to those attributed to direct effect of experience on preferences (List 2003, 

2004).   
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In auctions with outside procurement, risk-neutral-Nash yields less aggressive 

bidding. Due to commodity loss aversion, conditional on the (i) number of rivals, and 

(ii) access to prices, bidders could overbid or underbid below the Risk-neutral-Nash 

bids. Thus, unlike in auctions with resale a consistent decline in deviations from the 

Risk-neutral-Nash bidding with access to procurement price may not be observed. 

However, given that bidders with low levels of market access over low procurement 

prices always overbid and bidders above a high level of access could either underbid 

or overbid larger deviations with respect to the risk-neutral-Nash are obtained for 

bidders with very small access to low procurement price. In general we obtain:  

Proposition 6: For a uniform distribution ( )H  over procurement prices and 

2n  , in (first-price) auctions, deviations from risk-neutral-Nash equilibrium 

for bidders with high levels of market access are smaller than the bidders with 

very low levels of market access i.e. 

0 1
lim | ( ) ( ) | lim | ( ) ( ) |

i i

PT i RN i PT i RN iB B B B
 

   
 

  

 

Proof: See Appendix 

This applies to first-price auctions. I simulate bidding functions for a uniform access 

over procurement prices, and (i) various levels of loss aversion. (See figure 9 in the 

appendix). This proposition is addressed to compare the behavior of bidders with 

relatively high and low access to the low procurement price just like the behavior of 

inexperienced traders with highly experienced traders in List (2003, 2004). Thus, 

greater access to procurement prices affects trading intentions such that the effects are 
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similar to those attributed to direct effect of experience on preferences (List 2003, 

2004).   

6. Conclusion and Policy Implications 

Auctions are the preferred mode of transfer of unique goods and services and 

maximization of seller’s revenue. In recent years, following rapid advances in internet 

based communication, search and transactions costs have gone down drastically 

thereby expanding the reach of consumers for everyday commodities. This is one way 

in which outside markets are more relevant than before. This is especially relevant in 

the context of auction commodities when technological changes could make low cost 

alternatives a possibility in future. Therefore, the framework is relevant for a scenario 

where the auction commodity could potentially become available in future at 

relatively low cost (Schmalensee et al. 1998). Unobservable effort and/or ability to 

innovate or access to such alternatives are likely to be important influences on 

bidding in the presence or absence of other distinguishing characteristics of bidders. 

Such influences matter when the auction commodity is not required for immediate 

consumption and therefore search and/or technological advances are possible. Among 

commodities sold through auctions- real estate, environmental permits, automobiles, 

art, collectibles, spectrum licenses, electronics, debt instruments, exploration and 

extraction rights, are subject to influences that could arise due to outside procurement 

either because they are (i) non-unique and have outside markets (therefore 

searchable) and/or (ii) likely to become available at cheaper prices due to 
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technological changes.
96

  The framework I have presented in this paper addresses the 

effect of such circumstances in auctions. 

         I have explored the effect of resale or procurement outside the auction on 

bidding in a sealed-bid first-price auction. Individuals who participate in auctions 

possess unobservable characteristics like experience levels, bargaining skills, ability 

to innovate etc. that could yield heterogeneous access over prices in resale or 

procurement markets. I explore the effect of differences in trading intentions that 

arise due to heterogeneous access over outside market prices on bidding in auctions. I 

show that bidders with greater access to favorable prices are in the most advantageous 

position such that they bid (i) aggressively in auction with profitable resale 

opportunities and (ii) conservatively in auctions where low cost procurement is 

possible.  

If bidders are loss averse in commodity, there is an additional “attachment” effect on 

bidding. In auctions with resale, loss aversion causes underbidding with respect to the 

risk-neutral-Nash prediction. Bidders with favorable access over prices are again least 

affected by loss aversion and therefore bid closer to the risk-neutral-Nash than the 

bidders with less favorable access. In auctions with procurement, the attachment 

effect is such that it may cause overbidding (underbidding) for bidders with respect to 

the risk-neutral-Nash. Nevertheless, bidders with favorable access over prices are 

again least affected by loss aversion and therefore bid much conservatively and closer 

to the risk-neutral-Nash than the bidders with less favorable access over prices. 

                                                
96 The demand for electronic storage of data is one such example: within last few years the modes of 

storage has changed rapidly.  
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         If access to favorable prices is interpreted as a proxy for experience levels, the 

predictions of my model are qualitatively similar to the findings that suggest a direct 

linkage between experience and preferences (List 2003, 2004). If such heterogeneous 

access is interpreted as proxy for experience then my model captures the indirect 

relationship between experience and bidding. Since these indirect effects are observed 

without altering loss averse preferences, it raises the possibility that the effects 

obtained in List (2003, 2004) may not arise entirely due to direct linkage between 

experience and preferences.   
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Appendices 

A.1 Proofs  

Chapter 2 

Proof for Proposition 1 

For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v     maximizing (5), bidder i  chooses 
iB  

according to 

' '( )( ) '( )[1 2 ( ) ]( ) ( )(1 ( )) 0i i i i

i i i i l i i lf B v B f f B f k v B f f k              

 (A.1) 

Here 1 1( ) ( ( ))i n

i if f B F B B    and therefore 1 1 1'( ) ( ) '( ( ))( ) '( )n

i i if B F B B B B   . In 

equilibrium, we have 1( )i iB B v  , 1( ) '( ) 1/ '( )i iB B B v  , and 1( )i n

if F v . 

Rearranging (A.1) gives 

1 1 1 1'( ) '( ) [1 (1 2 ( ( ))) ] [ ( ( ))(1 (1 ( ( )))) ( )]'n n n n

i i i l i l i iF v v F v k F v k F v B v                         

(A.2) 

Integrating yields 

1 1

ˆ( )

1 1

[1 (1 2 ( ( ))] ( ( ))

( )
( ( ))[1 (1 ( ( )))]

i

l

v

n n

l

v k

i PT n n

i l i

x k F x d F x

B v
F v k F v

 

 

 

 

 


 


                                                      

(A.3)                                                                                         
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as the unique candidate for a symmetric monotonic bidding equilibrium. 

Monotonicity of ( )i PTB v  can easily be established by differentiating (A.3) and using 

the following:  

for ˆ( ),[1 (1 ( ( )))] 0 [1 (1 2 ( ( )))] 0i l l i l iv v k k f B v k f B v        .  

It remains to show the second-order condition for the maximization problem. Using 

the envelope theorem and (A.1), this is equivalent to 2 ( ( ), ) / 0PT i i iB v v B v     

which holds true since 2 ( ( ), ) / ' '( ( ))[1 (1 2 ( ( )))] 0PT i i i i l iB v v B v f B v k f B v         

since [1 (1 ( ( )))] 0l ik f B v    

Applying L’hospital’s rule to (A.3) yields the bid for lowest induced-value. 

For ˆ( ), ( )i l i iv v k B v v  maximizes payoff (yields zero payoff). 

  

Proof for Proposition 2 (i)    

Note first that by definition of ˆ( )lv k , 
ˆ( )

0l

l

v k

k





; for  ˆ( )i lv v k rewrite bid function 

(A.3) as   

1 1

1 1

( ( ))[1 (1 ( ( ))]

( )
( ( ))[1 (1 ( ( )))]

iv

n n

l

v

i PT i n n

i l i

F x k F x dx

B v v
F v k F v

 

 

 

 

 

 
 



   (2.1)

 

From above 

2 [ ( )(1 ( )) ( )(1 ( )) ( ( ) ( )(1 ( ))) ]
i iv v

PT
i i l

l v v

B
den den x x dx v v x k x x dx

k
      


       

    
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where 1 1( ) ( )(1 ( ) ; ( ) ( ( ) ), ( ) ( ( ) )n n

i i i l i iden v v v k v F v x F x             
. Upon 

expansion and cancellation this reduces to  
2 (1 ( )) (1 ( ))

i iv v

PT
i

l v v

B
den x dx v dx

k
 


   

    

. For all 
ix v  and monotonic probability weighting ( ) ( )iv x  . Thus,

 

0PT

l

B

k





 .  

Proof for Proposition 2 (ii) 

Note first that by definition of ˆ( )lv k , 
ˆ( )

0lv k







; for  ˆ( )i lv v k  I show that (i) 

( ) 0iB v






for 1lk   (ii)  and ( ) 0iB v







is guaranteed for 0 0.995066lk   

Let 1( ) ( )nP x F x   and  1( ) ( )nP v F v   and drop subscript i for simplicity. From 

(2.1) 

 

 

 

 

( ( )) 1 (1 ( ( )))[ ( ( )) 1 (1 ( ( ))) ]

( ) 0
( ( )) 1 (1 ( ( )))

( ( )) 1 (1 ( ( )))

i

i

v

ll
v

i v

l

l

v

P x k P x dxP v k P v

B v
P v k P v

P x k P x dx

  


  
 

       
  

  
 





   (3.1)

 

Now 

   
( ( ))

( ( )) 1 (1 ( ( ))) 1 (1 2 ( ( )))l l

P v
P v k P v k P v


  

 

 
       

 

where  

( ( )) ( ( ) )
( ( )) ln ( )

P v P v
P v P v




 

 
 

   

Since   ln ( ) 0P v 
   

(3.1) is equivalent to
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 

 

 

 

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

i iv v

l l

v v

l l

P x k P x dx P x P x k P x dx

P v k P v P x P v k P v

   

   

     


   

 

  

To how this, it is sufficient to show that for  

x v

 
 
 

 
 

 
 

 
 

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

1 (1 ( ( ))) ln ( ) 1 (1 2 ( ( )))

1 (1 ( ( ))) ln ( ) 1 (1 2 ( ( )))

l l

l l

l l

l l

P x k P x P x P x k P x

P v k P v P v P v k P v

k P x P x k P x

k P v P v k P v

   

   

 

 

   


   

   
 

   
    (3.1a) 

which is equivalent to  

 
 

 
 

 
 

ln ( ) 1 (1 2 ( ( ))) ln ( ) 1 (1 2 ( ( )))1

1 (1 ( ( ))) 1 (1 ( ( )))

ln ( ( ) 1 (1 2 ( ( )))1

1 (1 ( ( )))

l l

l l

l

l

P x k P x P x k P x

k P x k P x

P x k P x

k P x

 

  

 

 

   


   

 


 

  

being increasing in x  ; Or equivalently 

 
 

ln 1 (1 2 )
( )

1 (1 )

l

l

y k y
T y

k y

 


 
       being increasing in y when 0 1y  ;  

i.e. 
1

[1 (1 )][1 (1 2 )] (1 ) log 0l l l l

T
k y k y k k y

y y


       


                                         

(3.2)   

Case 1: For 1lk  , 0 0
T B

y 

 
  

 
 for 0 1y  . 
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For  1lk  , ˆ( )lv k v . (i) Since 
ˆ

0
v







 more bidders bid B v  (bid more 

aggressively in response to greater ambiguity).  (ii)  For ˆ( )i lv v k , 

[1 (1 ( ( )))] 0 [1 (1 2 ( ( )))] 0l i l ik f B v k f B v      
 

0 0
T B

y 

 
  

 
 for 0 1y  .

 

Case 2: For 1lk  , all ˆ( )i lv v k when 0lk  or 1lk  , 0 0
T B

y 

 
  

 
 

Let 2 2 2( ) 2 3 (1 ) (1 ) (1 ) lnl l l l l lZ y k y k k y k k k y y                     (3.3)
 

Then we need to show ( ) 0Z y  for 0 1y   

( )Z y is strictly convex with a strict minimum attained at *y such that 

*

( ) 0
y y

Z y
y







       (3.4) 

i.e. 
4 *

ln * 4
1

l

l

k y
y

k
  


                                                                  (3.5) 

The function [
4

ln
1

l

l

k y
y

k



] is a strictly monotonically increasing continuous function 

of y which increases from   at 0y   to 
4

1

l

l

k

k
at 1y  . Hence there exists a unique 

*y at which (3.4) holds. Using (3.3) it can be shown that 

2 2 2( *) (1 ) 2 * (1 ) *l l l lZ y k k y k k y     ; rearranging  (3.5) yields  

4 ln *

4 ln * 4 *
l

y
k

y y




 
                                                              (3.5) 



100 

 

Again using (3.4) it can be shown that 
*ln *

( *) (1 ) 1 (1 *)
2

l l

y y
Z y k k y

 
     

 
. 

Thus   ( *) 0Z y   iff 
*ln *

[1 *] 1
2

l

y y
k y    

 i.e.  4 ln * *ln *
[1 *] 1

4 ln * 4 * 2

y y y
y

y y


  

 
.  Suppose ln 4y    then 4y e ; and 

since 
44

ln ln * 4 ln * 4 * 0
1

l

l

k y
y y y e y y

k

       


. 

Hence ( *) 0Z y   iff  (4 ln *)(2 *ln * 2 *) 2(4 ln * 4 *)y y y y y y        i.e. , 6*y e     

(3.6)  

From (3.5)  
lk increases as *y decreases.  Thus 6*y e  iff  

6

6 6

4 ln
0.995066

4 ln 4
l

e
k

e e



 


 

 
.  Thus, when 

 

6

6 6

4 ln
0.995066

4 ln 4
l

e
k

e e



 


 

 
 

0 0
T B

y 

 
  

   

is guaranteed.  

From (3.6) when  
6

6 6

4 ln

4 ln 4
l

e
k

e e



 




 
, if there exists ( 1) 6* ( ) 0.0025ny F v e      ; 

then for very small induced-values such that  ( ) 0Z y  as specified in (3.3), 

0 0
T B

y 

 
  

 
. 

Proof for Proposition 3  

Note first that by definition of ˆ( )lv k , 
ˆ( )

0lv k

n





; for  ˆ( )i lv v k

 
I show that (i) 

( ) 0iB v
n





for 1lk   (ii) and ( ) 0iB v

n




  
is guaranteed for 0 0.995066lk  .  

Let 1( ) ( )nP x F x   and  1( ) ( )nP v F v   and drop subscript i for simplicity 
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 

 

 

 

ˆ

ˆ

( ( )) 1 (1 ( ( )))[ ( ( )) 1 (1 ( ( ))) ]

( ) 0
( ( )) 1 (1 ( ( )))

( ( )) 1 (1 ( ( )))

i

i

v

l
l

v
i v

l

l

v

P x k P x dxP v k P v nnB v
n P v k P v

P x k P x dx

  

 
 

         
  

 





  (4.1)

 

Also 

   
( ( ))

( ( )) 1 (1 ( ( ))) 1 (1 2 ( ( )))l l

P v
P v k P v k P v

n n


  

 
       

 

Where 

( 1)
( 1)( ( )) ( ( ) )

ln ( ) ( ) ln ( ) ( ( )) 0
n

nP v F v
F v F v F v P v

n n


 

  


 
   

   

Since  ln ( ) 0P v    (4.1) is equivalent to 

 

 

 

 
ˆ ˆ

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

i iv v

l l

v v

l l

P x k P x dx F x P x k P x dx

P v k P v F x P v k P v

   

   

     


   

 
 

Upon multiplying both sides by   we get the same inequality (3.1a). Thus, the rest 

of the proof is the same as outlined above for proposition 2(ii) for various range of 

value for 
lk . The same conclusions follow. 

  

Proof for Proposition 4 

I shall first characterize the interior solution underlying the first-order condition for 

the objective function, assuming a monotonic bid-value relationship exists. Then 

show that (i) the best-response bid-value relationship is strictly increasing for
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ˆ( )l iv k v v   and (ii) the expected payoff is local and global maximum at the 

optimal bid.  

(i) 
1 1 1max ( , ) (( ) ) (( ) )(1 (( ) )) ( )

i

n n n

PT i i i l i i i i
v B v

v B B k B B v B        

 
     

                 

(2.1)                                         
 

 For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v    and
iv v , 

1 1

1
1

(( ) ) 1 (1 (( ) ))
0

(( ) )
1 (1 2 (( ) ))

n n

i i lPT
i i n

nii
i l

i

B B k
v B

BB
B k

B

   

 
 

 




       


   
                       (2.2)          

 

This defines a unique bid for each value.  

For ˆ( ), ( )i l i iv v k B v v  maximizes payoff (yields zero payoff). 

For 
iv v  the following holds: 

-1
( )i

n
B v v

n

 
  
 

 

 (ii)  For 0,  ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v   
 
and 

iv v using (2.2) we 

obtained the following above:  
( 1)

( 1)

1 ( )

( 1) 1 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B







 





  
   

   
 

1
( 1) ( 1)

i

i i

Bv Z Z

B n B n 

  
   

    

     where 
( 1)

( 1)

1 ( )
[0,1]

1 2 ( )

n

l l i

n

l l i

k k B
Z

k k B













  
  

  

; and 

( 1) ( 1) 1 ( 1) ( 1) 1

( 1) 2 ( 1) 2

(1 ) (1 )

(1 2 ( ) ) ( 1) ( 1) (1 2 ( ) )

n n n n

l l i i i l l i

n n

i l l i i l l i

k k B B B k k BZ Z

B k k B n B n k k B

   

 

 

   

     

 

       
     

          

 For 0 1lk   , 1 0 0
( 1)

i

i i

B Z v

n B B

  
     

   
; For 1lk   , the numerator and 

denominator are such that 0 0
( 1)

i

i i

B Z v

n B B

  
   

   
. 

Thus the bid-value relationship is strictly increasing for ˆ( )l iv k v v  . 
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(iii) For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v   
 
and 

iv v at the optimal bid 0PT

iB





. 

To show  
2

2
0PT

iB





. Differentiate the first order condition 0PT

iB





 with respect to 

iv   yields 
2 2

2
0iPT PT

i i i i

B

B v B v

  
 

  
.  Then we need to show that 

2

0PT

i iB v




 
 for the 

proof to work since 0
i

B

v





. Differentiating (2.1) with respect to iv   yields

12 (( ) )
[1 (1 2 ( ( )))]

n

iPT
l i

i i i

B
k f B

B v B

 



  

  
 . Since 

1(( ) )
0

n

i

i

B

B

  



 and 

[1 (1 ( ( ))] 0 [1 (1 2 ( ( ))] 0l i l ik f B k f B        ;  therefore
2

0PT

i iB v




 
. Thus, the 

first order condition describes a global optimum. Bidding 
1n

v
n



   
ensures that the 

auction is won. Therefore for 
iv v , the global optimum is given by 

1n
B v

n


  

  

Proof for Proposition 5 

For  ˆ( )l iv k v v    we need to show that  0i

l

B

k





. Differentiate 0PT

iB





 with 

respect to lk   yields 
2 2

2
0iPT PT

i l i l

B

B k B k

  
 

   
.  Then we need to show that 

2

0PT

i lB k




 
 

for the proof to work since it has been shown (above for proposition 4) that 

2

2
0PT

iB





. Differentiating (2.1) with respect to 

lk  yields



104 

 

2

2 2

(1 2 )( 1) (1 )(2 1) 2
0

( 1) (1 2 ) ( 1) (1 2 )

i l l l l iPT

i l l l l l

B k k Y Y k k Y Y B Y Y

B k n k k Y n k k Y



 

            
     

          

 where ( 1)( ) 0n

iY B    ; thus from above, 
2

0 0iPT

i l l

B

B k k

 
  

     

  

Proof: for Proposition 5(ii)  

If  
( 1)

( 1)

1- ( )
0

( 1) 1- 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B







 





 
   

  
 is equivalent to ( , ( )) 0F B   where 

subscript i is dropped for simplicity.  By implicit function theorem, if 0
F

B





, then 

/
B F F

B 

  


     

 

2

2 2

1

2

(.) (.)( 1)(.)

( 1) (.)

(.) (.)( 1)(.)
1

( 1) (.)

l

l

A X kB

B n D

A X k

n D










 



 


 
where

( 1) ( 1)

2 1( 1)

( 1)

1- ( ) ( )
(.) , (.) , (.) (.) ln( ) 0, (.)

1- 2 ( ) ( 1) ( )

and (.) 1- 2 ( )

n n

l l i i
l ln

l l i

n

l l i

k k B B B
A X k n B X k n

k k B n B

D k k B

 





 
  

  



 





 
      

  

 

 

It is relatively straightforward to show that for ˆ( ), (.) 0, (.) 0lv v k D     

1

2

2 2

1

(.) (.)( 1)(.)
1 0

( 1) (.)

( 1) (.) (.) (.) (.) (.)( 1) ( 1)

l

l

A X k

n D

n D D A X k n



 


  



     
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Since 2(.) (.) 0D  the above holds if 2( 1) (.) ( 1) (.)(1 )l ln D n k k     . Note that 

this holds when 1lk  . When 1lk  , the above is equivalent to 

2 2 2(.) (.)(1 ) [(1 ) 4 (.) ] 4 (.) / (1 ) (.)

(1 ) (.)(1 4 )

l l l l l

l l

D k k k k k

k k

   



       

   
 

which holds for all 1lk  . Therefore 1

2

(.) (.)( 1)(.)
1 0

( 1) (.)

lA X k

n D


  


. 

Thus ( )0
F

B


 


iff 2

2 2

(.) (.)( 1)(.)
( )0

( 1) (.)

lA X kB

n D


  


 

i.e. 

22

2

(.)( 1)(.)
( )0 (.) (.) ( ) ln( )( 1)[ ( ) ]

( 1) (.)

l
l l

X kB
D n B k B k

n D
   

 

 
       

  
 

when 1lk  , the LHS exceeds the RHS since ln( ) 0B  . Therefore 0PTB







.  

When 1lk  , as 0iB 
 
or 

iB  , the LHS exceeds the RHS ; given the bids and 

values are monotonically increasing therefore for the extreme induced-values 

0PTB







; for some   * 1lk k   for 

iv
 
it follows from above, if  

( 1) ln( ) ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B

   
 

 


  

 
, then 0PTB







.  

 

Proof: for Proposition 6 

As before,  
( 1)

( 1)

1- ( )
0

( 1) 1- 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B







 





 
   

  
 is equivalent to 

( , ( )) 0F n B n  where subscript i is dropped for simplicity.  By implicit function 
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theorem, if 0
F

B





, then /

B F F

n n B

  


      
i.e. 

2

2 2 2

1

2

(.) (.)( 1)(.)

( 1) (.)

(.) (.)( 1)(.)
1

( 1) (.)

l

l

A X kB

B n D

A X kn

n D










 



 



 

where

( 1)

2( 1)

( 1)
( 1)

1

1- ( ) ( 1)
(.) , (.) , (.) [ (.)( ln( ) )] 0,

1- 2 ( ) ( 1)

( )
(.) and (.) 1- 2 ( )

( )

n

l l i i
ln

l l i

n
n

l l l i

k k B B B n n
A X k B B

k k B n n

B
X k n D k k B

B









  

 


 










   
      

  

  

 

It is relatively straightforward to show (as shown before in the proof for Prop.5(ii))  

that for ˆ( )lv v k and for all 
lk ,  

1

2

(.) (.)( 1)(.)
1 0

( 1) (.)

lA X k

n D


  


. 

Thus ( )0
F

B


 

  
iff 2

2 2 2

(.) (.)( 1)(.)
( )0

( 1) (.)

lA X kB

n D






  


 

i.e. 2

2

(.)( 1)(.)
( )0

( 1) 1 (.)

lX kB

n n D

 
   

               (6.1) 

which can be shown to be equivalent to 

(.)
(1 )(1 2 (.)) ( ) ( 1) (.)[ ln( ) ( (1 1/ ) 1)]

1

l
l l l

l

k
k k n k B B B n

k


            


 

When 1lk  , the LHS exceeds the RHS in equation (6.1) since 
2 0X  . Therefore 

0PTB

n





. When 1lk  , as 0iB 

 
or 

iB  , the LHS exceeds the RHS ; given the 

bids and values are monotonically increasing therefore for the extreme induced-
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values 0PTB

n





; for some   ˆ 1lk k   for 

iv
 
it follows from above that if  

( 1)[ (1 ) ln( )] ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B

    
 

 

  
  

 
, then 0PTB

n





.   

  

 

Chapter 3 

Proof of Proposition 1: 

Bidders with [ , ]j CA

Lw w w  can only obtain non-negative expected utility by having 

zero chances of winning. This is guaranteed when placing a zero bid. For 

[ , ]j CA

Lw w w , we assume that all opponents of bidder i  bid according to a strictly 

increasing bidding strategy ( )jb w .  

Maximizing (5), bidder i  chooses 
ib  according to 

0 1 0'( )[ (1 2 )( )] [1 (1 ) ]i i i i i i i if b w b f b w f f           (A.1) 

When placing a positive bid 
ib , bidder i ’s probability of winning is therefore given 

by 1 1( ) ( ( ))i n if b H b b   and therefore 1 1 1'( ) ( ) '( ( ))( ) '( )i n i if b H b b b b   . In 

equilibrium, we have 1( )i ib b w  , 1( ) '( ) 1/ '( )i ib b b w  , and 1( )i n if H w .  

Rearranging (A.1) therefore immediately gives 

1 1 1 1

1 0( ) '( ) [1 (1 2 ( )) ] [ ( )(1 (1 ( )) ) ( )]'n i i n i n i n i iH w w H w H w H w b w        

 (A.2) 

Integrating yields 
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1 1

1

1 1

0

[1 (1 2 ( ))] ( )
( )

( )(1 (1 ( )))

CA
L

w
n n

w

n n

z H z dH z
b w

H w H w





 

 

 


 


 for [ , ]CA

Lw w w  (A.3) 

as the unique candidate for a symmetric monotonic bidding equilibrium. Partial 

integration leads to (7). Strict monotonicity of ( )b w  in [ , ]CA

Lw w w  can easily be 

established by differentiating (A.3). It remains to show the second-order condition for 

the maximization problem for [ , ]CA

Lw w w . Using the envelope theorem and (A.1), 

this is equivalent to 2 1,CA 1,CA( ( ), ) / 0b w w b w      which holds true since 

2 1,CA 1,CA 1,CA 1,CA

1( ( ), ) / '( ( ))[1 (1 2 ( ( ))) ] 0b w w b w f b w f b w         . 

Proof of Proposition 2 

Differentiating 1,CA ( )b w  with respect to 
0  for [ , ]CA

Lw w w  gives 

1,CA 1,CA
1

1

0 0

( ) ( )
(1 ( )) 0

1 (1 ( ))

n

n

b w b w
H w

H w 






   

  
  (A.4) 

while  

1,CA
1 1 1 1

0

1

( )
[ ( )(1 (1 ( )) )] (1 2 ( )) ( )

CA
L

w
n n n n

w

b w
H w H w z H z dH z



   
    

   

 (A.5) 

which immediately implies that 

1,CA

1

( )
0

b w







 for small w , in particular those with 

1( ) 1/ 2nH w  . At w w , however, we obtain (with partial integration) 

1 1 1 1(1 2 ( )) ( ) ( )(1 ( )) 0
CA CA
L L

w w
n n n n

w w
z H z dH z H z H z dz          (A.6) 
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and therefore 

1,CA

1

( )
0

b w







. Combined with 1 1(1 2 ( )) ( ) 0

CA
L

w
n n

w
z H z dH z

w

 
  
   

for 1( ) 1/ 2nH w   this implies the existence of an ˆ0 1w   with 1 ˆ( ) 1/ 2nH w   

such that 

1,CA

1

( )
0

b w







 for ˆw w  and 

1,CA

1

( )
0

b w







 for ˆw w . With (A.5), this 

threshold value is given by 
ˆ

1 1(1 2 ( )) ( ) 0
w

n n

w
z H z dH z   . Note that this implies 

1 ˆ( ) 1/ 2nH w  .  

Proof of Corollary 2. 

Differentiating (9) with respect to 
0 : 

1,IV
1 1 2

0

0

1 1 1

0

1 1 1

0

1 1 1 1

1 1

( )
( )[1 (1 ( ))]

[1 (1 ( ))] ( )(1 ( ))

    (1 ( )) ( )[1 (1 ( ))]

( )(1 ( )) (1 ( )) ( )

( )( ( )

IV
L

IV
L

IV IV
L L

n n

w
n n n

w

w
n n n

w

w w
n n n n

w w

n n

b w
H w H w

H w H z H z dz

H w H z H z dz

H z H z dz H w H z dz

H z H w








 

  

  

   

 


 



   

   

   

 





 
1( ))

0

IV
L

w
n

w
H z dz





 (A.7) 

 

Proof of Proposition 3: 

Bidders with [ , ]j CA

Lw w w  can only obtain non-negative expected utility by having 

zero chances of winning. This is guaranteed when placing a zero bid. For 

[ , ]CA

Lw w w , we differentiate condition (11) with respect to w  ( ( ) ( )i ib b w b w  ): 
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0 1 1

1 1

0 1 1

1 '( )[1 2 ( ) '( ( ))] (1 2 ( ( ))) 2 '( ( )) '( )

'( )[1 ] 2 ( )( ( )) ' (1 ) 2 [ ( )]'n n

b w b w f b w f b w wf b w b w

b w b w H w wH w

  

   

     

    
 

 (A.8) 

Solving the affine linear differential equation (A.8), we obtain  

1

2,CA 1 101 1

0 0

2,CA 1 10

0

21 2 ( ( )) '
( ) exp ( ( ) ( ))

1 1

2
  ( )exp ( ( ) ( ))

1

CA
L

n
w

n n

w

CA n n CA

L L

zH z
b w H w H z dz

b w H w H w

 

 







 

 

  
  

  

 
  

 


 

 (A.9) 

as the unique candidate for a symmetric monotonic bidding equilibrium for 

[ , ]CA

Lw w w . Noting that (11) implies 2,CA

1 0( ) max[0, (1 ) /(1 )]CA

Lb w w     , partial 

integration yields (13). Monotonicity of 2,CA ( )b w  for [ , ]CA

Lw w w  is easily be 

established by differentiating (A.9). It remains to show the second-order condition for 

the maximization problem for [ , ]CA

Lw w w . Using the envelope theorem, this is 

equivalent to 
2

2,CA ( , ) 0i i

i i
b w

b w


 

 
 or – using condition (10) – equivalently 

1'( ) 1 (1 2 ( )) 0i if b f b      which obviously holds true in the relevant range. 

Proof for Proposition 4 

We first rewrite (11) as: 

2,CA 2,CA 1 1

0 0 1(1 ) ( ) 2 ( ) ( ) (1 2 ( ))
CA
L

w
n n

w
w b w b z dH z w H w         

 (A.10) 

At 
0 0  , we immediately obtain 
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2,CA 1

1( ) [1 2 ( )]nb w w w H w         

which implies bids above the valuation for 1( ) 1/ 2nH w   and below value for 

1( ) 1/ 2nH w   when 
0 0  . 

For general 
0 , differentiating (A.10) with respect to 

1  yields  

2,CA 2,CA 1 1

0 0

1 1

(1 ) ( ) 2 ( ) ( ) (1 2 ( ))
CA
L

w
n n

w
b w b z dH z w H w 

 

  
   

     

which immediately proves 2,CA

1

( ) 0b w






 at CA

Lw w  as long as 1( ) 1/ 2n CA

LH w  .  

This also implies 2,CA

1

( ) 0b w






 for all CA

Lw w  with 1( ) 1/ 2nH w  . For 

CA

Lw w , we naturally have 2,CA

1

( ) 0b w






.  

Furthermore, differentiation with respect to 
0  gives 

2,CA 2,CA 2,CA 1 2,CA 1

0 0

0 0

(1 ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
CA CA
L L

w w
n n

w w
b w b w b z dH z b z dH z 

 

  
    

  

 (A.11) 

which proves 2,CA

0

( ) 0b w






 at CA

Lw w .  For CA

Lw w , again 2,CA

0

( ) 0b w






. 

In order to see that money-loss aversion can increase bids for large values, consider 

the derivative at 
0 1 0   : 

2,CA 2,CA 2,CA 1 1

0

( ) ( ) 2 ( ) ( ) 2 ( )
CA CA
L L

w w
n n

w w
b w b w b z dH z w zdH z



 
     

    (A.12) 
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which immediately shows that the sign of the derivative depends on the distribution 

1( )nH   , thereby completing the proof. 

 

Proof of Proposition 7:  

It is sufficient to show that expected payments made by a player with value w  

coincide in both auctions. They are given by 1( ) ( )nH w b w  in the first-price auction, 

and by 2,CA 1( ) ( )
w

n

w
b z dH z

  in the second-price auction. Reconsidering the expected 

utility gains in (5) and (10), we obtain: 

1,CA 1,CA 2,CA 2,CA

1 1 1,CA 2,CA 1

0

2,CA 2,CA 1 1

0

2,CA 1 1

0

1 2,CA

0

( ( ), ) ( ( ), )

[1 (1 ( ))] ( ) ( ) ( ) ( )

[ ( ) ( ')] ( ') ( )

'( ') ( ') ' ( )

( ) '( )

w
n n n

w

w z
n n

w w

w z
n n

w w

n n

b w w b w w

H w H w b w b z dH z

b z b z dH z dH z

b z H z dz dH z

H w b z H









  

 

 

 

  

   
  

 







 

 
1 2,CA 2 2

0( ) '( ) ( )
w w

n

w w
z dz b z H z dz  

 (A.13) 

The probability of winning with a given type w  is 1( )nH w  in both auctions. 

Therefore, the first-order conditions (6) and (11) combined with the envelope theorem 

imply that 

1,CA 1,CA 1 1 1

1

2,CA 2,CA

( ( ), ) ( ( ), ) ( ) ( )(1 ( ))

( ( ), ) ( ( ), )

w w
n n n

w w

w

w

b w w b z z dz H z H z H z dz
z

b z z dz b w w
z

  
     




   



 



 

  (A.14) 

Combining (A.13) and (A.14), we obtain  
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1,CA 1 2,CA 1

2,CA 1 1 1

0 1

0

( ) ( ) ( ) ( )

'( ) ( )[ ( ) ( )]
0

1 (1 ( ))

w
n n

w

w
n n n

w

n

b w H w b z dH z

b z H z H w H z dz

H w




 

  






 

 




  (A.15) 

which proves that first-price auctions revenue-dominate second-price auctions if 

0 0  , while both auction formats lead to the identical expected revenue if 
0 0  .  
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Chapter 4 

Proof for Proposition 1 

Bidders with 1ˆ[0, ]i r   can only obtain non-negative expected utility by having zero 

chances of winning. This is guaranteed when placing a zero bid. For 1ˆ( ,1]i r  , I 

assume that all opponents of bidder i  bid according to a strictly increasing bidding 

strategy ( )iB  . Maximizing (4), bidder i  chooses 
iB  according to 

1 1'( )[(1 ) (1 2 )(1 ) 2 (1 ) ] ( )i i i i i

i i i i i if B v M f k v f k B f B               

 (A.1) 

Here 1 1( ) ( ( ))i n if B H B B   and therefore 1 1 1'( ) ( ) '( ( ))( ) '( )i n i if B H B B B B   . In 

equilibrium, we have 1( )i

iB B   , 1( ) '( ) 1/ '( )i

iB B B   , and 1( )i n

if H  . 

Rearranging (A.1) gives 

1 1

1 1( ) '( )[(1 ) (1 2 )(1 ) 2 (1 ) ] [ ( ) ( )]'n i i n

i i i i i i i i iH v M f k v f k H B                

 (A.2) 

Integrating yields 

1

1 1 1

1 1

ˆ

1

[(1 ) (1 2 ( ))(1 ) 2 ( ) (1 ) ] ( )

( )
( )

i

r

n n n

i PT n

i

x v xM H x x k v H x x x k v dH x

B
H








  



      




 

  (A.3) 

 as the unique candidate for a symmetric monotonic bidding equilibrium.  
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(Monotonicity) The bid function can be written as 
1

1

ˆ

1

[ ( )] ( )

( )
( )

i

r

n

i PT n

i

g x dH x

B
H














 where  

1 1

1 1( ) (1 ) (1 2 ( ))(1 ) 2 ( ) (1 )n ng x x v xM H x x k v H x x x k v         ; thus for 

1ˆ( ,1]i r   

1

1 1 1 1

ˆ

1 2

( )( ) ( ) ( ) ( ) ( ) [ ( )]( ) ( )
( )

0
( ( ))

i

r

n n n n

i i i i

i

n

i i

H H g H g x H x
B

H





   


 

   



  


 



 

Iff 
1

1 1

ˆ

( ) ( ) [ ( )] ( ) 0
i

r

n n

i iH g g x dH x





      i.e. 

1 1 1

1 1 1 1

ˆ ˆ ˆ

( ) ( ) [ ( )( ) ' ( ) '( )( ) ( ) '( )( ) ( )] 0
i i i

r r r

n n n n

i iH g g x H x g x H x dx g x H x dx

  

  

             i.e. 

1 1

1 1 1

ˆ ˆ

( ) ( ) [ ( ) ( )]' '( ) ( ) 0
i i

r r

n n n

i iH g g x H x dx g x H x dx

 

 

        i.e., 
1

1

ˆ

'( ) ( ) 0
i

r

ng x H x dx





   

 1

1 2 1

1 1 1

1 2 1

1

'( ) 2 ( ) ' ( )(1 ) 4 ( )(1 )

2 [1 ( ) ' ( )(1 ) 2 ( )(1 )]

n n

k v

n n

g x M v k H x x v k H x x v k v

k v H x x H x x

 



 

      

    

  

Therefore it suffices to show that 

1 2 1 1[1 ( ) ' ( )(1 ) 2 ( )(1 )] ( ) 0n n nH x x H x x H x dx       . This can be shown to be 

equivalent to 1 1 2 1 21
( )(1 (1 ) ( )) (1 ) ( ( )) 0

2

n n n

i iH x x H x dx H dx        which is 

always true. Thus the bid function is strictly monotonic.  
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(Sufficiency) It remains to show the second-order condition for the maximization 

problem. Using the envelope theorem and (A.1), this is equivalent to 

2 ( ( ), ) / 0i i iB B        . 

2

1 1( ( ), ) / '( )[ (1 2 ) 2 (1 2 ) ]i i i iB B f B M v k f v k f v              i.e.  

1

2 1 1

1

1

1

( ( ), ) / ( ) '( )[ (1 4 ( )(1 ))]

[2(1 2 ( )(1 ))]

n n

i i i i i i

k v

n

i i

B B H M v k v H

k v H

     

 

 





        

  

 

2 11
( ( ), ) / 0 iff   ( )(1 )) ( )

2

n

i i i i i iB B H Z             . For a uniform 

distribution ( )H  , the maximum value * 1 1 1
( )

2
i

n
Z

n n


    
     
    

for 2n  . 

Therefore 2 ( ( ), ) / 0i i iB B        

 

Proof for Proposition 2 

Differentiating A.3 yields 

1 1

1 1 1 1

ˆ ˆ

1 1

1

[ (1 2 ( ))(1 ) 2 ( ) (1 ) ] ( ) [ ( )] ( )
( )

( ) ( )

i i

r r

n n n n

i

n n

i i

H x x v H x x x v dH x g x dH x
B

k H H

 

 

 

   

 

     


 


 

  

; 

 1

1 1 1 1

ˆ

1 1

[ ( )] ( ) (1 2 ( ))(1 ) 2 ( ) (1 ) ( )

(1 2 ( )(1 ))(1 ) ( )

i

r

n n n n

n n

g x dH x H x x v H x x x vdH x

v H x x x dH x





   

 

    

   

 



.  
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 Which can be shown to be equal to 

1 1 1 2 2 1 2[(1 ) ( ) ( ) ( ) (1 ) 2( ) ( )(1 ) 0n n n n

i i iv H H x dx H H x x dx              

Therefore, it follows for any general distribution ( )H 
1

( )
0iB

k





. 

Proof of Proposition 3 

For [0,1]i  , and uniform ( )H   and  2n   bidders derive expected overall utility 

greater than the reservation expected utility by bidding greater than r . Let us assume 

that all opponents of bidder i  bid according to a strictly increasing bidding strategy

( )iB  . Maximizing (5), bidder i  chooses 
iB  according to 

1 1'( )[ (1 )( ) (1 2 ) 2(1 ) (1 ) ( )i i i i i

i i i i if B v B v r f k v f k f B               

 (B.1) 

Here 1 1( ) ( ( ))i n if B H B B   and therefore 1 1 1'( ) ( ) '( ( ))( ) '( )i n i if B H B B B B   . In 

equilibrium, we have 1( )i

iB B   , 1( ) '( ) 1/ '( )i

iB B B   , and 1( )i n

if H  . 

Rearranging (B.1) gives 

1 1 1 1

1 1( ) '( )[ (1 )( ) (1 2 ( )) 2(1 ( )) (1 ) ] [ ( ) ( )]'n n n n

i i i i i i i i iH v v r H k v H k v H B                   

 (B.2) 

Integrating yields 

1

1 1 1

1 1

ˆ

1

[ (1 )( ) (1 2 ( )) 2(1 ( )) (1 ) ] ( )

( )
( )

i

p

n n n

i PT n

i

v x v r H x xk v H x x x k v dH x

B
H








  



       




 

  (B.3) 
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 as the unique candidate for a symmetric monotonic bidding equilibrium.  

(Monotonicity) The bid function can be written as 
1

1

ˆ

1

[ ( )] ( )

( )
( )

i

p

n

i PT n

i

g x dH x

B
H














; as before 

in the proof for proposition 1 
( )

0i

i

B 







 

if '( ) 0g x   .  

Since 1 1

1 1( ) (1 )( ) (1 2 ( )) 2(1 ( )) (1 )n ng x v x v r H x k xv H x x x k v         

1 2 1

1'( ) [1 2( ) ' ( ) 4 (1 ( )))]n ng x v r k v H x x x H x        
. For uniform 2n   and  

uniform ( )H   it follows that '( ) 0g x  . Thus the bid function is strictly monotonic.  

(Sufficiency) It remains to show the second-order condition for the maximization 

problem. Using the envelope theorem and the FOC, this is equivalent to 

2 ( ( ), ) / 0i i iB B       . From the FOC, 

2

1 1( ( ), ) / '( )[ (1 2 ) 2(1 )(1 2 ) ]i i i iB B f B v r f k v f k v                

2

1( ( ), ) / '( )[ (1 4 (1 ))]i i i iB B f B v r k v f           
 

For 2n   and uniform ( )H  , since v r , 2 ( ( ), ) / 0i i iB B        follows.
  

  

Proof for Proposition 4 

Differentiating the bid function in B.3 yields  

1

1 1 1

ˆ

1

1

[ (1 2 ( )) 2(1 ( ))(1 )] ( )

( )

i

p

n n n

n

i

H x H x x xvdH x
B

k H







  



    






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which gets simplified to  

1

1 1

ˆ

1

1

[1 2 2 ( ) ] ( )

( )

i

p

n n

n

i

x H x x xvdH x
B

k H







 



 







 

For uniform ( )H  , and  2n  , 1

1

2(1 ( ))n
x

H x



, i.e. 

1

0
B

k





.  For moderate levels of 

loss-aversion participation in the auction is guaranteed and it can be shown that for a 

uniform distribution ( )H  , 4,n 
1

0
B

k





 ; for 4,n 

1

( )0
B

k


 


thereby the claim at 

certain places that loss-aversion could cause overbidding or underbidding.

 

Proof for Proposition 5 

In auctions with resale, for first-price auctions, the difference  
RN PTB B  is given by 

1

1 1 1

1 1

ˆ

1

[(1 2 ( ))(1 ) 2 ( ) (1 ) ] ( )

( )

i

r

n n n

n

i

H x x k v H x x x k v dH x

H







  



   

 


 

This can be written as 
1

1

ˆ

1

[ ( )] ( )

( )

i

r

n

n

i

g x dH x

H










 


; thus 

1

1 1 1 1

ˆ

1 2

( )( ) ( ) ( ) ( ) ( ) [ ( )]( ) ( )

0
( ( ))

i

r

n n n n

i i i i

n

i i

H H g H g x H x

H





   

 

   



  


 



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Iff 
1 1

0

( ) ( ) [ ( )] ( ) 0
i

n n

i iH g g x dH x



      i.e. 

1 1 1

1 1 1 1

ˆ ˆ ˆ

( ) ( ) [ ( )( ) ' ( ) '( )( ) ( ) '( )( ) ( ) ] 0
i i i

r r r

n n n n

i iH g g x H x g x H x dx g x H x dx

  

  

             i.e. 

1 1

1 1 1

ˆ ˆ

( ) ( ) [ ( ) ( )]' '( ) ( ) 0
i i

r r

n n n

i iH g g x H x g x H x dx

 

 

        i.e., 
1

1

ˆ

'( ) ( ) 0
i

r

ng x H x





 

.Since 1 1

1 1( ) (1 2 ( ))(1 ) 2 ( ) (1 )n ng x H x x k v H x x x k v      .  

1

1 1 1 2 1

1

ˆ

'( ) ( ) [(1 4 ( )(1 )) 2( ) '( )(1 ) ] ( ) 0
i

r

n n n ng x H x k v H x x H x x H x dx





            

i.f.f. 

1
1 2 1 2 1 1 2

1

( )
2 [ ( ( )) (1 )) ( ( )) (1 )) ( ) '( ) ( )(1 ) ] 0

2

n
n n n nH x

k v H x x H x x H x H x x dx


          
 

i.f.f. 
1

1 2 1 2

0

( ) 1
[ ( ( )) (1 ))] ( )(1 ) 0

2 2

n
n n

i i

H x
H x x dx H  


 



     . For a uniform 

distribution ( )H  , 1 11
( )[ ( ( ))(1 ))] 0

2

n nH x H x x dx    since 11
( ( ))(1 ))

2

nH x x 

for all 0x  , as shown in the proof for the monotonicity of the bid function in 

proposition 1. Therefore 0
i





. 

Proof for Proposition 6 

In auctions with outside procurement, in a first-price auction with sufficiently small 

number of bidders, the difference in bid functions is  
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1

1 1 1

1 1

ˆ

1

[ (1 2 ( )) 2(1 ( )) (1 ) ] ( )

( )

i

p

n n n

PT RN n

i

H x xk v H x x x k v dH x

B B
H







  



    

   



 

Applying L Hospitals’ rule   

1 1

1 1
0

lim (1 2 ( )) 2(1 ( )) (1 ) ] 0
i

n n

i i i i iH k v H k v


     


      

 

As 11, ( ) 1/ 2n

i iH   , 

1 1 1

1 1

0

1

[ (1 2 ( )) 2(1 ( )) (1 ) ] ( )

0
( )

i

n n n

n

i

H x xk v H x x x k v dH x

H





  



    

  


 . 
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A.2 Figures 

Figure 2: General PT Bid and Probability Function; CRS(1982); n=4 (Inexperienced 

and experienced bidders) 

 

Notes: (1) The right column is a plot of the probability weighting function with and 

without loss aversion. 
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Figure 3: General PT Bid and Probability Function; CRS(1982); n=5 (Inexperienced 

and experienced bidders) 

 

Notes: (1) The right column is a plot of the probability weighting function with and 

without loss aversion. 
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Figure 4: General PT Bid and Probability Function; CRS(1982); n=6 (Inexperienced 

bidders) 

 

Notes: (1) The right column is a plot of the probability weighting function with and 

without loss aversion. 
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Figure 5: General PT Bid and Probability Function; CRS(1982); n=9 (Inexperienced 

bidders) 

 

Notes: (1) The right column is a plot of the probability weighting function with and 

without loss aversion. 
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Figure 6: General PT Bid and Probability Function; Harrison(1989); n=4  

(Inexperienced and experienced bidders); against Human and Risk-neutral Nash 

rivals 

 

Notes: (1) The right column is a plot of the probability weighting function with and 

without loss aversion. 
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Figure 9: First-Price Auction with outside Procurement 

Uniform distribution over procurement price r  

1, 0.1, 2v r n    
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A.3 Tables  

 

Table 1: Auctions in Cox, Roberson and Smith (1982) 

 n=4 (No. of Auctions) n=5 (No. of Auctions) n=6 (No. of Auctions) n=9 (No. of Auctions) 

Inexperienced 

Bidders 

fdf8 (20) 

dfd8 (10) 

fdf9 (20) 

dfd9 (10) 

fdf2(20) , fdf4 (20) 

dfd2 (10), dfd2 (10) 

fdf5 (20) 

dfd5 (10) 

Experienced 

Bidders 

fdf8x (20) 

dfd8x (10) 
fdf9x (20) 

dfd9x (10)   

(1) “n” denotes the number of bidders in a first-price auction 
 

Table 2: Descriptive Statistics for Auctions in Cox, Roberson and Smith (1982) 
Observations No. of Bidders 

(Experience) 
 Highest 

Value 
Value Bid No of 

Overbids (%) 
Average 

Overbid 

(%) 

Average 

Underbid 

(%) 

Average 

Deviation 

(%) 

120 
4 

(Inexperienced) 
Mean 
(Std) 

8.1 

(-) 

4.0 

(2.3) 

3.4 

(2.1) 

77.5 

(-) 

16.3 

(-) 

34.2 

(-) 

20.0 

(-) 

120 
4 

(Experienced) 
Mean 
(Std) 

8.1 

(-) 

4.5 

(2.3) 

3.8 

(2.0) 

82.5 

(-) 

15.5 

(-) 

20.9 

(-) 

16.3 

(-) 

150 
5 

(Inexperienced) 
Mean 

(Std) 

12.1 

(-) 

6.5 

(3.4) 

5.8 

(3.1) 

86.7 

(-) 

14.2 

(-) 

17.6 

(-) 

14.6 

(-) 

150 
5 

(Experienced) 
Mean 
(Std) 

12.1 

(-) 

5.6 

(3.5) 

5.1 

(3.2) 

80.0 

(-) 

13.8 

(-) 

20.5 

(-) 

15.1 

(-) 

180 
6-seriesA 

(Inexperienced) 
Mean 
(Std) 

16.9 

(-) 

8.6 

(4.9) 

7.7 

(4.5) 

78.3 

(-) 

12.2 

(-) 

22.9 

(-) 

14.3 

(-) 

180 
6-series B 

(Inexperienced) 
Mean 
(Std) 

16.9 

(-) 

8.8 

(5.0) 

7.6 

(4.5) 

66.7 

(-) 

9.5 

(-) 

21.0 

(-) 

13.1 

(-) 

270 
9 

(Inexperienced) 
Mean 

(Std) 

36.1 

(-) 

19.2 

(10.0) 

17.9 

(10.0) 

77.4 

(-) 

7.4 

(-) 

26.8 

(-) 

11.8 

(-) 

Note: (i) Overbid % defined with respect to RNNE i.e. no. of bids above the RNNE (ii) Overbid is 100*(bid-RNNE)/RNNE for each bid above 

RNNE (iii) Underbid is 100*(RNNE-bid)/RNNE for each bid below RNNE (iv) Deviation is 100*|(bid-RNNE)|/RNNE  
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Table 3: First-Price Auctions in Harrison (1989) 

Common Design Features: 4N  , $0.01v   or 1 Point, $10.00v   or 1000 Points, 20 Periods 

Experiment 

Level of 

Experience 

Payoff in Dollars 

or Lottery Points 

Simulated Nash 

Opponent? 

Number of 

Replications per 

period? 

Total Number of 

Human Bids? 

1 Inexperienced Dollars No 4 320 

1P Inexperienced Points No 4 320 

2 Experienced Dollars No 5 400 

2P Experienced Points No 4 320 

3 Experienced Dollars Yes 14 280 

3P Experienced Points Yes 16 320 

 

 

Table 4: Descriptive Statistics for Auctions in Harrison (1989) 
Observations No. of Bidders 

(Experience) 

Rivals 

 Highest 

Value 

Value Bid No. of 

Overbids 

(%) 

Average 

Overbid 

(%) 

Average 

Underbid 

(%) 

Average 

Deviation 

(%) 

320 

4 

(Inexperienced) 

Human 

Mean 

(Std) 

10 

(-) 

5.09 

(2.64) 

4.56 

(2.40) 

91 

(-) 

23 

(-) 

26 

(-) 

24 

(-) 

400 

4 

(Experienced) 

Human 

Mean 

(Std) 

10 

(-) 

5.09 

(2.64) 

4.42 

(2.31) 

89 

(-) 

21 

(-) 

25 

(-) 

21 

(-) 

280 

4 

(Experienced) 

Nash  

Mean 

(Std) 

10 

(-) 

4.65 

(2.26) 

3.85 

(1.98) 

81 

(-) 

18 

(-) 

27 

(-) 

19 

(-) 

Note: (i) Overbid % defined with respect to RNNE i.e. no. of bids above the RNNE (ii) Overbid is 100*(bid-RNNE)/RNNE for each bid above 

RNNE (iii) Underbid is 100*(RNNE-bid)/RNNE for each bid below RNNE (iv) Deviation is 100*|(bid-RNNE)|/RNNE  
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Table 5: Prospect Theory Models of Bidding 
Cox, Roberson and Smith(1982) 

No. of Bidders 

(Experience) 

(Rivals) 

No. of Observations 

(PeriodsBidders-

outliers) 

Model ˆ( . .)S E  ˆ ( . .)lk S E  
Residual Sum 

of Squares 

(SSE) 

4 

(Inexperienced) 

Human 

115 General 

PW 

RD 

RNN 

1.17(0.78) 

2.13(0.76)** 

- 

- 

0.98(0.16)** 

- 

0.99(0.06)** 

- 

12.28 

13.26 

12.85 

46.15 

4 

(Experienced) 

Human 

118 General 

PW 

RD 

RNN 

1.02(0.48)* 

1.96(0.59)** 

- 

- 

0.99(0.11)** 

- 

0.99(0.07)** 

- 

12.43 

12.81 

12.44 

46.59 

5 

(Inexperienced) 

Human 

146 General 

PW 

RD 

RNN 

1.17(0.50)** 

2.26(0.74)* 

- 

- 

1.00(0.02)** 

- 

1.00(0.004)** 

- 

26.62 

27.22 

28.10 

107.21 

5 

(Experienced) 

Human 

146 General 

PW 

RD 

RNN 

1.20(0.52)** 

2.31(0.82)** 

- 

- 

1.00(0.01)** 

- 

1.00(0.003)** 

- 

24.40 

25.50 

26.09 

94.64 

6-series A 

(Inexperienced) 

Human 

175 General 

PW 

RD 

RNN 

0.92(0.48) 

1.89(0.83)** 

- 

- 

1.00(0.003)** 

- 

1.00(0.002)** 

- 

142.55 

142.76 

143.63 

223.84 

6-series B 

(Inexperienced) 

Human 

174 General 

PW 

RD 

RNN 

0.70(0.28)** 

1.37(0.47)** 

- 

- 

1.00(0.02)** 

- 

0.85(0.35)** 

- 

130.24 

131.08 

139.64 

159.91 

9 

(Inexperienced) 

Human 

248 General 

PW 

RD 

RNN 

1.28(0.45)** 

2.28(0.66)** 

- 

- 

1.00(0.001)** 

- 

1.00(0.001)** 

- 

196.03 

203.31 

204.55 

644.96 

 

4 

(Inexperienced) 

Human 

306# General 

PW 

RD 

RNN 

1.51(1.00) 

3.03(1.61) 

- 

- 

1.00(0.01)** 

- 

1.00(0.01)** 

- 

67.10 

67.27 

85.32 

293.89 

4 

(Experienced) 

Human 

371# General 

PW 

RD 

RNN 

1.16(0.09)** 

2.32(0.90)** 

- 

- 

1.00(0.01)** 

- 

1.01(0.03)** 

- 

65.81 

66.00 

68.31 

253.01 

4 

(Experienced) 

Nash 

268~ General 

PW 

RD 

RNN 

1.02(1.61) 

1.70(0.95) 

- 

- 

0.91(0.89) 

- 

0.91(0.37)* 

- 

156.89 

162.98 

156.91 

248.01 

Notes: (1) The General model is based on Proposition 1;allows Nonlinear Probability Weighting and Loss-aversion (2) The PW model allows for 

Nonlinear Probability Weighting (no Loss-aversion)  (3) The LA model allows loss-aversion defined in assumption B (linear Probability 

Weighting) only (4) The RNNE model is based on linear probability weighting where 1   and no loss-aversion (5) Asymptotic Standard 

Errors in brackets (6) SSE: Sum of squared errors based on the difference between actual and predicted bid (7) The estimates are based on search 

algorithms developed using MATLAB for the data described in Cox, Roberson and Smith (1982) (8)#Overbids beyond Private Values removed; 

~Overbids beyond (3/4)*1000=Highest possible RNN bid removed (9) ** denotes significance at 1% level and * denotes significance at 5% level 
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Table 6: Hypothesis Tests 

Cox, Roberson and Smith(1982) 

No. of bidders 

(Observations) 

Experience Levels 

(Bidders) 

Test Estimated Log- likelihood 

ratio 

p-value 

4 

(240) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin   

exp exp exp exp|in in

l lk k    

0.2073 

 

2.0052 

 

1.9244 

0.9015 

 

0.1568 

 

0.1654 

5 

(300) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin   

exp exp exp exp|in in

l lk k    

1.6639 

 

0.1457 

 

0.0328 

0.4352 

 

0.7026 

 

0.8542 

Harrison (1989) 

4 

(708) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin   

exp exp exp exp|in in

l lk k    

0.0465 

 

16.2169** 

 

14.5204** 

0.9770 

 

0.0010 

 

0.0010 

4 

(584) 

Inexperienced against 

Human bidders 

and 

Experienced 

against Nash bidders 

exp expin

l lk k  

exp expin   

15.9527** 

 

30.7884** 

 

0.0030 

 

0.0000 

4 

(660) 

Experienced against 

exp expin

l lk k  

exp expin   

 

23.1346** 

 

9.2458** 

0.0000 

 

0.0024 
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Human bidders 

and 

Experienced 

against  Nash bidders 

 

Note: (1) ** denotes significance at 1% level. 
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