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When Item Response Theory (IRT) is operationally applied for large scale 

assessments, unidimensionality is typically assumed.  This assumption requires that 

the test measures a single latent trait.  Furthermore, when tests are vertically scaled 

using IRT, the assumption of unidimensionality would require that the battery of tests 

across grades measures the same trait, just at different levels of difficulty.   Many 

researchers have shown that this assumption may not hold for certain test batteries 

and, therefore, the results from applying a unidimensional model to multidimensional 

data may be called into question. This research investigated the impact on 

classification accuracy when multidimensional vertical scaling data are estimated 

with a unidimensional model.  The multidimensional compensatory two-parameter 

logistic model (MC2PL) was the data-generating model for two levels of a test 

administered to simulees of correspondingly different abilities.  Simulated data from 



  

the MC2PL model was estimated according to a unidimensional two-parameter 

logistic (2PL) model and classification decisions were made from a simulated 

bookmark standard setting procedure based on the unidimensional estimation results.  

Those unidimensional classification decisions were compared to the “true” 

unidimensional classification (proficient or not proficient) of simulees in 

multidimensional space obtained by projecting a simulee’s generating two-

dimensional theta vector onto a unidimensional scale via a number correct 

transformation on the entire test battery (i.e. across both grades).  Specifically, 

conditional classification accuracy measures were considered.  That is, the proportion 

of truly not proficient simulees classified correctly and the proportion of truly 

proficient simulees classified correctly were the criterion variables. Manipulated 

factors in this simulation study included the confound of item difficulty with 

dimensionality, the difference in mean abilities on both dimensions of the simulees 

taking each test in the battery, the choice of common items used to link the exams, 

and the correlation of the two abilities.  Results suggested that the correlation of the 

two abilities and the confound of item difficulty with dimensionality both had an 

effect on the conditional classification accuracy measures.  There was little or no 

evidence that the choice of common items or the differences in mean abilities of the 

simulees taking each test had an effect.   
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Chapter 1: Rationale 

 

The ability to measure student growth over time has become increasingly 

important especially in the context of the No Child Left Behind Act of 2001 (NCLB).  

Thus students’ test scores need to be placed on a common scale in order for grade to 

grade growth to be measured and compared even if students take different tests.  The 

process for doing this is called vertical scaling (Harris, 2007; Kolen & Brennan, 2004).   

One technique used to create a vertical scale, as summarized in Skaggs and Lissitz 

(1986), is Item Response Theory (IRT).   

When IRT is operationally applied for large scale assessments, unidimensionality 

is typically assumed.  This assumption requires that the test measures a single latent trait.  

Furthermore, when tests are vertically scaled using IRT, the assumption of 

unidimensionality would require that the battery of tests across grades measures the same 

trait, just at different levels of difficulty.   This assumption of unidimensionality in 

vertical scaling can be unrealistic and problematic in two very distinct ways.   

First, assuming the vertically scaled tests are measuring the same trait may be 

unrealistic if content areas covered on the tests are somewhat different across grades.  For 

example, one might expect that a 10th grade mathematics test with more emphasis on 

geometry measures something different than an 11th grade mathematics test with more 

emphasis on algebra even though both are called “mathematics,” or that a 4th grade 

science test with more emphasis on earth science measures something different than a 5th 

grade science test with more emphasis on simple machines.  While there potentially may 

be reasoning questions across the pairs of tests mentioned above that assess the same 
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trait, those tests, on the whole, may measure different and/or multiple traits and a 

unidimensional IRT framework would be inappropriate.  From an aptitude testing 

perspective, however, it is possible to conceptualize that the same trait could be measured 

across grades, but just at different levels of reasoning.  That is, there could be general 

mathematical reasoning tests designed for, say, third and fourth graders.  Also, other 

academic subjects, even in an achievement testing context, might lend themselves to a 

more static dimensionality structure.  For example, English language usage or reading 

tests may have the same dimensionality across grades or at least for consecutive grades 

(Loyd & Hoover, 1980; Skaggs & Lissitz, 1988).  The skill sets required for English 

language usage may be relatively more static compared to, say, mathematics or science 

tests.  Reckase (2004) briefly acknowledged this distinction when he noted that vertically 

scaled reading tests are more likely unidimensional compared to science tests.   

Secondly, within a given test, the items may measure different dimensions 

(Briggs & Wilson, 2003).  For example, on an English language usage test, some items 

may measure listening skills while others may measure writing skills.  These skills are 

most likely indicators of different, but related, traits.  Additionally, items on a given test 

may assess multiple traits simultaneously (whether intentionally or unintentionally) to 

varying different degrees (Reckase, 1985; Walker & Beretvas, 2003).  Thus, a 

unidimensional IRT model would be inappropriate.  Consequently, many researchers 

acknowledge that the assumption of unidimensionality is often violated on tests (see, for 

example, Ackerman 1994; Camilli, Wang, & Fresq, 1995; Reckase, 1997).   

Given the potential problems with the unidimensionality assumption in vertical 

scaling, addressing the multidimensionality of vertical scaling data has become a topic of 
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great interest to many researchers (see, for example, Patz & Yao, 2007; Yon, 2006).  

Tong and Kolen (2007) suggested and encouraged more research on the topic.  When 

attempting to create a vertical scale (even in a unidimensional framework) there are many 

factors which must be considered.  These factors include, but are not limited to, choosing 

a data collection design, selecting a measurement model, and choosing a calibration 

method (Harris, 2007).  Moreover, if a multidimensional model is considered, the nature 

of the dimensionality structure must also be addressed (Wang, 1994; Yon, 2006).   

While many researchers and practitioners acknowledge the multidimensional 

nature of data, a unidimensional model is often used for policy and /or practical reasons.  

Thus, it is important to further investigate the consequences of using a unidimensional 

IRT model for vertical scaling calibration when the data are more appropriately modeled 

according to a multidimensional model.   Specifically, this research considered the 

misclassification consequences when multidimensional vertical scaling data were 

estimated according to a unidimensional model.  There is no clear answer to the 

appropriate methodology for vertical scaling (Harris, 2007; Kolen & Brennan, 2004) and 

this research only attempted to address and explore a subset of the factors and issues 

mentioned above. 

Chapter 2: Purpose 
 

This research investigated the impact of unidimensional calibration on the 

classification accuracy of multidimensional vertical scaling data.  The multidimensional 

compensatory two-parameter logistic model (MC2PL, Reckase, 1985) was the data-

generating model for two levels of a test administered to simulees of correspondingly 
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different abilities.  Simulated data from the MC2PL model were calibrated according to a 

unidimensional two-parameter logistic (2PL) model (Birnbaum, 1968) and classification 

decisions were made from a simulated bookmark standard setting procedure based on the 

unidimensional calibration results.  Those unidimensional classification decisions were 

compared to the “true” unidimensional classification of simulees in multidimensional 

space obtained by projecting a simulee’s generating two-dimensional theta vector onto a 

unidimensional scale via a number correct transformation for performance on the entire 

test battery (i.e. across both grades).  

Assessing classification accuracy in the context of model misspecification is the 

biggest practical application of this research because there can be high stakes decisions 

made based on vertical scaling results.  Because unidimensional models are often applied 

to multidimensional data in real-world vertical scaling applications, the classification 

consequences of model misspecification and linking item choices are of extreme 

importance.  

The major manipulated factors in the simulation study were: 

• The correlation of the two latent dimensions  

• Whether or not dimensionality and difficulty are confounded (e.g., easier 

items load on dimension one and harder items load on dimension two)  

• Choice of linking items (even distribution of items from both lower and 

upper grades tests, only lower grade test items) 

• Difference in mean abilities for the two levels (grades) of simulees  

The components of the study that were fixed: 

• Concurrent calibration/internal common item linking design 
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• MML estimation in BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 

1996)   

• Multidimensional compensatory two-parameter logistic model for data 

generation (MC2PL)  

• Unidimensional two-parameter logistic (2PL) estimated model 

• Test Length (60 total items per grade, 40 unique, 20 common) 

• Grade level test design (relationship of items to the two dimensions) 

• Total number of common items 

• Sample Size (2000 simulees per grade) 

• Variance on dimensions remained equal and constant across grades 
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Chapter 3: Background 

 

No Child Left Behind 

The No Child Left Behind Act of 2001 is federal legislation that requires, in part, 

schools and school districts to meet certain minimum levels of proficiency for adequate 

yearly progress (AYP).  AYP includes reaching specified minimum levels for annual 

measurable objectives (AMOs) in language arts and mathematics, participation, and the 

“other academic indicator.”  AMOs refers to the percentage of students classified as (at 

least) proficient on the state’s assessments for language arts and mathematics.  Note that 

it is the state, not the federal government, that designs the language arts and mathematics 

tests and sets the standards for proficient.  Thus, the standard-setting for these exams is a 

critical component in the context of this legislation.    

Item response theory 

Item response theory includes a class of item response models that describe the 

relationships of test performance and the unobservable traits or abilities that underlie that 

performance.  Specifically, the models express the probability of a particular response to 

an item as function of examinee and item parameters which are calibrated onto an 

unobservable latent trait (ability) continuum.  There are item response models for items 

that are dichotomously and/or polytomously scored as well as for single or multiple traits 

(dimensions). This research focused on dichotomous item responses modeled according 

to a multidimensional IRT model, but estimated according to a unidimensional IRT 

model. 



 

 7 
 

 IRT is governed by three major assumptions.  The first is that the dimensionality 

of the response function is properly specified.  That is, the appropriate number of 

dimensions is expressed in the item response model.  The second is local independence 

which means that responses by examinee n to item set I are independent, conditional on 

the ability parameter(s) for examinee n.  The last is examinee response independence 

which requires that responses by examinees are independent from each other (Hambleton 

& Swaminathan, 1985).  Further discussion of these assumptions (especially in the 

context multidimensional item response theory) can be found in Embretson and Reise 

(2000) and Reckase (2009).   This research focused on the violation of the first 

assumption regarding dimensionality.   

Two parameter logistic model 

The unidimensional item response model for dichotomous responses considered 

in this study is the 2 parameter logistic (2PL) model (Birnbaum, 1968).  The 

parameterization for this model is as follows: 

 P(xij = 1|θj, ai, bi) = 
))(exp(1

))(exp(

iji

iji

ba

ba

−+

−

θ

θ
,                                             (1)                      

where θj is the ability parameter for person j, ai is the discrimination for item i, and bi is 

the difficulty parameter for item i.  When this model is estimated in the context of 

vertical scaling and it is known that different subpopulations are responding to the items, 

it is necessary to define and control for separate ability distributions in the estimation 

(Camilli, Yamamoto, & Wang, 1993; Bock & Zimowski, 1997).  BILOG-MG 

(Zimowski, Muraki, Mislevy, & Bock, 1996) is capable of this type of estimation and 

was used in this study.    
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Multidimensional compensatory two parameter logistic model 

The multidimensional item response model for dichotomous responses considered 

in this study was the m-dimensional compensatory 2 parameter logistic (MC2PL) 

proposed by Reckase (1985); it is the multidimensional extension of (1).  In this model, 

each item is allowed to discriminate on all dimensions to varying degrees and a person’s 

ability on one dimension can compensate for a deficiency on the other (specifically, in 

this study two dimensions were considered).  Note that in a noncompensatory model, a 

person’s ability on one dimension cannot compensate for a deficiency on the other.  The 

parameterization for the MC2PL model is as follows (Ackerman, Gierl, & Walker, 2003):   

     P(xij = 1|θj, ai, di) = 
)exp(1

)exp(

1

1

ijkik

m

k

ijkik

m

k

da

da

++

+

∑

∑

=

=

θ

θ

,                                      (2) 

where θj is the vector of m ability parameters for person j, ai is the vector of 

discrimination parameters for item i, xij is the response of person j to item i., and di is the 

parameter related to difficulty.  Note, however, the sign on di is positive while in the 

traditional IRT framework, it is negative.  It can also be understood as follows (in the 

equation below) where bik is interpreted as a unidimensional IRT difficulty parameter, 

like in the 2PL model.  Note, however, that for identification reasons, these b parameters 

are usually not estimated: 

  ∑
=

−=
m

k
ikiki bad

1

.                                                                         (3) 

Each multidimensional item can be described by three summary characteristics: 

discrimination, difficulty, and location.  Discrimination is a function of the individual 
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discrimination parameters (ai), and represents the maximum amount of discrimination.  It 

is referred to as MDSIC and is expressed as follows in the two dimensional case: 

  MDISCi = 2
2

2
1 ii aa + .                                                                   (4) 

Difficulty represents the distance from the origin of the two dimensional axes to the line 

representing the composite of abilities required to have a 50% probability of answering 

the item correctly.  The sign of this value indicates relative difficulty where negative 

values are relatively easy and positive values relatively hard.  It is referred to as D and is 

expressed as follows: 

  
MDISC

d
D i−
= .                                                                                 (5)    

Location corresponds to the direction of each item relative to the positive θ1 axis.  Items 

with a small angle primarily measure θ1 and those with a larger angle primarily measure 

θ2.  It is referred to as α and expressed as follows: 

  
i

i
i MDISC

a 1arccos=αααα .                                                                     (6)      

 

Vertical scaling 

“Vertical scaling refers to the process of linking different levels of an assessment, 

which measures the same trait, onto a common scale (Harris, 2007, p. 233).”  Thus, 

vertical scaling provides a method for measuring growth across grades which is necessary 

in the current educational climate where emphasis is placed on student growth through 

adequate yearly progress measures mandated by the NCLB legislation (Harris, 2007).  

Note that Kolen and Brennan (2004, p. 372) indicate that tests in a vertical scale are 
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intended to measure similar constructs which is slightly in contrast to Harris’ notion of 

tests in a vertical scale measuring the same trait.  While NCLB does not require vertical 

scales, they can be utilized not only to measure adequate yearly progress, but also for 

evaluation and accountability purposes in school systems.  Currently only a few states 

have a vertical scale for their NCLB assessments (Florida and Michigan, for example) 

and this is perhaps due to the difficulty of developing curricula that in fact measure a 

single trait over grades; as states revise curricula, this may change.  Curricula for English 

language learners, however, tend to be more consistent with a single trait measured over 

time (Yen, 2007). 

 In constructing a vertical scale many decisions need to be made and there is no 

one standard procedure.  These decisions include, but are not limited to, determining the 

data collection design, measurement model, and calibration method (Harris, 2007).  

Unidimensional IRT is an increasingly popular class of measurement models used for 

vertical scaling (other methods include, Thurstone and Hieronymus scaling) and was the 

focus in this research.  

The data collection designs for vertically scaled tests include the common item 

design, equivalent groups design, and the scaling test design (Kolen & Brennan, 2004).  

The easiest and most straightforward of these to implement is the common item design 

(Kolen & Brennan, 2004) and thus was the focus of this research.  The common item 

design simply requires that every pair of adjacent tests include a common block of items; 

a chaining processing using these common item blocks is used to create the single 

vertical scale.  Determining how many items to include on the common item blocks, 

however, is not necessarily straightforward.  This will especially be the case when 
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common items are indicators of different dimensions.  There are, however, some 

recommendations for creating these common item blocks. 

Kolen and Brennan (2004) suggested that at least 20% of a test with at least forty 

items be common items in a horizontal equating context and Young (2005) suggested that 

rule can be adapted for vertical scaling by increasing the number to help account for the 

differences in difficulty and content across grades in a vertical scaling context (McBride 

& Wise, 2000).  For this research 33% of a test was common across the two grades; 

however, the dimensionality of the items varied.  Ideally, the dimensionality of the items 

should match the dimensionality of the overall test and that condition was considered; 

that is, where common items function like a “mini-test.”  However, some school districts 

might not have enough items to have a common item “mini-test” or might not put very 

much thought into their choice of common items, so the situation where common items 

are not necessarily reflective of the entire test battery was also considered in this 

investigation.   

When using the common item data collection design, there are two item 

calibration methods available: separate and concurrent.  Separate calibration involves 

calibrating each grade individually and using the common item parameter estimates and a 

scale transformation method (Mean-Mean or Stocking-Lord, for example) to establish the 

vertical scale.  The concurrent calibration method involves calibrating all items across all 

grades simultaneously and imposing a multi-group IRT model to account for the multiple 

grades; items not administered to certain simulees are simply treated as not reached. 

  In a unidimensional IRT framework, research suggests that separate calibration 

produces more accurate results relative to concurrent calibration when the measurement 
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model is misspecified.  However, concurrent calibration is superior when the model is 

correctly specified largely because there would be one set of parameter estimates (based 

on larger sample) for the common items (Patz & Hanson, 2002; Patz & Yao, 2007).   

Concurrent calibration rather than separate calibration was considered in this 

study to reflect applications where the estimated unidimensional model is assumed to be 

approximately correct and there is reasonable justification for its use in both applied and 

research contexts.   

McCall (2007) presented an overview of vertical scaling entitled “Vertical Scales 

and the Development of Skills.”  Her presentation included a summary of methods used 

to create and maintain vertical scales.  She specifically noted CTB as a company that uses 

concurrent calibration for vertical scaling. 

 CTB (2005) developed the Wisconsin Knowledge and Concepts Examination-

Criterion Referenced Tests (WKCE-CRT).  This test was vertically scaled and CTB 

evaluated 4 methods to determine the appropriate calibration methodology.  These 

methods spanned a fully concurrent calibration to fully separate calibrations across all 

grades.  They ultimately decided on a compromise solution where both concurrent and 

separate calibrations were used.  Specifically, they conducted a concurrent calibration for 

grades 5-7, another concurrent calibration for grades 3-4, and yet another concurrent 

calibration for grades 8-10.  Then the results from the grades 3-4 and 8-10 calibrations 

were placed on the grades 5-7 scale.  Thus, this example shows the use of concurrent with 

adjacent grades in an operational setting. 

Lastly, in simulation research addressing the usefulness of multidimensional IRT 

models relative to unidimensional IRT models to estimate achievement gain in a vertical 
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scaling context, Reckase and Li (2007) used concurrent calibration to develop all of their 

vertical scales.  The motivating research hypothesis for this study was that 

multidimensional models would be more able to capture achievement gain when math 

content specifications change over time and the tests may become multidimensional in 

nature.  Note that their research included both of the models considered in this study, the 

MC2PL and the unidimensional 2PL model. 

Vertical scaling also typically requires some assumption on grade-to-grade 

variability.  For this research variance on each dimension was assumed equal and 

constant across dimensions and grades (i.e., the same on all dimensions for all grades) 

and there is justification for this assumption.  Harris (2007) noted there are many 

inconsistencies in the literature regarding grade-to-grade variability.  On page 234, she 

specifically cites Bock (1983) as an example where “grade-to-grade variability…..was 

shown to remain stable across grade levels.”  In Bock’s (1983) work, he scaled a cross 

sectional sample of scores for the Stanford-Binet test.  He showed that by not 

constraining the dispersions of abilities a very plausible mental growth curve emerges.  

He also noted that the within-age standard deviations of the developmental age scores 

were homogenous. 

Further, research by Linn (1989) and Williams, Pommerich, and Thissen (1998) 

shows that, in a vertical scaling context, standard deviations do not necessarily 

systematically increase or decrease across grades.  Specifically, Linn observes on the 

NAEP reading scales a “small” decrease in variability for grades 3-7 and a “slight” 

increase for grades 7-11.  Williams, Pommerich and Thissen found no evidence that the 

variability of performance on vertically scaled math achievement tests in North Carolina 
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“consistently increased or decreased across grades with IRT scaling techniques.”  While 

it wasn’t the main focus of their 1998 work, Williams et al. also noted that the standard 

deviations on North Carolina reading achievement tests also “showed no systematically 

increasing on decreasing trends.” 

Standard setting 

The criteria for placing examinees into performance categories based on their test 

scores are the results of a standard-setting procedure.  Typically performance standards 

are established based on either the test items or the examinees taking the test.  This 

research focused on the former which are commonly called “test-centered” approaches to 

standard setting.  Specifically, the Bookmark Procedure (Lewis, Mitzel, & Green, 1996) 

was considered.  

The Bookmark procedure as described by Lewis, Mitzel, and Green (1996) is an 

IRT based approach where items on a fixed form test are ordered by location on the latent 

continuum (as determined by their item parameter estimates) into a test booklet.  

Standard setting panelists are required to place a “bookmark” between the most difficult 

item a minimally proficient examinee (as defined by established performance level 

descriptors) would be expected to answer correctly and the easiest item a minimally 

proficient would be expected to answer incorrectly.  Panelists are typically instructed to 

use a .67 probability of success rate.  As with most standard setting procedures, this 

procedure is iterative and allows for revision and discussion; impact data can also be 

presented and result in cutscore adjustments (Lewis et al., 1996).  Zieky (2001) highlights 

that the booklet with IRT calibrated items is an effective way of presenting normative 

data to the panelists and may be useful in their decision making process.  Since a cutscore 
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decision is based, essentially, on a group of items after considering the entire item 

booklet, Lewis et al. (1996) note that the resulting cutscore is based on a “comprehensive 

understanding of test content.”  Note also that the Bookmark Procedure can 

accommodate polytomous and constructed response items by placing the various 

response categories to a given item at its appropriate location in the item booklet.  Since 

item difficulties are on the same scale as person ability, the location of the bookmark can 

be easily translated to a cutscore on the score reporting scale using test characteristic 

curve methods (Lewis et al., 1996).    A simulated version of this procedure was 

implemented for this research study and is described in the Methodology section. 

Classification accuracy 

Betebenner, Shang, Xiang, Zhao, and Yue (2008) noted that while there is 

inconsistency on terminology and notation in the classification accuracy measures 

literature, there are two main approaches.  The first approach at determining classification 

accuracy considers the probability of correct classification across all performance levels 

and is defined in Betebenner et al. (2008) as follows: 

    ∑
=

==
k

i

iAiA
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),*Pr( ,                                              (7) 

where k represents the number of performance categories, A represents the true 

performance classification, and A* represents the observed performance classification.  

The probability values in (5) are based on the joint distribution of observed and true 

classifications which can be expressed as:  

),*Pr( jAiA ==  over 1≤i, j≤k                                                     (8) 
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False-positive and false-negative rates can also be calculated; in the two category 

case, the false positive rate is simply the proportion of individuals in the sample classified 

as proficient who truly are not proficient and the false-negative rate is simply the 

proportion of individuals in the sample classified as not proficient who truly are 

proficient. 

 The second approach considers not the joint probabilities of observed and true 

classification, but rather the conditional classification probabilities (Betebenner et al, 

2008).  A misclassification matrix, P (Clauser, Margolis, & Case, 2006), can be created 

that includes (conditional) false- positive and false negative rates as well as (conditional) 

correct classification rates.   Following from Betebenner et al. (2008) P can be expressed 

as follows:  

    P = {pij} 1≤i, j≤k where pij = Pr(A* = j | A= i).             (9) 

If we consider the circumstance where there are two performance levels, proficient and 

not proficient, and i = 1 for proficient and i = 2 for not proficient then the (conditional) 

false-positive rate can be expressed as Pr(A* = 1 | A = 2) and the (conditional) false-

negative rate can be expressed as Pr(A* = 2 | A = 1).  The conditional correct 

classification rates would therefore be expressed as Pr(A* = 1 | A = 1) (or the true positive 

rate) and Pr(A* = 2 | A = 2) (or the true negative rate). 

 The classification accuracy measures based on both approaches can be directly 

calculated from a standard contingency table.  For the two performance level case, 

Douglas (2007) provided the following contingency table: 
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Table 1: Classification contigency table

Proficient Not Proficient Total
Proficient a b g
Not Proficient c d h
Total e f N

Observed status

TRUE STATUS

 

 

The classification accuracy measures based on the joint distribution and based on two 

performance level case can be calculated as follows: 
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The misclassification matrix, based on conditional probabilities, can be calculated as 

follows:                                        
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As Douglas (2007) notes, the measures based on the joint distribution depend on 

one another.  That is, as the classification accuracy measure defined in (7) changes, the 

measures in (8) and/or (9) will necessarily change.  This is not true for measures based on 

the conditional probabilities; changes in rates associated with truly proficient examinees 

do not affect rates associated with truly not proficient examinees.  Accordingly, results 

based on the analyses that considered the conditional probabilities were the primary focus 

of this study; the analyses based on the joint distributions were treated as supplementary.  
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In a simulation framework these calculations are straightforward because the 

researcher has the benefit of knowing both the true classifications of the simulees as well 

as the (simulated) observed classification.  However, in operational settings educational 

statisticians only know the observed classifications and are forced to use models to 

estimate the true classifications of examinees.  As described in Betebenner et al. (2008), 

Livingston and Lewis (1995), in a classical test theory framework, used a four parameter 

beta true score distribution with a binomial/compound error distribution.  In an IRT 

framework, Rudner (2001, 2005) used a normal distribution for both the error and true 

score distributions. 
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Chapter 4: Literature Review 

Literature addressing the question of classification accuracy when a 

unidimensional model estimated with multidimensional data is sparse.  This literature 

review largely serves to make the case for the presence of multidimensionality in applied 

vertical scaling settings as well as to describe some of the factors manipulated in this 

simulation study. 

Multidimensionality in vertical scaling  

Studies have evaluated the effectiveness of unidimensional IRT models for 

vertical scaling with the hypothesis that multidimensionality might have an adverse 

impact.  Loyd and Hoover (1980) explored vertical scaling using the 1 parameter logistic 

model (1PL, also called the Rasch model) using item response data from 6th, 7th, and 8th 

grade students on three corresponding levels (12, 13, 14) of the mathematics computation 

portion of  the Iowa Tests of Basic Skills (ITBS).  Note that the 1PL model is a special 

case of the 2PL model considered in this study where the discrimination parameter, a, is 

constrained to be equal across all items.  In order to facilitate the linking of tests, 30 items 

were in common for adjacent levels and 15 items were in common for nonadjacent levels 

and linear transformation constants of the estimated common item parameters were used 

to establish a common scale.  The primary focus of this study was to evaluate differences 

in the vertical scaling results when different calibration groups are used.  That is, they 

compared the equating functions for levels 12-14 that resulted from calibrations using the 

6th, 7th, and 8th grade students.  Functions for both adjacent and nonadjacent grades were 

compared.  All three levels shared at least 15 common items, so both direct and indirect 
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linking was compared.  Items parameter estimates were calibrated separately for each 

calibration group on each level. 

 The resulting equating functions were not invariant.  They generally found that 

when examinees take a lower level of the test and have their scores equated to the higher 

level raw score scale, the results will be higher if the items were calibrated with the 

higher ability group.  Further, they found that when examinees take a higher level test 

and have their scores equated to a lower level raw score scale, the results will be higher if 

the items were calibrated with the lower ability group (Loyd & Hoover, 1980).   

 The authors suggested that the root of these inconsistencies could be the violation 

of IRT model assumptions; primarily, they were interested in the degree to which 

unidimensionality was met.  A item-level factor analysis of level 13 item responses from 

6th and 7th graders revealed one primary dimension, but nontrivial secondary or minor 

dimensions.  The authors suggested that an item may assess multiple dimensions and an 

examinee may or may not have been exposed to those dimensions depending on their 

curriculum.  A skills analysis of the items across the test levels suggested that certain 

topics could have been covered at various points in the 6th through 8th grade mathematics 

curriculum and that topic emphasis varied across levels.  The authors hypothesized that 

items drawing from different and multiple dimensions could be the reason for the lack of 

invariance of equating functions (Loyd & Hoover, 1980).   

 Harris and Hoover (1987) followed-up the Loyd and Hoover (1980) study with an 

investigation of effectiveness of using the three parameter logistic (3PL) model for 

vertical scaling using the mathematics computation portion of the ITBS and 3rd through 

8th grade students in Iowa. They considered an expanded number of levels, though; in 
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addition to levels 12-14, they considered levels 10 and 11.  Their approach differed from 

Loyd and Hoover (1980) in how the scale was set; in order to establish a single scale for 

the vertical scaling of the test battery, all items and examinees were estimated 

simultaneously in LOGIST (Wingersky, Barton, & Lord, 1982) with modifications for 

omitted and not-reached items.  The resulting theta estimates were treated as truth in 

subsequent item parameter estimation for a given grade and test level.  For each grade by 

test level, test characteristic curves were computed.  Results indicated that an examinee 

would receive a higher theta estimate if the test s/he was administered was calibrated on 

lower ability students.  Across levels, using the equating of level 12 to 13, it was shown 

that the equating relationship varied based on the groups used to establish it.  So, despite 

a different IRT model, results from this study were consistent with Loyd and Hoover 

(1980) that vertical scaling calibration results, at least with the ITBS data considered, 

were not invariant (i.e. person-free).  However, it is important to note that while the 

patterns between the 1PL model and 3PL model were consistent, the actual equating 

results were not; thus, depending on the estimated model, different conclusions would be 

made about a given examinee.  Again, Harris and Hoover acknowledged that 

multidimensionality might be a reason for this result, but did not conduct any follow-up 

dimensionality assessment on the items.   

 Acknowledging the invariance issues related to lack of person-fit with operational 

vertical scaling data as in Loyd and Hoover (1980) and Harris and Hoover (1987), 

Skaggs and Lissitz (1988) conducted a simulation study to evaluate this issue where they 

had control of the data.  In their study, vertical data were simulated from a 3PL model, 

linked via an external anchor item test, estimated with 1PL and 3PL models, and equated 
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with IRT true-score and equipercentile methods.  Simulation factors manipulated 

included the difficulty, discrimination, and guessing item parameters of the 3PL model 

for each test in the vertical scaling battery as well as the ability distributions of simulees 

by grade.  Largely, they found invariance in vertical scaling with respect to simulee 

ability.  They noted that invariance may not hold when other modeling assumptions are 

not met such as equal discrimination when the 1PL model is estimated.  They concluded 

by agreeing with previous researchers that multidimensionality could be the reason for 

lack of invariance of equating functions with respect to simulee ability in vertical 

equating.  More generally, they suggested that vertical equating with unidimensional 

models should be approached cautiously because of the threat of multidimensionality and 

that the issue of dimensionality in vertical scaling deserves further investigation.  Also 

note that in addition to lack of invariance of equating functions, multidimensionality has 

also been hypothesized to be the cause of scale shrinkage in vertical scaling (Camilli, 

Wang, & Yamamoto, 1993; Yen,1985).    

 

Unidimensional calibration of multidimensional items 

Work by Ansley and Forsyth (1985), Way, Ansley, and Forsyth (1988), and 

Ackerman (1989) provides a reasonable foundation for understanding the consequences 

of estimating a unidimensional IRT model with multidimensional IRT data.  Ansley and 

Forsyth (1985) considered the implications of estimating a unidimensional 3PL model to 

data generated from the noncompensatory multidimensional extension of the 3PL model 

proposed by Sympson (1978).  The data generating model had 2 dimensions and data 

were generated under a variety of levels of correlation between the dimensions.  They 
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generally found that the unidimensional discrimination parameter estimate was 

approximately the average of the true discrimination parameters, the unidimensional 

difficulty parameter was an over estimate of the true difficulty for dimension 1, and the 

unidimensional ability estimate was highly related to the average of the true ability 

parameters.  Way, et al. (1988) extended the work of Ansley and Forsyth (1985) by also 

considering the multidimensional compensatory IRT model proposed by Reckase (1985).  

They found for data generated from this compensatory model that the unidimensional 

discrimination parameter estimate appeared to be the sum of the true discrimination 

parameters, the unidimensional difficulty parameter estimate appeared to be the average 

of the true parameters, and the unidimensional ability parameter estimate appeared to be 

highly related to the average of the true ability parameters.  They noted that the degree of 

this relationship remained static regardless of the level of relationship among the latent 

dimensions. The relationship became stronger in the noncompensatory model as the 

correlation of latent dimensions increased.   

The degree to which the level of difficulty is related to dimensionality and the 

corresponding consequence on the classification accuracy is also a very important issue 

to be investigated especially given the risks of multidimensionality in a vertical scaling 

context.  Reckase (1985) showed that dimensionality can be confounded with difficulty 

and Reckase et al. (1986) illustrated that when difficulty and dimensionality are 

confounded and a unidimensional model is estimated, the ability estimate has different 

meanings at different points on the unidimensional latent scale.  Furthermore, Reckase 

(1990) notes that a unidimensional model will fit reasonably well when dimensionality 
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was confounded with difficulty.  Many of the results of Reckase (1985, 1986, 1990) are 

summarized briefly in Ackerman (1989) and Walker and Beretvas (2003).      

Ackerman (1989) evaluated the effects of unidimensional IRT calibration of 

compensatory and noncompensatory multidimensional item response models when 

difficulty was confounded with dimensionality.  He generally found that as the 

correlation of the latent dimensions increased, the response data became more 

unidimensional.  The results in this study were comparable to the results from Way, 

Ansley, and Forsyth (1988) with differences attributed to the disparity in the parameter 

generation used in the two studies.  Ackerman (1989) also noted that BILOG (Mislevy & 

Bock, 1982) appeared to be more sensitive to the confounding of difficulty and 

dimensionality compared to LOGIST (Wingersky, et al., 1982).   

Classification accuracy with multidimensional data 

Very little applied or simulation research has been conducted to evaluate the 

classification accuracy of multidimensional data when a unidimensional model is 

estimated.  Only three relevant studies have been found and they will be briefly described 

here. 

 Mignani, Monari, Cagnone, and Ricci (2006) conducted a simulation study to 

compare the classification results when a unidimensional 2PL model was estimated for 

data generated from a 2-dimensional MC2PL model versus those estimated from the 

properly specified model.  They considered three distinct types of 2-dimensional models: 

between-items, within-items, and a mixture of between and within-items.  “Between-

items” describes the situation where a test measures multiple dimensions, but each item is 

only an indicator of one.  “Within-items” describes the situation where a test measures 
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multiple dimensions and an item can be an indicator of multiple dimensions.  The ability 

parameters were generated from a standard multivariate normal distribution with zero 

correlation between the dimensions.  Classification into two categories was based on 

whether or not the single ability estimate (unidimensional model) or average of the ability 

estimates (2-dimensional model) was greater or less than 0.  They found the highest 

correspondence of classification results for the within-items model and the poorest 

correspondence for the between-items model.   

 Walker and Beretvas (2003) compared classification results based on ability 

parameters estimated from unidimensional 3PL model versus those estimated from a 2-

dimensional compensatory item response model for mathematics test data.  In the 2-

dimensional model, all items were indicators of mathematics ability and a subset of those 

items were also indicators of mathematics communication ability.  The authors generally 

found that examinees with low mathematics communication ability tended to be 

classified at lower levels under the unidimensional model than on the general 

mathematics ability dimension of the 2-dimensional model.  However their 

multidimensional classification categorizations relied on response patterns associated 

with getting the “easiest” items correct based on a unidimensional calibration; those 

“easiest” items would not necessarily be the same if a multidimensional model were used 

to rank the items.    

 Lau (1996) investigated, using Monte Carlo methods, classification accuracy 

based on the sequential probability ratio testing procedure (SPRT) in the context of 

computerized mastery testing when data were modeled according to a multidimensional 

model but item parameters estimated according to unidimensional IRT models.  



 

 26 
 

Specifically he considered a 2-dimensional 3-parameter compensatory IRT model.  

Essentially, this is an extension of the Reckase (1985) MC2PL where a guessing 

parameter is added.  Item response patterns simulated from this model were calibrated 

according to both 3PL and 1PL unidimensional models.  Additionally, he varied the 

correlation among the latent dimensions, test length, and cut score.  Summarizing from 

Lau (1996), the findings generally suggested that the SPRT was robust to model-

misspecification and resulted in acceptable classification accuracy rates.  However, the 

unidimensional models varied in their test length efficiency where the 3PL model 

resulted in shorter test lengths required for a mastery decision than the 1PL model.  Some 

bias in the cut-score determined by the unidimensional parameter estimates was detected.  

Lau noted that this bias could result in differential classification errors.   
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Chapter 5:  Reasonableness of Simulation Conditions 
 
 This section serves to provide support for various simulation conditions specified 

in this research.  Specifically, descriptions of research designs and operational testing 

programs are discussed.    

Reckase and Li (2007) 

As mentioned briefly earlier, Reckase and Li (2007) investigated, in a vertical 

scaling context, achievement gain when math content specifications change via a 

simulation study.  Their study argued for the appropriateness of multidimensional IRT 

models for estimating gain in this context and the generating parameters for their study 

were 3-dimensional and realistic (i.e. based on an analysis of real 6th and 7th grade data).  

The MC2PL model was used as the data generating model just like was used in this 

dissertation.  Thus, it was useful to consider their item parameters and the correlation 

among latent abilities when determining the various elements of the simulation study 

conducted in this dissertation .  The three dimensions of interest in their study were 

Algebra, Arithmetic, and Problem Solving and the associated correlation matrices for 

abilities in each grade are as follows: 
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Table 2: Relationship of mathematics dimensions for 6th and 7th grades 

Correlation Matrix: 6th Grade
algebra arithmetic problem solving

algebra 1.00 0.00 0.00
arithmetic 1.00 0.71

problem solving 1.00

Correlation Matrix: 7th Grade
algebra arithmetic problem solving

algebra 1.00 0.52 0.60
arithmetic 1.00 0.39

problem solving 1.00

     
The correlation matrix above used in the Reckase and Li simulation study was 

based on an actual calibration of vertical scaling item response data.  While the algebra 

dimension was estimated for sixth graders, no sixth grade items loaded strongly on that 

dimension.  Thus, the correlations of algebra with the other dimensions were extremely 

low; for simplicity, Reckase and Li used a zero correlation of algebra with arithmetic and 

algebra with problem solving in their simulation data generation.  (Note that since the 

item parameters used in the simulation did have discrimination values (albeit, very low) 

on the algebra dimension is why variance was modeled on that dimension for 6th graders).     

The range of correlations here suggests that .3 and .6 levels for the correlation 

among dimensions are reasonable.  Further, this example suggests that in future research 

varying the correlation among dimensions across grades might be interesting. 

The relationship (correlation) among the difficulty parameters and the three 

ability dimensions considering just 6th grade items, 7th grade items, or the entire test 

battery ranged from approximately 0 to .65 (in absolute value).  This suggests that the 

moderate and no confound of difficulty with dimensionality levels are reasonable. 
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Programme for International Student Assessment 

Another resource that is useful for justifying the plausibility of generating item 

parameters is the PISA (Programme for International Student Assessment) test battery. 

Following from the 2003 Technical Report, the general goal of PISA is to assess how 

well 15 year old students are prepared for the real-world.  As such, the test items are not 

necessarily curriculum specific, but rather address the students’ ability to apply 

knowledge to real situations.  The tests administered include Reading, Math, Science, and 

Problem Solving.  The multidimensional random  coefficients multinomial logit model 

(Adams, Wilson, & Wang; 1997) was used to scale the items.  The test battery was not 

vertically scaled, however. 

A seven-dimensional scaling was conducted.  There were four math dimensions, 

as well as a dimension for reading, problem solving, and science.  Each item loaded 

(discriminated) on only one of the dimensions (simple structure) and because the model 

used is a Rasch model, the loadings were equal.  Only the four math dimensions were 

considered to justify conditions in this study. 

The four math dimensions were Change and Relationships (CR), Uncertainty (C), 

Space and Shape(SS), and Quantity (Q).  The bivariate correlation among any two of 

these dimensions ranged between .88 and .93.  These results suggest a realistic context 

for a .9 correlation between dimensions.  Further, the correlation of difficulty with 

dimensionality for any of the four dimensions was no greater than .25 in absolute value 

and the average difficulty on the four dimensions were as follows: 0.1 (CR-22 items), 

0.22 (U-20 items), 0.19 (SS-20 items), and -.48 (Q-22 items).  So, for the most part, the 

average item parameter estimates are approximately equal in difficulty (except for the Q 
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dimension) and it follows that there is very little confound of difficulty with 

dimensionality.  To the extent that the four dimensions captured here could be taught in 

different orders in consecutive grades suggest the reasonableness of a level where 

difficulty is not confounded with dimensionality. 

 
 

NAEP 

The dimensionality structure of the 1990 NAEP math items (Abedi, 1994) was 

considered.  The five dimensions evaluated were Numbers, Measurement, Geometry, 

Statistics, and Algebra.  Largely, he found that the correlations between dimensions were 

high, ranging between .83 and 1.  However, when controlling for background variables 

such as the students opinion of their ability at math, the correlations were more varied.  

For students who were undecided on the phrase “I am good at math”, the correlations 

across dimensions were still high, but ranged between .68 and 1.00.  When students 

agreed with the statement, the correlations between dimensions ranged between .85 and 

1.  When students disagreed with the statement, the correlations between dimensions 

ranged between .77 and 1.  Thus, it is conceivable for school districts where the majority 

of students fall into one of these three categories we could expect the range in 

correlations among certain math dimensions to be between .68 and 1.  [Geometry 

typically had the lowest correlation with the other dimensions.] This finding supports 

using .6 and .9 levels for the correlation between dimensions. 
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Paris (2005) 

Lastly, reading skills development was considered to help inform certain elements 

of the simulation design.  Paris (2005, p. 184) argues that in reading acquisition, skills 

can fall into two major categories: constrained and unconstrained.  Constrained skills are 

“learned quickly, mastered entirely, and should not be conceptualized as enduring 

individual difference variables.”  Examples of constrained skills include letter knowledge 

and phonics.  Unconstrained skills on the other hand, “continue to develop throughout the 

life span, are not identical across people, and may benefit from special practice and 

idiosyncratic experiences at many points in the life course.”   Examples of unconstrained 

skills include vocabulary and comprehension.  The major point of the article is that 

different skills develop in different ways (trajectories) and the type of analyses conducted 

on reading acquisition should adjust to the types of skills.  So, unconstrained skills can be 

analyzed with traditional parametric and normal distribution theory methods, but it might 

be more appropriate to analyze constrained skills with nonparametric methods such as 

conditional probability, contingency tables, and log linear models.  Paris makes a strong 

argument that researchers typically (and incorrectly) analyze constrained skills with 

parametric methods which makes the associated conclusions suspect. 

For this dissertation, it is not necessary to accept the substance of Paris’s 

arguments with respect to reading.  What is important is that the kinds of patterns he sees 

in data, and the kinds of patterns that are central to his research, are ones that are 

consistent with the structures in the proposed simulation design.  Implied in Paris’ work 

is that reading tests are multidimensional in nature and their dimensionality may change 

over time.  That is, for consecutive grades, given reading tests may assess phonemic 
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awareness and comprehension and there may be reasonable variability on both 

dimensions across grades; however, for more advanced grades, similar tests may have 

little or no variability on the phonemic awareness dimension (i.e. it has been mastered).  

[Note that Paris argues phonemic awareness is more constrained than comprehension.]  

So, this article strongly suggests that reading skills are multidimensional and that it is 

possible for there to be variability on a number of dimensions and no variability on others 

at different points in reading development; generally, the dimensionality structure could 

change over time as certain skills are mastered.  Thus, this research provides a reasonable 

context for studying the multidimensionality of tests that are vertically scaled.  The extent 

to which some skills are mastered more quickly (constrained skills) than others is an 

argument for difficulty confounded with dimensionality—under the presumption that the 

constrained skills are easier.  Alternately, Paris suggests that some skills like 

comprehension and decoding may develop simultaneously which might indicate the 

reasonableness of difficulty not confounded with dimensionality. 

 
 

  



 

 33 
 

Chapter 6:  Methodology 
 

This section includes the research questions addressed in this study, the 

manipulated factors, the simulation procedures, and a description of the outcome 

measures. 

 

Research questions 

1. Does the correlation between latent dimensions affect proficiency 

classification accuracy when vertical scaling data modeled according to the 2-

dimensional MC2PL model is calibrated according to the 2PL model? 

2. Does the confound of dimensionality with item difficulty affect proficiency 

classification accuracy when vertical scaling data modeled according to the 2-

dimensional MC2PL model is calibrated according to the 2PL model? 

3. Does the discrepancy in mean ability of the two groups (grades) affect 

proficiency classification accuracy when vertical scaling data modeled 

according to the 2-dimensional MC2PL model is calibrated according to the 

2PL model? 

4. Does the choice of common items affect proficiency classification accuracy 

when vertical scaling data modeled according to the 2-dimensional MC2PL 

model is calibrated according to the 2PL model? 

 

Factors 

In order to address the questions posed above, four factors were manipulated: 
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1. Discrepancy of ability distribution means between grades (2 levels) 

2. The confound of difficulty with dimensionality (3 levels) 

3. The correlation of the latent ability dimensions (4 levels) 

4. The nature of the common item sets (2 levels) 

Thus, the simulation study had 48 conditions. 

 

Differences in ability 

The ability difference between grades in vertical scaling varies from application 

to application.  This research investigated two levels of ability difference.  For the first 

level, the lower grade ability distribution was MVN with mu = {0.0, -0.2} and the upper 

grade ability distribution was MVN with mu = {0.4, 0.0}.  For the second level, the lower 

grade ability distribution remained MVN with mu = {0.0, -0.2}, but with the upper grade 

ability MVN with mu = {0.8, 0.2}.  For all levels the variance on any given dimension 

was 1 and the correlation between dimensions varied as discussed later in this section.  

The multivariate differences in ability between grades largely followed from Yon (2006).  

 

Confound of item difficulty with dimensionality 

Three levels of confound of difficulty with dimensionality were considered; no 

confound, moderate confound, and high confound.  Tests where there was a high 

confound of difficulty and dimensionality were constructed such that the 

multidimensional difficulty value, di, associated with each item was highly correlated 

with the dimension for which the item was a primary indicator.  Most of the lower grade 

items were primary indicators of dimension one and most of the upper grade items were 
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primary indicators of dimension two.  Thus, easier (positive) d values were associated 

with dimension one and harder (negative) d values were associated with dimension two.  

For tests with no confound the relationship of the d parameter and dimension was 

determined randomly.  When there was a moderate confound, the correlation of the 

difficulty value associated with each item and its primary dimension was less than that of 

the high confound condition, but much greater than that of the no confound condition.  

Specific procedures for determining item parameters and how the confound was modeled 

are included later in this section.  

 

Correlation of the latent ability dimensions 

Four levels of correlation between the latent ability dimensions were considered: 

0.0, 0.3, 0.6, 0.9.  These values represent a range from no association to very strong 

association.  In a given cell of the simulation study, the correlation of latent ability 

dimensions was kept constant across grades. 

 

Common item sets 

Common item sets are usually, but not always, constructed to represent a “mini” 

version of the test.  For this study, two different common item sets were considered.  One 

was a 20 item “mini” lower grade test.  The other combined a 10 item version of the 

lower grade test and a 10 item version of the upper grade test.  Common items were 

treated as “internal” common items in that they were included in the computation of 

scores for the simulees.  
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Data generation and model estimation 

As described earlier, the two-dimensional MC2PL was the data generating model 

for the multidimensional vertical scaling data.  Data were generated using SAS.  The 2PL 

model was the estimating model for the data.  The equations for both the MC2PL and 

2PL models were included in the Item Response Theory portion of the Background 

section.  BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) was used to estimate 

the 2PL model and the grouping option was use to define and control for the two separate 

ability distributions in the estimation.  Example SAS data generation code and BILOG-

MG model estimation code can be found in appendices A and B, respectively.   

 

Item parameters 

Each grade had a 60 item test where 40 items were unique and 20 items were 

common.  So, a test battery for the two grades included 100 items.  Note that the use of a 

60 item grade level test with 20 common items is consistent with the design used in Lin 

(2009). The 2-dimensional tests were constructed such that an item primarily 

discriminates on a single dimension.  Items ranged from loading on only one dimension 

(simple structure) to loading strongly on one dimension while still having a weak 

relationship with the other.  Items that primarily measured dimension one had an angle, α, 

of 0-25 degrees with the dimension one axis and items that primarily measured 

dimension two had an, α, of 65-90 degrees with the dimension one axis.  Items that 

primarily measured dimension one represented the majority (approximately 75%) of 

items on the lower grade test and items that primarily measured dimension two 

represented the majority (approximately 75%) of items on the upper grade test.  The test 



 

 37 
 

construction parameters for each item included discrimination parameters, a1 and a2 

(which will define the item’s relationship with the two dimensions) and the parameter 

related to difficulty, d.  [Note also that while a test battery was multidimensional on the 

whole, there were items that were unidimensional; that is, they only loaded on a single 

dimension] 

Parameters for the six 100 item test batteries described in Table 3, below, were 

determined: 

Table 3: Test battery characteristics

Test Battery Confound Level Common items

Battery 1 High lower grade

Battery 2 High both grades

Battery 3 Moderate lower grade

Battery 4 Moderate both grades

Battery 5 No lower grade

Battery 6 No both grades  

All items had a MDISC of 1.  By treating the MDISC as fixed at 1 and knowing the 

location of the items, ai1 is simply the cosine of αi.  And ai2 is 2
11 ia−  .  For tests where 

there was no confound of difficulty with dimensionality, each bik was drawn from a 

N(0,1) distribution and equation 2 was applied to determine di.  For tests where difficulty 

was confounded with dimensionality, bi1 was drawn from a N(-1,.25), bi2 was drawn from 

a N(1,.25) distribution, and equation 2 was applied to determine di.  For tests where 

difficulty was moderately confounded with dimensionality, bi1 was drawn from a N(-

.5,.5), bi2 was drawn from a N(.5,.5) distribution, and equation 2 was applied to determine 

di.  Note that the weighting of each bik by aik and the distribution from which the bik were 

drawn caused the difficulty and dimensionality confound.  The degree of confound of 

item difficulty and dimensionality was measured by the correlation of the slope 
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parameters and the difficulty parameter. A high correlation close to 1 (in absolute value) 

indicated a high confound; a moderate correlation close to 0.6 indicated a moderate 

confound; and a low correlation close to 0 indicated no confound.  The correlation 

between ai1 and the di represented the confound of item difficulty with dimension one and 

the correlation between ai2 and di represented the confound of item difficulty with 

dimension 2.   Item parameters for all exams can be found in Tables C1 through C6 in 

Appendix C. 

The descriptive statistics associated with the difficulty of each test (and based on 

the tables in Appendix C) broken down by lower grade, upper grade, and entire test 

battery are included in Tables 4 through 9 below: 

Table 4: Test descriptive statistics: Difficulty highly confounded with dimensionality; 
lower grade common items

Lower grade test Upper grade test Entire test battery
Avg. difficulty 0.22 -0.19 0.00
Stdev. of difficulty 0.79 0.78 0.82
Corr. of difficulty with dim 1 0.96 0.95 0.96
Corr. of difficulty with dim 2 -0.94 -0.93 -0.94
 

Table 5: Test descriptive statistics: Difficulty highly confounded with dimensionality; 
both grades common items 

Lower grade test Upper grade test Entire test battery
Avg. difficulty 0.17 -0.24 -0.03
Stdev. of difficulty 0.81 0.78 0.83
Corr. of difficulty with dim 1 0.96 0.95 0.96
Corr. of difficulty with dim 2 -0.94 -0.93 -0.94
 

Table 6: Test descriptive statistics: Difficulty moderately confounded with dimensionality; 
lower grade common items 

Lower grade test Upper grade test Entire test battery
Avg. difficulty 0.17 -0.04 0.05
Stdev. of difficulty 0.60 0.59 0.59
Corr. of difficulty with dim 1 0.65 0.61 0.60
Corr. of difficulty with dim 2 -0.66 -0.58 -0.59
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Table 7: Test descriptive statistics: Difficulty moderately confounded with dimensionality; 
both grades common items

Lower grade test Upper grade test Entire test battery
Avg. difficulty 0.12 -0.09 0.02
Stdev. of difficulty 0.61 0.58 0.59
Corr. of difficulty with dim 1 0.61 0.55 0.58
Corr. of difficulty with dim 2 -0.62 -0.51 -0.56
 

Table 8: Test descriptive statistics: Difficulty not confounded with dimensionality; 
lower grade common items

Lower grade test Upper grade test Entire test battery
Avg. difficulty -0.13 -0.08 -0.02
Stdev. of difficulty 1.02 1.15 1.09
Corr. of difficulty with dim 1 0.06 -0.25 -0.07
Corr. of difficulty with dim 2 -0.04 0.22 0.07
 

Table 9: Test descriptive statistics: Difficulty not confounded with dimensionality;  
both grades common items

Lower grade test Upper grade test Entire test battery
Avg. difficulty 0.07 0.11 0.10
Stdev. of difficulty 1.01 1.13 1.07
Corr. of difficulty with dim 1 0.06 -0.16 -0.04
Corr. of difficulty with dim 2 -0.03 0.13 0.04
 
 

Simulation steps (for a given cell) 

1. Generated 10,000 simulees per grade and simulated item responses (0/1) to ALL 

items in the test battery (upper grade, lower grade, and common items) based on 

MIRT generating parameters.  The sample size of 10,000 per grade was 

considered sufficient to represent population level data.  

2. Obtained distribution of raw scores for members of each grade. 

3. For each grade, found the max raw score for which 40% or fewer simulees fell 

below.  The 60% proficient cut was based on a survey of proportion proficient 

rates on various state reading and mathematics tests designed to measure student 
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progress under the NCLB legislation (Tracey Magda, personal communication, 

August 6, 2008). 

4. Targeted 1 plus scores determined above as minimum score for proficient for each 

grade; this yielded: Target_Cut_Lower_Grade and Target_Cut_Upper_Grade 

5. Estimated the resulting response patterns according to a vertically scaled two-

group 2PL unidimensional model in BILOG-MG. 

6. The resulting unidimensional 2PL item parameter estimates were ranked from 

smallest to largest according to the theta value required to have a 67% probability 

of answering the item correctly.  Thus, a “simulated” bookmark ordered item 

booklet (OIB) with response probability (RP) equal to 67% was created; using test 

characteristic curve methods, expected total scores for a wide range of thetas were 

computed. 

7. Found the two OIB locations and associated expected total scores that captured 

the target cuts (Target_Cut_Lower_Grade and Target_Cut_Upper_Grade). 

8. Rounded the expected total scores and compared them to the target cuts; chose the 

expected score that has the smallest absolute difference with the target cut.  In the 

event of a tie, used the lower score.  The results from this step yielded 

Cut_Lower_Grade and Cut_Upper_Grade.  Took note of the OIB location of each 

of these cuts. 

 

The steps described above were used to establish the true cut points for proficient 

(on the entire test battery) for each grade in the given cell; the subsequent steps 

describe the procedure for running the replications within a given cell 
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9. Generated 500 replications of 2,000 simulees per grade and simulated item 

responses to only grade level and common items based on MIRT generating 

parameters.  

10. Estimated item parameters for each replication according to a two-group 

vertically scaled 2PL unidimensional model in BILOG-MG. 

11. For each replication, the resulting unidimensional item parameter estimates were 

ranked from smallest to largest according to the theta value required to have a 

67% probability of answering the item correctly.  Thus, a “simulated” OIB was 

created. 

12. For each grade in each replication, the location of the theta cut for proficiency in 

the OIB was the same as used to determine the true cut for proficiency (step 8).  

The cut score for proficient in the given replication was determined using test 

characteristic curve methods with the 2PL parameter estimates for the appropriate 

grade-level and common items and the associated theta value in the OIB.  

Standard rounding rules were applied to obtain whole number cut scores. 

13. Each simulee in each replication was classified by comparing their “observed” 

total score to the grade-level appropriate total score cut for proficiency 

determined in step 12. 

14. For each simulee in each replication, their “true” classification was determined by 

calculating their expected total score (adjusted using standard rounding 

conventions) on all items in the test battery based on their 2-dimensional theta 

vector and the MIRT generating parameters and comparing that value to the 
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“true” grade-level appropriate cut for proficiency determined in step 8.  Support 

for establishing true scores in this manner can be found in Reckase and Li (2007) 

and Lin (2009). 

15. The classifications determined in steps 13 and 14 were used to determine 

classification success.  For each replication, the proportions described in 

equations 10 through 13 were computed. 

 
 

Outcome measures 

Based on the indices described in Betebenner et al. (2008), for each replication 

false-positive, false-negative, and correct classification rates based on both the joint and 

conditional distribution of simulees were calculated.  Across replications the mean and 

standard deviation of these measures were calculated.  The percent correctly classified 

based on the conditional distribution was the primary focus of the subsequent analyses.     

 

Analysis method 

A four factor analysis of variance (ANOVA) was the primary method of analysis.  

Specifically, there were four analyses; for each grade (upper and lower), an ANOVA was 

conducted on the proportion of not proficient students classified correctly and for the 

proportion of proficient students classified correctly (i.e. the conditional classification 

probabilities).  Since proportions are typically skewed and do not meet the normal 

distribution assumptions of ANOVA, all proportions were transformed according to an 
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arcsin transformation as described in Sheskin (2007).  Specifically the following 

transformation was used:  

     XY arcsin2= ,                                    (14) 

where X is a proportion.  Note that this transformation was conducted on the radian 

metric. 

 

For descriptive purposes, the ANOVA results for the conditional raw proportions 

are also presented.  Corresponding ANOVA analyses for the classification accuracy 

measures based on the joint distributions are included in appendix D.   As was described 

earlier, the four independent levels in the ANOVA were correlation of ability dimensions, 

confound of difficulty with dimensionality, common item set, and difference in ability of 

the lower and upper grades.   

 Because the sample sizes used would likely result in statistically significant 

results for all main and interaction effects, the partial eta-squared effect size measure was 

used to assess the degree of relationship of the predictors with the outcome variable.  

Specifically, the partial eta-squared effect size measure indicates the proportion of 

variance explained by the main or interaction factor while partialling out all other factors 

from the nonerror variance (Pierce, Block, & Aguinis; 2004).  The formula for the partial 

eta squared is as follows: 

   partial )/(2
errorfactorfactor SSSSSS +=η   (15)      
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Chapter 7:  Results 
 

Results are presented in three major sections.  The first includes the population 

analysis where performance on the full test battery as well as the “true” cutscores and 

bookmark locations are presented.  The next two sections include the multifactor 

ANOVA output and associated figures and tables for the conditional probability of 

correct classification into the proficient or not proficient categories for lower and upper 

grades.  There is a section for each grade, upper and lower.   

 

Population analyses 

The population performance across cells was computed and the results, 

summarized by confound level in Tables 10 through 12 below, were plausible given the 

population and item generating parameters.  Specifically, take note of the larger standard 

deviations as the correlation between ability dimensions increased.  
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Table 10: High confound full test battery population performance

Common Items Ability Difference Correlation AVG STDEV AVG STDEV
0.0 47.9 16.1 54.3 15.5
0.3 48.0 17.8 54.4 17.1
0.6 47.9 19.1 54.0 18.7
0.9 48.3 20.8 54.4 19.9
0.0 48.2 15.9 60.2 14.7
0.3 47.9 17.8 60.0 16.5
0.6 48.2 19.4 60.1 17.8
0.9 47.6 20.5 59.6 19.2
0.0 47.5 15.8 53.5 15.6
0.3 47.4 17.7 53.8 17.2
0.6 47.2 19.0 53.4 18.7
0.9 47.2 20.5 53.5 20.1
0.0 47.3 16.0 59.5 14.8
0.3 47.5 17.6 59.3 16.5
0.6 47.2 19.1 58.9 18.1
0.9 47.3 20.3 59.3 19.4

Both Grades

Small

Big

Lower Grade Upper Grade

Lower Grade

Small

Big

 

 

Table 11: Moderate confound full test battery population performance

Common Items Ability Difference Correlation AVG STDEV AVG STDEV
0.0 48.5 16.7 55.7 16.2
0.3 49.1 18.5 55.4 18.3
0.6 48.8 20.3 55.3 19.8
0.9 48.8 21.7 55.4 21.3
0.0 48.7 16.8 62.0 15.4
0.3 48.7 18.5 62.1 17.2
0.6 48.5 20.1 61.6 18.9
0.9 48.6 21.6 61.5 20.4
0.0 48.3 16.7 55.0 16.4
0.3 48.3 18.6 55.1 18.2
0.6 48.4 20.2 54.8 19.8
0.9 48.1 21.7 54.4 21.3
0.0 48.4 16.8 61.3 15.7
0.3 48.0 18.4 61.0 17.6
0.6 48.4 20.4 60.6 19.2
0.9 48.5 21.7 60.6 20.4

Upper Grade

Lower Grade

Small

Big

Both Grades

Small

Big

Lower Grade
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Table 12: No confound full test battery population performance

Common Items Ability Difference Correlation AVG STDEV AVG STDEV
0.0 47.6 15.1 53.7 15.1
0.3 47.9 16.9 53.9 17.0
0.6 47.7 18.4 54.1 18.5
0.9 48.2 19.8 53.7 19.8
0.0 47.8 15.0 60.0 14.9
0.3 47.9 16.8 60.0 16.3
0.6 47.8 18.5 59.5 18.0
0.9 47.5 19.9 59.7 19.4
0.0 49.7 15.1 55.9 15.1
0.3 50.0 17.0 55.5 17.0
0.6 49.5 18.7 56.1 18.4
0.9 49.7 19.8 55.6 19.7
0.0 49.7 15.2 61.7 14.6
0.3 49.7 16.8 62.0 16.3
0.6 49.8 18.6 61.6 17.7
0.9 49.3 19.9 61.6 19.0

Upper Grade

Lower Grade

Small

Big

Both Grades

Small

Big

Lower Grade

 

Using population performance on the test battery for each cell and following the 

procedure described in simulation steps 1 through 8, true cutscores and bookmark 

locations were determined.  The results are presented in Tables 13 through 15 below by 

confound level. 
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Table 13: High confound full test battery population cut scores and bookmark locations 
across factors

Common Items Ability Difference Correlation Cut Score Location Cut Score Location
0.0 44 10 51 37
0.3 43 9 50 35
0.6 42 10 49 31
0.9 42 10 49 33
0.0 44 11 57 52
0.3 43 10 56 52
0.6 43 11 57 53
0.9 41 9 56 52
0.0 42 11 50 36
0.3 42 10 50 36
0.6 42 10 49 34
0.9 41 11 48 31
0.0 43 12 56 49
0.3 43 13 56 49
0.6 41 11 55 49
0.9 40 11 55 49

Upper Grade

Lower Grade

Small

Big

Both Grades

Small

Big

Lower Grade

 

 
 
 
Table 14: Moderate confound full test battery population cut scores and bookmark locations 
across factors

Common Items Ability Difference Correlation Cut Score Location Cut Score Location
0.0 45 7 51 19
0.3 44 7 51 19
0.6 42 6 51 19
0.9 41 6 50 17
0.0 44 7 59 36
0.3 42 6 59 37
0.6 42 6 58 33
0.9 41 6 58 34
0.0 44 6 50 17
0.3 44 6 51 18
0.6 43 6 50 17
0.9 40 5 49 15
0.0 44 6 58 32
0.3 41 5 58 33
0.6 42 6 57 29
0.9 42 6 57 31

Upper Grade

Lower Grade

Small

Big

Both Grades

Small

Big

Lower Grade
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Table 15: No Confound full test battery population cut scores and bookmark locations 
across factors

Common Items Ability Difference Correlation Cut Score Location Cut Score Location
0.0 43 18 50 24
0.3 43 18 48 23
0.6 42 17 48 23
0.9 42 18 48 23
0.0 45 19 57 35
0.3 42 18 56 34
0.6 41 17 55 33
0.9 41 17 56 35
0.0 45 21 52 27
0.3 44 21 51 26
0.6 44 21 52 27
0.9 44 20 49 25
0.0 46 22 58 38
0.3 45 20 59 40
0.6 44 19 58 39
0.9 43 19 58 40

Both Grades

Small

Big

Lower Grade Upper Grade

Lower Grade

Small

Big

 

Note that as a measure to ensure the reasonableness of the simulated bookmark 

procedure conducted for each replication and its use of the population based OIB 

locations, the OIBs for two replications from each of four cells were compared to the 

corresponding OIBs based on population performance on the entire test battery.  The 

results were very convincing and consistent:  Across all replications considered, the items 

above or below the cutscore (for both grades) differed by no more than three compared to 

the items above and below the cuts based on the OIB from the population calibration. 

 

Lower grade analysis 

Output from the multifactor ANOVAs as well as descriptive statistics and figures 

are used to describe the results for the lower grade.  For ease of presentation the 

following abbreviations were used for the factor levels and criterion variables: 
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CONFOUND = factor for item difficulty confounded with dimensionality; C = high 

confound, M = moderate confound, N = no confound  

CORRELAT = factor for the correlation between dimensions; 0 = 0.0 correlation 

between dimensions, 3 = 0.3 correlation between dimensions, 6 = 0.6 correlation between 

dimensions, 9 = 0.9 correlation between dimensions  

ABILITY = factor for the ability difference between the lower and upper grade; B = big 

ability difference, S = small ability difference 

COMMON = factor for the common items administered to both lower and upper grades; 

L = lower grade common items, A = both grades common items 

CONDPC1 = the raw proportion of those truly not proficient classified as such 

CONDPC2 = the raw proportion of those truly proficient classified as such 

CONDPC1T = the arcsin transformed proportion of those truly not proficient classified 

as such 

CONDPC2T = the arcsin transformed proportion of those truly proficient classified as 

such 

Note also that a given cell of the study will be referred to as NLB0.  This 

abbreviation would indicate no confound, lower grade common items, big ability 

difference, and a correlation between dimensions of 0.  Other cells will be referred to 

similarly using the abbreviations above.  These abbreviations also apply to the upper 

grade analysis. 
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Proportion correctly classified as not proficient 

The multifactor ANOVA output, raw and arcsin transformed, for the proportion 

of lower grade simulees classified correctly as not proficient are found below in Tables 

16 and 17, respectively:   

Table 16: Lower Grade Multifactor ANOVA on Raw Data for CONDPC1

Dependent Variable: CONDPC1 

Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 25.904 47 0.551 1023.336 0.000 0.668
Intercept 18398.318 1 18398.318 34161256.370 0.000 0.999
CONFOUND 6.361 2 3.181 5905.486 0.000 0.330
COMMON 0.857 1 0.857 1591.851 0.000 0.062
ABILITY 0.186 1 0.186 345.620 0.000 0.014
CORRELAT 13.691 3 4.564 8473.811 0.000 0.515
CONFOUND * COMMON 0.206 2 0.103 190.909 0.000 0.016
CONFOUND * ABILITY 0.513 2 0.256 476.239 0.000 0.038
COMMON * ABILITY 0.116 1 0.116 215.375 0.000 0.009
CONFOUND * COMMON * 
ABILITY 0.099 2 0.049 91.689 0.000 0.008
CONFOUND * CORRELAT 2.019 6 0.336 624.658 0.000 0.135
COMMON * CORRELAT 0.076 3 0.025 46.732 0.000 0.006
CONFOUND * COMMON * 
CORRELAT 0.374 6 0.062 115.729 0.000 0.028
ABILITY * CORRELAT 0.039 3 0.013 24.420 0.000 0.003
CONFOUND * ABILITY * 
CORRELAT 0.418 6 0.070 129.266 0.000 0.031
COMMON * ABILITY * 
CORRELAT 0.086 3 0.029 53.362 0.000 0.007
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.863 6 0.144 267.069 0.000 0.063
Error 12.900 23952 0.001
Total 18437.121 24000
Corrected Total 38.804 23999

a. R Squared = .668 (Adjusted R Squared = .667)

Tests of Between-Subjects Effects
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Table 17: Lower Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC1

Dependent Variable: CONDPC1T 

Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 228.855 47 4.869 982.829 0.000 0.659
Intercept 141570.703 1 141570.703 28575214.158 0.000 0.999
CONFOUND 58.258 2 29.129 5879.544 0.000 0.329
COMMON 7.378 1 7.378 1489.237 0.000 0.059
ABILITY 1.393 1 1.393 281.208 0.000 0.012
CORRELAT 122.276 3 40.759 8226.879 0.000 0.507
CONFOUND * COMMON 1.290 2 0.645 130.140 0.000 0.011
CONFOUND * ABILITY 4.635 2 2.318 467.793 0.000 0.038
COMMON * ABILITY 1.072 1 1.072 216.454 0.000 0.009
CONFOUND * COMMON * 
ABILITY 1.387 2 0.693 139.965 0.000 0.012
CONFOUND * CORRELAT 14.595 6 2.433 491.003 0.000 0.110
COMMON * CORRELAT 0.446 3 0.149 30.021 0.000 0.004
CONFOUND * COMMON * 
CORRELAT 3.243 6 0.541 109.113 0.000 0.027
ABILITY * CORRELAT 0.230 3 0.077 15.467 0.000 0.002
CONFOUND * ABILITY * 
CORRELAT 3.246 6 0.541 109.201 0.000 0.027
COMMON * ABILITY * 
CORRELAT 0.874 3 0.291 58.820 0.000 0.007
CONFOUND * COMMON * 
ABILITY * CORRELAT 8.530 6 1.422 286.957 0.000 0.067
Error 118.666 23952 0.005
Total 141918.223 24000
Corrected Total 347.521 23999
a. R Squared = .659 (Adjusted R Squared = .658)

Tests of Between-Subjects Effects

 

Using the ANOVA output for the transformed data (Table 17), it is reasonably 

clear that three effects have the strongest association with the criterion variable 

(CONDPC1T) as measured by partial eta squared.  They are the confound (partial 

329.2 =η ) and correlation (partial 507.2 =η ) main effects and the confound and 

correlation interaction effect (partial 110.2 =η ).  Note that these three effect sizes are all 

larger than 0.10, which is in between the 0.06 and 0.14 rules of thumb for medium and 

large effect sizes measured by partial eta squared (Stevens, 1992).  Before evaluating the 

marginal mean differences on proportion correctly classified across the various levels for 

these factors, it is important to visually appreciate the theta vector distribution of truly not 
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proficient simulees classified as such versus those classified as proficient for each of the 

two main effects.  This evaluation will help us better understand why these factors have a 

strong association with CONDPC1.   

Figures 1 and 2, below, illustrate the distribution of theta vectors for truly not 

proficient simulees classified correctly and incorrectly from two example replications 

from the extremes of the confound levels, no confound and high confound.  The average 

values on theta 1 and theta 2 for those classified correctly and incorrectly are also 

included on the figure.  Specifically, a replication from each of the following cells was 

used: NLB0 and CLB0 

 

Figure 1: Distribution of theta vectors for lower grade truly not proficient simulees; NLB0 cell 
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Figure 2: Distribution of theta vectors for lower grade truly not proficient simulees; CLB0 cell (I) 

 

 

 

 

 

 

 

 

 

 

 

In Figure 1, 90% of the truly not proficient simulees were classified correctly and 

in Figure 2, 84 % of the truly not proficient simulees were classified correctly; so more 

simulees were classified correctly as not proficient in the no confound case.  The theta 

vectors of those not proficient simulees classified as proficient, however, followed the 

same pattern in both cells: on average, they were weaker than those classified correctly 

on dimension two (the upper grade focused items), but much stronger on dimension 1 

(the lower grade focused items).  In general, it makes sense that those stronger on 

dimension one were classified as proficient because the majority of the items 

administered to them were lower grade focused, so those simulees were in a greater 

position to get those items correct.  Remember that their true proficiency classification 

was based on the entire test battery where there was a greater proportion of upper grade 

focused items, the dimension on which these incorrectly classified simulees were 

-4

-3

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2

theta 1

th
et

a 
2 Correctly Classified

Misclassified

Correctly Classified

AVG th1 = -0.91
AVG th2 = -0.76

Misclassified

AVG th1 = -0.08
AVG th2 = -0.92



 

 54 
 

particularly weak which resulted in their truly not proficient classification.  The 

difference in proportions between these two cases of truly not proficient simulees being 

classified as such also makes sense.  In the high confound case the lower grade items 

were easier than in the no confound case, so it was more likely that these truly not 

proficient simulees could get those lower grade items correct; thus a lower CONDPC1 

for the confound cell.  Note that in the no confound case, difficulty of items was not 

related to the dimensionality (lower or upper grade focused items), so the lower grade 

focused items were allowed to be just as hard as the upper grade focused items.  Table 18 

below includes the marginalized (across all other factors) raw and transformed 

CONDPC1 average values for all three levels of the confound factor in the lower grade. 

 

Table 18: Average lower grade CONDPC1T and CONDPC1 values for confound levels   
across all other factors

No Confound Moderate Confound Confound
CONDPC1T 2.498 2.377 2.401
CONDPC1 0.898 0.861 0.867   

 

There is very little difference (third decimal place) in the average values for the 

high confound or moderate confound levels.  This is due to, perhaps, to the coarse nature 

of the decision being made (proficient or not proficient).  The average CONDPC1 values 

for the high confound and moderate confound levels are less than the no confound level 

by approximately three percent on the raw metric. 

Figures 3 through 6 below illustrate the distribution of theta vectors for truly not 

proficient simulees classified correctly and incorrectly from four example replications 
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across all four correlation levels, 0.0, 0.3, 0.6, 0.9.  Specifically, a replication from each 

of the following cells was used: CLB0, CLB3, CLB6, and CLB9.  

 

Figure 3: Distribution of theta vectors for lower grade truly not proficient simulees; CLB0 cell (II) 
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Figure 4: Distribution of theta vectors for lower grade truly not proficient simulees; CLB3 cell 
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Figure 5: Distribution of theta vectors for lower grade truly not proficient simulees; CLB6 cell 
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Figure 6: Distribution of theta vectors for lower grade truly not proficient simulees; CLB9 cell 
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the marginalized (across all other factors) raw and transformed CONDPC1 average 

values for all four levels of the correlation factor in the lower grade. 

 

Table 19: Average lower grade CONDPC1T and CONDPC1 values for correlation levels  
across all other factors

0.0 0.3 0.6 0.9
CONDPC1T 2.329 2.404 2.459 2.523
CONDPC1 0.842 0.868 0.887 0.906  

 

There is approximately a six percent CONDPC1 increase on the raw metric 

between no correlation and 0.9 correlation.  Further, the change in raw percentage by 

correlation level is approximately two percent increasing from no relationship between 

dimensions to a strong relationship between dimensions. 

The plots in Figures 7 and 8 below represent the interaction of the confound and 

correlation factors.  Each point represents the average CONDPC1 or CONDPC1T across 

the other two factors for a given level of correlation and confound.       
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Figure 7: Lower grade confound and correlation interaction with CONDPC1 as the criterion 
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Figure 8: Lower grade confound and correlation interaction with CONDPC1T as the criterion 
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    The plots on these two figures illustrate an ordinal interaction between confound 

and correlation.  Since the raw metric is easier to understand, Figure 7 is discussed; 

however, the conclusions would also apply to Figure 8.  For the no confound level, the 

differences among the four levels of correlation on CONDPC1 are much smaller than the 

differences at the moderate confound or high confound levels.  Further, the confound of 

difficulty with dimensionality has a greater effect on CONDPC1 when there is a low 

relationship among dimensions than when there is a stronger one.  As mentioned before, 

it is also clear that the no confound level will have the greatest success at classifying not 

proficient students as such.  This is simply because in the no confound condition, 

simulees would be administered relatively harder items and would be more likely to 

answer them incorrectly resulting in a not proficient “observed” classification.  This plot 

also helps to reinforce the mean differences on CONDPC1 between no confound and the 

other two levels of confound and across the four levels of correlation.  Table 20, below, 

includes the mean CONDPC1 and CONDPC1T values at each of the levels of the 

confound and correlation factors. 

 

Table 20: Average lower grade CONDPC1 and CONDPC1T values for confound and 
correlation levels across all other factors

Confound Level 0.0 0.3 0.6 0.9
CONDPC1T 2.442 2.493 2.508 2.549
CONDPC1 0.882 0.897 0.901 0.914

CONDPC1T 2.254 2.357 2.431 2.506
CONDPC1 0.815 0.853 0.878 0.901

CONDPC1T 2.291 2.361 2.439 2.514
CONDPC1 0.828 0.854 0.881 0.904

Correlation

No Confound

Mod Confound

Confound
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As noted earlier, only those effects with partial eta squared values greater than 

0.10 were investigated further.  In order to feel comfortable with that decision, the 

marginal means on CONDPC1 and CONDPC1T for the two levels of common items 

were computed.  The partial eta squared for this main effect is 0.059, which, rounded to 

one decimal place, is the minimum rule of thumb value for a medium effect size.  The 

means are included in Table 21 below:  

 

Table 21: Average lower grade CONDPC1T and CONDPC1 values for common item levels  
 across all other factors

Lower Grade Both Grades
CONDPC1T 2.446 2.411
CONDPC1 0.882 0.87   

On the raw metric, the difference in these means is approximately 1%.  Using this 

result as a proxy for others with similar partial eta squared effect size values and in terms 

of efficiency of presentation and to focus on the most important results, it seems 

reasonable to eliminate effects with partial eta squared values less than 0.10 from further 

discussion.  

Proportion correctly classified as proficient 

The multifactor ANOVA output, raw and arcsin transformed, for the proportion 

of lower grade simulees classified correctly as proficient are found below in Tables 22 

and 23, respectively: 

 



 

 62 
 

Table 22: Lower Grade Multifactor ANOVA on Raw Data for CONDPC2

Dependent Variable: CONDPC2 

Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 12.133 47 0.258 1084.343 0.000 0.680
Intercept 20375.749 1 20375.749 85583944.823 0.000 1.000
CONFOUND 6.260 2 3.130 13146.793 0.000 0.523
COMMON 0.396 1 0.396 1662.911 0.000 0.065
ABILITY 0.022 1 0.022 93.861 0.000 0.004
CORRELAT 2.924 3 0.975 4094.256 0.000 0.339
CONFOUND * COMMON 0.021 2 0.011 44.940 0.000 0.004
CONFOUND * ABILITY 0.246 2 0.123 516.986 0.000 0.041
COMMON * ABILITY 0.056 1 0.056 236.462 0.000 0.010
CONFOUND * COMMON * 
ABILITY 0.105 2 0.052 220.473 0.000 0.018
CONFOUND * CORRELAT 1.269 6 0.211 888.078 0.000 0.182
COMMON * CORRELAT 0.040 3 0.013 55.904 0.000 0.007
CONFOUND * COMMON * 
CORRELAT 0.178 6 0.030 124.885 0.000 0.030
ABILITY * CORRELAT 0.003 3 0.001 4.280 0.005 0.001
CONFOUND * ABILITY * 
CORRELAT 0.103 6 0.017 72.159 0.000 0.018
COMMON * ABILITY * 
CORRELAT 0.065 3 0.022 91.663 0.000 0.011
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.444 6 0.074 310.580 0.000 0.072
Error 5.702 23952 0.000
Total 20393.585 24000
Corrected Total 17.836 23999
a. R Squared = .680 (Adjusted R Squared = .680)

Tests of Between-Subjects Effects
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Table 23: Lower Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC2T

Dependent Variable: CONDPC2T 

Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 149.295 47 3.176 981.915 0.000 0.658
Intercept 159831.980 1 159831.980 49407207.251 0.000 1.000
CONFOUND 78.304 2 39.152 12102.705 0.000 0.503
COMMON 5.862 1 5.862 1812.142 0.000 0.070
ABILITY 0.562 1 0.562 173.621 0.000 0.007
CORRELAT 36.463 3 12.154 3757.178 0.000 0.320
CONFOUND * COMMON 0.420 2 0.210 64.955 0.000 0.005
CONFOUND * ABILITY 3.150 2 1.575 486.849 0.000 0.039
COMMON * ABILITY 0.683 1 0.683 211.031 0.000 0.009
CONFOUND * COMMON * 
ABILITY 1.195 2 0.598 184.759 0.000 0.015
CONFOUND * CORRELAT 12.187 6 2.031 627.871 0.000 0.136
COMMON * CORRELAT 0.474 3 0.158 48.852 0.000 0.006
CONFOUND * COMMON * 
CORRELAT 2.408 6 0.401 124.035 0.000 0.030
ABILITY * CORRELAT 0.045 3 0.015 4.652 0.003 0.001
CONFOUND * ABILITY * 
CORRELAT 1.542 6 0.257 79.468 0.000 0.020
COMMON * ABILITY * 
CORRELAT 0.619 3 0.206 63.826 0.000 0.008
CONFOUND * COMMON * 
ABILITY * CORRELAT 5.379 6 0.897 277.150 0.000 0.065
Error 77.485 23952 0.003
Total 160058.760 24000
Corrected Total 226.779 23999
a. R Squared = .658 (Adjusted R Squared = .658)

Tests of Between-Subjects Effects

 

Using the ANOVA output for the transformed data (Table 23), it is reasonably 

clear that three effects have the strongest association with the criterion variable 

(CONDPC1T) as measured by partial eta squared.  They are the confound (partial 

503.2 =η ) and correlation (partial 320.2 =η ) main effects and the confound and 

correlation interaction effect (partial 136.2 =η ).  None of the other effects reach the 0.10 

criterion for further investigation.  Before evaluating the marginal differences on 

proportion correctly classified across the various levels for these factors, it is important to 

visually appreciate the theta vector distribution of truly proficient simulees classified as 
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such versus those classified as not proficient for each of the two main effects.  This 

evaluation will help us better understand why these factors have a strong association with 

CONDPC2. 

Figures 9 and 10 below illustrate the distribution of theta vectors for truly 

proficient simulees classified correctly and incorrectly from two example replications 

from the extremes of the confound levels, no confound and high confound.  The average 

values on theta 1 and theta 2 for those classified correctly and incorrectly are also 

included on the figure.  Specifically, a replication from each of the following cells was 

used: NLB0 and CLB0.   

 

Figure 9: Distribution of theta vectors for lower grade truly proficient simulees; NLB0 cell (I) 
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Figure 10: Distribution of theta vectors for lower grade truly proficient simulees; CLB0 cell 
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particularly strong which caused their truly proficient classification.  The difference in 

proportion between these two cases of truly proficient simulees being classified as such 

also makes sense.  In the high confound case the lower grade items were easier than in 

the no confound case, so it was more likely that these truly proficient simulees could get 

those lower grade items correct; thus a higher CONDPC2 for the high confound case.  

Note that in the no confound case, difficulty of items was not related to the 

dimensionality (lower or upper grade focused items), so the lower grade focused items 

were allowed to be just as hard as the upper grade focused items.  Table 24 below 

includes the marginalized (across all other factors) raw and transformed CONDPC2 

average values for all three levels of the confound factor in the lower grade. 

 

Table 24: Average lower grade CONDPC2T and CONDPC2 values for confound levels  
across all other factors

No Confound Moderate Confound Confound
CONDPC2T 2.500 2.624 2.618
CONDPC2 0.899 0.933 0.932  

 There is very little difference (third decimal place) in the average values for the 

high confound or moderate confound levels.  Again, this could be due to the coarse 

nature of the decision being made (proficient or not proficient).  The average CONDPC2 

values for the high confound and moderate confound levels are greater than the no 

confound level by approximately three percent on the raw metric. 

Figures 11 through 14, below, illustrate the distribution of theta vectors for truly 

proficient simulees classified correctly and incorrectly from four example replications 

across all four correlation levels, 0, 0.3, 0.6, 0.9.  Specifically, a replication from each of 

the following cells was used:  NLB0, NLB3, NLB6, and NLB9 
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Figure 11: Distribution of theta vectors for lower grade truly proficient simulees; NLB0 cell (II) 

 

 

 

 

 

 

 

 

 

 

Figure 12: Distribution of theta vectors for lower grade truly proficient simulees; NLB3 cell 
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Figure 13: Distribution of theta vectors for lower grade truly proficient simulees; NLB6 cell 

 

 

 

 

 

 

 

 

 

 

Figure 14: Distribution of theta vectors for lower grade truly proficient simulees; NLB9 cell 
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In Figures 11 through 14, 87%, 89%, 92%, and 93%, respectively, of the truly 

proficient simulees were classified correctly; so more simulees were classified correctly 

as proficient as the correlation between dimensions got stronger.  This pattern, and a 

rationale for its appearance, is similar to that of the CONDPC1 criterion.  The simulees in 

each of these four cells were administered the same items to determine their true 

classification (entire NL test battery) and the same items to determine their “observed” 

(lower grade and common items from the NL test battery) classification.   As the theta 

one and theta two for each of these simulees became more highly related it is reasonable 

that their relative performance on the entire test battery would match their performance 

on the lower grade test.  Thus, CONDPC2 would be expected to increase as the 

relationship between the theta values increases.   Visually, this increasingly linear 

relationship can be appreciated across the four figures above.  Table 25, below, includes 

the marginalized (across all other factors) raw and transformed CONDPC2 average 

values for all four levels of the correlation factor in the lower grade. 

 

Table 25: Average lower grade CONDPC2T and CONDPC2 values for correlation levels  
across all other factors 

0.0 0.3 0.6 0.9
CONDPC2T 2.524 2.566 2.605 2.626
CONDPC2 0.905 0.918 0.929 0.934  

There is approximately a three percent average CONDPC2 increase on the raw 

metric between no correlation and 0.9.  Further, the change in raw percentage by 

correlation level is approximately one to two percent increasing from no relationship 

between dimensions to a strong relationship between dimensions. 
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The plots in Figures 15 and 16 below represent the interaction of the confound 

and correlation factors.  Each point represents the average CONDPC2 or CONDPC2T 

across the other two factors for a given level of correlation and confound.       

 

Figure 15: Lower grade confound and correlation interaction with CONDPC2 as the criterion 
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Figure 16: Lower grade confound and correlation interaction with CONDPC2T as the criterion 
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The plots on these two figures above illustrate an ordinal interaction between 

confound and correlation similar to that observed for CONDPC1.  Since the raw metric is 

easier to understand, Figure 15 is discussed; however, the conclusions would also apply 

to Figure 16.  For the no confound level, the differences at the four levels of correlation 

on CONDPC2 are much larger than the differences at the moderate or high confound 

levels.  Again it seems that the confound of difficulty with dimensionality has a greater 

effect on CONDPC2 when there is a smaller relationship among dimensions than when 

there is a larger one.   It is also clear that having a high confound between difficulty and 

dimensionality level will result in the greatest success at classifying truly proficient 

simulees as such.  This is simply because in the high confound condition, simulees would 

be administered relatively easier items and would be more likely to answer them 
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correctly resulting in an “observed” proficient classification.  This plot also helps to 

reinforce the mean differences on CONDPC2 between no confound and the other two 

levels of confound and across the four levels of correlation.  Table 26, below, includes 

the mean CONDPC2 and CONDPC2T values at each of the levels of confound and 

correlation. 

 

Table 26: Average lower grade CONDPC2T and CONDPC2 values for confound and 
correlation levels across all other factors

Confound Level 0.0 0.3 0.6 0.9
CONDPC2T 2.402 2.468 2.544 2.585
CONDPC2 0.868 0.89 0.912 0.923

CONDPC2T 2.591 2.613 2.64 2.653
CONDPC2 0.925 0.931 0.938 0.94

CONDPC2T 2.581 2.617 2.632 2.641
CONDPC2 0.922 0.932 ,936 0.937

No Confound

Mod Confound

Confound

Correlation

 

 

Upper grade analysis 

Proportion correctly classified as not proficient 

The multifactor ANOVA output, raw and arcsin transformed, for the proportion of upper 

grade simulees classified correctly as not proficient are found below in Tables 27 and 28, 

respectively:   

 

 

 

 



 

 73 
 

Table 27: Upper Grade Multifactor ANOVA on Raw Data for CONDPC1

Dependent Variable: CONDPC1 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 23.120 47 0.492 1045.856 0.000 0.672
Intercept 18455.240 1 18455.240 39238256.402 0.000 0.999
CONFOUND 0.627 2 0.314 666.913 0.000 0.053
COMMON 0.092 1 0.092 196.398 0.000 0.008
ABILITY 0.364 1 0.364 774.061 0.000 0.031
CORRELAT 19.459 3 6.486 13791.140 0.000 0.633
CONFOUND * COMMON 0.268 2 0.134 284.722 0.000 0.023
CONFOUND * ABILITY 0.395 2 0.198 420.305 0.000 0.034
COMMON * ABILITY 0.025 1 0.025 53.684 0.000 0.002
CONFOUND * COMMON * 
ABILITY 0.072 2 0.036 76.994 0.000 0.006
CONFOUND * CORRELAT 0.387 6 0.064 136.985 0.000 0.033
COMMON * CORRELAT 0.084 3 0.028 59.341 0.000 0.007
CONFOUND * COMMON * 
CORRELAT 0.215 6 0.036 76.046 0.000 0.019
ABILITY * CORRELAT 0.249 3 0.083 176.341 0.000 0.022
CONFOUND * ABILITY * 
CORRELAT 0.238 6 0.040 84.403 0.000 0.021
COMMON * ABILITY * 
CORRELAT 0.159 3 0.053 112.408 0.000 0.014
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.485 6 0.081 171.818 0.000 0.041
Error 11.266 23952 0.000
Total 18489.625 24000
Corrected Total 34.385 23999
a. R Squared = .672 (Adjusted R Squared = .672)

Tests of Between-Subjects Effects
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Table 28: Upper Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC1T

Dependent Variable: CONDPC1T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 208.866 47 4.444 1015.642 0.000 0.666
Intercept 141966.405 1 141966.405 32445704.742 0.000 0.999
CONFOUND 5.262 2 2.631 601.328 0.000 0.048
COMMON 1.141 1 1.141 260.696 0.000 0.011
ABILITY 4.083 1 4.083 933.070 0.000 0.037
CORRELAT 175.540 3 58.513 13372.924 0.000 0.626
CONFOUND * COMMON 2.367 2 1.184 270.493 0.000 0.022
CONFOUND * ABILITY 3.613 2 1.806 412.821 0.000 0.033
COMMON * ABILITY 0.335 1 0.335 76.556 0.000 0.003
CONFOUND * COMMON * 
ABILITY 0.623 2 0.311 71.166 0.000 0.006
CONFOUND * CORRELAT 3.267 6 0.545 124.446 0.000 0.030
COMMON * CORRELAT 1.020 3 0.340 77.678 0.000 0.010
CONFOUND * COMMON * 
CORRELAT 1.680 6 0.280 63.977 0.000 0.016
ABILITY * CORRELAT 2.744 3 0.915 209.017 0.000 0.026
CONFOUND * ABILITY * 
CORRELAT 1.964 6 0.327 74.824 0.000 0.018
COMMON * ABILITY * 
CORRELAT 1.458 3 0.486 111.110 0.000 0.014
CONFOUND * COMMON * 
ABILITY * CORRELAT 3.770 6 0.628 143.592 0.000 0.035
Error 104.802 23952 0.004
Total 142280.073 24000
Corrected Total 313.668 23999
a. R Squared = .666 (Adjusted R Squared = .665)

Tests of Between-Subjects Effects

 

Using the ANOVA output for the transformed data (Table 28), it is clear that just 

the correlation factor has a strong association with the criterion variable (CONDPC1T) as 

measured by its partial eta squared value of .626.    None of the other effects reach the 

0.10 criterion for further investigation.  Before evaluating the marginal differences on 

proportion correctly classified across the various correlation levels, it is important to 

visually appreciate the theta vector distribution of truly not proficient simulees classified 

as such versus those classified as proficient across the four levels of correlation. This 
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evaluation will help us better understand why correlation has a strong association with 

CONDPC1. 

Figures 17 through 20, below, illustrate the distribution of theta vectors for truly 

not proficient simulees classified correctly and incorrectly from four example replications 

across all four correlation levels, 0, 0.3, 0.6, 0.9.  Just as was done for the lower grade 

analysis, the average values on theta 1 and theta 2 for classified and misclassified 

simulees are included on the figures.  Specifically, a replication from following cells 

were used: CLB0, CLB3, CLB6, and CLB9 

 

Figure 17: Distribution of theta vectors for upper grade truly not proficient simulees; CLB0 cell 
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Figure 18: Distribution of theta vectors for upper grade truly not proficient simulees; CLB3 cell 
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Figure 19: Distribution of theta vectors for upper grade truly not proficient simulees; CLB6 cell 
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Figure 20: Distribution of theta vectors for upper grade truly not proficient simulees; CLB9 cell 
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In Figures 17 through 20, 83%, 87%, 90%, and 92%, respectively, of the truly not 

proficient simulees were classified correctly; so more simulees were classified correctly 

as not proficient as the correlation between dimensions got stronger.  The rationale for 

this pattern is the same that was used for the similar result in the lower grade analysis.  

The simulees in each of these four cells were administered the same items to determine 

their true classification (entire CL test battery) and the same items to determine their 

“observed” classification (upper grade and common items from the CL test battery).    As 

the theta 1 and theta 2 for each of these simulees became more highly related it is 

reasonable that their relative performance on the entire test battery would match their 

performance on the upper grade test.  Thus, CONDPC1 would be expected to increase as 

the relationship between the theta values increases.   Visually, this increasingly linear 

relationship can be appreciated across the four figures above.  Note that the average theta 
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2 value for those that were misclassified is higher than those that were correctly 

classified.  It is this strength and the administration of largely upper grade (dimension 2) 

items used to determine their “observed” classification that causes their incorrect 

“observed” classification as proficient.  Generally, however, these misclassified simulees 

are the strongest on both dimensions among those upper grade simulees that are truly not 

proficient.  Table 29, below, includes the marginalized (across all other factors) raw and 

transformed CONDPC1 average values for all four levels of the correlation factor in the 

upper grade. 

 

Table 29: Average upper grade CONDPC1T and CONDPC1 values for correlation levels 
across all other factors 

0.0 0.3 0.6 0.9
CONDPC1T 2.308 2.424 2.471 2.534
CONDPC1 0.832 0.876 0.89 0.909

 

There is approximately a seven percent increase in CONDPC1 on the raw metric 

between no correlation and 0.9 correlation.  Further, the change in raw percentage by 

correlation level ranges between approximately 1 to 4 percent.  The largest increase is 

from no correlation to 0.3 correlation.   

 

Proportion correctly classified as proficient 

The multifactor ANOVA output, raw and arcsin transformed, for the proportion 

of upper grade simulees classified correctly as proficient are found below in Tables 30 

and 31, respectively:   
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Table 30: Upper Grade Multifactor ANOVA on Raw Data for CONDPC2

Dependent Variable: CONDPC2 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 2.604 47 0.055 259.263 0.000 0.337
Intercept 20434.802 1 20434.802 95615262.352 0.000 1.000
CONFOUND 0.006 2 0.003 14.462 0.000 0.001
COMMON 0.148 1 0.148 693.377 0.000 0.028
ABILITY 0.101 1 0.101 473.395 0.000 0.019
CORRELAT 1.125 3 0.375 1754.159 0.000 0.180
CONFOUND * COMMON 0.096 2 0.048 225.132 0.000 0.018
CONFOUND * ABILITY 0.216 2 0.108 504.439 0.000 0.040
COMMON * ABILITY 0.006 1 0.006 28.765 0.000 0.001
CONFOUND * COMMON * 
ABILITY 0.018 2 0.009 41.259 0.000 0.003
CONFOUND * CORRELAT 0.149 6 0.025 115.924 0.000 0.028
COMMON * CORRELAT 0.027 3 0.009 42.502 0.000 0.005
CONFOUND * COMMON * 
CORRELAT 0.092 6 0.015 71.480 0.000 0.018
ABILITY * CORRELAT 0.242 3 0.081 377.298 0.000 0.045
CONFOUND * ABILITY * 
CORRELAT 0.128 6 0.021 99.848 0.000 0.024
COMMON * ABILITY * 
CORRELAT 0.091 3 0.030 141.624 0.000 0.017
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.160 6 0.027 124.832 0.000 0.030
Error 5.119 23952 0.000
Total 20442.525 24000
Corrected Total 7.723 23999
a. R Squared = .337 (Adjusted R Squared = .336)

Tests of Between-Subjects Effects
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Table 31: Upper Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC2T

Dependent Variable: CONDPC2T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 36.770 47 0.782 260.860 0.000 0.339
Intercept 159983.367 1 159983.367 53343953.148 0.000 1.000
CONFOUND 0.083 2 0.042 13.856 0.000 0.001
COMMON 2.121 1 2.121 707.359 0.000 0.029
ABILITY 1.487 1 1.487 495.828 0.000 0.020
CORRELAT 16.092 3 5.364 1788.504 0.000 0.183
CONFOUND * COMMON 1.308 2 0.654 217.983 0.000 0.018
CONFOUND * ABILITY 2.727 2 1.363 454.628 0.000 0.037
COMMON * ABILITY 0.113 1 0.113 37.616 0.000 0.002
CONFOUND * COMMON * 
ABILITY 0.215 2 0.107 35.794 0.000 0.003
CONFOUND * CORRELAT 2.201 6 0.367 122.333 0.000 0.030
COMMON * CORRELAT 0.413 3 0.138 45.931 0.000 0.006
CONFOUND * COMMON * 
CORRELAT 1.168 6 0.195 64.900 0.000 0.016
ABILITY * CORRELAT 3.738 3 1.246 415.404 0.000 0.049
CONFOUND * ABILITY * 
CORRELAT 1.700 6 0.283 94.487 0.000 0.023
COMMON * ABILITY * 
CORRELAT 1.175 3 0.392 130.622 0.000 0.016
CONFOUND * COMMON * 
ABILITY * CORRELAT 2.230 6 0.372 123.901 0.000 0.030
Error 71.834 23952 0.003
Total 160091.971 24000
Corrected Total 108.604 23999
a. R Squared = .339 (Adjusted R Squared = .337)

Tests of Between-Subjects Effects

 

 Using the ANOVA output for the transformed data (Table 31), it appears that only 

the correlation factor has even a moderate association with the criterion variable 

(CONDPC2T) as measured by its partial eta squared value of 0.183.    None of the other 

effects reached the 0.10 criterion for further investigation.  Before evaluating the 

marginal differences on proportion correctly classified across the various correlation 

levels, it is again important to visually appreciate the theta vector distribution of truly 

proficient simulees classified as such versus those classified as not proficient across for 
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the four levels of correlation. This evaluation will help us better understand how 

correlation is related to CONDPC2. 

Figures 21 through 24 below illustrate the distribution of theta vectors for truly 

proficient simulees classified correctly and incorrectly from four example replications 

across all four correlation levels, 0, 0.3, 0.6, 0.9 with average theta values indicated.  

Specifically, a replication from the following cells was used: NLB0, NLB3, NLB6, and 

NLB9. 

  

Figure 21: Distribution of theta vectors for upper grade truly proficient simulees; NLB0 cell 
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Figure 22: Distribution of theta vectors for upper grade truly proficient simulees; NLB3 cell 
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Figure 23: Distribution of theta vectors for upper grade truly proficient simulees; NLB6 cell 
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Figure 24: Distribution of theta vectors for upper grade truly proficient simulees; NLB9 cell 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5

theta 1

th
et

a 
2 Correctly Classified

Misclassified

Correctly Classified

AVG th1 = 1.47
AVG th2 = 0.88

Misclassified

AVG th1 = 0.80
AVG th2 = 0.03

 

 

In Figures 21 through 24, 90%, 91%, 92%, and 93%, respectively, of the truly  

proficient simulees were classified correctly; so more simulees were classified correctly 

as proficient as the correlation between dimensions got stronger.  The rationale for this 

pattern is that same that was used for the similar result in the lower grade analysis and for 

the CONDPC1 criterion in the upper grade analysis.  The simulees in each of these four 

cells were administered the same items to determine their true classification (entire NL 

test battery) and the same items to determine their “observed” classification (upper grade 

and common items from the NL test battery).  Consistent with previous results, as the 

theta 1 and theta 2 for each of these simulees became more highly related, it is reasonable 

that their relative performance on the entire test battery would match their performance 

on the upper grade test.  Thus, CONDPC2 would be expected to increase as the 

relationship between the theta values increases.  Visually, this increasingly linear 
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relationship can be appreciated across the four figures above.  Note that these 

misclassified simulees are the weakest on both dimensions among those upper grade 

simulees that are truly proficient; however, it was their relative strength on dimension one 

(at least 0.8, on average) that resulted in their true classification as proficient (based on 

the entire test battery) and their weakness on dimension two (at most 0.03, on average) 

that resulted in their “observed” classification as not proficient (based on largely upper 

grade focused items).  Table 32 below includes the marginalized (across all other factors) 

raw and transformed CONDPC2 average values for all four levels of the correlation 

factor in the upper grade. 

 

Table 32: Average upper grade CONDPC2T and CONDPC2 values for correlation levels   
across all other factors

0.0 0.3 0.6 0.9
CONDPC2T 2.558 2.557 2.500 2.616
CONDPC2 0.916 0.916 0.927 0.931  

There is approximately a one percent increase in CONDPC2 on the raw metric 

between no correlation and 0.9 correlation.  This data suggest that there is very little gain 

in the upper grade CONDPC2 as the correlation between dimensions increases.  Note that 

the overall R- square value for this multifactor ANOVA (0.339) was considerably less 

than for the other three (at least 0.650).    

 

Summary of study 

This study helped to gain insight into the factors that affect classification accuracy 

in vertical scaling when a multidimensional model is misspecified with a unidimensional 

model.  Classification accuracy was measured by the probability of successfully 



 

 85 
 

classifying not proficient simulees (or the true negative rate) and the probability of 

successfully classifying proficient simulees (or the true positive rate).    The relationship 

of item difficulty and dimensionality, the relationship between ability dimensions, choice 

of common items, and difference in mean abilities between grades were the factors 

considered.  Generally, it was only the relationship between item difficulty and 

dimensionality and the relationship between ability dimensions that had an effect on the 

conditional classification accuracy. 

Across both grades and both criterion variables, the correlation between ability 

dimensions had an effect on classification accuracy in the direction one would expect.  

As the relationship became stronger, the values increased on both true positive and true 

negative rates.  The magnitude of the increase across correlation levels and classification 

rates ranged from one to seven percent.  These results make intuitive sense because it is 

to be expected that as the relationship among dimensions increases performance on the 

complete test battery (used to determine truth) would match performance on the grade 

level test (used to determine the observed classification).  The larger percentages (6 and 

7) were observed for the true negative rates in both grades.  The magnitudes of the 

change in conditional probabilities across correlation levels are addressed in the 

limitations and implications section. 

In only the lower grade was an effect observed for the relationship between item 

difficulty and dimensionality.  The magnitudes (3 percent) of the change across levels 

were approximately the same for the true negative and positive rates; however, the 

direction of the change differed.  The true negative rate was the highest when there was 

no relationship and the true positive rate was the highest when there was at least a 
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moderately strong relationship.  (Note that there was no meaningful difference in either 

of these rates between the moderate confound and confound levels.)  The direction of 

these results is also intuitive.  The true negative rate was the highest when the difficulty 

of items was the hardest on the grade level test because it is more likely that one will be 

able to classify truly not proficient simulees as such when they are administered more 

difficult items.  Conversely, the true positive rate was the highest when the difficulty of 

the items was relatively easy because it is more likely that one will be able to classify 

truly proficient simulees as such when they are administered relatively easier items.  An 

ordinal interaction for the relationship between item difficulty and dimensionality and the 

relationship between ability dimensions was also observed.  This interaction simply 

indicated that the relationship between item difficulty and dimensionality has a greater 

effect on the conditional classification rates when there is no relationship between ability 

dimensions than when there is a strong relationship.  

In addition to those factors for which we observed an effect, it is equally 

important to acknowledge those for which we did not.  First, there was no meaningful 

effect for choice of common items.  Certainly, this null result is tied to this particular 

research design  (as are the previously discussed results) where one third of each grade 

level test was common items; however it does suggest that common item choice may 

have no more than a minimal effect on conditional classification accuracy given this 

testing particular situation (60 total items, 20 common).  This finding is not without 

precedent given that work on mixed-format test equating by Cao (2008) indicated that 

content representativeness had a minimal effect on classification consistency.   This result 

could be informative for test developers who may be stressed for finding common items 



 

 87 
 

that function as a “mini-test”; although, best practices in testing do suggest that common 

items be reflective of the test as a whole (Kolen & Brennan, 2004).  Note that while there 

was no meaningful effect for common items in this study using conditional classification 

rates as the criterion variables other criteria such as equating functions could indicate a 

meaningful effect for choice of common items as shown in Loyd and Hoover (1980) and 

Harris and Hoover (1987).    

The results also suggested that the small and large differences in mean abilities 

for the lower and upper grades had no more than a minimal effect on conditional 

classification accuracy.  That is, from the classification perspective, the differences in 

abilities between the lower and upper grades did not affect the concurrent calibration of 

the item response data and the subsequent standard setting.    
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Chapter 8: Discussion 
 

Limitations of the research design 

Generalization of these results is closely tied to the limitations of this study.  

There are three main limitations to the research design: 

1. The 60% proficient standard 

2. The choice of average abilities on both dimensions for the lower and upper 

grades 

3. The method for establishing true status (proficient or not proficient) for 

the simulees 

In order to appreciate the magnitudes and meaningfulness of the effects 

discovered (and not discovered) in this study a sensitivity analysis would be warranted.  

This analysis would consider variations to both the percentage proficient used in 

determining the population based cutscores (perhaps, 40% and 80%) as well as the 

average ability values for each grade on each dimension.  The average values for each 

grade on each dimension could be raised or lowered.  Doing this analysis would provide 

further support for the results presented and help researchers gain an appreciation for the 

degree to which the magnitudes of the effect change as ability levels and standards 

change.  Making such changes would, perhaps, result in a confound effect and/or a 

confound and correlation interaction effect for the upper grade similar to what was shown 

in this study for the lower grade.  However, the choices for this research design were 

reasonable and justification was provided; the results, therefore, can be interpreted as 

potentially real.  Lastly, note that as states strive to meet the 100% proficient goal of 
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NCLB by 2014, the results of this study will become less relevant in the NCLB context 

because the proportion of students near cut points may depart increasingly from the ones 

used here.   

 There are likely alternatives to establishing the true classification of simulees.  

One such alternative would be to establish truth based simply on the two-dimensional 

generating parameters of each simulee.  The choice here was to project a simulee’s 

generating two-dimensional theta vector onto a unidimensional scale via a number 

correct transformation on the entire test battery (i.e. across both grades).  A similar 

procedure was used in Reckase and Li (2007) and this procedure has meaning from an 

operational perspective.  That is, scores are typically reported on a unidimensional scale 

and one could conceptualize administering an entire test battery to students.  In fact, 

administering a full test battery to students is done to a certain degree in a scaling test 

linking design (Kolen & Brennan, 2004).  It is fully acknowledged, though, that 

establishing truth in a different way could cause different results and conclusions.   

 

Implications 

The most substantial implication of this research is for the community using 

vertically scaled tests to be aware of a test’s dimensionality characteristics and its impact 

on the use of the test scores (in this case, for classification purposes).  It was shown that 

the relationship of test item difficulty with the ability dimensions as well as the 

relationship between the ability dimensions themselves has an effect on classification 

accuracy.  Certainly it is always expected that there will be some level of 

misclassification, but understanding the degree to which the test itself and the 
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construct(s) the test measures contribute to the ability of using test scores to classify 

students is important.  For test developers, knowing that that two abilities are highly 

correlated might minimize the need for them to be concerned about the degree to which 

item difficulty is confounded with the two abilities tested on their exam (even if the test 

was originally designed to just test one of the two abilities).  Additionally, knowing 

whether or not difficulty is confounded with dimensionality on their exam might help test 

developers inform test users how to appropriately use test results.  That is, from the lower 

grade perspective in this study, a high confound of difficulty with dimensionality will 

minimize the chance of not passing a truly proficient student; however, it could also 

result in increasing the chances of passing a truly not proficient student.   Further, results 

suggest a confound of item difficulty with dimensionality has a greater impact on 

conditional classification accuracy rates when there is a smaller correlation among 

dimensions.  The magnitudes of the differences in conditional classification accuracy 

rates across the levels of confound and correlation can certainly help inform test design 

and use as different types of classification errors might have varied consequences across 

test users.  Thus, test developers can advise their users of the pros and cons of their tests 

based on the importance and consequences of different decision made from the associated 

test scores.  Above all, though, these results argue for the test developer to first be aware 

of the item and ability relationships in the domain they are testing.     

While these results are important to the developer in administration to the masses, 

these results can also help inform teachers and administrators who often have to deal with 

students on an individual level.  When students are held back in school (because of, say, 

being classified as not proficient), it is necessary to try to figure out why.  Knowledge of 
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the dimensionality of the test used to classify students can help explain the reasons.  

Using the various theta 1 by theta 2 plots presented in this study, teachers can find where 

their students fall.  In some cases, they could be legitimately held back.  In other cases, 

they could be a borderline proficient student held back because the test was more difficult 

than it should have been.  Heubert and Hauser (1999) describe in High Stakes: Testing for 

Tracking, Promotion, and Graduation that an assessment must lead to decisions that are 

educationally beneficial.  Thus, it is important for schools to know how to make the 

appropriate decisions from test scores and when further investigation for a given student 

is necessary.  Heubert and Hauser argue that effective remedial support services should 

be available for low-performing students.  Knowing the dimensionality of the assessment 

used for classification decisions and why mistakes could be made can certainly inform 

the appropriate course of action for remediation. Of course, this would require that the 

teacher have additional academic information about the student (i.e. performance on 

other tests that focus on both ability dimensions 1 and 2) and knowledge of the 

relationship of the test items to the various ability dimensions.  Due to the effort and 

financial resources that would likely have to be devoted to the efforts described above, it 

is less likely that schools on their own would be able to use and apply the results of this 

study relative to the ability of test developers to do so and share the appropriate 

information with the schools. 

Teachers, school administrators, and test developers, however, can work 

collaboratively to better understand and potentially revise the tests they use to classify 

students.  When the dimensionality and the associated classification implications of a 

given test are explained to school officials, they could simply decide that the test meets 
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their needs.   Alternately, school systems might have different philosophies on the values 

of passing truly not proficient students and/or holding back truly proficient students.  

Based on the results of this study, test developers could potentially manage the confound 

of item difficulty with dimensionality to meet a school system’s needs.  As mentioned 

earlier (from the perspective of the lower grade), increasing the confound of item 

difficulty with dimensionality would increase the true positive rate and decreasing the 

confound of item difficulty with dimensionality would increase the true negative rate.  

The impact of changing the item difficulty’s relationship with the dimensions would be 

based on how strongly the ability dimensions are related.  There is less “bang for the 

buck” of change when the ability dimensions are strongly related.   

Schools systems would benefit from understanding that a given test that is 

perceived as testing a single ability might, in fact, be measuring multiple abilities.  

Knowing this, may contribute to a revision of the curriculum.  If school systems learned 

that a considerable amount of reading comprehension is measured on their math 

proficiency test (in the context of word problems, for example) changing the emphasis or 

ordering of reading comprehension topics in the grade level reading or English might be 

warranted to ensure that their students are better prepared for the test. 

As the complexities of measuring a single construct across grades comes to light, 

school systems could decide that using multidimensional models is worthwhile.  Work on 

this has already begun.  Reckase and Martineau (2004) concluded that multidimensional 

models should be used in the vertical scaling of science tests.  They supported their 

conclusion by observing that students grow on different dimensions in science at different 

rates over time and that the knowledge and skills assessed on tests can vary significantly 
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across grades.  Patz and Yao (2007) also illustrated the usefulness of multidimensional 

models for vertical scaling for a writing assessment across 5 grades.  They showed that 

four dimensions emerged.  They also presented evidence that suggested that item type 

(multiple-choice versus constructed response) was related to dimensionality.              

Lastly, exploring the dimensionality of assessments may provide new 

opportunities.  If test developers do spend time understanding the dimensionality of their 

large scale assessments, they can, perhaps, leverage what they learn into the development 

of formative assessments.   Formative assessments can be especially useful when there is 

a strong match to what is taught in the classroom and what is being assessed in a 

summative context (Stout, 2007).  This relationship is all the more reason that the large-

scale (summative) test developers could be interested in such an opportunity.  

Specifically, it has been argued that multidimensional IRT can be used in IRT-based 

Cognitive Diagnosis Models (ICDM) and these models can be used in classroom-based 

formative assessment (Stout, 2007).  One such example of an IRT based formative 

assessment is the SEPUP (Science Education for Public Understanding)-Embedded 

Assessment Project which uses a multidimensional Rasch model (Sloane, Wilson, 

Samson, 1996).   

In consideration of the multidimensionality arguments presented by Paris (2005) 

regarding reading skills, one could envision that a dimensionality analysis of a 

summative reading assessment (especially one that spans many grades) could provide 

insight into the construction of appropriate formative assessments in reading.  

Specifically, different assessments could be created to assess skills (dimensions) that are 

attained and mastered quickly (constrained) and those that are continually developing 



 

 94 
 

(unconstrained).  Knowing the levels and/or the attainment of any of these skills for the 

students in their classes could be of great value to classroom teachers for lesson planning 

and summative test preparation. 

Extensions 

In addition to the sensitivity analysis proposed in the Limitations section, 

extensions to this research would largely revolve around the various decision points 

involved in conducting vertical scaling as well as a manipulation of some the simulee 

population assumptions. 

 The first extension would be to conduct separate grade calibration instead of 

concurrent calibration.  While there is no consensus in the literature which method is 

correct, both methods are typically considered when developing a vertical scaling design 

and it would be informative to be able to compare results.  Further separate calibration is 

suggested as superior to concurrent calibration by researchers (e.g. Kolen & Brennan, 

2004) when multidimensionality is suspected.  Of course, by conducting separate 

calibration across many grades the accumulation of linking errors would be of concern. 

As noted earlier, concurrent calibration is preferred when there is a strong assumption of 

unidimensionality in the item response data.   

 In this study, there was a reasonable proportion (33%) of common items in each 

of the grade level tests and one of the common item conditions was a true “mini” test.  

However, these ideal conditions and best practices are not always achieved by test 

developers. Therefore, it would be useful to extend this research to conditions where 

there are fewer common items (either in absolute number or in proportion to the total 
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test) that may or may not function as a “mini” test.  Those results could inform the work 

of those responsible for tests where the ideal conditions for common items are not met. 

 The correlation of ability dimensions and the variance of ability on each 

dimension was always the same for both grade levels in each cell of this study.  To 

address concerns of scale shrinkage, it would be useful to reduce the variance of ability 

on the upper grade test.  Additionally, work by Reckase and Li (2007), for example, 

showed that the relationships among dimensions can change from grade to grade.  Thus, 

varying the correlation between dimensions across grades should be addressed in future 

work. 

 Lastly, the multidimensional IRT item generating models and unidimensional IRT 

estimating models could be varied.  Given that many tests are multiple-choice, 

introducing a guessing parameter to both the generating model and estimating model 

would likely be the first step.  Thus, the three parameter extension to the MC2PL model 

(Reckase, 1997) could be used for the item response generating model and the 3PL model 

could be used for the unidimensional estimating model. 
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Appendix A: Example data generation code 
 

/*get log to a text file*/  
proc printto log ="c:\dissertation2\CL.log" ; 
Run; 
 
DATA lowerC; /*read in lower grade confound generating parameter s*/  
INFILE  "C:\dissertation\parameters\lowerC.txt" ; 
input  a b c; 
run; 
DATA upperC; /*read in upper grade confound generating parameter s*/  
INFILE  "C:\dissertation\parameters\upperC.txt" ; 
input  a b c;  
run; 
DATA lowerCommonC; /*read in lower grade common with confound generati ng 
parameters*/  
INFILE  "C:\dissertation\parameters\lowerCommonC.txt" ; 
input  a b c; 
run; 
 
%macro GENERATE (lower_ab1, lower_ab2, upper_ab1, upper_a b2, corr, 
lowercut, uppercut, test, cell); 
%do it= 1 %to 500; 
 
PROC IML; /*get data into matrix form*/  
 
/*get lowerCommonC into a matrix*/  
USE lowerCommonC; 
READ ALL INTO lowerCommonCmat; 
CLOSE lowerCommonC; 
 
/*get upperC into a matrix*/  
USE upperC; 
READ ALL INTO upperCmat; 
CLOSE upperC; 
 
/*get lowerC into a matrix*/  
USE lowerC; 
READ ALL INTO lowerCmat; 
CLOSE lowerC; 
 
/*generate lower grade 2D thetas*/  
mu_lower = {&lower_ab1, &lower_ab2}; 
sigma_lower = { 1.0 &corr, &corr 1.0}; 
call vnormal (lower_thetas, mu_lower, sigma_lower, 2000); 
 
/*generate upper grade 2D thetas*/  
mu_upper = {&upper_ab1, &upper_ab2}; 
sigma_upper = { 1.0 &corr, &corr 1.0}; 
call vnormal (upper_thetas, mu_upper, sigma_upper, 2000); 
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/*generate MC response vectors for lower grade on u nique items*/  
 
LOWER_UNIQUE_RESPONSES = J(2000, 40, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 40; 
IF 
((exp(lower_thetas[s, 1]*lowerCmat[J, 1]+lower_thetas[s, 2]*lowerCmat[J, 2]
+ lowerCmat[J, 3]))/( 1 + 
(exp(lower_thetas[s, 1]*lowerCmat[J, 1]+lower_thetas[s, 2]*lowerCmat[J, 2]+ 
lowerCmat[J, 3]))) >= RANUNI( 0))THEN DO; LOWER_UNIQUE_RESPONSES[S,J]= 1;  
END; 
ELSE LOWER_UNIQUE_RESPONSES[S,J] = 0;  
END; 
END; 
 
 
/*generate MC response vectors for upper grade on u nique items*/  
UPPER_UNIQUE_RESPONSES = J(2000, 40, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 40; 
IF 
((exp(upper_thetas[s, 1]*upperCmat[J, 1]+upper_thetas[s, 2]*upperCmat[J, 2]
+ upperCmat[J, 3]))/( 1 + 
(exp(upper_thetas[s, 1]*upperCmat[J, 1]+upper_thetas[s, 2]*upperCmat[J, 2]+ 
upperCmat[J, 3]))) >= RANUNI( 0))THEN DO;  
UPPER_UNIQUE_RESPONSES[S,J]= 1;  
END; 
ELSE UPPER_UNIQUE_RESPONSES[S,J] = 0;  
END; 
END; 
 
/*generate MC response vectors for lower grade on a ll 20 lower grade 
common items*/  
LOWER_common_20_RESPONSES = J(2000, 20, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 20; 
IF ((exp(lower_thetas[s, 1]*lowerCommonCmat[J, 1]+lower_thetas[s, 2]* 
lowerCommonCmat[J, 2]+ lowerCommonCmat[J, 3]))/( 1 + 
(exp(lower_thetas[s, 1]*lowerCommonCmat[J, 1]+lower_thetas[s, 2]*lowerComm
onCmat[J, 2]+ lowerCommonCmat[J, 3]))) >= RANUNI( 0))THEN DO; 
LOWER_common_20_RESPONSES[S,J]= 1;  
END; 
ELSE LOWER_common_20_RESPONSES[S,J] = 0;  
END; 
END; 
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/*generate MC response vectors for upper grade on a ll 20 lower grade 
common items*/  
UPPER_common_20_RESPONSES = J(2000, 20, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 20; 
IF ((exp(upper_thetas[s, 1]*lowerCommonCmat[J, 1]+upper_thetas[s, 2]* 
lowerCommonCmat[J, 2]+ lowerCommonCmat[J, 3]))/( 1 + 
(exp(upper_thetas[s, 1]*lowerCommonCmat[J, 1]+upper_thetas[s, 2]*lowerComm
onCmat[J, 2]+ lowerCommonCmat[J, 3]))) >= RANUNI( 0))THEN DO; 
UPPER_common_20_RESPONSES[S,J]= 1;  
END; 
ELSE UPPER_common_20_RESPONSES[S,J] = 0;  
END; 
END; 
 
/*generate person ids; can be applied to both grade s, lower and upper 
*/  
IDEN=J( 2000, 1, .); 
DO I = 1 TO 2000; 
   IDEN[I, 1]=I + 1000; 
END; 
 
/*create group ID for lower grade*/  
lowergradeID=J( 2000, 1, 1); 
/*create group ID for upper grade*/  
uppergradeID=J( 2000, 1, 2); 
 
/*create not administered matrix*/  
notadmin=J( 2000, 40, 9); 
 
/*create complete set of lower grade responses*/  
lower_responses = IDEN || lowergradeID || LOWER_UNI QUE_RESPONSES || 
LOWER_common_20_RESPONSES || notadmin; 
upper_responses = IDEN || uppergradeID || notadmin || 
UPPER_common_20_RESPONSES || UPPER_UNIQUE_RESPONSES; 
all_responses = lower_responses // upper_responses;  
 
 
/*create the SAS dataset of the responses*/  
CREATE responses FROM all_responses; 
APPEND FROM all_responses; 
 
 
/*create a matrix of all item parameters*/  
items = lowerCmat // lowerCommonCmat // upperCmat; 
 
/*get probabilities of correct response to each ite m for lower grade 
students across entire test*/  
lowergradetrue = J( 2000, 100, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 100; 
lowergradetrue[S,J] = 
(exp(lower_thetas[s, 1]*items[J, 1]+lower_thetas[s, 2]*items[J, 2]+ 
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items[J, 3]))/( 1 + 
(exp(lower_thetas[s, 1]*items[J, 1]+lower_thetas[s, 2]*items[J, 2]+ 
items[J, 3])));   
END; 
END; 
 
/*get probabilities of correct response to each ite m for upper grade 
students across entire test*/  
uppergradetrue = J( 2000, 100, .); 
DO S = 1 TO 2000; 
   DO J = 1 TO 100; 
uppergradetrue[S,J] = 
(exp(upper_thetas[s, 1]*items[J, 1]+upper_thetas[s, 2]*items[J, 2]+ 
items[J, 3]))/( 1 + 
(exp(upper_thetas[s, 1]*items[J, 1]+upper_thetas[s, 2]*items[J, 2]+ 
items[J, 3])));   
END; 
END; 
 
/*get expected total score on entire test for lower  grade students*/  
lowergradetruetotal = lowergradetrue[,+]; 
/*PRINT lowergradetruetotal;*/  
/*get expected total score on entire test for upper  grade students*/  
uppergradetruetotal = uppergradetrue[,+]; 
/*PRINT uppergradetruetotal;*/  
 
/*round the lower grade expected scores on entire t est*/  
lowergradetruetotalround = J( 2000, 3, 1); 
DO S = 1 to 2000; 
   lowergradetruetotalround[S, 1] = lowergradetruetotal[S, 1]; 
   lowergradetruetotalround[S, 2] = ROUND (lowergradetruetotal[S, 1], 1); 
END; 
/*PRINT lowergradetruetotalround;*/  
 
/*round the upper grade expected scores on entire t est*/  
uppergradetruetotalround = J( 2000, 3, 1); 
DO S = 1 to 2000; 
   uppergradetruetotalround[S, 1] = uppergradetruetotal[S, 1]; 
   uppergradetruetotalround[S, 2] = ROUND (uppergradetruetotal[S, 1], 1); 
END; 
/*PRINT uppergradetruetotalround;*/  
 
/*get true classifications for lower grade*/  
DO S = 1 to 2000; 
 IF (lowergradetruetotalround[S, 2] >= &lowercut) THEN DO; 
  lowergradetruetotalround[S, 3] = 2; 
   END; 
END; 
 
 
/*get true classifications for upper grade*/  
DO S = 1 to 2000; 
 IF (uppergradetruetotalround[S, 2] >= &uppercut) THEN DO; 
  uppergradetruetotalround[S, 3] = 2; 
   END; 
END; 
/*PRINT uppergradetruetotalround;*/  
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/*get lower grade observed scores*/  
lowergraderesponses = LOWER_UNIQUE_RESPONSES || 
LOWER_common_20_RESPONSES;   
uppergraderesponses = UPPER_common_20_RESPONSES || 
UPPER_UNIQUE_RESPONSES; 
 
lowergradeobserved = lowergraderesponses[,+]; 
uppergradeobserved = uppergraderesponses[,+]; 
 
 
lowerall = lowergradetruetotalround || lowergradeob served; 
upperall = uppergradetruetotalround || uppergradeob served; 
 
/*in the lowerall and upperall matrices there are 4  columns: expected 
score on all items unrounded, rounded, classificati on, observed score 
on grade level test*/  
 
/*create a sas dataset for lowerall*/  
CREATE lowerdata FROM lowerall; 
APPEND FROM lowerall; 
/*create a sas dataset for upperall*/  
CREATE upperdata FROM upperall; 
APPEND FROM upperall; 
 
/*get thetas with Identification number*/  
lower_ID_thetas = IDEN || lower_thetas; 
upper_ID_thetas = IDEN || upper_thetas; 
 
/*get thetas into a SAS dataset*/  
CREATE lowerthetas FROM lower_ID_thetas; 
APPEND from lower_ID_thetas; 
 
CREATE upperthetas FROM upper_ID_thetas; 
APPEND from upper_ID_thetas; 
 
Quit; 
Run; 
 
/*creating the data file of lower grade simulee sco res and 
classifications*/  
/*FILENAME mydata1 
"G:\dissertationcode\dissertation\lowerscores&it..t xt";*/  
FILENAME mydata1 
"C:\dissertation2\&test\&cell\lowerscores&cell&it.. txt" ; 
DATA DUMMY1; 
SET lowerdata; 
FILE mydata1 NOPRINT NOTITLES; 
PUT @1 COL1 @17 COL2 @22 COL3 @27 COL4; 
RUN; 
 
/*creating the data file of upper grade simulee sco res and 
classifications*/  
/*FILENAME mydata2 FILENAME mydata2 
"C:\dissertation2\&test\&cell\upperscores&cell&it.. txt" ; 
DATA DUMMY2; 
SET upperdata; 
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FILE mydata2 NOPRINT NOTITLES; 
PUT @1 COL1 @17 COL2 @22 COL3 @27 COL4; 
RUN; 
 
 
 
/*creating the datafile for the respones*/  
/*FILENAME mydata "C:\Documents and Settings\Marc\M y 
Documents\dissertation code\data&it..txt";*/  
FILENAME mydata "C:\dissertation2\&test\&cell\data&cell&it..txt" ; 
DATA DUMMY; 
SET responses; 
FILE mydata NOPRINT NOTITLES; 
PUT @1 COL1 @6 COL2 @8 COL3 @9 COL4 @10 COL5 @11 COL6 @12 COL7 @13 COL8 
@14 COL9 @15 COL10 @16 COL11 @17 COL12 @18 COL13 @19 COL14 @20 COL15 
@21 COL16 @22 COL17 @23 COL18 @24 COL19 @25 COL20 @26 COL21 @27 COL22 
@28 COL23 @29 COL24 @30 COL25 @31 COL26 @32 COL27 @33 COL28 @34 COL29 
@35 COL30 @36 COL31 @37 COL32 @38 COL33 @39 COL34 @40 COL35 @41 COL36 
@42 COL37 @43 COL38 @44 COL39 @45 COL40 @46 COL41 @47 COL42 @48 COL43 
@49 COL44 @50 COL45 @51 COL46 @52 COL47 @53 COL48 @54 COL49 @55 COL50 
@56 COL51 @57 COL52 @58 COL53 @59 COL54 @60 COL55 @61 COL56 @62 COL57 
@63 COL58 @64 COL59 @65 COL60 @66 COL61 @67 COL62 @68 COL63 @69 COL64 
@70 COL65 @71 COL66 @72 COL67 @73 COL68 @74 COL69 @75 COL70 @76 COL71 
@77 COL72 @78 COL73 @79 COL74 @80 COL75 @81 COL76 @82 COL77 @83 COL78 
@84 COL79 @85 COL80 @86 COL81 @87 COL82 @88 COL83 @89 COL84 @90 COL85 
@91 COL86 @92 COL87 
@93 COL88 @94 COL89 @95 COL90 @96 COL91 @97 COL92 @98 COL93 @99 COL94 
@100 COL95 @101 COL96 @102 COL97 @103 COL98 @104 COL99 @105 COL100 @106 
COL101 @107 COL102; 
RUN; 
 
/*create files for thetas*/  
FILENAME mydata3 
"C:\dissertation2\&test\&cell\lowerthetas&cell&it.. txt" ; 
DATA DUMMY3; 
SET lowerthetas; 
FILE mydata3 NOPRINT NOTITLES; 
PUT @1 COL1 @6 COL2 @30 COL3; 
RUN; 
 
FILENAME mydata4 
"C:\dissertation2\&test\&cell\upperthetas&cell&it.. txt" ; 
DATA DUMMY4; 
SET upperthetas; 
FILE mydata4 NOPRINT NOTITLES; 
PUT @1 COL1 @6 COL2 @30 COL3; 
RUN; 
 
%end; 
%mend Generate; 
 
 
/*data DUMMY;*/  
/* cell naming Confound(C)/NoConfound(N), Lower gra de common items 
(L)/Both grade common items(A), Big ability differe nce (B)/Small 
Ability difference (S), Correlation of Dimensions 0 , .3, .6, .9 
(0,3,6,9)*/ 
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%GENERATE( 0,- .2, .8, .2, 0, 44, 57,CL,CLB0); 
%GENERATE( 0,- .2, .8, .2, .3, 43, 56,CL,CLB3); 
%GENERATE( 0,- .2, .8, .2, .6, 43, 57,CL,CLB6); 
%GENERATE( 0,- .2, .8, .2, .9, 41, 56,CL,CLB9); 
%GENERATE( 0,- .2, .4, 0, 0, 44, 51,CL,CLS0); 
%GENERATE( 0,- .2, .4, 0, .3, 43, 50,CL,CLS3); 
%GENERATE( 0,- .2, .4, 0, .6, 42, 49,CL,CLS6); 
%GENERATE( 0,- .2, .4, 0, .9, 42, 49,CL,CLS9); 
/*run;*/  
 
/*reset log back to normal location*/  
proc printto; 
run; 

 



 

 103 
 

Appendix B: Example Bilog-MG IRT estimation code 
 
>GLOBAL DFNAME = 'C:\dissertation2\CL\CLB0\dataCLB0 1.txt', 
       NPArm=2, 
       LOGistic, 
       SAVe; 
>SAVE SCOre='C:\dissertation2\CL\CLB0\bilogrunCLB01 .SCO', 
PARM='C:\dissertation2\CL\CLB0\bilogrunCLB01.PAR'; 
>LENGTH NITems = (100), 
       NVAriant = (0); 
>INPUT NTOtal = 100, 
     NALt = 5, 
     NGROUPS = 2, 
     NIDchar = 4, 
     NFNAME= 'C:\dissertation\EXAMPL05testNOT1.nfn' ; 
>ITEMS INUM = (1(1)100), INAMES=(M01(1)M100); 
>TEST TNAme = CLB01, INUM = (1(1)100); 
>GROUP1 GNAME='LOWER', LENGTH=60, INUM=(1(1)60); 
>GROUP2 GNAME='UPPER', LENGTH=60, INUM=(41(1)100); 
(4A1, 1X, I1, 1X, 100A1) 
>CALIB NQPt = 51, 
      NORMAL, 
      CYClE = 30, 
      TPRIOR, 
      REFERENCE=1; 
>SCORE METHOD=2, 
       IDIST=3, 
       NOPRINT, 
       RSCTYPE=0; 
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Appendix C: Item generating parameters 

 

Table C1: Item parameters for confound and lower grade common items test battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 0.698 
2 0 1.000 0.000 0.769 
3 0 1.000 0.000 1.111 
4 0 1.000 0.000 0.672 
5 0 1.000 0.000 0.824 
6 5 0.996 0.087 1.206 
7 5 0.996 0.087 0.804 
8 5 0.996 0.087 1.111 
9 5 0.996 0.087 0.972 

10 5 0.996 0.087 1.145 
11 10 0.985 0.174 0.566 
12 10 0.985 0.174 1.015 
13 10 0.985 0.174 0.652 
14 10 0.985 0.174 0.444 
15 10 0.985 0.174 0.694 
16 15 0.966 0.259 0.340 
17 15 0.966 0.259 0.308 
18 15 0.966 0.259 0.674 
19 15 0.966 0.259 0.907 
20 15 0.966 0.259 0.234 
21 20 0.940 0.342 0.549 
22 20 0.940 0.342 0.698 
23 20 0.940 0.342 0.652 
24 20 0.940 0.342 0.752 
25 20 0.940 0.342 0.750 
26 25 0.906 0.423 0.424 
27 25 0.906 0.423 0.370 
28 25 0.906 0.423 0.900 
29 25 0.906 0.423 0.394 
30 25 0.906 0.423 0.594 
31 85 0.087 0.996 -0.795 
32 85 0.087 0.996 -1.270 
33 85 0.087 0.996 -1.148 
34 85 0.087 0.996 -1.033 
35 85 0.087 0.996 -0.872 
36 90 0.000 1.000 -0.715 
37 90 0.000 1.000 -1.190 
38 90 0.000 1.000 -1.210 
39 90 0.000 1.000 -0.850 
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lower grade item number angle with dim 1 a1 a2 d 
40 90 0.000 1.000 -1.396 

common item number        
1 0 1.000 0.000 0.929 
2 0 1.000 0.000 1.081 
3 5 0.996 0.087 0.561 
4 5 0.996 0.087 0.833 
5 10 0.985 0.174 0.603 
6 10 0.985 0.174 0.816 
7 15 0.966 0.259 0.184 
8 15 0.966 0.259 0.374 
9 20 0.940 0.342 0.678 

10 20 0.940 0.342 0.397 
11 25 0.906 0.423 0.688 
12 25 0.906 0.423 0.362 
13 30 0.866 0.500 0.561 
14 30 0.866 0.500 0.179 
15 90 0.000 1.000 -1.132 
16 90 0.000 1.000 -1.149 
17 85 0.087 0.996 -1.141 
18 85 0.087 0.996 -0.820 
19 80 0.174 0.985 -0.933 
20 80 0.174 0.985 -0.529 

upper grade item number        
1 90 0.000 1.000 -1.247 
2 90 0.000 1.000 -1.025 
3 90 0.000 1.000 -0.869 
4 90 0.000 1.000 -1.058 
5 90 0.000 1.000 -0.987 
6 85 0.087 0.996 -0.813 
7 85 0.087 0.996 -0.950 
8 85 0.087 0.996 -1.218 
9 85 0.087 0.996 -0.894 

10 85 0.087 0.996 -0.870 
11 80 0.174 0.985 -0.786 
12 80 0.174 0.985 -0.591 
13 80 0.174 0.985 -0.858 
14 80 0.174 0.985 -0.160 
15 80 0.174 0.985 -1.315 
16 75 0.259 0.966 -0.872 
17 75 0.259 0.966 -0.641 
18 75 0.259 0.966 -1.178 
19 75 0.259 0.966 -0.638 
20 75 0.259 0.966 -0.380 
21 70 0.342 0.940 -0.212 
22 70 0.342 0.940 -0.771 
23 70 0.342 0.940 -0.390 
24 70 0.342 0.940 -0.806 
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upper grade item number angle with dim 1 a1 a2 d 
25 70 0.342 0.940 -0.244 
26 65 0.423 0.906 -0.610 
27 65 0.423 0.906 -0.583 
28 65 0.423 0.906 0.138 
29 65 0.423 0.906 -0.648 
30 65 0.423 0.906 -0.533 
31 15 0.966 0.259 0.717 
32 15 0.966 0.259 0.906 
33 15 0.966 0.259 0.778 
34 15 0.966 0.259 0.918 
35 15 0.966 0.259 0.674 
36 0 1.000 0.000 0.849 
37 0 1.000 0.000 1.291 
38 0 1.000 0.000 0.406 
39 0 1.000 0.000 0.927 
40 0 1.000 0.000 0.784 
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Table C2: Item parameters for confound and both grades common items test battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 0.698 
2 0 1.000 0.000 0.769 
3 0 1.000 0.000 1.111 
4 0 1.000 0.000 0.672 
5 0 1.000 0.000 0.824 
6 5 0.996 0.087 1.206 
7 5 0.996 0.087 0.804 
8 5 0.996 0.087 1.111 
9 5 0.996 0.087 0.972 

10 5 0.996 0.087 1.145 
11 10 0.985 0.174 0.566 
12 10 0.985 0.174 1.015 
13 10 0.985 0.174 0.652 
14 10 0.985 0.174 0.444 
15 10 0.985 0.174 0.694 
16 15 0.966 0.259 0.340 
17 15 0.966 0.259 0.308 
18 15 0.966 0.259 0.674 
19 15 0.966 0.259 0.907 
20 15 0.966 0.259 0.234 
21 20 0.940 0.342 0.549 
22 20 0.940 0.342 0.698 
23 20 0.940 0.342 0.652 
24 20 0.940 0.342 0.752 
25 20 0.940 0.342 0.750 
26 25 0.906 0.423 0.424 
27 25 0.906 0.423 0.370 
28 25 0.906 0.423 0.900 
29 25 0.906 0.423 0.394 
30 25 0.906 0.423 0.594 
31 85 0.087 0.996 -0.795 
32 85 0.087 0.996 -1.270 
33 85 0.087 0.996 -1.148 
34 85 0.087 0.996 -1.033 
35 85 0.087 0.996 -0.872 
36 90 0.000 1.000 -0.715 
37 90 0.000 1.000 -1.190 
38 90 0.000 1.000 -1.210 
39 90 0.000 1.000 -0.850 
40 90 0.000 1.000 -1.396 

common item number        
1 0 1.000 0.000 0.929 
2 5 0.996 0.087 0.561 
3 10 0.985 0.174 0.603 
4 15 0.966 0.259 0.184 
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common item number angle with dim 1 a1 a2 d 
5 20 0.940 0.342 0.678 
6 25 0.906 0.423 0.688 
7 30 0.866 0.500 0.561 
8 90 0.000 1.000 -1.132 
9 85 0.087 0.996 -1.141 

10 80 0.174 0.985 -0.933 
11 90 0.000 1.000 -0.801 
12 85 0.087 0.996 -0.737 
13 80 0.174 0.985 -0.666 
14 75 0.259 0.966 -0.689 
15 70 0.342 0.940 -0.589 
16 65 0.423 0.906 -0.798 
17 60 0.500 0.866 -0.080 
18 0 1.000 0.000 1.086 
19 5 0.996 0.087 0.835 
20 10 0.985 0.174 1.049 

upper grade item number        
1 90 0.000 1.000 -1.247 
2 90 0.000 1.000 -1.025 
3 90 0.000 1.000 -0.869 
4 90 0.000 1.000 -1.058 
5 90 0.000 1.000 -0.987 
6 85 0.087 0.996 -0.813 
7 85 0.087 0.996 -0.950 
8 85 0.087 0.996 -1.218 
9 85 0.087 0.996 -0.894 

10 85 0.087 0.996 -0.870 
11 80 0.174 0.985 -0.786 
12 80 0.174 0.985 -0.591 
13 80 0.174 0.985 -0.858 
14 80 0.174 0.985 -0.160 
15 80 0.174 0.985 -1.315 
16 75 0.259 0.966 -0.872 
17 75 0.259 0.966 -0.641 
18 75 0.259 0.966 -1.178 
19 75 0.259 0.966 -0.638 
20 75 0.259 0.966 -0.380 
21 70 0.342 0.940 -0.212 
22 70 0.342 0.940 -0.771 
23 70 0.342 0.940 -0.390 
24 70 0.342 0.940 -0.806 
25 70 0.342 0.940 -0.244 
26 65 0.423 0.906 -0.610 
27 65 0.423 0.906 -0.583 
28 65 0.423 0.906 0.138 
29 65 0.423 0.906 -0.648 
30 65 0.423 0.906 -0.533 
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upper grade item number angle with dim 1 a1 a2 d 
31 15 0.966 0.259 0.717 
32 15 0.966 0.259 0.906 
33 15 0.966 0.259 0.778 
34 15 0.966 0.259 0.918 
35 15 0.966 0.259 0.674 
36 0 1.000 0.000 0.849 
37 0 1.000 0.000 1.291 
38 0 1.000 0.000 0.406 
39 0 1.000 0.000 0.927 
40 0 1.000 0.000 0.784 
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Table C3: Item parameters for moderate confound and lower grade common items test 

battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 0.237 
2 0 1.000 0.000 0.798 
3 0 1.000 0.000 0.417 
4 0 1.000 0.000 -0.742 
5 0 1.000 0.000 0.668 
6 5 0.996 0.087 0.765 
7 5 0.996 0.087 1.262 
8 5 0.996 0.087 0.736 
9 5 0.996 0.087 0.145 

10 5 0.996 0.087 0.545 
11 10 0.985 0.174 0.104 
12 10 0.985 0.174 0.640 
13 10 0.985 0.174 0.344 
14 10 0.985 0.174 0.248 
15 10 0.985 0.174 1.288 
16 15 0.966 0.259 -0.040 
17 15 0.966 0.259 0.649 
18 15 0.966 0.259 0.267 
19 15 0.966 0.259 0.281 
20 15 0.966 0.259 0.047 
21 20 0.940 0.342 -0.117 
22 20 0.940 0.342 0.086 
23 20 0.940 0.342 -0.159 
24 20 0.940 0.342 0.402 
25 20 0.940 0.342 1.122 
26 25 0.906 0.423 1.001 
27 25 0.906 0.423 -1.072 
28 25 0.906 0.423 0.232 
29 25 0.906 0.423 0.693 
30 25 0.906 0.423 0.090 
31 85 0.087 0.996 -0.178 
32 85 0.087 0.996 0.072 
33 85 0.087 0.996 -0.832 
34 85 0.087 0.996 0.429 
35 85 0.087 0.996 -0.360 
36 90 0.000 1.000 -0.426 
37 90 0.000 1.000 -0.588 
38 90 0.000 1.000 -0.642 
39 90 0.000 1.000 -0.475 
40 90 0.000 1.000 -0.120 

common item number        
1 0 1.000 0.000 0.826 
2 0 1.000 0.000 0.632 
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common item number angle with dim 1 a1 a2 d 
3 5 0.996 0.087 0.735 
4 5 0.996 0.087 1.009 
5 10 0.985 0.174 0.160 
6 10 0.985 0.174 0.459 
7 15 0.966 0.259 0.218 
8 15 0.966 0.259 1.231 
9 20 0.940 0.342 0.809 

10 20 0.940 0.342 0.253 
11 25 0.906 0.423 0.339 
12 25 0.906 0.423 -0.158 
13 30 0.866 0.500 0.070 
14 30 0.866 0.500 -0.050 
15 90 0.000 1.000 -0.956 
16 90 0.000 1.000 -0.323 
17 85 0.087 0.996 -1.294 
18 85 0.087 0.996 -0.580 
19 80 0.174 0.985 -0.320 
20 80 0.174 0.985 -0.462 

upper grade item number        
1 90 0.000 1.000 -0.099 
2 90 0.000 1.000 -0.624 
3 90 0.000 1.000 -0.721 
4 90 0.000 1.000 -0.045 
5 90 0.000 1.000 -0.643 
6 85 0.087 0.996 -1.149 
7 85 0.087 0.996 -0.732 
8 85 0.087 0.996 0.277 
9 85 0.087 0.996 -0.482 

10 85 0.087 0.996 0.012 
11 80 0.174 0.985 -0.278 
12 80 0.174 0.985 -0.507 
13 80 0.174 0.985 -0.360 
14 80 0.174 0.985 -0.489 
15 80 0.174 0.985 -0.566 
16 75 0.259 0.966 0.445 
17 75 0.259 0.966 0.542 
18 75 0.259 0.966 0.040 
19 75 0.259 0.966 -0.459 
20 75 0.259 0.966 0.376 
21 70 0.342 0.940 0.173 
22 70 0.342 0.940 0.369 
23 70 0.342 0.940 0.360 
24 70 0.342 0.940 -0.871 
25 70 0.342 0.940 -0.340 
26 65 0.423 0.906 -0.159 
27 65 0.423 0.906 0.636 
28 65 0.423 0.906 -1.153 
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upper grade item number angel with dim 1 a1 a2 d 
29 65 0.423 0.906 -0.165 
30 65 0.423 0.906 -0.692 
31 15 0.966 0.259 -0.116 
32 15 0.966 0.259 1.264 
33 15 0.966 0.259 0.400 
34 15 0.966 0.259 0.407 
35 15 0.966 0.259 -0.521 
36 0 1.000 0.000 -0.134 
37 0 1.000 0.000 -0.315 
38 0 1.000 0.000 0.837 
39 0 1.000 0.000 0.043 
40 0 1.000 0.000 0.441 
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Table C4: Item parameters for moderate confound and both grades common items test 

battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 0.237 
2 0 1.000 0.000 0.798 
3 0 1.000 0.000 0.417 
4 0 1.000 0.000 -0.742 
5 0 1.000 0.000 0.668 
6 5 0.996 0.087 0.765 
7 5 0.996 0.087 1.262 
8 5 0.996 0.087 0.736 
9 5 0.996 0.087 0.145 
10 5 0.996 0.087 0.545 
11 10 0.985 0.174 0.104 
12 10 0.985 0.174 0.640 
13 10 0.985 0.174 0.344 
14 10 0.985 0.174 0.248 
15 10 0.985 0.174 1.288 
16 15 0.966 0.259 -0.040 
17 15 0.966 0.259 0.649 
18 15 0.966 0.259 0.267 
19 15 0.966 0.259 0.281 
20 15 0.966 0.259 0.047 
21 20 0.940 0.342 -0.117 
22 20 0.940 0.342 0.086 
23 20 0.940 0.342 -0.159 
24 20 0.940 0.342 0.402 
25 20 0.940 0.342 1.122 
26 25 0.906 0.423 1.001 
27 25 0.906 0.423 -1.072 
28 25 0.906 0.423 0.232 
29 25 0.906 0.423 0.693 
30 25 0.906 0.423 0.090 
31 85 0.087 0.996 -0.178 
32 85 0.087 0.996 0.072 
33 85 0.087 0.996 -0.832 
34 85 0.087 0.996 0.429 
35 85 0.087 0.996 -0.360 
36 90 0.000 1.000 -0.426 
37 90 0.000 1.000 -0.588 
38 90 0.000 1.000 -0.642 
39 90 0.000 1.000 -0.475 
40 90 0.000 1.000 -0.120 

common item number        
1 0 1.000 0.000 0.826 
2 5 0.996 0.087 0.735 
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common item number angel with dim 1 a1 a2 d 
3 10 0.985 0.174 0.160 
4 15 0.966 0.259 0.218 
5 20 0.940 0.342 0.809 
6 25 0.906 0.423 0.339 
7 30 0.866 0.500 0.070 
8 90 0.000 1.000 -0.956 
9 85 0.087 0.996 -1.294 
10 80 0.174 0.985 -0.320 
11 90 0.000 1.000 -0.329 
12 85 0.087 0.996 -0.809 
13 80 0.174 0.985 -0.054 
14 75 0.259 0.966 0.075 
15 70 0.342 0.940 0.087 
16 65 0.423 0.906 0.119 
17 60 0.500 0.866 -1.307 
18 0 1.000 0.000 -0.010 
19 5 0.996 0.087 0.223 
20 10 0.985 0.174 1.080 

upper grade item number        
1 90 0.000 1.000 -0.099 
2 90 0.000 1.000 -0.624 
3 90 0.000 1.000 -0.721 
4 90 0.000 1.000 -0.045 
5 90 0.000 1.000 -0.643 
6 85 0.087 0.996 -1.149 
7 85 0.087 0.996 -0.732 
8 85 0.087 0.996 0.277 
9 85 0.087 0.996 -0.482 
10 85 0.087 0.996 0.012 
11 80 0.174 0.985 -0.278 
12 80 0.174 0.985 -0.507 
13 80 0.174 0.985 -0.360 
14 80 0.174 0.985 -0.489 
15 80 0.174 0.985 -0.566 
16 75 0.259 0.966 0.445 
17 75 0.259 0.966 0.542 
18 75 0.259 0.966 0.040 
19 75 0.259 0.966 -0.459 
20 75 0.259 0.966 0.376 
21 70 0.342 0.940 0.173 
22 70 0.342 0.940 0.369 
23 70 0.342 0.940 0.360 
24 70 0.342 0.940 -0.871 
25 70 0.342 0.940 -0.340 
26 65 0.423 0.906 -0.159 
27 65 0.423 0.906 0.636 
28 65 0.423 0.906 -1.153 
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upper grade item number angel with dim 1 a1 a2 d 
29 65 0.423 0.906 -0.165 
30 65 0.423 0.906 -0.692 
31 15 0.966 0.259 -0.116 
32 15 0.966 0.259 1.264 
33 15 0.966 0.259 0.400 
34 15 0.966 0.259 0.407 
35 15 0.966 0.259 -0.521 
36 0 1.000 0.000 -0.134 
37 0 1.000 0.000 -0.315 
38 0 1.000 0.000 0.837 
39 0 1.000 0.000 0.043 
40 0 1.000 0.000 0.441 
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Table C5: Item parameters for no confound and lower grade common items test battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 1.887 
2 0 1.000 0.000 -1.115 
3 0 1.000 0.000 0.677 
4 0 1.000 0.000 -0.152 
5 0 1.000 0.000 -0.908 
6 5 0.996 0.087 -0.958 
7 5 0.996 0.087 -0.918 
8 5 0.996 0.087 -0.908 
9 5 0.996 0.087 0.832 

10 5 0.996 0.087 1.552 
11 10 0.985 0.174 -1.233 
12 10 0.985 0.174 -0.012 
13 10 0.985 0.174 0.988 
14 10 0.985 0.174 1.170 
15 10 0.985 0.174 0.535 
16 15 0.966 0.259 1.152 
17 15 0.966 0.259 -0.464 
18 15 0.966 0.259 0.282 
19 15 0.966 0.259 1.888 
20 15 0.966 0.259 0.503 
21 20 0.940 0.342 1.321 
22 20 0.940 0.342 0.921 
23 20 0.940 0.342 -0.942 
24 20 0.940 0.342 -0.342 
25 20 0.940 0.342 0.555 
26 25 0.906 0.423 -0.752 
27 25 0.906 0.423 -0.762 
28 25 0.906 0.423 -0.116 
29 25 0.906 0.423 -0.189 
30 25 0.906 0.423 0.510 
31 85 0.087 0.996 -0.281 
32 85 0.087 0.996 1.301 
33 85 0.087 0.996 0.381 
34 85 0.087 0.996 1.544 
35 85 0.087 0.996 -0.444 
36 90 0.000 1.000 -1.602 
37 90 0.000 1.000 0.296 
38 90 0.000 1.000 -0.899 
39 90 0.000 1.000 0.111 
40 90 0.000 1.000 -1.954 

common item number        
1 0 1.000 0.000 0.083 
2 0 1.000 0.000 -0.819 

common item number angle with dim 1 a1 a2 d 
3 5 0.996 0.087 0.152 
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4 5 0.996 0.087 -1.454 
5 10 0.985 0.174 -1.774 
6 10 0.985 0.174 -2.971 
7 15 0.966 0.259 0.611 
8 15 0.966 0.259 -1.154 
9 20 0.940 0.342 0.684 

10 20 0.940 0.342 -0.550 
11 25 0.906 0.423 -0.284 
12 25 0.906 0.423 -1.271 
13 30 0.866 0.500 -1.330 
14 30 0.866 0.500 0.485 
15 90 0.000 1.000 -0.723 
16 90 0.000 1.000 -0.402 
17 85 0.087 0.996 0.360 
18 85 0.087 0.996 0.262 
19 80 0.174 0.985 -1.486 
20 80 0.174 0.985 0.308 

upper grade item number        
1 90 0.000 1.000 -0.088 
2 90 0.000 1.000 -1.695 
3 90 0.000 1.000 1.804 
4 90 0.000 1.000 0.360 
5 90 0.000 1.000 1.139 
6 85 0.087 0.996 0.315 
7 85 0.087 0.996 0.838 
8 85 0.087 0.996 1.682 
9 85 0.087 0.996 -0.520 

10 85 0.087 0.996 0.595 
11 80 0.174 0.985 -0.397 
12 80 0.174 0.985 -0.305 
13 80 0.174 0.985 0.603 
14 80 0.174 0.985 -0.534 
15 80 0.174 0.985 1.403 
16 75 0.259 0.966 0.173 
17 75 0.259 0.966 -0.011 
18 75 0.259 0.966 3.034 
19 75 0.259 0.966 2.182 
20 75 0.259 0.966 0.759 
21 70 0.342 0.940 -1.902 
22 70 0.342 0.940 0.084 
23 70 0.342 0.940 0.309 
24 70 0.342 0.940 0.364 
25 70 0.342 0.940 1.208 
26 65 0.423 0.906 -0.504 
27 65 0.423 0.906 -2.039 
28 65 0.423 0.906 -0.903 

upper grade item number angle with dim 1 a1 a2 d 
29 65 0.423 0.906 -1.143 
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30 65 0.423 0.906 -0.951 
31 15 0.966 0.259 0.598 
32 15 0.966 0.259 -0.818 
33 15 0.966 0.259 1.295 
34 15 0.966 0.259 1.773 
35 15 0.966 0.259 -1.447 
36 0 1.000 0.000 -0.760 
37 0 1.000 0.000 -0.954 
38 0 1.000 0.000 -0.779 
39 0 1.000 0.000 -0.042 
40 0 1.000 0.000 1.579 
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Table C6: Item parameters for no confound and both grades common items test battery 

lower grade item number angle with dim 1 a1 a2 d 
1 0 1.000 0.000 1.887 
2 0 1.000 0.000 -1.115 
3 0 1.000 0.000 0.677 
4 0 1.000 0.000 -0.152 
5 0 1.000 0.000 -0.908 
6 5 0.996 0.087 -0.958 
7 5 0.996 0.087 -0.918 
8 5 0.996 0.087 -0.908 
9 5 0.996 0.087 0.832 
10 5 0.996 0.087 1.552 
11 10 0.985 0.174 -1.233 
12 10 0.985 0.174 -0.012 
13 10 0.985 0.174 0.988 
14 10 0.985 0.174 1.170 
15 10 0.985 0.174 0.535 
16 15 0.966 0.259 1.152 
17 15 0.966 0.259 -0.464 
18 15 0.966 0.259 0.282 
19 15 0.966 0.259 1.888 
20 15 0.966 0.259 0.503 
21 20 0.940 0.342 1.321 
22 20 0.940 0.342 0.921 
23 20 0.940 0.342 -0.942 
24 20 0.940 0.342 -0.342 
25 20 0.940 0.342 0.555 
26 25 0.906 0.423 -0.752 
27 25 0.906 0.423 -0.762 
28 25 0.906 0.423 -0.116 
29 25 0.906 0.423 -0.189 
30 25 0.906 0.423 0.510 
31 85 0.087 0.996 -0.281 
32 85 0.087 0.996 1.301 
33 85 0.087 0.996 0.381 
34 85 0.087 0.996 1.544 
35 85 0.087 0.996 -0.444 
36 90 0.000 1.000 -1.602 
37 90 0.000 1.000 0.296 
38 90 0.000 1.000 -0.899 
39 90 0.000 1.000 0.111 
40 90 0.000 1.000 -1.954 

common item number        
1 0 1.000 0.000 0.083 
2 5 0.996 0.087 0.152 
3 10 0.985 0.174 -1.774 
4 15 0.966 0.259 0.611 
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common item number angle with dim 1 a1 a2 d 
5 20 0.940 0.342 0.684 
6 25 0.906 0.423 -0.284 
7 30 0.866 0.500 -1.330 
8 90 0.000 1.000 -0.723 
9 85 0.087 0.996 0.360 
10 80 0.174 0.985 -1.486 
11 90 0.000 1.000 0.833 
12 85 0.087 0.996 1.245 
13 80 0.174 0.985 0.752 
14 75 0.259 0.966 -1.355 
15 70 0.342 0.940 0.586 
16 65 0.423 0.906 2.303 
17 60 0.500 0.866 -0.218 
18 0 1.000 0.000 -0.690 
19 5 0.996 0.087 -0.623 
20 10 0.985 0.174 1.386 

upper grade item number        
1 90 0.000 1.000 -0.088 
2 90 0.000 1.000 -1.695 
3 90 0.000 1.000 1.804 
4 90 0.000 1.000 0.360 
5 90 0.000 1.000 1.139 
6 85 0.087 0.996 0.315 
7 85 0.087 0.996 0.838 
8 85 0.087 0.996 1.682 
9 85 0.087 0.996 -0.520 
10 85 0.087 0.996 0.595 
11 80 0.174 0.985 -0.397 
12 80 0.174 0.985 -0.305 
13 80 0.174 0.985 0.603 
14 80 0.174 0.985 -0.534 
15 80 0.174 0.985 1.403 
16 75 0.259 0.966 0.173 
17 75 0.259 0.966 -0.011 
18 75 0.259 0.966 3.034 
19 75 0.259 0.966 2.182 
20 75 0.259 0.966 0.759 
21 70 0.342 0.940 -1.902 
22 70 0.342 0.940 0.084 
23 70 0.342 0.940 0.309 
24 70 0.342 0.940 0.364 
25 70 0.342 0.940 1.208 
26 65 0.423 0.906 -0.504 
27 65 0.423 0.906 -2.039 
28 65 0.423 0.906 -0.903 
29 65 0.423 0.906 -1.143 
30 65 0.423 0.906 -0.951 
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upper grade item number angle with dim 1 a1 a2 d 
31 15 0.966 0.259 0.598 
32 15 0.966 0.259 -0.818 
33 15 0.966 0.259 1.295 
34 15 0.966 0.259 1.773 
35 15 0.966 0.259 -1.447 
36 0 1.000 0.000 -0.760 
37 0 1.000 0.000 -0.954 
38 0 1.000 0.000 -0.779 
39 0 1.000 0.000 -0.042 
40 0 1.000 0.000 1.579 

 

 



 

 122 
 

Appendix D: Multifactor ANOVAs for percent correctly classified, 

false negative rate, and false positive rate by grade 

Table D1: Lower grade multifactor ANOVA on raw data for percent correctly classified (PC)  

Dependent Variable: PC 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 6.625 47 0.141 2861.857 0.000 0.849
Intercept 19598.256 1 19598.256 397875195.133 0.000 1.000
CONFOUND 0.335 2 0.167 3400.314 0.000 0.221
COMMON 0.000 1 0.000 7.705 0.006 0.000
ABILITY 0.002 1 0.002 46.296 0.000 0.002
CORRELAT 6.154 3 2.051 41646.316 0.000 0.839
CONFOUND * COMMON 0.019 2 0.010 197.827 0.000 0.016
CONFOUND * ABILITY 0.014 2 0.007 137.644 0.000 0.011
COMMON * ABILITY 0.000 1 0.000 6.203 0.013 0.000
CONFOUND * COMMON * 
ABILITY 0.008 2 0.004 83.244 0.000 0.007
CONFOUND * CORRELAT 0.040 6 0.007 136.644 0.000 0.033
COMMON * CORRELAT 0.002 3 0.001 11.789 0.000 0.001
CONFOUND * COMMON * 
CORRELAT 0.005 6 0.001 17.627 0.000 0.004
ABILITY * CORRELAT 0.005 3 0.002 33.220 0.000 0.004
CONFOUND * ABILITY * 
CORRELAT 0.017 6 0.003 58.021 0.000 0.014
COMMON * ABILITY * 
CORRELAT 0.016 3 0.005 105.856 0.000 0.013
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.007 6 0.001 23.951 0.000 0.006
Error 1.180 23952 0.000
Total 19606.062 24000
Corrected Total 7.805 23999
a. R Squared = .849 (Adjusted R Squared = .849)

Tests of Between-Subjects Effects
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Table D2: Lower grade multifactor ANOVA on transformed data for   
percent correctly classified (PC_T)

Dependent Variable: PC_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 75.220 47 1.600 2843.739 0.000 0.848
Intercept 151552.717 1 151552.717 269288594.932 0.000 1.000
CONFOUND 3.712 2 1.856 3297.857 0.000 0.216
COMMON 0.004 1 0.004 7.276 0.007 0.000
ABILITY 0.022 1 0.022 39.194 0.000 0.002
CORRELAT 70.159 3 23.386 41554.513 0.000 0.839
CONFOUND * COMMON 0.221 2 0.111 196.515 0.000 0.016
CONFOUND * ABILITY 0.139 2 0.069 123.214 0.000 0.010
COMMON * ABILITY 0.004 1 0.004 7.223 0.007 0.000
CONFOUND * COMMON * 
ABILITY 0.089 2 0.045 79.201 0.000 0.007

CONFOUND * CORRELAT 0.318 6 0.053 94.260 0.000 0.023
COMMON * CORRELAT 0.017 3 0.006 10.289 0.000 0.001
CONFOUND * COMMON * 
CORRELAT 0.057 6 0.009 16.793 0.000 0.004
ABILITY * CORRELAT 0.048 3 0.016 28.486 0.000 0.004
CONFOUND * ABILITY * 
CORRELAT 0.190 6 0.032 56.171 0.000 0.014
COMMON * ABILITY * 
CORRELAT 0.165 3 0.055 97.669 0.000 0.012
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.074 6 0.012 22.038 0.000 0.005
Error 13.480 23952 0.001
Total 151641.417 24000
Corrected Total 88.700 23999
a. R Squared = .848 (Adjusted R Squared = .848)

Tests of Between-Subjects Effects
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Table D3: Lower grade multifactor ANOVA on raw data for the false negative rate (FN)  

Dependent Variable: FN 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 4.613 47 0.098 1079.234 0.000 0.679
Intercept 56.169 1 56.169 617615.738 0.000 0.963
CONFOUND 2.359 2 1.179 12966.908 0.000 0.520
COMMON 0.146 1 0.146 1609.324 0.000 0.063
ABILITY 0.008 1 0.008 83.864 0.000 0.003
CORRELAT 1.047 3 0.349 3835.740 0.000 0.325
CONFOUND * COMMON 0.016 2 0.008 88.897 0.000 0.007
CONFOUND * ABILITY 0.081 2 0.040 443.428 0.000 0.036
COMMON * ABILITY 0.028 1 0.028 311.035 0.000 0.013
CONFOUND * COMMON * 
ABILITY 0.045 2 0.023 248.151 0.000 0.020
CONFOUND * CORRELAT 0.460 6 0.077 843.694 0.000 0.174
COMMON * CORRELAT 0.019 3 0.006 70.531 0.000 0.009
CONFOUND * COMMON * 
CORRELAT 0.073 6 0.012 133.679 0.000 0.032
ABILITY * CORRELAT 0.010 3 0.003 34.963 0.000 0.004
CONFOUND * ABILITY * 
CORRELAT 0.056 6 0.009 103.043 0.000 0.025
COMMON * ABILITY * 
CORRELAT 0.033 3 0.011 121.574 0.000 0.015
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.232 6 0.039 425.684 0.000 0.096
Error 2.178 23952 0.000
Total 62.960 24000
Corrected Total 6.791 23999
a. R Squared = .679 (Adjusted R Squared = .679)

Tests of Between-Subjects Effects
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Table D4: Lower grade multifactor ANOVA on transformed data for the  
false negative rate (FN_T) 

Dependent Variable: FN_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 89.308 47 1.900 979.020 0.000 0.658
Intercept 4595.231 1 4595.231 2367602.446 0.000 0.990
CONFOUND 46.235 2 23.118 11910.838 0.000 0.499
COMMON 3.490 1 3.490 1798.109 0.000 0.070
ABILITY 0.281 1 0.281 145.020 0.000 0.006
CORRELAT 20.507 3 6.836 3521.958 0.000 0.306
CONFOUND * COMMON 0.473 2 0.236 121.808 0.000 0.010
CONFOUND * ABILITY 1.685 2 0.843 434.181 0.000 0.035
COMMON * ABILITY 0.525 1 0.525 270.265 0.000 0.011
CONFOUND * COMMON * 
ABILITY 0.797 2 0.399 205.399 0.000 0.017

CONFOUND * CORRELAT 6.972 6 1.162 598.664 0.000 0.130
COMMON * CORRELAT 0.342 3 0.114 58.805 0.000 0.007
CONFOUND * COMMON * 
CORRELAT 1.472 6 0.245 126.394 0.000 0.031
ABILITY * CORRELAT 0.192 3 0.064 32.916 0.000 0.004
CONFOUND * ABILITY * 
CORRELAT 1.469 6 0.245 126.172 0.000 0.031
COMMON * ABILITY * 
CORRELAT 0.479 3 0.160 82.296 0.000 0.010
CONFOUND * COMMON * 
ABILITY * CORRELAT 4.388 6 0.731 376.799 0.000 0.086
Error 46.488 23952 0.002
Total 4731.026 24000
Corrected Total 135.795 23999
a. R Squared = .658 (Adjusted R Squared = .657)

Tests of Between-Subjects Effects
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Table D5: Lower grade multifactor ANOVA on raw data for the false positive rate (FP)  

Dependent Variable: FP 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 4.184 47 0.089 1083.446 0.000 0.680
Intercept 55.219 1 55.219 672017.790 0.000 0.966
CONFOUND 0.944 2 0.472 5745.261 0.000 0.324
COMMON 0.132 1 0.132 1604.416 0.000 0.063
ABILITY 0.018 1 0.018 222.082 0.000 0.009
CORRELAT 2.139 3 0.713 8677.491 0.000 0.521
CONFOUND * COMMON 0.057 2 0.028 346.578 0.000 0.028
CONFOUND * ABILITY 0.083 2 0.041 503.839 0.000 0.040
COMMON * ABILITY 0.023 1 0.023 276.414 0.000 0.011
CONFOUND * COMMON * 
ABILITY 0.015 2 0.008 93.491 0.000 0.008
CONFOUND * CORRELAT 0.317 6 0.053 643.877 0.000 0.139
COMMON * CORRELAT 0.012 3 0.004 46.809 0.000 0.006
CONFOUND * COMMON * 
CORRELAT 0.060 6 0.010 121.029 0.000 0.029
ABILITY * CORRELAT 0.028 3 0.009 112.588 0.000 0.014
CONFOUND * ABILITY * 
CORRELAT 0.125 6 0.021 253.393 0.000 0.060
COMMON * ABILITY * 
CORRELAT 0.020 3 0.007 81.188 0.000 0.010
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.212 6 0.035 429.446 0.000 0.097
Error 1.968 23952 0.000
Total 61.372 24000
Corrected Total 6.152 23999
a. R Squared = .680 (Adjusted R Squared = .679)

Tests of Between-Subjects Effects
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Table D6: Lower grade multifactor ANOVA on transformed data for the  
false positive rate (FP_T) 

Dependent Variable: FP_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 87.370 47 1.859 1039.102 0.000 0.671
Intercept 4559.084 1 4559.084 2548415.738 0.000 0.991
CONFOUND 20.482 2 10.241 5724.425 0.000 0.323
COMMON 2.674 1 2.674 1494.868 0.000 0.059
ABILITY 0.303 1 0.303 169.593 0.000 0.007
CORRELAT 45.187 3 15.062 8419.461 0.000 0.513
CONFOUND * COMMON 0.904 2 0.452 252.561 0.000 0.021
CONFOUND * ABILITY 1.632 2 0.816 456.179 0.000 0.037
COMMON * ABILITY 0.520 1 0.520 290.657 0.000 0.012
CONFOUND * COMMON * 
ABILITY 0.572 2 0.286 159.996 0.000 0.013
CONFOUND * CORRELAT 5.349 6 0.892 498.368 0.000 0.111
COMMON * CORRELAT 0.255 3 0.085 47.459 0.000 0.006
CONFOUND * COMMON * 
CORRELAT 1.168 6 0.195 108.783 0.000 0.027
ABILITY * CORRELAT 0.475 3 0.158 88.495 0.000 0.011
CONFOUND * ABILITY * 
CORRELAT 2.509 6 0.418 233.758 0.000 0.055
COMMON * ABILITY * 
CORRELAT 0.465 3 0.155 86.604 0.000 0.011
CONFOUND * COMMON * 
ABILITY * CORRELAT 4.875 6 0.812 454.137 0.000 0.102
Error 42.850 23952 0.002
Total 4689.304 24000
Corrected Total 130.220 23999
a. R Squared = .671 (Adjusted R Squared = .670)

Tests of Between-Subjects Effects
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Table D7: Upper grade multifactor ANOVA on raw data for percent correctly classified (PC)  

Dependent Variable: PC 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 5.197 47 0.111 2502.227 0.000 0.831
Intercept 19663.353 1 19663.353 444945480.558 0.000 1.000
CONFOUND 0.105 2 0.052 1184.995 0.000 0.090
COMMON 0.017 1 0.017 381.808 0.000 0.016
ABILITY 0.001 1 0.001 24.355 0.000 0.001
CORRELAT 5.038 3 1.679 37998.797 0.000 0.826
CONFOUND * COMMON 0.001 2 0.000 5.724 0.003 0.000
CONFOUND * ABILITY 0.003 2 0.001 29.806 0.000 0.002
COMMON * ABILITY 0.001 1 0.001 19.575 0.000 0.001
CONFOUND * COMMON * 
ABILITY 0.002 2 0.001 17.530 0.000 0.001
CONFOUND * CORRELAT 0.004 6 0.001 14.560 0.000 0.004
COMMON * CORRELAT 0.002 3 0.001 13.459 0.000 0.002
CONFOUND * COMMON * 
CORRELAT 0.002 6 0.000 5.908 0.000 0.001
ABILITY * CORRELAT 0.014 3 0.005 106.030 0.000 0.013
CONFOUND * ABILITY * 
CORRELAT 0.005 6 0.001 20.427 0.000 0.005
COMMON * ABILITY * 
CORRELAT 0.003 3 0.001 23.042 0.000 0.003
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.001 6 0.000 5.573 0.000 0.001
Error 1.059 23952 0.000
Total 19669.609 24000
Corrected Total 6.256 23999
a. R Squared = .831 (Adjusted R Squared = .830)

Tests of Between-Subjects Effects
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Table D8: Upper grade multifactor ANOVA on transformed data for   
percent correctly classified (PC_T)

Dependent Variable: PC_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 60.194 47 1.281 2471.775 0.000 0.829
Intercept 152116.025 1 152116.025 293579403.020 0.000 1.000
CONFOUND 1.234 2 0.617 1190.853 0.000 0.090
COMMON 0.196 1 0.196 377.870 0.000 0.016
ABILITY 0.008 1 0.008 14.580 0.000 0.001
CORRELAT 58.353 3 19.451 37540.081 0.000 0.825
CONFOUND * COMMON 0.006 2 0.003 5.655 0.004 0.000
CONFOUND * ABILITY 0.029 2 0.015 28.107 0.000 0.002
COMMON * ABILITY 0.008 1 0.008 15.688 0.000 0.001
CONFOUND * COMMON * 
ABILITY 0.017 2 0.009 16.470 0.000 0.001
CONFOUND * CORRELAT 0.033 6 0.005 10.573 0.000 0.003
COMMON * CORRELAT 0.021 3 0.007 13.264 0.000 0.002
CONFOUND * COMMON * 
CORRELAT 0.019 6 0.003 6.135 0.000 0.002
ABILITY * CORRELAT 0.160 3 0.053 102.814 0.000 0.013
CONFOUND * ABILITY * 
CORRELAT 0.060 6 0.010 19.398 0.000 0.005
COMMON * ABILITY * 
CORRELAT 0.036 3 0.012 22.900 0.000 0.003
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.015 6 0.003 4.881 0.000 0.001
Error 12.411 23952 0.001
Total 152188.630 24000
Corrected Total 72.605 23999
a. R Squared = .829 (Adjusted R Squared = .829)

Tests of Between-Subjects Effects
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Table D9: Upper grade multifactor ANOVA on raw data for the false negative rate (FN)  

Dependent Variable: FN 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 0.997 47 0.021 260.097 0.000 0.338
Intercept 53.984 1 53.984 661877.819 0.000 0.965
CONFOUND 0.006 2 0.003 38.171 0.000 0.003
COMMON 0.043 1 0.043 533.273 0.000 0.022
ABILITY 0.027 1 0.027 329.665 0.000 0.014
CORRELAT 0.456 3 0.152 1861.958 0.000 0.189
CONFOUND * COMMON 0.040 2 0.020 242.883 0.000 0.020
CONFOUND * ABILITY 0.075 2 0.038 459.791 0.000 0.037
COMMON * ABILITY 0.004 1 0.004 45.795 0.000 0.002
CONFOUND * COMMON * 
ABILITY 0.008 2 0.004 46.694 0.000 0.004
CONFOUND * CORRELAT 0.059 6 0.010 121.302 0.000 0.029
COMMON * CORRELAT 0.015 3 0.005 61.878 0.000 0.008
CONFOUND * COMMON * 
CORRELAT 0.037 6 0.006 75.575 0.000 0.019
ABILITY * CORRELAT 0.085 3 0.028 345.813 0.000 0.042
CONFOUND * ABILITY * 
CORRELAT 0.053 6 0.009 108.404 0.000 0.026
COMMON * ABILITY * 
CORRELAT 0.036 3 0.012 145.446 0.000 0.018
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.054 6 0.009 110.628 0.000 0.027
Error 1.954 23952 0.000
Total 56.934 24000
Corrected Total 2.951 23999
a. R Squared = .338 (Adjusted R Squared = .337)

Tests of Between-Subjects Effects
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Table D10: Upper grade multifactor ANOVA on transformed data for the   
false negative rate (FN_T)

Dependent Variable: FN_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 22.202 47 0.472 262.255 0.000 0.340
Intercept 4565.773 1 4565.773 2534753.249 0.000 0.991
CONFOUND 0.139 2 0.070 38.711 0.000 0.003
COMMON 0.995 1 0.995 552.665 0.000 0.023
ABILITY 0.640 1 0.640 355.310 0.000 0.015
CORRELAT 10.270 3 3.423 1900.453 0.000 0.192
CONFOUND * COMMON 0.852 2 0.426 236.589 0.000 0.019
CONFOUND * ABILITY 1.475 2 0.738 409.571 0.000 0.033
COMMON * ABILITY 0.105 1 0.105 58.532 0.000 0.002
CONFOUND * COMMON * 
ABILITY 0.148 2 0.074 40.978 0.000 0.003
CONFOUND * CORRELAT 1.388 6 0.231 128.401 0.000 0.031
COMMON * CORRELAT 0.356 3 0.119 65.856 0.000 0.008
CONFOUND * COMMON * 
CORRELAT 0.763 6 0.127 70.559 0.000 0.017
ABILITY * CORRELAT 2.042 3 0.681 377.863 0.000 0.045
CONFOUND * ABILITY * 
CORRELAT 1.087 6 0.181 100.606 0.000 0.025
COMMON * ABILITY * 
CORRELAT 0.734 3 0.245 135.914 0.000 0.017
CONFOUND * COMMON * 
ABILITY * CORRELAT 1.207 6 0.201 111.686 0.000 0.027
Error 43.144 23952 0.002
Total 4631.120 24000
Corrected Total 65.346 23999
a. R Squared = .340 (Adjusted R Squared = .338)

Tests of Between-Subjects Effects
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Table D11: Upper grade multifactor ANOVA on raw data for the false positive rate (FP)  

Dependent Variable: FP 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 3.213 47 0.068 963.787 0.000 0.654
Intercept 53.962 1 53.962 760730.122 0.000 0.969
CONFOUND 0.070 2 0.035 491.866 0.000 0.039
COMMON 0.006 1 0.006 87.220 0.000 0.004
ABILITY 0.039 1 0.039 545.906 0.000 0.022
CORRELAT 2.683 3 0.894 12606.914 0.000 0.612
CONFOUND * COMMON 0.044 2 0.022 312.688 0.000 0.025
CONFOUND * ABILITY 0.061 2 0.030 428.561 0.000 0.035
COMMON * ABILITY 0.008 1 0.008 115.533 0.000 0.005
CONFOUND * COMMON * 
ABILITY 0.011 2 0.006 78.284 0.000 0.006
CONFOUND * CORRELAT 0.070 6 0.012 163.603 0.000 0.039
COMMON * CORRELAT 0.022 3 0.007 102.220 0.000 0.013
CONFOUND * COMMON * 
CORRELAT 0.035 6 0.006 81.699 0.000 0.020
ABILITY * CORRELAT 0.031 3 0.010 143.593 0.000 0.018
CONFOUND * ABILITY * 
CORRELAT 0.050 6 0.008 116.665 0.000 0.028
COMMON * ABILITY * 
CORRELAT 0.027 3 0.009 125.406 0.000 0.015
CONFOUND * COMMON * 
ABILITY * CORRELAT 0.058 6 0.010 136.726 0.000 0.033
Error 1.699 23952 0.000
Total 58.874 24000
Corrected Total 4.912 23999
a. R Squared = .654 (Adjusted R Squared = .653)

Tests of Between-Subjects Effects
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Table D12: Upper grade multifactor ANOVA on transformed data for the  
false positive rate (FP_T) 

Dependent Variable: FP_T 
Source Type III SS df Mean Sq F Sig. Partial η2

Corrected Model 69.216 47 1.473 931.300 0.000 0.646
Intercept 4525.926 1 4525.926 2862139.472 0.000 0.992
CONFOUND 1.338 2 0.669 422.918 0.000 0.034
COMMON 0.210 1 0.210 132.492 0.000 0.006
ABILITY 1.045 1 1.045 660.674 0.000 0.027
CORRELAT 57.766 3 19.255 12176.733 0.000 0.604
CONFOUND * COMMON 0.959 2 0.479 303.196 0.000 0.025
CONFOUND * ABILITY 1.296 2 0.648 409.720 0.000 0.033
COMMON * ABILITY 0.224 1 0.224 141.643 0.000 0.006
CONFOUND * COMMON * 
ABILITY 0.245 2 0.123 77.505 0.000 0.006
CONFOUND * CORRELAT 1.356 6 0.226 142.916 0.000 0.035
COMMON * CORRELAT 0.611 3 0.204 128.735 0.000 0.016
CONFOUND * COMMON * 
CORRELAT 0.739 6 0.123 77.851 0.000 0.019
ABILITY * CORRELAT 0.800 3 0.267 168.653 0.000 0.021
CONFOUND * ABILITY * 
CORRELAT 0.921 6 0.153 97.057 0.000 0.024
COMMON * ABILITY * 
CORRELAT 0.601 3 0.200 126.586 0.000 0.016
CONFOUND * COMMON * 
ABILITY * CORRELAT 1.108 6 0.185 116.759 0.000 0.028
Error 37.876 23952 0.002
Total 4633.017 24000
Corrected Total 107.091 23999
a. R Squared = .646 (Adjusted R Squared = .646)

Tests of Between-Subjects Effects

 

 

 

 

 

 

 

 



 

 134 
 

References 
 
Abedi, J. (1994). NAEP TRP Task 3e: Achievement Dimensionality, Section A. Los 

Angelas, CA: National Center for Research on Evaluation, Student Testing, and 

Standards. 

Ackerman, T. A. (1989). Unidimensional IRT calibration of compensatory and 

noncompensatory multidimensional items. Applied Psychological Measurement, 

13(2), 113-127. 

Ackerman, T. A. (1994). Using multidimensional item response theory to understand 

what items and tests are measuring. Applied Measurement in Education, 7, 255. 

Ackerman, T. A., Gierl, M. J., & Walker, C. M. (2003). Using multidimensional item 

response theory to evaluate educational and psychological tests. Educational 

Measurement: Issues and Practice, 22(3), 37-53. 

Adams, R. J., Wilson, M. R., & Wang, W. C. (1997). The multidimensional random 

coefficients multinomial logit model. Applied Psychological Measurement, 21, 1-

24. 

Ansley, T. N., & Forsyth, R. A. (1985). An examination of the characteristics of 

unidimensional IRT parameter estimates derived from two-dimensional data. 

Applied Psychological Measurement, 9, 37-48. 

Betebenner, D. W., Shang, Y., Xiang, Y., Zhao, Y., & Yue, X. (2008). The impact of 

performance level misclassification on the accuracy and precision of percent at 

performance level measures. Journal of Educational Measurement, 45, 119-138. 



 

 135 
 

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's 

ability. In F. M. Lord & M. R. Novick (Eds.), Statistical Theories of Mental Test 

Scores (pp. 397-472). Reading, MA: Addison-Wesley. 

Briggs, D. C., & Wilson, M. (2003). An introduction to multidimensional measurement 

using Rasch models. Journal of Applied Measurement, 4, 87-100. 

Bock, D. R. (1983). The mental growth curve reexamined. In D. J. Weiss (Ed.), New 

Horizons In Testing (pp. 205-218). New York: Academic Press. 

Bock, R. D. & Zimowski, M. F. (1997). Multiple group IRT. In R. K. Hambleton & W.J. 

van der Linden (Eds.), Handbook of Modern Item Response Theory (pp. 433-

448). New York: Springer-Verlang. 

Camilli, G., & Wang, M.-m., & Fresq, J. (1995). Effects of dimensionality on equating 

the Law School Admission Test. Journal of Educational Measurement, 32, 79. 

Cao, Y. (2008). Mixed-format test equating: Effects of dimensionality and common item 

sets. Unpublished Doctoral Dissertation. University of Maryland. 

Douglas, K. M. (2007). A general method for estimating the classification reliability of 

complex decisions based on configural combinations of multiple assessment 

scores. Unpublished Doctoral Dissertation. University of Maryland. 

Drasgow, F., & Parsons, C. K. (1983). Application of unidimensional item response 

theory models to multidimensional data. Applied Psychological Measurement, 7, 

189-199. 

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, 

New Jersey: Lawrence Erlbaum. 



 

 136 
 

Fraser, C. (1988). NOHARM [Computer program]. Armidale, New South Wales, 

Australia. 

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and 

applications. Boston, MA: Kluwer Nijhoff Publishing. 

Harris, D. J. (2007). Practical issues in vertical scaling. In N. J. Dorans, M. Pommerich & 

P. W. Holland (Eds.), Linking and aligning scores and scales. (pp. 233-251). New 

York: Springer 

Harris, D. J., & Hoover, H. D. (1987). An Application of the three-parameter IRT model 

to vertical equating. Applied Psychological Measurement, 11, 151-159. 

Herbert, J. P., & Hauser, R. M. (Eds.). (1999). High stakes: Testing for tracking, 

promotion, and graduation: National Research Council. 

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: methods and 

practices (2nd ed.). New York: Springer. 

Lau, A. (1996). Robustness of a unidimensional computerized mastery testing procedure 

with multidimensional testing data. Unpublished Doctoral Dissertation. 

University of Iowa. 

Li, Y. H., & Lissitz, R. W. (2000). An evaluation of the accuracy of multidimensional 

IRT linking. Applied Psychological Measurement, 24, 115-138. 

Lin, P. (2009). IRT versus factor analysis approaches in analyzing multigroup 

multidimensional binary data: The effect of structural orthogonality and the 

equivalence in test structure, item difficulty, and examinee groups. Unpublished 

Doctoral Dissertation. University of Maryland. 



 

 137 
 

Linn, R. (1989). Has item response theory increased the validity of achievement test 

scores? (No. 302): UCLA Center for Research on Evaluation, Standards, and 

Student Testing. 

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch model. Journal 

of Educational Measurement, 17, 179. 

McBride, J., & Wise, L. (2000). Developing a vertical scale for the Florida 

comprehensive assessment test (FCAT). A HummRRO report under subcontract 

to Harcourt Assessment, San Antonio, TX. 

McCall, M. (2007). Vertical scaling  and the development of skills. Paper presented at the 

Washington State Assessment Conference, Seattle, WA. 

Mignani, S., Monari, P., Cagnone, S., & Ricci, R. (2006). Multidimensional versus 

unidimensional models for ability testing. In S. Zani, A. Cerioli, M. Riani & M. 

Vichi (Eds.), Data analysis, classification, and the forward search (pp. 339-348). 

New York: Springer. 

Mislevy, R. J., & Bock, R. D. (1982). Bilog, maximum likelihood item analysis and test 

scoring: Logistic model [Computer software]. Mooresville, IN: Scientific 

Software, Inc. 

No Child Left Behind Act of 2001. Public Law No. 107-110, 115 Stat. 1425. 

Paris, S. G. (2005). Reinterpreting the development of reading skills. Reading Research 

Quarterly, 40, 184-202. 

Patz, R. J., & Yao, L. (2007). Methods and models for vertical scaling. In N. J. Dorans, 

M. Pommerich & P. W. Holland (Eds.), Linking and aligning scores and scales. 

(pp. 253-272). New York: Springer. 



 

 138 
 

Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary note on reporting eta-

squared values from multifactor ANOVA designs. Educational & Psychological 

Measurement, 64, 916-924. 

Program for International Student Assessment Technical Report.  (2003).). Paris: 

Organization for Economic Co-operation and Development. 

Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. 

Applied Psychological Measurement, 9, 401-412. 

Reckase, M. D. (1990). Unidimensional Data from Multidimensional Tests and 

Multidimensional Data from Unidimensional Tests. Paper presented at the annual 

meeting of the American Educational Research Association, Boston, MA.  

Reckase, M. D. (1997). The past and future of multidimensional item response theory. 

Applied Psychological Measurement, 21, 25-36. 

Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer. 

Reckase, M. D., Carlson, J. E., Ackerman, T. A., & Spray, J. A. (1986). The 

interpretation of unidimensional IRT parameters when estimated from 

multidimensional data. Paper presented at the annual meeting of the Psychometric 

Society, Toronto. 

Reckase, M. D., & Li, Y. H. (2007). Estimating change in achievement when content 

specifications change: A Multidimensional Item Response Theory Approach. In 

R. W. Lissitz (Ed.), Assessing and Modeling Cognitive Development in School 

(pp. 189-204). Maple Grove, MN: JAM Press. 

Reckase, M. D., & Martineau, J. A. (2004). The vertical scaling of science achievement 

tests. Unpublished Report, Michigan State University, East Lansing, MI. 



 

 139 
 

Sheskin, D. J. (2007). Handbook of Parametric and Nonparametric Statistical 

Procedures. Boca Raton: Chapman & Hall/CRC. 

Skaggs, G., & Lissitz, R. W. (1986). IRT test equating: relevant issues and a review of 

recent research. Review of Educational Research, 56(4), 495-529. 

Skaggs, G., & Lissitz, R. W. (1988). Effect of examinee ability on test equating 

invariance.  Applied Psychological Measurement, 12, 69-82. 

Sloane, K., Wilson, M., & Samson, S. (1996). Designing an embedded assessment 

system: From principles to practice: University of California, Berkley. 

Stevens, J. C. (1992). Applied multivariate statistics for the social sciences. Hillside, NJ: 

Lawrence Erlbaum. 

Stout, W. (2007). Skills diagnosis using IRT-based continuous latent trait models. 

Journal of Educational Measurement, 44, 313-324. 

Sympson, J. B. (1978). A model for testing with multidimensional items. Paper presented 

at the Computerized Adaptive Testing Conference, Minnesota. 

Tong, Y., & Kolen, M. J. (2007). Comparisons of methodologies and results in vertical 

scaling for educational achievement tests. Applied Measurement in Education, 20, 

227. 

Walker, C. M., & Beretvas, S. N. (2003). Comparing multidimensional and 

unidimensional proficiency classifications: multidimensional IRT as a diagnostic 

aid. Journal of Educational Measurement, 40, 255-275. 

Wang, W.-C. (1994). Implementation and application of the multidimensional random 

coefficient logit model. Unpublished doctoral dissertation, University of 

California, Berkley. 



 

 140 
 

Way, W. D., Ansley, T. N., & Forsyth, R. A. (1988). The comparative effects of 

compensatory and noncompensatory two-dimensional data on unidimensional 

IRT estimates. Applied Psychological Measurement, 12, 239-252. 

Williams V. S., Pommerich M., & Thissen D. (1998). A comparison of developmental 

scales based on Thurstone methods and item response theory. Journal of 

Educational Measurement, 35, 93-107. 

Wingersky, M. S., Barton, M. A., & Lord, F. M. (1982). LOGIST [Computer program]. 

Princeton, NJ: Educational Testing Service. 

Wisconsin Knowledge and Concept Examinations-CRT: December 2004 Field 

Test/Standardization Technical Report.  (2005).). Monterey, CA: CTB McGraw 

Hill. 

Yao, L. (2003). BMIRT: Bayesian multivariate item response theory [Computer 

software]. Monterey, CA: CTB/McGraw-Hill. 

Yon, H. (2006). Multidimensional item response theory (MIRT) approaches to vertical 

scaling. Unpublished doctoral dissertation, Michigan State University, East 

Lansing, MI. 

Young, M. J. (2006). Vertical Scales. In S. M. Downing & T. M. Haladyna (Eds.), 

Handbook of test development. (pp. 469-485). Mahwah, NJ, US: Lawrence 

Erlbaum Associates  

Zieky, M. J. (2006). So much has changed: How the setting of cutscores has evolved 

since the 1980s. In G. Cizek (Ed.). Setting performance standards: Concepts, 

methods, and perspectives (pp. 53-88). Mahwah, NJ: Erlbaum.  



 

 141 
 

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (1996). BILOG-MG: 

Multiple-group IRT analysis and test maintenance for binary items [Computer 

software]. Chicago: Scientific Software International. 

 
 


