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When Item Response Theory (IRT) is operationally applied for large scale
assessments, unidimensionality is typically assumed. This assumptiongdoaiire
the test measures a single latent trait. Furthermore, when teststaadlyescaled
using IRT, the assumption of unidimensionality would require that the batterysof tes
across grades measures the same trait, just at different levelsooitgiff Many
researchers have shown that this assumption may not hold for certain tegsbatter
and, therefore, the results from applying a unidimensional model to multidimensional
data may be called into question. This research investigated the impact on
classification accuracy when multidimensional vertical scaling datasasimated
with a unidimensional model. The multidimensional compensatory two-parameter
logistic model (MC2PL) was the data-generating model for two leveldasita

administered to simulees of correspondingly different abilities. Simulatadrdm



the MC2PL model was estimated according to a unidimensional two-parameter
logistic (2PL) model and classification decisions were made from a $edula
bookmark standard setting procedure based on the unidimensional estimation results.
Those unidimensional classification decisions were compared to the “true”
unidimensional classification (proficient or not proficient) of simulees in
multidimensional space obtained by projecting a simulee’s generatng tw
dimensional theta vector onto a unidimensional scale via a number correct
transformation on the entire test battery (i.e. across both grades). Specifica
conditional classification accuracy measures were considered. Tt pgoportion

of truly not proficient simulees classified correctly and the proportiorubf t

proficient simulees classified correctly were the criterion var&atfanipulated

factors in this simulation study included the confound of item difficulty with
dimensionality, the difference in mean abilities on both dimensions of the simulees
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and the correlation of the two abilities. Results suggested that the correlathe

two abilities and the confound of item difficulty with dimensionality both had an
effect on the conditional classification accuracy measures. Ther&teasrino
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Chapter 1: Rationale

The ability to measure student growth over time has become increasingly
important especially in the context of the No Child Left Behind Act of 2001 (NCLB).
Thus students’ test scores need to be placed on a common scale in order for grade to
grade growth to be measured and compared even if students take diffesent best
process for doing this is called vertical scaling (Harris, 2007; Kolen &rizme, 2004).
One technique used to create a vertical scale, as summarized in Skaggsiend Lis
(1986), is Item Response Theory (IRT).

When IRT is operationally applied for large scale assessments, unicomegiigi
is typically assumed. This assumption requires that the test measurgle dasent trait.
Furthermore, when tests are vertically scaled using IRT, the assumption of
unidimensionality would require that the battery of tests across gradssirase the same
trait, just at different levels of difficulty. This assumption of unidimensityn
vertical scaling can be unrealistic and problematic in two very distinct.way

First, assuming the vertically scaled tests are measuring the sdtneaty be
unrealistic if content areas covered on the tests are somewhat diffecms grardes. For
example, one might expect that d"If¥ade mathematics test with more emphasis on
geometry measures something different than dhgtdde mathematics test with more
emphasis on algebra even though both are called “mathematics,” or thgtaalé
science test with more emphasis on earth science measures sometbiagtdtian a®
grade science test with more emphasis on simple machines. While thereajipteiaty

be reasoning questions across the pairs of tests mentioned above that asaess the s



trait, those tests, on the whole, may measure different and/or multiple traits and a
unidimensional IRT framework would be inappropriate. From an aptitude testing
perspective, however, it is possible to conceptualize that the same trait cowddheed
across grades, but just at different levels of reasoning. That is, there coglaeoal
mathematical reasoning tests designed for, say, third and fourth graders. #dso, ot
academic subjects, even in an achievement testing context, might lendlvesrtsa
more static dimensionality structure. For example, English language arsageling
tests may have the same dimensionality across grades or at least éoutwagyrades
(Loyd & Hoover, 1980; Skaggs & Lissitz, 1988). The skill sets required for &ngli
language usage may be relatively more static compared to, say, mateematience
tests. Reckase (2004) briefly acknowledged this distinction when he noted ticallyert
scaled reading tests are more likely unidimensional compared to s@stse t

Secondly, within a given test, the items may measure different dimensions
(Briggs & Wilson, 2003). For example, on an English language usage test, some item
may measure listening skills while others may measure writing.sKillese skills are
most likely indicators of different, but related, traits. Additionally, items @iven test
may assess multiple traits simultaneously (whether intentionally oreutionally) to
varying different degrees (Reckase, 1985; Walker & Beretvas, 2003). Thus, a
unidimensional IRT model would be inappropriate. Consequently, many researchers
acknowledge that the assumption of unidimensionality is often violated on testeisee
example, Ackerman 1994; Camilli, Wang, & Fresq, 1995; Reckase, 1997).

Given the potential problems with the unidimensionality assumption in vertical

scaling, addressing the multidimensionality of vertical scaling datdé&eome a topic of



great interest to many researchers (see, for example, Patz & YaoY2002006).
Tong and Kolen (2007) suggested and encouraged more research on the topic. When
attempting to create a vertical scale (even in a unidimensional frakjetvere are many
factors which must be considered. These factors include, but are not limited to, choosing
a data collection design, selecting a measurement model, and choosihgadicali
method (Harris, 2007). Moreover, if a multidimensional model is considered, the nature
of the dimensionality structure must also be addressed (Wang, 1994; Yon, 2006).
While many researchers and practitioners acknowledge the multidimensional
nature of data, a unidimensional model is often used for policy and /or practical reasons
Thus, it is important to further investigate the consequences of using a unidimensiona
IRT model for vertical scaling calibration when the data are more appelpmaddeled
according to a multidimensional model. Specifically, this research consithere
misclassification consequences when multidimensional vertical sciiagvere
estimated according to a unidimensional model. There is no clear answer to the
appropriate methodology for vertical scaling (Harris, 2007; Kolen & Brennan, 2004) and
this research only attempted to address and explore a subset of the fatisssias

mentioned above.

Chapter 2: Purpose

This research investigated the impact of unidimensional calibration on the
classification accuracy of multidimensional vertical scaling data. Thedmugnsional
compensatory two-parameter logistic model (MC2PL, Reckase, 1985) wadeatdhe

generating model for two levels of a test administered to simulees e§pordingly



different abilities. Simulated data from the MC2PL model were calibbi@teording to a
unidimensional two-parameter logistic (2PL) model (Birnbaum, 1968) andfidagen
decisions were made from a simulated bookmark standard setting procedure based on the
unidimensional calibration results. Those unidimensional classification decigtoas
compared to the “true” unidimensional classification of simulees in multidsiapal
space obtained by projecting a simulee’s generating two-dimensional thetaor@o a
unidimensional scale via a number correct transformation for performance emtitiee
test battery (i.e. across both grades).

Assessing classification accuracy in the context of model misspéoifica the
biggest practical application of this research because there can be kéghd&eisions
made based on vertical scaling results. Because unidimensional modetsrasppfied
to multidimensional data in real-world vertical scaling applications, #ssification
consequences of model misspecification and linking item choices are of extreme
importance.

The major manipulated factors in the simulation study were:

e The correlation of the two latent dimensions
e Whether or not dimensionality and difficulty are confounded (e.g., easier
items load on dimension one and harder items load on dimension two)
e Choice of linking items (even distribution of items from both lower and
upper grades tests, only lower grade test items)
e Difference in mean abilities for the two levels (grades) of simulees
The components of the study that were fixed:

e Concurrent calibration/internal common item linking design



MML estimation in BILOG-MG (Zimowski, Muraki, Mislevy, & Bock,
1996)

Multidimensional compensatory two-parameter logistic model for data
generation (MC2PL)

Unidimensional two-parameter logistic (2PL) estimated model

Test Length (60 total items per grade, 40 unique, 20 common)

Grade level test design (relationship of items to the two dimensions)
Total number of common items

Sample Size (2000 simulees per grade)

Variance on dimensions remained equal and constant across grades



Chapter 3: Background

No Child Left Behind

The No Child Left Behind Act of 2001 is federal legislation that requires, in part,
schools and school districts to meet certain minimum levels of proficiencgdquate
yearly progress (AYP). AYP includes reaching specified minimum ldégennual
measurable objectives (AMOSs) in language arts and mathematicsipadidic, and the
“other academic indicator.” AMOSs refers to the percentage of studesssfield as (at
least) proficient on the state’s assessments for language arts anthaiethe Note that
it is the state, not the federal government, that designs the language arttlzamatics
tests and sets the standards for proficient. Thus, the standard-settingdaxénas is a

critical component in the context of this legislation.

Item response theory

Item response theory includes a class of item response models that déscribe
relationships of test performance and the unobservable traits or abilitiendeslie that
performance. Specifically, the models express the probability of a partrtesponse to
an item as function of examinee and item parameters which are calibrated onto an
unobservable latent trait (ability) continuum. There are item response mudiéss
that are dichotomously and/or polytomously scored as well as for single or entrhifd
(dimensions). This research focused on dichotomous item responses modeled according
to a multidimensional IRT model, but estimated according to a unidimensional IRT

model.



IRT is governed by three major assumptions. The first is that the dimengionalit
of the response function is properly specified. That is, the appropriate number of
dimensions is expressed in the item response model. The second is local independence
which means that responses by exammgeitem set are independent, conditional on
the ability parameter(s) for examinee The last is examinee response independence
which requires that responses by examinees are independent from each otiidet@ta
& Swaminathan, 1985). Further discussion of these assumptions (especially in the
context multidimensional item response theory) can be found in Embretson and Reise
(2000) and Reckase (2009). This research focused on the violation of the first

assumption regarding dimensionality.

Two parameter logistic model

The unidimensional item response model for dichotomous responses considered
in this study is the 2 parameter logistic (2PL) model (Birnbaum, 1968). The

parameterization for this model is as follows:

exp@ (¢, — b))
1+exp@ (0, -h))’

P(xj=1p;, &, by) = 1)

whered; is the ability parameter for perspra; is the discrimination for item andb; is

the difficulty parameter for item When this model is estimated in the context of
vertical scaling and it is known that different subpopulations are responding to the item
it is necessary to define and control for separate ability distributiohs iestimation
(Camilli, Yamamoto, & Wang, 1993; Bock & Zimowski, 1997). BILOG-MG

(Zimowski, Muraki, Mislevy, & Bock, 1996) is capable of this type of estimatrah a

was used in this study.



Multidimensional compensatory two parameter logistic model

The multidimensional item response model for dichotomous responses considered
in this study was therdimensional compensatory 2 parameter logistic (MC2PL)
proposed by Reckase (1985); it is the multidimensional extension of (1). In this mode
each item is allowed to discriminate on all dimensions to varying degrees arsd@ape
ability on one dimension can compensate for a deficiency on the other (spggiiincall
this study two dimensions were considered). Note that in a noncompensatory model, a
person’s ability on one dimension cannot compensate for a deficiency on the other. The
parameterization for the MC2PL model is as follows (Ackerman, Gierl,a8k&/, 2003):

exp(zm: 3,0 +d)

P(xj= 1p;, &, di) = KL , (2)
1+expQ. a0, +d;)
k=1

whereg; is the vector ofn ability parameters for persgng; is the vector of
discrimination parameters for iteiqx; is the response of perspto itemi., andd; is the
parameter related to difficulty. Note, however, the sigd; as positive while in the
traditional IRT framework, it is negative. It can also be understood as fdfiows:
equation below) whergy is interpreted as a unidimensional IRT difficulty parameter,
like in the 2PL model. Note, however, that for identification reasons, thememeters

are usually not estimated:

d; = _Z by - (3)

Each multidimensional item can be described by three summary chatageri

discrimination, difficulty, and location. Discrimination is a function of the individua



discrimination parameters;}, and represents the maximum amount of discrimination. It

is referred to as MDSIC and is expressed as follows in the two dimensiogal cas

MDISC; = /a2 + a5 . (4)

Difficulty represents the distance from the origin of the two dimensiowa & the line
representing the composite of abilities required to have a 50% probability cframgw
the item correctly. The sign of this value indicates relative difficultgremegative
values are relatively easy and positive values relatively hard. leisedfto aP and is
expressed as follows:

po——% (5)
MDISC

Location corresponds to the direction of each item relative to the pdsitaves. Items
with a small angle primarily measudeand those with a larger angle primarily measure

0,. Itis referred to as and expressed as follows:

a = arccos—i__ . (6)
MDISC,
Vertical scaling

“Vertical scaling refers to the process of linkidifferent levels of an assessment,
which measures the same trait, onto a common @daleis, 2007, p. 233).” Thus,
vertical scaling provides a method for measuriraygih across grades which is necessary
in the current educational climate where emphasaced on student growth through
adequate yearly progress measures mandated byCthB Mgislation (Harris, 2007).

Note that Kolen and Brennan (2004, p. 372) inditia& tests in a vertical scale are



intended to measusemilar constructs which is slightly in contrast to Harmsition of
tests in a vertical scale measuring shee trait. While NCLB does not require vertical
scales, they can be utilized not only to measuegaate yearly progress, but also for
evaluation and accountability purposes in schosiesys. Currently only a few states
have a vertical scale for their NCLB assessmerisi(fa and Michigan, for example)
and this is perhaps due to the difficulty of depahg curricula that in fact measure a
single trait over grades; as states revise cugjadhbls may change. Curricula for English
language learners, however, tend to be more censisfth a single trait measured over
time (Yen, 2007).

In constructing a vertical scale many decisioredrit® be made and there is no
one standard procedure. These decisions includeré not limited to, determining the
data collection design, measurement model, antreéibn method (Harris, 2007).
Unidimensional IRT is an increasingly popular classneasurement models used for
vertical scaling (other methods include, Thurstand Hieronymus scaling) and was the
focus in this research.

The data collection designs for vertically scalests include the common item
design, equivalent groups design, and the scadistgdesign (Kolen & Brennan, 2004).
The easiest and most straightforward of these pdement is the common item design
(Kolen & Brennan, 2004) and thus was the focusisfitesearch. The common item
design simply requires that every pair of adjatests include a common block of items;
a chaining processing using these common item blmcksed to create the single
vertical scale. Determining how many items toudle on the common item blocks,

however, is not necessarily straightforward. Milsespecially be the case when
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common items are indicators of different dimensiohkere are, however, some
recommendations for creating these common itenkbloc

Kolen and Brennan (2004) suggested that at le&t&Qa test with at least forty
items be common items in a horizontal equatingexdrdand Young (2005) suggested that
rule can be adapted for vertical scaling by inadreathe number to help account for the
differences in difficulty and content across graithes vertical scaling context (McBride
& Wise, 2000). For this research 33% of a test egcasmon across the two grades;
however, the dimensionality of the items variededlly, the dimensionality of the items
should match the dimensionality of the overall tesd that condition was considered;
that is, where common items function like a “miest” However, some school districts
might not have enough items to have a common it@mi“test” or might not put very
much thought into their choice of common itemsthsosituation where common items
are not necessarily reflective of the entire tedtdsy was also considered in this
investigation.

When using the common item data collection degslwggre are two item
calibration methods available: separate and coantirrSeparate calibration involves
calibrating each grade individually and using tbenmon item parameter estimates and a
scale transformation method (Mean-Mean or Stockiogi#Lfor example) to establish the
vertical scale. The concurrent calibration metimvlves calibrating all items across all
grades simultaneously and imposing a multi-group mibdel to account for the multiple
grades; items not administered to certain simueesimply treated as not reached.

In a unidimensional IRT framework, research sgtgythat separate calibration

produces more accurate results relative to conaucaibration when the measurement
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model is misspecified. However, concurrent catibrais superior when the model is
correctly specified largely because there wouldte set of parameter estimates (based
on larger sample) for the common items (Patz & ldan2002; Patz & Yao, 2007).

Concurrent calibration rather than separate cdidwavas considered in this
study to reflect applications where the estimateidimensional model is assumed to be
approximately correct and there is reasonablefication for its use in both applied and
research contexts.

McCall (2007) presented an overview of vertical scpentitled “Vertical Scales
and the Development of Skills.” Her presentatiociuded a summary of methods used
to create and maintain vertical scales. She gpaltif noted CTB as a company that uses
concurrent calibration for vertical scaling.

CTB (2005) developed the Wisconsin Knowledge anddgépts Examination-
Criterion Referenced Tests (WKCE-CRT). This teaswertically scaled and CTB
evaluated 4 methods to determine the appropriditeragon methodology. These
methods spanned a fully concurrent calibratiorutly Separate calibrations across all
grades. They ultimately decided on a compromisgisa where both concurrent and
separate calibrations were used. Specificallyy tomducted a concurrent calibration for
grades 5-7, another concurrent calibration for gset4, and yet another concurrent
calibration for grades 8-10. Then the results ftomngrades 3-4 and 8-10 calibrations
were placed on the grades 5-7 scale. Thus, thimpbe shows the use of concurrent with
adjacent grades in an operational setting.

Lastly, in simulation research addressing the usefis of multidimensional IRT

models relative to unidimensional IRT models toneate achievement gain in a vertical
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scaling context, Reckase and Li (2007) used coantimalibration to develop all of their
vertical scales. The motivating research hypothfesithis study was that
multidimensional models would be more able to cagpachievement gain when math
content specifications change over time and ths taay become multidimensional in
nature. Note that their research included botth@imodels considered in this study, the
MC2PL and the unidimensional 2PL model.

Vertical scaling also typically requires some asgtiom on grade-to-grade
variability. For this research variance on eachatision was assumed equal and
constant across dimensions and grades (i.e., the ea all dimensions for all grades)
and there is justification for this assumption.rit$a(2007) noted there are many
inconsistencies in the literature regarding gramgrade variability. On page 234, she
specifically cites Bock (1983) as an example wlgrade-to-grade variability.....was
shown to remain stable across grade levels.” kckBq(1983) work, he scaled a cross
sectional sample of scores for the Stanford-Biest t He showed that by not
constraining the dispersions of abilities a veusible mental growth curve emerges.
He also noted that the within-age standard dewiataf the developmental age scores
were homogenous.

Further, research by Linn (1989) and Williams, Pariaoh, and Thissen (1998)
shows that, in a vertical scaling context, standidations do not necessarily
systematically increase or decrease across gr&jeecifically, Linn observes on the
NAEP reading scales a “small” decrease in varighitir grades 3-7 and a “slight”
increase for grades 7-11. Williams, Pommerich Bimdsen found no evidence that the

variability of performance on vertically scaled imaichievement tests in North Carolina
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“consistently increased or decreased across gritle$RT scaling techniques.” While
it wasn’t the main focus of their 1998 work, Wil et al. also noted that the standard
deviations on North Carolina reading achievemestistalso “showed no systematically

increasing on decreasing trends.”

Standard setting

The criteria for placing examinees into performacategories based on their test
scores are the results of a standard-setting puoeed ypically performance standards
are established based on either the test itenteeaxaminees taking the test. This
research focused on the former which are commallgd “test-centered” approaches to
standard setting. Specifically, the Bookmark Pdoce (Lewis, Mitzel, & Green, 1996)
was considered.

The Bookmark procedure as described by Lewis, Mieredl Green (1996) is an
IRT based approach where items on a fixed formatesbrdered by location on the latent
continuum (as determined by their item parametimases) into a test booklet.
Standard setting panelists are required to pladbee@kmark” between the most difficult
item a minimally proficient examinee (as defineddsyablished performance level
descriptors) would be expected to answer correcttythe easiest item a minimally
proficient would be expected to answer incorrecthanelists are typically instructed to
use a .67 probability of success rate. As withtrstendard setting procedures, this
procedure is iterative and allows for revision digtussion; impact data can also be
presented and result in cutscore adjustments (Lewak, 1996). Zieky (2001) highlights
that the booklet with IRT calibrated items is afeefive way of presenting normative

data to the panelists and may be useful in thaiistn making process. Since a cutscore
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decision is based, essentially, on a group of iteftes considering the entire item
booklet, Lewis et al. (1996) note that the resglttatscore is based on a “comprehensive
understanding of test content.” Note also thatBbekmark Procedure can
accommodate polytomous and constructed respomss lig placing the various
response categories to a given item at its ap@taplocation in the item booklet. Since
item difficulties are on the same scale as perditya the location of the bookmark can
be easily translated to a cutscore on the scortieg scale using test characteristic
curve methods (Lewis et al., 1996). A simulatetsion of this procedure was

implemented for this research study and is destrilvéhe Methodology section.

Classification accuracy

Betebenner, Shang, Xiang, Zhao, and Yue (2008rtbe while there is
inconsistency on terminology and notation in tressification accuracy measures
literature, there are two main approaches. Tlsédipproach at determining classification
accuracy considers the probability of correct dfecsgion across all performance levels

and is defined in Betebenner et al. (2008) as\ialo
k
> Pr(A =i, A=i), 7)
i=1

wherek represents the number of performance categd@iespresents the true
performance classification, ad represents the observed performance classification
The probability values in (5) are based on thetjdistribution of observed and true

classifications which can be expressed as:

Pr(A* =i, A=) overi, j< (8)
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False-positive and false-negative rates can alsaloalated; in the two category
case, the false positive rate is simply the proporf individuals in the sample classified
as proficient who truly are not proficient and fakse-negative rate is simply the
proportion of individuals in the sample classifeeinot proficient who truly are
proficient.

The second approach considers not the joint pitioed of observed and true
classification, but rather the conditional clagsifion probabilities (Betebenner et al,
2008). A misclassification matri®, (Clauser, Margolis, & Case, 2006), can be created
that includes (conditional) false- positive andséahegative rates as well as (conditional)
correct classification rates. Following from Beganer et al. (2008 can be expressed
as follows:

P = {pij} 1<, j< Wherep; = PrA* =j | A=1). 9
If we consider the circumstance where there arep@vormance levels, proficient and
not proficient, and = 1 for proficient and = 2 for not proficient then the (conditional)
false-positive rate can be expressed a&*Px(1 |A = 2) and the (conditional) false-
negative rate can be expressed a8 2 |A = 1). The conditional correct
classification rates would therefore be expressddr@é* = 1 |A = 1) (or the true positive
rate) and PA* = 2 |A = 2) (or the true negative rate).

The classification accuracy measures based ondppiftoaches can be directly
calculated from a standard contingency table. ti@two performance level case,

Douglas (2007) provided the following contingenakle:
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Table 1: Classification contigency table

Observed status

Proficient | Not Proficient] Total
Proficient a b g
TRUE STATUS|Not Proficient o d h
Total e f N

The classification accuracy measures based omwitfiedjistribution and based on two

performance level case can be calculated as fallows

I e i A (a+d)
Percent Correctly Classified E Pr(A*=i,A=1i)= N (10)
i=1
False-positive rate Pr(A* =1, A=2) = % (11)
. b
False-negative rate Pr(A* =2,A=1) =— (12)

N
The misclassification matrix, based on conditigmababilities, can be calculated as

follows:

b

g

d (13)
h

As Douglas (2007) notes, the measures based qaithelistribution depend on
one another. That is, as the classification acyum@easure defined in (7) changes, the
measures in (8) and/or (9) will necessarily chanbeis is not true for measures based on
the conditional probabilities; changes in rate®aisged with truly proficient examinees
do not affect rates associated with truly not miefit examinees. Accordingly, results
based on the analyses that considered the coralifpoobabilities were the primary focus

of this study; the analyses based on the jointidigions were treated as supplementary.
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In a simulation framework these calculations araightforward because the
researcher has the benefit of knowing both thecdlassifications of the simulees as well
as the (simulated) observed classification. Howeawmeoperational settings educational
statisticians only know the observed classificatiand are forced to use models to
estimate the true classifications of examineesdéssribed in Betebenner et al. (2008),
Livingston and Lewis (1995), in a classical tegtdty framework, used a four parameter
beta true score distribution with a binomial/compaderror distribution. In an IRT
framework, Rudner (2001, 2005) used a normal 8istion for both the error and true

score distributions.
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Chapter 4: Literature Review

Literature addressing the question of classificatiocuracy when a
unidimensional model estimated with multidimensiateta is sparse. This literature
review largely serves to make the case for thegm@asof multidimensionality in applied
vertical scaling settings as well as to describresof the factors manipulated in this

simulation study.

Multidimensionality in vertical scaling

Studies have evaluated the effectiveness of unitsioaal IRT models for
vertical scaling with the hypothesis that multidms®nality might have an adverse
impact. Loyd and Hoover (1980) explored vertiaalsg using the 1 parameter logistic
model (1PL, also called the Rasch model) using iesponse data fron"67", and &'
grade students on three corresponding levels @214) of the mathematics computation
portion of the lowa Tests of Basic Skills (ITBSJote that the 1PL model is a special
case of the 2PL model considered in this study e/kie discrimination parametex,is
constrained to be equal across all items. In ci@é@cilitate the linking of tests, 30 items
were in common for adjacent levels and 15 itemsewecommon for nonadjacent levels
and linear transformation constants of the estichatenmon item parameters were used
to establish a common scale. The primary focukisfstudy was to evaluate differences
in the vertical scaling results when different loedtion groups are used. That is, they
compared the equating functions for levels 12-54 tbsulted from calibrations using the
6", 7", and &' grade students. Functions for both adjacent anddjacent grades were

compared. All three levels shared at least 15 comiems, so both direct and indirect
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linking was compared. Items parameter estimates wadibrated separately for each
calibration group on each level.

The resulting equating functions were not invariafhey generally found that
when examinees take a lower level of the test @ve kheir scores equated to the higher
level raw score scale, the results will be highéne items were calibrated with the
higher ability group. Further, they found that wrexaminees take a higher level test
and have their scores equated to a lower levekmne scale, the results will be higher if
the items were calibrated with the lower abilitpgp (Loyd & Hoover, 1980).

The authors suggested that the root of these sist@mcies could be the violation
of IRT model assumptions; primarily, they were retged in the degree to which
unidimensionality was met. A item-level factor bys@s of level 13 item responses from
6" and 7" graders revealed one primary dimension, but ngatrsecondary or minor
dimensions. The authors suggested that an itemassgss multiple dimensions and an
examinee may or may not have been exposed to thosmsions depending on their
curriculum. A skills analysis of the items acrdiss test levels suggested that certain
topics could have been covered at various pointiseré” through &' grade mathematics
curriculum and that topic emphasis varied acrogsise The authors hypothesized that
items drawing from different and multiple dimensaould be the reason for the lack of
invariance of equating functions (Loyd & Hoover809.

Harris and Hoover (1987) followed-up the Loyd &tambver (1980) study with an
investigation of effectiveness of using the thraeameter logistic (3PL) model for
vertical scaling using the mathematics computapionion of the ITBS and"3through

8" grade students in lowa. They considered an expbndmber of levels, though: in
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addition to levels 12-14, they considered levelad® 11. Their approach differed from
Loyd and Hoover (1980) in how the scale was satyder to establish a single scale for
the vertical scaling of the test battery, all iteamsl examinees were estimated
simultaneously in LOGIST (Wingersky, Barton, & LoB82) with modifications for
omitted and not-reached items. The resulting thstanates were treated as truth in
subsequent item parameter estimation for a givadegand test level. For each grade by
test level, test characteristic curves were contpuiesults indicated that an examinee
would receive a higher theta estimate if the tést sas administered was calibrated on
lower ability students. Across levels, using theating of level 12 to 13, it was shown
that the equating relationship varied based omgtbeps used to establish it. So, despite
a different IRT model, results from this study weomsistent with Loyd and Hoover
(1980) that vertical scaling calibration resultsleast with the ITBS data considered,
were not invariant (i.e. person-free). Howeveis important to note that while the
patterns between the 1PL model and 3PL model warsistent, the actual equating
results were not; thus, depending on the estinmmatedel, different conclusions would be
made about a given examinee. Again, Harris andveloacknowledged that
multidimensionality might be a reason for this tedaut did not conduct any follow-up
dimensionality assessment on the items.

Acknowledging the invariance issues related t& tafqerson-fit with operational
vertical scaling data as in Loyd and Hoover (198%) Harris and Hoover (1987),
Skaggs and Lissitz (1988) conducted a simulatiodysto evaluate this issue where they
had control of the data. In their study, vertidata were simulated from a 3PL model,

linked via an external anchor item test, estimatgd 1PL and 3PL models, and equated
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with IRT true-score and equipercentile methodsnutation factors manipulated
included the difficulty, discrimination, and guesgitem parameters of the 3PL model
for each test in the vertical scaling battery ali agthe ability distributions of simulees
by grade. Largely, they found invariance in veattigcaling with respect to simulee
ability. They noted that invariance may not holden other modeling assumptions are
not met such as equal discrimination when the 1BHehis estimated. They concluded
by agreeing with previous researchers that muledisonality could be the reason for
lack of invariance of equating functions with resp® simulee ability in vertical
equating. More generally, they suggested thatcadréiquating with unidimensional
models should be approached cautiously becau$e tfiteat of multidimensionality and
that the issue of dimensionality in vertical scgldeserves further investigation. Also
note that in addition to lack of invariance of efjug functions, multidimensionality has
also been hypothesized to be the cause of scatikabe in vertical scaling (Camilli,

Wang, & Yamamoto, 1993; Yen,1985).

Unidimensional calibration of multidimensional items

Work by Ansley and Forsyth (1985), Way, Ansley, &wilsyth (1988), and
Ackerman (1989) provides a reasonable foundationriderstanding the consequences
of estimating a unidimensional IRT model with mdiltnensional IRT data. Ansley and
Forsyth (1985) considered the implications of eating a unidimensional 3PL model to
data generated from the noncompensatory multidimeakextension of the 3PL model
proposed by Sympson (1978). The data generatimehiad 2 dimensions and data

were generated under a variety of levels of caiimeicbetween the dimensions. They
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generally found that the unidimensional discrimimrafparameter estimate was
approximately the average of the true discrimimaparameters, the unidimensional
difficulty parameter was an over estimate of the wifficulty for dimension 1, and the
unidimensional ability estimate was highly relatedhe average of the true ability
parameters. Way, et al. (1988) extended the wbAnsley and Forsyth (1985) by also
considering the multidimensional compensatory IRAdel proposed by Reckase (1985).
They found for data generated from this compengatadel that the unidimensional
discrimination parameter estimate appeared tod@suin of the true discrimination
parameters, the unidimensional difficulty paramestimate appeared to be the average
of the true parameters, and the unidimensionaityapidrameter estimate appeared to be
highly related to the average of the true abiliygmeters. They noted that the degree of
this relationship remained static regardless ofeliel of relationship among the latent
dimensions. The relationship became stronger imtmeompensatory model as the
correlation of latent dimensions increased.

The degree to which the level of difficulty is redd to dimensionality and the
corresponding consequence on the classificatiomracy is also a very important issue
to be investigated especially given the risks oftigimensionality in a vertical scaling
context. Reckase (1985) showed that dimensionaditybe confounded with difficulty
and Reckase et al. (1986) illustrated that wheficdity and dimensionality are
confounded and a unidimensional model is estimaledability estimate has different
meanings at different points on the unidimensidei@int scale. Furthermore, Reckase

(1990) notes that a unidimensional model will &asonably well when dimensionality
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was confounded with difficulty. Many of the resutfsReckase (1985, 1986, 1990) are
summarized briefly in Ackerman (1989) and Walked &gretvas (2003).

Ackerman (1989) evaluated the effects of unidimameii IRT calibration of
compensatory and noncompensatory multidimensitoea response models when
difficulty was confounded with dimensionality. tdenerally found that as the
correlation of the latent dimensions increasedydéisponse data became more
unidimensional. The results in this study were parable to the results from Way,
Ansley, and Forsyth (1988) with differences atttdalito the disparity in the parameter
generation used in the two studies. Ackerman (L8B® noted that BILOG (Mislevy &
Bock, 1982) appeared to be more sensitive to théooading of difficulty and

dimensionality compared to LOGIST (Wingersky, et 4982).

Classification accuracy with multidimensional data

Very little applied or simulation research has beenducted to evaluate the
classification accuracy of multidimensional dateewla unidimensional model is
estimated. Only three relevant studies have ba@mdfand they will be briefly described
here.

Mignani, Monari, Cagnone, and Ricci (2006) conduetesiimulation study to
compare the classification results when a unidinoeas 2PL model was estimated for
data generated from a 2-dimensional MC2PL modelgeitsose estimated from the
properly specified model. They considered threéirtit types of 2-dimensional models:
between-items, within-items, and a mixture of betwand within-items. “Between-
items” describes the situation where a test measutdtiple dimensions, but each item is

only an indicator of one. “Within-items” describi® situation where a test measures
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multiple dimensions and an item can be an indicatonultiple dimensions. The ability
parameters were generated from a standard muétteanormal distribution with zero
correlation between the dimensions. Classificaitibm two categories was based on
whether or not the single ability estimate (unidisienal model) or average of the ability
estimates (2-dimensional model) was greater orttess0. They found the highest
correspondence of classification results for thigawviitems model and the poorest
correspondence for the between-items model.

Walker and Beretvas (2003) compared classificagsults based on ability
parameters estimated from unidimensional 3PL meelslus those estimated from a 2-
dimensional compensatory item response model fohenaatics test data. In the 2-
dimensional model, all items were indicators of meatatics ability and a subset of those
items were also indicators of mathematics commuigicability. The authors generally
found that examinees with low mathematics commuiaicaability tended to be
classified at lower levels under the unidimensianatiel than on the general
mathematics ability dimension of the 2-dimensianaldel. However their
multidimensional classification categorizationse@lon response patterns associated
with getting the “easiest” items correct based amigdimensional calibration; those
“easiest” items would not necessarily be the sdraemultidimensional model were used
to rank the items.

Lau (1996) investigated, using Monte Carlo methetissification accuracy
based on the sequential probability ratio testirag@dure (SPRT) in the context of
computerized mastery testing when data were mocealeording to a multidimensional

model but item parameters estimated according iimensional IRT models.
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Specifically he considered a 2-dimensional 3-patammmpensatory IRT model.
Essentially, this is an extension of the Recka88%1 MC2PL where a guessing
parameter is added. Item response patterns seduiam this model were calibrated
according to both 3PL and 1PL unidimensional madéldditionally, he varied the
correlation among the latent dimensions, test lermtd cut score. Summarizing from
Lau (1996), the findings generally suggested that3PRT was robust to model-
misspecification and resulted in acceptable clesdibn accuracy rates. However, the
unidimensional models varied in their test lendtitiency where the 3PL model

resulted in shorter test lengths required for atemgglecision than the 1PL model. Some
bias in the cut-score determined by the unidimeradiparameter estimates was detected.

Lau noted that this bias could result in differahtilassification errors.
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Chapter 5. Reasonableness of Simulation Conditions

This section serves to provide support for varsinsulation conditions specified
in this research. Specifically, descriptions afe@rch designs and operational testing

programs are discussed.

Reckase and Li (2007)

As mentioned briefly earlier, Reckase and Li (20@vgstigated, in a vertical
scaling context, achievement gain when math corgieetifications change via a
simulation study. Their study argued for the appaieness of multidimensional IRT
models for estimating gain in this context anddgbeerating parameters for their study
were 3-dimensional and realistic (i.e. based oareiysis of real'®and 7' grade data).
The MC2PL model was used as the data generatinglpustiéke was used in this
dissertation. Thus, it was useful to considerrtitem parameters and the correlation
among latent abilities when determining the varielesnents of the simulation study
conducted in this dissertation . The three dinersdf interest in their study were
Algebra, Arithmetic, and Problem Solving and theagsated correlation matrices for

abilities in each grade are as follows:
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Table 2: Relationship of mathematics dimensions for 6th and 7th grades

Correlation Matrix: 6th Grade

algebra] arithmetic | problem solving
algebra 0.00
arithmetic 0.71
problem solving 1.00

Correlation Matrix: 7th Grade

algebra] arithmetic | problem solving
algebra 0.60
arithmetic 0.39
problem solving 1.00

The correlation matrix above used in the ReckasgeLasimulation study was
based on an actual calibration of vertical scalieg response data. While the algebra
dimension was estimated for sixth graders, no gxélde items loaded strongly on that
dimension. Thus, the correlations of algebra whthother dimensions were extremely
low; for simplicity, Reckase and Li used a zerorefation of algebra with arithmetic and
algebra with problem solving in their simulatiortalgeneration. (Note that since the
item parameters used in the simulation did haveridisnation values (albeit, very low)
on the algebra dimension is why variance was mddatethat dimension for'6graders).

The range of correlations here suggests that .3@ledels for the correlation
among dimensions are reasonable. Further, thmgheasuggests that in future research
varying the correlation among dimensions acrosdeganight be interesting.

The relationship (correlation) among the difficuttgrameters and the three
ability dimensions considering just §rade items, 7 grade items, or the entire test
battery ranged from approximately O to .65 (in &lsovalue). This suggests that the

moderate and no confound of difficulty with dimessality levels are reasonable.
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Programme for International Student Assessment

Another resource that is useful for justifying filausibility of generating item
parameters is the PISA (Programme for Internati@tatlent Assessment) test battery.
Following from the 2003 Technical Report, the gahgoal of PISA is to assess how
well 15 year old students are prepared for thewald. As such, the test items are not
necessarily curriculum specific, but rather addthesstudents’ ability to apply
knowledge to real situations. The tests admiresténclude Reading, Math, Science, and
Problem Solving. The multidimensional random &Go&fnts multinomial logit model
(Adams, Wilson, & Wang; 1997) was used to scalatdmas. The test battery was not
vertically scaled, however.

A seven-dimensional scaling was conducted. There four math dimensions,
as well as a dimension for reading, problem solvargl science. Each item loaded
(discriminated) on only one of the dimensions (dargiructure) and because the model
used is a Rasch model, the loadings were equdly t@&four math dimensions were
considered to justify conditions in this study.

The four math dimensions were Change and Relatipeig@R), Uncertainty (C),
Space and Shape(SS), and Quantity (Q). The bieararelation among any two of
these dimensions ranged between .88 and .93. Téssiés suggest a realistic context
for a .9 correlation between dimensions. Furttiex,correlation of difficulty with
dimensionality for any of the four dimensions wasgneater than .25 in absolute value
and the average difficulty on the four dimensioresenas follows: 0.1 (CR-22 items),
0.22 (U-20 items), 0.19 (SS-20 items), and -.4&Jtems). So, for the most part, the

average item parameter estimates are approximedgelyl in difficulty (except for the Q
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dimension) and it follows that there is very litdenfound of difficulty with
dimensionality. To the extent that the four dimens captured here could be taught in
different orders in consecutive grades suggestdasonableness of a level where

difficulty is not confounded with dimensionality.

NAEP

The dimensionality structure of the 1990 NAEP mits (Abedi, 1994) was
considered. The five dimensions evaluated were Idug) Measurement, Geometry,
Statistics, and Algebra. Largely, he found that¢brrelations between dimensions were
high, ranging between .83 and 1. However, whernrothimg for background variables
such as the students opinion of their ability atrm#éne correlations were more varied.
For students who were undecided on the phrase ‘ti@d at math”, the correlations
across dimensions were still high, but ranged betw68 and 1.00. When students
agreed with the statement, the correlations betwleaansions ranged between .85 and
1. When students disagreed with the statementdirelations between dimensions
ranged between .77 and 1. Thus, it is conceivablechool districts where the majority
of students fall into one of these three categamesould expect the range in
correlations among certain math dimensions to bheden .68 and 1. [Geometry
typically had the lowest correlation with the otldémensions.] This finding supports

using .6 and .9 levels for the correlation betweiamensions.
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Paris (2005)

Lastly, reading skills development was consideoekelp inform certain elements
of the simulation design. Paris (2005, p. 184uasgthat in reading acquisition, skills
can fall into two major categories: constrained andonstrained. Constrained skills are
“learned quickly, mastered entirely, and shouldlm®tonceptualized as enduring
individual difference variables.” Examples of ctsaged skills include letter knowledge
and phonics. Unconstrained skills on the othedh&ontinue to develop throughout the
life span, are not identical across people, and Ineggfit from special practice and
idiosyncratic experiences at many points in thediburse.” Examples of unconstrained
skills include vocabulary and comprehension. Tlagompoint of the article is that
different skills develop in different ways (trajedes) and the type of analyses conducted
on reading acquisition should adjust to the tydeskils. So, unconstrained skills can be
analyzed with traditional parametric and normatribsition theory methods, but it might
be more appropriate to analyze constrained skitls monparametric methods such as
conditional probability, contingency tables, and Imear models. Paris makes a strong
argument that researchers typically (and incory®ethalyze constrained skills with
parametric methods which makes the associatedusionk suspect.

For this dissertation, it is not necessary to acttepsubstance of Paris’s
arguments with respect to reading. What is impoiigathat the kinds of patterns he sees
in data, and the kinds of patterns that are ceturhis research, are ones that are
consistent with the structures in the proposed kitimn design. Implied in Paris’ work
is that reading tests are multidimensional in reaturd their dimensionality may change

over time. That is, for consecutive grades, gneading tests may assess phonemic
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awareness and comprehension and there may be abéseariability on both

dimensions across grades; however, for more addagregles, similar tests may have
little or no variability on the phonemic awarendgsension (i.e. it has been mastered).
[Note that Paris argues phonemic awareness is acomigrained than comprehension.]
So, this article strongly suggests that readinlsskre multidimensional and that it is
possible for there to be variability on a numbediofiensions and no variability on others
at different points in reading development; gergréthe dimensionality structure could
change over time as certain skills are masterduis,Tthis research provides a reasonable
context for studying the multidimensionality oftethat are vertically scaled. The extent
to which some skills are mastered more quickly ét@mned skills) than others is an
argument for difficulty confounded with dimensiomg—under the presumption that the
constrained skills are easier. Alternately, Psuiggests that some skills like
comprehension and decoding may develop simultaheatsch might indicate the

reasonableness of difficulty not confounded witmeinsionality.
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Chapter 6: Methodology

This section includes the research questions askehlas this study, the

manipulated factors, the simulation procedures,aadéscription of the outcome

measures.

Research questions

1. Does the correlation between latent dimensionsgffieficiency

classification accuracy when vertical scaling dataleled according to the 2-
dimensional MC2PL model is calibrated accordingi®2PL model?

. Does the confound of dimensionality with item ditfity affect proficiency
classification accuracy when vertical scaling dataleled according to the 2-
dimensional MC2PL model is calibrated accordingi®2PL model?

. Does the discrepancy in mean ability of the twaugso(grades) affect
proficiency classification accuracy when verticzdlgng data modeled
according to the 2-dimensional MC2PL model is caliéd according to the
2PL model?

. Does the choice of common items affect proficiedegsification accuracy
when vertical scaling data modeled according t®2tdemensional MC2PL

model is calibrated according to the 2PL model?

In order to address the questions posed abovefdotors were manipulated:
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1. Discrepancy of ability distribution means betweeadgs (2 levels)
2. The confound of difficulty with dimensionality (&vels)

3. The correlation of the latent ability dimensionde4els)

4. The nature of the common item sets (2 levels)

Thus, the simulation study had 48 conditions.

Differences in ability

The ability difference between grades in verticalimg varies from application
to application. This research investigated twelswf ability difference. For the first
level, the lower grade ability distribution was MMth mu = {0.0, -0.2} and the upper
grade ability distribution was MVN with mu = {0.4,@. For the second level, the lower
grade ability distribution remained MVN with mu =.40) -0.2}, but with the upper grade
ability MVN with mu = {0.8, 0.2}. For all levelshie variance on any given dimension
was 1 and the correlation between dimensions vasatiscussed later in this section.

The multivariate differences in ability betweendga largely followed from Yon (2006).

Confound of item difficulty with dimensionality

Three levels of confound of difficulty with dimepsiality were considered; no
confound, moderate confound, and high confoundstsT@here there was a high
confound of difficulty and dimensionality were ctmgted such that the
multidimensional difficulty valueg, associated with each item was highly correlated
with the dimension for which the item was a primengicator. Most of the lower grade

items were primary indicators of dimension one anudt of the upper grade items were
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primary indicators of dimension two. Thus, eagpersitive)d values were associated
with dimension one and harder (negatigdealues were associated with dimension two.
For tests with no confound the relationship ofdh@arameter and dimension was
determined randomly. When there was a moderat®gnod, the correlation of the
difficulty value associated with each item andpitsnary dimension was less than that of
the high confound condition, but much greater ttiet of the no confound condition.
Specific procedures for determining item parametashow the confound was modeled

are included later in this section.

Correlation of the latent ability dimensions

Four levels of correlation between the latent gbdimensions were considered:
0.0, 0.3, 0.6, 0.9. These values represent a ffaogeno association to very strong
association. In a given cell of the simulatiordstithe correlation of latent ability

dimensions was kept constant across grades.

Common item sets

Common item sets are usually, but not always, cocigd to represent a “mini”
version of the test. For this study, two differeatnmon item sets were considered. One
was a 20 item “mini” lower grade test. The othembined a 10 item version of the
lower grade test and a 10 item version of the ugpsde test. Common items were
treated as “internal” common items in that theyeMacluded in the computation of

scores for the simulees.
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Data generation and model estimation

As described earlier, the two-dimensional MC2PL Wrsdata generating model
for the multidimensional vertical scaling data. t®were generated using SAS. The 2PL
model was the estimating model for the data. Th&gons for both the MC2PL and
2PL models were included in the Item Response Khaortion of the Background
section. BILOG-MG (Zimowski, Muraki, Mislevy, & Bocl,996) was used to estimate
the 2PL model and the grouping option was use fioeland control for the two separate
ability distributions in the estimation. ExamplaSdata generation code and BILOG-

MG model estimation code can be found in appendicassd B, respectively.

Item parameters

Each grade had a 60 item test where 40 items wegei@ and 20 items were
common. So, a test battery for the two gradesided 100 items. Note that the use of a
60 item grade level test with 20 common items isscstent with the design used in Lin
(2009). The 2-dimensional tests were constructet that an item primarily
discriminates on a single dimension. Items rarfged loading on only one dimension
(simple structure) to loading strongly on one disien while still having a weak
relationship with the other. Items that primantgasured dimension one had an angle,
of 0-25 degrees with the dimension one axis amdgtthat primarily measured
dimension two had am, of 65-90 degrees with the dimension one axis. dtémat
primarily measured dimension one represented theritya(approximately 75%) of
items on the lower grade test and items that priynareasured dimension two

represented the majority (approximately 75%) ahgeon the upper grade test. The test
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construction parameters for each item includedriscation parametersy; anda;
(which will define the item’s relationship with tieo dimensions) and the parameter
related to difficulty,d. [Note also that while a test battery was muttieinsional on the
whole, there were items that were unidimensiomat is, they only loaded on a single
dimension]

Parameters for the six 100 item test batteriesrdestin Table 3, below, were
determined:

Table 3: Test battery characteristics

Test Battery Confound Level Common items
Battery 1 High lower grade
Battery 2 High both grades
Battery 3 Moderate lower grade
Battery 4 Moderate both grades
Battery 5 No lower grade
Battery 6 No both grades

All items had aviDISC of 1. By treating the MDISC as fixed at 1 and knogvthe
location of the itemsa;; is simply the cosine af,. Andais {/1-a; . For tests where

there was no confound of difficulty with dimensiditg eachb;x was drawn from a

N(0,1) distribution and equation 2 was appliedétedmined;. For tests where difficulty
was confounded with dimensionality; was drawn from a N(-1,.25);,lwas drawn from
a N(1,.25) distribution, and equation 2 was appleedeterminal. For tests where
difficulty was moderately confounded with dimenséty, bj; was drawn from a N(-
.5,.5),bi> was drawn from a N(.5,.5) distribution, and equa was applied to determine
di. Note that the weighting of eabh by ax and the distribution from which the bvere
drawn caused the difficulty and dimensionality aanfd. The degree of confound of

item difficulty and dimensionality was measuredthg correlation of the slope
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parameters and the difficulty parameter. A highr@ation close to 1 (in absolute value)
indicated a high confound; a moderate correlatlosecto 0.6 indicated a moderate
confound; and a low correlation close to O indidate confound. The correlation
betweenrg;; and thed; represented the confound of item difficulty witimeénsion one and
the correlation betweess, andd; represented the confound of item difficulty with
dimension 2. Item parameters for all exams cafobed in Tables C1 through C6 in
Appendix C.

The descriptive statistics associated with thaaliffy of each test (and based on
the tables in Appendix C) broken down by lower gragpbper grade, and entire test
battery are included in Tables 4 through 9 below:

Table 4: Test descriptive statistics: Difficulty highly confounded with dimensionality;
lower grade common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty 0.22 -0.19 0.00
Stdev. of difficulty 0.79 0.78 0.82
Corr. of difficulty with dim 1 0.96 0.95 0.96
Corr. of difficulty with dim 2 -0.94 -0.93 -0.94

Table 5: Test descriptive statistics: Difficulty highly confounded with dimensionality;
both grades common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty 0.17 -0.24 -0.03
Stdev. of difficulty 0.81 0.78 0.83
Corr. of difficulty with dim 1 0.96 0.95 0.96
Corr. of difficulty with dim 2 -0.94 -0.93 -0.94

Table 6: Test descriptive statistics: Difficulty moderately confounded with dimensionality;
lower grade common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty 0.17 -0.04 0.05
Stdev. of difficulty 0.60 0.59 0.59
Corr. of difficulty with dim 1 0.65 0.61 0.60
Corr. of difficulty with dim 2 -0.66 -0.58 -0.59
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Table 7: Test descriptive statistics: Difficulty moderately confounded with dimensionality;
both grades common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty 0.12 -0.09 0.02
Stdev. of difficulty 0.61 0.58 0.59
Corr. of difficulty with dim 1 0.61 0.55 0.58
Corr. of difficulty with dim 2 -0.62 -0.51 -0.56

Table 8: Test descriptive statistics: Difficulty not confounded with dimensionality;
lower grade common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty -0.13 -0.08 -0.02
Stdev. of difficulty 1.02 1.15 1.09
Corr. of difficulty with dim 1 0.06 -0.25 -0.07
Corr. of difficulty with dim 2 -0.04 0.22 0.07

Table 9: Test descriptive statistics: Difficulty not confounded with dimensionality;
both grades common items

Lower grade test Upper grade test Entire test battery

Avg. difficulty 0.07 0.11 0.10
Stdev. of difficulty 1.01 1.13 1.07
Corr. of difficulty with dim 1 0.06 -0.16 -0.04
Corr. of difficulty with dim 2 -0.03 0.13 0.04

Smulation steps (for a given cell)

1. Generated 10,000 simulees per grade and simulatedesponses (0/1) to ALL
items in the test battery (upper grade, lower gradd common items) based on
MIRT generating parameters. The sample size @(per grade was
considered sufficient to represent population lelath.

2. Obtained distribution of raw scores for membersaxfh grade.

3. For each grade, found the max raw score for whid@ 4r fewer simulees fell
below. The 60% proficient cut was based on a suo¥g@roportion proficient

rates on various state reading and mathematicsdesigned to measure student
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progress under the NCLB legislation (Tracey Magsonal communication,
August 6, 2008).

4. Targeted 1 plus scores determined above as miniscone for proficient for each
grade; this yielded: Target Cut_Lower_Grade an@dtaiCut_Upper_Grade

5. Estimated the resulting response patterns accotdiagertically scaled two-
group 2PL unidimensional model in BILOG-MG.

6. The resulting unidimensional 2PL item parametanedes were ranked from
smallest to largest according to the theta valgeired to have a 67% probability
of answering the item correctly. Thus, a “simuiteookmark ordered item
booklet (OIB) with response probability (RP) eqteab7% was created; using test
characteristic curve methods, expected total sdoreswide range of thetas were
computed.

7. Found the two OIB locations and associated expédotatiscores that captured
the target cuts (Target_Cut_Lower_Grade and Tathet Upper_Grade).

8. Rounded the expected total scores and comparedtthéma target cuts; chose the
expected score that has the smallest absoluteetitfe with the target cut. In the
event of a tie, used the lower score. The refuis this step yielded
Cut_Lower_Grade and Cut_Upper_Grade. Took noteeoOIB location of each

of these cuts.

The steps described above were used to estabéighuih cut points for proficient

(on the entire test battery) for each grade ingikien cell; the subsequent steps

describe the procedure for running the replicatisitkin a given cell
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9. Generated 500 replications of 2,000 simulees paegand simulated item
responses to only grade level and common itemgdas®IRT generating
parameters.

10. Estimated item parameters for each replicationraieg to a two-group
vertically scaled 2PL unidimensional model in BILDGS.

11.For each replication, the resulting unidimensiateah parameter estimates were
ranked from smallest to largest according to tle¢etivalue required to have a
67% probability of answering the item correctlyhug, a “simulated” OIB was
created.

12.For each grade in each replication, the locatiotheftheta cut for proficiency in
the OIB was the same as used to determine thedtuer proficiency (step 8).
The cut score for proficient in the given replicatwas determined using test
characteristic curve methods with the 2PL paramettmates for the appropriate
grade-level and common items and the associat¢a vhkie in the OIB.
Standard rounding rules were applied to obtain @/moimber cut scores.

13.Each simulee in each replication was classifieddmparing their “observed”
total score to the grade-level appropriate totatescut for proficiency
determined in step 12.

14.For each simulee in each replication, their “trakdssification was determined by
calculating their expected total score (adjustedgustandard rounding
conventions) on all items in the test battery basetheir 2-dimensional theta

vector and the MIRT generating parameters and cangpthat value to the
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“true” grade-level appropriate cut for proficiendgtermined in step 8. Support
for establishing true scores in this manner cafobed in Reckase and Li (2007)
and Lin (2009).

15.The classifications determined in steps 13 and &% wsed to determine
classification success. For each replicationptioportions described in

equations 10 through 13 were computed.

Outcome measures

Based on the indices described in Betebenner €G08), for each replication
false-positive, false-negative, and correct classiion rates based on both the joint and
conditional distribution of simulees were calcuthtédcross replications the mean and
standard deviation of these measures were calduldtee percent correctly classified

based on the conditional distribution was the prnniacus of the subsequent analyses.

Analysis method

A four factor analysis of variance (ANOVA) was themary method of analysis.
Specifically, there were four analyses; for eaddgr(upper and lower), an ANOVA was
conducted on the proportion of not proficient studeclassified correctly and for the
proportion of proficient students classified cothg.e. the conditional classification
probabilities). Since proportions are typicallyesked and do not meet the normal

distribution assumptions of ANOVA, all proportiongre transformed according to an
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arcsin transformation as described in Sheskin (RO8pecifically the following

transformation was used:

Y = 2arcsiny X, (14)
whereX is a proportion. Note that this transformatiorswanducted on the radian

metric.

For descriptive purposes, the ANOVA results for ¢baditional raw proportions
are also presented. Corresponding ANOVA analysethé classification accuracy
measures based on the joint distributions are dedun appendix D. As was described
earlier, the four independent levels in the ANOVAres correlation of ability dimensions,
confound of difficulty with dimensionality, commatem set, and difference in ability of
the lower and upper grades.

Because the sample sizes used would likely ressthatistically significant
results for all main and interaction effects, tlaetial eta-squared effect size measure was
used to assess the degree of relationship of gaigbors with the outcome variable.
Specifically, the partial eta-squared effect sizasure indicates the proportion of
variance explained by the main or interaction faetbile partialling out all other factors
from the nonerror variance (Pierce, Block, & Agsir®004). The formula for the partial
eta squared is as follows:

(15)

partial 7° = SS,.r /(SSaer +SS

factor error )
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Chapter 7: Results

Results are presented in three major sections.fifdiéncludes the population
analysis where performance on the full test batisrwell as the “true” cutscores and
bookmark locations are presented. The next twogecinclude the multifactor
ANOVA output and associated figures and tablegHerconditional probability of
correct classification into the proficient or nobficient categories for lower and upper

grades. There is a section for each grade, uppkloaver.

Population analyses

The population performance across cells was cordparnd the results,
summarized by confound level in Tables 10 througivdlow, were plausible given the
population and item generating parameters. Spadifi take note of the larger standard

deviations as the correlation between ability digiens increased.
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Table 10: High confound full test battery population performance

Lower Grade Upper Grade
Common Items Ability Difference Correlation AVG STDEV AVG STDEV
0.0 47.9 16.1 54.3 15.5
Small 0.3 48.0 17.8 54.4 17.1
0.6 47.9 19.1 54.0 18.7
Lower Grade 0.9 48.3 20.8 54.4 19.9
0.0 48.2 15.9 60.2 14.7
Big 0.3 47.9 17.8 60.0 16.5
0.6 48.2 19.4 60.1 17.8
0.9 47.6 20.5 59.6 19.2
0.0 47.5 15.8 53.5 15.6
Small 0.3 47.4 17.7 53.8 17.2
0.6 47.2 19.0 53.4 18.7
0.9 47.2 20.5 53.5 20.1
Both Grades 0.0 473 16.0 50.5 14.8
Big 0.3 47.5 17.6 59.3 16.5
0.6 47.2 19.1 58.9 18.1
0.9 47.3 20.3 59.3 19.4

Table 11: Moderate confound full test battery population performance

Lower Grade

Upper Grade

Common ltems Ability Difference Correlation AVG STDEV AVG STDEV
0.0 48.5 16.7 55.7 16.2
small 0.3 49.1 18.5 55.4 18.3
0.6 48.8 20.3 55.3 19.8
Lower Grade 0.9 48.8 21.7 55.4 21.3
0.0 48.7 16.8 62.0 15.4
Big 0.3 48.7 18.5 62.1 17.2
0.6 48.5 20.1 61.6 18.9
0.9 48.6 21.6 61.5 20.4
0.0 48.3 16.7 55.0 16.4
Small 0.3 48.3 18.6 55.1 18.2
0.6 48.4 20.2 54.8 19.8
0.9 48.1 21.7 54.4 21.3
Both Grades 0.0 484 16.8 61.3 15.7
Big 0.3 48.0 18.4 61.0 17.6
0.6 48.4 20.4 60.6 19.2
0.9 48.5 21.7 60.6 20.4
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Table 12: No confound full test battery population performance

Lower Grade Upper Grade
Common Iltems Ability Difference Correlation AVG STDEV AVG STDEV
0.0 47.6 15.1 53.7 15.1
Small 0.3 47.9 16.9 53.9 17.0
0.6 47.7 18.4 54.1 18.5
Lower Grade 0.9 48.2 19.8 53.7 19.8
0.0 47.8 15.0 60.0 14.9
Big 0.3 47.9 16.8 60.0 16.3
0.6 47.8 18.5 59.5 18.0
0.9 47.5 19.9 59.7 19.4
0.0 49.7 15.1 55.9 15.1
Small 0.3 50.0 17.0 55.5 17.0
0.6 495 18.7 56.1 18.4
0.9 49.7 19.8 55.6 19.7
Both Grades 0.0 49.7 15.2 617 14.6
Big 0.3 49.7 16.8 62.0 16.3
0.6 49.8 18.6 61.6 17.7
0.9 49.3 19.9 61.6 19.0

Using population performance on the test batteryé&zh cell and following the
procedure described in simulation steps 1 throydiu8 cutscores and bookmark
locations were determined. The results are preddantTables 13 through 15 below by

confound level.
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Table 13: High confound full test battery population cut scores and bookmark locations
across factors

Lower Grade Upper Grade
Common Iltems  Ability Difference Correlation Cut Score Location Cut Score Location
0.0 44 10 51 37
small 0.3 43 9 50 35
0.6 42 10 49 31
0.9 42 10 49 33
Lower Grade 0.0 44 11 57 52
Big 0.3 43 10 56 52
0.6 43 11 57 53
0.9 41 9 56 52
0.0 42 11 50 36
small 0.3 42 10 50 36
0.6 42 10 49 34
0.9 41 11 48 31
Both Grades 0.0 43 12 56 49
Big 0.3 43 13 56 49
0.6 41 11 55 49
0.9 40 11 55 49

Table 14: Moderate confound full test battery population cut scores and bookmark locations
across factors

Lower Grade Upper Grade
Common Items  Ability Difference Correlation Cut Score Location Cut Score Location
0.0 45 7 51 19
Small 0.3 44 7 51 19
0.6 42 6 51 19
0.9 41 6 50 17
Lower Grade 00 14 y =5 36
Big 0.3 42 6 59 37
0.6 42 6 58 33
0.9 41 6 58 34
0.0 44 6 50 17
Small 0.3 44 6 51 18
0.6 43 6 50 17
0.9 40 5 49 15
Both Grades 00 7 5 0 3
Big 0.3 41 5 58 33
0.6 42 6 57 29
0.9 42 6 57 31
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Table 15: No Confound full test battery population cut scores and bookmark locations
across factors

Lower Grade Upper Grade
Common Items  Ability Difference Correlation Cut Score Location Cut Score Location
0.0 43 18 50 24
small 0.3 43 18 48 23
0.6 42 17 48 23
0.9 42 18 48 23
Lower Grade 0.0 45 19 57 35
Big 0.3 42 18 56 34
0.6 41 17 55 33
0.9 41 17 56 35
0.0 45 21 52 27
Small 0.3 44 21 51 26
0.6 44 21 52 27
0.9 44 20 49 25
Both Grades 0.0 46 22 58 38
Big 0.3 45 20 59 40
0.6 44 19 58 39
0.9 43 19 58 40

Note that as a measure to ensure the reasonabtdritbessimulated bookmark
procedure conducted for each replication and gsafishe population based OIB
locations, the OIBs for two replications from eatHour cells were compared to the
corresponding OIBs based on population performandie entire test battery. The
results were very convincing and consistent: Agiabreplications considered, the items
above or below the cutscore (for both grades) diffdy no more than three compared to

the items above and below the cuts based on thdromBthe population calibration.

Lower grade analysis

Output from the multifactor ANOVAs as well as degtive statistics and figures
are used to describe the results for the lowerggr&er ease of presentation the

following abbreviations were used for the factarells and criterion variables:
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CONFOUND = factor for item difficulty confounded tidimensionality; C = high
confound, M = moderate confound, N = no confound
CORRELAT = factor for the correlation between disiens; 0 = 0.0 correlation
between dimensions, 3 = 0.3 correlation betweeredsions, 6 = 0.6 correlation between
dimensions, 9 = 0.9 correlation between dimensions
ABILITY = factor for the ability difference betwedhe lower and upper grade; B = big
ability difference, S = small ability difference
COMMON = factor for the common items administeredboth lower and upper grades;
L = lower grade common items, A = both grades comitems
CONDPC1 = the raw proportion of those truly notffment classified as such
CONDPC2 = the raw proportion of those truly pradii classified as such
CONDPCI1T = the arcsin transformed proportion osthtvuly not proficient classified
as such
CONDPC2T = the arcsin transformed proportion osthtyuly proficient classified as
such

Note also that a given cell of the study will béereed to as NLBO. This
abbreviation would indicate no confound, lower gradmmon items, big ability
difference, and a correlation between dimensiorts dDther cells will be referred to
similarly using the abbreviations above. Thesea@bhtions also apply to the upper

grade analysis.
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Proportion correctly classified as not proficient

The multifactor ANOVA output, raw and arcsin tramshed, for the proportion

of lower grade simulees classified correctly asproficient are found below in Tables

16 and 17, respectively:

Table 16: Lower Grade Multifactor ANOVA on Raw Data for CONDPC1

Tests of Between-Subjects Effects
Dependent Variable: CONDPC1

Source Type lISS  df Mean Sq F Sig. Partial n°
Corrected Model 25.904 47 0.551 1023.336 0.000| 0.668
Intercept 18398.318 1 18398.318 | 34161256.370] 0.000| 0.999
CONFOUND 6.361 2 3.181 5905.486 0.000|] 0.330
COMMON 0.857 1 0.857 1591.851 0.000| 0.062
ABILITY 0.186 1 0.186 345.620 0.000| 0.014
CORRELAT 13.691 3 4.564 8473.811 0.000| 0.515
CONFOUND * COMMON 0.206 2 0.103 190.909 0.000| 0.016
CONFOUND * ABILITY 0.513 2 0.256 476.239 0.000| 0.038
COMMON * ABILITY 0.116 1 0.116 215.375 0.000|] 0.009
CONFOUND * COMMON *

ABILITY 0.099 2 0.049 91.689 0.000|] 0.008
CONFOUND * CORRELAT 2.019 6 0.336 624.658 0.000| 0.135
COMMON * CORRELAT 0.076 3 0.025 46.732 0.000| 0.006
CONFOUND * COMMON *

CORRELAT 0.374 6 0.062 115.729 0.000|] 0.028
ABILITY * CORRELAT 0.039 3 0.013 24.420 0.000|] 0.003
CONFOUND * ABILITY *

CORRELAT 0.418 6 0.070 129.266 0.000|] 0.031
COMMON * ABILITY *

CORRELAT 0.086 3 0.029 53.362 0.000| 0.007
CONFOUND * COMMON *

ABILITY * CORRELAT 0.863 6 0.144 267.069 0.000| 0.063
Error 12.900 [23952 0.001

Total 18437.121| 24000

Corrected Total 38.804 |23999

.. R Squared = .668 (Adjusted R Squared = .667)
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Table 17: Lower Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC1

Tests of Between-Subjects Effects
Dependent Variable: CONDPCI1T

Source Type lISS df  Mean Sq F Sig. Partial n°
Corrected Model 228.855 | 47 4.869 982.829 ] 0.000] 0.659
Intercept 141570.703| 1 [141570.703] 28575214.158] 0.000] 0.999
CONFOUND 58.258 2 29.129 5879.544 |0.000] 0.329
COMMON 7.378 1 7.378 1489.237 |0.000| 0.059
ABILITY 1.393 1 1.393 281.208 | 0.000| 0.012
CORRELAT 122.276 3 40.759 8226.879 |0.000] 0.507
CONFOUND * COMMON 1.290 2 0.645 130.140 | 0.000| 0.011
CONFOUND * ABILITY 4.635 2 2.318 467.793 | 0.000] 0.038
COMMON * ABILITY 1.072 1 1.072 216.454 | 0.000| 0.009
CONFOUND * COMMON *

ABILITY 1.387 2 0.693 139.965 | 0.000| 0.012
CONFOUND * CORRELAT | 14.595 6 2.433 491.003 | 0.000] 0.110
COMMON * CORRELAT 0.446 3 0.149 30.021 | 0.000] 0.004
CONFOUND * COMMON *

CORRELAT 3.243 6 0.541 109.113 | 0.000| 0.027
ABILITY * CORRELAT 0.230 3 0.077 15.467  |0.000] 0.002
CONFOUND * ABILITY *

CORRELAT 3.246 6 0.541 109.201 ] 0.000| 0.027
COMMON * ABILITY *

CORRELAT 0.874 3 0.291 58.820 | 0.000| 0.007
CONFOUND * COMMON *

ABILITY * CORRELAT 8.530 6 1.422 286.957 | 0.000] 0.067
Error 118.666 |23952| 0.005

Total 141918.223 | 24000

Corrected Total 347.521 23999

a. R Squared = .659 (Adjusted R Squared = .658)
Using the ANOVA output for the transformed datalflEal7), it is reasonably
clear that three effects have the strongest asgmtiaith the criterion variable

(CONDPCLT) as measured by partial eta squaredy dieethe confound (patrtial

n? =.329) and correlation (partiaj®> =. 5Q7main effects and the confound and

correlation interaction effect (partig =. 1)LONote that these three effect sizes are all
larger than 0.10, which is in between the 0.06 @dd rules of thumb for medium and
large effect sizes measured by partial eta squ&tedens, 1992). Before evaluating the

marginal mean differences on proportion corredidgsified across the various levels for

these factors, it is important to visually apprezide theta vector distribution of truly not
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proficient simulees classified as such versus tltassified as proficient for each of the
two main effects. This evaluation will help ustbetunderstand why these factors have a
strong association with CONDPCL1.

Figures 1 and 2, below, illustrate the distributadriheta vectors for truly not
proficient simulees classified correctly and ineatty from two example replications
from the extremes of the confound levels, no confband high confound. The average
values on theta 1 and theta 2 for those classifiecectly and incorrectly are also
included on the figure. Specifically, a replicativom each of the following cells was

used: NLBO and CLBO

Figure 1. Distribution of theta vectors for lower grade truigt proficient simulees; NLBO cell
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Figure 2: Distribution of theta vectors for lower grade truigt proficient simulees; CLBO cell (1)
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In Figure 1, 90% of the truly not proficient simesewere classified correctly and
in Figure 2, 84 % of the truly not proficient siraak were classified correctly; so more
simulees were classified correctly as not proficiarthe no confound case. The theta
vectors of those not proficient simulees classifisgroficient, however, followed the
same pattern in both cells: on average, they wewaker than those classified correctly
on dimension two (the upper grade focused itemg)much stronger on dimension 1
(the lower grade focused items). In general, ik@sasense that those stronger on
dimension one were classified as proficient bec#usenajority of the items
administered to them were lower grade focusedheset simulees were in a greater
position to get those items correct. Rememberth@t true proficiency classification
was based on the entire test battery where theseawgaeater proportion of upper grade

focused items, the dimension on which these inctiyrelassified simulees were
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particularly weak which resulted in their truly mooficient classification. The

difference in proportions between these two cas&sily not proficient simulees being
classified as such also makes sense. In the bigloend case the lower grade items
were easier than in the no confound case, so itmaas likely that these truly not
proficient simulees could get those lower gradem#g&orrect; thus a lower CONDPC1

for the confound cell. Note that in the no confdwase, difficulty of items was not
related to the dimensionality (lower or upper grémrised items), so the lower grade
focused items were allowed to be just as hardaspper grade focused items. Table 18
below includes the marginalized (across all othetdrs) raw and transformed

CONDPC1 average values for all three levels ofcthr&found factor in the lower grade.

Table 18: Average lower grade CONDPC1T and CONDPC1 values for confound levels
across all other factors

No Confound Moderate Confound Confound
CONDPCI1T 2.498 2.377 2.401
CONDPC1 0.898 0.861 0.867

There is very little difference (third decimal pdgan the average values for the
high confound or moderate confound levels. Thidue to, perhaps, to the coarse nature
of the decision being made (proficient or not prigint). The average CONDPC1 values
for the high confound and moderate confound leasddess than the no confound level
by approximately three percent on the raw metric.

Figures 3 through 6 below illustrate the distribatof theta vectors for truly not

proficient simulees classified correctly and ineatly from four example replications
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across all four correlation levels, 0.0, 0.3, 0.8, Specifically, a replication from each

of the following cells was used: CLBO, CLB3, CLEBfd CLB9.

Figure 3: Distribution of theta vectors for lower grade truigt proficient simulees; CLBO cell (II)

N

Correctly Classified

AVG thl = -0.93
AVG th2 = -0.76

N

o Correctly Classified

theta 2

m Misclassified

Misclassified

AVG thl = -0.12
AVG th2 = -0.91

a

theta 1

55



Figure 4. Distribution of theta vectors for lower grade truigt proficient simulees; CLB3 cell

Correctly Classified

AVG thl = -0.95
AVG th2 = -0.94

# Correctly Classified
m Misclassified

theta 2

Misclassified

AVG thl =-0.19
AVG th2 = -0.87

theta 1

Figure 5: Distribution of theta vectors for lower grade truigt proficient simulees; CLB6 cell
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Figure 6: Distribution of theta vectors for lower grade truigt proficient simulees; CLB9 cell
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In Figures 3 through 6, 83%, 85%, 88%, and 90%aeaetsvely, of the truly not
proficient simulees were classified correctly; sorensimulees were classified correctly
as not proficient as the correlation between dinogrssgot stronger. This pattern makes
sense. The simulees in each of these four celis agministered the same items to
determine their true classification (entire CL testtery) and the same items to determine
their “observed” (lower grade and common items ftbe CL test battery) classification.
As the theta 1 and theta 2 values for each of thieselees became more highly related it
is reasonable that their relative performance eretttire test battery would match their
performance on the lower grade test. Thus, CONDR@1ld be expected to increase as
the relationship between the theta values increasésually, this increasingly linear

relationship can be appreciated across the fourdggabove. Table 19 below includes
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the marginalized (across all other factors) raw aadsformed CONDPCL1 average

values for all four levels of the correlation facio the lower grade.

Table 19: Average lower grade CONDPC1T and CONDPC1 values for correlation levels
across all other factors

0.0 0.3 0.6 0.9
CONDPCI1T 2.329 2.404 2.459 2.523
CONDPC1 0.842 0.868 0.887 0.906

There is approximately a six percent CONDPCL1 irewean the raw metric
between no correlation and 0.9 correlation. Furttme change in raw percentage by
correlation level is approximately two percent gasing from no relationship between
dimensions to a strong relationship between dinosssi

The plots in Figures 7 and 8 below represent ttexaction of the confound and
correlation factors. Each point represents theameeCONDPC1 or CONDPCI1T across

the other two factors for a given level of correlatand confound.
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Figure 7: Lower grade confound and correlation interactiothw#d ONDPCL1 as the criterion
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Figure 8: Lower grade confound and correlation interactiothw# ONDPCLT as the criterion
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The plots on these two figures illustrate ashraal interaction between confound
and correlation. Since the raw metric is easiemerstand, Figure 7 is discussed,;
however, the conclusions would also apply to Fidurd-or the no confound level, the
differences among the four levels of correlationrGEINDPC1 are much smaller than the
differences at the moderate confound or high camddavels. Further, the confound of
difficulty with dimensionality has a greater effest CONDPC1 when there is a low
relationship among dimensions than when therestsomger one. As mentioned before,
it is also clear that the no confound level will/bdahe greatest success at classifying not
proficient students as such. This is simply beeanghe no confound condition,
simulees would be administered relatively hardamg and would be more likely to
answer them incorrectly resulting in a not profntisobserved” classification. This plot
also helps to reinforce the mean differences on DRGIL between no confound and the
other two levels of confound and across the fouelkeof correlation. Table 20, below,
includes the mean CONDPC1 and CONDPCAI1T valuescat&ahe levels of the

confound and correlation factors.

Table 20: Average lower grade CONDPC1 and CONDPCIT values for confound and
correlation levels across all other factors

Correlation
Confound Level 0.0 0.3 0.6 0.9
CONDPCI1T No Confound 2.442 2.493 2.508 2.549
CONDPC1 0.882 0.897 0.901 0.914
CONDPCI1T Mod Confound 2.254 2.357 2.431 2.506
CONDPC1 0.815 0.853 0.878 0.901
CONDPCI1T Confound 2.291 2.361 2.439 2.514
CONDPC1 0.828 0.854 0.881 0.904
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As noted earlier, only those effects with parttal equared values greater than
0.10 were investigated further. In order to fewhféortable with that decision, the
marginal means on CONDPC1 and CONDPCAT for theléwels of common items
were computed. The partial eta squared for this effect is 0.059, which, rounded to
one decimal place, is the minimum rule of thumluedbr a medium effect size. The

means are included in Table 21 below:

Table 21: Average lower grade CONDPC1T and CONDPCL1 values for common item levels
across all other factors

Lower Grade Both Grades
CONDPCI1T 2.446 2.411
CONDPC1 0.882 0.87

On the raw metric, the difference in these meaappsoximately 1%. Using this
result as a proxy for others with similar partitd equared effect size values and in terms
of efficiency of presentation and to focus on thestimportant results, it seems
reasonable to eliminate effects with partial et@asgd values less than 0.10 from further

discussion.

Proportion correctly classified as proficient

The multifactor ANOVA output, raw and arcsin tramshed, for the proportion
of lower grade simulees classified correctly adipient are found below in Tables 22

and 23, respectively:
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Table 22: Lower Grade Multifactor ANOVA on Raw Data for CONDPC2

Tests of Between-Subjects Effects
Dependent Variable: CONDPC2

Source Type lISS  df  Mean Sq F Sig. Partial n°
Corrected Model 12.133 47 0.258 1084.343 ] 0.000] 0.680
Intercept 20375.749| 1 |20375.749| 85583944.823] 0.000] 1.000
CONFOUND 6.260 2 3.130 13146.793 | 0.000| 0.523
COMMON 0.396 1 0.396 1662.911 | 0.000] 0.065
ABILITY 0.022 1 0.022 93.861 0.000] 0.004
CORRELAT 2.924 3 0.975 4094.256 | 0.000| 0.339
CONFOUND * COMMON 0.021 2 0.011 44.940 0.000| 0.004
CONFOUND * ABILITY 0.246 2 0.123 516.986 | 0.000| 0.041
COMMON * ABILITY 0.056 1 0.056 236.462 | 0.000] 0.010
CONFOUND * COMMON *

ABILITY 0.105 2 0.052 220.473 | 0.000| o0.018
CONFOUND * CORRELAT| 1.269 6 0.211 888.078 | 0.000] 0.182
COMMON * CORRELAT 0.040 3 0.013 55.904 | 0.000] 0.007
CONFOUND * COMMON *

CORRELAT 0.178 6 0.030 124.885 | 0.000| 0.030
ABILITY * CORRELAT 0.003 3 0.001 4.280 0.005] 0.001
CONFOUND * ABILITY *

CORRELAT 0.103 6 0.017 72.159 0.000| 0.018
COMMON * ABILITY *

CORRELAT 0.065 3 0.022 91.663 0.000| 0.011
CONFOUND * COMMON *

ABILITY * CORRELAT 0.444 6 0.074 310580 | 0.000| 0.072
Error 5702 | 23952 0.000

Total 20393.585 | 24000

Corrected Total 17.836 23999

a. R Squared = .680 (Adjusted R Squared = .680)
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Table 23: Lower Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC2T

Tests of Between-Subjects Effects
Dependent Variable: CONDPC2T

Source Type llSS  df Mean Sq F Sig. Partial n”
Corrected Model 149.295 47 3.176 981.915 0.000] 0.658
Intercept 159831.980 1 159831.980 | 49407207.25110.000] 1.000
CONFOUND 78.304 2 39.152 12102.705 ]0.000|f 0.503
COMMON 5.862 1 5.862 1812.142 0.000] 0.070
ABILITY 0.562 1 0.562 173.621 0.000] 0.007
CORRELAT 36.463 3 12.154 3757.178 0.000] 0.320
CONFOUND * COMMON 0.420 2 0.210 64.955 0.000] 0.005
CONFOUND * ABILITY 3.150 2 1.575 486.849 0.000] 0.039
COMMON * ABILITY 0.683 1 0.683 211.031 0.000] 0.009
CONFOUND * COMMON *

ABILITY 1.195 2 0.598 184.759 0.000] 0.015
CONFOUND * CORRELAT 12.187 6 2.031 627.871 0.000] 0.136
COMMON * CORRELAT 0.474 3 0.158 48.852 0.000] 0.006
CONFOUND * COMMON *

CORRELAT 2.408 6 0.401 124.035 0.000] 0.030
ABILITY * CORRELAT 0.045 3 0.015 4.652 0.003] 0.001
CONFOUND * ABILITY *

CORRELAT 1.542 6 0.257 79.468 0.000] 0.020
COMMON * ABILITY *

CORRELAT 0.619 3 0.206 63.826 0.000] 0.008
CONFOUND * COMMON *

ABILITY * CORRELAT 5.379 6 0.897 277.150 0.000] 0.065
Error 77.485 23952 0.003

Total 160058.760 | 24000

Corrected Total 226.779 |23999

a. R Squared = .658 (Adjusted R Squared = .658)

Using the ANOVA output for the transformed datalflEa23), it is reasonably
clear that three effects have the strongest asgmtiaith the criterion variable
(CONDPCLT) as measured by partial eta squaredy ateethe confound (partial

n* =.503) and correlation (partiay® =. 320main effects and the confound and

correlation interaction effect (partigf =. 1R6None of the other effects reach the 0.10
criterion for further investigation. Before evaling the marginal differences on
proportion correctly classified across the varilmyels for these factors, it is important to

visually appreciate the theta vector distributidrroly proficient simulees classified as
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such versus those classified as not proficiene&mh of the two main effects. This
evaluation will help us better understand why tHaséors have a strong association with
CONDPC2.

Figures 9 and 10 below illustrate the distributodntheta vectors for truly
proficient simulees classified correctly and ineatty from two example replications
from the extremes of the confound levels, no confband high confound. The average
values on theta 1 and theta 2 for those classifiecectly and incorrectly are also
included on the figure. Specifically, a replicativom each of the following cells was

used: NLBO and CLBO.

Figure 9: Distribution of theta vectors for lower grade trpisoficient simulees; NLBO cell (1)
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Figure 10: Distribution of theta vectors for lower grade trpisoficient simulees; CLBO cell
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In Figure 9, 89% of the truly proficient simuleesr& classified correctly and in
Figure 10, 94 % of the truly proficient simuleesrvelassified correctly; so more
simulees were classified correctly as proficienthia high confound case. The theta
vectors of those proficient simulees classifiet@isproficient, however, followed the
same pattern in both cells: on average, they weaker than those classified correctly
on dimension one (the lower grade focused itemg)much stronger on dimension two
(the upper grade focused items). In general, kem@ense that those weaker on
dimension one were classified as not proficientlse the majority of the items
administered to them were lower grade focusedheset simulees were in a greater
position to get those items incorrect. Remembairttieir true proficiency classification
was based on the entire test battery where theseawgaeater proportion of upper grade

focused items, the dimension on which these inctiyrelassified simulees were
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particularly strong which caused their truly pradiat classification. The difference in
proportion between these two cases of truly prefitsimulees being classified as such
also makes sense. In the high confound case We lgrade items were easier than in
the no confound case, so it was more likely thaséhtruly proficient simulees could get
those lower grade items correct; thus a higher CREDfor the high confound case.
Note that in the no confound case, difficulty @nits was not related to the
dimensionality (lower or upper grade focused iteras)the lower grade focused items
were allowed to be just as hard as the upper doased items. Table 24 below
includes the marginalized (across all other fagtaa and transformed CONDPC2

average values for all three levels of the confoiaatbr in the lower grade.

Table 24: Average lower grade CONDPC2T and CONDPC2 values for confound levels
across all other factors

No Confound Moderate Confound Confound
CONDPC2T 2.500 2.624 2.618
CONDPC2 0.899 0.933 0.932

There is very little difference (third decimal pdg in the average values for the
high confound or moderate confound levels. Agtiis, could be due to the coarse
nature of the decision being made (proficient drproficient). The average CONDPC2
values for the high confound and moderate confdewels are greater than the no
confound level by approximately three percent anrdw metric.

Figures 11 through 14, below, illustrate the dmttion of theta vectors for truly
proficient simulees classified correctly and ineatly from four example replications
across all four correlation levels, 0, 0.3, 0.8, OSpecifically, a replication from each of

the following cells was used: NLBO, NLB3, NLB6,caNLB9
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Figure 11: Distribution of theta vectors for lower grade trgigoficient simulees; NLBO cell (I1)
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Figure 12: Distribution of theta vectors for lower grade trpisoficient simulees; NLB3 cell
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Figure 13: Distribution of theta vectors for lower grade trpigoficient simulees; NLB6 cell
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Figure 14: Distribution of theta vectors for lower grade trpisoficient simulees; NLB9 cell
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In Figures 11 through 14, 87%, 89%, 92%, and 9&%pectively, of the truly
proficient simulees were classified correctly; sorensimulees were classified correctly
as proficient as the correlation between dimensgmstronger. This pattern, and a
rationale for its appearance, is similar to thathef CONDPCL1 criterion. The simulees in
each of these four cells were administered the seams to determine their true
classification (entire NL test battery) and the eatems to determine their “observed”
(lower grade and common items from the NL testdog}tclassification. As the theta
one and theta two for each of these simulees beoaone highly related it is reasonable
that their relative performance on the entire begtery would match their performance
on the lower grade test. Thus, CONDPC2 would lpeeted to increase as the
relationship between the theta values increasésually, this increasingly linear
relationship can be appreciated across the fourdgyabove. Table 25, below, includes
the marginalized (across all other factors) raw taadsformed CONDPC2 average

values for all four levels of the correlation facito the lower grade.

Table 25: Average lower grade CONDPC2T and CONDPC2 values for correlation levels
across all other factors

0.0 0.3 0.6 0.9
CONDPC2T 2.524 2.566 2.605 2.626
CONDPC2 0.905 0.918 0.929 0.934

There is approximately a three percent average CEDincrease on the raw
metric between no correlation and 0.9. Further dfange in raw percentage by
correlation level is approximately one to two petdecreasing from no relationship

between dimensions to a strong relationship betwi@aensions.
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The plots in Figures 15 and 16 below represenirtieeaction of the confound
and correlation factors. Each point representatteeage CONDPC2 or CONDPC2T

across the other two factors for a given levelamfelation and confound.

Figure 15: Lower grade confound and correlation interactiothWldONDPC2 as the criterion

0.96

0.92 / //;\’
8 —e—Corr: 0.0
a 0.9 e
2 —=—Corr: 0.3
8 —a— Corr: 0.6
S 0.88 / Corr: 0.9

0.86 -

0.84

0.82

No Confound Mod Confound Confound
Confound level

70



Figure 16: Lower grade confound and correlation interactioth'dONDPC2T as the criterion
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The plots on these two figures above illustrate@mnal interaction between
confound and correlation similar to that observad@ONDPC1. Since the raw metric is
easier to understand, Figure 15 is discussed; henvthe conclusions would also apply
to Figure 16. For the no confound level, the défeces at the four levels of correlation
on CONDPC2 are much larger than the differencélseatnoderate or high confound
levels. Again it seems that the confound of diffig with dimensionality has a greater
effect on CONDPC2 when there is a smaller relatignamong dimensions than when
there is a larger one. Itis also clear thatiga high confound between difficulty and
dimensionality level will result in the greatestsass at classifying truly proficient
simulees as such. This is simply because in tijie tbnfound condition, simulees would

be administered relatively easier items and woeldnlore likely to answer them
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correctly resulting in an “observed” proficient gtfication. This plot also helps to
reinforce the mean differences on CONDPC2 betweeronfound and the other two
levels of confound and across the four levels ofetation. Table 26, below, includes
the mean CONDPC2 and CONDPC2T values at each ¢étleés of confound and

correlation.

Table 26: Average lower grade CONDPC2T and CONDPC2 values for confound and
correlation levels across all other factors

Correlation
Confound Level 0.0 0.3 0.6 0.9
CONDPC2T No Confound 2.402 2.468 2.544 2.585
CONDPC2 0.868 0.89 0.912 0.923
CONDPC2T Mod Confound 2.591 2.613 2.64 2.653
CONDPC2 0.925 0.931 0.938 0.94
CONDPC2T Confound 2.581 2.617 2.632 2.641
CONDPC2 0.922 0.932 ,936 0.937

Upper grade analysis

Proportion correctly classified as not proficient

The multifactor ANOVA output, raw and arcsin tramshed, for the proportion of upper
grade simulees classified correctly as not praficage found below in Tables 27 and 28,

respectively:
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Table 27: Upper Grade Multifactor ANOVA on Raw Data for CONDPC1

Tests of Between-Subjects Effects
Dependent Variable: CONDPC1

Source Type lISS df  Mean Sq F Sig. Partial n°
Corrected Model 23.120 47 0.492 1045.856 0.000| 0.672
Intercept 18455.240 1 18455.240 | 39238256.402 | 0.000| 0.999
CONFOUND 0.627 2 0.314 666.913 0.000| 0.053
COMMON 0.092 1 0.092 196.398 0.000| 0.008
ABILITY 0.364 1 0.364 774.061 0.000| 0.031
CORRELAT 19.459 3 6.486 13791.140 | 0.000] 0.633
CONFOUND * COMMON 0.268 2 0.134 284.722 0.000| 0.023
CONFOUND * ABILITY 0.395 2 0.198 420.305 0.000| 0.034
COMMON * ABILITY 0.025 1 0.025 53.684 0.000| 0.002
CONFOUND * COMMON *

ABILITY 0.072 2 0.036 76.994 0.000] 0.006
CONFOUND * CORRELAT 0.387 6 0.064 136.985 0.000| 0.033
COMMON * CORRELAT 0.084 3 0.028 59.341 0.000| 0.007
CONFOUND * COMMON *

CORRELAT 0.215 6 0.036 76.046 0.000| 0.019
ABILITY * CORRELAT 0.249 3 0.083 176.341 0.000] 0.022
CONFOUND * ABILITY *

CORRELAT 0.238 6 0.040 84.403 0.000] 0.021
COMMON * ABILITY *

CORRELAT 0.159 3 0.053 112.408 0.000| 0.014
CONFOUND * COMMON *

ABILITY * CORRELAT 0.485 6 0.081 171.818 0.000| 0.041
Error 11.266 |23952 0.000

Total 18489.625 | 24000

Corrected Total 34.385 |23999

a. R Squared = .672 (Adjusted R Squared = .672)
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Table 28: Upper Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC1T

Tests of Between-Subjects Effects
Dependent Variable: CONDPC1T

Source Type llISS df  Mean Sq F Sig. Partial n°
Corrected Model 208.866 47 4.444 1015.642 0.000| 0.666
Intercept 141966.405 1 141966.405 | 32445704.74210.000] 0.999
CONFOUND 5.262 2 2.631 601.328 0.000| 0.048
COMMON 1.141 1 1.141 260.696 0.000| 0.011
ABILITY 4.083 1 4.083 933.070 0.000| 0.037
CORRELAT 175.540 3 58.513 13372.924 10.000| 0.626
CONFOUND * COMMON 2.367 2 1.184 270.493 0.000| 0.022
CONFOUND * ABILITY 3.613 2 1.806 412.821 0.000f 0.033
COMMON * ABILITY 0.335 1 0.335 76.556 0.000| 0.003
CONFOUND * COMMON *

ABILITY 0.623 2 0.311 71.166 0.000| 0.006
CONFOUND * CORRELAT 3.267 6 0.545 124.446 0.000| 0.030
COMMON * CORRELAT 1.020 3 0.340 77.678 0.000| 0.010
CONFOUND * COMMON *

CORRELAT 1.680 6 0.280 63.977 0.000| 0.016
ABILITY * CORRELAT 2.744 3 0.915 209.017 0.000| 0.026
CONFOUND * ABILITY *

CORRELAT 1.964 6 0.327 74.824 0.000| 0.018
COMMON * ABILITY *

CORRELAT 1.458 3 0.486 111.110 0.000| 0.014
CONFOUND * COMMON *

ABILITY * CORRELAT 3.770 6 0.628 143.592 0.000] 0.035
Error 104.802 |23952 0.004

Total 142280.073 124000

Corrected Total 313.668 |23999

a. R Squared = .666 (Adjusted R Squared = .665)

Using the ANOVA output for the transformed datalflEa28), it is clear that just
the correlation factor has a strong associatioh Wie criterion variable (CONDPCL1T) as
measured by its partial eta squared value of .626ne of the other effects reach the
0.10 criterion for further investigation. Beforeaduating the marginal differences on
proportion correctly classified across the varioogelation levels, it is important to
visually appreciate the theta vector distributidrroly not proficient simulees classified

as such versus those classified as proficient a¢hasfour levels of correlation. This
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evaluation will help us better understand why datren has a strong association with
CONDPCIL.

Figures 17 through 20, below, illustrate the dmsttion of theta vectors for truly
not proficient simulees classified correctly andarrectly from four example replications
across all four correlation levels, 0, 0.3, 0.8, QJust as was done for the lower grade
analysis, the average values on theta 1 and tHetackassified and misclassified
simulees are included on the figures. Specificalyeplication from following cells

were used: CLBO, CLB3, CLB6, and CLB9

Figure 17: Distribution of theta vectors for upper grade trabt proficient simulees; CLBO cell
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Figure 18: Distribution of theta vectors for upper grade trabt proficient simulees; CLB3 cell
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Figure 19: Distribution of theta vectors for upper grade trabt proficient simulees; CLB6 cell
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Figure 20: Distribution of theta vectors for upper grade trabt proficient simulees; CLB9 cell
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In Figures 17 through 20, 83%, 87%, 90%, and 92%pectively, of the truly not
proficient simulees were classified correctly; sorensimulees were classified correctly
as not proficient as the correlation between dinogrssgot stronger. The rationale for
this pattern is the same that was used for thdasimasult in the lower grade analysis.
The simulees in each of these four cells were adiered the same items to determine
their true classification (entire CL test batteayd the same items to determine their
“observed” classification (upper grade and commems from the CL test battery). As
the theta 1 and theta 2 for each of these simbleesme more highly related it is
reasonable that their relative performance on thieestest battery would match their
performance on the upper grade test. Thus, CONDARLId be expected to increase as
the relationship between the theta values increasésually, this increasingly linear

relationship can be appreciated across the fourdsgabove. Note that the average theta
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2 value for those that were misclassified is highan those that were correctly
classified. It is this strength and the administraof largely upper grade (dimension 2)
items used to determine their “observed” classificathat causes their incorrect
“observed” classification as proficient. Generahpwever, these misclassified simulees
are the strongest on both dimensions among thqser gpade simulees that are truly not
proficient. Table 29, below, includes the margired (across all other factors) raw and
transformed CONDPCL1 average values for all fouelleof the correlation factor in the

upper grade.

Table 29: Average upper grade CONDPC1T and CONDPC1 values for correlation levels
across all other factors

0.0 0.3 0.6 0.9
CONDPCI1T 2.308 2.424 2.471 2.534
CONDPC1 0.832 0.876 0.89 0.909

There is approximately a seven percent increaS€INDPC1 on the raw metric
between no correlation and 0.9 correlation. Fuyttie change in raw percentage by
correlation level ranges between approximately 4 percent. The largest increase is

from no correlation to 0.3 correlation.

Proportion correctly classified as proficient

The multifactor ANOVA output, raw and arcsin tramshed, for the proportion
of upper grade simulees classified correctly asi@ent are found below in Tables 30

and 31, respectively:
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Table 30: Upper Grade Multifactor ANOVA on Raw Data for CONDPC2

Tests of Between-Subjects Effects
Dependent Variable: CONDPC2

Source Type lISS df  Mean Sq F Sig. Partial n”
Corrected Model 2.604 47 0.055 2590.263 ] 0.000] 0.337
Intercept 20434.802 | 1 | 20434.802] 95615262.352 ] 0.000] 1.000
CONFOUND 0.006 2 0.003 14.462 0.000| 0.001
COMMON 0.148 1 0.148 693.377 | 0.000] 0.028
ABILITY 0.101 1 0.101 473.395 | 0.000] 0.019
CORRELAT 1.125 3 0.375 1754.159 | 0.000] 0.180
CONFOUND * COMMON 0.096 2 0.048 225.132 | 0.000] 0.018
CONFOUND * ABILITY 0.216 2 0.108 504.439 | 0.000] 0.040
COMMON * ABILITY 0.006 1 0.006 28.765 0.000] 0.001
CONFOUND * COMMON *

ABILITY 0.018 2 0.009 41.259 0.000{ 0.003
CONFOUND * CORRELAT| 0.149 6 0.025 115.924 | 0.000| 0.028
COMMON * CORRELAT 0.027 3 0.009 42.502 0.000| 0.005
CONFOUND * COMMON *

CORRELAT 0.092 6 0.015 71.480 0.000| 0.018
ABILITY * CORRELAT 0.242 3 0.081 377.298 | 0.000] 0.045
CONFOUND * ABILITY *

CORRELAT 0.128 6 0.021 99.848 0.000| 0.024
COMMON * ABILITY *

CORRELAT 0.091 3 0.030 141.624 | 0.000| 0.017
CONFOUND * COMMON *

ABILITY * CORRELAT 0.160 6 0.027 124.832 | 0.000| 0.030
Error 5.119 |23952| 0.000

Total 20442.525 | 24000

Corrected Total 7.723 23999

a. R Squared = .337 (Adjusted R Squared = .336)

79




Table 31: Upper Grade Multifactor ANOVA on Arcsin Transformed Data for CONDPC2T

Tests of Between-Subjects Effects
Dependent Variable: CONDPC2T

Source TypellSS df  Mean Sq F Sig. Partial n°
Corrected Model 36.770 47 0.782 260.860 ] 0.000] 0.339
Intercept 159983.367| 1 [159983.367] 53343953.148]0.000] 1.000
CONFOUND 0.083 2 0.042 13.856 0.000] 0.001
COMMON 2.121 1 2.121 707.359 | 0.000] 0.029
ABILITY 1.487 1 1.487 495.828  [0.000] 0.020
CORRELAT 16.092 3 5.364 1788.504 [0.000] 0.183
CONFOUND * COMMON 1.308 2 0.654 217.983 |0.000] 0.018
CONFOUND * ABILITY 2.727 2 1.363 454.628  [0.000] 0.037
COMMON * ABILITY 0.113 1 0.113 37.616 0.000] 0.002
CONFOUND * COMMON *

ABILITY 0.215 2 0.107 35.794 0.000] 0.003
CONFOUND * CORRELAT| 2.201 6 0.367 122.333 [ 0.000] 0.030
COMMON * CORRELAT 0.413 3 0.138 45.931 0.000] 0.006
CONFOUND * COMMON *

CORRELAT 1.168 6 0.195 64.900 0.000] 0.016
ABILITY * CORRELAT 3.738 3 1.246 415.404  [0.000] 0.049
CONFOUND * ABILITY *

CORRELAT 1.700 6 0.283 94.487 0.000] 0.023
COMMON * ABILITY *

CORRELAT 1.175 3 0.392 130.622 | 0.000| 0.016
CONFOUND * COMMON *

ABILITY * CORRELAT 2.230 6 0.372 123.901  ]0.000| 0.030
Error 71.834 [23952 0.003

Total 160091.971 | 24000

Corrected Total 108.604 [23999

a. R Squared = .339 (Adjusted R Squared = .337)

Using the ANOVA output for the transformed datalfle 31), it appears that only

the correlation factor has even a moderate assmtiaith the criterion variable

(CONDPC2T) as measured by its partial eta squaskde\of 0.183.

None of the other

effects reached the 0.10 criterion for further stigation. Before evaluating the

marginal differences on proportion correctly clésdiacross the various correlation

levels, it is again important to visually appreeittie theta vector distribution of truly

proficient simulees classified as such versus tltassified as not proficient across for
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the four levels of correlation. This evaluationvalp us better understand how
correlation is related to CONDPC2.

Figures 21 through 24 below illustrate the distiidn of theta vectors for truly
proficient simulees classified correctly and ineatly from four example replications
across all four correlation levels, 0, 0.3, 0.8, With average theta values indicated.
Specifically, a replication from the following celvas used: NLBO, NLB3, NLB6, and

NLBO.

Figure 21: Distribution of theta vectors for upper grade trphpficient simulees; NLBO cell

H

Correctly Classified

AVG thl = 1.28
AVG th2 = 0.74

o Correctly Classified

theta 2

u Misclassified

Misclassified

AVG thl = 1.19
AVG th2 = -0.23

@

theta 1

81



Figure 22: Distribution of theta vectors for upper grade trphpficient simulees; NLB3 cell
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Figure 23:

Distribution of theta vectors for upper grade trphpficient simulees; NLB6 cell
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Figure 24: Distribution of theta vectors for upper grade trphpficient simulees; NLB9 cell
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In Figures 21 through 24, 90%, 91%, 92%, and 9&%pectively, of the truly
proficient simulees were classified correctly; sorensimulees were classified correctly
as proficient as the correlation between dimensgmstronger. The rationale for this
pattern is that same that was used for the simekult in the lower grade analysis and for
the CONDPCL criterion in the upper grade analy$ise simulees in each of these four
cells were administered the same items to deterth&ietrue classification (entire NL
test battery) and the same items to determine ‘thlegerved” classification (upper grade
and common items from the NL test battery). Cdastswith previous results, as the
theta 1 and theta 2 for each of these simuleesimeozore highly related, it is reasonable
that their relative performance on the entire begtery would match their performance
on the upper grade test. Thus, CONDPC2 would peagd to increase as the

relationship between the theta values increasesually, this increasingly linear
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relationship can be appreciated across the fourdgyabove. Note that these
misclassified simulees are the weakest on bothriBioas among those upper grade
simulees that are truly proficient; however, it wasir relative strength on dimension one
(at least 0.8, on average) that resulted in tineg tlassification as proficient (based on
the entire test battery) and their weakness onmbma two (at most 0.03, on average)
that resulted in their “observed” classificationnas proficient (based on largely upper
grade focused items). Table 32 below includesrthgginalized (across all other factors)
raw and transformed CONDPC2 average values fdoatllevels of the correlation

factor in the upper grade.

Table 32: Average upper grade CONDPC2T and CONDPC2 values for correlation levels
across all other factors

0.0 0.3 0.6 0.9
CONDPC2T 2.558 2.557 2.500 2.616
CONDPC2 0.916 0.916 0.927 0.931

There is approximately a one percent increase INGQRC2 on the raw metric
between no correlation and 0.9 correlation. Thisduggest that there is very little gain
in the upper grade CONDPC2 as the correlation bEtvdemensions increases. Note that
the overall R- square value for this multifactor @MA (0.339) was considerably less

than for the other three (at least 0.650).

Summary of study

This study helped to gain insight into the factiwat affect classification accuracy
in vertical scaling when a multidimensional modehiisspecified with a unidimensional

model. Classification accuracy was measured byitbeability of successfully
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classifying not proficient simulees (or the trugatve rate) and the probability of
successfully classifying proficient simulees (ag thue positive rate). The relationship
of item difficulty and dimensionality, the relatisimp between ability dimensions, choice
of common items, and difference in mean abilitiesM@en grades were the factors
considered. Generally, it was only the relatiopdtetween item difficulty and
dimensionality and the relationship between abdityensions that had an effect on the
conditional classification accuracy.

Across both grades and both criterion variables ctirrelation between ability
dimensions had an effect on classification accunatlge direction one would expect.
As the relationship became stronger, the valuggased on both true positive and true
negative rates. The magnitude of the increasesa@arrelation levels and classification
rates ranged from one to seven percent. Thesksesake intuitive sense because it is
to be expected that as the relationship among difoes increases performance on the
complete test battery (used to determine truth)ldvaatch performance on the grade
level test (used to determine the observed claasiin). The larger percentages (6 and
7) were observed for the true negative rates ih goades. The magnitudes of the
change in conditional probabilities across correfalevels are addressed in the
limitations and implications section.

In only the lower grade was an effect observedHermrelationship between item
difficulty and dimensionality. The magnitudes @gent) of the change across levels
were approximately the same for the true negatinepmsitive rates; however, the
direction of the change differed. The true negatate was the highest when there was

no relationship and the true positive rate washigbest when there was at least a
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moderately strong relationship. (Note that theas wo meaningful difference in either
of these rates between the moderate confound arfidwdl levels.) The direction of
these results is also intuitive. The true negat@te was the highest when the difficulty
of items was the hardest on the grade level testuse it is more likely that one will be
able to classify truly not proficient simulees aslswhen they are administered more
difficult items. Conversely, the true positivegatas the highest when the difficulty of
the items was relatively easy because it is m&edylithat one will be able to classify
truly proficient simulees as such when they areiathtered relatively easier items. An
ordinal interaction for the relationship betweamtdifficulty and dimensionality and the
relationship between ability dimensions was alsseobed. This interaction simply
indicated that the relationship between item dififig and dimensionality has a greater
effect on the conditional classification rates whieere is no relationship between ability
dimensions than when there is a strong relationship

In addition to those factors for which we obseraeceffect, it is equally
important to acknowledge those for which we did riéirst, there was no meaningful
effect for choice of common items. Certainly, thidl result is tied to this particular
research design (as are the previously discuesedts) where one third of each grade
level test was common items; however it does suggascommon item choice may
have no more than a minimal effect on conditiofadsification accuracy given this
testing particular situation (60 total items, 2@ntoon). This finding is not without
precedent given that work on mixed-format test aggay Cao (2008) indicated that
content representativeness had a minimal effectassification consistency. This result

could be informative for test developers who magtoessed for finding common items
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that function as a “mini-test”; although, best pi@es in testing do suggest that common
items be reflective of the test as a whole (KoleBr&nnan, 2004). Note that while there
was no meaningful effect for common items in thiglg using conditional classification
rates as the criterion variables other criteridnsag equating functions could indicate a
meaningful effect for choice of common items aswalhan Loyd and Hoover (1980) and
Harris and Hoover (1987).

The results also suggested that the small and thfigeences in mean abilities
for the lower and upper grades had no more thamenal effect on conditional
classification accuracy. That is, from the clasatfon perspective, the differences in
abilities between the lower and upper grades didaffect the concurrent calibration of

the item response data and the subsequent stasetting).
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Chapter 8: Discussion

Limitations of the research design

Generalization of these results is closely tiethlimitations of this study.
There are three main limitations to the researdigde
1. The 60% proficient standard
2. The choice of average abilities on both dimensfonshe lower and upper
grades
3. The method for establishing true status (profic@mmot proficient) for
the simulees
In order to appreciate the magnitudes and mearimgga of the effects
discovered (and not discovered) in this study aigeity analysis would be warranted.
This analysis would consider variations to bothgbecentage proficient used in
determining the population based cutscores (perld&@3s and 80%) as well as the
average ability values for each grade on each diraen The average values for each
grade on each dimension could be raised or lowebDazng this analysis would provide
further support for the results presented and redparchers gain an appreciation for the
degree to which the magnitudes of the effect chasgability levels and standards
change. Making such changes would, perhaps, riesaltonfound effect and/or a
confound and correlation interaction effect for thpper grade similar to what was shown
in this study for the lower grade. However, theichs for this research design were
reasonable and justification was provided; theltestherefore, can be interpreted as

potentially real. Lastly, note that as statewetto meet the 100% proficient goal of
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NCLB by 2014, the results of this study will becoless relevant in the NCLB context
because the proportion of students near cut poiaisdepart increasingly from the ones
used here.

There are likely alternatives to establishingttiae classification of simulees.
One such alternative would be to establish trudedaimply on the two-dimensional
generating parameters of each simulee. The clheieewas to project a simulee’s
generating two-dimensional theta vector onto aiomedsional scale via a number
correct transformation on the entire test batteey é&cross both grades). A similar
procedure was used in Reckase and Li (2007) asgtbcedure has meaning from an
operational perspective. That is, scores are &jlgiceported on a unidimensional scale
and one could conceptualize administering an etdgebattery to students. In fact,
administering a full test battery to students is@lto a certain degree in a scaling test
linking design (Kolen & Brennan, 2004). It is fykhcknowledged, though, that

establishing truth in a different way could cauggeent results and conclusions.

Implications

The most substantial implication of this reseascfor the community using
vertically scaled tests to be aware of a test’'setisionality characteristics and its impact
on the use of the test scores (in this case, &ssdication purposes). It was shown that
the relationship of test item difficulty with theility dimensions as well as the
relationship between the ability dimensions thenesehas an effect on classification
accuracy. Certainly it is always expected thatelvell be some level of

misclassification, but understanding the degreghih the test itself and the

89



construct(s) the test measures contribute to thigyatf using test scores to classify
students is important. For test developers, knguhat that two abilities are highly
correlated might minimize the need for them to becerned about the degree to which
item difficulty is confounded with the two abilisdested on their exam (even if the test
was originally designed to just test one of the aldities). Additionally, knowing
whether or not difficulty is confounded with dimémsality on their exam might help test
developers inform test users how to appropriategytest results. That is, from the lower
grade perspective in this study, a high confoundiffitulty with dimensionality will
minimize the chance of not passing a truly profitistudent; however, it could also
result in increasing the chances of passing a tratyproficient student. Further, results
suggest a confound of item difficulty with dimensatity has a greater impact on
conditional classification accuracy rates whendhgsra smaller correlation among
dimensions. The magnitudes of the difference®mdtional classification accuracy
rates across the levels of confound and correla@i@oncertainly help inform test design
and use as different types of classification ernoight have varied consequences across
test users. Thus, test developers can adviseubets of the pros and cons of their tests
based on the importance and consequences of difféeeision made from the associated
test scores. Above all, though, these resultseafguthe test developer to first be aware
of the item and ability relationships in the domtday are testing.

While these results are important to the develapadministration to the masses,
these results can also help inform teachers andh&trators who often have to deal with
students on an individual level. When studentshatd back in school (because of, say,

being classified as not proficient), it is neceggartry to figure out why. Knowledge of
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the dimensionality of the test used to classifglehis can help explain the reasons.
Using the various theta 1 by theta 2 plots preskmt¢his study, teachers can find where
their students fall. In some cases, they coultkggimately held back. In other cases,
they could be a borderline proficient student Hedk because the test was more difficult
than it should have been. Heubert and Hauser J18ribe irHigh Stakes: Testing for
Tracking, Promotion, and Graduation that an assessment must lead to decisions that are
educationally beneficial. Thus, it is important szhools to know how to make the
appropriate decisions from test scores and whehduimvestigation for a given student
is necessary. Heubert and Hauser argue thatigeeimedial support services should
be available for low-performing students. Knowthg dimensionality of the assessment
used for classification decisions and why mistati@dd be made can certainly inform
the appropriate course of action for remediatioinc@rse, this would require that the
teacher have additional academic information abmistudent (i.e. performance on
other tests that focus on both ability dimensiorsd 2) and knowledge of the
relationship of the test items to the various apdimensions. Due to the effort and
financial resources that would likely have to beated to the efforts described above, it
is less likely that schools on their own would bé&ao use and apply the results of this
study relative to the ability of test developersitoso and share the appropriate
information with the schools.

Teachers, school administrators, and test devedpphewever, can work
collaboratively to better understand and potentiaise the tests they use to classify
students. When the dimensionality and the assat@assification implications of a

given test are explained to school officials, theuld simply decide that the test meets
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their needs. Alternately, school systems mighehdifferent philosophies on the values
of passing truly not proficient students and/odima back truly proficient students.
Based on the results of this study, test developmukl potentially manage the confound
of item difficulty with dimensionality to meet alsmol system’s needs. As mentioned
earlier (from the perspective of the lower grad®jreasing the confound of item
difficulty with dimensionality would increase theu¢ positive rate and decreasing the
confound of item difficulty with dimensionality wadiincrease the true negative rate.
The impact of changing the item difficulty’s retatiship with the dimensions would be
based on how strongly the ability dimensions ala&ed. There is less “bang for the
buck” of change when the ability dimensions arerggty related.

Schools systems would benefit from understandiagdlgiven test that is
perceived as testing a single ability might, intfhe measuring multiple abilities.
Knowing this, may contribute to a revision of thereculum. If school systems learned
that a considerable amount of reading comprehenmsioreasured on their math
proficiency test (in the context of word problerftg,example) changing the emphasis or
ordering of reading comprehension topics in thelgiavel reading or English might be
warranted to ensure that their students are hattgared for the test.

As the complexities of measuring a single constagobss grades comes to light,
school systems could decide that using multidineredimodels is worthwhile. Work on
this has already begun. Reckase and Martineaudtj2@dcluded that multidimensional
models should be used in the vertical scaling Emee tests. They supported their
conclusion by observing that students grow on gifiedimensions in science at different

rates over time and that the knowledge and slsbessed on tests can vary significantly
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across grades. Patz and Yao (2007) also illusttaee usefulness of multidimensional
models for vertical scaling for a writing assesstraamoss 5 grades. They showed that
four dimensions emerged. They also presented estdihat suggested that item type
(multiple-choice versus constructed response) eiased to dimensionality.

Lastly, exploring the dimensionality of assessmemdy provide new
opportunities. If test developers do spend timgeustanding the dimensionality of their
large scale assessments, they can, perhaps, lewehag they learn into the development
of formative assessments. Formative assessmamtsecespecially useful when there is
a strong match to what is taught in the classrondwehat is being assessed in a
summative context (Stout, 2007). This relationshigll the more reason that the large-
scale (summative) test developers could be intuastsuch an opportunity.
Specifically, it has been argued that multidimenaldRT can be used in IRT-based
Cognitive Diagnosis Models (ICDM) and these modals be used in classroom-based
formative assessment (Stout, 2007). One such deavhpn IRT based formative
assessment is the SEPUP (Science Education foicRirderstanding)-Embedded
Assessment Project which uses a multidimensionstiRenodel (Sloane, Wilson,
Samson, 1996).

In consideration of the multidimensionality argurtsepresented by Paris (2005)
regarding reading skills, one could envision thdimaensionality analysis of a
summative reading assessment (especially oneghas snany grades) could provide
insight into the construction of appropriate formatassessments in reading.
Specifically, different assessments could be coetit@ssess skills (dimensions) that are

attained and mastered quickly (constrained) ansktlioat are continually developing
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(unconstrained). Knowing the levels and/or thaiathent of any of these skills for the
students in their classes could be of great vaaissroom teachers for lesson planning

and summative test preparation.

Extensions

In addition to the sensitivity analysis proposeth@aLimitations section,
extensions to this research would largely revoheeiad the various decision points
involved in conducting vertical scaling as wellaasanipulation of some the simulee
population assumptions.

The first extension would be to conduct separeddejcalibration instead of
concurrent calibration. While there is no conseriauhe literature which method is
correct, both methods are typically considered wihmreloping a vertical scaling design
and it would be informative to be able to compasuits. Further separate calibration is
suggested as superior to concurrent calibratiorebgarchers (e.g. Kolen & Brennan,
2004) when multidimensionality is suspected. Qfrse, by conducting separate
calibration across many grades the accumulatidimkihg errors would be of concern.
As noted earlier, concurrent calibration is preddrwhen there is a strong assumption of
unidimensionality in the item response data.

In this study, there was a reasonable propor8884d) of common items in each
of the grade level tests and one of the common denditions was a true “mini” test.
However, these ideal conditions and best practcesot always achieved by test
developers. Therefore, it would be useful to extignglresearch to conditions where

there are fewer common items (either in absolutelrar or in proportion to the total
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test) that may or may not function as a “mini” te¥hose results could inform the work
of those responsible for tests where the ideal itiond for common items are not met.

The correlation of ability dimensions and the &ade of ability on each
dimension was always the same for both grade léwadach cell of this study. To
address concerns of scale shrinkage, it would bRiL® reduce the variance of ability
on the upper grade test. Additionally, work by kese and Li (2007), for example,
showed that the relationships among dimensionglsange from grade to grade. Thus,
varying the correlation between dimensions acroades should be addressed in future
work.

Lastly, the multidimensional IRT item generatingdels and unidimensional IRT
estimating models could be varied. Given that ntasts are multiple-choice,
introducing a guessing parameter to both the géngranodel and estimating model
would likely be the first step. Thus, the threegpaeter extension to the MC2PL model
(Reckase, 1997) could be used for the item respgaserating model and the 3PL model

could be used for the unidimensional estimating @hod
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Appendix A: Example data generation code

/*get log to a text file*/
proc printto log ="c:\dissertation2\CL.log" ;

Run;

DATA lowerC;  /*read in lower grade confound generating parameter s*/
INFILE "C:\dissertation\parameters\lowerC.txt" ;

input abc;

run;

DATA upperC;  /*read in upper grade confound generating parameter s*/
INFILE "C:\dissertation\parameters\upperC.txt" ;

input abg;

run;

DATA lowerCommonC; /*read in lower grade common with confound generati ng
parameters*/

INFILE "C:\dissertation\parameters\lowerCommonC.txt" ;

input abg;

run;

%racr o GENERATE (lower_abl, lower_ab2, upper_abl, upper_a b2, corr,

lowercut, uppercut, test, cell);
%doit=" 1 %to 500;

PROC IML; /*get data into matrix form*/

/*get lowerCommonC into a matrix*/
USE lowerCommonC;

READ ALL INTO lowerCommonCmat;
CLOSE lowerCommonC;

/*get upperC into a matrix*/
USE upperC,;

READ ALL INTO upperCmat;
CLOSE upperC;

/*get lowerC into a matrix*/
USE lowerC;

READ ALL INTO lowerCmat;
CLOSE lowerC;

/*generate lower grade 2D thetas*/

mu_lower = {&lower_abl, &lower_ab2};

sigma_lower = { 1. 0 &corr, &corr 1.0}

call vnormal (lower_thetas, mu_lower, sigma_lower, 2000);

/*generate upper grade 2D thetas*/

mu_upper = {&upper_abl, &upper_ab2};

sigma_upper={ 1. 0 &corr, &corr 1.0}

call vnormal (upper_thetas, mu_upper, sigma_upper, 2000);
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/*generate MC response vectors for lower grade on u nigue items*/

LOWER_UNIQUE_RESPONSES = J000, 40, .);
DOS= 1TO 2000;

DOJ= 1TO 40;
IF
((exp(lower_thetas[s, 1]*lowerCmat[J, 1]+lower_thetas[s, 2]*lowerCmat[J, 2]
+ lowerCmat[J, 3]))/( 1+
(exp(lower_thetas][s, 1]*lowerCmat[J, 1]+lower_thetas[s, 2]*lowerCmat[J, 2]+

lowerCmat[J, 3]))) >= RANUNI(  0))THEN DO; LOWER_UNIQUE_RESPONSESI[S,J]= 1;
END;

ELSE LOWER_UNIQUE_RESPONSESIS,J] = 0;

END;

END;

/*generate MC response vectors for upper grade on u nigue items*/
UPPER_UNIQUE_RESPONSES = J?2000, 40, . );
DOS= 1TO 2000;

DOJ= 1TO 40;
IF
((exp(upper_thetas[s, 1]*upperCmat[J, 1]+upper_thetas][s, 2]*upperCmat[J, 2]
+ upperCmat[J, 3]))/( 1+
(exp(upper_thetas][s, 1]*upperCmat[J, 1]+upper_thetas][s, 2]*upperCmat[J, 2]+

upperCmat[J, 3]))) >= RANUNI( 0))THEN DO;
UPPER_UNIQUE_RESPONSES[S,J]=1;

END;

ELSE UPPER_UNIQUE_RESPONSES[S,J] = 0;

END;

END;

/*generate MC response vectors for lower grade on a [1 20 lower grade

common items*/
LOWER_common_20 RESPONSES = JZ000, 20, .);
DOS= 1TO 2000;

DOJ= 1TO 20;
IF ((exp(lower_thetas]s, 1]*lowerCommonCmat[J, 1]+lower_thetas[s, 2]*
lowerCommonCmat[J, 2]+ lowerCommonCmat[J, 3]))/( 1+
(exp(lower_thetas][s, 1]*lowerCommonCmat[J, 1]+lower_thetas[s, 2]*lowerComm

onCmat[J, 2]+ lowerCommonCmat[J, 3]))) >= RANUNI( 0))THEN DO;
LOWER_common_20 RESPONSES[S,J]=1;

END;

ELSE LOWER_common_20_ RESPONSESJ[S,J] = 0;

END;

END;
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/*generate MC response vectors for upper grade on a I1 20 lower grade
common items*/

UPPER_common_20_RESPONSES = J@000, 20, .);

DOS= 1TO 2000;

DO J= 1TO 20;

IF ((exp(upper_thetas]s, 1]*lowerCommonCmat[J, 1]+upper_thetas[s, 2]*
lowerCommonCmat[J, 2]+ lowerCommonCmat[J, 3])/( 1+
(exp(upper_thetas][s, 1]*lowerCommonCmat[J, 1]+upper_thetas[s, 2]*lowerComm

onCmat[J, 2]+ lowerCommonCmat[J, 3]))) >= RANUNI( 0))THEN DO;
UPPER_common_20_RESPONSESIS,J]= 1;

END;

ELSE UPPER_common_20 RESPONSES[S,J]= O;

END;

END;

/*generate person ids; can be applied to both grade s, lower and upper
*/
IDEN=J( 2000, 1, .);

DOI= 1TO 2000;
IDEN[I, 1]=l+ 1000;
END;

[*create group ID for lower grade*/
lowergradelD=J( 2000, 1, 1);
[*create group ID for upper grade*/
uppergradelD=J( 2000, 1, 2);

[*create not administered matrix*/
notadmin=J( 2000, 40, 9);

[*create complete set of lower grade responses*/

lower_responses = IDEN || lowergradelD || LOWER_UNI QUE_RESPONSES ||
LOWER_common_20 RESPONSES || notadmin;

upper_responses = IDEN || uppergradelD || notadmin

UPPER_common_20 RESPONSES || UPPER_UNIQUE_RESPONSES

all_responses = lower_responses // upper_responses;

[*create the SAS dataset of the responses*/
CREATE responses FROM all_responses;
APPEND FROM all_responses;

[*create a matrix of all item parameters*/
items = lowerCmat // lowerCommonCmat // upperCmat;

/*get probabilities of correct response to each ite m for lower grade
students across entire test*/
lowergradetrue = J( 2000, 100, .);
DOS= 1TO 2000;
DO J= 1TO 100;
lowergradetrue[S,J] =
(exp(lower_thetas[s, 1]*items[J, 1]+lower_thetas[s, 2]*items[J, 2]+
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items[J, 3P/ 1+
(exp(lower_thetas[s,
items[J, 3])));

E .

END;

1]*items[J,

/*get probabilities of correct response to each ite

students across entire test*/
uppergradetrue = J( 2000, 100, .);
DOS= 1TO 2000;
DOJ= 1TO 100;
uppergradetrue[S,J] =
(exp(upper_thetas][s,
items[d, 3)/( 1+
(exp(upper_thetas][s,
items[J, 3])));
END;
END;

1]*items|J,

1]*items[J,

/*get expected total score on entire test for lower

lowergradetruetotal = lowergradetrue[,+];
/*PRINT lowergradetruetotal;*/

/*get expected total score on entire test for upper

uppergradetruetotal = uppergradetrue[,+];
/*PRINT uppergradetruetotal;*/

1]+lower_thetas[s,

1]+upper_thetas][s,

1]+upper_thetas][s,

2]*items[J, 2]+

m for upper grade

2]*items[J, 2]+

2]*items[J, 2]+

grade students*/

grade students*/

/*round the lower grade expected scores on entire t est*/
lowergradetruetotalround = J( 2000, 3, 1);
DOS= 1to 2000;

lowergradetruetotalround[S, 1] = lowergradetruetotal[S, 1];

lowergradetruetotalround[S, 2] = ROUND (lowergradetruetotal[S,
END;
/*PRINT lowergradetruetotalround;*/
/*round the upper grade expected scores on entire t est*/
uppergradetruetotalround = J( 2000, 3, 1);
DOS= 1to 2000;
uppergradetruetotalround[S, 1] = uppergradetruetotal[S, 1];
uppergradetruetotalround[S, 2] = ROUND (uppergradetruetotal[S,

END;
[*PRINT uppergradetruetotalround;*/

/*get true classifications for lower grade*/
DOS= 1to 2000;
IF (lowergradetruetotalround[S,
lowergradetruetotalround[S,
END;
END;

/*get true classifications for upper grade*/
DOS= 1to 2000;
IF (uppergradetruetotalround[S,
uppergradetruetotalround[S,
END;
END;
[*PRINT uppergradetruetotalround;*/

2] >= &lowercut) THEN DO;
3= 2

2] >= &uppercut) THEN DO;
3= 2
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/*get lower grade observed scores*/

lowergraderesponses = LOWER_UNIQUE_RESPONSES ||
LOWER_common_20 RESPONSES;

uppergraderesponses = UPPER_common_20 RESPONSES ||
UPPER_UNIQUE_RESPONSES;

lowergradeobserved = lowergraderesponses[,+];
uppergradeobserved = uppergraderesponses|,+];

lowerall = lowergradetruetotalround || lowergradeob
upperall = uppergradetruetotalround || uppergradeob

/*in the lowerall and upperall matrices there are 4
score on all items unrounded, rounded, classificati
on grade level test*/

[*create a sas dataset for lowerall*/
CREATE lowerdata FROM lowerall;
APPEND FROM lowerall;

[*create a sas dataset for upperall*/
CREATE upperdata FROM upperall;
APPEND FROM upperall;

/*get thetas with Identification number*/
lower_ID_thetas = IDEN || lower_thetas;
upper_ID_thetas = IDEN || upper_thetas;

/*get thetas into a SAS dataset*/
CREATE lowerthetas FROM lower_ID_thetas;
APPEND from lower_ID_thetas;

CREATE upperthetas FROM upper_ID_thetas;
APPEND from upper_ID_thetas;

Quit;

Run;

[*creating the data file of lower grade simulee sco
classifications*/

[*FILENAME mydatal
"G:\dissertationcode\dissertation\lowerscores&it..t
FILENAME mydatal
"C:\dissertation2\&test\&cell\lowerscores&cell&it..
DATA DUMMY1,;

SET lowerdata;

FILE mydatal NOPRINT NOTITLES;

PUT @L COL1 @17 COL2 @22 COL3 @27 COL4;
RUN;

[*creating the data file of upper grade simulee sco
classifications*/

*FILENAME mydata2 =~ FILENAME mydata2
"C:\dissertation2\&test\&cell\upperscores&cell&it..
DATA DUMMY2;

SET upperdata;

100

served;
served;

columns: expected
on, observed score

res and

xt";*/

txt"

res and

txt"



FILE mydata2 NOPRINT NOTITLES;
PUT @. COL1 @17 COL2 @22 COL3 @27 COL4;
RUN;

[*creating the datafile for the respones*/

*FILENAME mydata "C:\Documents and Settings\Marc\M y
Documents\dissertation code\data&it..txt";*/

FILENAME mydata "C:\dissertation2\&test\&cell\data&cell&it..txt" ;
DATA DUMMY;

SET responses;

FILE mydata NOPRINT NOTITLES;

PUT @L COL1 @6 COL2 @8 COL3 @9 COL4 @10 COL5 @11 COL6 @12 COL7 @13 COLS8
@4 COL9 @15 COL10 @16 COL11 @17 COL12 @18 COL13 @19 COL14 @20 COL15
@1 COL16 @22 COL17 @23 COL18 @24 COL19 @25 COL20 @26 COL21 @27 COL22
@8 COL23 @29 COL24 @30 COL25 @31 COL26 @32 COL27 @33 COL28 @34 COL29
@5 COL30 @36 COL31 @37 COL32 @38 COL33 @39 COL34 @40 COL35 @41 COL36
@2 COL37 @43 COL38 @44 COL39 @45 COL40 @46 COL41 @47 COL42 @48 COL43
@9 COL44 @50 COL45 @51 COL46 @52 COL47 @53 COL48 @54 COL49 @55 COL50
@6 COL51 @57 COL52 @58 COL53 @59 COL54 @60 COL55 @61 COL56 @62 COL57
@3 COL58 @64 COL59 @65 COL60 @66 COL61 @67 COL62 @68 COL63 @69 COL64
@0 COL65 @71 COL66 @72 COL67 @73 COLE8 @74 COL69 @75 COL70 @76 COL71
@7 COL72 @78 COL73 @79 COL74 @80 COL75 @81 COL76 @82 COL77 @83 COL78
@4 COL79 @85 COL80 @86 COL81 @87 COL82 @88 COL83 @89 COL84 @90 COL85
@1 COL86 @92 COoL87

@3 COL88 @94 COL89 @95 COL90 @96 COL91 @97 COL92 @98 COL93 @99 COL94
@.00 COL95 @101 COL96 @102 COL97 @103 COL98 @104 COL99 @105 COL100 @ 106
COL101 @107 COL102;

RUN;

[*create files for thetas*/

FILENAME mydata3

"C:\dissertation2\&test\&cell\lowerthetas&cell&it.. txt"
DATA DUMMYS3;

SET lowerthetas;

FILE mydata3 NOPRINT NOTITLES;

PUT @L COL1 @6 COL2 @30 COL3;

RUN;

FILENAME mydata4

"C:\dissertation2\&test\&cell\upperthetas&cell&it.. txt"
DATA DUMMY4;

SET upperthetas;

FILE mydata4 NOPRINT NOTITLES;

PUT @L COL1 @6 COL2 @30 COLS;

RUN;

%end;
%rend Generate;

[*data DUMMY: ;*/

/* cell naming Confound(C)/NoConfound(N), Lower gra de common items
(L)/Both grade common items(A), Big ability differe nce (B)/Small
Ability difference (S), Correlation of Dimensions 0 ,.3,.6,.9
(0,3,6,9)*/
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YENERATE(O,- . 2,.8,.2,0, 44, 57,CL,CLBO);
YENERATE(O,- . 2,.8,.2,.3,43,56,CL,CLB3);
%CENERATE(O,- . 2,.8,.2,.6, 43,57,CL,CLB6);
Y%CENERATE(O,- . 2,.8,.2,.9, 41, 56,CL,CLB9);
YUENERATE(O,- . 2, . 4,0, 0, 44, 51,CL,CLSO0);
YENERATE(O,- . 2, . 4,0, .3, 43, 50,CL,CLS3);
YENERATE(O,- . 2,.4,0, .6, 42, 49,CL,CLS®6);
Y%CENERATE(O,- . 2,.4,0,.9, 42, 49,CL,CLS9);
[*run;*/

[*reset log back to normal location*/
proc printto;
run;
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Appendix B: Example Bilog-MG IRT estimation code

>GLOBAL DFNAME = 'C:\dissertation2\CL\CLBO\dataCLBO 1.txt',
NPArm=2,
LOGistic,
SAVE;

>SAVE SCOre='C:\dissertation2\CL\CLBO\bilogrunCLB01 .SCO/,

PARM="C:\dissertation2\CL\CLBO\bilogrunCLB01.PAR,
>LENGTH NITems = (100),
NVAriant = (0);
>INPUT NTOtal = 100,
NALt =5,
NGROUPS = 2,
NIDchar = 4,
NFNAME= 'C:\dissertation\EXAMPLO5testNOT1.nfn' X
>|TEMS INUM = (1(1)100), INAMES=(M01(1)M100);
>TEST TNAme = CLBO1, INUM = (1(1)100);
>GROUP1 GNAME='LOWER', LENGTH=60, INUM=(1(1)60);
>GROUP2 GNAME='UPPER', LENGTH=60, INUM=(41(1)100);
(4A1, 1X, 11, 1X, 100A1)
>CALIB NQPt =51,
NORMAL,
CYCIE = 30,
TPRIOR,
REFERENCE=1,;
>SCORE METHOD=2,
IDIST=3,
NOPRINT,
RSCTYPE=0;
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Appendix C: Iltem generating parameters

Table C1: Item parameters for confound and lowadgrcommon items test battery

lower grade item number | angle with dim 1 al a2 d
1 0 1.000 | 0.000 | 0.698
2 0 1.000 | 0.000 | 0.769
3 0 1.000 | 0.000 | 1.111
4 0 1.000 | 0.000 | 0.672
5 0 1.000 | 0.000 | 0.824
6 5 0.996 | 0.087 | 1.206
7 5 0.996 | 0.087 | 0.804
8 5 0.996 | 0.087 | 1.111
9 5 0.996 | 0.087 | 0.972
10 5 0.996 | 0.087 | 1.145
11 10 0.985 | 0.174 | 0.566
12 10 0.985 | 0.174 | 1.015
13 10 0.985 | 0.174 | 0.652
14 10 0.985 | 0.174 | 0.444
15 10 0.985 | 0.174 | 0.694
16 15 0.966 | 0.259 | 0.340
17 15 0.966 | 0.259 | 0.308
18 15 0.966 | 0.259 | 0.674
19 15 0.966 | 0.259 | 0.907
20 15 0.966 | 0.259 | 0.234
21 20 0.940 | 0.342 | 0.549
22 20 0.940 | 0.342 | 0.698
23 20 0.940 | 0.342 | 0.652
24 20 0.940 | 0.342 | 0.752
25 20 0.940 | 0.342 | 0.750
26 25 0.906 | 0.423 | 0.424
27 25 0.906 | 0.423 | 0.370
28 25 0.906 | 0.423 | 0.900
29 25 0.906 | 0.423 | 0.394
30 25 0.906 | 0.423 | 0.594
31 85 0.087 | 0.996 | -0.795
32 85 0.087 | 0.996 | -1.270
33 85 0.087 | 0.996 | -1.148
34 85 0.087 | 0.996 | -1.033
35 85 0.087 | 0.996 | -0.872
36 90 0.000 | 1.000 | -0.715
37 90 0.000 | 1.000 | -1.190
38 90 0.000 | 1.000 | -1.210
39 90 0.000 | 1.000 | -0.850
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lower grade item number | angle with dim 1 al a2 d
40 90 0.000 | 1.000 | -1.396
common item number
1 0 1.000 | 0.000 | 0.929
2 0 1.000 | 0.000 | 1.081
3 5 0.996 | 0.087 | 0.561
4 5 0.996 | 0.087 | 0.833
5 10 0.985 | 0.174 | 0.603
6 10 0.985 | 0.174 | 0.816
7 15 0.966 | 0.259 | 0.184
8 15 0.966 | 0.259 | 0.374
9 20 0.940 | 0.342 | 0.678
10 20 0.940 | 0.342 | 0.397
11 25 0.906 | 0.423 | 0.688
12 25 0.906 | 0.423 | 0.362
13 30 0.866 | 0.500 | 0.561
14 30 0.866 | 0.500 | 0.179
15 90 0.000 | 1.000 | -1.132
16 90 0.000 | 1.000 | -1.149
17 85 0.087 | 0.996 | -1.141
18 85 0.087 | 0.996 | -0.820
19 80 0.174 | 0.985 | -0.933
20 80 0.174 | 0.985 | -0.529
upper grade item number
1 90 0.000 | 1.000 | -1.247
2 90 0.000 | 1.000 | -1.025
3 90 0.000 | 1.000 | -0.869
4 90 0.000 | 1.000 | -1.058
5 90 0.000 | 1.000 | -0.987
6 85 0.087 | 0.996 | -0.813
7 85 0.087 | 0.996 | -0.950
8 85 0.087 | 0.996 | -1.218
9 85 0.087 | 0.996 | -0.894
10 85 0.087 | 0.996 | -0.870
11 80 0.174 | 0.985 | -0.786
12 80 0.174 | 0.985 | -0.591
13 80 0.174 | 0.985 | -0.858
14 80 0.174 | 0.985 | -0.160
15 80 0.174 | 0.985 | -1.315
16 75 0.259 | 0.966 | -0.872
17 75 0.259 | 0.966 | -0.641
18 75 0.259 | 0.966 | -1.178
19 75 0.259 | 0.966 | -0.638
20 75 0.259 | 0.966 | -0.380
21 70 0.342 | 0.940 | -0.212
22 70 0.342 | 0.940 | -0.771
23 70 0.342 | 0.940 | -0.390
24 70 0.342 | 0.940 | -0.806
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upper grade item number | angle with dim 1 al a2 d
25 70 0.342 | 0.940 | -0.244
26 65 0.423 | 0.906 | -0.610
27 65 0.423 | 0.906 | -0.583
28 65 0.423 | 0.906 | 0.138
29 65 0.423 | 0.906 | -0.648
30 65 0.423 | 0.906 | -0.533
31 15 0.966 | 0.259 | 0.717
32 15 0.966 | 0.259 | 0.906
33 15 0.966 | 0.259 | 0.778
34 15 0.966 | 0.259 | 0.918
35 15 0.966 | 0.259 | 0.674
36 0 1.000 | 0.000 | 0.849
37 0 1.000 | 0.000 | 1.291
38 0 1.000 | 0.000 | 0.406
39 0 1.000 | 0.000 | 0.927
40 0 1.000 | 0.000 | 0.784
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Table C2: Item parameters for confound and botdeg@ommon items test battery

lower grade item number | angle with dim 1 al a2 d
1 0 1.000 | 0.000 0.698
2 0 1.000 | 0.000 0.769
3 0 1.000 | 0.000 1111
4 0 1.000 | 0.000 0.672
5 0 1.000 | 0.000 0.824
6 5 0.996 | 0.087 1.206
7 5 0.996 | 0.087 0.804
8 5 0.996 | 0.087 1111
9 5 0.996 | 0.087 0.972
10 5 0.996 | 0.087 1.145
11 10 0.985| 0.174 0.566
12 10 0.985| 0.174 1.015
13 10 0.985 | 0.174 0.652
14 10 0.985 | 0.174 0.444
15 10 0.985 | 0.174 0.694
16 15 0.966 | 0.259 0.340
17 15 0.966 | 0.259 0.308
18 15 0.966 | 0.259 0.674
19 15 0.966 | 0.259 0.907
20 15 0.966 | 0.259 0.234
21 20 0.940 | 0.342 0.549
22 20 0.940 | 0.342 0.698
23 20 0.940 | 0.342 0.652
24 20 0.940 | 0.342 0.752
25 20 0.940 | 0.342 0.750
26 25 0.906 | 0.423 0.424
27 25 0.906 | 0.423 0.370
28 25 0.906 | 0.423 0.900
29 25 0.906 | 0.423 0.394
30 25 0.906 | 0.423 0.594
31 85 0.087 | 0.996 -0.795
32 85 0.087 | 0.996 -1.270
33 85 0.087 | 0.996 -1.148
34 85 0.087 | 0.996 -1.033
35 85 0.087 | 0.996 -0.872
36 90 0.000 | 1.000 -0.715
37 90 0.000 | 1.000 -1.190
38 90 0.000 | 1.000 -1.210
39 90 0.000 | 1.000 -0.850
40 90 0.000 | 1.000 -1.396
common item number
1 0 1.000 | 0.000 0.929
2 5 0.996 | 0.087 0.561
3 10 0.985| 0.174 0.603
4 15 0.966 | 0.259 0.184
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common item number angle with dim 1 al a2 d
5 20 0.940 | 0.342 0.678
6 25 0.906 | 0.423 0.688
7 30 0.866 | 0.500 0.561
8 90 0.000 | 1.000 -1.132
9 85 0.087 | 0.996 -1.141
10 80 0.174 | 0.985 -0.933
11 90 0.000 | 1.000 -0.801
12 85 0.087 | 0.996 -0.737
13 80 0.174 | 0.985 -0.666
14 75 0.259 | 0.966 -0.689
15 70 0.342 | 0.940 -0.589
16 65 0.423 | 0.906 -0.798
17 60 0.500 | 0.866 -0.080
18 0 1.000 | 0.000 1.086
19 5 0.996 | 0.087 0.835
20 10 0.985 | 0.174 1.049
upper grade item number
1 90 0.000 | 1.000 -1.247
2 90 0.000 | 1.000 -1.025
3 90 0.000 | 1.000 -0.869
4 90 0.000 | 1.000 -1.058
5 90 0.000 | 1.000 -0.987
6 85 0.087 | 0.996 -0.813
7 85 0.087 | 0.996 -0.950
8 85 0.087 | 0.996 -1.218
9 85 0.087 | 0.996 -0.894
10 85 0.087 | 0.996 -0.870
11 80 0.174 | 0.985 -0.786
12 80 0.174 | 0.985 -0.591
13 80 0.174 | 0.985 -0.858
14 80 0.174 | 0.985 -0.160
15 80 0.174 | 0.985 -1.315
16 75 0.259 | 0.966 -0.872
17 75 0.259 | 0.966 -0.641
18 75 0.259 | 0.966 -1.178
19 75 0.259 | 0.966 -0.638
20 75 0.259 | 0.966 -0.380
21 70 0.342 | 0.940 -0.212
22 70 0.342 | 0.940 -0.771
23 70 0.342 | 0.940 -0.390
24 70 0.342 | 0.940 -0.806
25 70 0.342 | 0.940 -0.244
26 65 0.423 | 0.906 -0.610
27 65 0.423 | 0.906 -0.583
28 65 0.423 | 0.906 0.138
29 65 0.423 | 0.906 -0.648
30 65 0.423 | 0.906 -0.533
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upper grade item number | angle with dim 1 al a2 d
31 15 0.966 | 0.259 0.717
32 15 0.966 | 0.259 0.906
33 15 0.966 | 0.259 0.778
34 15 0.966 | 0.259 0.918
35 15 0.966 | 0.259 0.674
36 0 1.000 | 0.000 0.849
37 0 1.000 | 0.000 1.291
38 0 1.000 | 0.000 0.406
39 0 1.000 | 0.000 0.927
40 0 1.000 | 0.000 0.784
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Table C3: Item parameters for moderate confound@mdr grade common items test

battery
lower grade item number | angle with dim 1 al a2 d
1 0 1.000 | 0.000 0.237
2 0 1.000 | 0.000 0.798
3 0 1.000 | 0.000 0.417
4 0 1.000 | 0.000 -0.742
5 0 1.000 | 0.000 0.668
6 5 0.996 | 0.087 0.765
7 5 0.996 | 0.087 1.262
8 5 0.996 | 0.087 0.736
9 5 0.996 | 0.087 0.145
10 5 0.996 | 0.087 0.545
11 10 0.985| 0.174 0.104
12 10 0.985 | 0.174 0.640
13 10 0.985 | 0.174 0.344
14 10 0.985 | 0.174 0.248
15 10 0.985 | 0.174 1.288
16 15 0.966 | 0.259 -0.040
17 15 0.966 | 0.259 0.649
18 15 0.966 | 0.259 0.267
19 15 0.966 | 0.259 0.281
20 15 0.966 | 0.259 0.047
21 20 0.940 | 0.342 -0.117
22 20 0.940 | 0.342 0.086
23 20 0.940 | 0.342 -0.159
24 20 0.940 | 0.342 0.402
25 20 0.940 | 0.342 1.122
26 25 0.906 | 0.423 1.001
27 25 0.906 | 0.423 -1.072
28 25 0.906 | 0.423 0.232
29 25 0.906 | 0.423 0.693
30 25 0.906 | 0.423 0.090
31 85 0.087 | 0.996 -0.178
32 85 0.087 | 0.996 0.072
33 85 0.087 | 0.996 -0.832
34 85 0.087 | 0.996 0.429
35 85 0.087 | 0.996 -0.360
36 90 0.000 | 1.000 -0.426
37 90 0.000 | 1.000 -0.588
38 90 0.000 | 1.000 -0.642
39 90 0.000 | 1.000 -0.475
40 90 0.000 | 1.000 -0.120
common item number
1 0 1.000 | 0.000 0.826
2 0 1.000 | 0.000 0.632
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common item number angle with dim 1 al a2 d
3 5 0.996 | 0.087 0.735
4 5 0.996 | 0.087 1.009
5 10 0.985 | 0.174 0.160
6 10 0.985 | 0.174 0.459
7 15 0.966 | 0.259 0.218
8 15 0.966 | 0.259 1.231
9 20 0.940 | 0.342 0.809
10 20 0.940 | 0.342 0.253
11 25 0.906 | 0.423 0.339
12 25 0.906 | 0.423 -0.158
13 30 0.866 | 0.500 0.070
14 30 0.866 | 0.500 -0.050
15 90 0.000 | 1.000 -0.956
16 90 0.000 | 1.000 -0.323
17 85 0.087 | 0.996 -1.294
18 85 0.087 | 0.996 -0.580
19 80 0.174 | 0.985 -0.320
20 80 0.174 | 0.985 -0.462
upper grade item number
1 90 0.000 | 1.000 -0.099
2 90 0.000 | 1.000 -0.624
3 90 0.000 | 1.000 -0.721
4 90 0.000 | 1.000 -0.045
5 90 0.000 | 1.000 -0.643
6 85 0.087 | 0.996 -1.149
7 85 0.087 | 0.996 -0.732
8 85 0.087 | 0.996 0.277
9 85 0.087 | 0.996 -0.482
10 85 0.087 | 0.996 0.012
11 80 0.174 | 0.985 -0.278
12 80 0.174 | 0.985 -0.507
13 80 0.174 | 0.985 -0.360
14 80 0.174 | 0.985 -0.489
15 80 0.174 | 0.985 -0.566
16 75 0.259 | 0.966 0.445
17 75 0.259 | 0.966 0.542
18 75 0.259 | 0.966 0.040
19 75 0.259 | 0.966 -0.459
20 75 0.259 | 0.966 0.376
21 70 0.342 | 0.940 0.173
22 70 0.342 | 0.940 0.369
23 70 0.342 | 0.940 0.360
24 70 0.342 | 0.940 -0.871
25 70 0.342 | 0.940 -0.340
26 65 0.423 | 0.906 -0.159
27 65 0.423 | 0.906 0.636
28 65 0.423 | 0.906 -1.153
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upper grade item number | angel with dim 1 al a2 d
29 65 0.423 | 0.906 -0.165
30 65 0.423 | 0.906 -0.692
31 15 0.966 | 0.259 -0.116
32 15 0.966 | 0.259 1.264
33 15 0.966 | 0.259 0.400
34 15 0.966 | 0.259 0.407
35 15 0.966 | 0.259 -0.521
36 0 1.000 | 0.000 -0.134
37 0 1.000 | 0.000 -0.315
38 0 1.000 | 0.000 0.837
39 0 1.000 | 0.000 0.043
40 0 1.000 | 0.000 0.441
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Table C4: Item parameters for moderate confoundoatitlgrades common items test

battery
lower grade item number angle with dim 1 al a2 d
1 0 1.000 | 0.000 0.237
2 0 1.000 | 0.000 0.798
3 0 1.000 | 0.000 0.417
4 0 1.000 | 0.000 -0.742
5 0 1.000 | 0.000 0.668
6 5 0.996 | 0.087 0.765
7 5 0.996 | 0.087 1.262
8 5 0.996 | 0.087 0.736
9 5 0.996 | 0.087 0.145
10 5 0.996 | 0.087 0.545
11 10 0.985| 0.174 0.104
12 10 0.985| 0.174 0.640
13 10 0.985| 0.174 0.344
14 10 0.985| 0.174 0.248
15 10 0.985| 0.174 1.288
16 15 0.966 | 0.259 -0.040
17 15 0.966 | 0.259 0.649
18 15 0.966 | 0.259 0.267
19 15 0.966 | 0.259 0.281
20 15 0.966 | 0.259 0.047
21 20 0.940 | 0.342 -0.117
22 20 0.940 | 0.342 0.086
23 20 0.940 | 0.342 -0.159
24 20 0.940 | 0.342 0.402
25 20 0.940 | 0.342 1.122
26 25 0.906 | 0.423 1.001
27 25 0.906 | 0.423 -1.072
28 25 0.906 | 0.423 0.232
29 25 0.906 | 0.423 0.693
30 25 0.906 | 0.423 0.090
31 85 0.087 | 0.996 -0.178
32 85 0.087 | 0.996 0.072
33 85 0.087 | 0.996 -0.832
34 85 0.087 | 0.996 0.429
35 85 0.087 | 0.996 -0.360
36 90 0.000 | 1.000 -0.426
37 90 0.000 | 1.000 -0.588
38 90 0.000 | 1.000 -0.642
39 90 0.000 | 1.000 -0.475
40 90 0.000 | 1.000 -0.120
common item number
1 0 1.000 | 0.000 0.826
2 5 0.996 | 0.087 0.735
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common item number angel with dim 1 al a2 d
3 10 0.985 | 0.174 0.160
4 15 0.966 | 0.259 0.218
5 20 0.940 | 0.342 0.809
6 25 0.906 | 0.423 0.339
7 30 0.866 | 0.500 0.070
8 90 0.000 | 1.000 -0.956
9 85 0.087 | 0.996 -1.294
10 80 0.174 | 0.985 -0.320
11 90 0.000 | 1.000 -0.329
12 85 0.087 | 0.996 -0.809
13 80 0.174 | 0.985 -0.054
14 75 0.259 | 0.966 0.075
15 70 0.342 | 0.940 0.087
16 65 0.423 | 0.906 0.119
17 60 0.500 | 0.866 -1.307
18 0 1.000 | 0.000 -0.010
19 5 0.996 | 0.087 0.223
20 10 0.985 | 0.174 1.080
upper grade item number
1 90 0.000 | 1.000 -0.099
2 90 0.000 | 1.000 -0.624
3 90 0.000 | 1.000 -0.721
4 90 0.000 | 1.000 -0.045
5 90 0.000 | 1.000 -0.643
6 85 0.087 | 0.996 -1.149
7 85 0.087 | 0.996 -0.732
8 85 0.087 | 0.996 0.277
9 85 0.087 | 0.996 -0.482
10 85 0.087 | 0.996 0.012
11 80 0.174 | 0.985 -0.278
12 80 0.174 | 0.985 -0.507
13 80 0.174 | 0.985 -0.360
14 80 0.174 | 0.985 -0.489
15 80 0.174 | 0.985 -0.566
16 75 0.259 | 0.966 0.445
17 75 0.259 | 0.966 0.542
18 75 0.259 | 0.966 0.040
19 75 0.259 | 0.966 -0.459
20 75 0.259 | 0.966 0.376
21 70 0.342 | 0.940 0.173
22 70 0.342 | 0.940 0.369
23 70 0.342 | 0.940 0.360
24 70 0.342 | 0.940 -0.871
25 70 0.342 | 0.940 -0.340
26 65 0.423 | 0.906 -0.159
27 65 0.423 | 0.906 0.636
28 65 0.423 | 0.906 -1.153
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upper grade item number angel with dim 1 al a2 d
29 65 0.423 | 0.906 -0.165
30 65 0.423 | 0.906 -0.692
31 15 0.966 | 0.259 -0.116
32 15 0.966 | 0.259 1.264
33 15 0.966 | 0.259 0.400
34 15 0.966 | 0.259 0.407
35 15 0.966 | 0.259 -0.521
36 0 1.000 | 0.000 -0.134
37 0 1.000 | 0.000 -0.315
38 0 1.000 | 0.000 0.837
39 0 1.000 | 0.000 0.043
40 0 1.000 | 0.000 0.441
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Table C5: Item parameters for no confound and lgyvade common items test battery

lower grade item number | angle with dim 1 al a2 d
1 0 1.000 | 0.000 1.887
2 0 1.000 | 0.000 -1.115
3 0 1.000 | 0.000 0.677
4 0 1.000 | 0.000 -0.152
5 0 1.000 | 0.000 -0.908
6 5 0.996 | 0.087 -0.958
7 5 0.996 | 0.087 -0.918
8 5 0.996 | 0.087 -0.908
9 5 0.996 | 0.087 0.832
10 5 0.996 | 0.087 1.552
11 10 0.985 | 0.174 -1.233
12 10 0.985 | 0.174 -0.012
13 10 0.985 | 0.174 0.988
14 10 0.985 | 0.174 1.170
15 10 0.985 | 0.174 0.535
16 15 0.966 | 0.259 1.152
17 15 0.966 | 0.259 -0.464
18 15 0.966 | 0.259 0.282
19 15 0.966 | 0.259 1.888
20 15 0.966 | 0.259 0.503
21 20 0.940 | 0.342 1.321
22 20 0.940 | 0.342 0.921
23 20 0.940 | 0.342 -0.942
24 20 0.940 | 0.342 -0.342
25 20 0.940 | 0.342 0.555
26 25 0.906 | 0.423 -0.752
27 25 0.906 | 0.423 -0.762
28 25 0.906 | 0.423 -0.116
29 25 0.906 | 0.423 -0.189
30 25 0.906 | 0.423 0.510
31 85 0.087 | 0.996 -0.281
32 85 0.087 | 0.996 1.301
33 85 0.087 | 0.996 0.381
34 85 0.087 | 0.996 1.544
35 85 0.087 | 0.996 -0.444
36 90 0.000 | 1.000 -1.602
37 90 0.000 | 1.000 0.296
38 90 0.000 | 1.000 -0.899
39 90 0.000 | 1.000 0.111
40 90 0.000 | 1.000 -1.954
common item number
1 0 1.000 | 0.000 0.083
2 0 1.000 | 0.000 -0.819
common item number angle with dim 1 al a2 d
3 5 0.996 | 0.087 0.152
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4 5 0.996 | 0.087 -1.454
5 10 0.985 | 0.174 -1.774
6 10 0.985 | 0.174 -2.971
7 15 0.966 | 0.259 0.611
8 15 0.966 | 0.259 -1.154
9 20 0.940 | 0.342 0.684
10 20 0.940 | 0.342 -0.550
11 25 0.906 | 0.423 -0.284
12 25 0.906 | 0.423 -1.271
13 30 0.866 | 0.500 -1.330
14 30 0.866 | 0.500 0.485
15 90 0.000 | 1.000 -0.723
16 90 0.000 | 1.000 -0.402
17 85 0.087 | 0.996 0.360
18 85 0.087 | 0.996 0.262
19 80 0.174 | 0.985 -1.486
20 80 0.174 | 0.985 0.308
upper grade item number
1 90 0.000 | 1.000 -0.088
2 90 0.000 | 1.000 -1.695
3 90 0.000 | 1.000 1.804
4 90 0.000 | 1.000 0.360
5 90 0.000 | 1.000 1.139
6 85 0.087 | 0.996 0.315
7 85 0.087 | 0.996 0.838
8 85 0.087 | 0.996 1.682
9 85 0.087 | 0.996 -0.520
10 85 0.087 | 0.996 0.595
11 80 0.174 | 0.985 -0.397
12 80 0.174 | 0.985 -0.305
13 80 0.174 | 0.985 0.603
14 80 0.174 | 0.985 -0.534
15 80 0.174 | 0.985 1.403
16 75 0.259 | 0.966 0.173
17 75 0.259 | 0.966 -0.011
18 75 0.259 | 0.966 3.034
19 75 0.259 | 0.966 2.182
20 75 0.259 | 0.966 0.759
21 70 0.342 | 0.940 -1.902
22 70 0.342 | 0.940 0.084
23 70 0.342 | 0.940 0.309
24 70 0.342 | 0.940 0.364
25 70 0.342 | 0.940 1.208
26 65 0.423 | 0.906 -0.504
27 65 0.423 | 0.906 -2.039
28 65 0.423 | 0.906 -0.903
upper grade item number | angle with dim 1 al a2 d
29 65 0.423 | 0.906 -1.143
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30 65 0.423 | 0.906 -0.951
31 15 0.966 | 0.259 0.598
32 15 0.966 | 0.259 -0.818
33 15 0.966 | 0.259 1.295
34 15 0.966 | 0.259 1.773
35 15 0.966 | 0.259 -1.447
36 0 1.000 | 0.000 -0.760
37 0 1.000 | 0.000 -0.954
38 0 1.000 | 0.000 -0.779
39 0 1.000 | 0.000 -0.042
40 0 1.000 | 0.000 1.579
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Table C6: Item parameters for no confound and gotdes common items test battery

lower grade item number angle with dim 1 al a2 d
1 0 1.000 | 0.000 1.887
2 0 1.000 | 0.000 -1.115
3 0 1.000 | 0.000 0.677
4 0 1.000 | 0.000 -0.152
5 0 1.000 | 0.000 -0.908
6 5 0.996 | 0.087 -0.958
7 5 0.996 | 0.087 -0.918
8 5 0.996 | 0.087 -0.908
9 5 0.996 | 0.087 0.832
10 5 0.996 | 0.087 1.552
11 10 0.985| 0.174 -1.233
12 10 0.985| 0.174 -0.012
13 10 0.985| 0.174 0.988
14 10 0.985| 0.174 1.170
15 10 0.985| 0.174 0.535
16 15 0.966 | 0.259 1.152
17 15 0.966 | 0.259 -0.464
18 15 0.966 | 0.259 0.282
19 15 0.966 | 0.259 1.888
20 15 0.966 | 0.259 0.503
21 20 0.940 | 0.342 1.321
22 20 0.940 | 0.342 0.921
23 20 0.940 | 0.342 -0.942
24 20 0.940 | 0.342 -0.342
25 20 0.940 | 0.342 0.555
26 25 0.906 | 0.423 -0.752
27 25 0.906 | 0.423 -0.762
28 25 0.906 | 0.423 -0.116
29 25 0.906 | 0.423 -0.189
30 25 0.906 | 0.423 0.510
31 85 0.087 | 0.996 -0.281
32 85 0.087 | 0.996 1.301
33 85 0.087 | 0.996 0.381
34 85 0.087 | 0.996 1.544
35 85 0.087 | 0.996 -0.444
36 90 0.000 | 1.000 -1.602
37 90 0.000 | 1.000 0.296
38 90 0.000 | 1.000 -0.899
39 90 0.000 | 1.000 0.111
40 90 0.000 | 1.000 -1.954
common item number
1 0 1.000 | 0.000 0.083
2 5 0.996 | 0.087 0.152
3 10 0.985| 0.174 -1.774
4 15 0.966 | 0.259 0.611
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common item number angle with dim 1 al a2 d
5 20 0.940 | 0.342 0.684
6 25 0.906 | 0.423 -0.284
7 30 0.866 | 0.500 -1.330
8 90 0.000 | 1.000 -0.723
9 85 0.087 | 0.996 0.360
10 80 0.174 | 0.985 -1.486
11 90 0.000 | 1.000 0.833
12 85 0.087 | 0.996 1.245
13 80 0.174 | 0.985 0.752
14 75 0.259 | 0.966 -1.355
15 70 0.342 | 0.940 0.586
16 65 0.423 | 0.906 2.303
17 60 0.500 | 0.866 -0.218
18 0 1.000 | 0.000 -0.690
19 5 0.996 | 0.087 -0.623
20 10 0.985| 0.174 1.386
upper grade item number
1 90 0.000 | 1.000 -0.088
2 90 0.000 | 1.000 -1.695
3 90 0.000 | 1.000 1.804
4 90 0.000 | 1.000 0.360
5 90 0.000 | 1.000 1.139
6 85 0.087 | 0.996 0.315
7 85 0.087 | 0.996 0.838
8 85 0.087 | 0.996 1.682
9 85 0.087 | 0.996 -0.520
10 85 0.087 | 0.996 0.595
11 80 0.174 | 0.985 -0.397
12 80 0.174 | 0.985 -0.305
13 80 0.174 | 0.985 0.603
14 80 0.174 | 0.985 -0.534
15 80 0.174 | 0.985 1.403
16 75 0.259 | 0.966 0.173
17 75 0.259 | 0.966 -0.011
18 75 0.259 | 0.966 3.034
19 75 0.259 | 0.966 2.182
20 75 0.259 | 0.966 0.759
21 70 0.342 | 0.940 -1.902
22 70 0.342 | 0.940 0.084
23 70 0.342 | 0.940 0.309
24 70 0.342 | 0.940 0.364
25 70 0.342 | 0.940 1.208
26 65 0.423 | 0.906 -0.504
27 65 0.423 | 0.906 -2.039
28 65 0.423 | 0.906 -0.903
29 65 0.423 | 0.906 -1.143
30 65 0.423 | 0.906 -0.951
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upper grade item number angle with dim 1 al a2 d
31 15 0.966 | 0.259 0.598
32 15 0.966 | 0.259 -0.818
33 15 0.966 | 0.259 1.295
34 15 0.966 | 0.259 1.773
35 15 0.966 | 0.259 -1.447
36 0 1.000 | 0.000 -0.760
37 0 1.000 | 0.000 -0.954
38 0 1.000 | 0.000 -0.779
39 0 1.000 | 0.000 -0.042
40 0 1.000 | 0.000 1.579
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Appendix D: Multifactor ANOVAs for percent corregttlassified,

false negative rate, and false positive rate bggra

Table D1: Lower grade multifactor ANOVA on raw data for percent correctly classified (PC)

Tests of Between-Subjects Effects
Dependent Variable: PC

Source TypelllSS df  Mean Sq F Sig. Partial n”
Corrected Model 6.625 47 0.141 2861.857 ] 0.000] 0.849
Intercept 19508.256] 1 | 19598.256 | 397875195.133] 0.000 | 1.000
CONFOUND 0.335 2 0.167 3400.314 | 0.000| 0.221
COMMON 0.000 1 0.000 7.705 0.006 | 0.000
ABILITY 0.002 1 0.002 46.296 0.000 | 0.002
CORRELAT 6.154 3 2.051 41646.316 | 0.000 | 0.839
CONFOUND * COMMON 0.019 2 0.010 197.827 | 0.000 | 0.016
CONFOUND * ABILITY 0.014 2 0.007 137.644 | 0.000 | 0.011
COMMON * ABILITY 0.000 1 0.000 6.203 0.013]| 0.000
CONFOUND * COMMON *

ABILITY 0.008 2 0.004 83.244 0.000 | 0.007
CONFOUND * CORRELAT|_ 0.040 6 0.007 136.644 | 0.000 | 0.033
COMMON * CORRELAT 0.002 3 0.001 11.789 0.000 | 0.001
CONFOUND * COMMON *

CORRELAT 0.005 6 0.001 17.627 0.000 | 0.004
ABILITY * CORRELAT 0.005 3 0.002 33.220 0.000 | 0.004
CONFOUND * ABILITY *

CORRELAT 0.017 6 0.003 58.021 0.000 | 0.014
COMMON * ABILITY *

CORRELAT 0.016 3 0.005 105.856 | 0.000 | 0.013
CONFOUND * COMMON *

ABILITY * CORRELAT 0.007 6 0.001 23.951 0.000 | 0.006
Error 1.180 [23952| 0.000

Total 19606.062 | 24000

Corrected Total 7.805 23999

a. R Squared = .849 (Adjusted R Squared = .849)
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Table D2: Lower grade multifactor ANOVA on transformed data for
percent correctly classified (PC_T)

Dependent Variable: PC_T

Tests of Between-Subjects Effects

Source Type lISS  df  Mean Sq F Sig. Partial n°
Corrected Model 75.220 47 1.600 2843.739__[0.000] 0.848
Intercept 151552.717| 1 | 151552.717|269288594.932| 0.000] 1.000
CONFOUND 3.712 2 1.856 3297.857 | 0.000| 0.216
COMMON 0.004 1 0.004 7.276 0.007| 0.000
ABILITY 0.022 1 0.022 39.194 | 0.000] 0.002
CORRELAT 70.159 3 23.386 41554.513 | 0.000] 0.839
CONFOUND * COMMON 0.221 2 0.111 196.515__ | 0.000] 0.016
CONFOUND * ABILITY 0.139 2 0.069 123.214 | 0.000] 0.010
COMMON * ABILITY 0.004 1 0.004 7.223 0.007| 0.000
CONFOUND * COMMON *

ABILITY 0.089 2 0.045 79.201 | 0.000| 0.007
CONFOUND * CORRELAT|  0.318 6 0.053 94.260 | 0.000| 0.023
COMMON * CORRELAT 0.017 3 0.006 10.289 _ 0.000] 0.001
CONFOUND * COMMON *

CORRELAT 0.057 6 0.009 16.793 | 0.000| 0.004
ABILITY * CORRELAT 0.048 3 0.016 28.486__ | 0.000] 0.004
CONFOUND * ABILITY *

CORRELAT 0.190 6 0.032 56.171 _ |0.000| 0.014
COMMON * ABILITY *

CORRELAT 0.165 3 0.055 97.669 | 0.000| 0.012
CONFOUND * COMMON *

ABILITY * CORRELAT 0.074 6 0.012 22.038 | 0.000| 0.005
Error 13.480 |23952] 0.001

Total 151641.417 | 24000

Corrected Total 88.700 23999

a. R Squared = .848 (Adjusted R Squared = .848)
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Table D3: Lower grade multifactor ANOVA on raw data for the false negative rate (FN)

Dependent Variable: FN

Tests of Between-Subjects Effects

Source TypelllSS  df  Mean Sq F Sig. Partial n°
Corrected Model 4.613 47 0.098 | 1079.234 [ 0.000] 0.679
Intercept 56.169 1 56.169 | 617615.738 | 0.000 | 0.963
CONFOUND 2.359 2 1179 | 12966.908 | 0.000 | 0.520
COMMON 0.146 1 0.146 | 1609.324 | 0.000| 0.063
ABILITY 0.008 1 0.008 83.864 | 0.000| 0.003
CORRELAT 1.047 3 0.349 | 3835.740 | 0.000| 0.325
CONFOUND * COMMON 0.016 2 0.008 88.897 | 0.000 | 0.007
CONFOUND * ABILITY 0.081 2 0.040 443.428 | 0.000]| 0.036
COMMON * ABILITY 0.028 1 0.028 311.035 | 0.000] 0.013
CONFOUND * COMMON *

ABILITY 0.045 2 0.023 248.151 | 0.000| 0.020
CONFOUND * CORRELAT | 0.460 6 0.077 843.694 | 0.000| 0.174
COMMON * CORRELAT 0.019 3 0.006 70.531__| 0.000| 0.009
CONFOUND * COMMON *

CORRELAT 0.073 6 0.012 133.679 | 0.000 | 0.032
ABILITY * CORRELAT 0.010 3 0.003 34.963__| 0.000 | 0.004
CONFOUND * ABILITY *

CORRELAT 0.056 6 0.009 103.043 | 0.000| 0.025
COMMON * ABILITY *

CORRELAT 0.033 3 0.011 121.574 | 0.000| 0.015
CONFOUND * COMMON *

ABILITY * CORRELAT 0.232 6 0.039 425.684 | 0.000| 0.096
Error 2178 | 23952 0.000

Total 62.960 | 24000

Corrected Total 6.791 23999

a. R Squared = .679 (Adjusted R Squared = .679)
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Table D4: Lower grade multifactor ANOVA on transformed data for the

false negative rate (FN_T)

Dependent Variable: FN_T

Tests of Between-Subjects Effects

Source Type lllSS  df  Mean Sq F Sig.  Partial n’
Corrected Model 89.308 47 1.900 979.020 | 0.000 | 0.658
Intercept 4595.231 1 | 4595.231 | 2367602.446] 0.000 | 0.990
CONFOUND 46.235 2 23.118 | 11910.838 | 0.000 | 0.499
COMMON 3.490 1 3.490 1798.109 | 0.000 | 0.070
ABILITY 0.281 1 0.281 145.020 | 0.000 | 0.006
CORRELAT 20.507 3 6.836 3521.958 | 0.000 | 0.306
CONFOUND * COMMON 0.473 2 0.236 121.808__| 0.000 | 0.010
CONFOUND * ABILITY 1.685 2 0.843 434181 | 0.000 | 0.035
COMMON * ABILITY 0.525 1 0.525 270.265 | 0.000 | 0.011
CONFOUND * COMMON *

ABILITY 0.797 2 0.399 205.399 | 0.000 | 0.017
CONFOUND * CORRELAT|  6.972 6 1.162 598.664 | 0.000 | 0.130
COMMON * CORRELAT 0.342 3 0.114 58.805 | 0.000 | 0.007
CONFOUND * COMMON *

CORRELAT 1.472 6 0.245 126.394 | 0.000 | 0.031
ABILITY * CORRELAT 0.192 3 0.064 32.916 | 0.000 | 0.004
CONFOUND * ABILITY *

CORRELAT 1.469 6 0.245 126.172 | 0.000 | 0.031
COMMON * ABILITY *

CORRELAT 0.479 3 0.160 82.296 | 0.000 [ 0.010
CONFOUND * COMMON *

ABILITY * CORRELAT 4.388 6 0.731 376.799 | 0.000 | 0.086
Error 46.488 | 23952 0.002

Total 4731.026 | 24000

Corrected Total 135.795 | 23999

a. R Squared = .658 (Adjusted R Squared = .657)
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Table D5: Lower grade multifactor ANOVA on raw data for the false positive rate (FP)

Dependent Variable: FP

Tests of Between-Subjects Effects

Source Type lISS  df  Mean Sq F Sig. Partialn”
Corrected Model 4.184 47 0.089 1083.446 | 0.000 | 0.680
Intercept 55.219 1 55.219 | 672017.790| 0.000 | 0.966
CONFOUND 0.944 2 0.472 | 5745.261 | 0.000 | 0.324
COMMON 0.132 1 0.132 1604.416 | 0.000 | 0.063
ABILITY 0.018 1 0.018 222.082 | 0.000 | 0.009
CORRELAT 2.139 3 0.713 | 8677.491 | 0.000 | 0521
CONFOUND * COMMON 0.057 2 0.028 346578 | 0.000 | 0.028
CONFOUND * ABILITY 0.083 2 0.041 503.839 | 0.000 | 0.040
COMMON * ABILITY 0.023 1 0.023 276.414 | 0.000 | 0.011
CONFOUND * COMMON *

ABILITY 0.015 2 0.008 93.491 0.000 | 0.008
CONFOUND * CORRELAT| 0.317 6 0.053 643.877 | 0.000 | 0.139
COMMON * CORRELAT 0.012 3 0.004 46.809 0.000 | 0.006
CONFOUND * COMMON *

CORRELAT 0.060 6 0.010 121.029 | 0.000 | 0.029
ABILITY * CORRELAT 0.028 3 0.009 112.588 | 0.000 | 0.014
CONFOUND * ABILITY *

CORRELAT 0.125 6 0.021 253.393 | 0.000 | 0.060
COMMON * ABILITY *

CORRELAT 0.020 3 0.007 81.188 0.000 | 0.010
CONFOUND * COMMON *

ABILITY * CORRELAT 0.212 6 0.035 429.446 | 0.000 | 0.097
Error 1.968 |23952| 0.000

Total 61.372 |24000

Corrected Total 6.152 23999

a. R Squared = .680 (Adjusted R Squared = .679)
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Table D6: Lower grade multifactor ANOVA on transformed data for the

false positive rate (FP_T)

Dependent Variable: FP_T

Tests of Between-Subjects Effects

Source TypelISS df  Mean Sq F Sig. Partial n°
Corrected Model 87.370 47 1.859 1039.102 [0.000] 0.671
Intercept 4559.084 1 | 4559.084 | 2548415.738]0.000] 0.991
CONFOUND 20.482 2 10.241 5724.425 [0.000] 0.323
COMMON 2.674 1 2.674 1494.868 | 0.000] 0.059
ABILITY 0.303 1 0.303 169.593 | 0.000] 0.007
CORRELAT 45.187 3 15.062 8419.461 [0.000] 0.513
CONFOUND * COMMON 0.904 2 0.452 252561 | 0.000] 0.021
CONFOUND * ABILITY 1.632 2 0.816 456.179 [ 0.000] 0.037
COMMON * ABILITY 0.520 1 0.520 290.657 | 0.000] 0.012
CONFOUND * COMMON *

ABILITY 0.572 2 0.286 159.996 | 0.000| 0.013
CONFOUND * CORRELAT|  5.349 6 0.892 498.368 | 0.000] 0.111
COMMON * CORRELAT 0.255 3 0.085 47.459 [0.000] 0.006
CONFOUND * COMMON *

CORRELAT 1.168 6 0.195 108.783 ] 0.000| 0.027
ABILITY * CORRELAT 0.475 3 0.158 88.495 | 0.000] 0.011
CONFOUND * ABILITY *

CORRELAT 2.509 6 0.418 233.758 | 0.000| 0.055
COMMON * ABILITY *

CORRELAT 0.465 3 0.155 86.604 | 0.000] 0.011
CONFOUND * COMMON *

ABILITY * CORRELAT 4.875 6 0.812 454.137 | 0.000] 0.102
Error 42.850 |23952 0.002

Total 4689.304 | 24000

Corrected Total 130.220 | 23999

a. R Squared = .671 (Adjusted R Squared = .670)

127




Table D7: Upper grade multifactor ANOVA on raw data for percent correctly classified (PC)

Dependent Variable: PC

Tests of Between-Subjects Effects

Source Type lISS df  Mean Sq F Sig. Partial n
Corrected Model 5.197 47 0.111 2502.227 ] 0.000] 0.831
Intercept 19663.353| 1 | 19663.353|444945480.558] 0.000| 1.000
CONFOUND 0.105 2 0.052 1184.995 | 0.000] 0.090
COMMON 0.017 1 0.017 381.808 | 0.000| 0.016
ABILITY 0.001 1 0.001 24.355 0.000] 0.001
CORRELAT 5.038 3 1.679 37998.797 |0.000| 0.826
CONFOUND * COMMON 0.001 2 0.000 5.724 0.003| 0.000
CONFOUND * ABILITY 0.003 2 0.001 29.806 0.000] 0.002
COMMON * ABILITY 0.001 1 0.001 19.575 0.000| 0.001
CONFOUND * COMMON *

ABILITY 0.002 2 0.001 17.530 0.000| 0.001
CONFOUND * CORRELAT| 0.004 6 0.001 14.560 0.000| 0.004
COMMON * CORRELAT 0.002 3 0.001 13.459 0.000] 0.002
CONFOUND * COMMON *

CORRELAT 0.002 6 0.000 5.908 0.000| 0.001
ABILITY * CORRELAT 0.014 3 0.005 106.030 | 0.000| 0.013
CONFOUND * ABILITY *

CORRELAT 0.005 6 0.001 20.427 0.000| 0.005
COMMON * ABILITY *

CORRELAT 0.003 3 0.001 23.042 0.000| 0.003
CONFOUND * COMMON *

ABILITY * CORRELAT 0.001 6 0.000 5.573 0.000| 0.001
Error 1.059 |23952| 0.000

Total 19669.609 | 24000

Corrected Total 6.256 23999

a. R Squared = .831 (Adjusted R Squared = .830)
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Table D8: Upper grade multifactor ANOVA on transformed data for
percent correctly classified (PC_T)

Dependent Variable: PC_T

Tests of Between-Subjects Effects

Source Type llISS  df  Mean Sq F Sig. Partial n°
Corrected Model 60.194 | 47 1.281 2471.775 __]0.000] 0.829
Intercept 152116.025| 1 |152116.025]293579403.020]0.000] 1.000
CONFOUND 1.234 2 0.617 1190.853 _[0.000] 0.090
COMMON 0.196 1 0.196 377.870 _ [0.000] 0.016
ABILITY 0.008 1 0.008 14.580 _ 10.000] 0.001
CORRELAT 58.353 3 19.451 37540.081 _[0.000] 0.825
CONFOUND * COMMON 0.006 2 0.003 5.655 0.004] 0.000
CONFOUND * ABILITY 0.029 2 0.015 28.107__ [0.000[ 0.002
COMMON * ABILITY 0.008 1 0.008 15.688__ |0.000] 0.001
CONFOUND * COMMON *

ABILITY 0.017 2 0.009 16.470 _ |0.000| 0.001
CONFOUND * CORRELAT| — 0.033 6 0.005 10.573 __ |0.000] 0.003
COMMON * CORRELAT 0.021 3 0.007 13.264 __ [0.000] 0.002
CONFOUND * COMMON *

CORRELAT 0.019 6 0.003 6.135 0.000[ 0.002
ABILITY * CORRELAT 0.160 3 0.053 102.814 _ [0.000] 0.013
CONFOUND * ABILITY *

CORRELAT 0.060 6 0.010 19.398 _ |0.000| 0.005
COMMON * ABILITY *

CORRELAT 0.036 3 0.012 22.900 _ |0.000| 0.003
CONFOUND * COMMON *

ABILITY * CORRELAT 0.015 6 0.003 4.881 0.000[ 0.001
Error 12.411 {23952 0.001

Total 152188.630 [ 24000

Corrected Total 72.605 23999

a. R Squared = .829 (Adjusted R Squared = .829)
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Table D9: Upper grade multifactor ANOVA on raw data for the false negative rate (FN)

Dependent Variable: FN

Tests of Between-Subjects Effects

Source Type lISS  df  Mean Sq F Sig. Partial n”
Corrected Model 0.997 47 | 0.021 260.097 ] 0.000] 0.338
Intercept 53.984 1 | 53.984 | 661877.819 | 0.000| 0.965
CONFOUND 0.006 2 0.003 38.171__ | 0.000] 0.003
COMMON 0.043 1 0.043 533273 | 0.000| 0.022
ABILITY 0.027 1 0.027 329.665 | 0.000| 0.014
CORRELAT 0.456 3 0152 | 1861.958 |0.000| 0.189
CONFOUND * COMMON 0.040 2 0.020 242.883 | 0.000| 0.020
CONFOUND * ABILITY 0.075 2 0.038 459.791 | 0.000] 0.037
COMMON * ABILITY 0.004 1 0.004 45795 | 0.000] 0.002
CONFOUND * COMMON *

ABILITY 0.008 2 0.004 46.694 | 0.000| 0.004
CONFOUND * CORRELAT| _ 0.059 6 0.010 121,302 | 0.000| 0.029
COMMON * CORRELAT 0.015 3 0.005 61.878 | 0.000| 0.008
CONFOUND * COMMON *

CORRELAT 0.037 6 0.006 75.575 | 0.000| 0.019
ABILITY * CORRELAT 0.085 3 0.028 345.813 | 0.000| 0.042
CONFOUND * ABILITY *

CORRELAT 0.053 6 0.009 108.404 | 0.000| 0.026
COMMON * ABILITY *

CORRELAT 0.036 3 0.012 145.446 | 0.000| 0.018
CONFOUND * COMMON *

ABILITY * CORRELAT 0.054 6 0.009 110.628 | 0.000| 0.027
Error 1.954 | 23952 0.000

Total 56.934 | 24000

Corrected Total 2.951 23999

a. R Squared = .338 (Adjusted R Squared = .337)
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Table D10: Upper grade multifactor ANOVA on transformed data for the

false negative rate (FN_T)

Dependent Variable: FN_T

Tests of Between-Subjects Effects

Source Type 1SS df  Mean Sq F Sig. Partial n°
Corrected Model 22.202 47 0.472 262.255 0.000 [ 0.340
Intercept 4565.773 1 [ 4565.773] 2534753.249 | 0.000] 0.991
CONFOUND 0.139 2 0.070 38.711 0.000| 0.003
COMMON 0.995 1 0.995 552.665 0.000| 0.023
ABILITY 0.640 1 0.640 355.310 0.000| 0.015
CORRELAT 10.270 3 3.423 1900.453 [ 0.000] 0.192
CONFOUND * COMMON 0.852 2 0.426 236.589 0.000| 0.019
CONFOUND * ABILITY 1.475 2 0.738 409.571 0.000] 0.033
COMMON * ABILITY 0.105 1 0.105 58.532 0.000| 0.002
CONFOUND * COMMON *

ABILITY 0.148 2 0.074 40.978 0.000| 0.003
CONFOUND * CORRELAT| 1.388 6 0.231 128.401 0.000| 0.031
COMMON * CORRELAT 0.356 3 0.119 65.856 0.000| 0.008
CONFOUND * COMMON *

CORRELAT 0.763 6 0.127 70.559 0.000| 0.017
ABILITY * CORRELAT 2.042 3 0.681 377.863 0.000 | 0.045
CONFOUND * ABILITY *

CORRELAT 1.087 6 0.181 100.606 0.000| 0.025
COMMON * ABILITY *

CORRELAT 0.734 3 0.245 135.914 0.000| 0.017
CONFOUND * COMMON *

ABILITY * CORRELAT 1.207 6 0.201 111.686 0.000| 0.027
Error 43.144 [23952] 0.002

Total 4631.120 | 24000

Corrected Total 65.346 23999

a. R Squared = .340 (Adjusted R Squared = .338)
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Table D11: Upper grade multifactor ANOVA on raw data for the false positive rate (FP)

Dependent Variable: FP

Tests of Between-Subjects Effects

Source Type lllSS  df  Mean Sq F Sig. Partial n’
Corrected Model 3.213 47 | _0.068 963.787__] 0.000] 0.654
Intercept 53.962 1 | 53.962 | 760730.122 [ 0.000| 0.969
CONFOUND 0.070 2 0.035 491.866_ | 0.000| 0.039
COMMON 0.006 1 0.006 87.220 | 0.000| 0.004
ABILITY 0.039 1 0.039 545.906 | 0.000| 0.022
CORRELAT 2.683 3 0.894 | 12606.914 | 0.000| 0.612
CONFOUND * COMMON 0.044 2 0.022 312.688_ | 0.000| 0.025
CONFOUND * ABILITY 0.061 2 0.030 428561 | 0.000| 0.035
COMMON * ABILITY 0.008 1 0.008 115533 | 0.000 | 0.005
CONFOUND * COMMON *

ABILITY 0.011 2 0.006 78.284 | 0.000| 0.006
CONFOUND * CORRELAT | 0.070 6 0.012 163.603 | 0.000 | 0.039
COMMON * CORRELAT 0.022 3 0.007 102.220 | 0.000| 0.013
CONFOUND * COMMON *

CORRELAT 0.035 6 0.006 81.699 | 0.000| 0.020
ABILITY * CORRELAT 0.031 3 0.010 143593 | 0.000| 0.018
CONFOUND * ABILITY *

CORRELAT 0.050 6 0.008 116.665 [ 0.000| 0.028
COMMON * ABILITY *

CORRELAT 0.027 3 0.009 125.406 [ 0.000| 0.015
CONFOUND * COMMON *

ABILITY * CORRELAT 0.058 6 0.010 136.726 [ 0.000| 0.033
Error 1.699 |23952| 0.000

Total 58.874 | 24000

Corrected Total 4912 23999

a. R Squared = .654 (Adjusted R Squared = .653)
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Table D12: Upper grade multifactor ANOVA on transformed data for the

false positive rate (FP_T)

Dependent Variable: FP_T

Tests of Between-Subjects Effects

Source Type llISS  df  Mean Sq F Sig. Partial n°
Corrected Model 69.216 47 1.473 931.300 ] 0.000] 0.646
Intercept 4525.926 | 1 | 4525.926 | 2862139.472 | 0.000 [ 0.992
CONFOUND 1.338 2 0.669 422,918 [ 0.000[ 0.034
COMMON 0.210 1 0.210 132.492 | 0.000 | 0.006
ABILITY 1.045 1 1.045 660.674 | 0.000 | 0.027
CORRELAT 57.766 3 19.255 | 12176.733 | 0.000] 0.604
CONFOUND * COMMON 0.959 2 0.479 303.196__ | 0.000 [ 0.025
CONFOUND * ABILITY 1.296 2 0.648 409.720 [ 0.000] 0.033
COMMON * ABILITY 0.224 1 0.224 141.643 | 0.000 | 0.006
CONFOUND * COMMON *

ABILITY 0.245 2 0.123 77.505 | 0.000 | 0.006
CONFOUND * CORRELAT|  1.356 6 0.226 142.916 | 0.000| 0.035
COMMON * CORRELAT 0.611 3 0.204 128.735 | 0.000| 0.016
CONFOUND * COMMON *

CORRELAT 0.739 6 0.123 77.851 | 0.000| 0.019
ABILITY * CORRELAT 0.800 3 0.267 168.653 | 0.000 | 0.021
CONFOUND * ABILITY *

CORRELAT 0.921 6 0.153 97.057 [ 0.000| 0.024
COMMON * ABILITY *

CORRELAT 0.601 3 0.200 126.586__ | 0.000| 0.016
CONFOUND * COMMON *

ABILITY * CORRELAT 1.108 6 0.185 116.759 | 0.000| 0.028
Error 37.876 |[23952| 0.002

Total 4633.017 | 24000

Corrected Total 107.091 | 23999

a. R Squared = .646 (Adjusted R Squared = .646)
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