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Technology has advanced to the point where many people feel it has created a world with 

an insurmountable amount of information.  Information includes messages people send to 

each other, logged data from their activities, and the services available to them.  This 

problem has been exaggerated in modern societies by high availability of Internet 

connectivity.  All types of information contains context, whether they have been stated 

explicitly or understood implicitly.  Understanding, handling, and using context 

represents one of the most critical steps towards coping with the amount of information 

available today. 

 In this dissertation, we examine two topics: context and the design of a context-

aware platform. We describe fundamental types of context associated with every piece of 

information and discuss issues which may occur when implementing a system which 

utilizes context. 

 We present a context-aware platform called Rover.  The Rover architecture 

provides a conceptual framework geared towards understanding how application 



developers can utilize a variety of aspects of context to assist the development of modern 

applications.  To aid developers in figuring out what context may be useful in their 

application, we describe the concept of a Rover ecosystem: a logical organization 

analogous to how similar groups of people interact with each other.  We also discuss how 

information and context can be shared between ecosystems. 

 To examine the feasibility of the Rover architecture’s conceptual framework, we 

have implemented a reference implementation of the core unit of a Rover ecosystem: the 

Rover server.  We discuss the details of the Rover server and describe the implementation 

of an emergency response application which demonstrates the utility of the conceptual 

framework.  
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Chapter 1  

Introduction 

Historians group various ages of human evolution together.  An examination of these 

ages yield an interesting correlation: as humans go from one age to the next, the length of 

time it takes to get to the next age decreases substantially as the time it takes for humans 

to interact with one another decreases [59].  The interaction time decreases from building 

upon technology, specifically communication and transportation, from previous ages. 

1.1 Evolving to the Information Age 

Our current age, typically referred to as the Information Age, has evolved 

primarily due to the development of the Internet [58].  We have evolved from a time 

where it took days, weeks, or even months to send a message to another person to a world 

in which a message can be delivered almost instantaneously to any place in the world.   

Over the last decade, we have moved past exclusively using desktops and 

workstations to increased usage and acceptance of mobile devices: cell phones, smart 

phones, and Internet appliances.  One of the reasons we have been able to move from 

tethered to untethered devices has been advances in mobile connectivity [16].  This 

includes advances in areas such as wireless cellular networks (from 1G to 4G) [69], 

wireless local area networks (802.11 [69] and ZigBee [120]), and wireless personal area 

networks (Bluetooth [14]).  The increase of mobile connectivity means messages can be 

transmitted and viewed quicker than it ever has been before. 
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In addition to developed countries which have technology readily available to 

them, philanthropic efforts have begun to connect impoverished countries and areas with 

low bandwidth.  The One Laptop per Child project exemplifies one of the highest profile 

efforts to provide children in developing countries with laptops and connectivity [55]. 

The Information Age has reached a point in which modern societies surround 

themselves with technology.  The late Mark Weiser envisioned a world in which 

computers would fade into the background, where we would take advantage of their 

capabilities seamlessly and without thought [114].  He coined the term Ubiquitous 

Computing to describe this paradigm, a shift from the computing world consisting 

primarily of desktop computers [115]. 

While many people carry laptops and mobile devices around with them and have 

Internet appliances in their homes and workplaces, computers have not faded completely 

into the background.  After almost two decades, embedded computing devices have not 

been placed into our clothing and we still build homes traditionally, albeit with extra 

wiring and considerations for wireless signals.  We still carry around separate devices, 

such as an audio player and a cellular phone, though devices exist which combine 

multiple features together. 

Even though more computing appliances will become available and research 

continues in the field of Ubiquitous Computing, we need to recognize that the effective 

use of the information marks one, if not the most, important critical aspect of computers 

fading into the background.  For now, let us assume information includes only the 

messages that every computing device provides, and simply that. 
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1.2 Regressing to the Attention Age 

A study conducted by researchers at the University of California at Berkeley’s School of 

Information Management and Systems attempted to answer the following question: “How 

much new information is created each year?” [63].  The researchers observed the 

following two facts concerning new information: 

1. Traditional physical storage mediums, which include print, film, magnetic, and 

optical, produced five exabytes of new information in 2002.  This represented a 

growth of thirty percent from 1999. 

2. Communication mediums, including radio, television, telephone, and the Internet, 

created 17.3 exabytes of information in 2002, mostly from landline and wireless 

phones. 

This study only considered new information.  Therefore, the amount of information 

available from historical archives, such as traditional libraries and Internet archives
1
, has 

not been accounted for.  Sifting through the amount of information available today, both 

old and new, can be a daunting and difficult task.  Furthermore, the growing popularity of 

social networking applications
2

 increases the amount of communication between 

participating individuals and groups. 

 We can take solace that one of the researchers involved in the Berkeley study 

indicated that most of the information available does not interest most people and 

applications [111].  However, we still need to be able to sift through all of the 

information given to find information relevant to us, while not knowing if the information 

available to us has all of the relevant information in the first place.  For instance, after a 

                                                 
1
 One popular archival site which caches web sites includes the Internet Archive [52]. 

2
 Social networking applications include Facebook [30] and Twitter [108]. 
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person comes back from vacation and on the telephone, they commonly say to others, 

“Let me clean up my e-mail and get back to you.”  Reviewing e-mail requires a person to 

be attentive to figuring out what e-mails to prioritize, read, and mark as relevant, a time 

consuming process. 

Due to the amount of information readily available, people have to deal with 

information overload [106].  The act of dealing with information overload requires 

people to be attentive to the information presented to them.  The amount of attention 

spent handling all of the information increases as the information presented to people 

increases over time.  As the Information Age continues, one could argue, on the basis that 

ages last very short periods of time today, that we have entered another age: the Attention 

Age [20].  We spend large periods of time attending to sifting through unnecessary 

information, without knowing if we have the appropriate information in the first place. 

1.3 Towards a Context-Aware Age 

As researchers and professionals continue working towards the goal of Mark Weiser’s 

vision of computers disappearing into the background, we have to recognize that we need 

to step out of the attention age into an age where technology provides a reliable way of 

providing the appropriate information to users.  To do this, we believe that we have to 

consider context.  Context plays an essential role in our ability to interpret and use 

information presented to us.  While we as humans consider context all the time in all our 

activities, computer systems do not usually take that into account.  In fact, a computer 

system only takes the context a designer thought about during the design process into 

account.  As a consequence, a computer system’s ability to provide relevant information 

to us gets restricted and we end up having to sift through high volumes of information.  
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 We believe that the next age is the Context-Aware Age in which machines will 

become context-aware.  This dissertation is a study of the problem of making machines 

context-aware. 

 In this dissertation, we start by defining what context consists of, how context can 

be utilized to provide a useful mechanism, and building a computer system which 

effectively uses context to aid in the flow of information.  We believe the effective use of 

context will bring us closer to answering the following two questions: 

 How can we facilitate the sharing of relevant information between entities? 

 What can be done to simplify the attention needed by a user?  

To help answer these questions and start bridging the gap towards complete 

effective use of information, we have designed, developed, and tested an architectural 

platform we call Rover.  This platform enables software architects to understand context 

from the onset of their design, and developers to utilize context effectively in their 

program development, all while giving developers the ability to integrate previously 

existing services, such as inference mechanisms and transformation mechanisms.  The 

Rover platform has the following goals in mind: 

 The ability to capture and store context sensed by the appropriate entities, 

including users, services, and sensors. 

 Manage context and unfold additional context from existing context. 

 Create generic primitives and building blocks that utilize context from all levels 

of interaction, where appropriate. 

 Take advantage of existing services by augmenting their usefulness with the 

appropriate use of context. 
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 Allow organizations, which may have heterogeneous and homogeneous data, to 

exchange data and context with each other. 

 This dissertation will proceed as follows: 

 A discussion of how context has previously been defined and how we define the 

term (Chapter 2). 

 Discussion concerning issues that arise from using context and the most critical 

parts of context: identity, time, and location (Chapter 3). 

 A survey of research on systems, architectures, and applications which utilize 

context (Chapter 4). 

 An overview of the design of the Rover architecture (Chapter 5). 

 An evaluation of the implementation of the Rover server (Chapter 6). 

1.4 Relevant Issues Outside of the Scope of this Dissertation 

As this dissertation primarily focuses on the core building block of a context-driven 

architecture, we list several relevant issues here that fall outside of the scope of this 

dissertation.  Rover can be used to address several of these issues, but we hope by listing 

them here, future studies can take place as appropriate.  In fact, the issues listed here can 

be developed independently of the Rover architecture and integrated into a Rover system 

since it has an extensive set of interfaces.  We list the issues here, cite a relevant source, 

and discuss their relevance to a Context-Driven Age: 

 Usability Issues [99] 

Input methods and displays represent the primary way for users to interact with 

computing systems.  By improving the way users interact will decrease the 

amount of attention required to handle information presented to them.  In addition 
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to just reducing the user’s attention, the input mechanisms provide additional 

context regarding the user. 

 Security Issues [5] 

Only basic issues of security in the Rover architecture, that of secure 

communication mechanisms and basic methods of authentication, have been 

incorporated in this dissertation.  We realize that much work needs to be done to 

improve the overall areas of confidentiality, integrity, and availability. 

 Privacy Concerns [80] 

Context consists of highly personal information about individuals and groups.  

There needs to be mechanisms in place such that only the appropriate context will 

be conveyed only to those who have the appropriate access. 

 Dissonant Information [96] and Providing Misinformation through Deliberate 

Lying [22] 

Any context generated with malicious intent or context which provides a 

contradiction to existing context can be harmful to an entity or the overall state of 

a system.  In this dissertation, we assume that any piece of context provided to a 

computer system does not contradict another piece of context and has no 

malicious intent. 

 Methods of Reasoning [96] 

Pieces of context can typically lead to other context, such as knowing a building 

number on a campus can yield spatial coordinates.  We provide mechanisms to 

expand context, but do not define how to reason about context.  Our reference 
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implementation contains relatively simple methods of expanding context.  Also, 

we do not concern ourselves directly with matching related pieces of context [29]. 
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Chapter 2  

Context 

Prior to discussing context-aware platforms, we have to first determine the significance 

of the term context with respect to context-aware computing.  The term context has been 

extensively used as a concept for understanding words in linguistics and understanding 

the circumstances surrounding an event.  Computer science has used the term context for 

specific circumstances, such as context switching in operating systems and context-free 

grammars in theory of computation, but only in the last two decades has a general 

definition of context attempted to be elaborated on, specifically for context-aware 

computing. 

 When thinking about how to define context for context-aware computing 

applications, one may begin to think about interrogative words one could ask concerning 

a piece of information
3
, such as who did what and where did it originate.  However, this 

does not give any insight as to how to define context formally.  In fact, research related to 

anything concerning context almost always defines context with regard to the specific 

problem domain.  We explore several different domains of where context has been 

defined and see how it may apply to our own definition of context. 

2.1 An Aside on Information 

Prior to discussing context in detail, we first need to pay particular attention to the term 

information, a term we alluded to in chapter 1.  As we have used the term information in 

several places already, such as the discussion of the Information Age and then the term 

                                                 
3
 Interrogative words include, but not limited to: who, what, why, where, how, and when. 
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by itself, we believe it would be useful to distinguish information and possible 

interpretations of the term
4
. 

 Physicists and philosophers, especially those studying the philosophy of sciences 

and quantum mechanisms, frequently divide information into two distinct categories: 

everyday information and technical information [113] [105].  We first examine technical 

information: the category which primarily deals with mathematics and engineering, 

especially in the measurement of the usefulness of bits in communications.  This type of 

information can be traced back to the origins of Information Theory. 

Transmission Phase Channel Reception Phase
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Figure 1: The traditional noisy channel diagram as described in Information Theory. 

 The father of Information Theory, Claude E. Shannon, considered the 

transmission of a message from one entity to another entity through a noisy channel [97].  

Figure 1 illustrates the general flowchart of a noisy channel environment.  In this 

environment, a sender wants to send a message to a receiver.  The message has to be 

                                                 
4
 John Bell published a list of bad words in relation to physics, formulation, and quantum mechanics [11].  

These words typically have different meanings and connotations depending on the situation the word has 

been used in.  Information happens to fall on this list, hence our need to define information to our situation.  

We hope that the term context would not fall into a so-called list formulated for computer science, if one 

were to be created, as context has been continually redefined. 
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translated into an appropriate signal such that it can be transmitted by a transmitter over a 

particular channel.  The signal represents a set of symbols which can be transmitted over 

a communication medium, the channel.  In most scenarios, the channel may have noise 

introduced into it by any number of noise sources, thus creating signal’.  The receiver 

receives signal’ and understands how the transmitter transmits and the characteristics of 

the channel.  With this understanding, the receiver can reconstruct the original message.  

Consider the following example: 

Amber alert!! 3 yr old boy taken by man in Rochester MN driving 2006 Mitsubishi 

Eclipse.. Plate # 98B351.. Repost if you wish.. You know you would keep it going 

if it was someone you knew "Seriously!!! I expect to see this repeated on this page 

many times....a child is in danger – A Facebook Status Message from 01/08/2010. 

 

In this example, an individual wants to convey a message to his or her friends via a status 

message update on the Facebook social networking site
5
.  The user types in a message, 

which will be translated into a signal to be sent over the Internet to the Facebook server.  

The Internet channel may be noisy.  Therefore, the server then reconstructs the message 

from signal’.  If the message sent by the information source can be reconstructed bit-by-

bit and received by the destination, the Information Theory problem, at this point, has 

been addressed. 

 Unfortunately, the reception of a message does not mean the receiver will use the 

message the same way sender intended it to be used.  In fact, these messages have 

meaning, but as Shannon points out, the engineering problem does not concern itself with 

the contents of the message [97]: 

Frequently the messages have meaning; that is they refer to or are correlated 

according to some system with certain physical or conceptual entities.  These 

semantic aspects of communication are irrelevant to the engineering problem. 

                                                 
5
 We realize that multiple communication channels will be utilized in a single Internet connection, but we 

abstract the channels into a single channel. 
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Figure 2: The noisy channel model augmented with meaning. 

This brings us to everyday information.  As von Baeyer [113] and Timpson [105] 

point out, everyday information concerns itself with the natural use of language and 

communication between people, typically involving understanding and meaning.  These 

aspects have no relevance to Information Theory.  Going back to the Facebook example, 

one can ask: does this message convey something current or even accurate?  Given the 

state of how fast messages reach other people, we need to be able to understand the 

messages being passed around.  Figure 2 augments the noisy channel model from Figure 

1 by adding meaning to the diagram. 

  We should note that processing any information, either technical information or 

everyday information, has to be acquired, understood, analyzed, and either stored or 

utilized.  These activities require processing power and time.  With this in mind, we 

return to the Facebook example.  The Facebook example’s sender has good intentions: he 

wants to try to help a child in need.  However, given the nature of the Internet, as the 

message has quickly reached both New York City, the place where sender resides, to 
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Maryland, the place where the receiver resides, we frequently want to verify the message 

contents and its relevance to the situation.  To do this, we could look at the active 

Minnesota Active Alerts and, if we have access to it, Department of Motor Vehicles 

information regarding the car.  At the time of the Facebook status message update, 

Minnesota had no active Amber Alerts [68] and, in fact, the alert did not come from a 

legitimate source as it never existed in the first place [72]. 

The assigning of a meaning to a message has to be carried out in a context and as 

the context changes, meaning may change also.  For example, a person may ask another 

person, “How is the rabbit doing?”  Depending on the context of the conversation the two 

people are having, the message, in particular the term rabbit, changes.  In one situation, 

rabbit may mean an animal.  Rabbit could be a microprocessor controller in another 

situation.  One final situation to consider, Rabbit can refer to an automobile model made 

by Volkswagen. 

In this dissertation, we primarily consider everyday information, but recognize 

that the problem contained within technical information needs to be solved before even 

considering everyday information.  If we receive incorrect messages to begin with, 

meaning would almost always be incorrect.  To this extent, when we say information, we 

mean what we call an information item: a message that has associated context with it.  An 

information item should not be limited to a message, as occurrences, actions, and 

activities also have surrounding context.  We spend the remaining part of this chapter 

explaining our definition of context. 
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2.2 Defining Context 

Bazire and Brézillon state that “Although frequently used in cognitive sciences or other 

disciplines, context stays a very ill-defined concept” [10].  This poses an issue since it 

implies that no generic definition for context exists, assuming we discard definitions from 

their respective language dictionaries. 

 For our purposes, we begin defining what we mean by context with a review of a 

variety of definitions from a few fields, recognizing that it would be impossible to review 

all of the connotations of context as defined by others.  Therefore, we have selected those 

that we consider relevant to our discussion. 

2.2.1 Dictionary-based Definitions 

The word definition typically invokes a thought of the word dictionary, as a dictionary 

contains simply that: definitions.  The meaning and etymology of a word, in this case 

context, can give us insight as to what it may mean.  The etymology of the word context 

comes from the Latin contextus, meaning “to weave together” [39].  This implies context 

embodies information, that is, the support for the information that exists in the first place. 

 Now, let us consider relevant traditional definitions from a dictionary.  We 

present four definitions, the first two from Merriam-Webster [66] and the latter two from 

WordNet [33]: 

1. “the part of a discourse that surround a word or passage and can throw light on its 

meaning” 

2. “the interrelated conditions in which something exists or occurs : environment, 

setting” 
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3. “discourse that surrounds a language unit and helps to determine its 

interpretation” 

4. “the set of facts or circumstances that surround a situation or event” 

All of the definitions of context relate directly back to the etymology of the word: 

something which surrounds information.  We recognize that context has traditionally 

meant the set of surrounding facts that set up a meaning or the reason an occurrence has 

happened.  With that being said, we have to rule out the first and third definitions from 

the definitions presented when discussing about general context, as linguistics only 

represents one kind of information item.  At this point, we define context to be everything 

which surrounds information. 

2.2.2 Linguistic Domain Influences 

Although we ruled out specific definitions which relate to linguistics, we may be able to 

use influences found in linguistics literature to discover a more generalized notion of 

context.  From a high level, linguistics involves the act of communication through spoke 

and written language that generally involves two steps: interpretation and expression 

[65].  Interpretation means taking words and deriving concepts from them, while an 

entity expresses itself by taking a concept in its mind and conveys what it has in its mind 

in a physical form, such as speaking, writing, or gesturing.  Although McComb states that 

“expression is far easier than interpretation,” we believe that it can be just as difficult to 

express.  We frequently find ourselves saying “how do I say this.”  This could stem from 

two reasons: trying to ensure that the receiver understands the same ideas we have or 

trying to find the appropriate words to express ourselves when we do not know the exact 

words we want to use. 
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 Let us consider the activities we perform when we attempt to interpret new words.  

Sharing the ideas from the dictionary-based definitions that surrounding clues yield of 

what we call context, we first take a look at work done by Drum and Konopak on 

learning word meanings from surrounding contextual clues [26].  Every word 

encountered may have multiple definitions.  Drum and Konopak assert context can aid in 

learning new meanings from existing knowledge
6

 and finding additional meanings 

concerning a word.  They identify four qualitative measures in order to attempt to 

identify whether or not an entity can identify a word they may not know.  These 

qualitative measures include: 

 Perpetual – similar sounding words. 

 Syntactic – internal structure or grammatical function of words. 

 Semantic – general meaning dimensions of a word. 

 Correct – a specific definition. 

These qualitative measures give entities which desire to express something the 

mechanisms to place words into a conversation that could aid an interpreter.  

Additionally, Drum and Konopak also state that linguistic hints can help identify words, 

such as the surrounding text, within the word itself, and the statement the word resides in. 

In research performed by Sternberg, he acknowledges that individuals have 

varying sizes of vocabulary and he considers three processes of knowledge acquisition for 

trying to figure out the definition of a word [101].  These processes include: 

 Selective Encoding – use relevant information only. 

 Selective Combination – combining relevant cues. 

                                                 
6
 In this case, what an entity has already experienced. 



17 

 

 Selective Comparison – comparing new information with the old information one 

already knows. 

Sternberg continues to describe the possible cues used to uncover the meanings of 

a word.  These cues include: 

 Temporal – frequency of a word in text. 

 Spatial – the specific location of a word in text. 

 Value – the value of a word. 

 Static – properties of a word, typically adjectives, such as size, shape, color, odor, 

and feel, which surround a word. 

 Functional Descriptive – the purpose or purposes of a word. 

 Causal/Enablement – what causes this word or what conditions enable it? 

 Class Membership – what group does the word belong to? 

 Equivalence – synonyms and antonyms. 

The cues stated by Sternberg have been defined in terms of a linguistic construct; 

however, we believe that each of these cues has a general context analogue.  For 

example, every time the definition contains the term word, we replace it with 

information.  In traditional information systems, class membership, refers to as a schema 

or ontology.  Ontology systems frequently include inference mechanisms which define 

equivalence.  Schemas and ontologies define properties, which represent static cues in 

Sternberg’s research. 

After examining the linguistic definitions, we now define context to be all of 

which surrounds information and provides evidence to support the information.  We have 

also learned a few things about what to consider concerning context: 
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 Drum and Konopak only considered taking a look at new information.  However, 

context concerns itself with both old and new information. 

 When an entity expresses a thought, they can provide clues to aid the receiving 

entity to interpret it. 

 Context may not be useful by itself, but may be combined with other context. 

2.2.3 Common Computer Science Terminology 

This dissertation concerns itself directly with the broad generalization of context as 

applied to computer systems.  Therefore, it would be useful to state how the field of 

computer science has previously used the term context.  We begin by examining a 

computing dictionary’s definition of context [46].  The standard definition of context 

states “that which surrounds, and gives meaning to, something else,” a definition which 

can be seen as similar to a traditional English language dictionary.  On the other hand, 

context has also been defined as follows: “in a grammar it refers to the symbols before 

and after the symbol under construction.  If the syntax of a symbol is independent of its 

context, the grammar is said to be context-free” [46].  Although this definition stems 

from the general field of the theory of computation, this still signifies that defining 

context depends on the surrounding situation. 

 We have an abundant number of computer science terms which contain the term 

context, including context-sensitive help, contextual search, and multitasking context 

switch [16].  If we take a look at a context switch in the pure computer science domain, 

we only consider operating systems and individual processes [47].  Processes have their 

own environmental context, which includes what step to execute and memory to access.  

For reasons such as security and memory management, processes have different 
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environments.  The environment, in this definition, should be considered a specific 

context, that which has been defined by the operating system.  When the operating 

system decides to change execution from one process to another process, the operating 

system saves the state of the currently running process, its environment, its context, and 

the state of the process needed to be run.  This series of actions represents a context 

switch. 

 Context-sensitive menus show users only relevant menus [48].  When a user 

right-clicks on the screen, the menu shown will typically be determined by the active 

window.  The usage of the term context here means that we only show a menu relevant to 

what a user may be doing at the time. 

 Aside from the general definition of context in computing, the uses of the term 

context for each of the other specific use terms represent a very narrow focus that would 

not be relevant in a widely general definition of context relevant for this discussion. 

2.2.4 Context-Aware Definitions 

With the increase of mobile devices and sensors embedded in our everyday lives, 

context-aware computing has had a wide array of research concerning the development of 

these computers.  However, almost every system and architecture in the literature 

redefines context to fit their research.  Therefore, we explore recent, relevant definitions. 

 We begin our exploration of context-aware research definitions from what could 

be considered the first paper that introduced the term context-aware computing
7
.  As 

location determination research began to come to the forefront of computer science 

research, Schilit and Theimer implicitly stated that context represents, location, spatially 

                                                 
7
 Dey [24] states Schilit and Theimer [90] coined the term context-aware computing first. 
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close people and objects, and the changes to people and objects [91].  According to 

Schilit and Theimer, context consists only of the location and nearby entities, that is, 

people and objects. 

Schilit, Adams, and Want assert this to be true by saying context consists of three 

important aspects: where you are, who you are with, and what resources are nearby [90].  

However, they go beyond the Schilit and Theimer definition by stating that things of 

interest move and change over time, where the things of interest could include “lighting, 

noise level, network connectivity, communication costs, communication bandwidth, and 

even the social situations.” 

 Location should not be the only context considered in a computing environment.  

Brown suggests that context, when attached to what he calls an electronic note, consists 

of anything associated with a note’s environment [15].  This includes location, proximity 

of objects, critical states, computer states, imaginary states, and time.  A generalization 

the definition of an environment has been stated by Pascoe.  He states the idea of nearby 

environments to what he calls any physical or conceptual states relevant to an entity [78]. 

 Some of the recent ideas of how context should be defined include the 

relationships of hypertext documents through linking [28] and constraints of a given task 

[10].  However, Coutaz, Crowley, Dobson, and Garlan state that we cannot possibly 

predefine the entire context possible since the environment changes frequently [18]. 

 The most widely used definition of context today in context-aware computing 

research comes from Dey [24].  He first critiques other definitions of context in the 

context-aware domain by stating that they fall into one of three categories: 

1. Dictionary Definitions – should not be considered sufficient or used directly. 
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2. Synonyms of Context – difficult to apply in practice. 

3. Specific Definitions – limited scope, not widely applicable. 

With this in mind, Dey suggests the following definition of context: 

Context is any information that can be used to characterize the situation of an entity.  

An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and application themselves. 

 

Although relevant for context-aware computing in general, this definition would 

not be sufficient for what Zimmermann, Lorenz, and Oppermann call an operational 

definition of context [121].  The authors state Dey provides only a formal definition, that 

is, without regard to the practice of using context in, what they call an operational 

environment.  They continue to say that definitions of context should not only include 

formalisms, but also the operations useful in order to utilize context effectively.  

Zimmermann, Lorenz, and Oppermann extend Dey’s definition by stating five categories 

of context (individuality, activity, location, time, and relations) and operations on context 

(methods and reasons of context transitions and methods of sharing context between 

entities). 

 Definitions of context-aware computing frequently build upon one another.  For 

example, prior to defining context, Dey mentioned several previous definitions of context 

[24].  We can take one thing away from all of the definitions from the literature of 

context-aware computing: context changes frequently.  Context needs to be considered a 

dynamic, not static, concept which can change for any number of reasons.  These reasons 

include time passing, change of location, and so on. 
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2.3 Our Definition of Context 

We have examined four different domains to explore how we should define context.  By 

looking at domains both inside and outside of computing in general, we can keep our 

definition as generic as possible while incorporating other domain influences.  We define 

our formal definition of context as follows: 

Context consists of one or more relationships an information item has to another 

information item.  An information item can be any entity, either physical (such as 

a person, a computer, an object), virtual (such as a computer service, a group of 

people, a message), or a concept (location, time, and so on).  A relationship 

describes a predicate connecting two or more information items, which may 

change at any time for any reason. 

 

This definition stresses the term relationship, in particular, the relationship between two 

information items.  These relationships could be practically anything that answers an 

interrogative question, such as “who is a friend with who” and “where is someone 

located?”  Unlike Dey, we do not consider context only in the domain of context-aware 

computing, but computing in general. 

2.4 Summary 

In this chapter, we examined what we mean by context.  Prior to examining context, we 

needed to understand the term information, a word with different connotations depending 

on who one talks to.  We focus primarily on everyday information.  As for context, we 

defined the term with respect to information items and the relationships each information 

item has with one another. 
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Chapter 3  

Aspects of Context 

In chapter 2 we presented the definitions of context and created our own definition of 

context that we use for our discussions herein this dissertation.  Prior to discussing the 

development of our context-aware architecture, we have to understand two aspects of 

how we utilize context: considerations concerning the use of context and core aspects.  

Considerations concerning the use of context include any issues which may arise when 

utilizing context in an actual architecture.  Core aspects represent relationships which 

context typically has associated with it.   

3.1 Considerations Concerning the Use of Context 

We need to pay attention to four caveats of using context which stem from the idea of 

misusing context.  By misuse, we do not mean only malicious intent, but also accidental 

misuse also.  Consider linguistic research done by Pressley, Levin, and McDaniel [84] in 

which they state that context can be misused.  Their example involves learning new 

words or figuring out the exact meaning of words in a sentence or paragraph.  If we 

interpret a word or series of surrounding words incorrectly, then it not only means we 

have the incorrect meaning of the current word or phrase, but also all future words and 

phrases will be derived from the incorrect meaning.  In this section, we go beyond 

linguistic context and consider context in general.  Clearly, misused context can lead to 

undesirable problems.  Even though we do not discuss how to solve these problems, we 

list them so that we can pay attention to them. 
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3.1.1 Interpretation Issues 

The lifetime of an entity, whether a computer system or a human, goes through life 

differently.  Hence, each individual entity has unique series of experiences to draw upon.  

These experiences range from their interactions with other entities and all of the events 

that can possibly occur.  Entities utilize these experiences to incorporate new information 

they receive, but since each entity has different experiences, their interpretations may be 

different, including being different from the original intent of the expresser.  Augier, 

Syed, and Thanning indicate that if an entity needs to know something about a particular 

event, the questions they ask to ascertain additional context will be determined by an 

individual’s prior experiences [4]. 

 To understand how interpretation takes place, let us first reconsider the basic 

model of communication between two entities in the style of Information Theory [97], 

ignoring the fact that the engineering problem does not concern itself with meaning or 

semantics.  To recap the traditional model, a sender intends to send a message to a 

receiver.  The sender translates the message into an appropriate signal, a set of bits, in 

order to be moved over a communication medium, a channel.  While the message moves 

over the channel, a noise source may introduce noise or alter the signal.  When the 

receiver receives the signal, a translation mechanism reconstructs the message by 

analyzing the potentially altered signal.  The receiver then receives the message derived 

from the received signal by the receiver. 

 In the traditional model of communication, the transmitter and the receiver have a 

well-defined model of communication.  Both the transmitter and the receiver negotiate an 

exact alphabet to translate via signals.  The transmitter and the receiver know certain 
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characteristics of the noise source; therefore they can both transform the message to a 

signal, and vice versa, appropriately. 

 Our work not only depends on the ability to communicate messages correctly, but 

we have to take the engineering problem a step further.  The messages have meaning and 

semantics.  The experiences we utilize contain context and relationships.  As we have 

already alluded to, the way we interpret messages depends on our previous experiences.  

Take the following quote as an example: The messages I’ve tried to send, my 

information’s just not going in
8
.  The statement clearly explains the situation: someone 

sends a series of messages, but it never has its intended effect.  This may or may not 

reflect the Information Theory problem, as the receiver may not be able to reconstruct the 

original message, but let us assume the engineering problem has been solved.  Therefore, 

the message does not go through to the other person due to him not having the 

appropriate model or the sender not sending the appropriate messages across. 

 

Figure 3: An abridged version of McComb’s model of interpretation. 

 Like context and information, the process of interpretation differs from person to 

person.  For the purposes of our discussion, we present an abridged form of McComb’s 

Model of Interpretation as illustrated in Figure 3:  

                                                 
8
 From La Roux’s song called Bulletproof.  We intentionally leave out the rest of the song and the fact the 

song concerns personal relationships. 

Perception

Synthesis

HypothesisPrediction

Testing
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1. Perception – an initial classification of low-level information, such as what our 

eyes see or things we hear. 

2. Synthesis – attempt to match what information we have just received with prior 

knowledge from previous experiences. 

3. Hypothesis – attempt to make sense of what we have just seen. 

4. Prediction – try to predict what may happen in future occurrences of perception. 

5. Testing – figure out the correctness of what we have just analyzed 

Although one may not completely agree with McComb’s process, we assert and 

recognize that previous experiences play a crucial role in how we interpret information.  

Take, for instance, what Norman calls signifiers [75].  Signifiers represent subtle clues of 

an entity’s surroundings that may aid an entity in finding additional context or 

information, regardless of whether or not a signifier has been placed intentionally or 

accidentally.  We consider the following example as described by Norman and relate it 

with McComb’s process: 

A train rider arrives at a train station’s platform around the time a train has been 

scheduled to leave for its destination.  If the platform still has people on it, then 

the person probably did not miss his train.  Otherwise, the rider may have missed 

his train. 

 

In this example, the person involved utilizes previous experiences to interpret the 

situation at hand with the signifiers, or what we call information items
9
, presented.  The 

initial perception uniquely identifies everything in the person’s field of vision: other 

people on the platform, the presence of a train, and the platform itself.  Now, consider the 

synthesis phase.  The person attempts to find higher level information items, such as 

identifying the number of people on the platform.  Then, the person forms a hypothesis 

                                                 
9
 In this example, information items also include the train rider, the train station, the train station’s 

platform, the train, and the train schedule. 



27 

 

concerning whether or not a train has come yet.  Based on the hypothesis, the person tries 

to predict if more people will come or not.  Finally, the person attempts to test whether or 

not the train has left, by either asking someone else or just reacting to the presence of new 

people or detecting the presence of a train. 

 For this example, we have assumed that the person involved has prior experiences 

to perform any part of the interpretation.  Without any prior experiences relevant to the 

situation, such as a train station scenario, the person may attempt to assimilate 

information and fit it with their previous experiences or ask questions relating to the 

situation to other people to learn and acquire a suitable model for the situation. 

3.1.2 Cultural Issues 

When dealing with context, cultural considerations needs to be taken into account.  A 

wide variety of cultural influences will affect the way we utilize and specify context.  

Entities assimilate information from a variety of divergent and heterogeneous data 

sources that may have relevant data, but may not match directly due to cultural 

formatting. 

 A broad spectrum of cultural considerations has been presented by various 

researchers [98] [73].  Examples of cultural representation issues include time and date 

(displaying time and time zones), temperature, address formatting, and names.  When not 

taken into account problem, cultural issues could lead to issues of varying degrees of 

problems.  For example, the date 02/03/2009 could be February 3, 2009 in one country or 

March 2, 2009 in another. 

 While the date example could lead to a missed meeting or a missed flight, cultural 

misinterpretations could lead to much more catastrophic failures.  The Mars Climate 
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Orbiter (MCO) had been designed to measure climate and weather over the atmosphere 

on Mars.  However, the MCO burned up in the atmosphere due to two companies 

misunderstanding cultural representations, that of mixing up Imperial and metric units 

[70].  Since these two units use the same numeric representation, verifying whether a 

number is an Imperial or a metric unit may be impossible without evidence in addition to 

the numeric representation.  If one component converts a unit from Imperial to metric, the 

numeric errors add up slowly and may not be caught until it is too late.  Appropriate 

representations and understandings, either specified in software or in a protocol, and 

appropriate unit tests have to be in place to avoid such failures. 

3.1.3 Abstraction Issues 

Computer users and programmers use abstractions every single day, whether they 

explicitly recognize this or not.  We do not transmit electric signals into our word 

processors, as input devices take care of translating keystrokes and mouse clicks into 

appropriate signals a computer can recognize while output devices translate bits to an 

appropriate sound or image a human can receive
10

. 

Computer scientists and engineers create different building components at various 

levels of the computer building process.  These components represent useful building 

blocks such that experts can build on top of one another at, what we have come to know 

as, different levels of abstraction [17].  These abstractions, for a computer, allow 

translation of individual bits into electrical circuits, machine language to individual bits, 

assembly language to machine language, programming language to machine language, 

and higher order methods to individual lines of code.  Without the notion of abstraction 

                                                 
10

 Petzold has an elaborate example, intended for general readers, on how to build circuits from low-level 

components [79]. 
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and building blocks, building a computer would be a rather difficult task as it stands 

today. 

 Some people assert abstraction represents a fundamental key to computing [56].  

For clarity, let us examine the definitions of abstraction [25], which people agree with 

unlike information and context: 

1. An abstract or general idea or term. 

2. The act of considering something as a general quality or characteristic, apart 

from concrete realities, specific objects, or actual instances. 

One further example that illustrates the concept of abstraction comes from 

creating a transit map.  Kramer illustrates this by showing us two transit maps of the 

London Underground: one which plotted out stations and routes faithfully to their actual 

geospatial coordinates and another one which has relative positions of stations and routes 

[56].  People felt the exact representation of all of the information led to a cluttered map, 

which the general public had a hard time reading.  The abstracted version had been found 

to be much more effective in use by transit riders.  Other transit agencies across the world 

followed suit to abstract their maps. 

 Travelers looking for stations they need to get to appreciate abstraction implicitly 

since they do not need every level of detail.  When appropriate, a lower level of detail 

may be obtained when necessary, such as when people need to perform track repairs.  

The transit mapping example shows how to remove unnecessary details from the set of 

information items displayed, keeping all of the information items available when 

necessary, and the computer building example demonstrations how to piece together a 

complex structure. 
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 Abstraction applies directly to context.  We distinguish between two cases of the 

use of abstraction with respect to context: 

1. We do not necessarily need the lowest level of detail of a piece of context.  

Therefore, we can ignore, but not remove, unnecessary levels of context. 

2. It may be necessary to group related pieces of context together.  Therefore, we 

should combine context and create an appropriate representation of related data 

that could be used to build more elaborate structures. 

3.1.4 Accuracy, Resolution, and Latency 

In terms of time and location, two of the core aspects of context, we need to distinguish 

the difference between three terms: accuracy, resolution, and latency.  Accuracy means 

how close the measured value is to the actual value.  If we interpret an information item 

to be accurate enough, then we would not have to perform any interpretations to make the 

information more accurate.  For example, if we have location context accurate to about 

ten meters, relative to an exact position, this may be sufficient enough for a large variety 

of applications, while other applications may require sub-meter accuracy [64]. 

 We contrast accuracy with resolution.  Resolution means how far apart a value 

can possibly be measured or detected.  In terms of location again, if we take a look at 

city-level resolution, then we do not need to consider geospatial coordinates, except for 

possibly determining which city the coordinates reside in.  Like accuracy, we need to 

consider whether or not a particular resolution would suit the needs of an application. 

 When we talk about latency in computer systems, we can discuss latency from 

two standpoints.  The first standpoint stems from computer networking.  In computer 

networking, latency measures the amount of time it takes a message go from a sender to a 
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receiver.  This measure may be either one-way (from source to destination) or round trip 

(from source to destination and back to the source).  The second standpoint comes from a 

sensor standpoint.  Latency in this sense means the amount of delay it took to start a 

measurement of something, such as temperature or location, to the consumer of the 

sensor. 

3.2 Critical Aspects of Context 

While context encompasses several different relationships concerning information items, 

such as temperature and brightness, we believe all pieces of context contain core 

elements.  We generalize two key ontological commitments from a discussion on spatio-

temporal databases [35]: 

1. assume space and time – location and time 

2. names of objects – identity 

These three critical aspects (identity, time, and location) coexist together.  Every 

relationship concerning information items contains some sense of all three aspects.  It 

may not be relevant for all three of these elements to be discussed for a particular 

scenario, as they can be abstracted, but these three aspects are be represented in one way 

or another. 

3.2.1 Identity 

The ability to name information items, or entities
11

, has been one of the most crucial 

aspects of developing computer systems.  In programming languages, we name classes, 

objects, and variables.  In data structures, we use identifiers as keys.  In networks, we use 

identifiers to name resources.  Outside of the virtual world, we physically give names to 

                                                 
11

 Examples include people, places, objects, activities, and events. 
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people, things, locations, and so on.  Identities represent virtual naming constructs, as 

identities by themselves do not exist in a physical manifestation. 

 We can distinguish identities among three different axes: reality, cardinality, and 

specificity.  In reality, we differentiate between physical (representing an actual object in 

the physical world) and virtual (represent something that does not have a direct analogue 

to the physical world).  By cardinality, we determine whether an identity represents only 

a single named entity (such as an individual) or a group of related entities (a type of 

abstraction).  Groups can be further broken down into small-scale (entities in a building), 

medium-scale (entities on a block), and large-scale (citywide entities).  Specificity 

represents whether or not an identity has a name or could be considered anonymous.  A 

named entity, such as a street name, represents a permanent
12

 identification.  An 

anonymous entity may be a chair at a particular moment (the chair a person sits on). 

3.2.2 Time 

Almost everything we do depends on some notion of time, as we live in a causal 

universe
13

.  In general, every event occurs at one particular instance of time and time can 

be used to measure the speed of an execution or find out when something might occur. 

 Three permissible timing-based metrics can be used: performance, ordering, and 

scheduling.  Performance metrics typically involve how long it takes for an execution.  

For example, a search engine displays how long the internal computations took to 

complete, but we should note it may take longer for it to be received by a user’s 

computer, and how long it takes for a user to interpret the information displayed on the 

                                                 
12

 Permanent here really means semi-permanent., as described by Frank [35].  For our discussions, we do 

not get ito the philosophical debate concerning information items, or entities, lasting forever. 
13

 We do not argue for or against the existence of a non-causal universe., in which an effect precedes a 

cause. 
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screen.  Ordering metrics typically ask if we can guarantee a specific order of events
14

, 

such as guaranteeing the correct order of reads and writes onto a hard disk.  Scheduling 

metrics usually involve the time when to execute a particular event or when a particular 

event occurs.  For example, we want to execute a particular program at a specific time or 

we want to know when a train will arrive. 

 When talking about time, we can elaborate on it through two different types of 

timing relationships: absolute and relative.  Absolute time represents a date and a time 

with respect to a global clock, such as using Coordinated Universal Time (UTC).  

Relative time typically starts from a specific starting point, possibly with respect to an 

absolute time and may not have a mention of a specific date or time.  Unlike absolute 

time, relative time can be represented by a sequential number in terms of a series of 

events. 

 In computer systems, time can be represented in a number of ways, depending on 

what needs to be conveyed.  It could be represented as a numerical digit (the order of 

execution), a specific date and time, or an execution graph. 

 When looking at the considerations concerning context, we consider abstractions.  

For performance metrics, we may want to look at the performance of the system as a 

whole, series of components, or an individual component.  In ordering metrics, a manager 

may not necessarily concern himself with when individual events finish, but when a 

series of events have completed.  When considering culture, we need to take a look at 

what issues we may have with time.  Although standards exist to account for date and 

time [51], we still need to be careful how people perceive them. 

                                                 
14

 For an elaborate example on order of distributed events, see Lamport [57]. 
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 An advantage of time comes from the fact that since everything happens over a 

period of time, we can record context over a particular period of time to help determine 

application behavior [90].  Additionally, we can record context over time to determine 

how certain events occurred over a particular situation. 

3.2.3 Location 

Regardless of whether or not an event occurs in a physical location or a virtual space, it 

happens at a location.  This location could be either the exact place of where something 

had occurred or a location of interest.  Like time, location can be expressed in two 

different ways: physical and logical.  Physical location represents a place in the physical 

world.  We can break down physical locations into two additional categories: absolute 

and relative [42].  Absolute location means a shared reference grid for all information 

items.  In terms of geospatial coordinates, this includes latitude, longitude, and altitude.  

Relative coordinates means with respect to a local frame of reference.  Logical location 

means something virtual in a computer system, such as a computer’s Internet address.  

Both physical and logical locations can potentially have an analogue to one another. 

 Let us consider the history of physical location representation.  Early work only 

utilized a very basic coordinate system in three dimensions: x, y, and z [71].  However, 

application-level reasoning cannot always use a coordinate-based system.  Therefore, we 

need to distinguish between numerical coordinates and semantic representations [41].  

Semantic representations typically use a hierarchy of representations, such as 

 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 → 𝑟𝑜𝑜𝑚 → 𝑓𝑙𝑜𝑜𝑟  or  𝑐𝑜𝑢𝑛𝑡𝑟𝑦 → 𝑐𝑖𝑡𝑦 → 𝑠𝑡𝑎𝑡𝑒 , abstracting coordinates 

away from the user. 
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 We can also differentiate physical locations by differentiating physical positions 

and symbolic locations [42], also called symbolic and geometric models [16].  The 

Global Positioning System (GPS) [45] is the classical way of obtaining outdoor location.  

Physical positions typically display latitude, longitude, and, where available, altitude.  

Symbolic locations typically come in the form of a location relative to a semantic 

representation, which has a physical coordinate.  Examples include on a train 

approaching Denver, next to a mailbox, or in the kitchen. 

 At the present time, standardization bodies have begun efforts to standardize 

differences between geodetic (geometric, physical locations) and civic location types 

(semantic, symbolic locations) [95].  Additionally, all notions of location obtained by 

computing devices usually include uncertainty due to the fact these devices
15

 may not be 

able to obtain the exact location [71] [42] [41].  Also, geometric and symbolic 

representations will usually be organized hierarchically for scalability and abstraction 

purposes [16]. 

 With respect to location, we can use abstraction to our advantage in which both 

physical and logical representations can benefit.  In physical categories, we can group 

entities that have similar proximity, such as a street address, a place, a city, or a country, 

as well as the entities that reside in them.  With virtual locations, we can group entities 

based on virtual categories, such as subnets, networks, and objects in a data structure.  

While we can use abstraction to our advantage, we need to be careful with cultural 

considerations.  Semantic differences need to be accounted for when describing civic 

locations.  For example, the term dance club may mean something completely different 

depending on the location the term has been used in. 

                                                 
15

 We mean the mechanisms to obtain the location or measurements used in inferring location. 
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3.3 Categorizing Context 

Aside from the three core aspects of context, many different types of context co-exist 

together.  While we may never decide on a global schema or ontology for all possible 

contexts, when we design a system we have to choose how to classify different types of 

contexts.  From the literature, we explore a small sampling of categorizations, as every 

classification differs from one another. 

 In a general categorization of context, a three-dimensional context model has been 

proposed [92].  This work has broken down context into three separate axes for general 

level context: self (device state, physiological, cognitive), environment (physical, social), 

and activity (behavior, task).  An analogous model for a general computing system 

distinguishes models between user, task, and system [60]. 

 In mobile computing, one group of researchers has distinguished between 

infrastructure, application, system, location, and physical context [89].  In early research 

in context-aware computing, context has been distinguished between computing, user, 

and physical context [90], which has been further elaborated by adding time to the 

context [16].  Some sensor networking researchers distinguish context between user level 

(human and human-computer communication), context information level (context 

relevant for the user), and sensor information level (derived from a sensor) [8].  These 

types of classifications represent coarse-level groupings. 

 Several context-aware system classifications have distinguished context into 

much finer grain categories.  Rodden, Chervest, Davis, and Dix distinguished the 

following context categories: space, time, real versus virtual, mobility by movement 

(fixed, mobile, autonomous), mobility by device type (free, embedded, pervasive), 
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cardinality (personal, group, public), entity type (people, devices, objects), presence, 

identity, and attributes [89].  Chen and Kotz identified low-level contexts, including 

location, time, nearby objects, network bandwidth, orientation, and other context (such as 

light, tilt, vibration, proximity, sound, temperature, pressure, and carbon dioxide) [16]. 

 While there may be several different ways to categorize context, there seems to be 

no consensus as to how to classify it.  Each individual architect of a system determines 

what would be the most appropriate context to be placed into a system.  Architects also 

decide how their decisions will affect future integration with other computer systems.  

Although this dissertation does not focus on a particular schema or classification scheme, 

the architecture we aim to develop has the ability to map context from one model to 

another mode, hence allowing integration to take place. 

3.4 Active Context 

One vital consideration concerning context deals with looking at past and present context.  

Most context-aware systems, which we will discuss in chapter 4, typically only present 

context is stored and analyzed in the active system.  We call this active context.  For the 

purposes of this dissertation, we consider active context to be all the context an entity has 

that holds true at the present time.  This does not mean that context from the past may not 

matter, as some context will stay persistent in active context throughout an entity’s 

lifetime, including a person’s gender and birth date or an automated program’s start date.  

Active context differs from past context as past context may not have any direct 

relevance to the present scenario, except possibly when taking a look at how a piece of 

active context may have been derived. 
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 We recognize that keeping track of active context and making past context 

available to the system can be beneficial.  However, we need to understand the 

advantages and disadvantages of utilizing both active context and past context.  Rover 

allows active context to be stored both in-memory and in a database.  If stored in-

memory, the active context state will be lost if the Rover server shuts down unexpectedly.  

With past context, the state of the active context up until the point of shut down can be 

reconstructed.  Additionally, with past context, which includes all active context, 

developers have the opportunity to utilize additional information items to provide 

additional capabilities or services to people utilizing their development efforts. 

 Distinguishing between active context and past context can be difficult.  Certain 

context, such as time and location, changes frequently.  Therefore, active context can be 

updated as soon as time and location change.  However, other context requires additional 

processing or even input from the user.  Possible context this applies to includes being 

hungry or thirsty.  The hunger or thirst of a person may change on the system depending 

on if the user has told the system of their desire to eat or drink, or possibly when a person 

has completed a meal.  Depending on the type of context provided to the system, an 

application designer needs to account for possible situations where active context may be 

changed. 

 Active context has a distinct performance and storage advantage over past 

context.  Since there will be less active context available than past context, less 

operations for comparing context need to be performed and less storage space is required 

to keep track of the active context.   
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3.5 Summary 

Context has a seminal role in the way entities actuate and interpret information items.  In 

this chapter, we explored four separate themes.  The first theme involved issues involved 

with using context in our everyday lives. Next, we examined the critical aspects of 

context, which every relationship has to have: identity, time, and location.  Then, we took 

a look at how researchers and corporations have classified context.  Finally, we discussed 

what we mean by active context.  Context plays a critical role in the development of 

system architectures and this chapter outlines the important aspects of context we have to 

consider prior to using it. 
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Chapter 4  

Context-Aware Computing 

The earliest known usage of the term context-aware computing
16

 came from Schilit and 

Theimer in 1994 [91] and has been an active field of research ever since.  In this chapter, 

we overview the goals and types of context-aware computing, survey previous work on 

context-aware systems and taxonomies, examine standards related to context-aware 

messaging, and context models.  Where applicable, we indicate how work in this 

dissertation compares to related work. 

4.1 Goals and Types of Context-Aware Computing 

From the early years of context-aware computing, researchers recognized the benefits of 

utilizing context to aid users and systems.  In his doctoral dissertation, Nelson outlined 

three major strengths of context-awareness [71].  He states context-awareness leads to: 

 Automation – automatically perform repetitive tasks, such as logging and 

redirection. 

 Adaption – applications can change its functionality depending on context. 

 Personalization – users and systems can configure application behavior based on 

context they specify directly. 

 Our work directly provides provisions for automation and provides support for 

adaption and personalization, depending on an administrator’s and a developer’s 

customization.  In terms of personalization and adaptation, the advantages they provide to 

users may be seen as a disadvantage to some as context-aware computing appears, prima 

                                                 
16

 As stated by Dey [24]. 
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facie, to take control away from the user [9].  With the added context available to users 

and systems today, if a lot of activities will be automated, users may not want these 

features, for example, shutting off your phone automatically in a movie theater.  In this 

dissertation, we do not concern ourselves of this conjecture
17

, but we acknowledge the 

levels of interactivity that may be supported by context-aware computing as stated by 

Barkuus and Dey [9].  These levels of interactivity for users include: 

 Personalization – users customize aspects of the application to tailor their needs. 

 Active Context-Awareness – given the context available, an application will 

automatically change their behavior depending on the situation, such as ignoring 

text messages while in class or in a meeting. 

 Passive Context-Awareness – applications make suggestions to users based on 

surrounding context gathered by the system. 

 Although these represent the major goals and levels of interactivity for context-

aware computing, we recognize that to actually perform any of these tasks requires the 

appropriate underlying system which supports these methodologies. 

 During the same time context-aware computing began as an active research field, 

location-aware computing also came about.  With the advent of commonly available 

location determination mechanisms, such as the Global Positioning System (GPS) for 

outdoor location [45], the ability to take just one single piece of context, the location, 

became popular and active research continues to this day.  We explore work in location-

aware computing before moving onto the more general field of context-aware computing 

as they share several of the same facets. 

                                                 
17

 See Barkuus and Dey for an empirical evaluation of how different levels of context-awareness affects the 

way users perceive context-aware computing systems [9]. 
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 In some early work, Cyberguide aimed to create components of a location-aware 

system by personifying them [1].  The components include: 

 Navigator – positioning component. 

 Cartographer – mapping component. 

 Librarian – information component. 

 Messenger – communication component. 

 By personifying these components, the authors created a real-world analogue to 

understand what these individual components actually perform.  In another research 

project, comMotion aims to enhance everyday life of the user with location context [64], 

using similar components to Cyberguide, but adding functionality to enhance daily life.  

New functionality includes a query module (find the location of someone, such as a 

family member), to-do lists, and reminder notifications at particular locations. 

 In addition to enhancing users’ experiences, location context can be used to 

identify areas of interest [54].  In traditional mapping components, arbitrary boundaries, 

what the authors call physical zones, have been predefined by a cartographer.  These 

predefined boundaries ignore a person’s use of a space.  For instance, how can one 

identify where someone typically sits throughout a day.  By observing what they call 

activity zones, one can map out, dynamically, areas of interest.  Although the work only 

discusses a small number of individuals, we believe this could be used in places which 

have an arbitrary number of entities, in a place such as a museum.  This would aid in 

finding popular areas, and potentially items, of interest. 

 Location context can be used to provide a seamless location-aware experience 

over computer networks [27].  This means being able to seamlessly move across 
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heterogeneous wireless networks (both physically and organizationally separated), 

utilizing multiple location determination technologies, and discovering services based on 

a user’s location. 

 Recently, numerous real-time location systems (RTLS) have been developed for 

use by the general public.   The most popular outdoor location determination technology, 

GPS [45], can be readily accessed by developers for use in mobile devices, as their 

interfaces have been exposed on platforms such as the Apple iPhone [3], the Google 

Android [36], and Palm’s WebOS [77].  Applications built on these platforms take 

advantage of location context, but limited to outdoor location resolution.  As indoor 

location determination systems become readily available, more precise applications 

which use location context can be developed. 

 Location-aware computing only provides services with a single core type of 

context in mind, that is, location.  In fact, location-aware systems require additional 

context to make better use of the components in each system, even though they may or 

may not explicitly state the context they use in the design of their system.  For instance, 

figuring out what information to give to someone, who to send messages to, and figuring 

out the appropriate services to use, would require more general context than location. 

4.2 Context-Aware Computing 

The research area of context-aware computing typically deals with one of two areas: 

systems and applications.  Systems represent the building blocks to create context-aware 

applications.  These building blocks typically deal with being able to handle context as 

well as provide primitives for a variety of features.  Applications use the systems to build 

software that an end-user would use.  These applications would take advantage of the 
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context available to the system as well as the primitives available to it.  In this section, we 

examine the components of a context-aware system as identified by two surveys of such 

systems. 

 Baldauf, Dustdar, and Rosenberg surveyed context-aware computing in general 

[6].  For the purposes of this dissertation, we examine their groupings of what a context-

aware framework should include in terms of design criteria.  They classify the design 

criteria as follows: 

 Architecture – What kind of traditional computer system does the framework 

utilize?  Examples include centralized middleware, agent-based, blackboard-

based, widget-based, object-based, an extension of the model-view-controller 

pattern, and distributed systems with a centralized server. 

 Resource Discovery – What mechanisms does a particular framework have to 

discover context sensors?  This also includes how sensors notify the system when 

they come online, stop itself, and how the system infers that a sensor failed 

unexpected. 

 Sensing – How will context be supplied to the framework?  Methods include 

querying sensor nodes directly, using context acquisition components.  The 

authors mention three types of sensors as defined by Indulska and Sutton [50]: 

o Physical Sensors – derives context from physical hardware, including 

light, visual context, audio, motion, acceleration, location, touch, 

temperature, and physical attributes. 

o Virtual Sensors – context derived from software, such as activities and 

Internet addresses. 
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o Logical Sensors – a combination of physical and virtual sensors. 

 Context Model – How will context be handled, shared, and stored
18

? 

 Context Processing – How does the framework take raw, fine-grained data and 

turn it into higher-level constructs
19

?  This includes using an inference engine, 

knowledge bases, and reasoning engines. 

 Historical Context Data – Does the framework keep track of the entire context 

that passes through the underlying architecture? 

 Security and Privacy – How, if applicable, does the framework implement 

security and privacy measures? 

 Work on context-aware computing, specifically those that employ frameworks, 

can be classified into the design criteria as described above.  This represents only one 

type of classification.  Kjær categorizes context-aware systems differently [53].  

Although these categorizations have only been applied to middleware-based architecture, 

this classification, in principle, could be applied to all context-aware systems.  The 

categories described include: 

 Environment – either infrastructure (entities depend on services of a system) or 

self-contained (the devices communicate amongst themselves). 

 Storage – either context will be stored as-is or data the system uses will be 

ordered according to context. 

 Reflection – the ability to query metadata either in the application, the middleware 

system, or the context itself. 

                                                 
18

 We explore context models later in this chapter. 
19

 Several possible levels of abstraction can be considered here.  Consider the location stack [43].  The 

lowest level represents direct sensor data, such as radio signal strength indicator values.  The next level 

would be location coordinates.  The next level could be room information, then floor information, then 

building information.  As the information moves up the location stack, it creates higher-level constructs. 
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 Quality – measurement of the accuracy and error of the context as well as the 

resources. 

 Composition – Can components be activated and/or chained together based on 

context? 

 Migration – If available, how can entities migrate from one device to another? 

 Adaptation – Applies directly to the levels of interactivities.  Kjær describes three 

adaptation methods: 

o Transparent – changes happen in the background without intervention 

from the user or the application itself. 

o Profile – applications send their interests to the system. 

o Rules – provided either by applications or users, rules typically perform an 

action if a particular rule has been satisfied. 

 Both the design criteria and categorizations have to be taken into account when 

describing and evaluating a context-aware system or architecture.  The reason the authors 

have been able to distinguish between different categories since each the context-aware 

architectures they categorize into their work primarily has a specific mechanism for 

providing each item.  For instance, an architecture which supports inferring context from 

other context only has inference mechanism.  Additionally, architectures supporting 

service composition has a very specific way to perform the composition.  In order to not 

limit developers, our Rover architecture supports capabilities to utilize different 

mechanisms for each criteria and category mentioned. 

 We will revisit both when we evaluate our Rover architecture as we believe that 

they will be able to shed light on the strengths and weaknesses of the Rover system.  
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Addressing strengths and weaknesses also aid in potentially providing connectivity and 

bridging the gap between different context-aware systems, work not actively pursued by 

the research community, except when bridging the gap between context models.  

Recently, one group of researchers reiterated context-aware research typically only 

considers single physical locations and multiple physical locations in a single application 

domain [85]. 

4.3 Context Models 

In order to provide a mechanism to express, store, and possibly evaluate context, 

designers and developers of systems create models which represent the context itself.  

Several different types of models have been specified to encapsulate context and we 

outline the major categories of models as defined by Chen and Kotz [16] and Strang and 

Linnhoff-Popien [102]: 

 Key-Value Models – dictionary-based modeling. 

 Hierarchical Models
20

 – a hierarchical data structure consisting of tags and 

attributes.  Hierarchical models can be represented in formats such as the 

Extensible Markup Language (XML) [116]. 

 Graph Models – use a graph-based data structure to represent context, such as the 

Unified Modeling Language [76]. 

 Logic-Based Models – utilize formalisms in mathematical logic, giving this type 

of structure the advantage of having inference engines implied by designers and 

developers of the models. 

                                                 
20

 Also known as markup scheme models [101] and tagged encoding [16]. 
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 Ontology Models – a representation of concepts in a domain and their 

relationships.  Represented in formats such as the Resource Description 

Framework (RDF) [117] and the Web Ontology Language (OWL) [44].  Like 

logic-based models, ontology models coincide with the development of reasoning 

techniques. 

 Although researchers such as Strang and Linnhoff-Popien [102] and Baldauf, 

Dustdar, and Rosenberg [6] recommend ontology-based models, we believe that it may 

not be the best model for every application.  We believe that each application has to 

evaluate each model in terms of their strengths and weaknesses and then select the one 

most appropriate for it.  This includes evaluating each model’s expressiveness, reasoning 

capabilities, storage space, speed of execution, and wire formats. 

 Baldauf, Dustdar, and Rosenberg also mention “using non-ontology based models 

requires a lot of programming effort and tightly couples the context model to the rest of 

the system” [6].  However, we believe that a fine balance has to be found in determining 

what context model would be appropriate depending on a system’s requirements for time 

critical applications and specific needs.  For instance, it may be advisable to utilize a 

geospatial database over an ontology model for modeling location context, especially 

when geospatial operations are performed frequently.  It would be possible to keep both a 

geospatial representation with an ontology representation in tandem, but the developer 

would need to recognize that would require additional storage space, execution time, and 

the need for synchronization between the two models. 

 While exploring context models, it became apparent that people only discussed 

representation formats and inference capabilities for context for now.  In work done for a 
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context cube representation [40], the researchers recognize that context-aware systems, 

along with their respective context models, only focus on what they call the intermediate 

state, or the immediate needs of a system.  The context cube system, modeled directly 

after a traditional data warehouse and data cubes, aims to analyze past history.  The 

system can group context together in the three core aspects of context: location, time, and 

identity. 

4.4 Standards for Representing Context 

The development of standards allows context, and related information, to be passed 

between two or more computing devices in a uniform and consistent manner.  In general, 

two types of standards exist: those that give an abstract model of a framework (such as 

the Open System Interconnection Reference Model [104]) or a concrete standard which 

specifies the exact way messages should be passed back and forth between entities (either 

on the same machine or remotely).  In this section, we primarily focus on concrete 

standards.  Several different standards today enable context to be specified in a 

standardized format.  We briefly review two standards, one built on another one, here, 

with regard to communication.  All of these standards utilize XML [116] as a wire 

format, but we imagine they could be represented with different wire formats, such as 

RDF [117]. 

 The Presence Information Data Format (PIDF) [103] specifies the core context for 

online presence, such as an instant messaging user.  Online presence explicitly identifies 

the user, their communication status (open or closed), how to communicate with them, 

preferred communication method, indications of when a particular presence context has 
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changed, and other freeform text.  PIDF provides limited context concerning a user, that 

is, how to contact them and their availability. 

 The Rich Presence Extensions to the Presence Information Data Format (RPID) 

provides additional fields to specify context beyond what PIDF provided originally [93].  

By building on top of PDIF, through XML Schema inheritance [118], RPID provides the 

following extended elements: 

 Activities – the current action, or state, of the user, such as eating or sleeping. 

 Class – groups together related people, devices, and services. 

 DeviceID – a unique identifier for each device. 

 Mood – the state of being of a user. 

 Place-Is – the physical properties of a place, such as light and noise. 

 Place-Type –type of place, such as a library or a car. 

 Privacy – provides what information may be viewable by others. 

 Relationship – description of how one person relates to another person. 

 Service-Class – indicates if a service will be delivered electronically, postal 

delivery, or in-person. 

 Sphere – a group of related facts which indicates the person’s state and role. 

 Status-Icon – an icon which represents the user graphically. 

 Time Offset – offset from the Coordinated Universal Time (UTC) of the user’s 

location. 

 User-Input – indicates how a person communications (such as a keyboard or 

voice input) and how long ago they sent their last communication. 



51 

 

 Several of these elements, such as the activity, mood, place-type, and relationship, 

define an enumeration of supported elements.  In particular, the place-type element has 

been extended by the Location Types Registry [94].  The problem with defining a 

specific set of possible elements comes from the fact that it may be impossible to 

enumerate all of the possible elements that could occur.  To alleviate this problem, 

standards typically have a miscellaneous field which allows a user or a developer to allow 

an arbitrary number of values to be played.  However, this complicates a different issue: 

interpretation. 

 Suppose two different standards proposing two different schemas, for instance 

regarding location, the Location Types Registry [94] and the National Information 

Exchange Model [110].  Developers integrating these two standards have to match each 

individual element of the two schemas together.  This is made more difficult if a 

miscellaneous field allows an end user or another developer the ability to add their own 

value.  By allowing additional values, natural language processing may be required to 

attempt to match the values unknown at design time. 

 Additionally, consider the mood element from the RPID standard.  If a person fills 

in the value pain, does this mean physical pain or mental pain?  It may be possible that to 

distinguish between the two types of pain with additional context concerning the user in 

question. 

 Even though interpretation problems persist, standards provide a way to exchange 

information uniformly and could be used in useful ways.  For instance, if we used RPID’s 

place-is element and discover a value of noisy, then we know that we should not use 

voice as a communication mechanism.  However, we believe that a context-aware 
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framework should not limit context exchange to one particular standard, such as 

definition types of locations and activities, as this should be evaluated by application 

designers and developers.  Therefore, we believe that any context-aware framework 

developed have to be able to transform messages from one standard to another standard 

where applicable. 

4.5 A Context-Aware System Examination 

In this section, we examine a context-aware system.  Dey describes the Context Toolkit, 

[23].  Dey’s dissertation follows a similar format to our discussion here, but our 

conceptual frameworks differ significantly.  Here, we take a look at a few key issues we 

have identified in the Context Toolkit. 

 The Context Toolkit consists of widgets.  These widgets provide context 

capabilities, including supplying context, aggregating context, interpreting context, and 

providing context services.  The first key difference comes from the underlying 

infrastructure.  All widgets in the Context Toolkit communicate with each other directly, 

using peer-to-peer communication.  Widgets can be discovered by using the Discoverer 

component.  Today, this would not be permissible on most networks.  Cellular providers 

and enterprise networks typically do not allow consumer and employee devices to allow 

incoming connections. 

 Application developers must also take care when constructing their applications.  

Since widgets are decentralized by default, at least a Discoverer must be well-known.  

Although widgets may know exactly what other widgets they need to connect to, 

bypassing a Discoverer may not be ideal as widget Internet locations may change, as 
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dynamic Internet Protocol addresses may be assigned to them upon connecting to a 

network. 

 Due to its decentralized nature, reconstructing a series of events requires all of the 

participating widgets to store context as it arrives at the widget, for context aggregators, 

or when the context is generated.  Even though each widget synchronizes its time 

regularly with a Simple Network Time Protocol (SNTP) [67] server, individual widgets 

store its context on in-memory local cache.  Therefore, should a widget terminate before 

aggregating the data for logging purposes, a reconstruction of events would not be 

possible.  The Context Toolkit does allow widgets to connect directly to a server-based 

database, which alleviates the reconstruction problem.  However, developers using the 

Context Toolkit will have to manage their own databases and access privileges to those 

databases.  Context distributed within the Context Toolkit framework are specified with a 

key-value pair.  To discover widgets which supply context or context-enhanced services, 

consumers pass the exact key-value pairs to Discoverers to find widgets which provide 

the exact pairs. 

 Although we disagree with Strang and Linnhoff-Popien [102] and Baldauf, 

Dustdar, and Rosenberg [6] who recommend ontology-based models for all context-

aware systems, we believe that key-value pairs are suitable only after rigid and fixed 

boundaries have been specified regarding specific applications, with the designers of 

these applications understanding their context may be limited.  Additionally, the strict 

restriction that all key-value pairs must be specified means that, especially for services, 

all of the context must be provided.  In certain situations, some context may be optional.  

A context-aware system must allow for both required and optional context. 
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4.6 Summary 

In this chapter, we presented research in the field of context-aware computing.  We 

reviewed the goals and classifications context-aware applications, early work of location-

aware systems, generalized context-aware framework characteristics, context models, and 

a brief look at two related standards which reflect how to represent context in over-the-

wire messages. 

 In our discussion of our context-aware framework, Rover, we will take a look at 

how Rover can be classified using the same classification elements provided by the work 

we surveyed here and how we model context. 
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Chapter 5  

The Design of a Context-Aware Architecture 

Designing an effective context-aware architecture requires all the lessons learned from 

understanding the meaning of context, what context should consist of, and learning from 

designs of existing context-aware architectures.  We have designed a context-aware 

architecture, Rover, which encompasses the core attributes of a context-aware 

architecture. 

This chapter describes in detail the architecture we have designed, including the 

boundaries between different entities in the architecture, the representation of context, the 

interfaces to communicate between entities, and critical logging capabilities.  We will 

conclude this chapter by addressing the design criteria of context-aware systems set forth 

by Baldauf, Dustdar, and Rosenberg [6] and the categories of classification from Kjær 

[53] by outlining how the design of Rover fits into each criteria or classification. 

5.1 Basic Requirements of a Context-Aware System 

In this section, we identify the key requirements that have to be included in a context-

aware system in order to support as many context-aware paradigms as possible.  These 

requirements have been identified through experience developing Rover as well as the 

motivating scenarios described in the next section.  The requirements we have identified 

include: 
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 Organize Similar Entities Together 

Entities in the same organization share similar context.  This includes the same 

location maps
21

, profiles, and other context.  Therefore, these entities connect to a 

common server, or logical set of servers, in order to facilitate sharing context 

between entities.  This also separates unnecessary information items from 

different servers. 

 Share Information Items and Context Between Organizations When Necessary 

Even though organizations keep context concerning their own entities on their 

own servers, it may be necessary to share some context between two or more 

organizations.  When necessary and allowed, context may be shared between 

different organizations which may span different domains. 

 Common Context Data Structure 

Context is frequently passed around entities in a context-aware system.  A 

common data structure which encapsulates context will facilitate context being 

sent between entities.  The common data structure for an individual piece of 

context should incorporate two of the three core aspects of context: identity (who 

the context describes) and time (when the context has been generated).  As 

location can encompass a user’s entire active context, location can be specified 

separately from the common data structure. 

 Uniform Access to Context, Services, and Messaging 

Entities frequently need access to context storage, call services, and send 

messages to other entities.  Context-aware architectures need to support uniform 
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 We assume organizational entities are located in the same physical location. 
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access to these mechanisms.  Without a uniform access mechanism, entities which 

need to migrate from one organizational server to another one may not be 

feasible. 

5.2 Motivating Scenarios 

Prior to describing our design of Rover in detail, we describe a two part example scenario 

which has influenced our thought processes throughout the entire design phase.  We have 

been actively working on a quality of life improvement system called MyeVyu.  This 

system takes advantage of the capabilities of Rover and context to enhance the way 

people use computing devices in their daily lives. 

MyeVyu has been developed with a campus community environment in mind and our 

examples reflect this.  However, developers can create services which reflect a wider 

variety of applications.  We examine the following two related scenarios we have 

developed for MyeVyu to illustrate how context, in general, aids in the flow of 

information: providing users with context-aware services for everyday needs and 

facilitating emergency situation response by using context. 

5.2.1 Context-Aware Services for Everyday Needs 

Individuals in a campus environment traditionally find information about people, events, 

and places in a static directory.  For example, if one wanted to know about the daily 

lunch and dinner specials at a campus eatery, they would look at the specials posted at the 

campus eatery, go to the website indicating daily specials, or subscribe to a syndicated 

news feed to receive updates via his computing devices.  These three methods of service 

delivery do not take advantage of any context to derive custom tailored services.  By 
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taking context into account, such as their dietary preferences, a daily special can be 

custom tailored for each individual on campus. 

 The ability to take advantage of context for services which people need everyday 

has several positive implications.  Services can now be custom tailored for an 

individual’s preferences and requirements, as the daily specials example illustrates.  

Active context, the context which an individual has at the current time, such as location, 

can further customize a service.  When traditionally looking up the local weather, an 

individual would turn on a television or radio and wait for the local weather to be given 

or they would go on the Internet and manually type in the local city or zip code.  By using 

location as context, current weather conditions would be displayed without prompting for 

any input. 

 Services developed for everyday needs have typically been created in isolation.  

To create a composition of services, developers take two or more services and create a 

composite service of interest, such as the popular service composition example of making 

reservations for multiple components of a trip [100].  The act of service composition only 

has implied context, meaning a person typically wants to go from one location to another 

location on a particular date.  Having additional context, through calling additional 

services, would be beneficial. 

 To demonstrate potential benefits, let us return to the campus environment.  Large 

campuses typically have bus transportation services and real-time arrivals of buses 

available to the public at large through a service.  Suppose a person wants to go from one 

place to another and has not eaten for six hours.  The person finds out when the next bus 
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will be at their nearby stop and how long it will take.  Developers can now compose 

interesting services. 

Knowing the trip endpoints, a developer can query a weather service, inform the 

person of any weather advisories, suggest whether or not to wear, or even just bring, a 

jacket, and warn the person if they should not travel at all based on the weather.  

Furthermore, since the trip will take an hour, a service can tell the person what dinner 

services will be available based on their preferences.  Although the person will be leaving 

at two o’clock in the afternoon, by the time they arrive at the campus eatery, lunch will 

no longer be served. Many similar examples can be considered once the context 

information is available to the developers of the applications. 

5.2.2 Using Context to Facilitate Emergency Situation Response 

Emergency situations can arise at any moment without notice.  At one moment, 

individuals could be using context-aware services, but in an instant a situation requiring 

emergency personnel could arise.  People in a campus environment currently have two 

options: call 9-1-1 or press a button on an emergency call box.  Unfortunately, these 

mechanisms offer limited context: 9-1-1 [31] has Enhanced 9-1-1 capabilities to provide 

location [32] and each emergency call box can be correlated with a location.  Additional 

context needs to be derived through a conversation with the operator who answers the 

alert with the individual sending the alert. 

 Individuals and operators using a context-aware architecture can take advantage 

of readily available active context to aid in an emergency response.  Individuals 

communicate indirectly to an operator through an intermediary, such as a context server, 

which forwards all relevant context to the operator, which includes their identity, 
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location, and medical records, if necessary.  The operator also has context concerning 

first responders, which includes police officers, firefighters, and emergency medical 

technicians (EMTs), in the area. 

When deciding which first responders to send, the operator can utilize context-

aware services to aid the decision process.  Suppose we know the individual has a 

medical emergency not caused by any malicious means.  The operator knows EMTs 

would be the appropriate personnel to send to the location.  Knowing the location of the 

individual and the EMTs themselves may not be sufficient, as the actual distance
22

 

between the entities may be missing other important factors, such as the driving distance, 

taking traffic into account, and whether or not the first responder and the person have a 

wall physically separating them.  Therefore, a call to the appropriate mapping service 

which provides driving directions and a separate call for a service which provides traffic 

notifications would aid the operator in making the most appropriate decision.  In fact, it 

may be possible to notify nearby medical professionals of an emergency scenario in the 

event that EMTs may not reach the individual in time. 

Context represents one of the key aspects of using a context-aware architecture 

when dealing with an emergency scenario. Being able to playback previous events 

represents another important aspect when designing and using a context-aware 

architecture.  In the event of an emergency situation, playing back the course of events 

helps aid investigations, court cases, and training. 

 

                                                 
22

 The actual distance between two points on Earth can be calculated with the Great Circle distance 

formula.  Assuming latitude and longitude have been represented in radians and not degrees and obtaining 

the distance in miles, the equation would be 3963.0 ×  arccos(sin 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1 × sin 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2 +
 cos𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1× cos𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2× cos(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒2 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒1)). 
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5.3 Rover Ecosystems 

To support the scenarios described, we have designed an architecture called Rover, a 

support platform for handling context and facilitating the flow of information between all 

participating entities.  Rover has been designed with to support multiple scenarios.  

Therefore, we logically separate different supporting scenarios into what we call Rover 

ecosystems (commonly referred to as an ecosystem).  An individual Rover ecosystem 

consists of related entities working together that have related interests in each other.  

Rover ecosystem administrators (referred to as an administrator hereafter) control various 

aspects of the ecosystem, including communication mechanisms and authentication. 

 

Figure 4: Venn diagram showing two distinct Rover ecosystems with some overlap. 

 For example, support for everyday needs of a campus community and the 

emergency response scenarios, described in Section 5.2, contain two distinct Rover 

ecosystems, as shown in Figure 4: the general campus community ecosystem and the 

emergency response ecosystem.  The individual ecosystems share, amongst themselves, 

common context and authentication mechanisms.  The general campus community 

contains common services, such as weather information and campus eatery information.  

The emergency response community does not generally need this information, but shares 

context amongst themselves, including first responder locations.  This location should 

generally not be shared with the general campus community ecosystem. 

General 
Campus 

Community

Emergency 
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 When a user on the general campus community ecosystems needs assistance from 

a first responder, such as when the user has a medical emergency, the user communicates 

with the appropriate entity on the emergency response community ecosystem.  The user 

may not know the exact location of the entity, as this will probably be considered a 

security risk.  Therefore, we propose to use man-in-the-loop approach for ensuring only 

the appropriate entities have location information only when they require it. 

 

Figure 5: The four-tier entity structure in a Rover ecosystem, showing the logical design of how information 

flows between entities. 

 The remainder of this section discusses the different entities which coexist on a 

Rover ecosystem.  We have logically broken down the entities into four different tiers: 

the user tier, the assistance tier, the server tier, and the utility tier.  The way these tiers 

communicate with each other has been shown in Figure 5.  Each Rover ecosystem has 

one or more Rover servers associated with it.  With few exceptions to be explained later, 

all messages need to be sent through a Rover server.  We now explain each of these tiers 

in detail. 
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5.3.1 Server Tier 

The server tier consists of one type of entity: the Rover server.  As the core of an 

ecosystem, making this an infrastructure-based system, one or more Rover servers have 

the responsibility for managing all of the entities in the ecosystem, the communication 

between all of the entities, authorization, secure communication, facilitating the transfer 

of messages between entities, keeping track of active context, and storing the complete 

communication history between entities and the Rover server. 

Rover Server

HistoryContextServiceMessage

Message

Call History

Active Context Context Provenance

AuthenticationChecker

Message

Handler

 

Figure 6: The main operations of the Rover server: a message handler determines the destination of all messages 

sent to the Rover server. 

 To be able to support the most number of clients, the Rover server has been 

designed to allow administrators to choose the communication transport layer protocol 

entities use to communicate with the Rover server.  This includes low-level transport 

layer protocols, such as the Transmission Control Protocol (TCP) [82] and the User 

Datagram Protocol (UDP) [83], or high-level protocols such as the Hypertext Transfer 
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Protocol (HTTP) [34].  Our reference implementation supports TCP and HTTP using 

custom remote procedure calls (RPCs) for the over-the-wire message format. 

 Connections to the Rover server should be authenticated.  Anonymous 

connections can be supported, but not recommended.  As Rover keeps track of entities, 

authenticating entities allows Rover to associate all context and activity to a particular 

entity, while an anonymous connection offers limited historical correlations in the future.  

One additional advantage comes from the ability of utility tier and assistance tier entities 

to take advantage of specific, long term context.  However, it should be up to the 

administrator to choose the authentication policy of the ecosystem. 

 The authentication method has been left open in the current design of the Rover 

server, as long as the method supports a username and password credentialing method.  

An administrator may allow entities to be checked against one or more authority 

domains.  Therefore, all entities that want to log into a Rover server supplies a three-tuple 

data structure representing a credential for logging in: 

𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 ←  𝑑𝑜𝑚𝑎𝑖𝑛, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑  

Each individual credential has a unique domain, username, and password.  An 

entity may log into a Rover server more than once, if the administrator allows this.  An 

administrator sets up credential checkers for each domain.  The Rover server checks the 

username and password against the domain’s credential checker. 

5.3.2 Utility Tier 

Entities in the utility tier represent all backend components.  These components can be 

connected to the Rover server through a network connection or even embedded within a 

Rover server.  Utility tier entities can act as one or more of the following types of entities: 
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services, context watchers, or context providers.  We describe the differences between the 

three types here: 

1. Services – Entities which provide a particular service to other entities, with the 

exception of high bandwidth applications.  Entities do not connect directly with 

services, but indirectly through the Rover server.  Services publish their ability to 

perform a particular task and, if necessary, what context needs to be available for 

the service to execute properly. 

2. Context Watchers – Entities which can passively receive context updates via a 

push mechanism concerning any context provided to the Rover server.  Context 

watchers decide what they will receive. 

3. Context Providers – Entities which supply context updates to the Rover server.  

This can be done in any number of ways, similar to the three types of sensors 

described by Indulska and Sutton [50].  The possible methods include: 

 Communicating context provided by embedded sensors and supplying 

the context provided by the sensors to the Rover server.  Embedded 

sensors may not be able to connect to the Rover server directly, so 

context providers act as a bridge to the Rover server. 

 Act as both a context watcher and a context provider such that context 

provided by the Rover server can be expanded upon.  For instance, 

converting context provided in Imperial units to metric units. 

 Supplying context generated from software related artifacts, such as 

network characteristics and software availability. 



66 

 

Each of these utility tier entities typically publishes its role to the Rover server so 

that it may be discovered by other entities in the same tier or other tiers when needed.  If 

necessary, these entities can be chained together to provide related compound services, 

either by the Rover server or applications which utilize these components.  Additionally, 

utility tier entities can act as a bridge to communicate from one ecosystem to another. 

We need to pay special attention to the service utility entities.  In many cases, 

these entities have not been created by the data source or service that actually provides 

the service.  These special entities can act as a proxy to the actual source and augment the 

call to that source with context provided by the Rover server. 

5.3.3 Assistance Tier 

A Rover server has the responsibility of transferring information between entities and 

keep track of context.  It has not been designed to handle large bandwidth applications.  

Entities in the assistance tier, on a Rover server’s behalf, handle these types of 

applications, including large file transfers and video conferencing.  Communication 

between the user tier and the assistance tier depends on the protocols used for 

communication by the assistance tier entity.  Assistance tier entities fall into one of two 

categories: participating and non-participating. 

 Participating – Assistance tier entities which actively participate in an ecosystem 

through communicating with the Rover server.  These entities can take advantage 

of context and services the Rover server knows about.  It also enables the Rover 

server to influence the decisions made by these entities, such as informing a 

participating entity a particular user has access to a video stream or not. 



67 

 

 Non-Participating – These entities participate indirectly in an ecosystem, as they 

only communicate with user tier entities.  They provide useful capabilities, but do 

not communicate with, or even know about, any Rover server is available.  

Administrators typically do not have any control over these entities, including 

video conferencing software solutions which may use proprietary source code 

administrators do not have access to. 

5.3.4 User Tier 

Users, and the applications which access the Rover server, operate in the user tier.  In an 

ecosystem, they always communicate with the Rover server directly and have the ability 

to communicate with assistance tier components to provide high bandwidth applications, 

such as video streaming.  Entities in the user tier do not have direct access to any entities 

in the utility tier.  However, applications can decide how best to use the facilities the 

Rover server provides to enhance their experience, as they have access to all functionality 

the Rover server provides. 

The Rover server keeps track of user entities logged into the system.  If a user 

moves from one device to another device, all necessary information items, from context 

to data, can be stored temporarily on the Rover server until picked up from another 

device.  This migration-enabled mechanism needs to be supported by the applications 

developed, as it represents a separate feature than the Rover server’s ability to keep track 

of every entity’s context. 
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5.4 Context Representation 

Except for non-participating assistance entities, every other entity participating in an 

ecosystem typically supplies context to the Rover server.  We have defined a similar 

triple structure as the Resource Description Framework (RDF) defines [117] and 

extended it the core capabilities of what RDF provides, (but do not extend RDF directly, 

as this would represent work beyond the scope of this dissertation).  We recap what RDF 

defines as a triple: 

𝑡𝑟𝑖𝑝𝑙𝑒 ←  𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡  

An RDF triple has three parts: a subject, a predicate, and an object.  The subject 

traditionally represents a resource in the RDF specification.  The predicate indicates a 

relationship the subject has with an object.  The object can be a reference to a resource or 

a literal.  For example,  𝐴𝑙𝑖𝑐𝑒, 𝑖𝑠 𝑚𝑎𝑟𝑟𝑖𝑒𝑑, 𝑡𝑟𝑢𝑒  represents a triple with a subject Alice, 

a predicate is married, and a literal object true, in contrast to  𝐴𝑙𝑖𝑐𝑒, 𝑖𝑠 𝑚𝑎𝑟𝑟𝑖𝑒𝑑, 𝐵𝑜𝑏 , 

which represents the same subject and predicate, but defines a resource object, Bob.  A 

resource can be traversed, as it can also be used as a subject, thereby allowing RDF 

triples to represents graphs. 

5.4.1 Context Data Structures 

We relate our context data structure, a context entry, to an RDF triple here.  All context 

entries requires a subject.  This subject includes two fields, a domain and a username: 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ←  𝑑𝑜𝑚𝑎𝑖𝑛, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒  

 A subject has a direct correlation to the credential data structure, described in the 

server tier authentication discussion.  This allows the Rover server to correlated logged in 

entities to context entries, as the Rover server automatically sets their logged in context 
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as logged_in.  However, subjects need not be limited to entities which log into the Rover 

server.  For instance, a context entry could be about the environment of a room, but the 

room itself cannot log into a Rover server.  In this case, the domain has to be left blank 

and the username represents the actual subject in question.  It has been left up to the 

administrator of an ecosystem to determine how to define these subjects. 

 Each context entry has two levels of relationship information associated with it, as 

opposed to the single level predicate an RDF triple has, which could be related to other 

information, but not embedded in the RDF triple itself: 

𝑟𝑜𝑜𝑡 ←  𝑛𝑎𝑚𝑒𝑟𝑜𝑜𝑡   

𝑙𝑒𝑎𝑓 ←  𝑟𝑜𝑜𝑡, 𝑛𝑎𝑚𝑒𝑙𝑒𝑎𝑓   

 The root represents a high level concept, such as location or temperature.  A leaf 

has a direct correlation to a root and represents a lower level concept.  For a root 

containing location, the leaves may be latitude and longitude.  A temperature root could 

have leaves such as ambient room temperature and units of measurement. 

 To be useful in deployment situations, context entries need to have values 

assigned to them.  For instance, the root/leaf value of location/latitude could have 

38.992571 as a value and location/longitude would be -76.936312.  A context watcher 

and provider could listen for the entire context with the root location and provide a new 

root/leaf value for location/building as “A.V. Williams Building.” 

 If we simply used traditional RDF triples for all of these values as they have been 

specified.  We believe that all related metadata associated with a context entry needs to 

be stored.  We encapsulate the following data structures into a context entry: 
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𝑐𝑟𝑒𝑎𝑡𝑜𝑟 ←  𝑠𝑢𝑏𝑗𝑒𝑐𝑡  

𝑒𝑛𝑡𝑟𝑦 ←  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑟𝑜𝑜𝑡, 𝑙𝑒𝑎𝑓, 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝  

 An entry consists of an eight-tuple data structure.  We have already discussed the 

subject, root, and leaf portion of the entry.  The identifier represents a Rover server 

specific unique identification which allows entities to find a specific entry by reference.  

The value has a one-to-one correlation to an RDF triple’s object.  This value could be 

another entity or a string literal.  The creator represents the entity which informed a 

Rover server of this particular entry.  Unlike the subject, the creator has to be an entity 

that authenticates and participates directly with the Rover server. 

 Evidence consists of either another entity or a string literal which supports how 

supporting data for generating the entry.  The timestamp represents when the entry 

arrived at the Rover server.  A timestamp can be represented by either a datetime object 

or a scalar long representing the number of seconds from the UNIX epoch on the local 

machine running the Rover server. 

5.4.2 Context Wire Representations 

Each of the data structures defined can be serialized into any number of different over-

the-wire formats.  Examples include a custom line-based format for line-based 

communication, the Extensible Markup Language (XML) [116], the JavaScript Object 

Notation Language (JSON) [19], RDF [117], or any other representation format.  Context 

data structures defined here can be stored on any number of storage mechanisms, 

including in a relational database, a triplestore, or in a format serialized directly from the 

programming object with support from the programming language. 
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Administrators of an ecosystem have to realize that the decisions they make in 

choosing which wire format to use and what storage mechanism will affect the 

computing environments they can choose.  Context typically has models, or schemas, 

associated with them.  Again, it will be up to the administrators to decide how to define 

schemas of related context. 

5.5 Application Programming Interface 

Rover servers support calls that utilize the available context and services in its ecosystem.  

Therefore, we specify the application programming interface (API) that needs to be 

supported by all Rover servers. 

5.5.1 Context API 

Function Description 

InformContext Send the Rover server context concerning yourself. 

SupplyContext Supply the Rover server context concerning another entity. 

ObtainContext Queries the active context entries. 

ObtainContextByReference Obtains an active context entry by reference. 

WatchContext Subscribes to specific context updates. 

UnwatchContext Unsubscribes from context update notifications. 
Table 1: Supporting context operations on the Rover server, including supplying, subscribing, and querying. 

Every entity which participates in an ecosystem has access to operations involving 

context on the Rover server, including supplying context, subscribing to context, and 

unsubscribing to context.  Table 1 lists the API available to all connected entities. 



72 

 

Sensed Latitude and Longitude Inferred Building Number

R
o

v
e

r 
S

e
rv

e
r

W
a

tc
h

e
r 

/ 

P
ro

v
id

e
r

U
s
e

r 
D

e
v
ic

e
GPS Chip 

Supplies Device 

Latitude and 

Longitude

Update Active 

Context with 

Latitude and 

Longitude

InformContext

Find Subscriptions 

to Latitude and 

Longitude

Derive Building 

Number from 

Latitude and 

Longitude

NotifyContext

Update Active 

Context with 

Building Number

SupplyContext

Find Subscriptions 

to Building 

Number

Building Number 

Received

NotifyContext

 

Figure 7: Example workflow of expanding latitude and longitude context to a building number. 

 Supplying context to the Rover server can be executed by two functions: 

InformContext and SupplyContext.  InformContext updates an active context entry for the 

calling entity, whereas an entity calls SupplyContext to perform an update to the active 

context on behalf of another entity.  For instance, if entity A calls InformContext and 

updates its location/latitude and location/longitude, entity B could be a context watcher 

and provider which calls SupplyContext to update entity A’s active context on its behalf.  

An example workflow of how this works has been shown in Figure 7. 

 Both InformContext and SupplyContext automatically overwrite the root/leaf’s 

value.  Going back to the context entry example, the root/leaf value for location/building 

could be “A.V. Williams Building” with a location/latitude value of 38.992571 and a 

location/longitude value of -76.936312.  In certain scenarios, supplying a particular 

context entry would nullify other leaves that contain the same root.  For instance, if the 



73 

 

location/building changes to “Computer Science Instructional Center,” the 

location/latitude and location/longitude values would not be the same as the A.V. 

Williams Building example, but in fact would have a location/latitude value of 38.98998 

and a location/longitude value of -76.9362.  A developer needs to decide if updating only 

a root/leaf pair is appropriate or if not removing other leaves with the same root would 

make entries in the active context contradict themselves. 

 We support querying context from the Rover server through ObtainContext and 

ObtainContextByReference.  ObtainContext allows entities to query active context by 

specifying the exact context they want or an expression.  Entities can query the active 

context by any combination of root, root/leaf, root/leaf/value, and subjects.  

ObtainContextByReference allows entities to obtain a specific context entry by a 

reference identifier.  This may be desirable in situations in which a context entry may be 

referenced by service composition, but not every individual, entity may not need the 

values of a context entry. 

 Interested entities, such as context watchers, subscribe to context with the 

WatchContext function.  This operates the same way as ObtainContext, but instead of 

querying the active context, entities will be notified when another entity calls 

InformContext or SupplyContext.  When an entity no longer has an interest in a 

subscription to a particular context, the entity calls UnwatchContext. 
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5.5.2 Service API 

Function Description 

PublishService A component informs the Rover server of a service it can provide. 

UnpublishService Indicates that a service will no longer be available. 

ListAllServices Lists all of the services available on the Rover server. 

ListRelevantServices List of services which can be accessed, dependent on context. 

CallService Calls a particular service. 
Table 2: Rover function calls allowing discovery and calling of services. 

Services provide the ability to bridge data services outside of an ecosystem as well as 

internal mechanisms as well.  Table 2 lists all of the service functions available on a 

Rover server.  To allow services to be discoverable, utility tier service entities call 

PublishService.  The function call includes the name of the service, a description of the 

service, which could contain required data another entity have to provide when calling 

the service, the required active context of the calling entity, and any optional context it 

may be able to use.  To remove the service from being discoverable, service entities call 

UnpublishService. 

 Discoverable services can be found by other entities connected to the Rover 

server by calling ListAllServices and ListRelevantServices.  ListAllServices returns a list 

of every single available service without regard to whether or not the entity calling 

ListAllServices can even call each service based on their active context, while 

ListRelevantServices filters the service list by whether or not the calling entity can 

actually call the service at the moment ListRelevantServices had been called. 
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Figure 8: The lifetime of a CallService RPC call. 

 To execute a service, an entity calls CallService.  The entity has to specify the 

subject, which includes the domain and username, of the entity which will handle the 

execution, the service name, and any request data that the service may require.  Figure 8 

illustrates the lifetime of the call.  The Rover server determines whether or not the service 

can be called based on the active context.  If it can be called, it forwards the entire 

function call to the subject, which executes the desired service and returns a response.  

The response will be sent through the Rover server and forwarded to the calling entity.  If 

the service cannot be called due to a lack of appropriate active context, a network error 

when calling the remote service, or a service error, the calling entity will receive an error 

message.  
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5.5.3 Message API 

Function Description 

SendMessage Sends a message to another entity. 

BroadcastMessage Sends a message to entities fulfilling certain contextual properties. 

GetMessages Obtains stored messages from the Rover server. 
Table 3: Functions for communicating to other entities in an ecosystem via the Rover server. 

The Rover service provides a messaging API to allow entities to communicate directly 

with one another.  Connected entities receive messages as soon as the message has been 

sent to them via the Rover server.  However, if an entity has been sent a message and it 

does not have an active connection to the Rover server the message has been sent 

through, the Rover server needs to store the message in a mailbox so that it may be 

retrieved at a later time.  The message functions available on a Rover server have been 

summarized in Table 3. 

 Entities can send messages by either calling SendMessage or BroadcastMessage.  

SendMessage sends a scalar string over to a specific entity.  BroadcastMessage also 

transmits a scalar string, but instead of specifying a specific entity, the message 

transmitter specifies active context, similar to the ObtainContext function.  

BroadcastMessage sends a message to all entities with active context entries, including 

those that may not be online, that satisfy the constraints given.  Should an entity not be 

connected to the Rover server at the time another entity sends a recipient entity a 

message, the recipient can call GetMessages to retrieve stored messages. 

5.5.4 History API 

Function Description 

ObtainContextProvenance Retrieves context provenance, filtered by parameters. 

ObtainCallHistory Sends back the call history, filtered by parameters. 
Table 4: Querying functions for historical data on the Rover server. 
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One of the key advantages of providing an infrastructure-based ecosystem comes from 

handling all of the function calls, context, messages, and services, through server tier: a 

central server or set of servers.  This allows us to store everything which passes through 

the server tier.  All of the data stored can be used by entities during the execution of a call 

or situation, a playback of a sequence of events, or performing offline calculations at a 

later point in time.  The server tier supports two types of historical logging: context 

provenance (all updates to context) and call history (all communication to and from the 

Rover server).  A Rover server supports two read-only calls, summarized in Table 4: 

ObtainContextProvenance and ObtainCallHistory. 

 Context provenance represents all of the context entries that have been recorded 

in a Rover server.  Every single entry will be stored in a database and has the exact fields 

as a context entry with the addition of when context has been deleted: the removal field.  

Provenance will be stored as follows in an eight-tuple: 

𝑝𝑟𝑜𝑣𝑒𝑛𝑎𝑛𝑐𝑒 ←  𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑟𝑜𝑜𝑡, 𝑙𝑒𝑎𝑓, 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝑒𝑚𝑜𝑣𝑎𝑙  

 All updates to the active context will be recorded as a provenance record with the 

removal flag set to false.  The recording mechanism for provenance does not allow 

records to be deleted.  If a context entry has been removed from the database, a new 

provenance record will be created with the removal flag set to true.  Querying 

provenance records can be done through the ObtainContextProvenance, which allows the 

records to be filtered by any of the record elements. 

 All function calls on a Rover server are captured by the call history recording 

mechanism.  We support retrieving any of the records in the call history by calling the 
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ObtainCallHistory function.  The record consists of a nine-tuple as follows, followed by 

a description of all of the elements: 

𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑚𝑒𝑡𝑎, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑓𝑜,

𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

 source – the calling entity 

 target – the intended entity of the function call, such as the entity which executes 

a server or the entity which a context update concerns 

 meta – the type of call, which could be context, service, message, or history 

 function – the name of the function 

 info – any additional data which the Rover server decides to store about the call 

 request – all of the parameters of the function call, stored as a dictionary 

 response – the entire response given back to the calling entity 

 timestamp – the initial reception of the call by the Rover server 

 duration – the amount of time, in milliseconds, the call took to complete 

5.6 Presence and Context Standards in Rover 

Rover does not explicitly utilize any standards for either presence or context.  Since 

messages require our own custom format, using a standard for communication to and 

from the server tier, more specifically the Rover server, does not seem reasonable.  

However, all of the other tiers (user tier, assistance tier, and utility tier) can utilize any 

standard they see fit to communicate with entities outside of a Rover ecosystem.  The 

Rover server allows multiple standards representing the same context and information 

items to be matched together, as long as an architect matches these items correctly. 



79 

 

5.7 Summary 

In this chapter, we presented the architecture of a Rover ecosystem, the specification of a 

Rover server, and the data structures surrounding how to represent context.  We 

summarize the design of a Rover ecosystem and a Rover server by taking a look at how it 

fits into key aspects as discussed as design criteria by Baldauf, Dustdar, and Rosenberg 

[6] and the categories of classification from Kjær [53].  We outline how Rover fits into 

their descriptions in Table 5. 

 Criteria/Category Evaluation 

B
al

d
au

f,
 D

u
st

d
ar

, 
R

o
se

n
b
er

g
  

[6
] 

Architecture Four-tier server-based ecosystem.  These ecosystems separate 

logical functionality and can communicate with each other. 

Resource Discovery Services and context may be discovered. 

Sensing Context providers and users  

Context Model Custom RDF-like model.  Schemas can be specified, but are not 

explicitly placed into a Rover ecosystem. 

Context Processing Context stored on server, processed by external components. 

Historical Context Data Context and call logs kept on server. 

Security and Privacy All entities and components directly connected with the Rover 

server have to be authenticated.  Communication may be done 

over a secure channel.  Privacy has not been addressed directly 

in the architecture, but may be implemented by an administrator 

as part of the ecosystem. 

  

K
jæ

r 
[5

3
] 

Environment Infrastructure-based, as individual nodes do not communicate 

directly with each other. 

Storage Depends on the Rover server implementation. 

Reflection Context can be queried and received by all participants. 

Quality Can be supplied in a context entry’s evidence parameter. 

Composition Services, context watchers, and context providers may be 

combined by chaining input and output from each service. 

Migration Can be supported by specific services, if desired. 

Adaption Custom designed by a Rover system ecosystem administrator. 

  
Table 5: An evaluation of the Rover architecture with respect to previous context-aware framework discussions. 

 The criteria and categories not address directly by our work in this dissertation 

include security and privacy, composition, and adaption, as they fall outside of the scope 

of this work and will usually be left up to the a Rover ecosystem administrator to decide 
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how to implement these key ideas.  However, we believe that the Rover ecosystem, based 

on the evaluation, provides all of the key benefits needed to provide appropriate context 

mechanisms to support the scenarios we outlined in this chapter. 
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Chapter 6  

The Implementation of a Context-Aware Ecosystem 

In Chapter 5, we examined the design of a context-aware ecosystem.  When 

implementing the features outlined from the design, we have to recognize the limitations 

of the realization of the logical design to a physical one, as well as the additional features 

that may be required in addition to the design.  This chapter presents the implementation 

of a Rover server in detail. 

6.1 Desired Attributes of a Rover Server Implementation 

Although we have implemented only a reference implementation for a Rover server, for 

the purposes of this dissertation, we still need to develop the reference implementation 

with attributes that would make deployment on a larger scale feasible. We have identified 

the following attributes to be critical for a reference implementation: 

 Independent Over-the-Wire Communication Medium 

The Rover server should be designed in such a way that its features can be 

utilized from any network.  Since a Rover server for any given ecosystem will 

always be connected to the Internet or a specific intranet, as long as each entity 

which connects to the Rover server has a path to it, this would be suitable.  

Whether an entity connects to a Rover server via a cellular network or over 

traditional Internet, the Rover server should not be affected in any noticeable way 

which affects its operations or functionality. 
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 Cross-Platform Connectivity 

We cannot assume we can force entities to develop programs in one particular 

way, as the world consists of numerous heterogeneous devices and programming 

languages running on a variety of platforms and development environments.  A 

Rover server should support as many devices as possible.  Although HTTP can be 

used as a transport protocol, the fact that HTTP push from the server does not 

have widespread acceptance, other mechanisms should be supported in addition to 

HTTP to support push capabilities directly. 

 Independent Wire Formats 

A Rover ecosystem developer chooses a wire format suitable for the most number 

of clients that will be used in the ecosystem.  Simple text-based solutions, XML, 

and JSON offer suitable formats that could be used for delivering messages from 

the Rover server to connected entities. 

 Cross-Platform Server Deployment 

A Rover server should be designed in such a way that the core components for the 

Rover server, including backend databases, should be able to be run in any 

number of operating systems and platforms. 

6.2 Prior Rover Server Implementations 

The first Rover implementation from 2002 focused primarily on two goals: building a 

mechanism for enabling location-aware computing and providing a scalable server for 

location-aware clients connecting to it [7].  As described in this dissertation, the current 

design of Rover goes beyond using location as the primary means of context.  Focusing 

primarily on location limits the extensibility of a Rover server. 
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 The key feature of the first Rover server implementation had been its 

contributions to providing a processing scheme for interleaving computation code with 

disk and network operations effectively by using what the authors called actions.  Actions 

provide an efficient mechanism as opposed to using traditional multithreading.  The 

current version of the Rover server does not consider high efficiency to be its main goal, 

but uses similar ideas in its implementations through the use of asynchronous 

programming support from the runtime environment the Rover server executes on. 

 After the first Rover implementation, the focus shifted from location-awareness 

and efficient computations to supporting a system which handles general context.  In 

2007, we described a version of Rover in the same spirit as this dissertation’s description 

of how to design a context-aware architecture [2].  The previous version discussed the 

overall system centralized around the Rover server itself.  We now focus on what we call 

a Rover ecosystem.  By understanding the interaction of how different entities interact 

with each other as a whole, we can better conceptualize how to represent and utilize 

context in general. 

 This dissertation describes a more extensive API than we previously described.  

Although our current work utilizes the same underlying programming language and 

framework for development, as described below, we support a remote procedure call 

(RPC), an HTTP interface for better support for a wide variety of end-user devices and 

service endpoints, as well as a line-based TCP interface to support clients that cannot 

directly utilize our RPC implementation and require push notifications. 
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6.3 Rover Server Implementation Details 

This section describes the server tier in detail.  Specifically, how we have constructed a 

Rover server.  We developed the Rover server using a Linux-based distribution, Fedora 

Core 7 [88], running Linux kernel version 2.6.23.17-88.fc7 [61] using a single core 1.5 

GHz Intel processor with 512 MB of RAM.  We chose non-state-of-the-art equipment to 

demonstrate that it would be feasible to run a Rover server on any type of machine.  

However, we recognize using a lower end machine means that it will not be able to 

handle as many concurrent connections and have lower throughput than a state-of-the-art 

server. 

6.3.1 Development Environment 

Even though we utilized a Linux-based operating system, we chose to use Python, 

version 2.5, a cross-platform scripting language [86].  By using a cross-platform scripting 

language, we can run a Rover server on practically any platform which Python has been 

ported to, including Windows-based machines. 

 Although Python provides networking capability in its standard library [87], we 

chose to utilize the Twisted Networking Library [108].  Twisted provides true 

asynchronous capabilities so that networking and disk operations can be done 

independently of computations, similar to the first Rover server implementation [7].  Like 

Python, Twisted has been ported to several platforms, including Windows. 

 We seriously considered developing a Rover server using the Microsoft .NET 

Framework [81], version 3.0, and utilizing its built-in Windows Communication 

Foundation (WCF) for communication and networking, as it has support for a wide 

variety of service-oriented protocols.  By using service-oriented protocols [12], we can 
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reach a wide variety of devices.  However, we opted not to use the Microsoft .NET 

Framework.  WCF would have provided us industry standard service-oriented protocols, 

but in order to support push messages, in cases such as the SendMessage and Broadcast 

function calls, devices have to utilize a Windows-based platform which supports the 

Microsoft .NET Framework
23

.  Additionally, all of these messages must be delivered 

over HTTP.  Therefore, devices have to be able to start a web server to support pushing 

messages.  Even if all devices supported this, it would not be feasible to do this as 

network policies and device constraints would not allow this in all situations.  Therefore, 

we chose Python and the Twisted Networking Library instead. 

6.3.2 Remote Procedure Call Mechanism 

For prototyping purposes, we chose to use Twisted’s Perspective Broker.  The 

Perspective Broker package provides an RPC-style mechanism for communication.  We 

decided to utilize this instead of a customized line-based protocol
24

 as it makes it easier to 

pass scalar values and complex values, such as lists and dictionaries.  Although made 

specifically for Python and the Twisted Networking framework, the over-the-wire format 

for communication with the Perspective Broker package has been fully specified.  This 

allows interoperability with other programming environments.  A Java programming 

language [37] implementation exists, called TwistedJava [107].  We have written 

example client code using both Python and Java over TCP and transport layer security 

(TLS). 

 

                                                 
23

 Like Twisted’s Perspective Broker, it may be possible to support other platforms. 
24

 We wrap the Perspective Broker mechanism to support a line-based protocol to support clients that 

cannot utilize the Perspective Broker mechanism. 
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6.3.3 Mobility Support 

The Perspective Broker implementation requires a long-lived connection to the Rover 

server from the connecting entities.  However, it may not be entirely possible to keep 

connections actively open all of the time.  For instance, when a mobile device roams 

from one network to another network, it will reconnect and drop a Perspective Broker 

connection to the Rover server each time, depending on how networking has been 

implemented on the device.  This would require a device to keep track of, for instance, 

the entire context it has already received, request context it has not received, and keep 

informing the Rover server it needs to watch context each time it reconnects.  Therefore, 

in addition to a straight implementation of using a direct connection to the Rover server, 

we have implemented an intermediary Rover proxy which impersonates clients when 

connecting with the Rover server.  Figure 9 shows the components which support 

mobility, where PB stands for Perspective Broker and entity can be any user, assistance, 

or utility tier entity. 

PB PB

HTTP
Rover

Proxy

Entity

Entity

Entity

TCP

Rover 

Server
Entity

 

Figure 9: Illustration of the components used to support mobility. 

 The intermediary typically runs within the same runtime environment as the 

server, on a different runtime on the same physical machine as the server, or another 

machine altogether.  In our reference implementation, the intermediary runs on the same 
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physical machine, but not in the same runtime.  A Rover ecosystem administrator can 

decide the actual implementation details, but typically, if the Rover proxy does not reside 

on the same machine as the Rover server runtime, then it should use a secure connection 

protocol.  A Rover proxy supports connected Rover entities which drop their connections 

from the Rover proxy and reconnect it at a later time.  The Rover proxy keeps an active 

connection with a Rover server, on behalf of the client, at all times.  This allows context 

subscriptions and messages to keep flowing to the proxy.  The proxy stores all context 

and message notifications in-memory.  When disconnected entity reconnects with the 

proxy, all backlogged notifications are sent immediately to the entity without the entity 

having to query the Rover proxy or Rover server. 

 The intermediary Rover proxy makes it possible to create an HTTP-based 

querying mechanism.  To do this, we developed a custom web server, also written in 

Python using the Twisted Networking Framework.  This server utilizes the intermediary 

Rover proxy class directly.  We support HTTP and HTTPS connections.  The parameters 

for the RPC calls have been mapped directly into HTTP POST data as a dictionary data 

structure with the parameter name as the key and the contents as the value.  In this 

implementation, serialized data to be placed in the HTTP POST data has been 

represented over-the-wire with the JavaScript Object Notation (JSON) protocol [19].  

Other protocols can be built for use with the Rover server and intermediary Rover proxy, 

including line-based protocols or service-oriented protocols. 

6.3.4 Authentication 

Authentication for the Rover server has been designed with multiple domains and 

organizations in mind.  We designed the Rover server with domain-based credential 
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verification architecture for authentication.  Every entity that makes a connection to a 

Rover server or an intermediary Rover proxy must be authenticated in the reference 

implementation.  In most cases, a secure communication channel with TLS would be 

desirable, though a Rover ecosystem administrator may feel that an unsecure TCP 

connection may be suitable for certain scenarios. 

 Perspective Broker supports supplying a username and a password upon login.  

Since this does not have support for adding an additional parameter, we require the 

domain of an entity to be embedded in the username field.  To send credentials over 

HTTP or HTTPS, entities utilize HTTP Basic Authentication.  We recap the credential 

data structure, as specified in Chapter 5.3.1, here: 

𝑐𝑟𝑒𝑑𝑒𝑛𝑡𝑖𝑎𝑙 ←  𝑑𝑜𝑚𝑎𝑖𝑛, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑  
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Figure 10: The Rover server authentication mechanism.  This shows how the three components interact with 

each other in two different phases.  

 Each individual Rover server sets up one or more verifiers.  Individual verifiers 

relates directly back to an individual domain.  If a Rover server receives credentials in 

which a verifier has not been setup for a particular domain, the entity will immediately be 
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rejected; otherwise, the remaining credentials will be checked against the assigned 

verifier.  The flow of the authentication process can be seen in Figure 10. 

 We have created two reference verifiers: a local database credential mechanism 

and remote verification via the lightweight directory access protocol (LDAP) [119].  For 

the local database verifier, we implemented a simple database to verify whether or not a 

username matches a particular password.  For database connectivity, we utilized 

SQLObject [13], an object-relational mapping package, which supports a large variety of 

databases.   We implemented the database in SQLite [49], an embedded database which 

runs directly from the application itself, though we could have chosen a more traditional 

client-server database architecture instead. 

 Verifying credentials need not be limited to the local machine the Rover server 

resides on.  A Rover server can connect to a remote server if credentials will be passed to 

a remote verifier.  A relational database management system does not need to be used for 

verifying credentials.  In this reference implementation, we implemented a query to a 

remote LDAP server to verify the credentials.  Other verifiers can be implemented as 

necessary, depending on the needs of a Rover ecosystem and existing credentialing 

systems available. 

 Upon a successful login to the system, specialized context for the entity is 

automatically supplied by the Rover server to the entity’s active context.  The user will 

have a “rover/online” value of “true” and the way they log into the Rover server as 

“rover/connection”, consisting of a value of either “direct,” “proxy”, or “HTTP.”  When 

an entity disconnects from the Rover server, the “rover/online” active context will change 

to “false.” 
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6.3.5 Database Support 

In addition to the database support for our local database credentialing verifier, we 

extensively use databases for active context storage and for logging each and every 

command.  This reference implementation uses SQLite [49] and SQLObject [13] for all 

database operations.  We choose SQLite over other traditional client-server database 

implementations as this provides us with the most portability in our implementation. 

 Although we have created our own context model and storage, as described in 

Chapter 5.4.1, we do not preclude an implementation using other representation or 

storage mechanisms.  For instance, we believe it would be possible to map all of the data 

structures for context modeling in the Resource Description Framework (RDF) [117], as 

there have been efforts to extend the RDF representation structure with important 

contextual attributes such as time [38].  However, we do not explore this particular 

implementation as extending work done in the Semantic Web goes beyond the scope of 

this dissertation. 

 We recap our basic context model from Chapter 5.4.1 below: 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ←  𝑑𝑜𝑚𝑎𝑖𝑛, 𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒  

𝑟𝑜𝑜𝑡 ←  𝑛𝑎𝑚𝑒𝑟𝑜𝑜𝑡   

𝑙𝑒𝑎𝑓 ←  𝑟𝑜𝑜𝑡, 𝑛𝑎𝑚𝑒𝑙𝑒𝑎𝑓   

𝑐𝑟𝑒𝑎𝑡𝑜𝑟 ←  𝑠𝑢𝑏𝑗𝑒𝑐𝑡  

𝑒𝑛𝑡𝑟𝑦 ←  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑟𝑜𝑜𝑡, 𝑙𝑒𝑎𝑓, 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝  
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Figure 11: Database diagram of how the context model has been represented in a relational database. 

The root and leaf object pair must be unique per Rover server.  Figure 11 shows 

the relational database representation of the context data.  Since we use this storage 

mechanism for fast access of active context and not a previous state, we must support this 

context storage mechanism for in-memory databases.  SQLite has support for both disk- 

and memory-based storage.  Should a Rover server terminate unexpectedly and the 

context database for active context uses memory-based storage, we can recover the last 

available active state using the long-term storage of context history and, possibly, the call 

history. 
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Figure 12: Context provenance database structure. 

 Context history and call history must be stored by the Rover server on a long-term 

storage device, such as a hard drive or a network-attached storage device.  We cannot use 

in-memory storage for this as provenance and history will be used for analysis at a later 

time and for recovery of necessary active context.  We recap the model for context 

provenance and call history from Chapter 5.4.1 below: 

𝑝𝑟𝑜𝑣𝑒𝑛𝑎𝑛𝑐𝑒 ←  𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑟𝑜𝑜𝑡, 𝑙𝑒𝑎𝑓, 𝑣𝑎𝑙𝑢𝑒, 𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑟𝑒𝑚𝑜𝑣𝑎𝑙  

𝑖𝑠𝑡𝑜𝑟𝑦 ←  𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑚𝑒𝑡𝑎, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛𝑓𝑜,

𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛  

The context provenance database structure, as seen in Figure 12, looks very 

similar to the Entry table in Figure 11 with two minor differences.  First, we added a 

removal field.  The removal field makes it easier to reconstruct the active context from 

the context provenance, when necessary.  When removing a context entry, we do not 

remove the row from the context provenance database; we set the removal field to true.  

Additionally, we also place a root column as well.  Although this nullifies the effects of 
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database normalization, this allows an easier way to perform offline processing at the 

expense of an extra 32-bit column. 

Entity

idPK

entity

History

idPK

fk_sourceFK

fk_targetFK

meta

function

info

request

response

timestamp

duration
 

Figure 13: Call history database structure. 

The call history is stored in a database with the structure illustrated in Figure 13.  

All calls to the Rover server will be recorded, including every single part of the request 

and response.  Since the request and the response values may be complex objects, we 

store them as serialized JSON objects to ensure portability between implementations.  

Storing the objects using the Python pickle serialization method severely limits 

portability. 

Entity

idPK

entity

Message

idPK

fk_sourceFK

fk_targetFK

message

timestamp
 

Figure 14: Message database schema. 

 The SendMessage and BroadcastMessage API calls send messages to a particular 

endpoint through a Rover server.  If the message’s recipient does not have an active 
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connection to a Rover server, an intermediary Rover proxy, or has been using HTTP as 

its communication message, it must be stored on a disk as Rover’s messaging system 

must be implemented with a mailbox.  Therefore, we have implemented a simple mailbox 

system with a database schema as shown in Figure 14. 

6.3.6 Rover API 

The RPC interface to the Rover server follows the specification in Section 5.5 faithfully.  

All of the functionality has been described in detail in Appendix A, from A.3 to A.6.  

However, the Rover server specification does not include considerations for real world 

extensions such as implementing callback methods for subscriptions and messages as 

well as creating an intermediary Rover proxy and HTTP interface.  These additions have 

been explained in detail in the same appendices, while functions which aid in connection 

management have been described in Appendix A.2. 

6.4 Example Application Scenario: V911 

We present an example application scenario which demonstrates the major capabilities of 

the Rover architecture and a Rover server reference implementation.  We have been 

working on an application scenario and its implementation to provide next generation 9-

1-1 [31] capabilities which we call V911.  We originally presented the ideas behind V911 

as enhancing emergency response in Section 5.2.2 and we iterate through an example 

based on a fire situation on a university campus. 



95 

 

 

Figure 15: Example campus services, including dining services, weather information, and real-time 

transportation updates. 

6.4.1 Ecosystems and Entities in an V911 Emergency Response Scenario 

In the scenario we present, two distinct Rover ecosystems which co-exist with each other.  

We outline the two ecosystems here, illustrated in Figure 16, with the entities within the 

individual ecosystems.  Some entities exist in both ecosystems and we explain why they 

exist in both. 
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Status Provider

Building Expander
Rover Server B

User

Dispatcher Console

Streaming Server

First Responder

Rover Server A

General Campus Community Rover Ecosystem Emergency Personnel Rover Ecosystem

 

Figure 16: An overview of the two Rover ecosystems and the entities which reside within them. 

 

 

Figure 17: Dispatcher Console screenshot with both Rover ecosystems incorporated into the display. 
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 General Campus Community Rover Ecosystem 

Entities in this ecosystem utilize the Rover server primarily to obtain campus 

related services, as originally described in Section 5.2.1.  This includes retrieving 

dining menus, weather information, and real-time transportation updates, 

illustrated by screenshots in Figure 15.  The entities in this system include, with 

the tiers they reside in: 

o Rover Server A (Server Tier) 

Every single entity connects to Rover Server A.  This server provides all 

of the campus related services as well as the first point of contact when a 

member of the campus community needs an emergency service. 

o User (User Tier, Utility Tier/Context Provider) 

A User entity calls services from Rover Server A, can provide audio and 

video to a streaming server, and initiate emergency requests.  User entities 

can be implemented on any number of platforms.  To date, we have 

written User entity clients on the Nokia N810
25

, Apple iPhone and iPod 

Touch (without streaming capabilities), and the Windows Mobile-enabled 

Samsung SGH-i907. 

o Dispatch Console (User Tier, Utility Tier/Context Watcher) 

The Dispatch Console acts as the Public Safety Answering Point (PSAP) 

by watching for context events to occur, obtaining status messages 

concerning campus, and acquire the appropriate audio and video streams 

from the User.  Our implementation of the Dispatch Console can be seen 

in Figure 17, written using the Microsoft .NET platform. 

                                                 
25

 The Nokia N810 runs a Debian variant called maemo [74]. 
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o Streaming Server (Assistance Tier/Participating, Utility Tier/Service) 

The Streaming Server receives and forwards streams, which may consist 

of audio and/or video.  It also provides a service to Rover Server A to 

obtain locations to stream to for individual entities.  We have utilized both 

VideoLAN [112] and LiveCast [62] to provide streaming capabilities. 

o Status Provider (Utility Tier/Context Provider) 

The Status Service entity provides context to Rover Server A concerning 

the operating status of the campus. 

o Building Expander (Utility Tier/Context Watcher/Context Provider) 

This context expander evaluates a building number and provides the 

latitude and longitude coordinates of the building. 

 

Figure 18: Annotated Dispatch Console screenshot. 
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 Emergency Personnel Rover Ecosystem 

Entities in this ecosystem assist User entities from the campus ecosystem in the 

event of an emergency.  We list the entities involved below: 

o Rover Server B (Server Tier) 

Rover Server B communicates only with emergency personnel.  This 

allows information items to be separated such that only the appropriate 

entities coexist on the same ecosystem. 

o User (User Tier) 

The User does not communicate directly with Rover Server B, but sends 

audio and video streams to the streaming server. 

o Dispatch Console  (User Tier, Utility Tier/Context Watcher) 

In this ecosystem, the Dispatch Console examines the situation a User 

presents and decides the actions to take, including looking at the streams 

from the Streaming Server and the First Responder entities in the area.  

Figure 18 shows an annotated Dispatch Console. 

o First Responder (User Tier) 

First Responder entities indicate their current location and status.  The 

Dispatch Console decides what First Responder entities to send to a scene 

and what information items to forward to them.  First Responder entities 

can also obtain streams from the Streaming Server as necessary. 

o Streaming Server (Assistance Tier/Participating, Utility Tier/Service) 

The Streaming Server forwards audio and video streams from a User and 

static camera feeds to the Dispatch Console and the First Responder. 



100 

 

 Three entities exist in all three ecosystems: the Dispatch Console, the Streaming 

Server, and the User.  However, the Dispatch Console will be responsible for managing 

key context between the two ecosystems and coordinating key entities.  Although this can 

be automated, the Dispatch Console represents man-in-the-loop operations.  This shows 

that moving information items and context between two ecosystems can either be 

automated or driven by a user.  

6.4.2 Fire Event Scenario 

To illustrate how to use the Rover API, we present a detailed fire event situation with the 

two ecosystems outlined in the previous section.  The entire flow of the scenario has been 

illustrated in a sequence diagram in Figure 19.  We have shortened the API calls in this 

section and in the sequence diagram for readability reasons.  We also assume that all 

entities connected to either Rover server have been connected using a direct TLS 

connection. 
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Dispatch Console First ResponderUser Streaming Server Status Provider Building Expander

SupplyContext(Campus, Status, Operating, Open)

InformContext(Emergency, Alert, Fire)

InformContext(Campus, Building, 115)

NotifyContext(User, Campus, Building, 115)

SupplyContext(User, Location, GPS, 38.99084,-76.936324)

NotifyContext(User, Emergency, Alert, Fire)

NotifyContext(User, Location, GPS, 38.99084,-76.936324)

PublishService(GetStreamingURL)

CallService(GetStreamingURL) : Req(User)

Rover Server A

GetStreamingURL : Req(User)

GetStreamingURL : Resp(http://streaming_server/User)

CallService(GetStreamingURL) : Resp(http://streaming_server/User)

SupplyContext(User, Stream, URL, http://streaming_server/User)

NotifyContext(User, Stream, URL, http://streaming_server/User)

WatchContext(*, Campus, Building)

WatchContext(*, Emergency, Alert)

WatchContext(*, Location, GPS)

WatchContext(*, Stream, URL)

SendMessage(First Responder, Alert(Fire) - 38.99084/-76.936324 - http://streaming_server/User)

SendMessage(Dispatch Console, Alert(Fire) - 38.99084/-76.936324 - http://streaming_server/User)

NotifyContext(Campus, Status, Operating, Open)

Rover Server B

WatchContext(*, Reporting, RespondingTo)

InformContext(Reporting, RespondingTo, User)

NotifyContext(First Responder, Reporting, RespondingTo, User)

PublishService(GetStaticCameraURL)

CallService(GetStaticCameraURL) : Req(115)

GetStaticCameraURL: Req(115)

GetStaticCameraURL : Resp(http://streaming_server/115)

CallService(GetStaticCameraURL) : Resp(http://streaming_server/115)

ForwardStream(http://streaming_serve/User)

RequestStream(http://streaming_server/User)

ForwardStream(http://streaming_server/User)

RequestStream(http://streaming_server/User)

ForwardStream(http://streaming_server/User)

RequestStream(http://streaming_server/115)

ForwardStream(http://streaming_server/115)

BroadcastMessage(Campus, Building, 115, Evacuate the Building)

SendMessage(Dispatch Console, Evacuate the Building)

WatchContext(Campus, Status, Operating)

 

Figure 19: V911 Sequence Diagram of Events 
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 Upon starting up both ecosystems, both Rover servers, and the entities involved in 

an emergency response begin watching context.  The context watcher and provider 

Building Expander issues WatchContext(*, Campus, Building) to Rover Server A with 

the intent of expanding context giving building numbers to their latitude and longitude 

coordinates.  The Dispatch Console, to Rover Server A, issues WatchContext(Campus, 

Status, Operating) to watch for changes in operating status of the campus, 

WatchContext(*, Emergency, Alert) to listen to User entities which issue an alert, and 

WatchContext(*, Location, GPS) to know the exact location of all entities on Rover 

Server A.  The Dispatch Console also issues commands to Rover Server B: 

WatchContext(*, Stream, URL) to know when any audio and video streams start as well 

as WatchContext(*, RespondingTo, Entity) to receive notifications when First Responder 

entities indicate they will be responding to a scene. 

 Although now specified here, any campus services will issue a PublishService call 

to indicate the services they provide.  The Streaming Server calls Rover Server A with  

PublishService(GetStreamingURL) indicates where a streaming client should send their 

streams to, and calls Rover Server B with PublishService(GetStaticCameraURL) which 

indicates the URL to obtain a stream from a static camera, for instance, at a building.  

This enables an ecosystem administrator the ability to ensure that streams can only be 

accessed by the appropriate entities. 

 The Status Service sends a SupplyContext(Campus, Status, Operating, Open) call 

to Rover Server A.  This context will be forwarded to the Dispatch Console because of its 

subscription to Campus/Status/Operating. 
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 The User primarily uses Rover Server A for the campus services, not shown in 

Figure 19.  However, the User notices a small fire in the building they occupy.  Instead of 

calling 9-1-1 or messaging a PSAP directly, the User issues an InformContext(Campus, 

Emergency, Alert, Fire) to the server, which immediately gets forwarded to the Dispatch 

Console as it has a subscription to all Alert messages.  The User also transmits its 

building number (115), which will be received by the Building Expander.  The Building 

Expander performs a lookup and sends the GPS coordinates to Rover Server A, which 

gets forwarded to the Dispatch Console so that the location of the possible fire will be 

displayed on a map. 

 The User communicates with Rover Server A to call the GetStreamingURL 

service offered by the Streaming Server.  Rover Server A forwards the call to the 

Streaming Server and the Streaming Server sends the result back to the User via Rover 

Server A.  When the User obtains the URL to stream to, the User begins streaming audio 

and video from their device.  Upon receiving the stream, the Streaming Server issues a 

SupplyContext(User, Stream, URL, http://streaming_server/User), which gets forwarded 

to the Dispatch Console.  The Dispatch Console then retrieves the stream for viewing. 

 Upon reviewing the situation, the person at the Dispatch Console decides to send 

a First Responder to the scene.  After evaluating all of the First Responder entities (their 

roles and location, not shown in Figure 19), the Dispatch Console issues a SendMessage 

command to Rover Server B with all of the relevant data the First Responder selected 

should receive: the type of alert, the location to respond to, and a stream to look at.  The 

First Responder sends a InformContext(Reporting, RespondingTo, User) to Rover Server 
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B, which forwards it to the Dispatch Console.  The First Responder also retrieves the 

stream that it should look at. 

 Knowing the situation could be in an area wider than the User’s specific location, 

the Dispatch Console retrieves the URL of the static camera for the building.  The 

Dispatch Console calls the GetStaticCameraURL service served by the Streaming Server 

via Rover Server B.  Upon getting the URL, the Dispatch Console views the stream and 

decides that the building should be evacuated.  To do this, the Dispatch Console sends 

Rover Server A a BroadcastMessage(Campus, Building, 115, Evacuate the Building) 

message.  All entities in this building receive this message.  In Figure 19, we illustrate 

one such entity, the User who started this chain of events, receiving this message. 

6.4.3 Discussion 

The V911 scenario illustrates the utility of designing a first responder system using the 

Rover framework.  Every single API call and context update is recorded by both Rover 

ecosystems in Rover Server A and Rover Server B.  These calls are placed directly into 

the call history and the context provenance databases.  By logging everything that goes 

through the Rover servers, the situation can be played back like a video recording by an 

auditor.  The auditor can take a look at the sequence of events as they occurred when 

reviewing the situation for a report or to use as a future case study on this situation. 

 The presence of two Rover ecosystems separates unnecessary services and 

context from being exposed to parties that may not need it or have access to them.  The 

dispatcher acts as a man-in-the-loop which allows information items and context to be 

abstracted away as necessary such that first responders only receive relevant context.  
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First responders need not sift through unnecessary information items and context as the 

dispatcher does this for them. 

6.5 Summary 

Chapter 5 addressed the design of a Rover ecosystem and corresponding Rover servers 

while this chapter addressed implementation issues that arise and how we implemented a 

Rover server.  In particular, we described the goals of the implementation, specifics 

concerning the development environment of the Rover server, mobility support, 

authentication mechanisms, context handling, and database development.  Additionally, 

we provided a full example on how multiple entities, which have different operating 

systems and form factors, interact with one another within different ecosystems. 
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Chapter 7  

Concluding Remarks 

Understanding how to effectively make use of information requires a thorough 

examination of context, specifically what context is and how to use it in our everyday 

lives.  From a technology perspective, we, as a society, have are settled into the 

Information Age, but have found ourselves inundated with copious amounts of 

information.  This requires so much of our attention, that we regularly spend time 

filtering out irrelevant information and hopefully not disregarding information that may 

be useful.  Thus, we are well into the Attention Age. 

 Information includes not only messages and text, but also services and interaction 

between entities, including people.  Messages, text, services, and interactions all have 

associated context with them.  By exposing context in the design of a system allows users 

and developers to understand their information better.  Thus, we are attempting to move 

out of the Attention Age into the Context-Aware Age, where context can help alleviate 

the amount of attention required to process information. 

 In this dissertation, we elaborated on definitions of context, the key aspects of 

context, and things we need to consider when designing a context-aware system.  We the 

discussed our core requirements of a context-aware system, while taking into account the 

way people organizations operate within their own boundaries, when they need to 

communicate with organizations outside their scope, and when entities coexist on 

multiple organizations.  To achieve this, we discussed the logical design of a Rover 

ecosystem and the entities it contains.  As these organizations share data, messages, and 
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services, we described the central communication point of a Rover ecosystem: the Rover 

server.  The Rover server manages context, messages, and services in a uniform manner. 

 We continued our discussion by mapping the logical design of a Rover ecosystem 

and its central communication point, a Rover server, to an implementation which takes 

practical issues into consideration.  We also took a look at a case study regarding an 

emergency response scenario in which using the Rover architecture would be beneficial. 

7.1 Future Directions 

 We initially described research areas that we have not addressed in this 

dissertation in Section 1.4.  These areas included usability issues, security issues, privacy 

concerns, issues dealing with dissonant information, providing misinformation through 

deliberate lying, and methods of reasoning.  One of these should be addressed in the near 

term: authorization.  The current Rover architecture does not have any built in 

authorization other than authenticating an entity to be connected to a Rover server and 

nothing else.  The following list, albeit incomplete, of authorization mechanisms should 

be provided in future implementations: certain commands must be protected, specific 

context should only be read or updated only by privileged entities, restrictions on service 

calls
26

, and restrictions on messages must be in place. 

 Another important aspect to look at would be how to handle context updates.  In 

the current architecture, updates happen without regard to analyzing active context.  

Currently, only the function caller specifies whether or not to delete specific context 

entries.  Like authorization, there must be mechanisms in place to determine whether or 

not context entries should be deleted based on their context.  This also alleviates the 

                                                 
26

 Currently, services themselves can determine whether or not to allow a service call to go through or not. 
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function caller from having to specify the actions to take for each individual context 

entry, as they may have to evaluate the active context proactively. 

 We have designed the Rover architecture to be the core building to enable 

extensions, such as the ones described above, to be developed.  Several components of 

Rover server can be interchanged with specialized components, such as a context 

mechanism, context inference engine, authorization schemes, communication protocols, 

and wire formats.  This allows the flexibility of the Rover architecture to be utilized with 

ease for designers and developers. 
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Appendix A  

Rover Server Reference Implementation Function List 

The specification for the Rover Server application programming interface (API), as 

described in Section 5.5, has been completely implemented in our Rover server reference 

implementation.  To account for any differences between the specification and using 

Python [86] with the Twisted programming framework for networking [108], we have 

added necessary functionality to bridge the gap between them.  Additional functions have 

been created to support and facilitate the main Rover functionality.  This appendix 

provides the complete function list documentation of the reference implementation. 

 Functions share objects between each other.  These objects have been described in 

general in Sections 5.4.1 and 5.5.4.  Described in Appendix A.1, common objects have 

the following documentation format: 

 

Object Name:  
 example object name (section, if part of the specification, with a description) 

Description: 

 Example description. 

Contents: 
 variable0 – type 

Description. 

 variable1 – type 

Description. 

 … 

 variablen – type 

Description. 
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 A variable can be a scalar value, a list, or a dictionary.  A list can consist of either 

scalar values or common objects, but not both.  If a list, the variable’s description will 

begin with “a list of,” followed by the type of scalar value or common object’s name. 

 The API functions, described in Appendix A.2 through A.6, follow the 

documentation format below.  If the function’s implementation fulfills a specification 

function, we indicate the section where to find the definition.  Availability shows if the 

function can be used with a particular Rover connection type.  Should a function not be 

usable, the connection type will have a strikeout.  We indicate the use of common objects 

in the description for parameters.  The parameter can be a scalar value or a list. 

 

Function Name: 
 example function name (section, if part of the specification) 

Description: 
 Example description. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 parameter0 – type 

Description. 

 parameter1 – type 

Description. 

 … 

 parametern – type 

Description. 

Output Parameters: 

 parameter0 – type 

Description. 

 parameter1 – type 

Description. 

 … 

 parametern – type 

  Description. 

 

 

 Similar to the Rover server API functions, entities create callback functions to 

receive messages directly from the Rover server.  Entities pass references to these 
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callback functions to the Rover server.  We specify these callback functions in a similar 

way as the API functions above, with the following modifications: 

Callback Function Name: 
 example function name 

Description: 
 Example description, including related functions which can be passed a reference 

 to the callback object. 

Input Parameters: 
 parameter0 – type 

Description. 

 parameter1 – type 

Description. 

 … 

 parametern – type 

Description. 

Output Parameter: 

 parameter – type 

Description. 

A.1 Session API 

Object Name: 
 avatar (5.4.1 as subject) 

Description: 
 Login information item concerning the entity connected to the Rover server. 

Contents: 
 domain – a scalar string 

The administrative domain of the user. 

 username – a scalar string 

The identity of the user. 

 

 

Object Name:  
 contextEntry (5.4.1 as entry) 

Description: 

 An object which represents a context entry, typically stored on a Rover server. 

Contents: 
 identifier – a scalar string 

An identifier which uniquely identifies each contextEntry object on a 

 specific Rover server. 

 entity – a scalar string or an avatar object 

The subject of the context entry. 

 root – a scalar string 

The root portion of the context predicate. 
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 leaf – a scalar string 

The leaf part of the context predicate. 

 value – a scalar string or a reference to something 

The object of the context entry. 

 evidence – a scalar string or a reference to another contextEntry 

Supports how the context entry has been derived. 

 creator – a scalar string or an avatar object 

Who created the context entry. 

 timestamp – a scalar long or a datetime value 

  The relative or absolute time of when the Rover server created the context  

  entry. 

 

 

Object Name:  
 contextLeafDetail 

Description: 

 An object which represents a portion of a context entry to be updated. 

Contents: 
 leaf – a scalar string 

The leaf part of the context predicate. 

 value – a scalar string or a reference to something 

The object of the context entry. 

 evidence – a scalar string or a reference to another contextEntry 

Supports how the context entry has been derived. 

 

 

Object Name:  
 contextPredicate (5.4.1 as leaf) 

Description: 

 An object containing only the context predicate portion of a context triple. 

Contents: 
 root – a scalar string 

The root portion of the context predicate. 

 leaf – a scalar string 

The leaf part of the context predicate. 

 

 

Object Name:  
 contextPredicateWithEntity 

Description: 

 An object containing a context triple without the object element. 

Contents: 
 entity – a scalar string or an avatar object 

The subject of the context triple. 

 root – a scalar string 

The root portion of the context predicate. 
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 leaf – a scalar string 

The leaf part of the context predicate. 

 

 

Object Name:  
 contextPredicateWithValue 

Description: 

 An object representing a context triple without the subject element. 

Contents: 
 root – a scalar string 

The root portion of the context predicate. 

 leaf – a scalar string 

The leaf part of the context predicate. 

value – a scalar string or reference to something 

The object of the context entry. 

 

 

Object Name:  
 contextTriple (5.4.1 as an analogy to a triple, but leaf instead of a predicate) 

Description: 

 An object representing an entire context triple. 

Contents: 
 entity – a scalar string or an avatar object 

The subject of the context entry. 

 root – a scalar string 

The root portion of the context predicate. 

 leaf – a scalar string 

The leaf part of the context predicate. 

value – a scalar string or reference to something 

The object of the context entry. 

 

 

Object Name:  
 serviceDescription 

Description: 

 A five-tuple object describing a specific service, including the entity which runs 

 the service.  Any service can be run by multiple entities at different locations. 

Contents: 
 name – a scalar string, identifies a particular service. 

 description – a scalar string 

Describes a particular service and can also specify the input and output 

parameters for the service described. 

 requiredContext – a list of contextPredicate objects 

Context concerning the entity calling the service that must be on the Rover 

 server. 

 optionalContext – a list of contextPredicate objects 
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Context concerning the entity calling the service that will be forwarded 

from the Rover server if available, as the service will use the context to aid 

the service execution. 

 avatar – an avatar object 

The service entity which will execute the service. 

 

 

Object Name: 
 message 

Description: 
 An encapsulated message that will be sent from one entity to another. 

Contents: 
 sender – a scalar string or an avatar object 

Identifies the sender of the message. 

 body – a scalar string 

The actual message itself. 

 timestamp – a scalar long or a datetime value 

The moment the Rover server receives a message to forward or broadcast. 

 

 

Object Name:  
 serviceIdentifier 

Description: 

 A concatenation of a service name with the service entity which executes it. 

Contents: 
 avatar – an avatar object 

The service entity which will execute the service. 

 name – a scalar string 

Identifies a particular service. 

 

 

Object Name:  
 provenanceHistory (5.5.4 as provenance) 

Description: 

 An information item containing the record of a context provenance entry. 

Contents: 
 entity – a scalar string or an avatar object 

The subject of the context entry. 

 root – a scalar string 

  The root portion of the context predicate. 

 leaf – a scalar string 

The leaf part of the context predicate. 

 value – a scalar string or a reference to something 

The object of the context entry. 

 evidence – a scalar string or a reference to another contextEntry 

Supports how the context entry has been derived. 
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 creator – a scalar string or an avatar object 

Who created the context entry. 

 timestamp – a scalar long or a datetime value 

Relative or absolute time when the Rover server created the context entry. 

 removed – a scalar Boolean 

Whether or not the context entry has been removed from the active context 

when this history has been recorded. 

 

 

Object Name:  
 callHistory (5.5.4 as history) 

Description: 

 An information item containing the record of a call history entry. 

Contents: 
 source – a scalar string or an avatar object 

The entity which calls a function on the Rover server. 

 target – a scalar string or an avatar object 

The entity which the function call concerns, potentially the caller itself. 

 meta – a scalar string 

The type of function called, typically the section titles from Appendices 

A.2 to 0. 

 function – a scalar string 

The name of the function called. 

 info – a scalar string 

Can contain anything which concerns the function call. 

 request – a dictionary 

Contains all of the information items in the parameters: 

   keys – the formal name of the parameter 

   values – the contents of the parameter 

 response – a scalar string 

The response the Rover server sends back to the entity. 

 timestamp – a scalar long or a datetime value 

The relative or absolute time of when the Rover server received the 

function call. 

 duration – a scalar long 

The amount of time, in milliseconds, it took to execute the function.  If 

you add the timestamp and the duration together, you get the finishing 

timestamp of the function call. 

 

 

Object Name:  
 remotePerspective 

Description: 

 A reference to code specific to Twisted which can be used to call remote 

 functions on another entity’s runtime environment.  Used primarily for callbacks.   

Contents: 
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 remotePerspective – a scalar reference 

Helper object which the Rover server can use to execute callbacks to a 

connected entity. 

 

A.2 Session API 

Function Name: 
 Avatar 

Description: 
 Returns the domain and username of the connected entity. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 avatar – an avatar object 

Contains the domain and username of the caller. 

 

 

Function Name: 
 LocalTime 

Description: 
 Returns the current date and time of the Rover server. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 datetime – a scalar long 

The date and time of the Rover server, specified in milliseconds from the 

UNIX epoch. 

 

 

Function Name: 
 Status 

Description: 
 Returns an information item containing stored session data of the connected 

 component on a Rover server. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 avatar – an avatar object 

Contains the domain and username of the caller. 
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 messageCount – a scalar integer 

Returns the number of messages held on the  Rover server intended for 

delivery to the caller. 

 currentContext – a list of contextEntry objects 

Contains the entire active context entries in the Rover server concerning 

the caller. 

 contextWatchList – a list of contextTriple objects 

Contains the subscriptions the connected entity has for context it has an 

interest in. 

 

 

A.3 Context API 

Function Name: 
 SetupContextPerspective 

Description: 
 Sets up or removes a remotePerspective to be used when a contextEntry arrives at 

 a Rover server and a remote entity, connected via the Indirect-TCP interface, has 

 a subscription to it. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 remotePerspective – a remotePerspective object 

The reference to the callback object the Rover server should use when 

context an entity wants to know about arrives.  If the reference has been 

set to null, then remove the existing remotePerspective, otherwise create 

or replace the current one. 

Output Parameters: 

 isSetup – a scalar Boolean 

Whether or not the remotePerspective has been added or removed 

successfully. 

 

 

Function Name: 
 WatchContext (5.5.1) 

Description: 
 Indicates to the Rover server that the connected entity wishes to watch a particular 

 context predicate.  If connected using the Direct interface, all contextEntry 

 notifications will arrive via the remotePerspective reference provided.  An entity 

 may subscribe to the same contextEntry multiple times if a different 

 remotePerspective has been setup for each subscription.  If  connected using the 

 Indirect-TCP interface, notifications will first attempt to be  sent via the 

 remotePerspective provided by SetupContextPerspective.  Should this attempt 

 failed, the context will be stored until the entity calls ObtainStoredContext.  
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 Connections via the Indirect-HTTP interface must always call 

 ObtainStoredContext to retrieve any subscribed context notifications. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 contextPredicate – a contextPredicate object 

Specifies the predicate to watch.  If a particular content of the 

contextPredicate object has a wildcard character, then it will return all 

values for that particular part. 

 remotePerspective – a remotePerspective object 

Only used by connections via the Direct interface, this indicates the 

reference of where to send all context updates to.  If provided in an 

Indirect-TCP or Indirect-HTTP connection, this field will be ignored. 

Output Parameters: 

 isSetup – a scalar Boolean 

Whether or not the Rover server has been setup to actively watch for 

contextPredicate values on behalf of the function caller. 

 

 

Function Name: 
 UnwatchContext (5.5.1) 

Description: 
 Removes a particular context predicate from an entity’s watch list.  For 

 connections via the Direct interface, the remotePerspective must be provided, 

 otherwise, it must not be provided. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 contextPredicate – a contextPredicate object 

Specifies the predicate to not watch. 

 remotePerspective – a remotePerspective object 

Only used by connections via the Direct interface, this indicates the 

reference of where all context updates had been sent to.  If provided in an 

Indirect-TCP or Indirect-HTTP connection, this field will be ignored. 

Output Parameters: 

 isSetup – a scalar Boolean 

Whether or not the Rover server no longer actively watches for 

contextPredicate values on behalf of the function caller. 

 

 

Callback Function Name: 
 NotifyContext 

Description: 
 A callback function passed to SetupContextPerspective, WatchContext, and 

 UnwatchContext.  Entities received pushed context entries through this function. 

Input Parameters: 
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 contextEntry – a contextEntry object 

The entry to send to the entity. 

Output Parameter: 

 None. 

 

 

Function Name: 
 ObtainStoredContext (5.5.1) 

Description: 
 Retrieves any context notifications stored on the Rover server that an entity has 

 subscribed to and the Rover server has received. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 contextEntries – a list of contextEntry objects 

The stored context entries received due to a context subscription. 

 

 

Function Name: 
 InformContext (5.5.1) 

Description: 
 Updates the calling entity’s active context. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 

 root – a scalar string 

The root portion of the context predicate. 

 contextLeafDetail – a list of contextLeafDetail objects 

The specific leaves in the active context to update, related to the root. 

 pruneRoot – a scalar Boolean 

Indicates whether or not to remove all active context with the same root 

prior to adding the context. 

 replaceLeaf – a scalar Boolean 

Used to determine whether or not to replace a particular contextEntry if a 

similar one with the same root and leaf exist. 

Output Parameters: 

 contextEntries – a list of contextEntry objects 

The context which has successfully been updated on the Rover server. 

 

 

Function Name: 
 SupplyContext (5.5.1) 

Description: 
 Updates a specified entity’s active context. 
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Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 

 entity – a scalar string or an avatar object 

The subject of the context entry. 

 root – a scalar string 

The root portion of the context predicate 

 contextLeafDetail – a list of contextLeafDetail objects 

The specific leaves in the active context to update, related to the root. 

 pruneRoot – a scalar Boolean 

Indicates whether or not to remove all active context with the same root 

prior to adding the context 

 replaceLeaf – a scalar Boolean 

Used to determine whether or not to replace a particular contextEntry if a 

similar one with the same root and leaf exist. 

Output Parameters: 

 contextEntries – a list of contextEntry objects 

The context which has successfully been updated on the Rover server. 

 

 

Function Name: 
 ObtainContext (5.5.1) 

Description: 
 Queries the active context and filters result by specified entities, roots, and 

 complete context predicates. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 contextPredicateWithEntities – a list of contextPredicateWithEntity object 

The filtering constraints.  To ignore a particular constraint of the context 

triple, use a wildcard. 

Output Parameters: 

 contextEntries – a list of contextEntry objects 

The results of the query.  Returns an empty list if no contextEntry objects 

have been found. 

 

 

Function Name: 
 ObtainContextByReference (5.5.1) 

Description: 
 Queries the active context by a reference identifier. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 identifier – a scalar string 
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An identifier which uniquely identifies each contextEntry object on a 

specific Rover server. 

Output Parameters: 

 contextEntry – a contextEntry object 

The results of the query.  Returns null if an object does not have the 

specified identifier. 

 

A.4 Service API 

Function Name: 
 PublishService (5.5.2) 

Description: 
 Informs a Rover server that the caller can execute a particular service.  Each 

 individual service name pairs with the avatar of the service.  The service entity 

 must be a Direct connection to the Rover server.  When the connection breaks, the 

 service will be automatically removed from being callable. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 serviceDescriptions – a list of serviceDescription objects 

Contains all of the services to be published. 

 remotePerspective – a remotePerspective object 

The interface the Rover server calls when an entity wishes to call a 

particular service. 

Output Parameters: 

 serviceDescriptions – a list of serviceDescription objects 

Contains all of the services published successfully. 

 

 

Function Name: 
 UnpublishService (5.5.2) 

Description: 
 Removes a service from being published from a Rover server.  The original 

 connection must call this for the function to complete properly. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 serviceDescriptions – a list of serviceDescription objects 

Contains all of the services to be removed from publication. 

Output Parameters: 

 serviceDescriptions – a list of serviceDescription objects 

Contains all of the services removed from publication. 
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Callback Function Name: 
 Service 

Description: 
 A callback function passed to PublishService and UnpublishService, calls to a 

 particular service will be forwarded to this function.  The callback function name 

 should only be considered a placeholder, as the actual implementation must have 

 the service name in it. 

Input Parameters: 
 entity – a scalar string or an avatar object 

Indicates who called the service. 

 data – a scalar string 

The request information item to the service.  The data will not be used 

directly by the Rover server except in storage to the call history database. 

 contextEntries – a list of contextEntry objects 

The complete list of context entries concerning the calling entity. 

Output Parameter: 

 data – a scalar value, the response information item of the service.  If an error  

  occurs during execution, the callback function returns an errorMessage  

  instead of data. 

 errorMessage – a scalar string, an information item that indicates the reason the  

  call to the service did not succeed. 

 

 

Function Name: 
 ListAllServices (5.5.2) 

Description: 
 Retrieves a list of all services published and available on the Rover server. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 serviceDescriptions – a list of serviceDescription objects 

A list of all published services on the Rover server ListAllServices 

executed on. 

 

 

Function Name: 
 ListRelevantServices (5.5.2) 

Description: 
 Retrieves a list of services that can be called by an entity based on the entity’s 

 active context on the Rover server. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 
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Output Parameters: 

 serviceDescriptions – a list of serviceDescription objects 

A list of published services that can be called based on the calling entity’s 

active context. 

 

 

Function Name: 
 CallService (5.5.2) 

Description: 
 Calls a particular entity’s service.  If the service cannot be called for any reason, 

 such as the calling entity not having the appropriate active context, the caller will 

 be notified that the service cannot be called.  Otherwise, it will return the results 

 of the call. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 serviceIdentifier – a serviceIdentifier object 

Indicates whom to direct the service call to and the service to call. 

 data – a scalar string 

An information item that acts as the request data to the service that will be 

called.  The data specification can be written explicitly in a 

serviceDescription object. 

Output Parameters: 

 data – a scalar string 

An information item that acts as the response data to the service that has 

been called.  The data specification can be written explicitly in a 

serviceDescription object.  The data scalar will be provided if the service 

has been called successfully, otherwise an errorMessage scalar will be 

given instead. 

 errorMessage – a scalar string 

Information item indicating the reason the service did not run successfully. 

 

A.5 Message API 

Function Name: 
 SetupMessagePerspective 

Description: 
Sets the callback where messages should be forwarded to.  This represents an 

entity that will be directed messages.  If an entity provides a valid callback, the 

Rover server will automatically forwarded all stored messages to the entity such 

that the entity does not need to call GetMessages. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 remotePerspective – a remotePerspective object 



124 

 

The interface that will be used when forwarding messages.  If it already 

exists, the specified remotePerspective will replace the previous one. 

Output Parameters: 

 isSetup – a scalar Boolean value 

Indicates whether or not the remotePerspective has been setup 

successfully or not. 

 

 

Function Name: 
 RemoveMessagePerspective 

Description: 
 Removes the callback for messages of the entity which called the function. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
None. 

Output Parameters: 

 isSetup – a scalar Boolean value 

Indicates whether or not the remotePerspective specified in 

SetupMessagePerspective has been removed successfully. 

 

 

Callback Function Name: 
 InformMessage (5.5.3) 

Description: 
 Callback function to receive all pushed messages from the Rover server, set by 

 calling the SetupMessagePerspective function. 

Input Parameters: 
 message – a message object 

The message that has been pushed from the Rover server.  Contains all 

necessary information items to discern who sent the message, what the 

message contains, and the reception time. 

Output Parameter: 

 None. 

 

 

Function Name: 
 GetMessages 

Description: 
 Retrieves all stored messages on the Rover server intended for the calling entity. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 None. 

Output Parameters: 

 messages – a list of message objects 
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The stored message objects on the Rover server for a particular entity. 

 

 

Function Name: 
 SendMessage (5.5.3) 

Description: 
 Sends a directed message to a specific entity. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 target – a scalar string or an avatar object 

The intended recipient of the message. 

 body – a scalar string 

The contents of the message. 

Output Parameters: 

 isAccepted – a scalar Boolean 

Whether or not the message has been accepted for delivery. 

 

 

Function Name: 
 BroadcastMessage (5.5.3) 

Description: 
 Broadcasts a message based on the active context. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 

 contextPredicateWithValues – a list of contextPredicateWithValue objects 

If a particular entity satisfies the given constraints, the entity will receive 

the message sent. 

 body – a scalar string 

The contents of the message.  

Output Parameters: 

 isAccepted – a scalar Boolean 

Whether or not the message has been accepted for delivery. 

 

A.6 History API 

Function Name: 
 ObtainContextProvenance (5.5.4) 

Description: 
 Returns a list of context provenance entries from the database that matches the 

 given parameters. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
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 entity – a scalar string or an avatar object 

Filter by subject. 

 root – a scalar string 

Filter by the root portion of the context predicate. 

 start – a scalar long 

The earliest entry to obtain, in milliseconds, from the Unix epoch. 

 finish – a scalar long 

Represents the latest entry to obtain, in milliseconds, from the Unix epoch. 

Output Parameters: 

 provenanceHistories – a list of provenanceHistory objects 

The list of entries which match the parameters given. 

 

 

Function Name: 
 ObtainCallHistory (5.5.4) 

Description: 
 Returns a list of call history entries from the database matching the parameters. 

Availability: 
 Direct, Indirect-TCP, Indirect-HTTP 

Input Parameters: 
 source – a scalar string or an avatar object 

Filter by the original callers. 

 target – a scalar string or an avatar object 

Filter by the intended destination of the function calls. 

 meta – a scalar string 

The name of the group of the functions to filter by. 

 function – a scalar string 

The name of the function to filter by. 

 start – a scalar long 

The earliest entry to obtain, in milliseconds, from the Unix epoch. 

 finish – a scalar long 

Represents the latest entry to obtain, in milliseconds, from the Unix epoch. 

Output Parameters: 

 callHistories – a list of callHistory objects 

The list of entries which match the parameters given. 
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