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from the low energy physics. I will show that there is a tension in the parameter

space coming from different low energy observables, and I will also discuss possible
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show why it has interactions which are generically flavor misaligned leading to the

observable flavor violation. This, combined with the fact that radion is likely to be
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both from perspective of collider phenomenology and low energy observables.
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1.1 Introduction

In 2010 when the Large Hadron Collider (LHC) has already started running,

and the high energy physics community is waiting for new experimental results,

interest in particle physics has experienced a great rebirth. But what do we know

about the properties and interactions of the elementary particles? We know that in

the universe there are four fundamental interactions: gravitational, electromagnetic,

weak and strong. Standard Model (SM) of particle physics is a theory that describes

all of these interactions (except gravitational) at scales from 10−100GeV. SM agrees

to a very high precision with all the experimental observations, and the only missing

ingredient of the SM, the Higgs boson, is waiting to be discovered soon at LHC.

Although SM is a very successful theory it still fails to address several impor-

tant questions. One of the most serious drawbacks of the SM is that it provides

no explanation for a huge difference between scales of the gravitational and weak

interactions. This is a problem because the Higgs mass receives quantum correc-

tions which are quadratically sensitive to the physics at the highest energy scale,

thus making the natural size of the Higgs mass to be of the order of Planck scale

(∼ 1019GeV). On the other hand, we know that the Higgs mass is of the order of

few hundred GeV, and this enormous 1016 magnitude of separation between scales,

which naturally should be of the same size, is called the hierarchy problem. Another

problem with the SM is that from cosmological observations we know that 23% of

the energy density of the universe comes from invisible matter, which we call Dark

Matter. The SM does not contain particles that can be considered as Dark Matter

1



candidates. Another problem of the SM is that neutrinos are massless within the

minimal SM, but from experimental observations of neutrino oscillations we know

that they have mass. These questions motivate us to search for the physics Beyond

Standard Model(BSM), which will be free of all the SM drawbacks. Hierarchy prob-

lem requires that the new physics states should be somewhere close to the scale of

the weak interactions, thus making them accessible at the LHC.

One of the most attractive BSM physics scenarios is provided by the models

with warped extra dimension suggested by L.Randall and R.Sundrum [1]. This

thesis will be devoted to the analysis of the flavor violation of Randall-Sundrum

(RS) models both in the low energy physics observables and at the collider scales.

Here is a plan of my thesis. First I will briefly review the SM and the questions it

fails to address. Then I will review models with a warped extra dimension. In such

models, it is assumed that our universe has an additional spatial dimension which

is compact and extremely curved, this warped geometry results in redshifting an

effecting cutoff of the theory from the Planck scale down to the electroweak scale,

thus addressing the hierarchy problem. Another interesting feature of these theories

is that due to the AdS/CFT correspondence [2, 3, 4] such models can become dual to

some strongly coupled theory. So in a way RS can be considered as a dual description

of the models with strong dynamics, where Higgs is a composite field. Another

attractive property of such models is that they have a built in mechanism (so called

RS Glashow-Illiopoulos-Maiani(GIM) mechanism [5, 6] ) to explain hierarchies of the

fermion masses and suppress flavor violating processes mediated by the new physics

states. Furthermore, it is interesting that within such models we can easily explain
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the spectrum of the neutrino masses[7], achieve precision coupling unification [8] as

well as have a Dark Matter candidate [9].

After briefly reviewing warped models, I will present an analysis of the low

energy bounds. This analysis will be carried out using so called “two site” approach

[10]. Two site is a model which is much simpler than RS, but at the same time it

possesses most of the interesting phenomenological aspects of the warped models.

We will analyze the bounds coming from K0 − K̄0 oscillations[11, 12, 13, 14, 15, 16]

and B → Xsγ [14, 15] exotic decays, as well as ways to suppress them without

introducing flavor symmetries. At the end constraints arising from two processes

will lead us to the combined bound of O(5)TeV on the scale of the lightest Kaluza-

Klein (KK) spin one excitation. In the chapter 3 I will discuss Higgs mediated flavor

violation [17, 18]. I will show that these effects will remain important independently

of whether Higgs is a five dimensional (5D) or four dimensional (4D) field, and can

be understood as a mixing between a zero mode and KK fermions coming from the

nonzero Higgs vev. After deriving the formulae for the misalignment between SM

fermion masses and their Yukawa couplings, I will discuss some phenomenological

implications coming from low energy experiments such as K0 − K̄0 oscillations and

possible effects at the collider such as exotic Higgs and top decays h → tc, h →

µτ, t→ ch. In chapter 4 I will discuss physics of the radion, a graviscalar degree of

freedom. I will start with a description of the Goldberger-Wise mechanism[19] which

stabilizes the size of the extra dimension, and gives mass to the radion. Then I will

discuss the interactions of the radion with SM fields and show that interactions of

the radion with fermions are flavor misaligned leading to the radion mediated flavor
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violation[20]. Flavor violation in the radion sector becomes important because in

Goldberger-Wise stabilization, radion generically is the lightest new physics state.

I will again analyze the low energy bounds from K0 − K̄0 oscillations and flavor

violating decays at the collider r → tc. After this I will conclude by summarizing

bounds on the scale of the warped extra dimension as well as prospects for the

collider physics.

1.2 Standard Model

Before reviewing SM let us a consider a very simple toy model which can

illustrate some of the very important features of the SM, a single complex scalar

field. The Lagrangian of this toy example will be

L = −1

4
FµνF

µν + |Dµφ|2 − V (|φ|)

Fµν = ∂µAν − ∂νAµ

Dµφ = (∂µ − ieAµ)φ. (1)

One can see that this theory is invariant under the following local transformations

φ(x) → eiθ(x)φ(x)

Aµ(x) → Aµ(x) +
1

e
∂µθ(x). (2)

Now let us suppose that the potential V (φ) has the following form

V (|φ|) = −m
2

2
φφ† +

λ

4

(

φφ†)2 , m2 > 0 (3)

then the minimum of the potential will be located at

< φ >=
v√
2

=

√

2m2

λ
. (4)
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So the field φ will develop a vacuum expectation value (vev), v 6= 0 and can be

expanded around its vacuum in the following way

φ =
1√
2

(v + ρ) e
iη
v . (5)

Plugging it back to the Lagrangian and performing a gauge transformation to elim-

inate phase e
iη
v we will get:

L = −1

4
FµνF

µν +
1

2
|∂µρ− ieAµ(v + ρ)|2 − V (ρ). (6)

We see now that this theory will contain one massive vector field Aµ with mass

ev and one massive real scalar field ρ, and that the gauge invariance of the initial

Lagrangian of Eq. (1) is broken. This breaking happened because the ground state

of the system was not invariant under U(1) symmetry of the Lagrangian. This

mechanism of symmetry breaking is called spontaneous symmetry breaking.

Now we can proceed to the discussion of the Standard Model. SM is a quantum

field theory based on the SU(3)⊗ SU(2)L ⊗U(1)Y gauge group. Lagrangian of the

gauge sector is given by,

Lgauge = −1

4
GµνGµν −

1

4
W µνWµν −

1

4
F µνFµν , (7)

where Gµν ,W µν , F µν are the strengths of the SU(3), SU(2)L, U(1)Y gauge fields

respectively. The subgroup SU(2)L ⊗ U(1)Y is broken spontaneously down to the

U(1)em which describes usual electromagnetic interactions. This symmetry breaking

happens in the same way as we have discussed in our toy model example by the non

vanishing vev of the scalar field, only in this case our scalar field (Higgs) should

have the following quantum numbers under SU(3)⊗ SU(2)L ⊗U(1)Y gauge group:

5



(1, 2, 1). The Lagrangian describing Higgs interactions will be

LHiggs = |DµH|2 +
m2

2
HH† − λ

4

(

H†H
)2
,

DµH =

(

∂µ − igW 2
µ

σa

2
− i

2
g′Bµ

)

H. (8)

where σa are Pauli matrices, generators of the SU(2) group. One can see that the

potential will have a minimum for the < H > 6= 0 and Higgs field will develop a vev

of the form

< H >=









0

v√
2









,
v√
2

=

√

2m2

λ
. (9)

This results in the following combinations of the gauge bosons becoming massive

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, mW =
gv

2
,

Zµ =
1

√

g2 + g′2

(

gW 3
µ − g′Bµ

)

, mZ =

√

g2 + g′2
v

2
. (10)

The field combination that stays massless

Aµ =
1

√

g2 + g′2

(

g′W 3
µ + gBµ

)

(11)

we can identify with a photon. It will couple to the fields with the following coupling

constant

e =
gg′

√

g2 + g′2
(12)

and the U(1)em charge will be related to the SU(2)L × U(1)Y generators in the

following way Q = T 3 + Y
2
. We can see that the neutral mass eigenstates Zµ, Aµ are

related to the eigenstates of the gauge group Bµ,W
3
µ by the following rotation









Zµ

Aµ









=









cos θw − sin θw

sin θw cos θw

















W 3
µ

Bµ









, sin θw =
g′

√

g2 + g′2
. (13)
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Then the generic coupling of the gauge fields to the matter can be described in terms

of the following covariant derivative

Dµ = ∂µ −
ig√
2

(

W+
µ T

+ +W−
µ T

−)− ig

cos θw
Zµ
(

T 3 −Q sin2 θw
)

− ieQAµ

T± =
1

2

(

σ1 ± iσ2
)

, T 3 =
σ3

2
. (14)

This concludes the discussion of the gauge sector of the SM and now we can proceed

to the fermion sector.

1.2.1 Fermions

In the SM fermions fermions are sitting in the following representations of the

gauge group SU(3) ⊗ SU(2)L ⊗ U(1)Y

• electroweak doublets
(

3, 2, 1
3

)

:









uL

dL









,









cL

sL









,









tL

bL









• up type singlets
(

3, 1, 4
3

)

: uR, cR, tR

• down type singlets
(

3, 1,−2
3

)

: dR, sR, bR

where we explicitly indicated the chiralities of the fermions. In the SM fermions

belong to the chiral representations of the gauge group, so prior to the spontaneous

symmetry breaking all of them are massless. Fermions will obtain masses only

from the interactions with Higgs. The following interaction is consistent with the

quantum numbers of the fields

LY ukawa = yijd q̄
i
LHd

j
R + yiju q̄

i
LH̃u

j
R, H̃ ≡ iσ2H†, (15)
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where qL stands for the electroweak doublet and uR, dR for the singlets and indices

(i, j = 1, 2, 3) refer to the fermion generations (u, c, t) for the up quarks and (d, s, b)

for the down quarks. Then after Higgs develops a vev, this will lead to the following

mass term for the fermion fields,

LMass =
yijd v√

2
d̄iLd

j
R +

yiju v√
2
ūiLu

j
R. (16)

Rotating fermions back to the physical (mass eigenstate basis) generates mixing be-

tween different generations (flavors) of the fermions in the interactions with charged

gauge bosons (W±),

LW+ =
g√
2
ūiLγ

µV ij
CKMd

j
LW

+
µ + h.c. (17)

where the mixing is parametrized by the unitary Cabibbo-Kobayashi-Maskawa(CKM)

matrix VCKM . Similarly we can introduce the leptons

• electroweak doublets
(

1, 2,−1
2

)

: lL









νeL

eL









,









νµL

µL









,









ντL

τL









• electroweak singlets (1, 1,−1) : eR, µR, τR.

Leptons also get their masses from the couplings with Higgs

Lleptons =
yev√

2
ēLeR. (18)

In the SM there are no right handed neutrinos, so neutrinos are massless.

1.2.2 Hierarchy problem

From experimental data we know that electroweak symmetry breaking scale

is v = 246 GeV, so the Higgs mass should be of the order of O(100) GeV, but if we
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will look at the quantum corrections to the Higgs mass (see Fig. 1) we will see that

t

Figure 1: Radiative correction to the Higgs mass due to the fermion loop

this diagram diverges quadratically,

δm2
H ∼ −y2

∫

d4p

(2π)4
Tr

( 6p +m

p2 −m2

6p+m

p2 −m2

)

∼ −Λ2y2

16π2
(19)

The cutoff Λ of the SM is around the Planck scale and the largest of the Yukawa

couplings, Yukawa coupling of the top quark is close one, thus the natural scale of

the Higgs mass should be of the order of MP lanck ∼ 1018 GeV and not a hundred

GeV. There are few solutions to this problem like supersymmetry, strongly coupled

theories, extra dimensions. In this thesis we will talk about solution to this problem

coming from the models with warped extra dimension.

1.2.3 Fermion masses

Fermions in the SM get their masses from interactions with Higgs (see Eq.(15))

and large hierarchies in the fermion masses are explained by the large hierarchies of

the corresponding Yukawa couplings, however the models with warped extra dimen-

sions can provide an interesting explanation of these hierarchies [6, 22]. The nice

feature of this type of models is that the same mechanism that generates hierarchies

in the fermion sector suppresses flavor violation from the new physics states. An-
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other interesting puzzle of the SM is neutrino mass. As we have mentioned before,

neutrinos in the SM are massless, but this contradicts neutrino oscillation experi-

ments. Of course we can easily evade this problem by extending the SM fermion

sector and introducing a right handed singlet neutrino, but then the question of the

smallness of the neutrino masses arises, because Yukawa couplings in the neutrino

sector should be 10−6 times smaller than the smallest coupling of the other fermions.

Models with warped extra dimension provide a simple solution to this problem [7].

1.3 Review of RS

In this section I will briefly review the original model suggested by L.Randall

and R.Sundrum (RS) [1]. Their idea was to assume that our world has an additional

compact spatial dimension and the metric has the following nonfactorizable form,

ds2 = e−2kydx2 − dy2, 0 < y < πr. (20)

Let us look at how such geometry might arise from the Einstein equations and how

it can address the hierarchy problem. We start with a five dimensional action for

gravity, and we will assume that there is a cosmological constant term. We will also

assume cosmological constant terms located at the boundaries of the system, then
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the action of the system will be,

S = Sgravity + SUV + SIR,

Sgravity =

∫

d4x

∫ πr

0

dy
√
−G

(

Λ + 2M3R
)

,

SIR =

∫

d4x
√
−gIR (LIR − VIR) ,

SUV =

∫

d4x
√−gUV (LUV − VUV ) , (21)

where SUV,IR correspond to the terms of the action localized on the boundaries of the

system, so called ultraviolet(UV) and infrared(IR) branes1. These branes are located

at (y = 0, (y = πr)) coordinates in 5D space respectively, and gµνUV (IR) = Gµν |y=0(πr)

is metric induced on the branes. It is important to remember that we introduced

extra spatial dimension in order to address hierarchy problem and we do not want to

introduce additional hierarchies in the action, thus all the dimensional parameters

should be of the same size Λ
1
5 ∼ V

1
4
UV,IR ∼ M . We will search for the solutions of

the Einstein equations for this system using the following ansatz:

ds2 = e−2σ(y)ηµνdx
µdxν − dy2, 0 < y < πr. (22)

It will lead to the following equations

6σ′(y)2 = − Λ

4M3

3σ′′(y) =
VUV
4M3

δ(y) +
VIR
4M3

δ(y − πr), (23)

and the solution will be

σ(y) = |y|
√

−Λ

24M3
. (24)

1In this thesis I will also use notations Planck and TeV branes for the UV and IR branes

respectively
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In order to have this solution, bulk cosmological constant Λ and brane cosmological

constants VUV , VIR should be related in the following way

VUV = −VIR = 24M3k, Λ = −24M3k2, (25)

where curvature k is of the order of 5D Planck mass M . Then the solution for the

metric will be given by

ds2 = e−2kyηµνdx
µdxν + dy2. (26)

Let us see now how the parameters of our five dimensional theory are related to the

parameters of four dimensional theory of gravity, namely to the Planck mass MP l.

To see this we can consider small perturbations of the metric

ds2 = e−2ky
[

ηµν + h̄µν
]

dxµdxν + dy2 (27)

this will lead to the following four dimensional action

S4D ∼
∫ πr

0

dy
(

2M3e−2k|y|√−ḡR̄
)

(28)

where R̄, ḡ are Ricci scalar and metric calculated for the four dimensional metric

ḡµν = ηµν + hµν . This leads to the following relation between four dimensional

Planck mass and the parameters of the five dimensional action

M2
P l = M3

∫ πr

0

dye−2k|y| =
M3

k

[

1 − e−2kπr
]

(29)

So in the limit of large kπr

M2
P l ∼

M3

k
, (30)
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where 5D Planck mass M is of the same size order as 4D MP l. Now, after we have

shown that we can achieve metric (20) as a solution to the Einstein equations, and

that this theory leads to the usual 4D gravity, we can look at how gauge hierarchy

problem might be addressed within this framework. Let us assume that the Higgs

field is localized on the IR brane, then the corresponding action will be

SIR =

∫

d4x
√−gIR

[

gµνIR (DµH)†DνH − λ(|H|2 − v2
0)

2
]

. (31)

On the other hand gIR in our case is equal to gIR = e−2kπRḡµν so substituting it

back we will get

SIR =

∫

d4x
√
−ḡe−4kπr

[

ḡµνe2kπr (DµH)†DνH − λ(|H|2 − v2
0)

2
]

. (32)

We have to make substitution H → ekπrH to normalize kinetic term properly and

this will lead us to

Seff =

∫

d4x
√−ḡ

[

ḡµν (DµH)†DνH − λ(|H|2 − v2
0e

−2kπr)2
]

. (33)

We can see now, that effective electroweak symmetry breaking scale is given by

v ≡ e−kπrv0. (34)

This result is completely general and it will hold for arbitrary mass scale of the IR

localized action

m→ e−kπrm. (35)

So if the exponent ekπr ∼ 1015 − 1016, we can easily get desired hierarchy between

Planck and weak scales. The new physics states in this model will be Kaluza-

Klein excitations of the graviton, i.e. spin 2 massive fields, with a mass around
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TeV scale. In the original RS model (RS1) SM Lagrangian was located on the

IR brane. Unfortunately this leads to a very serious problem: generically flavor

violating contribution of new physics should be suppressed only by the cutoff scale,

which is roughly ∼ MP le
−kπr ∼ O(10TeV). But from low energy experiments we

know that constraints from flavor violation are very severe, looking for example at

four fermion operator

d̄LsRd̄RsL
Λ2

, (36)

we see that bounds from ǫK parameter of the K0 − K̄0 oscillations requires Λ >

2.4 × 105 TeV(see [21] for model independent analysis ). We see that the RS1

requires some additional mechanism to suppress flavor violation. On the other hand

from AdS/CFT correspondence we know that the RS1 corresponds to the theory

with strong dynamics, where all the SM fields are composite, but we know that to

make the Higgs mass stable under radiative corrections we only need the Higgs field

to be composite. So in RS picture we do not need fermions to be localized on the IR

brane, and even more we can use RS dual of the partial compositeness mechanism

of [23] to address fermion hierarchy problem as well as to suppress flavor violation.
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1.3.0.1 Fermions in the bulk

Before putting every SM field in the 5D bulk[22], let us consider just a single

fermion in the bulk. For simplicity we will use the conformal coordinates

z ≡ e−ky,

ds2 =
R

z2

(

ηµνdx
µdxν − dz2

)

,

R < z < R′, R =
1

k
, R′ =

ekπr

k
. (37)

The action for the fermion will be given by

S =

∫

d4x

∫ R′

R

dz
√
−g
[

i

2
ψ̄eMA ΓADMψ − i

2
(DMψ)† Γ0e

M
A ΓAψ +

c

R
ψ̄ψ

]

, (38)

where eMA and DM are funfbein and covariant derivative(see for the details Appendix

A). After simplifications the action will look like

∫

d4x

∫ R′

R

dz

(

R

z

)4 [
i

2
ψ̄ΓM∂Mψ − i

2
(∂Mψ)† Γ0ΓMψ − cψ̄ψ

z

]

. (39)

Now we can apply action variation principle to derive equation of motions for the

fermion fields. But we have to take care of the finiteness of the extra dimension,

in this case the integration of a full divergence over z coordinate will lead to the

additional surface term

1

2

∫

d4x

(

R

z

)4
[

ψLδψR − ψRδψL − δψLψR + δψRψL
]

|R′

R (40)

where we decompose 5D fermion

ψ =









ψR

ψL









(41)

15



in terms of the usual 4D chiral fermions. Now we can see that in order to have a

consistent theory we need to impose Dirichlet boundary condition [25] on one of the

two chiralities of the fermion on each of the branes,

ψL|z=R = 0 or ψR|z=R = 0

ψL|z=R′ = 0 or ψR|z=R′ = 0. (42)

So at the end in the equation of motion will look like

(

i6∂ + γ5∂z −
2

z
γ5 −

c

z

)

ψ = 0 (43)

or in terms of the 4D chiral fields

i6∂ψL + ∂zψR −
(

2 + c

z

)

ψR = 0

i6∂ψR − ∂zψL +

(

2 − c

z

)

ψL = 0. (44)

First one can see that equations of motion for the left and right handed fields are

coupled and the Dirichlet boundary condition for the one field will lead to the

Neumann boundary condition for the other field. In the future we will denote

Dirichlet (odd) and Neumann (even)boundary conditions by (−), (+) signs and for

example, ψL(+,−) will mean that ψL satisfies even boundary condition at UV and

odd boundary condition at IR brane.

We can now decompose our field in terms of the KK excitations

ψL =
∑

n

fnL(z)ψnL(x)

ψR =
∑

n

fnR(z)ψnR(x)

6pψnL(x) = mnψ
n
R(x). (45)
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This leads to the following equations for the profiles (fL,R)

−mnf
n
L − ∂zf

n
R +

c+ 2

z
fnR = 0

−mnf
n
R + ∂zf

n
L +

c− 2

z
fnL = 0 (46)

Solving these equations will lead us to the spectrum of the KK masses. It is in-

teresting to point out that in the case of the (+,+) fields we will have a massless

mode, so for example for the ψL(+,+) boundary conditions we will have massless

left handed fermion with 5D profile

fL(z) = z2−c (R
′)−1/2+c

R2
f(c)

f(c) ≡
√

1 − 2c

1 −
(

R
R′

)1−2c . (47)

The solution for the ψR(+,+) case we can get just by simply resubstituting c↔ −c.

Generically solutions are given in terms of the bessel functions (see AppendixA). For

the case of the (ψL(+,+)) boundary conditions KK mass spectrum can be calculated

from

J−1/2+c(mnR
′)

Y−1/2+c(mnR′)
=
J−1/2+c(mnR)

Y−1/2+c(mnR)

mn ∼ π

R′

(

n+
c+ 1

2

)

, 1/R′ < mn < 1/R (48)

1.3.0.2 Fermion couplings to Higgs

Right now we know how to get a single massless fermion, but in SM model

fermions are chiral and they get their masses from the Higgs vev. To reproduce this

in RS, we will need two 5D fermions Q,U , one of which should be a doublet and

another a singlet under SM SU(2)L. QL, UR fields should satisfy even boundary
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conditions (+,+), in order to have zero modes, and their interaction with Higgs will

be given by the following overlap integral

∫

d4x

(

R

R′

)4

Y5DHQU,

where dim[Y5D] = −1. (49)

Then the effective 4D interaction of the fermions with Higgs will given by

∫

d4x

(

R

R′

)4

Y5DHQU =
Y5D

R
f(cQ)f(−cU)H, (50)

where f(c) is defined in Eq.(47). The mass of the fermion in this case will be equal

to,

Y∗f(cQ)f(−cU)v, Y∗ ≡
Y5D

R
(51)

At the same time we know that fermion profiles f(c) depend exponentially on the

bulk masses c, so by small variation of the 5D bulk masses c we can easily explain

observed hierarchies in the fermion mass sector. This leads us to the so called ”flavor

anarchy” scenario[6], where all the 5D Yukawa couplings are of the same order and

the hierarchies of fermions masses come only from their 5D profiles.

1.4 Realistic Model

The minimal extension of the SM in the RS scenario naively should be the

model, where all the SM fields are promoted to be the bulk fields. However this

simple model does not work, because bounds from electroweak precision T parameter

[26] become extremely severe and require 1/R′ & 11 TeV [27], because the custodial
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SU(2)R is broken. But as was shown in [28], simple extention of the gauge sector of

the model from SU(3)× SU(2)L ⊗U(1)Y to SU(3)⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

relaxes T parameter bound a lot, and the mass scale of the 1/R′ & 1.3 TeV becomes

compatible with current electroweak precision data. The action for the gauge sector

of the model will become

Sgauge =

∫

d4xdz

(

R

z

)[

−1

4
TrWL

MNW
L,MN − 1

4
TrWR

MNW
R,MN

−1

4
TrGMNG

MN − 1

4
FMNF

MN

]

, (52)

where WL
MN ,W

R
MN , are field strengths for the SU(2)L and SU(2)R gauge fields

respectively, GMN is a field strength for gluon and FMN is for B − L gauge boson.

The following boundary conditions are assigned for the fields:

WR,1,2
µ (−,+),

everything else (+,+). (53)

So the boundary conditions on the UV brane break SU(2)R down to U(1)R, and

then resulting U(1)B−L×U(1)R is broken down to U(1)Y by vev at the UV brane. As

a result two linear combinations of W 3
R and B′ (B′ is a gauge boson of the U(1)B−L)

will become mass eigenstates

Z ′
µ =

gR5 W
R,3
µ − gB−L

5 B′
µ

√

(gR5 )2 + (gB−L
5 )2

,

Bµ =
gB−L
5 WR,3

µ + gR5 B
′
µ

√

(gR5 )2 + (gB−L
5 )2

. (54)
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Bµ field satisfies (+,+) boundary conditions and covariant derivative for the BM

fields will look like,

DM = ∂M − ig′5BM

(

τ 3
R +

B − L

2

)

, (55)

now we can identify Bµ with U(1)Y gauge boson of the SM and Y = τ 3
R + B−L

2
with

the hypercharge.

Now we can look at the fermions, SM left handed doublet (uL, dL) in the

simplest set up will be part of the 5D SU(2)L doublet

Q : (3, 2, 1, 1/3)









uL(+,+)

dL(+,+)









(56)

where we have written down only the lefthanded part of the 5D fermion, which

satisfies (+,+) boundary conditions and contains chiral zero modes. There are

different ways to embed SM singlet fermions in the multiplets of the SU(2)R and

one of the simplest ones is to introduce extra u′, d′, so that we will have two doublets

of SU(2)R

• q1 : (3, 1, 2, 1/3)









u′R(−,+)

dR(+,+)









contains SM dR

• q2 : (3, 1, 2, 1/3)









uR(+,+)

d′R(−,+)









contains SM uR,

and similarly for the other two generations of the SM fermions. Higgs field in such

models becomes bidoublet of SU(2)L ⊗ SU(2)R.
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1.4.1 ”Flavor anarchy” scenario

This scenario assumes that all the parameters of the 5D Lagrangian are not

hierarchical, and the hierarchies of the fermion sector come only from 5D profiles

(47). The mass matrices for the SM “up” and “down” quarks in this case will

become

mu
ij = Y ij

∗ vf(ciq)f(−cju)

md
ij = Y ij

∗ vf(ciq)f(−cjd). (57)

One can see that the four dimensional mass matrices for the SM fermions are hier-

archical because f(c1q,u,d) << f(c2q,u,d) << f(c3q,u,d), where subscripts q, u, d refer to

the profiles of the electroweak doublets and up and down type singlets. In the case

of hierarchical mass matrices the following approximate relations will hold

mu
i ∼ Y∗vf(ciq)f(−ciu) md

i ∼ Y∗vf(ciq)f(−cid)
(

Od(u)L

)ij ∼ V ij
CKM ∼

∣

∣

∣

∣

f(ciq)

f(cjq)

∣

∣

∣

∣

for j> i,

(

Od(u)R

)ij ∼
∣

∣

∣

∣

∣

f(cid(u))

f(cjd(u))

∣

∣

∣

∣

∣

for j> i, (58)

where Y∗ is typical value of the Y ij
∗ (again we are assuming that all the elements

of the Y ij
∗ are of the same order)and Od(u)L,R

are left and right rotation matrices

defined in the following way

m
d(u)
diag =

(

Od(u)L

)†
md(u)

(

Od(u)R

)

. (59)
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Then we can estimate the typical values of the profiles on the IR brane.

f(−cu3) ∼ 1, f(cq3) ∼
mt

Y u
∗ v

, f(−cd3) ∼
mbY∗
mtY∗d

,

f(−cu2) ∼
ms

mtλ2
, f(cq2) ∼ λ2 mt

Y u
∗ v

, f(−cd2) ∼
mbY

u
∗

mtY d
∗ λ

2
,

f(−cu1) ∼
mu

mtλ3
, f(cq1) ∼ λ3 mt

Y u
∗ v

, f(−cd1) ∼
muY

u
∗

mtY d
∗ λ

3
,

(60)

where λ is Cabibbo angle of the CKM matrix. So generically this scenario becomes

very predictive, because all the values of the fermion profiles are fixed on the IR

brane from SM observables.

So let us state some qualitative properties of the models with ”flavor anarchy”.

Profiles of the zero modes of the fermions are hierarchical on the IR brane. Profiles

of the KK excitations are localized near IR brane (see Appendix A ), and they do

not depend strongly on the values of the 5D Lagrangian parameters. The same is

true for the masses of the KK fermions, they only mildly depend on the values of

the bulk mass parameter c. Then one can immediately see that the couplings of

the zero mode fermions to the heavy states are controlled by the smallness of their

profiles at IR brane f(c). At the same time we know that profiles of the light quarks

should be small at IR brane to explain their masses, so the new physics contribution

to the flavor violating interactions involving light quarks will become suppressed by

the parameter which is related to their mass.

In the end I would like to summarize this chapter by saying that models with

warped extra dimension with SM in the bulk provide a very attractive scenario

of BSM physics, which can address both hierarchy problem and explain observed
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hierarchies of the fermion masses.
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Chapter 2

Low energy bounds on the warped models

2.1 Review of two -site model

In this chapter we will analyze low energy bounds arising from flavor violating

observables on the scale of the warped extra dimension. Instead of using some

specific warped model we will use so called ”two site” model, which comes from

the deconstruction of the 5D extra dimension. Two site model is much simpler

to analyze and at the same time it is good enough to capture most of the robust

predictions of the warped phenomenology. We will start by reviewing the basic

features of the two-site model (for more details see [10]). The particle content of

the model is divided into two sectors: composite and elementary. The elementary

sector of the model is equal exactly to that of SM except for the Higgs field. The

SM gauge fields (SU(3) ⊗ SU(2)L ⊗ U(1)Y ) will be denoted in the following way,

Aµ ≡ {Gµ,Wµ, Bµ} (2.1)

and fermion SU(2)L doublets by,

ψL ≡ {qLi = (uLi, dLi), lLi = (νLi, eLi)} (2.2)

and finally SU(2)L singlets as,

ψ̃R ≡ {uRi, dRi, νRi, eRi}. (2.3)
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The only renormalizable interactions are the gauge interactions.

Lelementary = −1

4
F 2
µν + ψ̄Li6DψL +

¯̃
ψRi6Dψ̃R. (2.4)

where the covariant derivative only involves elementary sector gauge bosons: Dµ ≡

∂µ − igelAµ, with gel the elementary sector gauge couplings.

The composite boson sector (containing SM Higgs and massive spin 1 par-

ticles) has SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X global symmetries, where we need

the additional custodial SU(2)R to suppress new physics contribution to the T pa-

rameter [28]. There are fifteen heavy vector mesons (ρµ) that belong to adjoint

representation of the SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)X , and they can be decom-

posed into two sets: ρ∗, which are in the adjoint representation of the SM gauge

group and their orthogonal combinations ρ̃

ρ∗µ = {G∗
µ,W

∗
µ ,B∗

µ} , ρ̃µ =
{

W̃±
µ ≡ W̃1 ∓ i W̃2√

2
, B̃µ
}

. (2.5)

We associate B∗, B̃ with the generators TB∗ = Yhypercharge =
T 3R+

√
2/3TX√

5/3
and TB̃ =

T 3R−
√

2/3TX√
5/3

, where TB∗ is hypercharge generator in the SO(10) normalization. Higgs

field belongs to the composite sector and is a real bidoublet under SU(2)L⊗SU(2)R:

(H, H̃).

Every SM fermion representation will be accompanied by a heavy composite

Dirac fermion, so the composite sector will consist of SU(2)L doublets :

χ ≡ (Qi = {Ui, Di}, Li = {Ni, Ei}) (2.6)

and SU(2)L singlets:

χ̃ =
(

Ũi, D̃i, Ẽi, Ñi

)

(2.7)
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They are all singlets under SU(2)R. The Dirac masses of the composite sector

doublets and singlets are m∗, m̃∗, respectively, which we assume to be the same

(and generation-independent) for simplicity. U(1)X charges for fermions are chosen

to reproduce the usual SM hypercharges.

The Lagrangian of the composite sector is

Lcomposite = −1

4
ρ2
µν +

M2
∗

2
ρ2
µ + |DµH|2 − V (H) +

+χ̄(i6D −m∗)χ+ ¯̃χ(i6D − m̃∗)χ̃− χ̄(Y u
∗ H̃χ̃

u + Y d
∗ Hχ̃

d) + h.c. (2.8)

where M∗ is the mass of the composite sector vector boson (again, assumed to be the

same for all gauge bosons for simplicity), and the covariant derivative here involves

only composite sector gauge bosons: Dµ ≡ ∂µ − ig∗ρ
∗
µ − ig̃∗ρ̃µ, with g∗ and g̃∗ the

corresponding composite sector gauge couplings. One can see that Yukawa couplings

explicitly break SU(2)R in composite sector (see Eq. (2.8)). But this breaking gives

a small contribution to the T parameter and is thus technically natural as mentioned

in [10].1

2.1.1 Mixing and Diagonalization

The two sectors (composite and elementary) are connected to each other by

the mixing terms

Lmixing = −M2
∗
gel
g∗
Aµρ

∗
µ +

M2
∗

2

(

gel
g∗
Aµ

)2

+ (ψ̄L∆χR + ¯̃ψR∆̃χ̃L + h.c.). (2.9)

1Alternatively, we can add extra composite site fermions so that Yukawa interactions respect

SU(2)R. This corresponds to choosing 5D fermions in complete multiplets of SU(2)R in the 5D

AdS models [28]. We will not pursue this option here.
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This structure of mixing terms are motivated by the corresponding 5D warped extra

dimension models. We assume small mixings between elementary and composite

sectors, i.e., gel

g∗
≪ 1 and ∆

m∗

≪ 1. Due to the presence of the gauge boson mixing

terms the following combination of the vector bosons will remain massless

g∗
√

g2
el + g2

∗
Aµ +

gel
√

g2
el + g2

∗
ρ∗µ. (2.10)

The original elementary and composite states will be re-written using the mass

eigenstates as follows









Aµ

ρ∗µ









→









cos θ − sin θ

sin θ cos θ

















Aµ

ρ∗µ









, tan θ =
gel
g∗
, (2.11)









ψL

χL









→









cosϕψL
− sinϕψL

sinϕψL
cosϕψL

















ψL

χL









, tanϕψL
=

∆

m∗
, (2.12)









ψ̃R

χ̃R









→









cosϕψ̃R
− sinϕψ̃R

sinϕψ̃R
cosϕψ̃R

















ψ̃R

χ̃R









, tanϕψ̃R
=

∆̃

m̃∗
. (2.13)

In the new, i.e., mass eigenstate basis, (Aµ, ψL, ψ̃R) are the SM fields, which are

massless before EWSB, and (ρµ∗ , χL, χ̃R) are the heavy mass eigenstates (i.e. the

heavy partners of SM), again prior to EWSB. To shorten our notations we will

denote

θ ≡ θ1, θ2, θ3, ϕψL
≡ ϕqLi

, ϕlLi
, ϕψ̃R

≡ ϕuRi
, ϕdRi

, ϕνRi
, ϕeRi

sinϕui
R
≡ su, sinϕdi

R
≡ sd, sinϕqLi

≡ sq. (2.14)
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2.1.2 Couplings in mass eigenstates before EWSB

Substituting Eq. (2.11) (2.12) (2.13) in Eq. (2.8), we get the Lagrangian for

the Yukawa interaction between quarks and Higgs field in mass eigenstates before

EWSB (the same expression will be true for leptons too, one just has to substitute

L,E,N ⇐⇒ Q,D,U)

LY = LSM-SM
Y + LSM-Heavy

Y + LHeavy-Heavy
Y

= −Y∗uH̃sqsuq̄LuR − Y∗dHsqsdq̄LdR

−Y∗uH̃
[

cqsuQ̄LuR + sqcuq̄LŨR

]

− Y∗dH
[

cqsdQ̄LdR + sqcdq̄LD̃R

]

−Y∗uH̃
[

cqcuQ̄LŨR + Q̄RŨL

]

− Y∗dH
[

cqcdQ̄LD̃R + Q̄RD̃L

]

+ h.c.(2.15)

where cq,u,d stands for cos(ϕq,u,d). We have split the Yukawa interactions into three

parts, (SM-SM): interaction between two SM fermions, (SM-Heavy): interaction

between SM fermion and heavy fermions, and (Heavy-Heavy): interaction between

two heavy fermions.

Similarly interactions between fermions (including SM and heavy) and heavy

partners of SM gauge bosons are

L = LSM-SM + LSM-Heavy + LHeavy-Heavy

= ρ∗µg

[

q̄LγµqL(−c2qt+ s2
q

1

t
)

]

+ρ∗µg

[

(q̄LγµQL + Q̄LγµqL)(sqcq(1 +
1

t
))

]

+ρ∗µg

[

Q̄LγµQL(c2q
1

t
− s2

qt)

]

+{L↔ R}, (2.16)
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where t ≡ tan θ, and g is usual SM gauge coupling constant, and it is equal to

g = gelcosθ = g∗sinθ. In the same way as we have done for the Yukawa interactions

we split total Lagrangian into three parts ((SM-SM), (SM-Heavy), (Heavy-Heavy))

. In the limit when all the SM fermions are made up of mostly elementary sector

particles, i.e. sq ≪ 1, then the flavor non-universal interaction between SM quarks

and heavy gauge bosons will be
gs2q
tanθ

= g∗s
2
qcosθ ≈ g∗s

2
q, and similarly for the right

handed quarks.

The interactions between Higgs field, massless vector bosons and their heavy

partners are

L = LSM-SM + LSM-Heavy + LHeavy-Heavy = |DµH|2

+

[

H†ig cot θρ∗µDµH − i
g1

2 sin θ1

(

1√
2
H̃†W̃−

µ DµH +
1√
2
H†W̃+

µ DµH̃ −
√

3

5
H†B̃DµH

)]

+

[

−g1g
cot θ

2 sin θ1

(

1√
2
H̃†W̃−

µ ρ
∗
µH +

1√
2
H†W̃+

µ ρ
∗
µH̃ −

√

3

5
H†B̃ρ∗µH

)

+ H†
(

(g cot θρ∗µ)
2 +

g2
1

sin2 θ1
(
1

2
W̃+
µ W̃

−
µ +

3

20
B2
µ)

)

H

]

(2.17)

2.1.3 Including EWSB

Plugging in the Higgs vev in Eq. (2.15)(2.17) will lead to new mixings between

SM massless fields and their heavy partners which can be classified in the same

way as was done in Eq. (2.15),(2.16),(2.17): (SM-SM)- mixing between different

generations of the SM massless fermions and the mixing between (W 3, B) SM gauge

fields ; (SM-Heavy)- mixing between SM massless fermions and heavy fermions and

the mixing between (B,W 3) SM gauge bosons and (W 3
∗ ,B∗, B̃∗,W∗) heavy vector

bosons; (Heavy-Heavy)- mixing between the heavy fermions corresponding to the
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different generations of SM and the mixing between (W 3
∗ ,B∗, B̃∗,W∗) heavy vector

bosons. These mixings lead to many new contributions to flavor violating processes,

which we will study in detail in later sections.

2.2 Matching 4D and 5D theories

As we have said in the beginning of this chapter two -site represents an effective

description of the warped models so here we present a relations between parameters

of the 4D and 5D theories

light states ↔ zero modes

heavy states ↔ 1st KK modes

sq,u,d ↔ f(cq,u,d)

Y∗ ↔ coupling of the KK fermions to Higgs (2.18)

so we can see that in the 4D theory which is an effective theory of RS with fermions

in the bulk sq,d,u elementary/composite mixing angles should be hierarchical, and

the Yukawa couplings should be of the same order.

2.3 ∆F = 2 processes: ǫK

2.3.1 Formulae for Two-Site Model

We want to find the bound on composite sector scale from CP violation in the

∆S = 2 process, i.e., ǫK parameter of the K0 − K̄0 oscialltions . The most general

effective Hamiltonian for ∆S = 2 processes can be parameterized in the following
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way [29]

H∆S=2 = C1O1 + C2O2 + C3O3 + C4O4 + C5O5 with

O1 = d̄αLγµs
α
Ld̄

β
Lγµs

β
L, O2 = d̄αRs

α
Ld̄

β
Rs

β
L

O3 = d̄αRs
β
Ld̄

β
Rs

α
L, O4 = d̄αRs

α
Ld̄

β
Ls

β
R, O5 = d̄αRs

β
Ld̄

β
Ls

α
R, (2.19)

where α, β are color indices. There are also O′
1, 2 operators with L replaced by R.

The dominant contributions to these Wilson coefficients in the two-site model come

from tree-level exchange of heavy gauge bosons for example gluon (see Fig. 2.1)

with flavor violating couplings. These flavor violating couplings arise mainly from

sL

dL

sR

dR

gs*sq1sq2gs*sq1sq2 gs*sd1sd2

heavy gluon

Figure 2.1: Contribution to the ǫk from KK gluon exchange

the mixings between SM fermions induced after EWSB (see section 2.1.3) which

we now focus on – the other two types of mixings (SM-Heavy, Heavy-Heavy) have

sub-leading effects for ǫK and so will be neglected for the analysis in this section.

The point is that the couplings between heavy gluon and SM quarks are diag-

onal but non-universal in the gauge eigenstate basis for quarks, i.e., before EWSB,

in LSM-SM term of Eq. (2.16). After EWSB, one has to use unitary transforma-

tions: (ODL
, ODR

) and (OUL
, OUR

) to go to mass eigenstate basis for down and
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up-type quarks respectively (just like in the SM). These rotations thus lead to off-

diagonal couplings between SM quarks (in mass eigenstate basis) and heavy gluon.

From the analysis of the 5D models [11, 12, 13], it is well-known that the dominant

contribution comes from the heavy/KK gluon exchange between left-handed and

right-handed down-type quark currents, i.e., (V − A) × (V + A)-type operators.

Therefore, we focus here on heavy gluon exchange of the above type. The main con-

tribution comes from the different amount of composite components of SM quarks.

We assume here that sq,d1 ≪ sq,d2 ≪ sq,d3 ≪ 1 and ODL,R
are nearly diagonal, since

we need hierarchical elementary/composite mixings to reproduce hierarchical quark

masses. It is straightforward to show that such exchange gives (upon Fierzing)

C4 (M∗) = −3C5 (M∗)

≈ (gs∗)
2

M2
∗

[

(sq2)
2 (ODL

)12 + (sq3)
2 (ODL

)13 (ODL
)23

]

×
[

(sd2)
2 (ODR

)12 + (sd3)
2 (ODR

)13 (ODR
)23

]∗
(2.20)

where gs∗ is composite QCD coupling. Each
[

...
]

in this formula includes two terms,

i.e., one from the “direct” 1 − 2 mixing (present even with two generations) and

another from the (1 − 3) × (2 − 3) mixing (i.e., via 3rd generation) for the left and

right-handed flavor-violating couplings.

Assumption of anarchic Yukawa couplings Y∗ in the original Lagrangian of Eq.

(2.15) implies that mixing angles in SM Yukawa couplings are given by ratios of

elementary-composite mixings[6] (see Eq.(58)), for example,

(

ODL,R

)

ij
∼ (sq,d)i

(sq,d)j
for i < j (2.21)
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So, the two terms (inside each of the brackets
[

...
]

) in Eq. (2.20) (for each of left

and right-handed sectors) are of same size, but uncorrelated.

On the other hand from the LSM-SM
Y term of Eq. (2.15) we have

md ∼ Y d
∗ sq1sd1v/

√
2 (2.22)

ms ∼ Y d
∗ sq2sd2v/

√
2,

so we can estimate the size of the mixing angles sqi, sdi.

Now we can estimate new physics contribution to C4, 5 using the following

assumptions: (i) considering one term in each of the brackets
[

...
]

of Eq. (2.20) at a

time, (ii) mixing angles set to “natural” size (i.e., with “=” in Eq.(2.21) above), and

(iii) quark masses given by natural size of the parameters (i.e., with “=” in Eq.(2.22)

above). Plugging Eq. (2.21) and (2.22) into Eq. (2.20) leads to the estimate, up to

an O(1) complex factor:

C2−site

4 estimate =
g2
s∗

(Y d
∗ )2

2msmd

v2

1

M2
∗

(2.23)

with v = 246 GeV, where subscript “estimate” stands for the above three assump-

tions. To repeat, the assumption of anarchy tells us that the four terms in Eq.

(2.20) are of the same size as Eq. (2.23) and have uncorrelated phases. Therefore,

our estimate using one term gives us the correct result up to O(1) factor.

2.3.2 Experimental limit

The model independent bound from ǫK is strongest on the Wilson coefficient

C4 due to (i) enhancement (as compared to for the other Wilson coefficients) from
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RG scaling from the new physics scale to the hadronic scale and (ii) from chiral

enhancement of matrix element (see reference [21]).2 This bound on C4 is :

ImC4
<∼ 1

(ΛF )2 , ΛF = 1.6 × 105 TeV. (2.24)

where the coefficient is renormalized at the ∼ 3 TeV scale [11]. Note that the bound

on Im C4 is only mildly (logarithmically) sensitive to the renormalization scale and

hence it remains almost the same as the above number (which is again for a scale

of ∼ 3 TeV) for heavy mass scales of up to ∼ 10 TeV that we will consider in this

paper. Using Eqs. (2.23) and (2.24), and assuming order one phase, we get

M∗
>∼ 11gs∗

Y d
∗

TeV (2.25)

We can see the bound on the composite mass scale decreases as Y d
∗ increases.

2.4 Radiative processes: b→ sγ

The rare decay B → Xsγ gives very powerful constraints on new physics. We

follow the standard notation and define the effective Hamiltonian for b→ sγ [29]:

Heff(b→ sγ) = −GF√
2
V ∗
tsVtb[C7(µb)Q7 + C ′

7(µb)Q
′
7 + . . .] (2.26)

where Q7 = e mb/ (8π2) b̄σµνFµν(1 − γ5)s and Q′
7 = mb e (8π2) b̄σµνFµν(1 + γ5)s.

Here we have neglected other operators that only enter through renormalization of

2The effect of C5 (M∗) in the two-site model is sub-leading because firstly the model-independent

bound is weaker relative to C4 (see reference [21]) and secondly in this model C5 (M∗) is suppressed

by a color factor relative to C4 (see Eq. 2.20).
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C7 and C ′
7. In SM, the Wilson coefficient C7(µw) evaluated at weak scale is[29]

CSM
7 (µw) = −1

2

[

−(8x3
t + 5x2

t − 7xt)

12(1 − xt)3
+
x2
t (2 − 3xt)

2(1 − xt)4
ln(xt)

]

;

C ′ SM
7 (µw) =

ms

mb
CSM

7 (µw) (2.27)

with xt = m2
t/M

2
w. The Wilson coefficient C ′

7(µw) can be neglected in SM due to a

suppression by ms/mb. The leading order QCD correction gives us [29]

C7(µb) = 0.695C7(µw) + 0.085C8(µw) − 0.158C2(µw) (2.28)

= 0.695(−0.193) + 0.085(−0.096) − 0.158 = −0.300

where C2 and C8 are Wilson coefficients for operators Q2 ≡ (c̄b)V−A(s̄c)V−A and

Q8G ≡

mb g/ (8π2) b̄ασ
µν(1−γ5)T

a
αβsβG

a
µν . The latest higher order calculations for BR(b −→

sγ) are given in [30] but the above order results suffice for our purposes.

2.4.1 Estimate in two-site model

In two-site model, the largest new physics contribution to Γ(b → sγ) comes

from diagrams with heavy states in the loop because of their larger coupling con-

stants. First, we consider diagrams with heavy gluons and fermions (see Fig. 2.2).

We can get an idea of the flavor structure of this diagram by treating the EWSB-

induced fermion mass terms of Eq. (2.15) as being small compared to the masses of

the heavy partners of SM fermions (henceforth called by the mass insertion approx-

imation). From LSM-Heavy term of Eq. (2.16), we see that mass insertion approxima-

tion gives us a new contribution to Wilson coefficients of operators d̄jσ
µνFµν(1−γ5)di
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γ

heavy gluon

heavy fermion

Yd
*ij v

gs*sdj

dR
jdL

i

gs*sqi

Figure 2.2: Contribution to the b → sγ from the loop with KK fermion anf KK

gluon

(with quarks in gauge basis before EWSB)

CG
7 ij ∝ sqig

2
s∗Y

d
∗ijsdj

(2.29)

Notice that CG
7 ij has the same flavor structure as quark mass matrixmd ij ≈ Y d

∗ ijsqisdj
.

Therefore, after unitary rotation into the mass eigenstates after EWSB, CG
7 ij will

be approximately diagonal in flavor space, and contribution from heavy gluon and

heavy fermion exchange to Γ(b → sγ) is suppressed. (see reference [6] for a similar

discussion in warped extra dimension, where KK gluons and KK fermions corre-

spond to heavy gluons and fermions here.)

Next, we consider diagrams with heavy fermions and Higgs in the loop (includ-

ing physical Higgs and longitudinal W/Z bosons). Similar to the previous analysis,

we can get the flavor structure of these diagrams from mass insertion approxima-

tion. For the purpose of estimating flavor structure, we consider only neutral Higgs

diagram (see Fig. 2.3). From the Yukawa couplings between SM fermion, heavy

fermion and Higgs (LSM-Heavy term of Eq. 2.15), we find that

CH
7 ij ∝ sqiY

d
∗ikY

d
∗klY

d
∗ljsdj

(2.30)
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Yd
*kl v 

γ

heavy fermion
dL

i dR
j

H

Yd
*i k sq i

Yd
*l j sd j

Figure 2.3: Contribution to the b→ sγ from the loop with KK fermion and Higgs

It is obvious that CH
7 ij is not aligned with md ij, assuming no particular structure in

the Y∗ (i.e., anarchy). Thus these diagrams will give the leading new contribution

to C7 and C ′
7, and we will focus on these diagrams (see reference [6] for a similar

discussion in warped extra dimension).

Because of the near degeneracy of heavy fermion masses, we cannot use mass

insertion approximation to calculate the loop diagrams. Instead, we need to diag-

onalize the 9 × 9 mass matrix (once we include EWSB-induced mass terms, i.e.,

coming from Yukawa couplings in Eq. (2.15)) for all down type quarks in order to

determine the mass eigenstates and their couplings. Since it is difficult to obtain

an exact analytical formulae for this effect, the analysis is performed numerically in

Section 2.6. However, it is insightful to obtain an approximate analytical formulae

for b → sγ as follows. First, we calculate the dipole operator for the case of one gen-

eration quark together with its heavy partners (say, as in the calculation of (g−2)µ))

without using the mass insertion approximation and then we simply multiply it by

factors from generational mixing effects in order to obtain the amplitude for b → sγ.

In more detail, we diagonalize the 3 × 3 mass matrix (including the EWSB-
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induced mass terms) for one generation quarks analytically to first order in x ≡

Y u,d
∗ v/

(

m∗
√

2
)

in Appendix B.3: the results for dipole moment operator of one

generation with charged and neutral Higgs in the loop are shown in Eqs. (B.39) and

(B.43). In order to estimate the effect of mixing between different generations, we

again use mass insertion approximation (see Fig. 2.3). For example, the operator

b̄Lσ
µνFµνsR can be generated via the mass insertions/Yukawa couplings (as in Eq.

2.30, but dropping the flavor indices on Yd∗ for simplicity)

Yd∗sq3Yd∗vYd∗sd2 (2.31)

Based on our assumption of anarchy and the formulae for Yukawa couplings and

mixing angles (Eq. (2.15) (2.21)), we know that

Yd∗vsq3sd2 = Yd∗vsq3sd3
sd2
sd3

∼ mb(ODR
)23 (2.32)

and

ms

mb
∼ (ODL

)23 (ODR
)23 (2.33)

In addition, since left-handed down and up-type quarks have the same elementary-

composite mixing, we get (again assuming anarchy of Yd∗)

(DL)23 ∼ (UL)23

∼ Vts or Vcb (2.34)

where in the second line we have used that VCKM = O†
UL
ODL

. Combining Eq

(2.31) through (2.34), we can find that generational mixing gives a factor ∼ ms

mbVts
.

Similarly, for the operator b̄Rσ
µνFµνsL we have (as in Eq. 2.30)

Yd∗sd3Yd∗vYd∗sq2 ∼ (Yd∗)
2mb (ODL

)23 ∼ (Yd∗)
2mbVts (2.35)
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i.e., generational mixing gives a factor ∼ Vts. Note that for neutral Higgs diagram

the amplitude is proportional to Y 3
d∗. The flavor structure for charged Higgs (would-

be Goldstone) diagram is similar, expect that there are two types of contributions

(schematically ∝ Y 3
d∗ and Y 2

u∗Yd∗). For simplicity, we set Yu∗ = Yd∗ ≡ Y∗ in our

estimation.

Then, multiplying the one generation results for dipole operator in Eqs. (B.39)

and (B.43) by the above generational mixing factors, we get the following effective

Hamiltonians:

Heff
charged Higgs ≈

5

12
(Y∗)

2mb
ie

16π2

(2ǫ · p)
(m∗)2

[Vtsb̄(1 − γ5)s+
ms

mbVts
b̄(1 + γ5)s] (2.36)

Heff
neutral Higgs ≈ −1

4
(Y∗)

2mb
ie

16π2

(2ǫ · p)
(m∗)2

[Vtsb̄(1 − γ5)s+
ms

mbVts
b̄(1 + γ5)s] (2.37)

We present the results for both charged Higgs and neutral Higgs contribution since

they generally have different phase and cannot be simply added together. Since their

sizes are of the same order, we will focus just on charged Higgs contribution in the

analytical estimates. Then, the new physics contribution to the Wilson coefficients

are3

C2−site

7 estimate(m∗) = − 5

48

(Y∗)
2

(m∗)2

√
2

GF

C ′ 2−site

7 estimate(m∗) = − 5

48

(Y∗)
2

(m∗)2

√
2

GF

ms

mbλ4
(2.38)

where we used Vts ∼ λ2 (λ ≈ 0.22). As explained earlier, (based on assumption of

3Note that such a size for these Wilson coefficients can be estimated, i.e., derived up to O(1)

factors, using purely mass insertion approximation. As explained above, here instead we have cal-

culated the O(1) factor from loop diagram (without using mass insertion approximation), although

we still used mass insertion approximation to estimate the generational mixing factors.
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anarchy) in the exact result for b → sγ there will be several terms of the above order

but with uncorrelated phases. Thus Eq. (2.38) is only an estimate for b → sγ, i.e.,

the natural size of one term that contribute to the new physics effective Hamiltonian.

We expect the final result of the coherent sum of such terms to be of the same order

as this one-term estimates. From these estimates we can conclude that C ′2−site
7 (m∗)

is bigger than C2−site
7 (m∗) by a factor of ms/ (mbV

2
ts) ∼ 8, which is different than

the case in SM (where C ′
7 ≈ C7 ms/mb).

As mentioned earlier, in Section 2.6, we will apply the exact diagonalization

of the 9 × 9 mass matrix for three generations to the results from general loop

calculation of b→ sγ in Appendix B.2 to obtain C2−site
7 and C ′2−site

7 numerically.

2.4.2 Experimental limit

The leading order QCD corrections will suppress the new physics contribution

to the Wilson coefficients

C2−site
7 (µw) =

[

αs(m∗)

αs(mt)

]16/21 [
αs(mt)

αs(µw)

]16/23

C2−site
7 (m∗) ≈ 0.73 C2−site

7 (m∗) (2.39)

We add it to CSM
7 (µw) in Eq. (2.27) and then use this sum, i.e., Ctotal

7 (µw) =

CSM
7 (µw) + C2−site

7 (µw) in Eq. (2.28) to obtain C7(µb). Whereas, the SM contribu-

tion to C ′
7 is negligible compared to that in the two-site model so that we have

C ′total
7 (µb) ≈ C ′2−site

7 (µb)

=

[

αs(m∗)

αs(mt)

]16/21 [
αs(mt)

αs(µb)

]16/23

C ′2−site
7 (m∗)

≈ 0.48 C ′2−site
7 (m∗) (2.40)
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The contributions from C7(µb) and C ′
7(µb) sum incoherently (without interference)

in the total (i.e., SM and new physics) decay width Γtotal(b→ sγ):

Γtotal(b→ sγ) ∝ |C7(µb)|2 + |C ′
7(µb)|2 (2.41)

For convenience, we define δ7 ≡ C2−site
7 (m∗)/C

SM
7 (µw) and δ′7 ≡ C ′ 2−site

7 (m∗)/C
SM
7 (µw).

Adding these new contributions, we have

Γtotal(b → sγ)

ΓSM(b→ sγ)
≈ 1 + 0.68Re(δ7) + 0.11|δ′7|2 (2.42)

The experimental average value for the branching ratio is BR(b→ sγ) = (352±23±

9)×10−6[31]. The theoretical calculation gives BR(b → sγ) = (315±23)×10−6[32].

Adding the 2σ uncertainties by quadrature we find that a 20% deviation from SM

prediction is allowed. If we consider the two contributions separately, we will get the

bound |δ′7| . 1.4 and Re(δ7) . 0.3. Using Eqs. (2.38) and (2.27), the first condition

gives

m∗ & (0.63)Y∗ TeV (2.43)

and the second condition gives us a weaker bound. From this rough estimate, we can

see the bound on composite mass scale increases with composite Yukawa coupling.

2.4.3 Tension and lowest heavy SM partner mass scale scenario

We see that the bounds on M∗ and m∗ from ǫK and BR(b→ sγ) have opposite

dependence on Y∗. Thus we cannot use this parameter to decouple flavor-violation.

For simplicity, we set M∗ = m∗ henceforth. Then the lowest allowed value for M∗
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that satisfies both bounds Eqs.(2.25) and (2.43) is

M∗ & 2.6
√
gs∗ TeV for Y∗ ∼ 4.2

√
gs∗

∼ 4.5 TeV for gs∗ ∼ 3

∼ 6.4 TeV for gs∗ ∼ 6 (2.44)

where in last two lines, we have set gs∗ ∼ 3, 6 which is motivated by the 5D AdS

model, although the latter value might not be allowed by 5D perturbativity. We

can check that with the values of Y∗ in Eq. (2.44), the loop expansion parameter

Y 2
∗ / (16π2) is less than one, and the two-site model is thus perturbative (but barely

so in the case of Y∗ ∼ 10 for gs∗ ∼ 6): see Appendix B.1.3 about perturbativity

bound on KK Yukawa couplings in the 5D AdS model.

We reiterate that the bounds in Eq. (2.44) are only estimates in the sense

that they are based on one among multiple, uncorrelated terms in the amplitudes

for both ǫK and b→ sγ. Also, note that the contributions to b→ sγ in the two-site

model, being at the loop-level (as opposed to the tree-level contributions to ǫK),

can be quite sensitive to the composite sector content – for example, as mentioned

in section 2.1, we could add SU(2)R partners for the composite site uR and dR (as

in 5D models) which can easily modify the new physics amplitude for b → sγ by

∼ O(1) factors due to their appearance in the loops. In this sense, the constraints

from b→ sγ presented for this model should especially be considered as a ballpark

guide to the viable parameter space of this framework: the main motivation for

using b→ sγ in our analysis is to put an upper bound on the composite site Yukawa

coupling.
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As discussed in references [6, 33] for the 5D model, the Higgs-heavy fermion

loop contributions to electric dipole moments (EDMs) of SM fermions also increase

with the size of the composite Yukawa coupling (just like b→ sγ). Thus, EDMs can

also be used to put an upper bound on the size of this coupling (for a given heavy

mass scale). However, EDMs depend on a different (flavor-preserving) combination

of phases than the flavor-violating observables ǫK and b → sγ and so we will leave

a study of these constraints for the future. Note that 5D flavor symmetries can

suppress EDM’s as well as the flavor violating effects.

2.5 Correction to Zbb̄ coupling

There is another important constraint coming from non-universal correction to

ZbLb̄L coupling which arises from mixing between SM and heavy states after EWSB

(see [10])

δgZb̄b
gZb̄b

≈
3
∑

i=1

(

Y∗di3
Y∗u33

)2(
mt

M∗su3

)2

+
1

2

(

mt

M∗su3

)2(
g∗2
Y∗U33

)2

(2.45)

Experimentally, it is measured to have less than 0.25% deviation from its SM value.

If we assume that all composite Yukawa couplings are of the same order, then we

can get a bound on M∗ from the first term alone:

M∗ & 4.7 TeV (2.46)

This bound is similar to what we found from ǫK and b → sγ. However, if we allow

a little hierarchy between the Yukawa couplings, e.g., Y∗d > Y∗u, then the bound on
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M∗ will be enhanced. We mention that Zb̄LbL coupling can be protected by another

custodial symmetry [34]. But we will not use this idea here.

2.6 Numerical Analysis

In previous sections we presented semi-analytical estimates for the new physics

contributions to the ǫK and b → sγ processes, but to get the precise values one

has to perform a numerical scan over the parameter space. The scan procedure is

discussed in detail in Appendix B.4. Here we summarize some important features

and results of our scan. We require that our composite Yukawa coupling matrices

are anarchical, i.e. all entries of the same order, with the results presented here

corresponding to the variation of the Yukawa couplings by a factor of three, and we

varied the elementary/composite mixings also by a factor of three. First, we generate

the points in parameter space with Yu∗, Yd∗, sQ, su, sd such that the SM quark masses

and CKM mixing angles are reproduced. Then we calculated |Γtotal(b→sγ)
ΓSM(b→sγ)

−1|/(20%),

|δgZb̄b/gZb̄b| and ImC4KΛ2
F (with ΛF = 1.6×105 TeV) for different values of M∗ and

Y u,d
∗ .

In Fig. B.2, we show the plots of |Γtotal(b→sγ)

ΓSM (b→sγ)
− 1|/(20%) and ImC4KΛ2

F for

M∗ = 5 TeV and different values of Y u,d
∗ (defined here as the geometric average

value for Y u,d
∗ij ). We focus on the case with gs∗ = 3. Points to the left and below

the solid lines satisfy both bounds from BR (b→ sγ) and ǫK . We begin with the

cases with no hierarchy between the up and down-type quark composite site Yukawa

coupling, i.e., Y d
∗ = Y u

∗ . In the top left plot, we choose this value to be ∈ (3, 4).

44



We see that a small fraction of points satisfy the bounds from ǫK and BR (b→ sγ).

Next we increase the common value for Y d
∗ and Y u

∗ to (6, 7) (top right plot). We

expect that the larger Yukawa coupling will enhance the contribution to Γ(b→ sγ)

and suppress the contribution to ImC4K , which is clearly shown in the plots and

illustrates the tension discussed in section 2.4.3. In the end, there are fewer points

satisfying both bounds with these larger Yukawa couplings.

Finally, we consider a mild hierarchy between the Yukawa couplings: Y u
∗ ∈

(1, 2) and Y d
∗ ∈ (5, 6) (bottom plot). We find that more points satisfy both bounds

than in the previous two cases. This is expected since small Y u
∗ suppresses one of

the contributions to Γ(b→ sγ)4 while larger Y d
∗ suppresses contribution to ImC4K .

However, the bound from non-universal Zb̄LbL coupling correction is more con-

strained in this case due to the ( Y
di3
∗

Y u33
∗

)2 enhancement in δgZb̄LbL (see Eq. (2.45)) so

that we have to study the consequence of this bound. In Fig. B.3, we present the

result from the scan for ImC4K and δgZb̄LbL. We can see that when Y d
∗ = 5 ∼ 6

and Y u
∗ = 1 ∼ 2 (right plot) the δgZb̄LbL bound eliminates a majority of the points.

However, for Y u
∗ = Y d

∗ ∈ (3, 4) (left plot), the bound on δgZb̄LbL is easily satisfied,

as expected from our analysis in Section 2.5.

We show the same scatter plots for M∗ = 10 TeV (Fig. B.4, B.5) and M∗ =

3 TeV (Fig. B.6, B.7). As it is clearly shown in the plots, all bounds can be easily

satisfied for M∗ = 10 TeV, while almost no point satisfy all bounds for M∗ = 3 TeV.

Note that, with our choices of Y∗, higher-order loop diagrams with these couplings

will give us corrections to all our observables of ∼ Y 2
∗ / (16π2) ∼ O (1/a few)−1/10,

4There is also a contribution ∝ Yd only as discussed in section 2.4.1.
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which is the main source of error in our analysis.

Now we consider the case with a larger composite site gluon coupling, i.e.,

gs∗ = 6. The contribution in the two-site model to Γ(b → sγ) is the same as in the

case gs∗ = 3 while ImC4K increases by a factor of 4. Thus, rather than showing

separate plots for gs∗ = 6, we can present the bounds for this case on the same plots

as for gs∗ = 3 by just moving the line from the ImC4K bound downward by factor

of 4. So all the points satisfying both constraints for gs∗ = 6 are below the dashed

line and to the left of the solid line in the same plots. As expected, for gs∗ = 6, few

(a sizable fraction of) points satisfy the bounds for M∗ = 5(10) TeV.

Combining the results of the numerical analysis shown in the plots with our

earlier estimate in Eqs. (2.44) and (2.46) of ∼ 4.5 TeV as the lowest heavy SM

partner mass scale allowed, we then conclude M∗ as low as ∼ O(5) TeV with g∗ ∼ 3

can satisfy all the constraints we considered.

2.7 Summary

In this chapter we analyzed bounds from b → sγ decays and ǫK parameter

of K0 − K̄0 oscillations. We have shown that constraints from these two processes

have opposite dependence on the parameter Y∗. We have shown that the combined

bound on the mass of the lightest spin one new physics resonance is O(5) TeV, and

argued (see for details Appendix B.1.1) that the bounds from ǫK are relaxed, when

Higgs becomes bulk field, and this effect is reflected in two site model.
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Chapter 3

Higgs mediated flavor violation

3.1 Flavor misalignment estimate

In this chapter I will discuss modifications of the interactions between SM

fermions and the Higgs field, which appear after integrating out all the KK states,

and generically lead to the flavor violation. From an effective field theory approach it

is easy to write the lowest order operators responsible for generating a misalignment

in flavor space between the Higgs Yukawa couplings and the SM fermion masses.

For simplicity we focus on the down quark sector and write the following dimension

6 operators of the 4D effective Lagrangian [17, 35, 36, 37, 38]

λij
H2

Λ2
HQLi

DRj
, kDij

H2

Λ2
DRi

∂/DRj
and kQij

H2

Λ2
QLi

∂/QLj
, (3.1)

whereQLi
andDRj

are the fermionic SU(2) doublets and singlets of the SM, with λij ,

kDij and kQij being complex coefficients and i, j are flavor indices; Λ is the cut-off or the

threshold scale of the effective Lagrangian. Upon electroweak symmetry breaking

(EWSB), these operators will give a correction to the fermion kinetic terms and to

the fermion mass terms. Calling yij the original Yukawa couplings, the corrected

fermion mass and kinetic terms become:

v4

(

yij + λij
v24
Λ2

)

QLi
DRj

,
(

δij/2 + kDij
v24
Λ2

)

DRi
∂/DRj

and
(

δij/2 + kQij
v24
Λ2

)

QLi
∂/QLj

, (3.2)
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where v4 = 174 GeV is the Higgs electroweak vev, i.e. H = h/
√

2+v4, with h being

the physical Higgs scalar. On the other hand, the induced operators involving two

fermions and one physical Higgs h become:

(

yij + 3λij
v24
Λ2

)

h√
2
QLi

DRj
,

(

2kDij
v
Λ2

)

h√
2
DRi

∂/DRj

and
(

2kQij
v4
Λ2

)

h√
2
QLi

∂/QLj
. (3.3)

From Eq.(3.2) it is clear that one has to redefine the fermion fields to canonically

normalize the new kinetic terms and then perform a bi-unitary transformation to

diagonalize the resulting mass matrix. These fermion redefinitions and rotations

will not in general diagonalize the couplings from Eq. (3.3) and therefore, we will

obtain tree-level flavor changing Higgs couplings, with a generic size controlled by

v2

Λ2 .

Before doing the calculation in the warped model let us see what will be the

two-site estimate of this process. For simplicity let us start with the calculation for

the one family of the fermions. Corrections to the mass and to the Yukawa coupling

will arise from the following diagrams ( Fig. 3.1-3.2) The diagram with three Higgs

insertions (Fig. 3.1) will give the following contribution to the mass

m ∼ Y∗vsqsd +
Y 3
∗ v

3sqsd
M2

∗
, (3.4)

and the diagram with two higgs insertions (3.2) will lead to the correction of the

kinetic term SM quark fields

Q̄6∂Q
(

1 +
Y 2
∗ v

2s2
q

M2
∗

)

+ D̄ 6∂D
(

1 +
Y 2
∗ v

2s2
d

M2
∗

)

(3.5)
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H

dR
0

H

qL
0

HH

qL
0 dR

KK dL
KK qR

KK qL
KK dR

0

+

Figure 3.1: Shift in masses and Yukawa couplings of SM fermions using the mass

insertion approximation.

After normalizing kinetic terms canonically and combining all the contributions

together we will get

m ∼ Y∗vsqsd +
Y 3
∗ v

3sqsd
M2

∗
+
Y 3
∗ v

3sqsd
3

2M2
∗

+
Y 3
∗ v

3sq
3sd

2M2
∗

. (3.6)

To find an effective Yukawa coupling we can just take a derivative of the mass with

respect to the Higgs vev. Although it is meaningless to speak about flavor violation

for the one generation we still can introduce parameter ∆ = mSM − ySMv which

will quantify the misalignment between Yukawa couplings and the masses of the SM

fermions

∆ = ∆1 + ∆2 + ∆3 =
sqsdY

3
∗ v

3

M2
∗

[

−2 + sq
2 + sd

2
]

, (3.7)

where the first term comes from the diagram with three insertions and the other

two from the corrections to the kinetic term of the quark field. In the case of three

generations this misalignment will lead to the flavor violation, and in the rest of this

chapter we will analyze the effects arising from this misalignment.
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qL
0 qL

0 qL
0 dR

KK qL
0

H H

+

Figure 3.2: Correction to kinetic terms using insertion approximation.

3.1.1 Brane Higgs subtlety

In the previous section we presented a two-site estimate of the flavor misalign-

ment, so we should expect effect of the same size in the warped models, however

there is a subtlety in the case of an exactly brane localized Higgs. As pointed out

in [12, 16], since the wavefunctions of qKKR and dKKL vanish at TeV brane (due to

Dirichlet boundary conditions), their couplings to a brane localized Higgs should

also vanish. This means that the second diagram in Fig. 3.1 should give no con-

tribution to the fermion mass-Yukawa shift (or at best a highly suppressed one).

We would then expect to be left with only the correction coming from the kinetic

term (Fig. 3.2), which as stated above is negligible for light quarks. We observe,

however, that upon EWSB, the wavefunctions qKKR and dKKL become discontinuous

at the brane location [25], with the jump of the wavefunctions being proportional

to the brane Higgs vev v4. This discontinuity requires some sort of regularization

of the brane location, meaning that the couplings of qKKR and dKKL with the brane

Higgs would be infinitesimally small, but non-zero. But we note that in the second

diagram of Fig. 3.1, one has to sum over infinite KK modes and even though each

KK mode will give an infinitesimally small contribution, the sum of infinite terms

can lead to a finite (non-zero) result (and as it turns out, this is what happens, as
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shown explicitly in Appendix C.3 for this mass insertion approximation).

This brane Higgs issue is avoided in [13] because the authors did not include

in their brane action any operator of the type HQRDL. By avoiding these, the

contribution to the shift ∆d coming from the diagrams of Fig. 3.1 is simply not

present (except for highly suppressed corrections of order
v24m

2
f

M4
KK

which are safe to

ignore).

We will address thoroughly this issue in the next two Sections and again in

Appendix C.3, since we do find that the flavor misalignment produced by the di-

agrams of Fig. 3.1 is large and of the same order for both bulk Higgs and brane

Higgs scenarios.

3.2 5D calculation: Bulk Higgs Scenario

In this section we perform a 5D calculation in order to evaluate more precisely

the shift between Yukawa couplings and masses of SM fermions. We start by working

with a single fermion generation for clarity but will later extend our results to the

three generations case.

To proceed, we will need to solve for the wavefunctions of SM fermions along

the fifth dimension in the bulk Higgs [39, 40] scenario. This corresponds to including

the contribution of all KK modes of the mass insertion approximation, and not just

the lightest ones. As we will see, the most important shift does not go away as we

push the Higgs profile towards the IR brane. In the bulk Higgs scenario, the Higgs
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comes from a 5D scalar with the following action [39]

LHiggs =

∫

dzd4x

(

R

z

)3 [

Tr|DMH|2 − µ2

z2
Tr|H|2

]

−VUV (H)δ(z−R)−VIR(H)δ(z−R′)

(3.8)

where µ is the 5D mass for Higgs in unit of k. The boundary potentials VUV (H) and

VIR(H) give the boundary conditions for the Higgs wavefunction. We can choose

these boundary conditions such that the profile of the Higgs vev takes the simple

form

v(z) = V (β) z2+β (3.9)

where β =
√

4 + µ2 and

V (β) =

√

2(1 + β)

R3(1 − (R′/R)2+2β)

v4

(R′)1+β
(3.10)

where v4 is the SM Higgs vev. This nontrivial vev v(z) is localized towards the

IR brane solving the Planck-weak hierarchy problem. Nevertheless we will treat

the brane Higgs case separately later to review possible subtleties inherent to its

localization by a Dirac delta function. The action for the fermions will look like

Sfermion =

∫

d4xdz
√
g

[

i

2

(

Q̄ΓADAQ−DAQ̄ΓAQ
)

+
cq
R
Q̄Q+

(Q→ D) +
(

Yd Q̄HD + h.c.
)]

(3.11)

where Q is electrweak doublet and D singlet. After writing the 5D fermions in two

component notation, Q =









QL

QR









and D =









DL

DR









, we perform a “mixed” KK

52



decomposition as

QL(x, z) = qL(z)QL(x) + ... (3.12)

QR(x, z) = qR(z)DR(x) + ... (3.13)

DL(x, z) = dL(z)QL(x) + ... (3.14)

DR(x, z) = dR(z)DR(x) + ... (3.15)

where QL(x), DR(x) correspond to the light 4D SM fermions and the ... include the

rest of heavy KK fermion fields. qL,R(z), dL,R(z) are the corresponding profiles of

the 4D SM fermions QL(x) and DR(x) which verify the Dirac equation

−iσ̄µ∂µQL(x) +mdDR(x) = 0, (3.16)

−iσµ∂µDR(x) +m∗
dQL(x) = 0, (3.17)

with md being the 4D SM down-type quark mass (the analysis can be carried out

for up-type quarks in similar fashion).

The four profiles qL,R(z) and dL,R(z) must verify the coupled equations coming

from the equations of motion.

−md qL − q′R +
cq + 2

z
qR +

(

R

z

)

v(z)Yd dR = 0 (3.18)

−m∗
d qR + q′L +

cq − 2

z
qL +

(

R

z

)

v(z)Yd dL = 0 (3.19)

−md dL − d′R +
cd + 2

z
dR +

(

R

z

)

v(z)Y ∗
d qR = 0 (3.20)

−m∗
d dR + d′L +

cd − 2

z
dL +

(

R

z

)

v(z)Y ∗
d qL = 0 (3.21)

where the ′ denotes derivative with respect to the extra coordinate z and [Yd] = −1/2

is 5D Yukawa coupling. Even if one knows the analytical form of the nontrivial
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Higgs vev v(z), solving analytically this system of equations might still be quite

hard. Nevertheless it is simple to find the misalignment between Higgs Yukawa

couplings and fermion masses based on the previous equations. To proceed, let us

first multiply Eq. (3.18) by q∗L(z) and the conjugate of Eq. (3.19) by qR(z), and then

subtract them. One obtains

md(|qL|2 − |qR|2) + z4

(

q∗LqR
z4

)′
−
(

R

z

)

v(z)(YddRq
∗
L − Y ∗

d qRd
∗
L) = 0 (3.22)

We can now multiply by R4

z4
and integrate the whole expression between z = R and

z = R′ and obtain

R4

∫ R′

R

dz

(

md

z4
(|qL|2 − |qR|2) −

Rv(z)

z5
(YddRq

∗
L − Y ∗

d qRd
∗
L)

)

+

(

q∗LqR
R4

z4

)

∣

∣

∣

R′

R
= 0 (3.23)

The boundary conditions for the profile qR(z) are chosen to be Dirichlet at both

boundaries, i.e. qR(R) = qR(R′) = 0, which means that the last term of Eq. (3.23)

identically vanishes. Moreover, canonical normalization of the SM d-quark imposes

the extra constraint

R4

∫ R′

R

dz

z4
(|qL|2 + |dL|2) = 1. (3.24)

We can therefore rewrite Eq. (3.23) as

md = R4

∫ R′

R

dz

(

md

z4
(|dL|2 + |qR|2) +

Rv(z)

z5
(YddRq

∗
L−Y ∗

d qRd
∗
L)

)

(3.25)

Note that this identity is exact, but also that each profile qR,L(z) and dR,L(z) de-

pend on the mass md. In the zero mode approximation, the profiles with Dirichlet

boundary conditions, q0
R(z) and d0

L(z) vanish, and the identity can be expressed as

md ≃ m0
d = R5

∫ R′

R

dz
v(z)

z5
Ydd

0
Rq

0∗
L (3.26)
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which agrees with the intuition that fermion mass is mostly generated by the 5D

Yukawa couplings between the 5D Higgs and the zero mode fermion profiles. From

the action in Eq. (3.11) we also extract the 4D Yukawa coupling of the Higgs field

(the lightest KK mode of the 5D Higgs) and the SM down type quark.

yd4 = R5

∫ R′

R

dz
h(z)

z5
(YddRq

∗
L + Y ∗

d qRd
∗
L) (3.27)

where h(z) is the profile of the physical Higgs field. It is easy to show that the Higgs

vev solution v(z) is related to the profile of the physical light Higgs h(z) (lightest

KK mode) by

h(z) =
v(z)

v4

(

1 + O
(

m2
hz

2

1 + β

))

(3.28)

so for a light enough Higgs field both profiles h(z) and v(z) are proportional to each

other. For a moderately heavy physical Higgs, there will be a misalignment between

the profiles of the Higgs vev and the physical Higgs, leading to a misalignment

between fermion masses and Yukawa couplings. However, this effect can actually be

decoupled if the Higgs is pushed towards the IR brane (by increasing the parameter

β). In this case, the Higgs vev profile will be more and more aligned with that of

the physical Higgs, so that they become identical in the brane Higgs limit. This

source of Higgs flavor violating couplings will be controlled by the parameter 1
β+1

and for the sake of clarity we will ignore its effects in the rest of the paper because,

as we discuss in Appendix C.2, they are numerically small and can be decoupled by

pushing the Higgs towards the IR brane.

We can then compute the shift ∆d = md−v4 y
d
4 between the fermion mass md
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and the Yukawa coupling yd4 as

∆d = R4

∫ R′

R

dz

(

md

z4
(|dL|2 + |qR|2) − 2Y ∗

d

Rv(z)

z5
qRd

∗
L

)

. (3.29)

This identity shows that the shift has to be relatively small since it vanishes in the

zero mode approximation.

To proceed further, we will use a perturbative approach such that we assume

that (v4R
′) ≪ 1 where v4 is the SM Higgs vev. Thus, once we know the analytical

form of the vev profile v(z) (see Eq. (3.9)) we can solve perturbatively the system

of coupled equations (3.18-3.21).

We find

qL(z) = QL z
2−cq

[

1 + O(v2
4R

′2)
]

(3.30)

dR(z) = DR z
2+cd

[

1 + O(v2
4R

′2)
]

(3.31)

and

qR(z) =
[

md QL

(

R1−2cq

1−2cq
z2+cq − 1

1−2cq
z3−cq

)

+ Yd
RV (β)

(2+β−cq+cd)
DR z

4+β+cd

]

[

1 + O(v2
4R

′2)
]

(3.32)

dL(z) =
[

m∗
d DR

(

−R1+2cd

1+2cd
z2−cd + 1

1+2cd
z3+cd

)

− Y ∗
d

RV (β)
(2+β−cq+cd)

QL z
4+β−cq

]

[

1 + O(v2
4R

′2)
]

(3.33)

with the constants QL and DR fixed by canonical normalization of the kinetic terms

giving

QL =

√

1 − 2cq
ǫ2cq−1 − 1

Rcq−5/2 (3.34)

DR =

√

1 + 2cd
ǫ−2cd−1 − 1

R−cd−5/2 (3.35)
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Equipped with the solutions from Eqs. (3.30) to (3.33) one can evaluate perturba-

tively the shift ∆d defined in Eq. (3.29). For simplicity, we present here the results

for UV localized fermions (cq > 0.5, cd < −0.5). The general results for both UV

and IR localized fermions are presented in Appendix C.1. We find that the main

contribution to the shift coming from the last term in Eq. (3.29) can be written as

∆d
1 =

2|md|3R′2

f(cq)2f(−cd)2
·

[

(2 + β + cd − cq)

(6 + 3β + cd − cq)
− 2

(2 + β + cd − cq)

(2β + 4)
+

(2 + β + cd − cq)

(2 + β + cq − cd)

]

(3.36)

This result corresponds to the first term of ( Eq. (3.7)) which we obtained using two

site approximation.

The first term in Eq. (3.29) gives a subleading contribution to the shift

∆d
2 = |md|3R′2

[

1

f(cq)2

(

2cq − 1

2cq + 1
+

1

5 + 2β + 2cd
− 1

3 + cq + cd + β

)]

+

(cq,d → −cd,q) (3.37)

which corresponds to the last two terms of the expression from two site approxima-

tion (Eq.3.7).

Even if the fermion mass md is small, the large warp factor 1
f(cq)2f(−cd)2

≈

ǫ2−2cq+2cd will overcome most of the suppression, rendering the shift to be of the

order ∆d ∼ mdv
2
4R

′2. The shift is generally on the percent level with respect to

fermion masses, but a misalignment of this order in the Higgs Yukawa couplings

should introduce strong constraints due to FCNC’s.
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3.2.1 Pushing the Higgs from the bulk to the brane

Note that in the β → ∞ limit, the profile of the Higgs vev tends to become

brane localized, as well as the light physical Higgs and the rest of Higgs KK modes.

In this limit, the shift ∆d
1 produced between the fermion mass and the Yukawa

coupling, coming from the diagrams of Fig. 3.1, reduces to

∆d
1 =

2

3
|md|2mdR

′2 1

f(cq)2f(−cd)2
, (3.38)

and in particular we see that the effect does not decouple (i.e. it is non-zero). The

fact that the expected misalignment is more or less independent on the localization

of the Higgs is one of our main results since the bounds and predictions that we

will extract can then be considered a general feature of RS models with fields in the

bulk (and a Higgs scalar localized near or at IR brane)1. The shift ∆d
2 coming from

the corrections to the fermion kinetic terms (Fig. 3.2) becomes in the β → ∞ limit

∆d
2 = md|md|2R′2

[

1

f(cq)2

(

2cq − 1

2cq + 1

)

+
1

f(−cd)2

(

2cd + 1

2cd − 1

)]

, (3.39)

in agreement with the results found in [13] (for a brane Higgs scenario).

Maybe it can be useful to discuss the validity of the β → ∞ limit starting

from a bulk Higgs scenario. Let’s first look at the mass spectrum in this case. The

Higgs profile is given by Eq. (C.3) and to find its mass eigenvalues one has to satisfy

the appropriate boundary conditions at the IR brane [39]

∂zh+

(

R′

R

)

mTeVh

∣

∣

∣

∣

R′

= 0. (3.40)

1An interesting exception to these results in the Higgs sector, proposed in [17], would be to

eliminate the Higgs as a fundamental scalar and consider the fifth component of a gauge field as

playing the Higgs role in EWSB.
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This will lead to one light mode (i.e. SM Higgs) and a tower of heavy modes with

masses proportional to ∼ β/R′, and so in the β → ∞ limit all the KK Higgs

excitations are decoupled from the low energy spectrum. This means that in this

limit we can treat Higgs field as an effective four dimensional field, and thus it

corresponds to the brane Higgs scenario. As mentioned earlier (and in Appendix

C.2), the misalignment caused by a difference in profiles between the Higgs physical

field and its vev (and which we have neglected) will also disappear, as one can

interpret that specific misalignment as a result of the mixing between SM Higgs and

the heavy Higgs KK modes, which is controlled by 1
β
∼ 1

MHiggs
KK R′

.

Let us now look on the couplings of fermions to the Higgs in this limit. For

the zero modes we will get:

ySMd =

√

2(1 + β)

(2 − cq + cd + β)

Yd√
R
f(cq)f(−cd) (3.41)

where [ySMd ] = 0, [Yd] = −1/2; similarly one can look at the couplings of two KK

fermions to the Higgs and in this case one finds its dependence to be ∼ 1√
β
Yd√
R
.

Naively both couplings do vanish in the β → ∞ limit. But if the 5D couplings

Yd scale as
√
β then these couplings will have a finite limit given by the usual

brane Higgs results. One can argue whether we can scale the 5D Yukawas as
√
β

because such large Yukawas should violate perturbativity of the theory, but as was

shown above the couplings of the Higgs to the KK fermions are still O(1). One can

see that only the KK excitations of the Higgs will have couplings with KK fermions

∼ YdR
−1/2 ∝ O(

√
β), but their masses are O( β

R′
) and they are completely decoupled

from the spectrum. So we conclude this discussion by stressing that it is consistent
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to consider the limit β → ∞ with Yd ∝
√
β and it coincides with the usual brane

Higgs scenario.

3.3 5D calculation: Brane Higgs Scenario

We argued in Section 3.1 that one might expect that the major contribution to

the misalignment ∆d
1 vanishes in the brane Higgs case since the odd KK modes qKKR ,

dKKL have vanishing wavefunctions on the IR brane. We also briefly mentioned that

in the mass insertion approximation, one actually might need to sum the infinite

tower of fermion KK modes to obtain a non-vanishing contribution (see Appendix

C.3 for details). However, without invoking that explanation, we just saw that in

the β → ∞ limit, ∆d
1 approaches a nonzero value of same numerical order as the

β = finite case. Since the β → ∞ limit of bulk Higgs corresponds to a brane

localized Higgs, there seems to be a counter-intuitive subtlety. In this section we

try to address and resolve this point in a more precise way, by performing the 5D

calculation of the shift ∆d
1 for the specific scenario of a brane Higgs.

For brane Higgs, we can write the Yukawa couplings in the Lagrangian as

Sbrane =

∫

d4xdz δ(z − R′)

(

R

z

)4

H
(

Y 5D
1 RQ̄LDR + Y 5D

2 RQ̄RDL + h.c.
)

(3.42)

Here we choose the convention with dim[Y 5D
1,2 ] = 0. Note that compared to the

bulk Higgs case, the Yukawa couplings Y 5D
1 an Y 5D

2 are independent and both ∼

O(1). However, they should be of the same order due to the philosophy of flavor

anarchy and naturalness. We can do KK decomposition as before, then the equations
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satisfied by the wavefunctions are

−mdqL − ∂zqR +
cq + 2

z
qR + v4δ(z −R′)Y 5D

1 R′dR = 0 (3.43)

−m∗
dqR + ∂zqL +

cq − 2

z
qL + v4δ(z − R′)Y 5D

2 R′dL = 0 (3.44)

−mddL − ∂zdR +
cu + 2

z
dR + v4δ(z −R′)Y 5D∗

2 R′qR = 0 (3.45)

−m∗
ddR + ∂zdL +

cu − 2

z
dL + v4δ(z − R′)Y 5D∗

1 R′qL = 0 (3.46)

Notice that the odd wavefunctions qR and dL vanish at the IR brane. But the delta

functions in equations above give a jump for qR and dL at the IR brane, which makes

their values at IR brane ambiguous [25]. To remove this ambiguity, we “regularize”

the delta in the following way

δ(z − R′) = lim
ε→0



















1
ε
, R′ − ε < z < R′

0, z < R′ − ε.

(3.47)

This regularization is in a way similar to treating the Higgs as a bulk field and then

taking the limit β → ∞, although without apparent divergences coming from taking

β to be large. In any case one could also perform other regularization methods to

remove the wavefunction ambiguities at the IR brane2.

Now we can easily impose Dirichlet boundary conditions for the qR, dL profiles

2For example, we could have chosen instead to move the delta function location from R′ to

(R′ − ε), and enforce the usual boundary conditions on the fields at z = R′. Then, at the very

end, we would take the limit ε → 0 [25]. In that case we find

dL(z), qR(z) ∝ v4Y
5D
1 θ(z − R′ + ε) for R′ − 2ε < z < R′, (3.48)

where we have used the step function θ(x) = 1 for x < 1 and θ(x) = 0 for x > 0. Inserting this
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at IR brane

qR(R′) = dL(R
′) = 0 (3.49)

Integrating equations of motion (Eq. 3.43) from (R′ − ε < z < R′) will lead to

qR(R′) − qR(R′ − ε) = v4Y
5D
1 R′dR(R′) (3.50)

dL(R
′) − dL(R

′ − ε) = −v4Y
5D∗
1 R′qL(R′) (3.51)

For the rectangular potential profiles qR, dL will drop to zero linearly in the region

R′ − ε < z < R′, so the profiles near the IR brane can be approximated by

qR(z) = v4Y
5D
1 R′dR(R′)

(

z −R′

ε

)

for R′ − ε < z < R′, (3.52)

dL(z) = −v4Y
5D∗
1 R′qL(R

′)

(

z − R′

ε

)

for R′ − ε < z < R′. (3.53)

From our previous discussion, the main contribution to the misalignment between

SM fermion masses and Yukawa couplings come from the second term of Eq.( 3.29),

so plugging in the odd wavefunctions from Eq.(3.52), we get

∆d
1 = 2(Y 5D

2 )∗(Y 5D
1 )2R′3v3

4dR(R′)q∗L(R
′)

(

R

R′

)4 ∫ R′

R′−ε
dz

1

ε

(

z −R′

ε

)2

=
2

3
(Y 5D

2 )∗(Y 5D
1 )2R′3v3

4dR(R′)q∗L(R
′)

(

R

R′

)4

(3.54)

On the other hand, to leading order in Higgs vev, the SM fermion mass is given by

md ≈
(

R

R′

)4

v4Y
5D
1 R′q∗L(R

′)dR(R′) (3.55)

into Eq. (3.29) we obtain the same misalignment as in Eq. (3.54), namely

∆d
1

∝ 2(v4R
′)3(Y 5D

1
)2Y 5D∗

2

∫ R′

R′
−2ε

dz δ(z − R′ + ε) [θ(z − R′ + ε)]
2 ∝ 2

3
(v4R

′)3(Y 5D
1

)2Y 5D∗

2
.
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Therefore, the misalignment can be expressed as

∆d
1

=
2

3
mdY

5D
1 (Y 5D

2 )∗v2
4R

′2 =
2

3
|md|2mdR

′2
(

Y 5D
2

Y 5D
1

)∗
1

f(cq)2f(−cd)2
(3.56)

As advertised before, this result agrees with the one obtained in the previous section

for the bulk Higgs scenario, once we take β → ∞ (Eq. 3.36). We again stress that

this result shows that upon careful derivation, the misalignment obtained does not

vanish in the particular case of a Brane localized Higgs. The main difference though,

is the appearance of the independent couplings Y 5D
2 , which in the bulk Higgs case

are forced to be equal to Y 5D
1 by 5D general covariance. These couplings Y 5D

2 are not

necessary for generating fermion masses, and so it is technically possible to set their

values as small as necessary to suppress the obtained misalignment. Nevertheless

this seems to go against the main philosophy of our approach which is to assume

the value of all dimensionless 5D parameters of order one.

Again, the fact that ∆d
1 is non zero in the brane Higgs case is hard to un-

derstand in the mass insertion approximation since the contribution from each KK

fermion (see Fig. 3.1) seems to be vanishing. In Appendix C.3 we show that to

resolve this point we need to sum up all the KK modes of the mass insertion ap-

proximation, as already mentioned before.

The subleading contribution to the misalignment between SM fermion masses

and Yukawa coupling can be calculated in a similar way as in the previous section,

and the result is (for UV localized fermions)

∆d
2 = md|Y 5D

1 |2v2
4R

′2
[

f(−cd)22cq − 1

2cq + 1
+ (cq,d → −cd,q)

]

(3.57)

= md|md|2R′2
[

1

f(cq)2

(

2cq − 1

2cq + 1

)

+ (cq,d → −cd,q)
]

(3.58)

63



We can see that for the first two generations, we have ∆d
2 ≪ ∆d

1, and it agrees with

Eq. (3.37) in the β → ∞ limit. The result for both UV and IR localized fermions

is given by

∆d
2 = md|md|2R′2 [K(cq) +K(−cd)] (3.59)

with

K(c) ≡ 1

1 − 2c

[

− 1

ǫ2c−1 − 1
+

ǫ2c−1 − ǫ2

(ǫ2c−1 − 1)(3 − 2c)
+

ǫ1−2c − ǫ2

(1 + 2c)(ǫ2c−1 − 1)

]

. (3.60)

One can see that ∆d
1 and ∆d

2 can be of the same order only for IR localized fermions.

3.4 Generalizing to three Generations

We can generalize the calculations presented in the sections 3.2 and B.11 to

3 generations. For simplicity we perform the analysis in the brane Higgs scenario

here. To leading order in Yukawa, the SM fermion mass matrix is

m̂d
αβ = [F̂qŶ

5D
1 F̂d]αβv4 (3.61)

whereˆmeans a 3 × 3 matrix in flavor space and F̂q,d = diag[f(cqi, cdi
)]. Using the

same technique as before, we can easily show that the misalignment between fermion

mass and Yukawa coupling matrix is ∆̂d = ∆̂d
1 + ∆̂d

2, with

∆̂d
1,αβ =

2

3

[

F̂qŶ
5D
1 (Ŷ 5D

2 )†Ŷ 5D
1 F̂d

]

αβ

(

v3
4R

′2) (3.62)

=
2

3

[

m̂d 1

F̂d
(Ŷ 5D

2 )†
1

F̂q
m̂d

]

αβ

(

v3
4R

′2) (3.63)
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and

∆̂d
2,αβ =

[

m̂d
(

m̂d†K̂(cq) + K̂(−cd)m̂d†
)

m̂d
]

αβ
R′2 (3.64)

The subdominant contribution here (Eq. 3.64) agrees with the result found in [13].

The crucial observation is that m̂d
αβ and ∆̂d

αβ are generally not aligned in flavor space.

Thus when we diagonalize the quark mass matrix with a bi-unitary transformation

m̂d → O†
dL
m̂dOdR

, the Yukawa couplings will not be diagonal. To be more specific,

in models of flavor anarchy, we have (see Eq. (58) and (2.21) )

(OdL,dR
)αβ ∼ Fqα,dα

Fqβ ,dβ

for α < β (3.65)

Then the off-diagonal Yukawa coupling will be (dominated by Eq. (3.62))

Ŷ off
αβ = −(O†

dL
∆̂dOdR

)αβ
1

v4
(3.66)

∼ 2

3
FqαȲ

3Fdβ
v2
4R

′2

where Ȳ is the typical value of the dimensionless 5D Yukawa coupling.

3.5 Estimates of Higgs FCNC in Flavor Anarchy

In this section, we estimate the off-diagonal couplings of Higgs to SM fermions

(assuming again for simplicity a brane Higgs scenario). And then we do a nu-

merical scan over anarchical Yukawa couplings to support our estimates. We first

parametrize the Higgs Yukawa couplings as

LHFV = adij

√

md
im

d
j

v2
4

Hd̄iLd
j
R + h.c. + (d↔ u). (3.67)
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We can use Eq. (3.65) and (3.66) to estimate the sizes of au,dij . For example, we have

ad12 ∼ 2

3
Fq1 Ȳ

3Fd2v
2R′2

√

v2
4

msmd

(3.68)

=
2

3

Fq1
Fq2

Ȳ 2v4R
′2Fq2Ȳ v4Fd2

√

v2
4

msmd

∼ 2

3
λȲ 2v2

4R
′2
√

ms

md

,

where λ ≈ 0.22 is the Wolfenstein parameter, and we used Fq1/Fq2 ∼ (OdL
)12 ∼

(VCKM)12 ∼ λ. We can find the other au,dij ’s in similar fashion. Here we present our

results from estimates:

adij ∼ δij −
2

3
Ȳ 2v2

4R
′2

















1 λ
√

ms

md
λ3
√

mb

md

1
λ

√

md

ms
1 λ2

√

mb

ms

1
λ3

√

md

mb

1
λ2

√

ms

mb
1

















(3.69)

auij ∼ δij −
2

3
Ȳ 2v2

4R
′2

















1 λ
√

mc

mu
λ3
√

mt

mu

1
λ

√mu

mc
1 λ2

√mt

mc

1
λ3

√mu

mt

1
λ2

√mc

mt
1

















(3.70)

Note that the results we presented here are just estimates for the size of au,dij , not

their signs or phases. However, for the third generation quarks, the corrections

almost always suppress the Yukawa couplings if Y1 = Y2 (which is natural in bulk

Higgs scenario) and are typically larger than the previous estimates. We argue this

point in the next subsection.
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3.5.1 Yukawa couplings of the third generation when Y1 = Y2

We can obtain a better estimate on the typical size of the diagonal entries of

the Yukawa coupling matrices by going back to Eq. (3.63) and assume that Y1 = Y2.

Its form simplifies further to

∆̂u
1,αβ =

2

3
R′2

[

m̂u 1

F̂ 2
u

(m̂u)†
1

F̂ 2
q

m̂u

]

αβ

(3.71)

where we have written the misalignment in the up-sector. Now we perform the bi-

unitary rotation needed to go to the physical fermion basis, and study the element

(33) of the overall Yukawa coupling, i.e.

att − 1 = −2R′2

3mt

[

O†
uL
m̂u 1

F̂ 2
u

m̂u† 1

F̂ 2
q

m̂uOuR

]

33

= −2R′2

3mt

(

mdiag
u

)

33

(

O†
uR

1

F̂ 2
u

OuR

)

3j

(

mdiag
u

)

jj

(

O†
uL

1

F̂ 2
q

OuL

)

j3

(

mdiag
u

)

33
(3.72)

First let’s look at the contribution to att when the “j” index is equal to 3 (i.e. in

the middle mass matrix mdiag
u we have mt). In this case, there will be 9 terms, each

proportional to −2R′2Ȳ 2v24
3

, and it is important to realize that every one of them will

be real and negative, because (O†
uR

1
F̂ 2

u

OuR
)33 ≥ 0. When j = 2 (mc) there will be only

4 terms ∼ 2R′2Ȳ 2v24
3

but every one of them will have generically a random complex

phase (the 5 remaining terms are much smaller). For j = 1 (mu) there is only one

term ∼ 2R′2Ȳ 2v24
3

contributing, with the other 8 terms being again suppressed. So at

the end of the day the dominant contribution to att will consist of 14 terms, 9 of

which are negative and the rest 5 have random complex phases. Generically each of

these terms are of the same size ∼ 2R′2Ȳ 2v2

3
so from a statistical argument, att − 1

should receive a negative contribution ∼ −9
(

2R′2Ȳ 2v2

3

)

. This result is confirmed by
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the numerical scan presented below.

One can perform the same analysis for the element (22) of the Yukawa matrix

and realize that in this case the number of terms aligned (contributing construc-

tively) is 4, and for the (11) element there are none. This means that the largest

corrections are expected in the third generation Yukawa couplings, with a suppressed

correction in second generation couplings and much more suppressed correction for

first generation couplings. This structure in the corrections seems to be a result of

the hierarchical structure of the flavor anarchy setup.

Finally, we must remind the reader that it was crucial to take Y1 = Y2 (which

is required in the Bulk Higgs scenario) to obtain these predictions. In the case

Y1 6= Y2, there will be no alignment of terms, and we therefore generally expect

smaller corrections to the third generation Yukawa couplings.

3.5.2 Validity of Ȳ v4R
′ expansion

We managed to solve the fermion equations by expanding them in the param-

eter (Ȳ 2v2
4R

′2), and so our results can be trusted as long as

Ȳ .
1

v4R′
(

∼ 9 for R′−1 = 1500GeV
)

(3.73)

but we have seen in the previous subsection that the corrections to htt and hbb

couplings do pick up an extra numerical factor of ∼ 9 in the expansion parameter

(Ȳ 2v2
4R

′2). This means that, at least for third generation fermions, our approxima-

tion is valid only for

Ȳ .
1

v4R′
√

9

(

∼ 3 for R′−1 = 1500GeV
)

(3.74)
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Generically for the case with Ȳ & 3 we will still have a large misalignment between

the Higgs couplings and fermion masses but to be able to make valid predictions

one would have to solve the equations of motion (Eq. 3.18 to 3.21) exactly or use

a different perturbative parameter. In the numerical analysis presented below we

performed a scan with 0.3 < |Y 5D
1,2 | < 3, where our expansion is valid. We then

also allowed for slightly larger values of the Yukawas such that 1 < |Y 5D
1,2 | < 4. The

average size of the couplings is still below 3, so for a KK scale of R′−1 = 1500 GeV

or above, the results will still be precise enough, although approaching the edge of

perturbative convergence.

3.5.3 Numerical Scan

We did a numerical scan over the input parameters (Y 5D
1 )ij, (Y 5D

2 )ij , cqi, cdi
,

cui
and we set R′−1 = 1.5 TeV. In our scan, we pick the points that give the

correct SM quark masses and CKM matrix. Then we calculate the 4D effective

Yukawa couplings of Higgs with SM quarks. We present here only the results for

|Y 5D
1,2 | ∈ [0.3, 3]. First, we scan the set of parameters with Y 5D

1 = Y 5D
2 which is

motivated by bulk Higgs. Here are the results for this case:

adij =

















0.99 − 1 0.006 − 0.019 0.004 − 0.012

0.006 − 0.019 0.96 − 0.99 0.007 − 0.02

0.042 − 0.10 0.075 − 0.18 0.85 − 0.93

















(3.75)
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auij =

















0.99 − 1 0.06 − 0.16 0.09 − 0.21

0.003 − 0.008 0.94 − 0.98 0.03 − 0.09

0.009 − 0.02 0.05 − 0.14 0.71 − 0.82

















(3.76)

The first and second numbers are the 25% and 75% quantiles of the distribution of

|aij| obtained from the scan (i.e. 50% of all the values we obtained in the scan for

each |aij| lie between these two quantiles). From the results we can see that the

values of au,dij from the scan are consistent with the estimates presented above (Eq

3.69 and 3.70), and the expected reduction of ht̄t coupling is confirmed. We can

also easily see this reduction of third generation Yukawa couplings in Fig. 3.3.

For the case when Y 5D
1 and Y 5D

2 are completely uncorrelated (Brane Higgs)

we get the following results:

adij =

















0.99 − 1 0.01 − 0.026 0.005 − 0.012

0.012 − 0.03 0.98 − 1.01 0.008 − 0.02

0.05 − 0.12 0.07 − 0.2 0.96 − 1.03

















(3.77)

auij =

















0.98 − 1.01 0.07 − 0.17 0.08 − 0.19

0.004 − 0.009 0.97 − 1.02 0.025 − 0.067

0.007 − 0.016 0.04 − 0.11 0.9 − 0.99

















(3.78)

We can see that the off-diagonal terms of au,dij are of the same order as the previous

case. However the diagonal entries do not have the suppression as in the Y 5D
1 = Y 5D

2

case, see the discussion in Subsection 3.5.1.
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Figure 3.3: Distribution of the absolute value of the normalized Higgs couplings to tt̄

and bb̄, att and abb, in our numerical scan, with a fixed KK scale of R′−1 = 1500 GeV

(KK gluon mass MKKG = 2.45R′−1) and for 5D Yukawa couplings |Y ij
5D| ∈ [0.3, 3].

The expected generic suppression for both couplings is demonstrated numerically

quite clearly.
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3.6 Lepton sector

Generically one can see that the same effects will lead to Higgs flavor violation

in the lepton sector, the only difference is that in the lepton sector there are various

ways to explain the large mixing angles and light masses for the neutrinos [7, 42, 43].

Now we want to look at Higgs flavor violation in the charged lepton sector, then

depending on a given neutrino model, the left-handed charged lepton profiles can

be either hierarchical and UV localized (i), or similar and UV localized (ii). The

profiles of the right-handed charged leptons are always hierarchical and localized

near the UV brane. We treat these two cases separately.

• Case (i) - left-handed and right-handed profiles are hierarchical. Then the

profiles should satisfy the following relations:

f iLf
i
e ∼

ml
i

Ȳ v4

, (3.79)

where fL,e are profiles of the left-handed and right-handed fields respectively,

then the generational mixing is also hierarchical

(OL,e)
i,j ∼

f iL,e

f jL,e
, i < j. (3.80)

We again parameterize our Lagrangian in the following form:

LHFV = alij

√

ml
im

l
j

v2
4

HL̄iej + h.c. (3.81)

Where L, e are SU(2)L doublets and singlets respectively Then we can estimate

alij

alij ∼
2

3
Ȳ 2(v2

4R
′2)

√

f iLf
j
e

f jLf
i
e

(3.82)
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One can see that our estimate depends on the profiles of the fermions, but the

following relation will be valid

√

|alij |2 + |alji|2 &
4

3
Ȳ 2(v2

4R
′2) = 0.16

(

1500 GeV

1/R′

)2(
Ȳ

3

)2

(3.83)

This inequality is saturated when
f i

L

fj
L

∼ f i
e

fj
e
∼
√

ml
i

ml
j

, i.e., when the hierarchy of

charged lepton masses are explained equally by the profiles of left-handed and

right-handed fields.

• Case (ii) - right-handed profiles are hierarchical and left-handed profiles are

similar f 1
L ∼ f 2

L ∼ f 3
L. Then the profiles satisfy the following relations:

f iLf
i
e ∼ ml

i

Ȳ v4

f iL
f jL

∼ O(1), i < j

f ie
f je

∼ ml
i

ml
j

, i < j (3.84)

then we can estimate the parameter alij to be:

alij ∼
2

3
Ȳ 2(v2

4R
′2)

√

f je

f ie
∼ 0.08

(

1500 GeV

1/R′

)2(
Ȳ

3

)2
√

ml
j

ml
i

(3.85)

These flavor violating Higgs Yukawa couplings to leptons can also lead to

interesting collider signals, which will also be discussed in the next section.

3.7 Phenomenology

The FCNC generated by flavor violating Higgs Yukawa couplings will affect

many low energy observables and also give possible signature at colliders. In this

section, we first discuss bounds on Higgs flavor violation coming from ∆F = 2
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processes such as K̄ − K, B̄ − B, D̄ − D mixing. And then we discuss possible

signature at the LHC including suppression of htt coupling, rare top decay t → hc

and flavor violating Higgs decay h→ τµ.

3.7.1 Bounds from low energy physics

qL
i

qR
j

qL
i

qR
j

qL
i

qR
j

qL
j

qR
i

hh

(A) (B)

Figure 3.4: Contribution to ∆F = 2 processes from Higgs exchange

The ∆F = 2 process can be described by the general Hamiltonian [21, 29]

H∆F=2
eff =

5
∑

a=1

CaQ
qiqj
a +

3
∑

a=1

C̃aQ̃
qiqj
a (3.86)

with

Q
qiqj
1 = q̄αjLγµq

α
iLq̄

β
jLγ

µqβiL, (3.87)

Q
qiqj
2 = q̄αjRq

α
iLq̄

β
jRq

β
iL,

Q
qiqj
3 = q̄αjRq

β
iLq̄

β
jRq

α
iL,

Q
qiqj
4 = q̄αjRq

α
iLq̄

β
jLq

β
iR,

Q
qiqj
5 = q̄αjRq

β
iLq̄

β
jLq

α
iR,

where α, β are color indices. The operators Q̃a are obtained from Qa by exchange

L ↔ R. For K̄ − K , B̄d − Bd, B̄s − Bs, D̄ − D mixing, qiqj = sd, bd, bs and uc
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respectively. Exchange of the Higgs can give rise to new contribution to C2, C̃2 and

C4. This can be seen in Fig. 3.4, where Fig. 3.4(A) gives C2 and C̃2, Fig. 3.4(B)

gives C4. These new contributions are

Ch
2 = a2

ij

mimj

v2

1

m2
h

(3.88)

C̃h
2 = a2

ji

mimj

v2

1

m2
h

(3.89)

Ch
4 = aijaji

mimj

v2

1

m2
h

(3.90)

where mh is the mass of physical Higgs. The model independent bound on the new

physics contribution to these Wilson coefficients are given in [21]. We use the RGE

from [41] and give the bounds renormalized at the scale µh = 200 GeV :

ImC2
K ≤

(

1

7 × 107 GeV

)2

, ImC4
K ≤

(

1

1.3 × 108 GeV

)2

, (3.91)

|C2
D| ≤

(

1

1.9 × 106 GeV

)2

, |C4
D| ≤

(

1

2.9 × 106 GeV

)2

, (3.92)

|C2
Bd
| ≤

(

1

0.9 × 106 GeV

)2

, |C4
Bd
| ≤

(

1

1.4 × 106 GeV

)2

, (3.93)

|C2
Bs
| ≤

(

1

1 × 105 GeV

)2

, |C4
Bs
| ≤

(

1

1.7 × 105 GeV

)2

. (3.94)

These bounds put constraints on both the Higgs flavor violating Yukawa couplings

parametrized by aij , and on the Higgs mass mh. If we assume that the phases of
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Ch
2,4 are random, i.e., Im(Ch

2,4) ∼ |Ch
2,4|, we can then rewrite the previous bounds as

0.25

(

350 GeV

mh

)2
Im(ad12)

2

(0.032)2
≤ 1, 0.39

(

350 GeV

mh

)2
Im(ad21)

2

(0.04)2
≤ 1,

1.11

(

350 GeV

mh

)2
Im(ad21a

d
12)

(0.032 × 0.04)
≤ 1, 0.018

(

350 GeV

mh

)2 |au12|2
(0.15)2

≤ 1,

0.00005

(

350 GeV

mh

)2 |au21|2
(0.008)2

≤ 1, 0.0021

(

350 GeV

mh

)2 |au12au21|
(0.0012)

≤ 1

0.0002

(

350 GeV

mh

)2 |ad13|2
(0.01)2

≤ 1, 0.03

(

350 GeV

mh

)2 |ad31|2
(0.12)2

≤ 1,

0.006

(

350 GeV

mh

)2 |ad13ad31|
(0.01 × 0.12)

≤ 1, 0.00003

(

350 GeV

mh

)2 |ad23|2
(0.01)2

≤ 1,

0.003

(

350 GeV

mh

)2 |ad32|2
(0.15)2

≤ 1, 0.001

(

350 GeV

mh

)2 |ad32ad23|
(0.1 × 0.01)

≤ 1

(3.95)

where we compare the aij elements with their estimated values, for a fixed

average Yukawa coupling Ȳ = 2 and KK scale given by 1/R′ = 1500 GeV (see

formulae for the estimates from Eqs. (3.69) and (3.70) ). We also choose to compare

the Higgs mass with a nominal value ofmh = 350 GeV. We can see that the bound on

ImC4
K coming from ǫK gives the strongest constraint on the Higgs mass. Specifically,

we have

mh >∼ 350 GeV for Im(ad21a
d
12) = (0.04 × 0.032) (3.96)

for a fixed KK scale of 1/R′ = 1.5 TeV and average 5D Yukawa of Ȳ5D = 2.

In Fig.3.5, we show the results of our numerical scan by plotting the bounds

coming from ǫK in the (mh-MKKG) plane, where MKKG ≈ 2.45R′−1 is the mass of

the first KK gluon. In the left panel we show results for the case |Y 5D
ij | ∈ [0.3, 3], and

in the right panel we show results for the case |Y 5D
ij | ∈ [1, 4]. It can be seen quite
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clearly that a larger 5D Yukawa coupling leads to a higher bound on the KK scale.

Note that the bounds coming from KK gluon exchange are inversely proportional to

the size of the 5D Yukawa couplings Ȳ5D. This leads to an interesting observation

• The new contribution to ǫK coming from Higgs exchange has opposite de-

pendence on the 5D Yukawa coupling as that of KK gluon exchange. Thus,

increasing the overall size of Y5D will alleviate pressure from KK gluon ex-

change but, as we have seen, this will also enhance the effect of Higgs mediated

FCNC’s.

With the chosen Ȳ5D (∼ 2), we can see that for the region of parameter space with

MKKG ∼ 3 TeV (accessible at the LHC), a Higgs mass mh < 400 GeV is disfavored.

On the other hand, if a light (< 150 GeV) Higgs is found in the LHC, we should

expect sizable new physics contributions to ∆F = 2 processes, just below current

bounds.

3.7.2 Collider phenomenology

Besides low energy physics constraints, there could be very interesting signa-

tures in colliders coming from the corrections to the Higgs Yukawa couplings. The

modification of the top Yukawa coupling as well as contribution of the higher KK

modes running in the loop can significantly modify hgg coupling which might lead

to the striking signatures in the collider. In the case of a light Higgs boson (and

assuming that somehow low energy FCNC bounds are overcome), the branchings

of the Higgs can change substantially due to the generically reduced hbb couplings.
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This would indirectly enhance the importance of h → γγ signal, and maybe help

overcome the overall reduction in the total production cross section due to reduced

top Yukawa couplings. In Fig. 3.6, we plot the Higgs decay branching ratio for

various final states versus the Higgs mass mh
3. We can see clearly that for a

light Higgs, the reduction in the hbb coupling changes the branching ratio to other

channels significantly. For a heavy Higgs, the branching for h→ tt is reduced.

If kinematically accessible (mh < mt), the flavor violating htc couplings will

allow the decay t → ch to occur. The branching ratio of this process is given by

(see for example [13])

Br(t→ ch) =
2(m2

t −m2
h)

2m2
w

(m2
t −m2

w)2(m2
t + 2m2

w)g2
2

{

|au23|2 + |au32|2 +
4mcmt

m2
t −m2

h

Re[au23a
u
32]

}

mcmt

v2
.

(3.97)

If we take mh = 120 GeV, then for au23 ∼ 0.08 and au32 ∼ 0.14, which are good

estimates for Ȳ = 2 and a KK scale of 1/R′ = 1500 GeV (see Eq. (3.70)), we obtain

a branching ratio of

Br(t→ ch) ∼ 5 × 10−5. (3.98)

The sensitivity of LHC for this rare top decay is Br(t → ch) ≥ 6.5 × 10−5 [45],

precisely in the ball-park of our estimate. In Figure 3.7 we show the results of

our two scans, each with a different average size of the 5D Yukawas. It is shown

that observing the signal at the LHC is quite possible although it requires larger

Yukawa couplings and a light Higgs. If observed, this signal would be very valuable

in determining the structure of the 5D setup.

3We did not include h → µτ mode on the plot because it is model dependent.
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Another interesting collider signature for light Higgs might be the Higgs lepton

flavor violating decay h → µτ . the LHC reach for this process was studied in [44]

and it could be observable if |aµτ , (aτµ)| > 0.15. One can see from equations (3.83)

and (3.85) that for case (i), this decay is observable only for fairly large Ȳ (& 3)

and low KK scale 1/R′ . 1.5 TeV, while for case (ii) there is an extra enhancement

factor of
√

mτ

mµ
∼ 4 for aµτ , so that in this case we expect larger parameter space to

give us observable effects in the h→ µτ decay.

For a heavy Higgs (mh > mt), an interesting signal at the LHC might be the

Higgs flavor violating decay h → tc. A similar study on tc production from radion

decay was considered in [20]. From Fig. 3.6 we can see that the branching for

h→ tc is in the range of 10−3 for a Higgs mass between 200− 300 GeV, and for the

favorable parameter values of Ȳ5D ∼ 2 and 1/R′ = 1500 GeV. However, even with

a branching fraction of 10−3 the signal would most likely be dominated by large

backgrounds at the LHC. Larger flavor violating couplings are still possible for even

larger values of the 5D Yukawas, although calculability and perturbativity become

then a greater issue. More detailed analysis of the possibility and feasibility of this

channel is left for future studies.

3.8 Summary

We presented analysis of the Higgs mediated flavor violation in the warped

models. We have shown that the these effects are generic and cannot be decoupled

by changing Higgs localization. We analyzed low energy bounds from neutral meson

79



oscillations, and we have shown that for the light Higgs, contribution to the ǫK

mediated by the flavor violating couplings of the Higgs field becomes comparable to

the contribution of the KK gluon analyzed in the previous chapter. We have also

studied effects that might be interesting for the collider physics, such as modification

of the Higgs branching fractions, and flavor violating Higgs and top decays.
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Figure 3.5: Generic bounds in the plane (mh,MKKG1) coming from ǫK due to tree

level Higgs exchange, where mh is the Higgs boson mass and MKKG1 is the mass of

the first excited KK gluon. We perform a scan over 5D Yukawa matrices (such that

|Y ij
5D| ∈ [0.3, 3] (left panel) and |Y ij

5D| ∈ [1, 4] (right panel)) and over fermion bulk c-

parameters. In the scan, we choose Y 5D
1 = Y 5D

2 and take the β → ∞ limit (the result

has only a mild dependence on β). The 25% quantile and 75% quantile curves trace

the points in this plane where 25% and 75% of the randomly generated parameter

points are safe from Higgs mediated FCNC’s (and are otherwise in agreement with

the rest of experimental constraints in the scenario). The “estimate” curve is based

on the expected size of Higgs flavor violating couplings (see Eqs. (3.69) and (3.70))

for the chosen range of the 5D Yukawas.
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Figure 3.6: Higgs decay branching fractions as a function of its mass, for the case

of 5D Yukawas such that |Y ij
5D| ∈ [1, 4] and for a KK scale R′−1 = 1500 GeV

(MKKG1 = 2.45R′−1). The dashed curves represent the SM branching fractions, and

the color bands correspond to 25% and 75% quantiles of our scan results. The h→ tt

curve shows a suppressed branching due to suppressed htt couplings. This same

type of suppression happens in the hbb couplings, which in turn enhances important

channels such as h → γγ. Of course Higgs production through gluon fusion is also

suppressed due to suppressed htt couplings, but vector boson fusion is assumed to

remain as in the SM, allowing one to probe at the LHC these relative changes in the

couplings. We note also the appearance of two new important channels, h→ bs and

h→ tc, the second of which could be looked at at the LHC if the Higgs happens to

be discovered (in the ZZ channel) in the appropriate mass regime.
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Figure 3.7: LHC observability of the exotic decay of the top quark t → ch in the

plane (mh,MKKG1). The two curves trace the region such that 50% of the generated

points in our two scans (one with |Y ij
5D| ∈ [0.3, 3] and another with |Y ij

5D| ∈ [1, 4])

will have a visible signal at the LHC.
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Chapter 4

Radion mediated flavor violation

4.1 Radion and stabilization of the extra dimension

So far we have been ignoring all the new physics processes associated with the

gravitational degrees of freedom. In this chapter we will analyze the properties and

interactions of the radion, the four dimensional scalar degree of freedom of the five

dimensional gravity multiplet.

In the original Randall-Sundrum (RS1) setup [1], the radion phenomenology

was extensively studied and analyzed [46, 47, 48]. But it was not until relatively

recently [49, 50, 51] that radion interactions with bulk SM fields were fully consid-

ered. In this chapter I will study the flavor structure of the radion interactions with

SM fermions, and I will show that these interactions are generically flavor violating.

Then I will proceed with the analysis of the phenomenological consequences of this

flavor violation.

We can parametrize radion by the following scalar perturbation of the metric,

ds2 =

(

R

z

)2

(e−2Fηµνdx
µdxν − (1 + 2F )2dz2). (4.1)

Demanding that the perturbed metric solves the Einstein equation and that the

kinetic term of the radion field is properly normalized, we get

F =
r(x)

Λr

z2

R′2 , (4.2)
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where r(x) is the corresponding canonically normalized radion field with its associ-

ated interaction scale Λr =
√

6R
R′
MP l.

In the original RS model (RS1) the interbrane distance was not fixed, thus

the radion degree of freedom was massless (radion oscillations correspond to the

change of the length of the extra dimension). One can address this problem of the

stabilization of the interbrane distance [19] by simply adding an extra scalar field

to the action

Sbulk =

∫

d4x

∫

dz
√
g
(

GAB∂AΦ∂BΦ −m2φ2
)

SUV =

∫

∂4x
√
guvλUV (Φ2 − v2)

SIR =

∫

∂4x
√
gIRλIR(Φ2 − v2). (4.3)

In the limit when λUV , λIR are sufficiently large it becomes energetically favourable

for the scalar field to be equal to Φ|UV,IR = vUV,IR at the boundaries, then interbrane

distance will be stabilized and can be approximated as

kr ≈ 4

π

k2

m2
ln

(

vUV
vIR

)

. (4.4)

So when vUV and vIR are of the same order, it is enough to have k2

m2 ∼ 10 to generate

required hierarchy. It is important to note that the radion becomes massive after

stabilization of the interbrane distance.

4.2 Couplings to fermions

In the discussion presented here we will not specify precise stabilization mech-

anism and treat radion mass as a free parameter, we also will neglect back reaction
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of the radion on the metric and in this case it is generically expected for the radion

to be the lightest new physics state [47, 4]. The couplings between bulk SM fermions

and the radion are calculated in [50] in the case of one generation, with a brane lo-

calized Higgs. We are interested here in the flavor structure of these couplings when

all families of fermions are considered, and for the more general case of a 5D bulk

Higgs H [39]. To this end let us focus on the up-sector of the simple setup in which

we consider the 5D fermions Qi, Ui, with flavor indices i, j = 1, 2, 3. They contain

the 4D SM SU(2)L doublet and singlet fermions respectively with a 5D action

Sfermion=

∫

d4xdz
√
g
[ i

2

(

Q̄iΓ
ADAQi −DAQ̄iΓ

AQi

)

+
cqi
R
Q̄iQi + (Q → U) +

(

Yij
√
R Q̄iHUj + h.c.

) ]

(4.5)

where
cqi

R
,
cui

R
are the 5D fermion masses, and we choose to work in the basis where

they are diagonal in 5D flavor space (we will proceed in the same way as we did

for the Higgs field by calculating exact wavefunctions in the presence of the Higgs

vev ). The bulk Higgs acquires a nontrivial vacuum expectation value v(z) localized

towards the IR brane solving the Planck-weak hierarchy problem. After writing the

5D fermions in two component notation, Qi =









Qi
L

Q̄i
R









and Ui =









U i
L

Ū i
R









, we

perform a “mixed” KK decomposition as

Qi
L(x, z) = qijL (z)Qj

L(x) + ... (4.6)

Q̄i
R(x, z) = qijR (z)Ū j

R(x) + ... (4.7)

U i
L(x, z) = uijL (z)Qj

L(x) + ... (4.8)

Ū i
R(x, z) = uijR(z) Ū j

R(x) + ... (4.9)
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where we have only written the 4D SM fermionsQj
L(x), U

j
R(x) and where qijL,R(z), uijL,R(z)

are the corresponding profiles along the extra dimension. The fieldsQi
L(x) and U j

R(x)

satisfy the Dirac equation

−iσ̄µ∂µQi
L +mij Ū

j
R = 0, (4.10)

−iσµ∂µŪ i
R +mij Q

j
L = 0, (4.11)

with the 4D SM fermion mass matrix mij not necessarily diagonal in flavor space.

The couplings between radion and SM fermions can be calculated by inserting the

perturbed metric of Eq. (4.1) and the 5D fermion KK decompositions of Eqs. (4.6-

4.9) into the action of Eq. (4.5). To proceed we used a perturbative approach

treating the 4D fermion masses mij as small expansion parameters (i.e. we assumed

mijR
′ ≪ 1) keeping only first order terms. In this limit, the profiles qijL (z) and

uijR(z) match the simple wave-functions for massless zero-modes. No other explicit

profile solution is required since we just need to properly insert and use the KK

equations for qijR (z) and uijL (z) into Eq. (4.5). A subtlety however is that the 5D

bulk Higgs field perturbation contains itself some radion degree of freedom. This

can be seen from solving the Higgs equations of motion in the perturbed background

of Eq. (4.1), which requires the KK expansion of the 5D Higgs field to be of the

form

H(x, z) = v(z) − z3v′(z)

R′2

[

1 −
(

R′

z

)2
]

r(x)

Λr

+ · · · (4.12)

where the ellipses contain the 4D light Higgs and the rest of the Higgs KK modes.

This result gives an additional contribution to the radion coupling to fermions.
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Combining all the contributions to the radion couplings will lead to the following

formula

−r(x)
Λr

(

Qi
LU

j
R + Q̄i

LŪ
j
R

)

mu
ij

[

I(cqi) + I(−cuj
)
]

, (4.13)

where we have defined

I(c) =

[

(1
2
− c)

1 − (R/R′)1−2c + c

]

≈















c ( c > 1/2 )

1
2

( c < 1/2 )

(4.14)

For one generation of fermions, this result agrees with the formulae obtained in [50]

and it can also be understood from the following intuitive argument. When the 4D

SM fermion mass is generated near the IR brane, its dependence on 1
R′

is

mij ∝ f(cqi)f(−cuj
)
R

R′ (4.15)

with f(c) proportional to the zero mode wavefunction of the fermions evaluated at

the IR brane

f(c) =

√

1 − 2c

1 − (R/R′)1−2c
(4.16)

Since the radion is basically a fluctuation of the IR brane location, its couplings

with the SM fermions can also be obtained by replacing 1
R′

→ 1
R′

(1 − r
Λr

) in the

fermion mass matrix [50]. Then it is easy to check that we reproduce the result of

Eq. (4.13). Non-univeralities in the term
[

I(cqi) + I(−cuj
)
]

will lead to a misalign-

ment between the radion couplings and the fermion mass matrix.1 After diagonal-

ization of the fermion mass matrix, flavor violating couplings will be generated and

1This will remain true in the presence of fermion brane kinetic mixings although the flavor

structure of Eq. (4.13) will be modified.
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can be parametrized as

LFV =
r

Λr
(Ū i

LU
j
Raij

√
mimj + h.c.) (i 6= j) (4.17)

where U i are the quark mass eigenstates with masses mi. The extension to the down

quark sector and charged leptons is straightforward.

To study the consequences of this result, we will consider models with flavor

anarchy i.e. where all the hierarchies in the fermion sector are explained by the

warp factors and all 5D Lagrangian parameters are of the same order [6]. In this

class of models the natural size of aij is

aij ∼ (∆Iij)
√

f(cqi)f(−cuj)
f(cqj)f(−cui)

(4.18)

where ∆Iij ∼ O(0.1) is the deviation of
[

I(cqi) + I(−cuj
)
]

from its mean value.2

We perform a scan over the 5D fermion masses and “anarchical” Yukawa couplings

leading to the observed SM fermion masses and CKM mixing angles and obtain a

distribution for the parameters aij . For example, the average values of the parameter

ad12 and ad21 are of order ∼ 0.07 and 70% of the time they are distributed between

0.03 < ad12, a
d
21 < 0.12. The average values of the parameter au23(a

u
32) are ∼ 0.08(0.05)

and 70% of the times they are between 0.03 < au23 < 0.13 (0.01 < au32 < 0.09).

4.3 Radion phenomenology

The first thing to study is how constrained are the radion parameters due

to low energy observables such as ∆F = 2 processes. The strongest constraints

2This estimate is only valid for models that explain the Planck-weak hierarchy. But for little

RS models [52], the deviation could be a few times larger.
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come from the parameter ǫK of K0 − K̄0 oscillations where a single radion exchange

contributes to the standard dimension six operatorsQ2(Q
′
2) = (d̄

L(R)
s

R(L)
)(d̄

L(R)
s

R(L)
)

and Q4 = (d̄
R
s

L
)(d̄

L
s

R
). The model independent bound on the size of new physics

contributions to the imaginary part of the Wilson coefficient C4K of the operator

Q4, renormalized at the scale 50 GeV, is ImC4 . 1.2 × 10−10TeV−2 [21].3 From

Eq. (4.17) it is easy to compute the contribution from a tree-level radion exchange

as Im(Cradion
4 ) ≈ mdmsIm(ad12a

d∗
21)/(Λ

2
rm

2
r) and therefore the experimental bound

requires that

ads
Λrmr

< 0.44 TeV−2, (4.19)

where we have defined ads ≡
√

|ad12ad∗21| and assumed an order one phase. In Fig. 4.1,

we show the bounds for different values of ads in the (mr, Λr) plane. The scale Λr is

directly related to the lightest KK gluon mass by MKKG
1 ≃ Λr/(MP lR), and so one

can easily convert bounds on the KK mass into bounds on Λr.
4 It is also interesting

to note that the bounds from flavor physics give strong constraints for a very light

radion, precisely the hardest possibility to probe at the LHC due to its dominant

hadronic decay channels. A light radion with flavor violating couplings can also

become a top quark decay product, in processes such as t→ rc or t→ ru, where u

3We used the RG equations in [41]. Constraints on the coefficient C2 of Q2 are weaker by a

factor of five and the bounds from Bd mixing are weaker by an order of magnitude, so we ignored

them in the present analysis.
4Note that the value of MPlR is generally assumed to be at least larger than a few but as

argued in [53] it might even be lower than one and still remain in the domain of validity of the

theory.
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Figure 4.1: Bounds in the (mr − Λr) plane coming from ǫK for different values of

the flavor violating parameter ads =
√

|ad12ad∗21|. In flavor anarchy models [6], typical

values for ads range between 0.03 and 0.12. In the Little RS scenario [52] this

parameter can reach values a few times larger. One can relate the scale Λr to the

mass of the lightest KK gluon as MKKG
1 ≃ Λr/(MP lR), as shown on the right-hand

side of the figure.

and c are the up and charm quarks. We have checked that, due to the suppressed

couplings coming from Λr, this signal [?] will not be visible at the LHC unless the

flavor violating parameters ai3 or a3i take unnaturally large values of order one.

For a heavier radion (& 200 GeV), the most promising discovery channel

would be r → ZZ → 4l due to its clean signal. Translating the LHC Higgs search

analysis [54] into radion LHC reach, one finds that both ATLAS and CMS should

separately be able to claim discovery for Λr . 5 TeV with 30 fb−1 of data[55]. To

study the flavor structure of such a heavy radion, we consider the channel r →

t̄c, tc̄. The signal we focus on is p p → tc → b l ν c, where l stands for electrons
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and muons. In this case, the main backgrounds are: (i) p, p → t j → b l ν j; (ii)

p, p → W j j → l ν j j, where one of the light jet is mistagged as a bottom quark;

(iii) p p → W b̄ b → b b̄ l ν, where one of the b-jet is mistagged; (iv) p p → t̄ t →

b l+ ν b̄ l− ν̄ where one b-jet is mistagged and one of the charged lepton is lost in the

beam pipe (|yl| > 2.5) or it is merged with one of the jets (∆Rjl < 0.6). We use

CalcHEP [56] and PYTHIA 2.6 [57] to obtain both signal and background cross

sections and estimate the potential LHC reach for this signal. For this we fix the

radion interaction scale to Λr = 2 TeV, and use three different values for its mass,

mr = 250, 300 and 350 GeV. We impose lepton and jet acceptance cuts on the

transverse momenta pj,lT > 20 GeV, on the rapidities, |yj,l| < 2.5, and on the angular

separation ∆Rlj > 0.6 and ∆Rjj > 0.6. We assume that the neutrino momentum

can be reconstructed. We demand additionally that the total invariant mass of the

event reconstructs to the radion’s mass Mblνj ∈ (mr−5 GeV, mr+5 GeV), and that

the blν invariant mass reconstructs to the top mass Mblν ∈ (170 GeV, 180 GeV).

We also tighten the rapidity cut on the light jet, |yj| < 1.5. We assume that the

radion would have been discovered through the r → ZZ channel and thus its mass

mr is known. Because the radion decay width is extremely small (Γr < 0.15 GeV in

this mass range), the window to use for the total invariant mass is controlled by the

experimental jet energy resolution (we used a window of ±5 GeV). The results are

shown in Table. 4.1. As noted in [51], a small amount of Higgs-radion mixing [46],

parametrized by the Lagrangian parameter ξ, can dramatically reduce the principal

radion decay channels. This could then enhance secondary decay channels, such as

r → γγ, and in this case r → t̄c(tc̄). In Fig. 4.2 we plot contours for the LHC reach
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(we use the evidence criterion of signal significance S/
√
B = 3) in the (atc vs. ξ)

plane, for mr = 250 GeV and different values of Λr. We can see that at least for

some ranges of ξ, the LHC should be able to probe typical values of atc in flavor

anarchy models. Of course a more realistic study of this signal should be carried

out, including a full detector simulation as well as the hadronic decay mode of the

intermediate W boson.

mr 250 GeV 300 GeV 350 GeV

Signal a2
tc × 21 fb a2

tc × 15 fb a2
tc × 9 fb

Background 280 fb 199 fb 136 fb

Table 4.1: Signal and background for different radion masses with Λr = 2 TeV

(and no Higgs-radion mixing). We multiplied by a K-factor of 2.4 for the signal, to

account for QCD corrections in the radion production from gluon fusion.

4.4 Summary

We studied radion couplings to fermions in the warped models where SM is in

the 5D bulk, and we have shown that these couplings are generically flavor violat-

ing. Then we analyzed constraints from low energy observables, which become very

strong for the sub hundred GeV radion. Then we discussed possibilities of observing

radion flavor violating decays at LHC, and presented signals and backgrounds for

different masses of the radion.
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Figure 4.2: Contours in the (ξ − atc) plane of the estimated signal significance

S/
√
B = 3 for the process (pp→ r → tc) at the LHC for 300 fb−1 of data. ξ is the

Higgs-radion mixing parameter and atc is the flavor violating parameter which gives

rise to the radion coupling to top-charm.
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Chapter 5

Conclusions and outlook

I will conclude by summarizing the results presented in this thesis. Warped

extra dimensions present a very nice extension of the Standard Model which can

address the gauge hierarchy problem as well as explain hierarchies of the fermion

masses. In this thesis, we presented an analysis of the flavor violation in the warped

models. In the second chapter we analyzed the bounds arising from ǫk parameter

of K0 − K̄0 oscillations and exotic decays of b quark b → sγ. We found that

the constraints from these two processes are complementary, in a sense that they

have opposite dependence on the Yukawa couplings of the original five dimensional

Lagrangian. We also found that the bound arising from ǫk can be relaxed if the

Higgs becomes a bulk field. The discussion presented in the thesis was carried out

within a two site model, which provides us with an economical description of the

five dimensional warped model. Later we matched the two site model to the warped

models so the bounds presented can be used for both models. This results in a overall

bound of O(5) TeV on the mass of the lightest new physics spin one resonance.

In the third chapter, we presented an analysis of the flavor violation in the

Higgs sector. We have shown that generically in the models with warped extra

dimensions, simple relation between Higgs Yukawa couplings and masses of the SM

fermions is modified. This effect arises from the mixing of SM fermions with their
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KK partners due to the Higgs vev and leads to the flavor violating couplings between

SM fermions and Higgs boson. In the previous analysis, these effects for the light

SM fermions were mistakenly assumed to be negligible, but we have shown that the

contribution to ǫk mediated by Higgs can be very important and comparable to the

contribution of the KK gluon. We checked that these effects are independent of

the localization of the Higgs field in the bulk, and cannot be decoupled. Moreover,

we have shown that these effects might change top Yukawa coupling by up to 20%,

which can be an interesting signal for the collider phenomenology. We also discussed

possible exotic decays of the top quark t → ch and Higgs h → tc, h → τµ and we

have found that for considerable part of the parameter space these effects might be

seen at LHC.

In the last chapter, we discussed radion physics. We derived flavor structure

of the couplings of the radion to the fermions in the models where SM fermions

are in the bulk. We have shown that these couplings are generically misaligned

with SM fermions masses. This leads to flavor changing neutral currents mediated

by the radion, and if the radion is light enough, low energy observables such as

ǫk will put strong constraints on the model parameters. For a heavier radion, we

studied possibilities of the flavor changing neutral decays such as r → tc. Although

challenging, we still have found an interesting region of the radion parameter space

where this effect can be observed, gaining very valuable information on the flavor

substructure of the whole model.

At the end I would like to say that the models with warped extra dimension

provide a very well motivated extension of the SM, which can address most of the
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puzzles of nature. In this thesis, we have shown that RS models, with the lightest

new physics states at the few TeV scale, are on the edge of being ruled out by

various low energy constraints, and at the same time these models predict a very

rich collider phenomenology, so in the nearest future we will be able to tell whether

this is the right way to go.
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Chapter A

Kaluza Klein decomposition

In this chapter I will discuss Kaluza Klein decomposition in Randall-Sundrum

models, I will start with the simplest example of the scalar field, then I will discuss

fermions and gauge bosons.

A.1 Scalar field in the bulk

Let us consider a scalar field in extra dimension, the action in this case will

be given by

Sscalar =

∫

dz

(

R

z

)5(
1

2

( z

R

)2

(∂µφ)2 − 1

2

( z

R

)2

(∂zφ)2 − 1

2
M2φ2

)

(A.1)

Now we can apply variational principle to derive equations of motion for the field φ,

but we have to remember that our fifth dimension is finite and the total divergence

term will not vanish any more, leading to the additional terms on the boundaries

−
(

R

z

)3

δφ∂zφ|R
′

R . (A.2)

In order to have a consistent theory we need to vanish these terms. We can achieve

this by imposing boundary conditions on the field at the UV and IR branes. There

are two sets of the boundary conditions we can impose, on each of the branes

∂zΦ(z)|UV,IR = 0 Neumann, even

Φ(z)|UV,IR = 0 Dirichlet, odd (A.3)
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In the future we will denote the even, odd boundary conditions by (+, (−)) respec-

tively. For any field we have to specify both boundary conditions at UV and IR

branes so in the notation Φ(+,+) first sign refers to the UV and the second one to

the IR boundary conditions. The Euler-Lagrange equations will look like:

−∂2
zΦ +

3

z
∂zΦ + 2Φ +M2R2

0

Φ

z2
= 0. (A.4)

Now we can decompose our field in terms of the KK modes.

Φ(z) =
∑

n

fn(z)φn(x) (A.5)

where each of the fn(z) satisfies,

−∂2
zf

n(z) +
3

z
∂zf

n(z) −m2
nf

n(z) +M2R2
0

fn(z)

z2
= 0, (A.6)

and fn(z) are normalized in the following way

∫ R′

R

dz

(

R

z

)3

(fn(z))2 = 1. (A.7)

The general solution of this equation will be given by

Φ = Nnz
2 (Jα(mnz) + bnYα(mnz)) ,

α =
√

4 +M2R2, (A.8)

where Nn is a normalization constant, coefficients bn are fixed from the boundary

condition, and KK masses can be found by solving the following equations:

φ(+,+) : bn = −
Jα−1(mnR

′) + 2−α
mnR′

Jα(mnR
′)

Yα−1(mnR′) + 2−α
mnR′

Yα(mnR′)
= −

Jα−1(mnR) + 2−α
mnR

Jα(mnR)

Yα−1(mnR) + 2−α
mnR′

Yα(mnR)

φ(−,−) : bn = −Jα(mnR
′)

Yα(mnR′)
= −Jα(mnR)

Yα(mnR)

φ(−,+) : bn = −Jα(mnR)

Yα(mnR)
= −

Jα−1(mnR
′) + 2−α

mnR′
Jα(mnR

′)

Yα−1(mnR′) + 2−α
mnR′

Yα(mnR′)

φ(+,−) : bn = −
Jα−1(mnR) + 2−α

mnR
Jα(mnR)

Yα−1(mnR) + 2−α
mnR′

Yα(mnR)
= −Jα(mnR

′)

Yα(mnR′)
. (A.9)
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In the limit when mnR
′ >> 1 KK masses become equally separated (in this limit

Bessel function can be expressed in terms of trigonometrical functions) and for

example for (+,+) case

mn ≃ π

R′

(

n +
α

2
− 3

4

)

(A.10)

A.2 Fermions in the bulk

In this section we will show some details of the calculations for the discussion

of the fermions in section 1.3.0.1. Let us consider now a single fermion in the bulk,

then the action will be:

S =

∫

dz

(

R

z

)5 [
i

2
ψ̄eMA ΓADMψ − i

2
(DMψ)† eMA ΓAψ − cψ̄ψ

]

(A.11)

where ΓA are 5D γ matrices of Dirac equation, eMA and DM are funfbeins and

covariant derivatives, and for the RS metric they are equal to:

ΓA = (γµ,−iγ5) eAM =
R

z
δAM

Dµ = ∂mu−
i

2
γ5γµ

R

z
. (A.12)

So finally the action becomes equal to

∫

dz

(

R

z

)4 [
i

2
ψ̄ΓM∂Mψ − i

2
(∂Mψ)†γ0Γ

Mψ − cψ̄ψ

z

]

. (A.13)

Then Euler-Lagrange equations will look like

∂L
∂ψ̄

=
1

z4
(
i

2
ΓM∂Mψ − cψ

z
)

∂M
∂L

∂(∂M ψ̄)
= ∂M(− i

2z4
ΓMψ) = − i

2z4
ΓM∂Mψ +

2γ5

z5
ψ

i6∂ψ + γ5∂zψ − 2

z
γ5ψ − c

z
ψ = 0 (A.14)
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and in the 4D momentum space

(

6p+ γ5∂z −
2

z
γ5 −

c

z

)

ψ = 0. (A.15)

Now we can rewrite this equation using 4D chiral chiral fields ψL, ψR

6pψL +

(

∂z −
2 + c

z

)

ψR = 0

6pψR +

(

−∂z −
−2 + c

z

)

ψR = 0 (A.16)

Performing KK decomposition for the fields ψL,R

ψL,R(x, z) =
∑

n

ψ
(n)
L,R(x)fnL,R(c, z) (A.17)

will lead us to the coupled differential equations for the left handed and right handed

profiles

mnfR +

(

−∂z +
2

z
− c

z

)

fL = 0

mnfL +

(

∂z −
2

z
− c

z

)

fR = 0. (A.18)

One can see that left handed and right handed profiles satisfy the following equations

−m2
nfR − ∂2

zfR +
4

z
∂zfR +

c2 − c− 6

z2
fR = 0,

−m2
nfL − ∂2

zfL +
4

z
∂zfL +

c2 + c− 6

z2
fR = 0, (A.19)

where the general solutions are given by

fR(z) = Nnz
5/2
[

J−1/2+c(mnz) + bnY−1/2+c(mnz)
]

,

fL(z) = Nnz
5/2
[

J1/2+c(mnz) + bnY1/2+c(mnz)
]

. (A.20)
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Coefficients bn and KK masses mn are fixed from boundary conditions similar to

those presented for the scalar field and normalization is fixed by the condition

∫ R′

R

(

R

z

)4
(

fnL,R
)2
dz = 1. (A.21)

For the (+,+) boundary condition we will have a massless mode in the KK decom-

position with the following profile

f0(c, z) = f(c)
( z

R

)2−c 1√
R0

(

R

R′

)1/2−c
(A.22)

where

f(c) =

√

1 − 2c

1 − (R′/R)2c−1
. (A.23)

A.2.1 KK decomposition of gauge boson

Now we will consider the gauge bosons in the bulk, the 5D action will be given

by

∫ R′

R

dz

(

R

z

)5

FMNF
MN , (A.24)

where FMN is five dimensional field strength. Again in order to have a consistent

theory we have to impose boundary conditions on the field AM . One can see that

Aµ and fifth component A5 of the vector field satisfy opposite boundary conditions.

For Aµ(+,+) boundary conditions we will have a massless vector boson in the

KK decomposition, and for the Aµ(−,−) case (which corresponds to the A5(+,+)

boundary conditions) we will have a massless scalar in the spectrum (A5 is scalar

from 4D point of view). It is obvious now that for the SM gauge bosons we have to
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impose even Aµ(+,+) boundary conditions on both UV and IR branes. Performing

KK decomposition

Aµ(z, x) =
∑

n

Anµ(x)f
n
A(z)

∂2
zf

n
A − ∂z

z
fnA +m2

n = 0 (A.25)

leads to the following solution

fnA(z) = Nnz (J1(mnz) + bnY1(mnz))

bn = −J0(mnR
′)

Y0(mnR′)
= −J0(mnR)

Y0(mnR)
(A.26)

The mass of the lightest KK mode will be equal to m1
KK = 2.54R′−1 It is inter-

esting that in the y coordinates the profile looks very simple and can be roughly

approximated by

f 1
A(y) ∼















0 < y < πr − 1
k

− 1
πr

√
k

πr − 1
k
< y < πr

√
k

(A.27)

It is important to point out that the zero mode for Aµ(+,+) has a flat f 0
A = const

profile, which is required by 4D gauge invariance.
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Chapter B

Matching 4D and 5D theories

B.1 Matching gauge couplings

In order to make predictions in the warped models we need to know the cou-

plings of the five dimensional lagrangian, so we need to know how to relate them to

the couplings of the SM. Let us look on the action of the gauge field, generically we

can rewrite it as

∫

d4x

[

− 1

4g2
UV

TrF 2
µν −

1

4g2
IR

TrF 2
µν −

∫

dz

(

R

z

)

1

4g2
5D

TrF 2
µν

]

(B.1)

where − 1
4g2

UV,IR

refer to the terms localized on the UV and IR branes respectively.

Then using the fact that the zero mode of the gauge boson is flat we should match

couplings in the following way

1

g2
=

1

g2
UV

+
1

g2
IR

+
R ln(R′/R)

g2
5D

, (B.2)

but because we are matching our couplings at the TeV scale we have to add running

of the UV localized term which modifies equation to

1

g2
≈ 1

g2
UV

+
1

g2
IR

+ ln(R′/R)

(

R

g2
5D

+
b

8π2

)

(B.3)

[58, 59], where b comes from one loop running effects.

Let us apply now this discussion to the matching of the QCD coupling, this

becomes especially important for the calculation of the ǫk. The value of the 5D

coupling g5

√
k can be fixed by matching it to the 4D QCD coupling,

104



• g5

√
k ∼ 3 for matching at the loop level, i.e., including the bQCD term with

zero bare/tree-level brane kinetic terms and with a Planck-weak hierarchy.

Clearly, this is the smallest allowed value of g∗ for this hierarchy.

• g5

√
k ∼ 6 for matching at the tree-level, i.e., neglecting the bQCD term, with

no brane kinetic terms1.

In general, the value of g5

√
k can be even larger than above if we allow non-

zero (positive) brane kinetic terms (on the Planck or TeV brane). In particular,

with non-zero Planck brane localized kinetic terms, the couplings of (lightest) gauge

KK are still set by g5

√
k since these modes are localized near TeV brane. Thus,

the KK coupling (measured in units of SM gauge coupling) also increases as these

brane kinetic terms are increased. On the other hand, allowing (sizeable) TeV

brane localized kinetic terms has a more interesting effect as follows. The value of

g5

√
k (again measured in units of the SM gauge coupling) increases as in the case

of the Planck brane localized kinetic terms, but the KK gauge coupling is clearly

determined by the kinetic term localized on the TeV brane where the KK modes

are localized (instead of being set by g5

√
k). As the size of the brane kinetic terms

increases, it turns out that the gauge KK coupling (measured in units of the SM

gauge coupling as usual) becomes weaker [60]. At the same time, the mass of the

lightest KK mode becomes smaller in such a way that ratio

KK coupling constant

Lightest KK mass in units of ke−kπR
(B.4)

1Equivalently, choosing the tree-level brane kinetic term to cancel the loop contribution”: see

discussion in [11].
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stays roughly the same (for moderately large brane terms), up to O(1) factors. The

flavor-violating amplitude (in units of ke−kπR) depends on precisely the above ratio.

So it is clear that large TeV brane terms can allow lighter KK states to satisfy the

flavor constraints, but it will not allow a reduction in the scale ke−kπR which might

be the one more relevant (than the lightest KK mass scale) for the fine tuning in

EWSB. Although a detailed analysis of TeV brane kinetic terms is beyond the scope

of this paper, it is important to keep in mind that such terms can affect the bounds

on the scale ke−kπR by O(1) factors.

B.1.0.1 Perturbativity bound on size of 5D gauge coupling

On the other hand, an upper bound on gQCD5 coupling can also be obtained

from the condition of perturbativity of the 5D QCD theory in the following way.

We can estimate the loop expansion parameter for this theory by comparing the

one-loop correction to the tree-level value of a coupling (or comparing a two-loop

correction to a one-loop effect). This loop expansion parameter grows with energy

(or number of active KK modes) due to the non-renormalizability of 5D couplings.

So, the number of KK modes below the 5D cut-off, denoted by NKK , can then be

estimated by setting this loop expansion parameter to be ∼ 1 (see, for example [61]).

As an example, we can estimate the one-loop correction to the tree-level value of

the three KK gluon coupling arising from this interaction itself. Including color and

helicity factors of ∼ 3 each for this loop diagram (see, for example, reference [62]),
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we find:

(

gQCD5

√
k
)2

3 × 3

16π2
NKK ∼ 1 (B.5)

where ∼
(

gQCD5

√
k
)

is coupling of 3 KK gluons and the single power of NKK (i.e.,

single KK sum) follows from KK number conservation at the purely KK gluon

vertices. Equivalently, the dimension of gQCD5 being −1/2 implies that the 5D loop

expansion parameter is ∼ (gQCD
5 )2E/ (16π2) with E/k ∼ being the number of active

KK modes.

We can also instead consider the one-loop self-corrections to the coupling of

KK gluon to two KK fermions, where the helicity factor of 3 is absent (in this sense,

the estimate in Eq.(B.5) is conservative). The estimate in Eq. (B.5) leads to the

following values of the number of KK modes below cutoff:

• NKK ∼ 2 for gQCD5

√
k ∼ 3 which is again the smallest gQCD5

√
k allowed for

Planck-weak hierarchy (i.e., with loop-level matching of the 5D coupling to

the 4D coupling and with no bare/tree-level brane kinetic terms).

• Whereas for gQCD5

√
k ∼ 6 (i.e., with tree-level matching of the 5D coupling to

the 4D coupling with no brane kinetic terms), there seems to be hardly any

energy regime where the 5D theory is weakly coupled, i.e., NKK < 2.

This conclusion about perturbativity for the gQCD5

√
k ∼ 6 case is valid even if we do

not include the helicity factor of ∼ 3 as would be the case for the estimate of loop

expansion parameter using the KK gluon coupling to two KK fermions (instead

of coupling of three KK gluon coupling). So with this perturbativity motivation

107



(and using the correspondence in Eq. B.3), we have focused on using gs∗ ∼ 3 in

our analysis of the two-site model, but of course, one should understand that these

conclusions are just estimates.

B.1.1 ǫk in the bulk Higgs

In this section we will prove that bulk Higgs will relax the ǫk bound. First

thing to note is that from analysis of the fermion KK modes the following relation

is approximately true

f0(c, R
′)

fn(c, R′)
≈ f(c)√

2
(B.6)

Also we will assume the Higgs is a 5D scalar defined in the model [39] in this

case the Higgs vev profile, is given by brane:

v(β, z) = v4zv

√

2(1 + β)

z3
h(1 − (zh/zv)2+2β)

(

z

zv

)2+β

. (B.7)

The couplings between fermion zero modes and Higgs (Y0), fermion KK modes and

Higgs (YKK), fermion zero modes and gauge KK modes (gKK) are given by overlap

integrals of the their profiles multiplied by the 5D couplings:

Y0 (cL, cR, β) = Y bulk
5

∫

dz

(

R

z

)5

v(β, z)f0L(cL, z)f0R(cR, z)/v4

YKK (cL, cR, β) = Y bulk
5

∫

dz

(

R

z

)5

v(β, z)fnL(cL, z)fmR(cR, z)/v4

gKK (cL) = g5

∫

dz

(

R

z

)4

fnGlue(z)f0L(cL, z)f0L(cL, z) (B.8)

where Y bulk
5 is defined by S ∋

∫

d4xdz
√
G Y bulk

5 H(x, z)Ψ(x, z)Ψ′(x, z) (with Ψ and

Ψ′ being SU(2)L doublet/singlet and G is the determinant of the metric) and has

108



mass dimension −1/2 just like g5. Again, YKK defined above is for KK modes with

same chirality as the zero-mode. A similar expression can be obtained for the overlap

integrals giving the coupling between KK gluon and two KK fermions which was

used to obtain Eq. (B.3).

It is useful to know approximate formulae for these overlap integrals which

comes from the the relations of Eq. A.27. For example

gKK ≈
(

g5

√
k
)

(

− 1

kπrc
+ f(cL)f(cR)

)

(B.9)

where pre-factor of “1” that multiplies f(cL)f(cR) is almost c-independent for 0.4
<∼

c
<∼ 0.7 that is of interest for down-type quarks.

Similarly, we define the parameter a(β, cL, cR) by

Y0 (cL, cR, β) = a(β, cL, cR)YKK (cL, cR, β) f(cL)f(cR) (B.10)

We find (numerically) that, for fixed Higgs vev profile, the cL,R dependence of a is

very mild for the range 0.4
<∼ c

<∼ 0.7 that is of interest for the down-type quarks

and hence we set cL = cR = 0.55 henceforth when we quote values of a. We give a

table for a vs. the parameter β of bulk Higgs (see Table B.1). We see that a ∼ O(1)

as expected. In detail, the Higgs and KK fermion profiles are localized near the

TeV brane so that YKK is dominated by overlap of profiles in this region. So, we

get YKK ∼ Y5

√
k (with a mild dependence on c and β), where the 5D Yukawa is

made dimensionless simply by a factor of ∼
√
k coming from the normalized profiles

at the TeV brane: see Eqs. (B.7). Even though the fermion zero-modes (except

for top quark) are localized near the Planck brane, their overlap with the Higgs is

still dominated by the region near the TeV brane for the choices of c’s relevant for
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β a MKK (gQCD5

√
k = 3, YKK = 6) MKK (gQCD5

√
k = 6, YKK = 6)

0 1.5 3.7 TeV 7.4 TeV

1(two-site) 1 5.5 TeV 11 TeV

2 0.75 7.3 TeV 14.6 TeV

∞ (brane) 0.5 11 TeV 22 TeV

Table B.1: The values of the parameter a (relating zero to KK mode Yukawa cou-

plings: see Eq. (B.10)) in 1st column for different values of the parameter β (2nd

column) which determines the profile of the bulk Higgs (Eq. (B.7)). The two-site

model and brane Higgs case are also shown as corresponding to specific values of β

(see discussion in text). The bound on MKK (from ǫK only, based on the estimate

in Eq. (B.15)) for the purely composite sector (or KK) gauge coupling gQCD5

√
k = 3

(3rd column) and gQCD5

√
k = 6 (last column) are also shown. We fix the compos-

ite/KK Yukawa coupling YKK = 6 for all entries in the table and cL = cR = 0.55 in

order to obtain the value of a.

quark masses2. Therefore, using the ratio of fermion zero and KK mode profiles

(f ’s) given in Eq. (B.6), we expect Y0 ∼ YKKf (cL) f (cR) ∼
(

Y5

√
k
)

f (cL) f (cR),

i.e., a ∼ O(1). Note that f (c)’s can be hierarchical even with small variations in c’s,

resulting in a solution to the flavor hierarchy problem in the sense that 4D Yukawa

2For larger values of c’s (i.e., fermion zero-modes localized closer to the Planck brane) as relevant

for Dirac neutrino masses, the overlaps with Higgs can be dominated by the region near the Planck

brane instead [7].
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matrix (Y0) can be hierarchical without any (large) hierarchies in the 5D theory,

i.e., with anarchic 5D Yukawa matrix (or YKK) and O(1) c’s.

The following observation about the parameter a is crucial for the analysis of

ǫK in next section. Since the fermion zero modes profiles peak near the Planck brane

while the fermion KK mode profiles peak near the TeV brane, it is clear that the

overlaps of profiles of fermion zero modes with Higgs increase while those of fermion

KK modes with Higgs decrease as the Higgs wavefunction moves farther away from

the TeV brane. Therefore, as seen from this table,

• as we decrease the parameter β determining the Higgs profile in Eq. (B.7) –

thereby localizing the Higgs away from the TeV brane, the parameter a in Eq.

(B.10) increases.

We thus expect the opposite limit, β → ∞, to reproduce brane Higgs scenario.

In fact, for brane-localized Higgs, couplings of fermions to Higgs are simply given

by wavefunctions of fermions at TeV brane, i.e., there is no overlap integral to be

performed:

Y brane
0 =

(

Y brane
5 k

)

fLfR

Y brane
KK =

(

2Y brane
5 k

)

(B.11)

with S ∋
∫

d4x
√
GY brane

5 H(x)ΨL(x, zv)Ψ
′
R(x, zv). Note that dimension of Y5 changes

from −1/2 to −1 as we switch from bulk Higgs to brane-localized Higgs. The factor

of two in Y brane
KK in second line of Eq. (B.11) comes from the fact that the normal-

ized KK wavefunction at TeV brane is ≈
√

2k (see Eq. (A.20)). From Eqs. (B.10)

and (B.11), the model with brane-localized Higgs (effectively) has a = 1/2. And,
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the numerical calculation of the overlap integrals for bulk Higgs shows that indeed

a→ 1/2 for β → ∞ (see Table B.1), in agreement with the above expectation.

Now we can see the similarity between the two-site model and the bulk Higgs

scenario. First, we compare the gauge couplings between the two cases: Eq. (B.9)

and LSM−SM term of Eq. (2.16), using Eq. (B.3). From these equations, we can

make the following identifications:

sL,R ↔ fL,R (B.12)

1

kπrc
↔ tan2 θ

As mentioned above, fLi,Ri
can be hierarchical with small variations in 5D fermion

mass parameters (c). Therefore, our choice of hierarchical elementary/composite

mixing angles (sq,u,d) in the two-site model is justified.

We turn to Yukawa couplings and compare Eq. (B.10) with LSM-SM
Y term of

Eq. (2.15). First, just like for the gauge couplings, we should identify the Higgs

coupling to heavy fermions in the two-site model with the Higgs coupling to KK

fermions in the 5D model3, i.e.,

Y∗ ↔ YKK (B.13)

(In particular, both are assumed to be anarchic.) Then we can see that the two-site

and 5D Yukawa coupling equations match if a = 1. Therefore, we conclude that

• the two-site model “mimics” the bulk Higgs scenario with β ≈ 1 (which has

a ≈ 1). This result is also shown in Table B.1.

3Note that, for a fixed β, YKK is only mildly sensitive to cL, R’s.
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B.1.2 Bound from ǫK

Following the arguments of the analysis of ǫK for the two-site model, it is clear

that, in the bulk Higgs scenario, we get from KK gluon exchange

C5D
4 estimate (MKK) =

(

g5

√
k
)2

Y 2
KKa (β)2

2msmd

v2

1

M2
KK

, (B.14)

where “estimate” has the same meaning as in our analysis of the two-site model.

Thus the constraint from ǫK is

MKK
>∼ 11

g5

√
k

YKKa(β)
TeV (B.15)

The bounds onMKK for different values of β (i.e., choices of Higgs profiles), including

the brane Higgs case and the two-site model is shown in Table B.1 for gQCD5 = 3, 6

and YKK = 6.

Now we can compare our results to previous analysis: references [11, 12] used

a brane-localized Higgs, i.e., a ∼ 1/2, with Y brane
5 k ∼ 3, i.e., YKK ∼ 6 (from Eq.

B.11). They obtained the bound on KK scale of ∼ 20(10) TeV for the case of

gQCD5

√
k ∼ 6(3) which agrees with our results in Table B.1. However, from Table

B.1, we see that

• for same g5

√
k and KK Yukawa (YKK), the bound on MKK from ǫK is lowered

for a bulk Higgs (instead of brane-localized Higgs).

Of course, this reduction in the KK scale for a bulk Higgs relative to the case of

brane localized Higgs is due to a smaller coupling of SM fermions to the KK gluon

for the bulk Higgs case, i.e., the zero-mode fermions being localized a bit farther
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from the TeV brane (where gauge KK modes are localized), than for the brane-

localized Higgs case. The crucial point is that, even with this shift of zero-mode

fermion profiles relative to the brane-localized Higgs case, the bulk Higgs set-up

can maintain the same (i.e., SM) value of the zero-mode Yukawa (for the same KK

Yukawa) as in brane-localized Higgs case. Here, we use the result (explained above)

that the ratio of zero-mode to KK Yukawa couplings (denoted by a above) is larger

for the bulk Higgs case than for brane-localized Higgs (for fixed fermion profiles).

We remind the reader that we are not considering models where Higgs is the

5th component of 5D gauge field here. In the Higgs-as-A5 model, the SM Higgs also

has a profile which is peaked near the TeV brane in a specific gauge [63]. However, for

this model, it was shown in reference [11] that the lower limit on the KK mass scale is

∼ 10 TeV for the choices gQCD5

√
k ∼ 3 and gEW5

√
k (which is the “effective” 5D Yukawa) ∼

6. For larger gQCD5

√
k and/or smaller gEW5

√
k, the bound on KK scale is higher.

B.1.3 Perturbativity limit on size of KK Yukawa

Finally, we wish to illustrate why ǫK by itself might allow a few, say, ∼ 3 TeV

KK scale, even with anarchy in 5D flavor parameters, i.e., mixing angles of size as

in Eq. (2.21). The point is that the bound on KK scale from ǫK depends on size of

KK Yukawa as seen in Eq. (B.15). Instead of using b → sγ in order to constrain

YKK (as we did for the two-site model), we can use perturbativity of the 5D theory.

Proceeding in the same way as for the gluon coupling, we can estimate NKK

from the loop expansion parameter associated with the Yukawa coupling being ∼ 1.
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For example, we can compare the one-loop correction to the tree-level value of the

coupling of Higgs to two KK fermions from this coupling itself (there are no color

or helicity factors here). For brane-localized Higgs, we get

Y brane 2
KK

16π2
N2
KK ∼ 1 (B.16)

where N2
KK (i.e., double KK sum) in this loop diagram follows from absence of KK

number conservation at the Higgs vertices in the brane-localized Higgs case. One can

also derive such growth of the loop expansion parameter withNKK from dimensional

analysis, namely, [Y brane
5 ] = −1 such that the 5D loop expansion parameter is ∼

Y brane 2
5 E2/ (16π2). So, for the brane-localized Higgs case, we get Y brane

KK ∼ 4π/NKK

and the choice of YKK ∼ 6 (i.e., Y brane
5 k ∼ 3) in references [11, 12] for brane Higgs

corresponds to NKK ∼ 2.

On the other hand, the loop expansion parameter for the bulk Higgs case is

Y bulk 2
KK

16π2
NKK ∼ 1 (B.17)

where the single power of NKK follows from the single KK sum due to KK number

conservation at Higgs vertices for the bulk Higgs case. Equivalently, we can use

dimensional analysis, i.e., [Y bulk
5 ] = −1/2 so that the 5D loop expansion parameter

∼ Y bulk 2
5 E/ (16π2) just like for 5D gauge theory. Hence, we have for bulk Higgs

case, Y bulk
KK ∼ 4π/

√
NKK, i.e.,

• for same NKK , we find that YKK can be larger for bulk Higgs by ∼
√
NKK than

for the brane-localized Higgs case. Thus the KK mass bound can be lowered

even further (beyond the point related to the factor a discussed above) as seen

from Eq (B.15).
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And, in particular,

• we get Y bulk
KK ∼ 6

√
2 for NKK ∼ 2 (same as the choice made in references

[11, 12]) so that choosing in addition the Higgs profile with β ∼ 0 (so that

a ∼ 1.5) and g∗ ∼ 3, we see from Eq. (B.15) that MKK ∼ 2.6 TeV might be

allowed by ǫK constraint.

However, such a low KK scale and large YKK in the 5D model will most likely

be very strongly constrained by BR (b→ sγ) just as in the case of the two-site

model. Note that the bulk Higgs couplings other than Y0, KK – for example the

mixed (i.e., zero-KK fermion) ones – might not exactly mimic the corresponding

ones in the two-site model so that our results for b → sγ in the two-site model

cannot be directly used for the 5D model4. A detailed calculation of b→ sγ for the

5D model is beyond the scope of this work.

B.2 Model Independent Loop Calculation

We work in non-unitary gauge for the electroweak gauge sector of the SM,

where we must include the would-be Goldstone bosons in the loop. The model-

independent interaction between a charged Higgs, SM down-type quarks (d) and an

up-type heavy quark (U) can be parametrized as follows:

L ⊃ Ū [α1i(1 + γ5) + α2i(1 − γ5)]di H
− + h.c. (B.18)

4Of course, the amplitude for b → γ in the 5D model is expected to be of similar size to (i.e.,

differing only by ∼ O(1) factors from) that in the two-site model.
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Figure B.1: Feynman diagrams for b → s γ via charged Higgs

where all quarks are in mass eigenstate basis (including effects of EWSB). We focus

on the dominant contributions to the dipole moment operator for b→ sγ generated

by these interactions – the relevant diagrams contain the charged Higgs and heavy

fermion in the loop with the SM fermions as external legs (see Fig. B.1 (A) and

(B)). We will then apply the results obtained in this section for the specific case of

the two-site model and calculate the effective dipole operator for one generation in

Appendix B.3 and b→ sγ in appendix B.3.1.

For the first diagram (see Fig. B.1 (A)), with photon line attached to the

heavy fermion, we get the effective operator5

Heff
1 =

ieQU

8π2

(2ǫ · p)
M2

w

{A1s̄(1 + γ5)b+B1s̄(1 − γ5)b} (B.19)

with

A1 = (α2bα
∗
2smb + α1bα

∗
1sms)f1(t) + (α∗

2sα1b)M∗f2(t) (B.20)

B1 = (α1bα
∗
1smb + α2bα

∗
2sms)f1(t) + (α∗

1sα2b)M∗f2(t)

5We used Feynman gauge in this calculation. Since we are considering only the dominant

diagrams here, the result will be different by O(
M2

w

M2
∗

) if we use another non-unitary gauge. Such

differences can be neglected for our purpose here. Of course including the other diagrams (with

W/Z) will produce a gauge-invariant result.
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and

f1(t) = −t[t(t− 6) + 3] + 6t ln(t) + 2

12(t− 1)4
; f2(t) = −(t− 4)t+ 2 ln(t) + 3

2(t− 1)3
(B.21)

where M∗ is the mass of the heavy fermion, QU is the charge of the heavy fermion,

t = M2
∗ /M

2
w. This result can also be used for the diagram with neutral Higgs

(including physical Higgs and the neutral would-be-Goldstone boson) in the loop.

The result for the second diagram(See Fig. B.1 B), with photon attached to

the charged Higgs, is

Heff
2 =

−ie
8π2

(2ǫ · p)
M2

w

{A2s̄(1 + γ5)b+B2s̄(1 − γ5)b} (B.22)

with

A2 = (α2bα
∗
2smb + α1bα

∗
1sms)g1(t) + (α1bα

∗
2s)M∗g2(t) (B.23)

B2 = (α1bα
∗
1smb + α2bα

∗
2sms)g1(t) + (α∗

1sα2b)M∗g2(t)

and

g1(t) =
2t3 − 6t2 ln(t) − 6t+ 1 + 3t2

12(t− 1)4
; g2(t) =

t2 − 2t ln(t) − 1

2(t− 1)3
(B.24)

These results (Eq. B.19 and B.22) can be applied to calculate Γ(b→ sγ) if we find

the couplings α1i, α2i (see Eq. B.18).

B.3 Mass matrix diagonalization and dipole moment operator for

one generation

Having performed a calculation of the dipole operator for b→ s generated by

general couplings of bottom and strange quarks to Higgs and heavy fermions, we
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now consider this contribution specifically in the two-site model. As explained in

section 2.4.1, we have to consider the mixing between the SM and heavy fermions

of all three generations induced after EWSB. Diagonalization of this mixing will

give the couplings to Higgs in mass eigenstate basis for the quarks which we can

then plug into the model-independent results of appendix B.2 in order to calculate

b→ sγ. In this section, we will first consider analytically the simpler one generation

case, i.e., a calculation of (g − 2)µ, which will be generalized (numerically) to the

case of three generations for calculating b→ sγ in the next sub-section. This result

for the dipole operator for one generation was also used in section 2.4.1 to obtain an

estimate for b → sγ (after multiplying by an estimate for the generational mixing

factors).

The one generation mass matrix for down type quarks (including effects of

EWSB) is (see Eq. (2.15))

(b̄L
¯̃BL B̄L)M∗

















xsqsb 0 xsq

0 x 1

xsb 1 x

































b̃R

BR

B̃R

















+ h.c. (B.25)

where x = vY∗/
(

M∗
√

2
)

, B̃ and B are composite SU(2)L singlet and doublet

fermions respectively. It can be diagonalized by bi-unitary transformation to first

order in x.

ODL
=

















1 xsq/
√

2 −xsq/
√

2

−xsq 1/
√

2 −1/
√

2

0 1/
√

2 1/
√

2

















; ODR
=

















1 xsb/
√

2 xsb/
√

2

−xsb 1/
√

2 1/
√

2

0 1/
√

2 −1/
√

2

















(B.26)

119



O†
DL

















xsqsb 0 xsq

0 x 1

xsb 1 x

















ODR
= diag( xsqsb , 1 + x , 1 − x ) (B.27)

Similarly we can get the up-type diagonalization matrix (OUL
) and (OUR

). We define

the mass eigenstates as
















bSML

B1L

B2L

















= O†
DL

















bL

B̃L

BL

































bSMR

B1R

B2R

















= O†
DR

















b̃R

BR

B̃R

















, (B.28)

where bSM is the SM bottom quark with mass vY∗sqsb. B1 is the heavy state with

mass (1 + x)M∗ and B2 is the heavy state with mass (1 − x)M∗. Similar mass

eigenstates can be defined for up-type quarks (tSM , T1, T2).

The coupling between down type and up type quarks through charged Higgs

is

Y∗(
¯bSML B̄1L B̄2L) O

†
DL

















sqst 0 sq

0 −1 0

st 0 1

















OUR

















tSMR

T1R

T2R

















H− (B.29)

We can find the couplings between bSML and heavy up-type quarks

Y∗H
−b̄SML

[

(1 + x)√
2

sqT1R +
(x− 1)√

2
sqT2R

]

(B.30)

Similarly, we have the coupling coming from another chirality

Y∗(b̄
SM
R B̄1R B̄2R) O†

DR

















−sqsb 0 −sb

0 1 0

−sq 0 −1

















OUL

















tSML

T1L

T2L

















H− (B.31)
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which gives us the coupling

Y∗H
−b̄SMR

[

−(1 + x)√
2

sbT1L +
(x− 1)√

2
sbT2L

]

(B.32)

Altogether, we have the charged Higgs coupling between SM bottom quark and

heavy up-type quark

Y∗H
−b̄SM

[

(
1 + γ5

2
)(1 + x)

sq√
2
− (

1 − γ5

2
)(1 + x)

sb√
2

]

T1 + (B.33)

Y∗H
−b̄SM

[

(
1 + γ5

2
)
x− 1√

2
sq + (

1 − γ5

2
)
x− 1√

2
sb

]

T2

Based on our parametrization of the couplings (see Eq. B.18), we extract (we ignore

the subscript “b” in α1,2 here)

α
(1)
1 = −(1 + x)sb

2
√

2
Y∗ (B.34)

α
(2)
1 =

(x− 1)sb

2
√

2
Y∗

α
(1)
2 =

(1 + x)sq

2
√

2
Y∗

α
(2)
2 =

(x− 1)sq

2
√

2
Y∗

The contribution from heavy up-type quark to the dipole moment operator would

be (see Eq. B.19 and B.22)

Hdipole
charged Higgs =

ie

8π2

(2ǫ · p)
M2

w

K
[

b̄SM(1 − γ5)b
SM + b̄SM(1 + γ5)b

SM
]

(B.35)

with

K =
2
∑

i=1

(

|α(i)
1 |2 + |α(i)

2 |2
)

mb

[

2

3
f1(ti) − g1(ti)

]

+
2
∑

i=1

(α
(i)∗
1 α

(i)
2 )Mi

[

2

3
f2(ti) − g2(ti)

]

. (B.36)
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Substituting Eq. (B.34) in (B.36) one can see that the first term is sub-leading due

to additional powers of sb,sq. For the second term we use the approximation

2

3
f2(ti) − g2(ti) ≈ −5

6

M2
w

(M∗)2(1 ± x)2
(B.37)

It gives us

K ≈ 5x

24
sqsb

M2
w

(M∗)2
(Y∗)

2 (B.38)

And the final result is

Hdipole
charged Higgs =

5

12
(Y∗)

2mb
ie

16π2

(2ǫ · p)
(M∗)2

[̄bSM(1 − γ5)b
SM + b̄SM(1 + γ5)b

SM ] (B.39)

Note that we have chosen not to combine the two terms in
[

...
]

in the above equation.

The reason is that when we apply the above result to b → sγ, then the two terms

with different chirality structure will be multiplied by different mixing angles and

hence it is useful to keep track of the two terms separately even for the case of one

generation.

The contribution from neutral Higgs can be calculated in a similar fashion.

The coupling between down-type quarks and neutral Higgs is

Y∗H
0
(

b̄SML B̄1L B̄2L

)

O†
DL

















sqsb 0 sq

0 1 0

sb 0 1

















ODR

















bSMR

B1R

B2R

















+ h.c. (B.40)

From this we can find the coupling between SM b quark and heavy down-type

fermions:

Y∗H
0

{

b̄SML

[

1 − x√
2
sqB1R − 1 + x√

2
sqB2R

]

+ b̄SMR

[

1 − x√
2
sbB1L +

1 + x√
2
sbB2L

]}

+ h.c.(B.41)
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which gives us (see Eq. B.18)

α
(i)
1 = Y∗

sb

2
√

2
(1 − x, 1 + x) (B.42)

α
(i)
2 = Y∗

sq

2
√

2
(1 − x, −1 − x)

Follow the same procedure as before, including only the first diagram (Fig. B.1A).

We get

Hdipole
neutral Higgs = −1

4
(Y∗)

2mb
ie

16π2

(2ǫ · p)
(M∗)2

[̄bSM(1 − γ5)b
SM + b̄SM(1 + γ5)b

SM ] (B.43)

B.3.1 Three generation calculation

Generalizing to three generations, the mass matrix Eq. (B.25) becomes 9× 9.

However, since analytical diagonalization of this 9 × 9 matrix is difficult, we do it

numerically and extract the parameters α1, α2 (see Eq. (B.18) which parametrize

general interaction between fermions and Higgs field, keeping in mind that α1,2 will

now have six components α
(1,2,...6)
1,2 because we have six heavy mass eigenstates).

Then using these α’s in the formulae from the loop calculation in Eqs. (B.19) and

(B.22), we will get exact values for the C7 and C ′
7 coefficients in the amplitude for b→

sγ (instead of the estimates presented in section 2.4.1). Similarly, applying the above

diagonalization to Eq. (2.16) allows us to calculate the flavor-violating couplings of

heavy gluon to the SM fermions after EWSB (including effects of SM-heavy fermion

mixing) which generate contributions to ǫK . The results of the numerical scan in

section 2.6 are based on these calculations.
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B.4 Details of Scan

All the masses and mixings in the fermion sector (including SM and heavy)

can be parametrized by the composite site Yukawa couplings (Y ∗
u,d) and the elemen-

tary/composite mixings (sq,d,u). Of course, we must choose Y∗ and sq,u,d to give the

observed quark masses and CKM angles. We would like the composite site Yukawa

couplings to be “anarchical”, i.e., of the same order, and sq,d,u to be hierarchical6 in

order to explain SM fermion masses and mixing, and their approximate values are

given by (60). We choose to scan over the following independent variables

• Elementary-composite mixing angles sq,u,d

• SM rotation matrices OUR
, OUL

, ODR
(ODL

is fixed by ODL
= OUL

· VCKM)

(This choice is equivalent to treating Y u,d
∗ and sq,u,d as the independent variables

which are scanned.) We randomly vary each set of the independent variables around

their “natural” size by a factor of three, where the natural sizes for the sq,u,d are

defined to be Eq. (60) and that for OUR
, OUL

, ODR
in Eq. (2.21) by replacing “∼”

by “=” in both these equations. Then we calculate corresponding Y∗u,d
7

Yu =
√

2
v

(OUL
) ·Mdiag

u · (OUR
)†; Yd =

√
2
v

(ODL
) ·Mdiag

d · (ODR
)†

Y u,d
∗ ≈ s−1

Q Yu,ds
−1
u,d (B.44)

6As mentioned earlier, these assumptions can be justified by the correspondence with the 5D

model to be discussed later.
7We are ignoring the mixing between the SM and heavy fermions induced by EWSB in the last

relation here which results in an error of Y 2

∗
v2/M2

∗
∼ a few % (for the our choice of parameters)

in the determination of Y∗.
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Then we check whether our Y∗u,d are “anarchical”, i.e., whether they satisfy the

following condition

Max(|Y∗u|)
3

< G.M.(|Y∗u|) < 3 ∗ Min(|Y∗u|)

Max(|Y∗d|)
3

< G.M.(|Y∗d|) < 3 ∗ Min(|Y∗d|) (B.45)

where G.M. stands for the geometrical mean. If these Yukawas satisfy “anarchy”

condition, we proceed to calculate new physics contribution to Γ(b → sγ), ImCK
4

(as described in section B.3.1) and δgZb̄LbL as in Eq. (2.45). On the other hand, if

these Yukawas do not satisfy the anarchy condition, then we discard them. We have

checked that the couplings (Y∗u,d) generated in this way are random, i.e., that there

is no correlation between different elements of the matrices. The results of the scan

are presented in Fig. B.2 to B.7.

B.5 Sub-leading effects

B.5.1 ǫK

Similarly to the heavy gluon exchange, heavy EW gauge boson exchange gen-

erates (V −A)×(V +A) operators, but it gives C5 (M∗) only and of smaller size than

C4 (M∗) from heavy gluon due to smaller values of gauge couplings and gauge quan-

tum numbers in the heavy EW boson exchange than in heavy gluon exchange. More-

over, the model-independent constraint from UTfit [21] on C5 (renormalized at a few TeV scale)

is weaker than for C4. So, we find that constraint on M∗ from heavy EW gauge bo-

son exchange in the two-site model is weaker than that from heavy gluon exchange:
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see also discussion in [12].

We have also checked that the constraint from (V − A) × (V − A) and (V +

A)×(V +A)-type operators from heavy gauge boson exchange in the two-site model

can be weaker than from (V −A)× (V +A) operator from heavy gluon exchange. In

detail, such exchange generates the Wilson coefficient C1 (M∗). Firstly, the model-

independent bound on C1 (renormalized at a few TeV scale) is weaker than for C4

due to the absence of matrix element and RGE enhancement for C1 relative to C4.

Secondly, in the two-site model, the size of C1 can be effectively controlled by a single

parameter, namely, the amount of elementary-composite mixing of bL – the point

being that the other down-type elementary-composite mixings are then fixed: the

ones for dL, sL via CKM mixing angles and then, for given composite Yukawa, the

right-handed ones by SM Yukawa (as discussed earlier).8 Usually, one chooses sq3 to

satisfy the constraint from Zbb̄ (as discussed earlier) and simultaneously to obtain

the correct top Yukawa, i.e., Y∗sq3 ∼ O(1), assuming SM tR is fully composite.

For the choice of M∗ ∼ a few TeV and Y∗ ∼ a few, we then find sq3 ∼ 1/ (a

few). With this size of sq3 and once we choose M∗ to satisfy the ǫK-constraint

from (V − A) × (V + A) operators, we find that both (V − A) × (V − A) and

(V +A)× (V +A)-type operators do not give as strong a constraint as from heavy

gluon contribution to the (V − A) × (V + A) operator: see also [12] for a related

discussion.

8Contrast this case to that for C4, 5 above whose size was fixed in terms of SM fermion Yukawa

couplings/masses (due to a combination of left and right-handed elementary-composite mixings

involved in C4).
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B.5.2 Other B-physics observables

It is easy to compute Bd, s mixing amplitudes in the two-site model. The main

new physics contribution comes from the flavor violating couplings of heavy gluon,

just like for ∆S = 2 process discussed earlier. We have checked that bounds on Bd, s

mixing amplitude is satisfied once ǫK is safe: see also [11, 12] for related discussions.

In detail, the (V −A)×(V +A) type operator generated in the two-site model is

less constrained in the Bd, s systems than in the K system for the following reasons.

Firstly, the model-independent constraint on Cnew
4, 5 (M∗) /C

SM
1 (MW ) is weaker in the

Bd, s system than in the K system since there is no matrix element enhancement

for C4,5 in the Bd, s mixing operators (unlike for K mixing). Secondly, in the two-

site model, the size of Cnew
4, 5 (M∗) /C

SM
1 (MW ) for Bd, s mixing turns out (due to the

particular values of down-type quark masses) to be smaller than in K mixing. For

the (V ±A) × (V ±A) type operator, the analysis is similar to that for K mixing.

Besides ∆F = 2 processes, there are also new physics contribution to ∆F = 1

processes in the two-site model. For example, the non-universal shift (in gauge

eigenstate basis) in the Z couplings for bL (vs. dL, sL) will lead to flavor-violating

couplings to Z once we transform to mass eigenstate basis, resulting in the (flavor-

violating) processes b → sf f̄ , where f = quark, lepton. We have checked that the

new physics contribution to b→ sl+l− process is below the experimental bound once

we satisfy δgZb̄LbL/gZb̄LbL . 0.25% as required by the flavor-preserving Zbb̄ data: see

also [13] for a related discussion.

We also checked the new physics contribution to the time-dependent CP asym-
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metry in b → sγ, i.e., SCP which requires an interference between the C7 and C ′
7

amplitudes: SCP ∼ C ′
7C7/(|C7|2 + |C ′

7|2). In the SM, SCP ∼ ms/mb due to the

suppression of C ′
7 by ms/mb relative to C7 [64]. In the two-site model, new physics

contribution will generically give C ′
7 ∼ CSM

7 so that we expect SCP to be sizable in

the two-site model. However, we found that there is no significant constraint coming

from SCP because of the large experimental uncertainty at present [31].
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Figure B.2: Scatter plot for shift in BR(b → sγ) and Im (C4K) for M∗ = 5 TeV,

the composite site gauge coupling gs∗ = 3 and different values of Y u,d
∗ (defined here

as the geometric mean of the composite site Yukawa couplings |Y u,d
∗ ij |). The allowed

region is below and to the left of the (red) solid lines. For gs∗ = 6, the allowed

region is below the dashed line and to the left of the solid (red) line. (see discussion

in section 2.6).
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Figure B.3: Scatter plot for δgZb̄LbL and Im (C4K) for M∗ = 5 TeV, the composite

site gauge coupling gs∗ = 3 and for different values of Y u,d
∗ (defined here as the

geometric mean of the composite site Yukawa couplings |Y u,d
∗ ij |). The allowed region

is below and to the left of the (red) solid lines. For gs∗ = 6, the allowed region is

below the dashed line and to the left of the solid (red) line. (see discussion in section

2.6).
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Figure B.4: Same as Fig. B.2, but with M∗ = 10 TeV.
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Figure B.5: Same as Fig. B.3, but with M∗ = 10 TeV.
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Figure B.6: Same as Fig. B.2, but with M∗ = 3 TeV.
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Figure B.7: Same as Fig. B.3, but with M∗ = 3 TeV.
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Chapter C

Higgs and Radion

C.1 General misalignment formulae

Here we present the result for the misalignment for general fermions (both UV

and IR localized). The largest contribution (second term of Eq. 3.29) is

∆d
1 = 2m3

dR
′2 2 + cd − cq + β

(1 + 2cd)(1 − 2cq)

[

ǫ1+2cd

3 − cd − cq + β
− 1

4 + cd − cq + β
− ǫ2−2cq+2cd

3 − cd − cq + β

ǫ−2cq+1

3 + cd + cq + β
− ǫ−2cq+2cd+2

4 + 2β
(ǫ−1−2cd − 1)

−ǫ
−2cq+2cd+2

4 + 2β
(ǫ−1+2cq − 1) +

ǫ2cd+1

5 − 2cq + 2β
(ǫ−1−2cd − 1)

+
ǫ−2cq+1

5 + 2cd + 2β
(ǫ−1+2cq − 1) +

ǫ2+2cd−2cq

6 + cd − cq + 3β
(ǫ−1−2cd − 1)(ǫ−1+2cq − 1)

]

. (C.1)

For the case of the UV localized fermions (cq > 0.5, cd < −0.5) the 3rd, 4th and 9th

terms are dominating and we recover Eq. (3.36). For the subleading contribution

of the misalignment ∆d
2 (first term of Eq. 3.29) we get:

∆d
2 =

m3
dR

′2

1 − 2cq

[

− 1 − ǫ2

ǫ2cq−1 − 1
+

ǫ2cq−1 − ǫ2

(ǫ2cq−1 − 1)(3 − 2cq)
+

ǫ1−2cq − ǫ2

(1 + 2cq)(ǫ2cq−1 − 1)

− 1

4 + cd − cq + β
+

2ǫ1−2cq

3 + cq + cd + β
+

(ǫ2cq−1 − 1)ǫ1−2cq

5 + 2cd + 2β
+ (cd,q ↔ −cq,d)

]

(C.2)

For the UV localized fermions (cq > 0.5, cd < −0.5) the 3rd, 5th and 6th terms are

important and we recover Eq. (3.37).

133



C.2 Misalignement due to v(z) 6= h(z)

In this section we discuss the possible flavor violation coming from the the

misalignment between the physical Higgs profile and the Higgs vev profile. The

profile of the KK Higgs modes are given by [39]

hm(z) = Bz2(Y1+β(mR)Jβ(mz) + J1+β(mR)Yβ(mz)). (C.3)

where the mass of the KK mode is determined by the boundary conditions. Then

for the lightest mode (physical Higgs) we can expand the Bessel functions using

(m≪ 1/z)

h(z) = A(mH)z2+β

(

1 − m2
Hz

2

4(β + 1)

)

(C.4)

where the constant A(mH) is fixed by requiring the Higgs profile normalization. One

can see that in the limit (mH = 0), the profiles of the physical Higgs and the profile

of its vev become proportional to each other. Then, the normalization constants of

the Higgs field and the Higgs vev, A(mH) and V (β) (Eq. 3.10), will be related by

A(mH)|mH=0 ≡ A(0) =
V (β)

v4

(C.5)

and so the profile of the Higgs will be given by

h(z) = A(0)z2+β

[

1 +
m2
HR

′2

2(4 + β)
− m2

Hz
2

4(1 + β)
+O

(

(m2
HR

′2)2
)

]

(C.6)

=
v(z)

v4

[

1 +
m2
HR

′2

2(4 + β)
− m2

Hz
2

4(1 + β)
+O

(

(m2
HR

′2)2
)

]

.

This will lead to a new contribution to the shift ∆d

∆d
3 = −md(m

2
HR

′2)

[

1

2(4 + β)
− 2 + β + cd − cq

4(1 + β)(4 + β + cd − cq)

]

, (C.7)
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but one can see that in the limit β → ∞ this contribution decouples. Moreover,

even for finite β, the numerical size of this type of flavor misalignment is small.

C.3 Convergent infinite sum in the mass insertion approximation

In this appendix, we address again the “contradiction” between the mass in-

sertion approximation and the 5D calculation when the Higgs is on the IR brane.

We will prove that one can obtain the result of Eq. 3.56 from direct calculations of

the Feynman diagrams in the insertion approximation.

Naively, the importance of the Y2 term looks counter intuitive because the

profiles qR, dL do vanish at IR brane. Indeed if one follows the insertion approx-

imation (see Fig. 3.1) then the coupling between qKKR , dKKL and the Higgs vanish,

so there will be no contribution to fermion masses and Yukawa couplings out of

that diagram. However there is a subtlety in this approach, since we are expanding

in KK modes by using the profiles for the case 〈H〉 = 0. This means that after

electroweak symmetry breaking, we should include the mixing between the whole

tower of KK modes induced by a nonzero Higgs vev. Naively the heavier KK modes

should decouple so that their contribution should not qualitatively affect the final

result. But this appears not to be the case.

For simplicity we will start our discussion from the case of a flat extra dimen-

sion. Now, the fermion profiles are given by sine and cosine functions instead of

Bessel functions, and the derivation becomes much more transparent. At the same

time when the Higgs is localized on one of the branes, we still have the same issue
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for any Yukawa coupling between odd modes and the Higgs i.e., the term Y2qRdL

naively should not lead to any misalignment between fermion masses and Yukawa

couplings.

The profiles of the even KK modes are given by

qnL(d
n
R) =

1√
πR

cos
(nz

R

)

, n = ±1,±2, ...

q0
L(d

0
R) =

1√
2πR

(C.8)

and the odd KK mode profiles are

qnR =
1√
πR

sin
(nz

R

)

n = ±1,±2, ...

dnL = − 1√
πR

sin
(nz

R

)

n = ±1,±2, ... (C.9)

The coupling Y2HQRDLδ(y− πR) should vanish because QR and DL are vanishing

at y = πR, but in the diagram (Fig. 3.1) we have to include all the KK modes, so we

will have an infinite sum of zeroes, and in order to treat all the infinities accurately

we will again use the rectangular regulator Eq.(3.47) for the delta function.

Let us define the following quantities:

Y e
mn − coupling between “m” and “n” even KK modes

Y o
mn − coupling between “m” and “n” odd KK modes (C.10)

then

Y e
mn =

(−1)m+n

2πε





sin
(

(n−m)ε
R

)

n−m
+

sin
(

(n+m)ε
R

)

n +m



 =
(−1)n+m

2πR

[

1 +O

(

(n,m)2
( ε

R

)2
)]

,

Y o
mn = −(−1)m+n

2πε





sin
(

(n−m)ε
R

)

n−m
−

sin
(

(n+m)ε
R

)

n+m



 = −(−1)n+m

3πR

( ε

R

)2

mn

[

1 +O

(

(n,m)4
( ε

R

)4
)]

(C.11)
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In a similar way one can calculate the coupling between the 0 and the n-th even KK

modes:

Y e
0n = Y1

(−1)n

π
√

2ε

sin
(

nε
R

)

n
= Y1

(−1)n

π
√

2R

[

1 +O
(nε

R

)]

(C.12)

As we said before to find the O(v3R′2) misalignment between fermion masses and

Yukawa couplings, it is sufficient to consider the contribution of the diagram with

three Higgs insertions (see Fig. 3.1) and sum over all KK modes. However, for KK

modes with |n|, |m| & R/ε, the sinusoidal oscillation of the odd wavefunction inside

the Higgs profile will tend to make the Y o
m,n coupling vanish. Thus we need to sum

up |n|, |m| only up to ∼ R/ε, and the estimate of that sum will be:

∆d
1 ∼ v2

R/ε
∑

|n|,|m|=1

Y e
0n

R

n
Y o
nm

R

m
Y e

0m

∼ Y 2
1 Y2v

2

R

R/ε
∑

n,m=1

( ε

R

)2

(C.13)

One can see that all of the terms up to n . R/ε are of the same order, and so the

sum should be finite and proportional to
Y 2
1 Y2v2

R
. Exact resummation gives us

∆d
1 =

Y 2
1 Y2v

3

6πR
(C.14)

It is important to mention that to account for the flavor mixing effects one has to

sum at least the first R/ε terms. And the lightest mode is an admixture of the zero

mode and the first R/ε KK modes. This should not be surprising because the zero

Higgs vev expansion should include all KK modes up to the value of the cutoff and

the cutoff is related to the inverse of the Higgs wavefunction width. In our case the
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width of the Higgs profile is ε so we have to sum all the modes with masses up to

1/ε.

In the case of the warped geometry things become a little bit more complicated,

because the sine and cosine are replaced by the Bessel functions:

f e(z,mn) = (Rz)5/2 1

N
√

R ln(R′/R)
[Jα(mnz) + bα(mn)Yα(mnz)]

f e(z,mn) = (Rz)5/2 1

N
√

R ln(R′/R)
[Jα−1(mnz) + bα(mn)Yα−1(mnz)](C.15)

where

α = c+
1

2

bα(mn) =
Jα−1(mnR)

Yα−1(mnR)
=
Jα−1(mnR

′)

Yα−1(mnR′)
(C.16)

but for the cases when the mass of the KK mode is 1
R′

≪ m ≪ 1
R

the expressions

for the profiles simplify significantly

mnR
′ ∼ π(n+ c/2 + 1/2)

Jα(mnz) ∼
√

2

πmnz
cos(mnz − π/2(c+ 1))

Jα−1(mnz) ∼
√

2

πmnz
cos(mnz − π/2c)

(C.17)

so the ratio

f o(z,mn)

f e(z,mn)
|z=R′−ε ∼

sin(mnε)

cos(mnε)
∼ sin(mnε) (C.18)

and so it becomes obvious that

Y o
nl ∼ sin(mnε) sin(mlε). (C.19)
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One can see that Y o
nl has the same dependence on the KK numbers as in the flat

case, and on the masses of the KK modes mn ∼ πn/R′ for large n, so the calculation

for the warp geometry will proceed exactly as in the flat geometry case.

There is yet another way to understand this result1. Instead of operator

Y2HuLqR we can consider the following effective operator localized at the IR brane:

Y2(∂zuL)(∂zqR)H δ(z − R′)

Λ2
(C.20)

Then the contribution to the diagram (Fig. 3.1) will be

∆d
1 ∼

∑

n,l. Λ
Mkk

Y1v

mn

Y2mnml

Λ2

Y1v

ml

∼ Y 2
1 Y2v

2

Λ2

∑

n,l. Λ
Mkk

(C.21)

∼ Y 2
1 Y2v

2

M2
kk

and we can see that the effect of every KK mode becomes equally important and

we again have to sum up all the modes up to the value of the cutoff Λ, obtaining

a cutoff independent finite result. On the other hand it is easily seen that this

operator corresponds to giving Higgs some finite width ∼ 1
Λ
. Indeed if will use the

boundary conditions for the profiles uL|R′
= qR|R′

= 0 we will get

− ∂zuL
Λ

∣

∣

∣

∣

R′

=

(

uL − ∂zuL
Λ

)

R′

= uL

(

R′ − 1

Λ

)

+O

(

1

Λ2

)

(C.22)

so the operator (C.20) is equivalent to

(∂zuL)(∂zqR)Hδ(z − R′)

Λ2
⇔ (uLqR)Hδ

(

z − R′ − 1

Λ

)

(C.23)

1We thank Raman Sundrum for suggesting it.
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This result is not surprising because the width of the Higgs profile should be related

to the value of the inverse cutoff.

C.4 Interactions of the radion

In this appendix I will present the couplings of the radion to the SM fields[50].

Because the radion is part of the of the five dimensional gravity multiplet it should

couple to matter via energy momentum tensor. Using the precise form of radion

excitation (4.1) we can derive that it will couple to energy momentum tensor in the

following way,

Sradion = −1

2

∫

d5x
√
gTMNδgMN =

∫

d5x
√
g
(

F (TrTMN − 3T 55g55)
)

. (C.24)

C.4.1 Couplings to the massive vector bosons

Now we can derive interactions of the radion with all SM fields. Let us start

with interactions of the radion with massive vector bosons. Using Eq. (C.24) and

(4.2) we can see that these interaction will be

−2r

Λr
M2

w − r

Λ

1

ln R′

R

WµνWµν +

r

Λ
WµνWµνM

2
wR

′2

[

1

8 ln R′

R

− 1

4

]

(C.25)

where Wµν is a field strength for the massive vector boson.
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C.4.2 Interactions of the radion with massless vector bosons

The simplest way to derive this coupling is to observe that radion degrees of

freedom correspond to the change of the length of extra dimension, so we can derive

its coupling by making substitution,

R′ → R′
(

1 +
r

Λ

)

. (C.26)

Starting from gauge coupling matching relation (B.3) we will get

1

g2(q)
≈ 1

g2
UV

+
1

g2
IR

+

(

R

g2
5D

)

ln(R′/R) +
bUV
8π2

ln
1

Rq
+
bIR
8π2

ln
1

R′q
(C.27)

where now bUV,IR are beta functions of the fields localized at UV and IR branes

respectively, and making substitution (C.26) we will get

− r

4Λ

(

R

g2
5D

− bIR
8π2

)

F µνFµν . (C.28)

But from low energy theorems we know that heavy fields become decoupled and do

not contribute to the gauge coupling running, so we have to subtract their contri-

bution

biH
8π2

ln
mi

q
∼ bH(q)

8π2
ln

1

qR′ (C.29)

where bH stands for the contribution of the heavy fields, and we have assumed that

the heavy states have mass of order R′−1. Then the radion couplings become equal

to

− r

4Λ

(

R

g2
5D

− bIR − bH
8π2

)

F µνFµν (C.30)
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where the −bH automatically counts the contribution of the triangle diagrams. The

gauge coupling matching condition modifies to,

R

g2
5D

=
1

ln R′

R

[

1

g2(q)
− 1

g2
UV

− 1

g2
IR

− bIR
8π2

ln
1

qR′ −
bUV
8π2

ln
1

qR
+

bH
8π2

ln
1

R′q

]

.(C.31)

Then the interaction of the radion will be given by

− r

4Λ ln R′

R

[

R

g2(q)
−
(

1

g2
UV

+
1

g2
IR

)

b− bH
8π2

ln

(

R′

R

)]

F µνFµν (C.32)

where b = bUV + bIR is total beta function corresponds to the trace anomaly and bH

corresponds to the contribution of the heavy quarks from triangle diagrams.
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