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Biosolids applied to agricultural land may upset neighboring communities due to the 

inherent malodorous smell of biosolids. The problem of the odor becomes a major 

concern in the wastewater treatment industry when community responses could vary 

from complaints to legal action to ban or reduce biosolids recycling through land.  

 Unlike odor at a wastewater treatment facility, which is produced from the 

characteristics of wastewater itself and from individual unit processes, land-applied 

biosolids odor depends not only on the quality of biosolids, but also on the  biosolids 

emissions levels, unfavorable weather conditions and topographic characteristics, and 

variation of human perception.  Those factors increase the complexity of nuisance 

odor at land application sites. 

 This dissertation aims to assess biosolids emission impacts on surrounding 

communities by estimating the level of biosolids odor emissions, simulating odor 

dispersion, and quantifying human perception to biosolids odor.  



  

 Odor emission rates at land-applied biosolids fields were estimated using three 

different approaches: assumed flow rate, statistical inference, and simulated-flux 

chamber. The estimated emission rates were used as an input to dispersion models. 

The U.S. Environmental Protection Agency Regulatory Models, both screening and 

refined models, were used to simulate dispersion of biosolids odor at land application 

sites. A Geographic Information System (GIS) was employed to support modeling 

steps and to create maps. Appraisal of odor perception by receptors was assessed by 

use of Steven’s psychophysics power law. 

 The District of Columbia Water and Sewer Authority (DCWASA) land 

application fields in Virginia were used as case studies. More specifically, 45 fields in 

Albemarle and Orange Counties were focused on. Concentration prediction maps 

along with probability maps were created to support visualization and provide 

information on potential odor impacts to communities. Possible human perceptions 

were expressed in Intensity maps. The methods and results described in this 

dissertation can  support decision makers in selecting appropriate land application 

sites prior distributing biosolids to reduce adverse effects from land-applied biosolids.  
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Chapter 1: Introduction 

1.1 Problem Definition and Significance 

Air quality in the United States has become a national concern since the 1970s. 

Accordingly, the Clean Air Act (CAA) was established as a national law for setting 

and regulating national air quality standards. Pollutants that are potentially harmful to 

human health are stringently regulated. However, pollutants that might cause 

annoyances such as odorous gases from wastewater biosolids are not directly 

regulated.  

 Biosolids are treated sewage sludges resulting from wastewater treatment. 

They contain nutrient organic materials that can be used as a beneficial agricultural 

fertilization such as a supplement to improve soil condition (EPA, 2000b). 

Nevertheless, the associated malodorous smell of biosolids that are applied to 

agricultural land may upset neighboring communities even though those biosolids are 

processed to meet the Standards for the Use or Disposal of Sewage Sludge (EPA, 

1994).  

 With substantial amount of biosolids produced in the United States, 

approximately 7,180,000 dry tons in 2004 (Guillot et al., 2007), nuisance odor from 

biosolids become a major concern in wastewater treatment industry especially when 

the responses from nearby communities to odor could vary from complaints to legal 

action in the form of legislation to ban or minimize biosolids recycling. In addition, 

the nuisance odor could have impacts on the society and the economy of the 

communities such as on quality of life and property value (Turk et al., 1974).  
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 In California, for example, a grand jury recommended actions to the Orange 

County Sanitation District (OCSD) to enhance public acceptance and to phase out 

biosolids land application except in remote areas (Frank, 2005).  

 Odor on-site at a wastewater treatment facility is produced from the 

characteristics of wastewater itself and from individual unit processes. The inflowing 

wastewater is inherently unpleasant, and each treatment process can independently 

produce odorants. Off-site nuisance odors, on the other hand, depend not only on the 

quality of biosolids, but also on the elevated odor emission levels of the biosolids 

source, variation of atmospheric conditions, and sensitivity of human perception.  

Those factors increase complexity of nuisance odor at land application sites. For 

example, an inspector who goes to a site of complaint may or may not detect the odor. 

Even if he can detect the odor, he cannot determine that perceived by a complainer. In 

addition, the detection level is normally not the level of the odor complaint (Poostchi, 

1985).    

 A key research need is to study factors associated with nuisance odor 

problems at land application sites. It is equally important to being able to identify 

sources of odorous gases generated during and after treatment processes. Moreover, it 

will also help practitioners to assess odor impacts from land-applied biosolids more 

effectively and support decisions on selecting suitable land application sites to reduce 

public resistance to biosolids.  

1.2 Goals and Objectives 

The goal of this research is to promote recycling of biosolids and to reduce public 

resistance by providing tools to select daily reuse sites that have less adverse effects 
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of biosolids nuisance odor. Aligned with this goal, this research will address the 

following objectives: 

1. To draw conclusions about the characteristics of emission rates of biosolids 

 odors and provide a guideline for emission estimates used in an odor 

 dispersion model.  

2. To predict biosolids odor concentrations at land application sites. 

3.  To determine the extent of potential odor impacts to a community near an 

 application site and to quantify such impacts to the local population  

4.  To provide a supporting tool for decision makers to minimize biosolids odor 

 impacts by selecting suitable sites. 

 

1.3 Hypothesis 

There are four hypothesizes to be tested in the study. 

 Hypothesis 1:  Since pollutant concentration data often follow a skewed 

distribution (Singh et al., 1997), it is hypothesized that the odor emission rates at land 

application sites and at wastewater treatment facility can be described by the 

lognormal distribution. This hypothesis was confirmed by the results from developed 

probability distributions. 

 Hypothesis 2: Two types of variations of odor emissions exist in biosolids 

land application: variation within the field and among fields. This hypothesis was 

tested using the Analysis of Variance (ANOVA) described in Chapter 4. By assuming 

that biosolids samples taken from the hauling trucks before distribution represent 

biosolids samples taken at the reuse sites, the results from the ANOVA have the 
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implication that there exists variation within the field and among the fields on day-to-

day operation.  

 The assumption used in this hypothesis implies that there are no dilutions of 

biosolids odor emissions during transporting biosolids from a wastewater treatment 

plant to land application sites. The assumption was set due to difficulty of collecting 

biosolids odor data at the land application sites. Even though the assumption was not 

hold, the ANOVA results can be used to explain variation of biosolids odor emissions 

at the wastewater treatment plant.  Hypothesis 3: The biosolids odor generated 

from the wastewater treatment processes is not the only factor contributing to adverse 

effect at land application sites. This hypothesis was confirmed by use of the 

dispersion models to investigate biosolids odor concentration at land application sites. 

The basic factors include odor emission rates at the sites and atmospheric conditions. 

 Hypothesis 4: Regulatory dispersion models are typically used in the 

regulatory application such as contaminant pollutants. This hypothesis aimed to test 

that it is practical to use regulatory dispersion models for non-regulatory application, 

such as in the case of odor, to predict odor levels at land application sites with a 

degree of accuracy. By using the U.S. EPA’s dispersion models, the validation results 

from Chapter 5 confirmed that it is feasible to use both screening and refined 

regulatory dispersion models with appropriate input data to predict the odor 

concentration at land application sites  
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1.4 Overview of Research Approach and Outcomes 

1.4.1 Geographic Information System (GIS) – Based Biosolids Odor Impact 

Assessment for Planning Biosolids Distribution 

This research is a part of the ongoing research projects on biosolids management at 

the District of Columbia Water and Sewer Authority (DCWASA). It is an extension 

of a master thesis at the University of Maryland, College Park (Intarakosit, 2006). 

The difference from the previous work has been emphasized on a more 

comprehensive approach for odor impact assessment: source, transport, and receptor. 

 In this study, we have developed the Geographic Information System (GIS) -

Based Odor Impact Assessment to address potential odor impacts from biosolids at 

land application sites. The model is an integration of many subjects, which include 

environmental engineering, statistics, geographic information system (GIS), odor 

science, and atmospheric dispersion models, to solve a very complex odor problem. It 

serves as a supporting tool for selecting biosolids land application sites since that 

decision should always be subjected to the least possible negative response from 

communities. Potential odor complaints, for example, are good attribute to measure 

negative responses. 

  Figure 1.1 shows a developed conceptual model for selecting biosolids 

application sites. The decision making process for site selection includes a 

consideration of some other criteria such as potential odor impact to nearby 

communities, possible public responses, or transportation cost. Even though 

responses could greatly vary depending on biosolids site locations and public 

perception of biosolids, the conceptual model can still provide a systematic 
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framework for decision makers to achieve basic goals for possibly reducing public 

resistance to biosolids by being able to assess potential odor impacts to the 

communities.  

 

 

 

 

  

 

 

           

 

 

Figure 1.1: Conceptual Model for Selection of Biosolids Land Application Sites 

  

 Biosolids site selection consists of four principal steps: estimate of odor 

emission, prediction of odor concentration, assessment of odor impact, and selection 

of suitable distributional sites. These steps work in a sequential manner as shown in 

Figure 1.2.  The output from the emissions estimation model, a field emissions rate, is 

used as an input when a dispersion model is employed. Similarly, predicted odor 

concentration in a study field is an attribute to estimate the consequences of odor 

impact in the study area. Eventually, a systematic selection of land application sites to 

distribute biosolids may be performed based on potential odor impacts. 

 

Goals 
 Minimize Odor Impact 

 Minimize Negative 

Responses from Public 

Alternatives:

 𝒂𝒋  
 Field 1 

 Field 2 

    . 

    . 

 Field J 

 

 

Criteria: 𝑪𝒓𝒕 
 Cost 

 Impact 

 Public Responses 

Decision 

Makers: 𝑫𝒍  
 DCWASA 

 Distributors 

 Public 

 Legislators 

Scenarios: 𝑺𝒊 
 Low Concentration, No Responses 

 Low Concentration, Responses 

 High Concentration, No Responses 

 High Concentration, Responses 
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Figure 1.2: Schematic of Biosolids Site Selection Procedure 

  

 With this approach, the odor impact pathway is considered as a source-

transport-reception pathway, which is a random process on spatial and temporal 

scales. The randomness comes from variation of biosolids odor emissions and 

atmospheric conditions.The site location or source coordinate is a user-defined origin 

in latitude ( x ), longitude ( y ), and elevation ( z ). Using the concept of fields and 

states (Crawford-Brown, 2001), we can represent site location with field 

identification as 𝑓𝑖𝑒𝑙𝑑_𝑗(𝑥, 𝑦, 𝑧), 𝑗 = 1,2,3, … , 𝑛.  

 At the source, an odor emission for 𝑓𝑖𝑒𝑙𝑑_𝑗 at time t ,𝑄𝑓𝑖𝑒𝑙𝑑 _𝑗  𝑥, 𝑦, 𝑧, 𝑡 , is 

estimated and used as an input to a dispersion model. A United States Environmental 

Protection Agency (EPA) regulatory dispersion model called theAERMOD(Cimorelli 

et al., 2005) was employed to predict biosolids odor concentrations for 𝑓𝑖𝑒𝑙𝑑_𝑗 at 

time t ,𝐶𝑓𝑖𝑒𝑙𝑑 _𝑗  𝑥, 𝑦, 𝑧, 𝑡 . Finally, an impact of biosolids odor can be performed as 

function of the predicted odor concentration at a receptor 

location, 𝐶𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 _𝑟 𝑥, 𝑦, 𝑧, 𝑡 , 𝑟 =  1,2,3, … , 𝑚, to determine population responses 

to biosolids odor, see Figure 1.3.  

 

Emission 

Estimation 

 

Prediction of 

Concentration 

 

Odor Impact 

Assessment 

 

Site 

Selection 
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Figure 1.3: Overview of Odor Impact Pathway 

  

 A Geographic Information System (GIS) was used in mapping, visualizing, 

and modeling tasks. More specifically, the Environmental Systems Research Institute 

(ESRI)’s GIS software called ArcGIS was used to generate various maps in this study 

including predicted concentration map (C-Map), which expresses locations where 

people could potentially get effects from the biosolids odor, probability map (P-Map), 

which provides estimate of predicted concentration exceeding a certain threshold, and 

intensity map (I-Map), which expresses potential odor perception by human.   

 In summary, the principal advantage of the GIS-based odor impact assessment 

is to employ available tools including statistics, atmospheric science, and geography 

in an integrated approach to address the research problem. It is practical, and a 

wastewater biosolids generator could apply the model in the real world. In addition, 

the model addresses the odor problem by taking into account odor source emissions, 

variation of atmospheric conditions affecting dispersion of odor, and sensitivity of 

Source Emission  
Measurement 

 Human Perception 

Dispersion 
 

_ ( , , , )field jQ x y z t

_ ( , , )

1,2,3,...,

Field j x y z

j n

_ ( , , , )field jC x y z t

_ ( , , , )receptor rC x y z t
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odor perception by human, which is a significant parameter to quantify odor impact 

on surrounding communities.  

 Odor emissions at land application sites were investigated using the statistical 

inference. The probability distributions were developed to characterize the biosolids 

odor emissions at the land application fields and odor concentrations at the plant. The 

lognormal distribution was the proposed distribution to describe biosolids odor 

emissions. An analysis of variance (ANOVA) was employed to investigate the 

variation of odor emissions from day-to-day operations. The results from the 

ANOVA indicated that there were variations within the same field and from day-to-

day operations. This implies that the estimate of odor emissions needs to be updated 

regularly in order to improve the prediction accuracy of biosolids odor 

concentrations. 

 The U.S. Environmental Protection Agency (EPA)’s dispersion models, 

screening and refined models, were applied to investigate odor dispersion in the land 

application sites. The three different approaches used for estimating biosolids odor 

emissions at the fields were input into the dispersion models. The first approach was 

to use the expert opinion on the air flow rate to calculate odor emission rates. The 

second approach was to use the best estimate from the probability distribution. The 

simulated-flux chamber method was the other approach to estimate biosolids odor 

emissions at the field.  

 Standard error of estimate (𝑆𝑒) indicated that the emission estimate using the 

assumed air flow rate provided the best modeling performance in the screening 

analysis compare to the MES data. While results from 𝑆𝑒  showed that the predicted 
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concentration with odor emissions estimated by the probability distribution best 

described the modeling performance in case of refined models.  

 The geographic information system (GIS) was used to support visualizing, 

modeling, and mapping to the dispersion model. The predicted concentration maps 

(C-Map) were created to express the areas for odor strength. The probability maps (P-

Map) for exceeding certain odor level, 7 dilution-to-thresholds in this case, were also 

generated. The 7 D/T was used as a criterion for potential odor complaints from 

neighborhoods. The study found that quality and quantity of input data such as odor 

emission rates, meteorological conditions, and measurement information affect the 

accuracy of the modeling predictions.  

 To assess the impact from biosolids odor, we proposed using two approaches 

to support the assessment. First, the intensity maps (I-Map), following Steven’s 

power law, were created to estimate the human perception from the stimulus odor 

concentrations. The other approach was to estimate size of population potentially 

affected by the odor concentration levels. It was intended to assess the odor impact on 

the general population and not sensitive individuals. The impact areas for each odor 

strength categories were calculated for land application sites. The population density 

and the potential impact areas were used as a mean to assess the potential odor impact 

at land application sites. 

1.4.2 Summary of Research Outcomes 

Thirteen outcomes were developed in this research. Table 1.1 provides the outcomes 

with corresponding sections in the thesis. 
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Table 1.1: Research Outcomes 

 
Items Research Outcomes Section (s) 

1 Conceptual Model for Selection of Biosolids Application Sites 1.4.1 

2 Biosolids Site Selection Procedure 1.4.1 

3  Biosolids Odor Impact Pathway at Land Application Sites 1.4.1 

4 Normal Probability Plot for the MES Odor Emission Data 4.5.1 

5 Lognormal Distribution of Odor Concentration at Blue Plains 4.5.2 

6 Lognormal Distribution of Odor Emission Rates at Blue Plains 4.5.2 

7 Analysis of Variance (ANOVA) of Odor Emission Data 4.6.2 

8 Guideline for Emission Estimates 4.7 

9 Geoprocessing Models 

 Defined Projection Model 

 The Clip Raster Model 

 Receptor Terrain Model 

 Intensity Map Model 

 Impact Area Model 

5.2.2 

 

 

 

5.2.3 

10 Results from Screening Analysis 5.3.2 

11 Results from GIS-Based Odor Impact Assessment 

 Prediction Map (C-Map), 

 Probability Map (P-Map), 

 Intensity Map (I-Map) 

 Odor Impact to Population 

5.4.2 

12 Model Validation 5.3.3, 5.4.3 

13 Comparing Screening VS Refined Analysis 5.5 

1.5 Contribution 

This research directly aids the District of Columbia Water and Sewer Authority 

(DCWASA) in providing a better understanding of factors associated with nuisance 

conditions in land application sites. It can serve as a supporting tool for decision 

makers to better manage and control malodorous conditions produced from land-

applied biosolids. Concentration maps (C-Maps), probability maps (P-Maps), and 

intensity maps (I-Maps) provide a better visualization of potential impact areas; they 

can be used to support decision making for selecting suitable distributional sites. In 
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addition, it will benefit other wastewater facilities, which recycle biosolids through 

land application, by providing a procedure to estimate potential odor impacts. 

 The contribution of this study also expands to the field of environmental 

engineering to establish a framework for dealing with an inherent odor problem 

generated from wastewater treatment processes. Moreover, it is particularly useful for 

researchers in the area of environmental management and program management to 

develop planning and to improve decision-making processes. Ultimately, the 

conceptual approach of the research, by considering a problem as source-transport-

receptor, can be used for other types of environmental pollutants, not just for odor 

control.  

1.6 Overview of Dissertation 

The rest of the dissertation is organized as followed: 

 Chapter two provides a background on biosolids and their characteristics. It 

also describes the generation of biosolids odor and potential impacts to community. 

Related research works are also presented in this chapter.  

 Chapter three presents the background on wastewater treatment processes at 

the Blue Plains wastewater treatment plant and related data used in this study such as 

biosolids reuse sites and biosolids odors data, meteorological data, and geographical 

data.  

 Chapter four deals with emissions estimates using three different approaches: 

expert opinion, statistical inference, and a simulated flux chamber method. This 

chapter provides a guideline for making a decision about emissions rates used in a 
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dispersion model when there is limited information, which is considered as the first 

step in the modeling procedure. 

 Chapter five demonstrates uses of dispersion models with developed 

framework in the Geographic Information System (GIS) to predict odor concentration 

and to assess odor impact at land application sites. Results and discussions follow.  

 The last chapter identifies important findings and possible future work. 
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Chapter 2: Background and Literature Review 
 

Biosolids are treated sewage sludges that result from treatment of domestic sewage at 

wastewater treatment facilities. They contain nutrient-rich organic materials used in 

recycling and agricultural fertilization. A national survey conducted in 2004 by the 

United States Environmental Protection Agency (EPA) found that 55% of the 

biosolids were beneficially used, of which 74% of all beneficial use went to 

agricultural application (Goldstein, 2007).  

The biosolids are mainly produced through biological treatment. In addition, 

physical and chemical processes such as thickening, stabilization, and dewatering can 

produce biosolids  (Evanylo, 2003). Several methods of distributing, utilizing, or 

disposing of biosolids are available including landfilling, incineration, and land 

application. Due to its beneficial use and inexpensive option, land application is 

widely used in the United States: 63 % in 1998, and 70 % are expected in 2010 

(Oleszkiewicz, 2002).  

Biosolids are characterized by wastewater constituents and treatment 

processes.  There are, typically, two classes of biosolids regarding to pathogen 

reduction: class A and class B. The main difference of those classes is that pathogens 

of class A biosolids are reduced to below detectable levels; therefore, less restriction 

is needed when applied to land (Evanylo, 2003). Nevertheless, an inherent odor 

nuisance of biosolids could be present even though land applied biosolids meet 

pathogen reduction standards. 
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The most often detectable odorous compounds found in biosolids are 

ammonia, amines, and reduced sulfur-containing compounds that are generated 

during the wastewater treatment, storage, and use (EPA, 2000a). The decomposition 

of organic nutrients by heat, aeration, and digestion from individual unit processes are 

typical causes of released odorous compounds (EPA, 2000c). An ability to identify 

odorous compounds associated with biosolids will improve wastewater treatment 

process performance and enhance management of odor in wastewater facilities and 

application sites.  

A number of studies have been conducted to identify odorants associated with 

individual unit processes. A study at the Blue Plains Advanced Wastewater Treatment 

Plant (AWTP) in Washington, DC, for example, found that volatile fatty acids were 

identified in the primary gravity thickeners, while Trimethylamine (TMA) released 

with ammonia, which has a fishy odor, could only be detected after lime addition 

resulting from polymer addition in the Dissolved Air Flotation (DAF) process (Kim et 

al., 2002;Kim et al., 2003).  

The amount of lime addition, amount of polymer addition at dewatering and 

DAF, and the blanket depth affect change of the biosolids odor levels (Gabriel et al., 

2006). For the secondary process, the sludge blanket level in secondary sedimentation 

basins had a relationship with Volatile Sulfur Compounds (VSC) (Sekyiamah, 2004). 

Moreover, the blanket level was a significant factor to dewatered solids odor, and a 

significant increase in odors could be observed if the blanket level is higher than 1.8 

feet (Janpengpen et al., 2007). Recently, more process variables potentially promoted 

higher odor were identified by uses of various statistical models: percent solids and 
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temperature of biosolids, percentage of the gravity thickener solids (GT) in the blend 

tank, pH of the GT solids, concentration of the return activated sludge (RAS) at the 

secondary process, and number of centrifuges running (Vilalai, 2008).  

Nevertheless, individual unit processes do not only create on-site odor 

problems but also resulting biosolids odor. Reduction in odors at the sources 

especially in solid-handling systems, such as thickening, drying, and lime 

stabilization, will reduce on-site air quality problems and also reduce odor emissions 

from the land applied biosolids (Kim et al., 2002). For instance, the addition of 

Bioxide, especially Bioxide-Anthraquinone (AQ), would help in reducing total 

reduced sulfurs from biosolids production (Kim et al., 2005). Yang and Hobson also 

stated that reduction of odor emissions at the source by 50 % would also reduce odor 

concentration at a receptor by 50 % if the distance from the source is considerable 

(Yang and Hobson, 2000).  

At the land application sites, Volatile Solids (VS), which are readily 

decomposable organic matter usually expressed as percentage of total solids, are 

accounted for potential odor problems at land application sites (Evanylo, 2003). 

Those volatile solids often result from biosolids composting (Rosenfeld and Suffet, 

2004). Ammonia level is expected to be high during the first few days and then drop 

off.  

Measurement of ambient odor strength is recorded using a field olfactometer 

as dilution-to-thresholds (D/T), a dimensionless measure of odor concentration. 

Particularly, the principle of (D/T) is the widely used method for measuring odor 

concentration downwind from a source at land application sites (Nicell, 2003). The   
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D/T number recorded is the dilution ratio needed to make the sampling odorous 

ambient air non-detectable (McGinley and McGinley, 2005).  

 By using St.Croix’s Nasal Ranger field olfactometer, the Western Lake 

Superior Sanitary District (WLSSD) in Minnesota conducted a study to gain a better 

understanding of biosolids odor impacts surrounding land application sites  (Hamel et 

al., 2004). McGinley et al. (2004) also used the same field olfactometer to find a 

correlation between hydrogen sulfide ambient concentration and D/T (McGinley and 

McGinley, 2004). 

The emitted odorous compounds are carried from one place to another place 

by wind (Turk et al., 1974). Typically, odorous emissions are not continuous but 

intermittent (Poostchi, 1985). A mixture of volatile compounds emitted to the air in 

varying quantities may have different odor detection thresholds, which is a level of 

odor concentration people can detect (Simms et al., 2000). The odor detection 

threshold represents the odorant perception in some specified percentage of the 

population, usually 50 % (Rafson, 1998).  

Factors such as wind velocity and pollutant concentration in liquid phase 

influences emission rate and then odor concentration (Guillot et al., 2007). Given 

wind speed, wind direction, and the characteristics of the atmosphere turbulence, the 

downwind odor concentrations can vary greatly over space and time. For convective 

turbulence and strong winds, the maximum turbulences take place on hot summer 

days while with mechanical turbulence and cold mornings and low wind speeds, 

minimal levels of turbulence occur (Simms et al., 2000). Rough terrain and other 
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topographical features can also increase the complexity of atmospheric turbulence 

(Simms et al., 2000). 

With its limitations, the determination of odor concentrations by D/T and 

established olfactometric methods alone (such as a field olfactometer at a single point 

downwind) can only represent the odor response by humans at a certain point in time 

and specific location. Alternative methods such as an electronic nose or a dispersion 

model are usually employed to deal with the lack of a continuous measurement by an 

olfactometer.  

For the dispersion model, it can be used to predict the odor concentrations at 

particular receptors under given meteorological conditions, and topographical 

features. Using long-term meteorological conditions will also allow the determination 

of frequency of occurrence of concentrations exceeding a threshold level (Yang and 

Hobson, 2000). The significant components needed when using a dispersion model 

includes source emission rates and dispersion conditions.  

Determination of the source emissions rates is essential for evaluating odor 

impacts. Many studies were conducted to estimate the emissions rates. For example, 

by using the concept of odor emission capacity (OEC), a German wastewater 

treatment facility determined an amount of odorants presented in the liquid phase in 

the area-related processes (Frechen, 2004). The dynamic flux chambers along with a 

wind tunnel were developed to measure odorant emissions from an area source and to 

calculate odor flow in its liquid phase. It is believed that known emissions rates could 

be used to follow the evolution of the source in terms of annoyance (Guillot et al., 

2007).  
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By giving an emission flow rate of an odor, meteorological condition, and 

topographical features, an analysis of odor dispersion could be performed. There are 

an extensive number of studies that incorporate the techniques of dispersion models 

to study the odor impacts from a variety of sources including odor generated from 

wastewater treatment facilities and composing sites such as (Smith, 1995;Diosey, 

1997;Alpert and Wu, 1997;Kaye and Jiang, 2000;McIntyre, 2000;Wu, 2000;Simms et 

al., 2000;Capodaglio et al., 2002;P.Gostelow et al., 2004;Todd  Williams and Servo, 

2005;Lisboa et al., 2006;Voelz et al., 2006;Diosey, 2008). However, from the best of 

our knowledge, there are few studies focusing on the odor impacts from biosolids 

land application sites (Rynk and Goldstein, 2003). 

Human responses to odor are highly subjective. People detect and perceive 

odorous compounds very differently depending on their exposure to the environment, 

their odor detection thresholds, and individual human experience. A determination of 

odor impact by odor threshold alone is not sufficient, since the threshold fails to 

provide the information in terms of complaints potential (Henshaw et al., 2006).  

Poostchi (1985) developed an odor impact model (OIM) for six different pure 

chemical compounds, with known  thresholds, to assess the  probability of complaint 

(PPC) and predicted degree of annoyance (PDA) from surrounding communities. 

Moreover, Nicell (2003) developed expressions to relate odor concentrations to 

probability of response and probability of annoyance from the population. A modified 

OIM could then be used in conjunction with a dispersion model to quantify 

population responses to odor (Nicell and Henshaw, 2007). However, the OIM might 
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not be, at this time, applicable to an odor with unknown odor threshold such as 

biosolids odor. 
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Chapter 3: DCWASA Wastewater Treatment Processes and 

Related Data  
 

3.1 DCWASA Background 

The District of Columbia Water and Sewer Authority (DCWASA) operates an 

advanced wastewater treatment plant (AWTP) at Blue Plains that serves more than 

two million Washington metro area customers in the District of Columbia, portions of 

Montgomery and Prince George’s Counties in Maryland, and portions of Fairfax and 

Loudoun Counties in Virginia, see Figure 3.1.  

 

Figure 3.1: DCWASA Service Areas 

 

 As the largest facility of its kind, the plant has the capacity to treat 370 million 

gallons per day (MGD) of wastewater. The biosolids generation process begins with 

removing debris and grit from the sewage and trucking to a landfill. Resulting 

wastewater goes to the primary sedimentation tanks where the suspended solids are 
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separated from the liquids. The solids from the primary process then go to the tanks 

where the sludge solids settle to the bottom by gravity. The settled solids from the 

secondary process and nitrification reactors are thickened separately. The thickened 

solids are dewatered. Lime is added to reduce pathogens and diminish odors (Figure 

3.2).   

 

Figure 3.2: DCWASA Solids Process (DCWASA, 2005b) 

 

 More than 1,200 tons a day of the final biosolids product are then applied to 

farm application sites in Maryland and Virginia (DCWASA, 2005a;DCWASA, 

2005b). Figure 3.3 shows a map of the number of times biosolids distributed in 

Virginia by counties from 2005 to 2008. 
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Figure 3.3: A Map of Biosolids Distribution in Virginia Counties, Virginia (2005-2008) 

 

3.2 DCWASA Reuse Sites Data 

Maryland Environmental Services (MES) collects DCWASA field data for biosolids 

odor monitoring purposes referred to as the odor monitoring land application 

inspection program (Razik, 2005). Odor monitoring is accomplished by inspectors 

using two different methods: a sniff test and a field olfactometer.  

 The sniff test is a measurement of biosolids odor by the human nose. There 

are no field instruments used with the sniff test. Following the test procedure, an 

inspector is asked to classify biosolids odors into one of four categories: none, slight, 

moderate, and strong. In contrast, an objective measurement of odor concentration 

expressed as dilution-to-threshold (D/T) is performed by use of the Nasal Ranger 

field olfactometer produced by St. Croix Sensory Inc. as shown in Figure 3.4.  
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Figure 3.4: MES Inspector with Nasal Field Olfactometer 

 

3.2.1 Field Odor Measurement 

The odor sensitivity test assesses an individual’s olfactory sensitivity.  It is required 

before conducting odor strength assessments. The test combines two standard 

procedures. One is the ascending concentration procedure with fourteen n-butanol 

odor pens and two blank pens in a Test Kit box (see Figure 3.5). The n-butanol pens 

are numbered in discrete steps from 15 (lowest) to 2 (highest). The other standard 

procedure used is the Three-Alternative Forced Choice (3-AFC) or so called the 

Triangular Force-Choice (TFC).  
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Figure 3.5: Odor Sensitivity Test Kit Box 

 The TFC begins when a test administrator presents one odor pen and two 

odorless pens arbitrarily to test an individual’s olfactory sensitivity who places a 

blindfold over his/her eyes. The assessor then sniffs the pens and must indicate 

his/her response as a GUESS (G) or DETECT (D), .  

 There are three rounds for each test individual. The first round is a warm up . 

The test administrator presents every other odor pen dilution level (i.e., 15, 13, 11 or 

14, 12, 10, respectively). The test stops when the assessor has indicated two correct 

consecutives detects. Round One is started with three dilution levels above the first 

two consecutive correct detects of the warm-up.  The procedure is the same as the 

warm-up round for round one except that the pens are presented in sequence. The test 

stops when two correct consecutives are indicated by the assessor. The test 

administrator follows the same procedure for Round Two, but the test will start with 

the odor pen two dilution levels above the first of two consecutive correct detects of 

round one.  
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 The result of the test is an average value from rounds one and two, which is an 

individual detection threshold based on the standard odor, n-butanol. A detection 

threshold is the concentration of the odorant that has a 0.5 probability of being 

detected under test conditions. An individual detection threshold is not a fixed 

attribute but a value assuming the variation of olfactory sensitivity as a result of 

random factors such as health status. 

 After conducting the sensitivity test, an assessment of odor strength can be 

performed using the Nasal Ranger field olfactometer. The typical procedure of the 

field olfactometer is to have an inspector takes a reading of odor strength downwind 

at the location between the odor source and the nearest receptor location such as off-

site residential or school areas. The inspector begins measurement with the highest 

dilution-to-threshold level 60 D/T. The reading is decreased in the following discrete 

steps: 60, 30, 15, 7, 4, and 2 D/T(s). The test is stopped when the inspector can detect 

the odor.  

 The inspector will also note odor character (what the odor smells like) and 

hedonic tone (a subjective assessment of pleasantness and unpleasantness of biosolids 

odor). Despite the information on odor measurement, the inspector is required to enter 

biosolids source information, type of application, and weather condition in the site 

visit form. Some of these entries are used in modeling process such as date unloaded, 

acres used, and source location. Figure 3.6 shows an example of the site visit form. 

Table 3.1 provides related data description used in the modeling processes. 
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Figure 3.6: MES Inspection Site Visit Form (Razik, 2005) 

 

Table 3.1: MES Data Description Used in Modeling Process 

MES Data Data Description 

Date Unloaded The date that a particular load direct from the plant arrived 

to either a land application site or storage facility 

 

Site Name The site where the material was taken 

 

Field Designation The name of the particular field (or storage site) where the 

material was taken. A site can have more than one field 

assigned to it, i.e., there can be many fields on the site. 

 

Latitude/Longitude The location where the material was taken 

 

Field Olfactometer 

Reading 

The reading obtained from the inspectors’ field 

olfactometer (Nasal Ranger), given in dilutions-to-threshold 

(D/T). The Nasal Ranger provides discrete readings as 

follows: 2, 4, 7, 15, 30, and 60 D/T(s) 

 

Odor Measurement 

Time 

The time that the odor measurements were taken 

Odor Measurement 

Location 

The approximate location at that land application field 

where the odor measurements were taken 

 

Acres Used The acreage used for land spreading on particular day 
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 The MES data were preprocessed for data cleaning and data exploration. The 

data cleaning was performed to investigate missing data or outliers. The exploration 

of data aimed to provide a summary of data statistics. Figures 3.7 and 3.8 provide 

some examples of the MES data .  

 

Figure 3.7: Amount of Tonnages Applied in Virginia Counties from 2005-2008 

 

 Figure 3.7 shows the amount of biosolids that were applied to land application 

fields in Virginia from 2005 to 2008. in wet tons of and varies in different counties. 

Figure 3.8 shows a frequency distribution of biosolids odor strength in dilution-to-

threshold (D/T). The D/T values are categorized into five major ranges: 2, 4, 7, 15, 

and 30 following a dial in the Nasal Ranger field olfactometer.  
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Figure 3.8: Frequency Distribution of Field Dilution-to-Threshold (2005-2008) 

 

 

3.2.2 Emission Testing 

Odor emission is a combination of physical and chemical processes. Measurement of 

gas emission rates can be divided into three approaches: indirect measurements, direct 

measurements, and laboratory simulations. Indirect techniques require measurements 

of ambient concentration at or near a site. Source characteristics and meteorological 

conditions are included in a model such as a dispersion model to determine an 

emission rate. The second approach directly measures emission rates using the flux 

chamber while the third approach creates an emission source in the laboratory to 

determine an emission rate. 

 The isolation flux chamber technique, which is a direct measurement 

technique, was selected to test emission rates in this study. The isolation flux chamber 

is the most promising technique for measuring gas emission rates with a high degree 

of accuracy and precision.  It is economical relative to other techniques and simple to 
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use. This approach uses a flux chamber to sample gaseous emissions from a defined 

source area with a known flow rate. The flow rate is taken as the sweep air for the 

flux chamber. The samples are sent out to a laboratory for an analysis of odor 

parameters such as odor concentration. The odorous emission rate is calculated by 

multiplying the odor concentration by the sweep air flow rate of the flux chamber 

used to collect the sample 

3.3 Meteorological Data 

The two types of meteorological data, National Weather Service (NWS) Integrated 

Surface Hourly Data (ISH), DS-3505, and NWS twice-daily upper air soundings, TD-

6201, are required in meteorological preprocessing in the modeling process. The ISH 

is meteorological data measured at the earth’s surface. The data includes physical 

parameters directly measured by an instrument, such as station number (ID), year, 

month, date, and hour, ceiling height in hundreds of feet, wind direction in tens of 

degrees, wind speed in knots, dry bulb temperature in degree Fahrenheit, cloud cover 

in tens of percent, opaque cloud cover in tens of percent.  

 The surface data can be obtained from the National Climatic Data Center 

(NCDC), in Asheville, North Carolina. The data are mostly available from weather 

stations located near or at airports. Figure 3.9 shows the locations of available 

weather stations in Virginia, all of them are located at airports.  
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Figure 3.9: Available Hourly Surface Weather Stations in Virginia 

 

 The upper air data can also be obtained from the National Climatic Data 

Center in Asheville, North Carolina. The upper air data is a meteorological data 

measured in the vertical layers of the atmosphere such as atmospheric pressure, free 

air temperature, relative humidity, wind direction, and wind speed.  

3.4 Geographical Data 

The study used geographical data obtained from the Environmental Systems Research 

Institute, Inc. (ESRI)’s Data & Map 2007 that includes StreetMap
TM

USA, Elevation, 

and Image Data World. The geographical data were used in the Geographic 

Information System (GIS) to visualize, mapping, and modeling. 

 There are two type of geographical data used in the GIS: vector data and raster 

data. The vector data are in discrete forms of point, line, and polygon such as source 



 

 32 

 

coordinate and counties shapfile. The raster data, on the other hand, are continuous 

stored z-values such as height of the features. Examples of the raster data used in this 

study are elevation, temperature, or pollution concentration. Vector data, raster data, 

or the combination of both form a layer.  In this study, all GIS tasks are dealt with in 

layers. 
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Chapter 4: Estimate of Biosolids Odor Emission  

4.1 Biosolids Odor Emission and Measurement 

Biosolids odor emission consists of a complex mixture of odorous compounds. as 

odorants, which are produced from wastewater characteristics and treatment 

processes. The most common odorants found in biosolids emissions are sulfur (S)-

containing and nitrogen (N)-containing compounds. Specific odorants are generally 

associated with aerobic or anaerobic conditions. There are a number of studies 

conducted to identify main odorants from wastewater treatment processes.  

 For S-containing compounds, the most widely measured compound in 

wastewater facilities is hydrogen sulfide. The reason is that because of its presence in 

liquid wastewater and its numerous availability of measured devices (Hentz, 1998). 

Hydrogen sulfide is normally produced under anaerobic conditions. It has a rotten egg 

odor, and its emission depends on pH levels of the biosolids. 

 Another S-containing compound frequently found during the heat of hydration 

is the Dimethyl disulfide (DMDS). The DMDS has rotten cabbage odor and accounts 

for 55-98% of the total reduced sulfur found in biosolids applications to soil such as a 

land application (Rosenfeld and Suffet, 2004). Methyl mercaptan, the other main 

sulfur compound with smell like rotten cabbage, has similar origins as DMDS and a 

low odor detection threshold and can potentially lead to odor complaints (Hentz, 

1998). 

 N-containing compounds such as Ammonia and Trimethylamine are released 

from lime stabilization process (Bremner and Banwart, 1976). Ammonia has a 

pungent medicinal odor, while Trimethylamine has a fishy odor (Suffet et al., 2004). 
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Ammonia odor is frequently reported to be found during the first few days after a 

land application. Evidence from MES’s field data can confirm this claim. Figure 4.1 

shows the frequency of biosolids odor descriptions from 2005 to 2008. MES collected 

those data by asking its inspectors to perform a subjective assessment of how the 

odors smelled. Apparently, ammonia is the most detected compound on the first day 

of land application. 

 

 

Figure 4.1: Frequency Detection of Odor Description from MES Field Data (2005-2008) 

 

 The decomposition of organic nutrients is generally accounted for volatile 

emissions of biosolids odorants (EPA, 2000a). In addition, there are other factors 

driving biosolids emissions. At wastewater treatment facilities, a certain process, such 

as the case for sedimentation tanks, and meteorological conditions are also important 

factors (P.Gostelow et al., 2004).  For biosolids applied to land, on the other hand, 

there are two general types of emission processes which are either controlled by the 
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diffusion rate of the chemical compounds through the air-filled spaces of the soil or 

controlled by the rate of evaporation (EPA, 1986).  

 The first case occurs particularly in underground facilities such as landfills 

while the latter is most often found when biosolids are surface-applied. In the case of 

surface application, the emission rate is dependent on time and the evaporation 

process. Some of the important parameters affecting the evaporation process are the 

volatility or vapor pressure of the biosolids and ambient meteorological conditions, 

i.e., solar radiation, wind, and surface roughness. The vaporization rate reaches its 

maximum immediately after biosolids are applied to land since it is easy for biosolids 

nearest the surface to vaporize and diffuse through a thin layer of soil. However, it is 

more difficult for biosolids in deeper soil levels to diffuse through a thicker soil layer, 

so the rate of emission  decreases with time (EPA, 1986). Determination of odor 

emission rate at the biosolids source is essential in assessing the impact of the 

emission. 

 The measurement of biosolids emission typically falls into two categories: 

analytical measurement and sensory measurement. Analytical measurement focuses 

on a specific odorants or odorous compounds such as total reduced sulfur compounds. 

Sensory measurement, on the other hand, tends to a sense of smell or odor perception 

by human. There is no preferred method for measuring biosolids odor emission. It 

depends on the  purpose of the study. 

 Typically, biosolids odor emissions at land application sites are considered a 

passive source, for which mass flow rate data are not available or difficult to measure 

especially for an area source. However, it is practical and desirable to measure the 
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emissions rate with a standard measurement device that has a known flow rate. Such 

measurement devices are designed for both analytical measurement and sensory 

measurement.  At biosolids land application sites where low-level or ground level 

releases are usually expected, the biosolids odor emission is a combination of varying 

quantities of biosolids odorous compounds. This study, therefore, focused on  sensory 

measurements since they  would better represent human perception of biosolids 

odors. However, it is important to distinguish between odorant and odor. 

  Odorants are any chemical in the air, and the term “odor” referrs to perception 

experience of one or more chemicals by human olfactory nerves (McGinley and 

McGinley, 2002). Measurement of odor perception or sensory measurement of odors 

can be expressed as odor evaluation parameters. The United States Environmental 

Protection Agency (U.S. EPA) recommends using five typical parameters: 

  1) Odor Concentration (𝐶𝑜𝑑𝑜𝑟 ) measured as dilution ratios and reported as 

       detection Threshold (DT) and recognition Threshold (RT) or as dilution-

       to-thresholds (D/T) 

  2) Odor Intensity (I), 

  3) Odor Character,  

  4) Odor Persistency, and 

  5) Odor Hedonic Tone.  

 Each of those parameters serves as criteria for measuring an odor in different 

aspects. The first four parameters are objective because they are measured without 

personal sensation. Threshold values provide an indication of odor strength or levels 

of dilution needed to bring odor strength to its threshold. The detection threshold 
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(DT) is a level where people just notice the odor, but the recognition threshold (RT) is 

a level where people can recognize what it smells like. Odor intensity is the relative 

strength of the odor comparing with the reference odorant n-butanol. The character of 

an odor is referred to as “odor quality.”  There are eight standard odor descriptors 

used as a referencing vocabulary, including vegetable, fruity, floral, medicinal, 

chemical, fishy, offensive, and earthy. Odor persistency refers to the rate at which 

perception of odor intensity decreases as the odor is diluted also referred to as the 

Steven’s power law (Stevens, 1960). The last parameter, Hedonic tones, is a 

subjective measurement of pleasantness or unpleasantness of an odor sample. An 

arbitrary scale for ranking odors is ranged from -10 (unpleasant) to +10 (pleasant). An 

assessor assigns a hedonic tone for an odor using her/his personal experience and 

memories. 

4.2 Information about Emissions Rates and Current Estimation Method  

Information on biosolids odor emissions in land application sites is often not 

available. Even though there are devices available for measurement of odor 

emissions, it is not practical or economical to sample all sensitive locations of 

different times. Thus, the current practice for sampling of odor emissions on the day 

of application is only for monitoring purposes.  

 Traditionally, as shown below, the odor emissions rate (odor unit per 

second, 𝑂𝑈/𝑠) is estimated by the product of flux rate  (liters per minute ,lpm), which 

is assumed constant over time, and odor concentration (odor unit per cubic 

meter, 𝑂𝑈/𝑚3). In addition, the flux rate is a product of air velocity (meter per 
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second, 𝑚/𝑠) and area source (square meters, 𝑚2).  

    𝑄 = (𝑉)(𝐶𝑂𝑑𝑜𝑟 )    (4.1)  

 𝑄 = Odor Emission Rate (odor unit per second,𝑂𝑈/𝑠) 

 𝑉 = Flux rate (liters per minute ,𝑚3/𝑠) 

            𝐶𝑂𝑑𝑜𝑟  = Odor Concentration (odor unit per cubic meters,𝑂𝑈/𝑚3) 

 In general, the odor concentration can be obtained by measurement, in this 

case nearby the biosolids site.  Information of the air velocity, however, is often not 

available and considered an unknown variable. Estimate of emission rates at a source 

with an unknown air velocity  or a passive source is a difficult task. However, one can 

assume a flow rate based on results from a laboratory. For example, Rafson (1998) 

suggested using 0.1 foot per second (ft/s) or 0.03048 meter per second (𝑚/𝑠) to 

represent air velocity (Rafson, 1998).  

 In a similar manner, a source emission rate per unit area at a land application 

field with a specified time, 𝑄𝑓𝑖𝑒𝑙𝑑 _𝑗 (𝑥, 𝑦, 𝑧, 𝑡), can be deterministically calculated by 

multiplying a constant air velocity in meters per second with odor concentration in 

odor units recorded by inspectors from the Maryland Environmental Services  using 

the Nasal Ranger field olfactometer.  

 Even though a deterministic estimate of the emissions rate is widely used in 

practice, it does not capture the uncertainties and answer the question about the 

characteristic of emission rates. As previously mentioned, information on emissions 

rates is not often available, and there are a number of sources of variability and 

uncertainty.  
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 Odor emissions inherently vary both in spatial and temporal scales. The 

degree of variability is influenced by averaging time, atmospheric conditions, and 

geographic areas. Additional study or measurement cannot reduce its variability. 

Variability is also referred to as Type A uncertainty or stochastic/aleatory uncertainty. 

In contrast, Type B uncertainty or epistemic uncertainty in odor emission comes from 

incompleteness of knowledge or information about an unknown quantity of the true 

level of emissions. The uncertainty arises when there is a limited availability of site-

specific data and/or imperfections of emission measurement (Cullen and Frey, 1999)

   

4.3 Statistical Inference for Emission Estimates 

The use of the statistical inference is considerably helpful to develop representations 

from available information of emission rates in the form of sample (s) and to draw 

conclusions or making predictions. Inferences about model parameters can be made 

with confidence intervals for the selected distribution. An interpretation of probability 

can be made using two general approaches:  

 1. Frequency or empirical interpretation of probability and  

 2. Subjective interpretation of probability.  

 One consideration between the two major interpretations of probability is the 

availability of data. Subjective interpretation is preferred when there are few data or 

when the data are not representative. Often, both frequency interpretation and 

subjective interpretation are employed when there is a concern with data quality and 

data quantity. The typical statistical inference approach can be summarized as shown 

in Figure 4.2 
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Figure 4.2 Statistical Inference Approach 

 In this research, we used the frequentist approach to develop probability 

distributions for biosolids odor emission rates that can be used to quantify variability 

and uncertainty in the emission rates. More specifically, it can be done in two 

sequential steps: 1. Estimation of model parameters, and 2. Model verification 

through goodness-of-fit methods and probability plots. 

 The frequentist approach assumes availability of emissions data. 

Conceptually, this approach is used to relate a theoretical probabilistic model to sets 

of observed data. The first step is estimation of model parameters such as sample 

mean and standard deviation. This process is simply a selection of an appropriate 

distribution to the data and to summarize variability of information about the 

distribution of sampled emission rates. Depending on sample sizes summary statistics 

provide three keys of characteristics of the distribution that are its central tendency, 

dispersion, and shape. The second step is verification of the model prediction with the 

observations. 

4.3.1 Model Estimation 

The first step in model estimation is to decide what kind of distribution is appropriate.  

Generally, biosolids odor emissions (𝑄)can be considered as a continuous random 

variable due to physical, chemical, and biological characteristics of the biosolids itself 

and atmospheric conditions. In addition, the emission rates cannot be negative and its 

upper bound is not known for certain. After selecting the appropriate distribution, the 
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next step is to choose values of the distribution parameters such as mean (𝜇) and 

standard deviation 𝜍 .  

 This study used the Palisade
TM

 risk analysis software called @Risk
TM

 to fit a 

distribution to the emissions data by using a parameter estimation method called 

maximum likelihood (MML). MML is based on the concept that only relevant 

information from an experiment is contained in the likelihood function.  The 

distribution parameters in the MML are called the maximum likelihood estimators 

(MLEs). The MLEs of a distribution are the parameters of that function that 

maximize the probability of obtaining the given data set. The likelihood function of 

any distribution 𝑓(𝑥) with its parameters (𝜃1, 𝜃2 , … , 𝜃𝑚 ) can be defined as:  

    

𝐿 𝜃1, 𝜃2 , … , 𝜃𝑚  =   𝑓(𝑥𝑖

𝑛

𝑖=1

|𝜃1 , 𝜃2 , … , 𝜃𝑚 ) 

         (4.2) 

where the 𝑓(𝑥𝑛 |𝜃𝑚 ) is a probability density function (pdf). The concept of the 

maximum likelihood method (MML) is to find an estimator (𝜃𝑚) that maximizes the 

value of likelihood function. To maximize the likelihood, we set the first derivative of 

the likelihood function with respect to 𝜃𝑚  to zero and then solve to obtain the values 

of the distribution parameters. For lognormal distribution, the uniqueness of 

maximum likelihood estimators exists (Box and Tiao, 1973). Appendix 2 shows 

actual optimum of the likelihood function of the lognormal distribution.  
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4.3.2 Model Verification by Goodness-of-Fit Tests 

Model verification is the second step in determining a probability distribution by 

comparing model predictions with observed data. The simplest way to verify the 

model is to compare an observed histogram with the proposed probability density 

function. Another method for model verification is the use of statistical techniques 

called  goodness-of-fit tests. A goodness-of-fit test is based on the concept of 

statistical techniques that compare statistical tests with critical values of the test 

statistics. There are three widely used methods of statistical tests: Chi-squared 

goodness of fit, Kolmogorov-Smirnov Statistics (K-S), and Anderson-Darling 

Statistics (A-D) (Benjamin and Cornell, 1970;Cullen and Frey, 1999).  

 @Risk
TM

employs all three methods to fit the theoretical distribution to the 

data. Before conducting the statistical tests, there is one issue that needs to be 

considered, data availability. The Chi-squared test is suitable for a data set that has at 

least twenty five observations. The A-D test is valid for a smaller data set but no less 

than eight data points while K-S could take as few as five data points.  

 The calculation of the Chi-squared statistic, which is generally known as the 

goodness-of-fit statistic, begins with grouping the data into several classes or so 

called binned data. The probabilities of sampling data within any given bins need to 

be determined. In this particular analysis, the equal probabilities were selected to 

reduce the arbitrariness of the bin selection that potential by result in the different 

conclusions of the same data. The test statistic 𝑥2 is then defined as:  
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        𝑋2 =  
 𝑀𝑖−𝐸𝑖 

2

𝐸𝑖

𝑏
𝑖=1    (4.3)  

where 

  𝑏 = the numbers of bins 

           𝑀𝑖= the observed number of samples in the i
th

 bin 

𝐸𝑖= the expected number of samples in the i
th

 bin. 

 The calculated test statistics 𝑋2will be compared with the critical values of the 

chi-squared distribution with 𝑏 − 𝑟 − 1 degrees of freedom, where 𝑟 is the number of 

parameters in the hypothesized distribution. For example, in the case of a normal 

distribution, there are two parameters, which are its mean and standard deviation. The 

critical values for the chi-squared distribution can usually be found in a typical 

statistics textbook (Walpole et al., 2002).  

 The advantage of the Chi-squared statistic is its flexibility. It can be used with 

either discrete or continuous data. However, the weakness of the Chi-squared statistic 

is that there are no clear guidelines for selecting the number and location of bins. We 

can reach different conclusions from the same data depending on how we specified 

the bins.  

 Another fit statistic that can be used for continuous sample data is the 

Kolmogorov-Smirnov statistic. The K-S method compares stepwise empirical 
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cumulative distribution function  with the CDF of hypothesized distribution. The goal 

of this method is to find the maximum vertical distance between the empirical 

stepwise CDF and fitted CDF. The first step is to calculate the maximum discrepancy 

or maximum difference between 𝐹(𝑥) and 𝑆𝑛(𝑥)defined as:   

                                       𝐷𝑛 = max𝑥 |𝐹 𝑥 − 𝑆𝑛  𝑥 |      (4.4) 

where 

n = total number of data points 

𝐹 𝑥 = the fitted cumulative distribution function 

𝑆𝑛(𝑥)= the empirical stepwise cumulative distribution function 

 The next step is the comparison of the maximum discrepancy to a critical 

value of the test statistic. If the maximum discrepancy value is greater than the critical 

value, then we reject the hypothesized distribution. Even though the K-S statistic does 

not require binning, which makes it less arbitrary than the Chi-squared tests, it does 

not fit well with the hypothesized distribution tails. . Table 4.1 provides information 

on critical values with respect to their significance levels (𝛼).  
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Table 4.1: Critical Values for Kolmogorov-Smirnov Goodness-of-Fit Test (Benjamin and 

Cornell, 1970) 

Sample Size 𝜶 = 𝟎. 𝟏𝟎 𝜶 = 𝟎. 𝟎𝟓 𝜶 = 𝟎. 𝟎𝟏 

5 0.51 0.56 0.67 

10 0.37 0.41 0.49 

15 0.30 0.34 0.40 

20 0.26 0.29 0.35 

25 0.24 0.26 0.32 

30 0.22 0.24 0.29 

40 0.19 0.21 0.25 

Large 𝑛 1.22/ 𝑛  1.36/ 𝑛  1.63/ 𝑛 

 The final fit statistic that can be used with continuous sample data is the 

Anderson-Darling Statistic. The A-D method is an improvement on K-S for fitting the 

hypothesized distribution tails.. The method compares a stepwise empirical CDF and 

the CDF of the hypothesized distribution based on a weighted square of the vertical 

distance and calculates critical values from the specific distribution. The first step is 

to calculate the A-D statistic from the equation below: 

                         𝐴2 = − 
(2𝑖−1)[𝑙𝑛 (𝑝𝑖)+𝑙𝑛 (1−𝑝𝑛+1−𝑖)]

𝑛

𝑛
𝑖=1 − 𝑛     (4.5) 

where  

 𝑖 = ranked data in ascending order 

               𝑝𝑖= the cumulative probability calculated using the standard normal 

distribution 

 The next step is to compute a modified statistic from the A-D statistic and 

then compare it to a critical value, see Table 4.2 for the critical values for the A-D 

test. The modification of the A-D statistics is based on the sample size for comparison 
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with the critical value. Note that the critical values in Table 4.2 are valid for sample 

sizes greater than or equal to eight. The formula for the modified value is defined as: 

                                                 𝐴∗ = 𝐴2  1 +
0.75

𝑛
+

2.25

𝑛2     (4.6) 

Table 4.2: Critical Values for Anderson-Darling Statistic (Cullen and Frey, 1999) 

Significance Levels Critical Values 

0.10 0.631 

0.05 0.752 

0.025 0.873 

0.01 1.035 

0.005 1.159 

 For each fit, @Risk reports one or more fit statistics. The fit statistics provide 

information on how well  the selected distribution describes the data. As often is the 

case, there might be more than one distribution that fits the data well; the decision to 

select the appropriate distribution depends solely on subjective judgment and current 

practices. For example, it is known that concentration of pollutants resemble a 

lognormal distribution (Walpole et al., 2002;Clemen and Reilly, 2001;Singh et al., 

1997) 

4.3.3 Model Verification by Probability Paper 

The probability paper plot is a graphical technique for comparing distributional 

assumptions with data. The method is considered subjective and good for small data 

sets. The typical procedure of the probability paper is to: 1) rank the data from 

smallest to largest observations, 2) estimate the fractiles of the data, 3) plot the value 
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of each data point versus its fractiles on the probability paper, 4) inspect the result, 

and 5) if appropriate, perform a regression analysis. 

4.4 Analysis of Variance (ANOVA) 

Analysis of Variance (ANOVA) is the proposed method to investigate variations of 

emissions rates in land application fields. Two types of variations were considered: 1. 

variation of emission rates within the field, and 2. variation of emission rates among 

fields applied. Figure 4.3 shows a situation when the ANOVA might be needed to 

investigate the variations of odor emissions rates. 

 

 

 

                              
 

  

 

                                      
 

 
Figure 4.3: Random Sampling from Three Reuse Fields 

 

 In Figure 4.3, it was assumed that there is a hypothetical population 

distribution of odor emission rates at a wastewater treatment plant before being 

applied to fields A, B, and C. When biosolids were applied to those fields, random 

samples of biosolids odor emissions rates size 𝑛 can be selected from each of 𝑘 

hypothetical populations at fields A, B, and C, respectively. The three different 

At Plant: Hypothetical Population P 

Field A: Hypothetical Population A Field B: Hypothetical Population B Field C: Hypothetical Population C 

Observation(s) 
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populations are classified on the basis of different field locations for the day biosolids 

were applied. ANOVA is an appropriate tool to investigate variations of biosolids 

odor emissions rates within the field and among fields. 

 Generally, in ANOVA , 𝑘 populations are assumed independent and normally 

distributed with means 𝜇1,𝜇2,…, 𝜇𝑘  and common variance 𝜍2. The hypothesis to be 

tested for the situation in Figure 4.3 is: 

              𝐻0: 𝜇1= 𝜇2=,…,= 𝜇𝑘  

             𝐻1: At least two of the means are not equal. 

 Let 𝑦𝑖𝑗  denote the 𝑗th observation from the 𝑖th treatment. The treatment 

referes to various classification such as different biosolids land application sites. 

Table 4.3 provides an example of 𝑘 random samples.  

 

Table 4.3: 𝒌 Random Samples 

Treatment: 1 2 … 𝒊 … 𝒌  

 𝑦11 𝑦21  … 𝑦𝑖1 … 𝑦𝑘1  

 𝑦12 𝑦22  … 𝑦𝑖2 … 𝑦𝑘2  

 . 

. 

. 

. 

 . 

. 

 . 

. 

 

 𝑦1𝑛  𝑦2𝑛  … 𝑦𝑖𝑛  … 𝑦𝑘𝑛   

Total 𝑌1 𝑌2 … 𝑌𝑖  … 𝑌𝑘  𝑌.. 

Mean 𝑦 1 𝑦 2 … 𝑦 𝑖  … 𝑦 𝑘  𝑦 .. 

 

For One-Way ANOVA model, each observation may be written in the form (Walpole 

et al., 2002) 

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗  

  (4.7) 

where  
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 𝜇 = the grand mean; that is 𝜇 =
 𝜇 𝑖

𝑘
𝑖=1

𝑘
 

 𝜀𝑖𝑗  = random error and measures the deviation of the 𝑗th observation of the 𝑖th 

sample from the corresponding treatment mean.  

 𝛼𝑖  = the effect of the 𝑖th treatment. 

 The null hypothesis for 𝑘 treatments is 𝐻0 = 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 = 0, and 

𝐻1: At least one of the 𝛼𝑖’s is not equal to zero. The total variability for the One-Way 

ANOVA is expressed as a total sum of squares (SST), which is a combination of the 

treatment sum of squares (SSA) and the error sum of squares (SSE), or  SST = SSA + 

SSE where: 

     

𝑆𝑆𝑇 =   (𝑦𝑖𝑗 − 𝑦 ..)
2

𝑛

𝑗=1

𝑘

𝑖=1

 

                       (4.8)       

𝑆𝑆𝐴 = 𝑛 (𝑦 𝑖. − 𝑦 ..)
2

𝑘

𝑖=1

 

                        (4.9)       

𝑆𝑆𝐸 =   (𝑦𝑖𝑗 − 𝑦 𝑖.)
2

𝑛

𝑗=1

𝑘

𝑖=1

 

                       (4.10) 

  For testing of equality of means (𝐻0: 𝜇1 = 𝜇2 = 𝜇3), the F-ratio, 𝑓 =
𝑠1

2

𝑠2
2, is 

used to test the null hypothesis at the 𝛼-level of significance when 

𝑓 > 𝑓𝛼 [𝑘 − 1, 𝑘(𝑛 − 1)] 

 The computations for the One-Way ANOVA are summarized in Table 4.4. 
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Table 4.4: Analysis of Variance for One-Way ANOVA 

Source of variation Sum of squares Degrees of freedom Mean square Computed 𝑓 

Treatments SSA 𝑘 − 1 
𝑠1

2 =
𝑆𝑆𝐴

𝑘 − 1
 

𝑠1
2

𝑠2 

Error SSE 𝑘(𝑛 − 1) 
𝑠2

2 =
𝑆𝑆𝐸

𝑘 𝑛 − 1 
 

 

Total SST 𝑛𝑘 − 1   

 

 For unequal sample sizes, the sums of squares are revised as shown below: 

𝑆𝑆𝑇 =   (𝑦𝑖𝑗 − 𝑦 𝑖.)
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

  (4.11)                                     

𝑆𝑆𝐴 =  𝑛𝑖(𝑦 𝑖. − 𝑦 ..)
2

𝑘

𝑖=1

 

  (4.12) 

              

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴. 

  (4.13) 

The degree of freedom are N-1 for SST, k-1 for SSA, and N-k for SSE, where 

𝑁 =  𝑛𝑖
𝑘
𝑖=1 . 

4.5 Case Studies: Development of Probability Distribution 

4.5.1 Odor Emissions at DCWASA’s Land Application Sites 

In 2003, DCWASA, by the Maryland Environmental Services, conducted 

experiments for measuring odor emission levels at land-applied biosolids sites using 

the flux chamber method. The MES collected ambient odor concentration data in the 
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dilution-to-threshold (D/T) and sent them to St.Croix Sensory, Inc for odor 

evaluation.  

 With a known flow rate, the results obtained in the dilution-to-threshold 

method were back calculated for determination of odor emission rates. For example, 

if a result obtained from the laboratory was 214 D/T and the volumetric flow rate 

from the flux chamber was three liters per minute (5× 105 cubic meters per second), 

using the flux hood with an area of 0.13 square meters, the emission rate can be 

calculated from a product of concentration and mass flow rate (volumetric flow rate 

per area).  

 Emission rate (𝑞) = 214 × (5 × 105/0.13) = 0.0822 
𝑂𝑈

/𝑚2−𝑠
 

 Table 4.5 provides  summary statistics for the MES odor emission data. 

collected from nine reuse fields. The mean of the data set is 0.2769 odor units per 

square meters-second (𝑂𝑈/𝑚2 − 𝑠). The standard deviation is 0.1378. 

 By using the @Risk “Distribution Fitting” function, distribution parameters 

were estimated by the Maximum Likelihood Method. The three goodness-of-fit tests 

were applied to the emission data.  Table 4.6 summarizes the output.    
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Table 4.5: Summary Statistics of MES Odor Emission Data 

 

One Variable 

Summary 

Emission Rate 

(𝑶𝑼/𝒔 − 𝒎𝟐) 

Mean 0.2769 

Variance 0.0190 

Std. Dev. 0.1378 

Skewness -0.2517 

Kurtosis 1.0311 

Median 0.3310 

Mean Abs. Dev. 0.1233 

Minimum 0.0822 

Maximum 0.4279 

Range 0.3457 

Count 9 

Sum 2.4922 

1st Quartile 0.1581 

3rd Quartile 0.3922 

Interquartile Range 0.2341 

1.00% 0.0822 

2.50% 0.0822 

5.00% 0.0822 

10.00% 0.0822 

20.00% 0.1256 

80.00% 0.4279 

90.00% 0.4279 

95.00% 0.4279 

97.50% 0.4279 

99.00% 0.4279 

  

 

 

Table 4.6: Summary of Distribution Fitting for MES Odor Emission Data 

 

Fit Method Fit Ranking 

Distribution 

Test Statistics Mean Standard Deviation 

Chi-Square Lognormal 0.1111 0.2829 0.1774 

 Gamma 0.1111 0.2769 0.1455 

 Weibull 0.1111 0.2777 0.1267 

A-D Gamma 0.5657 0.2769 0.1455 

 Lognormal 0.5809 0.2829 0.1774 

 Weibull 0.5953 0.2777 0.1267 

K-S Beta general 0.2222 0.3008 0.1318 

 Weibull 0.2343 0.2777 0.1267 

 Lognormal (7) 0.268 0.2829 0.1774 
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 The  results in Table 4.6 show the three best fit distributions and their test 

statistics. Since there were only nine data points in this analysis, the results from the 

chi-squared test were not considered.  

 For the Anderson-Darling test, the Gamma distribution was ranked first given 

its test statistic of 0.5657. The lognormal distribution was ranked second, and its test 

statistic was close to the Gamma. However, since the test statistics of the proposed 

distributions are below all critical values of any significance levels considered (0.1, 

0.05. 0.025, 0.01, and 0.005), see Table 4.2, so we can describe the data with those 

proposed distributions.  

 For the Komolgorov-Smirnov test, the Beta general distribution gives the 

maximum was best. The Lognormal distribution was ranked  seventh, but its test 

statistic is still below the critical values of any significance levels for sample size 10. 

Therefore, the null hypothesis to characterize the data with the lognormal distribution 

was accepted.  

 The decision to select an appropriate distribution to represent the odor 

emission data in biosolids reuse fields is subject to judgment if there is more than one 

distribution that provides a good description of the data. In  environmental 

applications, however, it is appropriate and practical to assume that the probability 

distribution is lognormally distributed.  Then, in this study, we focused on the 

lognormal distribution.  

 Since there are only nine data points, it is difficult to verify the proposed 

distribution with a histogram.  As a result, the subjective probability plot was 

employed to investigate the goodness-of-fit of the lognormal distribution to the data. 
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Following the procedure mentioned in 4.3.3, we first took a natural logarithm for the 

data. The nine data were then ranked so that 𝑙𝑛 𝑞1 < 𝑙𝑛 𝑞2 < ⋯ < 𝑙𝑛 𝑞9. The plotting 

positions were calculated from (rank-0.5)/n and the Z-Score from the inverse CDF 

and were estimated. 

Table 4.7: Calculation for a Normal Probability Plot of the MES Odor Emission Data 

ln(Emission) Rank Plotting Position Z-Scores 

-2.4986 1 0.056 -1.59 

-2.0747 2 0.167 -0.97 

-1.8445 3 0.278 -0.59 

-1.6777 4 0.389 -0.28 

-1.1056 5 0.500 0.00 

-1.0203 6 0.611 0.28 

-0.9360 7 0.722 0.59 

-0.8489 8 0.833 0.97 

-0.8489 9 0.944 1.59 

 

 Table 4.7 provides calculations for a normal probability plot of the MES odor 

emission data in 2003. The calculations of the Z-scores were done by use of the Excel 

function, NORMSINV (plotting position). Figure 4.4 shows a graphical plot of the 

normal probability plot from the calculations in Table 4.7. The straight line appears to 

fit the data with 𝑅2=0.884. Using the probability plot it was confirmed that the MES 

odor emission data could be described by the lognormal distribution. 
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Figure 4.4: Normal Probability Plot for the MES Odor Emission Data 

 

4.5.2 Odor Emissions at DCWASA Wastewater Treatment Plant 

In 2005, DCWASA, the Department of Wastewater Treatment (DWT) started 

experiments for measuring odor levels of biosolids before they were trucked for land 

application. The DWT collected odor concentration data and sent them to St.Croix 

Sensory, Inc. for odor evaluation. The data collection detail is available from aPhD 

dissertation at the University of Maryland, College Park (Vilalai, 2008). 
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Table 4.8: Summary Statistics of DCWASA Odor Concentration Data 

One Variable 

Summary 

Plant Concentration 

Data 05-06 

Mean 1581.90 

Variance 2878185.62 

Std. Dev. 1696.52 

Skewness 1.9638 

Kurtosis 6.9929 

Median 825.00 

Mean Abs. Dev. 1245.71 

Minimum 240.00 

Maximum 8694.00 

Range 8454.00 

Count 77 

Sum 121806.00 

1st Quartile 480.00 

3rd Quartile 1800.00 

Interquartile Range 1320.00 

1.00% 240.00 

2.50% 280.00 

5.00% 330.00 

10.00% 340.00 

20.00% 440.00 

80.00% 2756.00 

90.00% 4100.00 

95.00% 5486.00 

97.50% 6426.00 

99.00% 8694.00 

  

 Table 4.8 provides summary statistics for the odor concentration data. There 

were 77 data points collected. The mean of the data set is 1581.9 dilution-to-

thresholds (D/T), the standard deviation is 1696.52 

 By using the @Risk “Distribution Fitting” function, distribution parameters 

were estimated by  Maximum Likelihood Method. The three goodness-of-fit tests 

were applied to the odor concentration data. The summary of distribution fitting that 

contains fit ranking, test statistics for each fit, distribution parameters, and the three 

best distributions are  provided in Table 4.9.    
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Table 4.9: Summary of Distribution Fitting for DWT Odor Concentration Data 

 

Fit Method Fit Ranking 

Distribution 

Test 

Statistics 

Mean Standard 

Deviation 

Chi-Square Pearson 5 9.8831 1884.85 N/A 

 InvGauss 14.8182 1581.9 1731.73 

 Lognormal 21.3117 1533.3 1748.8 

A-D Pearson 5 0.9383 1884.86 N/A 

 InvGauss 1.2816 1581.9 1731.73 

 Lognormal (4) 1.5786 1533.3 1748.8 

K-S Pearson 5 0.1068 1884.85 N/A 

 LogLogistic 0.1127 1618.28 N/A 

 Lognormal (5) 0.1317 1533.3 1748.8 

 

   

 For the Chi-square test, at the significance level 0.05, the test statistics of the 

first and second ranks, Pearson 5 and InvGauss, are below the critical values 16.92. 

However, at the same significance level, the test statistic of the Lognormal 

distribution is greater than the critical value (Test statistic = 21.3117>Cr. Value = 

16.92). 

 For the Anderson-Darling test, at the significance level 0.050, the critical 

value is 0.752. The test statistics for the third best fits are greater than the critical 

value; we cannot describe the data with the proposed distributions. However, at the 

significance level 0.01, the Pearson 5 distribution is the only one that can be used to 

describe the odor concentration data (test statistic = 0.9383 < Cr. value = 1.035). 

 For the Komolgorov-Smirnov test, the critical statistics for a large sample size 

can be computed from the Table 4.1. For the significance level 0.05, the test statistic 

is 0.155, 1.36/ 77. All the proposed distributions in Table 4.9 have the test statistics 

that are below the critical value 0.155.  
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 As previously mentioned, the decision to select the distribution is based on 

subjective judgment and current practices. Accordingly, the lognormal distribution  

by the chi-square test was chosen to represent the odor concentration at the Blue 

Plains Wastewater Plant as shown in Figure 4.5.  

 

Figure 4.5: Lognormal Distribution of Odor Concentration at Blue Plains 

  

 With the known flow rate and measured area, the odor emission rates can be 

calculated. Since the emission rates are proportional to the concentrations, the 

distribution of emission rates can also be described by the lognormal distribution as 

shown in Figure 4.6. The results of test statistics for odor emission rates are similar to 

Table 4.9. 
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Mean 1533.3000 
Std Dev 1748.8000 
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Figure 4.6: Lognormal Distribution of Odor Emission Rates at Blue Plains 

 

 

4.6 Case Study: ANOVA 

4.6.1 Design of Experiments 

This case study was conducted to investigate the variations of odor emission rates as 

previously stated in Section 4.4. Since it is not practical to sample odor emission rates 

at biosolids land application sites, the data collection of odor concentration was done 

after treatment processes before distribution.  

 The main focus is on a sensory measurement of biosolids odor concentration 

in dilution-to-threshold (D/T), recognition-to-threshold (R/T), and hedonic tone. The 

data obtained from the experiments were used for determination of biosolids odor 

emission and evaluation of biosolids odor concentration in the fields.  

 The seven samples of biosolids from seven operational days were taken from 

trucks while loading biosolids for the distribution. Each sample was duplicated in two 

Teflon jars with  400 grams per jar. Then, the biosolids odors were measured using an 
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85.8% 3.2% 

17.9 297.2 
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Distribution of Odor Emission Rates at Blue Plains 
RiskLognorm(83.061,94.735) 

Input 
Minimum 13.0008 
Maximum 470.9540 
Mean 85.6913 
Std Dev 91.3019 
Values 77 

Lognorm 
Minimum 0.0000 
Maximum +? 
Mean 83.0610 
Std Dev 94.7350 

@RISK Student Version 
For Academic Use Only 
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Isolation Flux Chamber with a known flow rate of 2.9 liters per minute and sent out 

to the St. Croix’s laboratory for the determination of D/T. The D/T values obtained 

from the laboratory were used to calculate an odor emission rate similar to those 

previously demonstrated in Section 4.5.1.  

4.6.2 Analysis of Variance (ANOVA) 

Table 4.10 provides the results of the one-way ANOVA. The null hypothesis (𝐻0) to 

be tested was whether at least two means of odor concentrations in D/Tare equal at 

the 0.05 level of significance.  

Table 4.10: Analysis of Variance (ANOVA) of Odor Emission Data 

 

 There were seven samples with a  14 sample size. The grand mean of the data 

is 3314.29 dilution-to-thresholds (D/T). The sum of square computations gave SSA = 

14,637,142.86, SSE = 1,280,000.00, and SST = 15,917,142.86 

 From the critical values of the F-Distribution (Walpole et al., 2002), the 

critical region with 𝑣1 = 𝑘 − 1 = 6 and 𝑣2 = 𝑘(𝑛 − 1) = 7 at the significance level 

= 0.05 gave 𝑓0.05 = 3.87. 

      The result is to reject the null hypothesis and conclude that the emissions of 

biosolids odors at the Blue Plains day-to-day operations do not have the same mean 

(𝐹 − 𝑅𝑎𝑡𝑖𝑜 > 𝑓0.05). 

Sum of Degrees of Mean

OneWay ANOVA Table Squares Freedom Squares

Between Variation 14637142.86 6 2439523.81 13.34 0.0016

Within Variation 1280000.00 7 182857.14

Total Variation 15917142.86 13

F-Ratio p-Value
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4.7 Guideline for Emission Estimates 

In this section, we propose a guideline for emission estimates that can be used as an 

input for a dispersion model. As previously mentioned, the emissions rate is a product 

of the air or volumetric flow rate (cubic meters per second, 𝑚3/𝑠 ) with odor 

concentration (odor units per cubic meter, 𝑂𝑈/𝑚3). Since it is rare in practice that the 

air velocity  is known, the emissions estimate is usually done with a measurement. An 

advantage of using a device to measure odor emission rates is to know the air flow 

rate (i.e., three liters per minutes). Without such a  device, the flow rate has to be 

assumed. 

 One approach is to use the air velocity from available sources. As previously 

mentioned in Section 4.2, Rafson (1998) suggested using 0.1 foot per second (ft/s) for 

typical air velocity. emissions rates per unit area can be back-calculated by 

multiplying the air flow rate with measured odor concentration. This approach can be 

referred to as an estimate from expert opinion and can be expressed in Equation 4.14 

 Emission rate  per unit area = assumed air velocity × odor concentration 

measured in the field as Dilution-to-Threshold                                               (4.14) 

 Alternatively, by using a statistical inference, probability distributions for 

odor emission rates can be developed. For example, a mean emission rate of the 

lognormal distribution in Table 4.6 can be used as input into a dispersion model. This 

approach can be expressed in Equation 4.15. 

 Emission rate per unit area = best estimate from probability distribution (mean 

emission rate)           (4.15) 
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 Another estimation involves using a simulated-flux chamber. This method 

assumes use of the flux chamber method in the field with known odor concentration 

at the plant. An important assumption is that there is no loss of odor concentration 

during transportation. With a known air velocity and measured area, which is an area 

of the flux hood, the measured odor concentration at land application site is 

substituted by the odor concentration data at the plant. An estimated odor emission 

rate can be calculated. Table 4.11 shows calculation of odor emissions rates for odor 

concentration data at Blue Plains in 2005 and 2006 using the simulated-flux chamber 

method with three liters per minute flow rate and a flux hood area of 0.13 square 

meters. 

Table 4.11: Sample Calculation of Odor Emission Rates Using the Simulated-Flux Chamber  

 

Date D/T Volumetric 

Flow Rate 

(𝒎𝟑/s) 

Area 

(𝒎𝟐) 

Air Velocity  

(
𝒎

𝒔
) 

Odor 

Emission 

 
𝑶𝑼

𝒎𝟐 − 𝒔
  

10/17/05 570 5×
1050.00005417 

0.13 4×
1040.000416692 

0.238 

11/07/05 350 5×
1050.00005417 

0.13 4×
1040.000416692 

0.146 

11/08/05 410 5×
1050.00005417 

0.13 4×
1040.000416692 

0.171 

11/15/05 500 5×
1050.00005417 

0.13 4×
1040.000416692 

0.208 

04/26/06 3874 5×
1050.00005417 

0.13 4×
1040.000416692 

1.614 

06/06/06 979 5×
1050.00005417 

0.13 4×
1040.000416692 

0.408 

06/07/06 495 5×
1050.00005417 

0.13 4×
1040.000416692 

0.206 

06/13/06 638 5×
1050.00005417 

0.13 4×
1040.000416692 

0.266 

07/05/06 1274 5×
1050.00005417 

0.13 4×
1040.000416692 

0.531 

07/10/06 867 5×
1050.00005417 

0.13 4×
1040.000416692 

0.361 

07/11/06 5018 5×
1050.00005417 

0.13 4×
1040.000416692 

2.091 
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Date D/T Volumetric 

Flow Rate 

(𝐦𝟑/s) 

Area 

(𝐦𝟐) 

Air Velocity  

(
𝐦

𝐬
) 

Odor 

Emission 

 
𝐎𝐔

𝐦𝟐 − 𝐬
  

07/18/06 825 5×
1050.00005417 

0.13 4×
1040.000416692 

0.344 

07/19/06 2990 5×
1050.00005417 

0.13 4×
1040.000416692 

1.246 

07/25/06 8694 5×
1050.00005417 

0.13 4×
1040.000416692 

3.623 
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Chapter 5: Biosolids Odor Impact Assessment at Land 

Application Sites  

5.1 Introduction to Dispersion Model 

This section describes dispersion models used in this study to simulate biosolids odor 

concentration at land application sites. Typically, there are two levels of model 

sophistication: screening and refined models. The screening model assumes worst 

case meteorological conditions to simulate pollutant concentration while the refined 

model requires more extensive inputs of meteorological and geographical data. 

5.1.1 Screening Model 

Screening model is a dispersion model usually applied to determine if a refined model 

is needed for further analysis. In this study, the United States Environmental 

Protection Agency screening model called SCREEN3, (EPA, 1995a),  was used for 

initial air quality assessment.  SCREEN3 is a single source Gaussian plume model, 

which provides maximum ground-level concentrations for point, area, and volume 

sources. By default, the SCREEN3 model calculates one-hour averaging 

concentrations with relative distances from the source.  The worst case 

meteorological conditions are assumed and used for model simulation. Table 5.1 

provides modeling inputs and options required in the SCREEN3 modeling procedure. 
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Table 5.1: SCREEN3 Modeling Inputs and Options 

Model Inputs Model Options 

Source type Point, area, and volume sources  

Dispersion coefficient Urban or rural studied area 

Receptor height  Defined receptor height above the ground in meters 

Emission rate Rates of pollutant emitted as an emission rate per area 

(𝑔/𝑠 − 𝑚2) 

Source release height Height of released pollutant in meter 

Wind direction Possible wind direction for studied area 

Terrain Simple or complex  

Meteorological 

conditions 

Stability classes and wind speeds 

 

 In this study, the area source was selected to represent the biosolids land-

applied area after spreading to a farm. Similar to the Industrial Source Complex (ISC) 

Model, the SCREEN3 model uses a numerical integration algorithm to model impacts 

from the area source. The algorithm detail is available in the ISC user’s guide (EPA, 

1995b). The receptor height was assumed 1.7 meters to represent population heights. 

 As previously mentioned, the SCREEN3 model simulates concentrations by 

assuming worst-case meteorological conditions. This means that the screen model 

will examine all stability classes and wind speeds to identify the worst-case 

meteorological conditions and generate results as maximum ground level 

concentrations for all wind directions. Table 5.2 shows combinations of wind speed 

and stability classes used in the SCREEN3 model. The stability class shown in Table 

5.2 was developed by Pasquill in 1961 to categorizing atmospheric turbulence. 
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Table 5.2: Combinations of Wind Speed and Stability Class (Haug, 1993) 

   Pasquill Stability Class*  

Wind Speed (m/s) A B C D E F 

0.5 × ×     

0.8 × ×  ×   

1.0 × ×  ×   

1.5 × ×  ×   

2.0 × × × × × × 

2.5 × × × × × × 

3.0 × × × × × × 

4.0  × × ×   

5.0  × × ×   

7.0   × ×   

10.0   × ×   

12.0   × ×   

15.0   × ×   

20.0    ×   
 

* A: Extremely unstable; B: Moderately unstable; C: Slightly unstable; D: Neutral; E: Slightly stable; and F: Moderately 

stable 

 With all required model inputs defined, the SCREEN3 model searches 

through all stability classes and wind speeds for defined wind direction and generates 

one-hour averaging concentrations for the defined receptor array. In this study, 

however, a more user friendly version of the SCREEN3 called Screen View was used 

in the screening analysis. The Screen View is available from Lake Environmental
TM

, 

http://www.weblakes.com/index.html. 

5.1.2 Regulatory/Refined Model 

Regulatory or refined model is a more sophisticated dispersion model comparing to a 

screening model. It requires more extensive inputs of atmospheric conditions and 

terrain elevations. This study employed AERMOD for simulating biosolids odor 

concentrations. AERMOD, (Cimorelli et al., 2005), is a refined dispersion model 

http://www.weblakes.com/index.html
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developed by the U.S. EPA and the American Meteorological Society (AMS), hence 

AMS/EPA Regulatory MODel (AERMOD). The AERMOD is a steady-state 

dispersion model for estimation of pollutant concentrations from a variety of sources 

in the planetary boundary layer (PBL). The steady-state approach assumes a constant 

of meteorological parameters over time (i.e., one hour). The model is suitable for a 

short-range (up to 50 kilometers) dispersion from stationary sources and comparable 

to the EPA’s Industrial Source Complex Short-term Model (ISCST3) (Perry et al., 

2005).  

 The AERMOD estimates concentration distributions by including the effects 

of vertical variations in the PBL (Cimorelli et al., 2005). The PBL is the closest part 

of the atmosphere to the ground where ground friction exists. The thickness of the 

PBL varies between 100 meters at night to three kilometers during the daytime. 

 Typically, there are two types of layers in the PBL: stable and unstable 

(convective). In the stable boundary layer (SBL) vertical and horizontal concentration 

distributions assumed by the AERMOD are both Gaussian as well as the horizontal 

concentration distribution in the convective boundary layer (CBL). However, the 

vertical concentration distribution in the CBL is described with a bi-Gaussian 

probability density function. The AERMOD calculates total concentration with a 

weighted sum of concentrations in terrain-impacting (horizontal plume), and terrain-

following plume (Cimorelli et al., 2005) as shown below. 

𝐶𝑇{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟} = 𝑓𝐶𝑐,𝑠{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟} + (1 − 𝑓)𝐶𝑐,𝑠{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑝}             (5.1) 

where 

 𝐶𝑇{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟}: The total concentration at a receptor coordinate {𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟} 
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 𝐶𝑐,𝑠{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟}: The contribution from horizontal plume (subscripts 𝑐 and 𝑠 

refer to convective and stable boundary layers, respectively) at a receptor coordinate 

{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟} 

 𝐶𝑐,𝑠{𝑥𝑟 , 𝑦𝑟 , 𝑧𝑝}: The contribution from the terrain-following plume 

 𝑓: is the weighting factor 

 𝑧𝑝 : The receptor height above ground 

 AERMOD model formulations are provided in the Appendix A-2. 

 The AERMOD modeling system consists of a dispersion model and two 

preprocessing models: 1) an air dispersion model (AERMOD), 2) a meteorological 

data preprocessor called AERMOD METEOROLOGICAL PREPROCESSOR 

(AERMET), and 3) a terrain data preprocessor called AERMAP.  

 The odor is carried from one place to another by  wind. It is then dispersed by 

atmospheric turbulence. The meteorological conditions and topographical features 

influence the atmospheric turbulence and consequently dispersion of odor. AERMOD 

simulates dispersion process through meteorological and topographical preprocessors. 

The results are estimated concentrations over a defined receptor network.  

 

 Meteorological Preprocessor (AERMET) 

  AERMET, (EPA, 2004), is a meteorological preprocessor for organizing 

available meteorological data into a format suitable for use by the AERMOD 

dispersion model. It is also used to characterize the structure of the planetary 

boundary layer (PBL) and to estimate its parameters.  
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 The minimum two types of data, which are National Weather Service (NWS) 

hourly surface observations and NWS twice daily upper air soundings, are needed as 

inputs for AERMET, which provide information on surface characteristics, cloud 

cover, one near-surface measurement of wind speed, wind direction, and temperature. 

The surface characteristics influence the depth and the dispersion of pollutants in the 

PBL. Some important surface characteristics are 1) surface roughness (height at 

which mean horizontal wind is zero), 2) albedo (the fraction of solar radiation 

reflected by the surface back to space without absorption), and 3) surface moisture in 

the PBL.  

 With the information from surface characteristics and standard meteorological 

observations, the AERMET calculates the PBL parameters for use by the AERMOD. 

The parameters are 1) friction velocity(𝑢∗), 2) Monin-Obukhov length(𝐿), 3) 

convective velocity scale(𝑤∗), 4) temperature scale(𝜃∗), 5) mixing height(𝑧𝑖), 6) 

surface heat flux(𝐻), and 7) surface roughness length (𝑧0). Those scaling parameters 

as a result from the AERMET are used with the AERMOD modeling system to 

construct vertical profiles of wind speed(𝑢), lateral and vertical turbulent 

fluctuations(𝜍𝑣 , 𝜍𝑤), and potential temperature gradient(𝑑𝜃/𝑑𝑧).. AERMET model 

formulations are provided in the Appendix A-2. Figure 5.1 shows a schematic of the 

input data required by the AERMET to generate the PBL parameters that are further 

used with the AERMOD. 
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Figure 5.1: Meteorological Data Input and Output in the AERMET 

 In the AERMET modeling setup and process, there are three stages for 

processing meteorological data and generating the PBL parameters.  The first stage 

extracts meteorological data, which are raw hourly surface observations and raw 

upper air soundings, from archive data files and processes the data through quality 

assessment (QA) checks. The second stage merges all available data for 24-hour 

periods and stores these data together in a single file. The third stage reads the merged 

meteorological data and estimates the necessary boundary layer parameters for 

dispersion calculations by AERMOD.  

 Two meteorological files are written for use in the AERMOD: a file of hourly 

boundary layer scaling parameter estimates (surface file) that contains surface friction 

velocity and mixing height, and a file of multiple-level observations (profile file) of 

wind speed and direction, temperature, and standard deviation of the fluctuating 

components of the wind. 

 AERMET requires an input runstream file to work as a command language 

with different functional groups or pathways to run the program. The runstream files 
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for each stage can be written in any ASCII format. The statements in a runstream are 

divided into six different pathways: 

1. JOB pathway for specifying information for the entire run; 

2. SURFACE pathway for extracting and QA the NWS hourly surface observation 

data; 

3. UPPERAIR pathway for extracting and QA the NWS upper air sounding data; 

4. ONSITE pathway for QAing user-supplied, on-site meteorological data; 

5. MERGE pathway for combining the meteorological data; 

6. METPREP pathway for estimating boundary layer parameters for AERMOD. 

 Figure 5.2 show an example of the running stream files for all three stages. 

Figure 5.2: AERMET Processing 

 Figure 5.3 shows a runstream file in stage 1 for extracting and assessing the 

quality of upper air and surface data from a weather station in Orange County, 

Virginia from January 01, 2005 to December 31, 2008.  

 The upper air data file, UPPERAIR.OP in Figure 5.3, is in the TD-6201 fixed-

length blocks format. The weather station for the data is located at the coordinate 

(77.28W, 38.58N). The AUDIT keyword was used to QA the data for missing values 

and range violations. In this example, the temperature (UATT), wind speed (UAWS), 

and lapse rate (UALR) were checked.  
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 The surface data file, 722167.OP in Figure 5.3, is in TD-3505 format, which is 

known as the Integrated Surface Hourly Data (ISHD)The weather station is located at 

the coordinate (78.05W, 38.25N) and at the elevation 142 meters above sea level. 

With the runstream shown below, stage 1 performed extraction and QA for the upper 

air and the surface data, respectively. The output files from stage 1 were written in the 

file STAGE_1_UA.QQA for the upper-air data and in the file STAGE_1_SF.QQA 

for the surface data. All the errors and summary of the run were written in the JOB 

pathway. The STAGE_1.RPT specifies all the errors and warning generated by the 

AERMET, while the STAGE_1.MSG reports the summary of the run. 

 

Figure 5.3: Example Runstream to Extract and QA Upper Air and Surface Data  

 

 Stage 2 merged the extracted meteorological files generated from stage 1 to a 

file in 24-hour format. Figure 5.4 shows the runstream file for stage 2, merging the 

upper-air data, STAGE_1_UA.QQA, with the surface data, STAGE_1_SF.QQA. The 

output file was written in the MERGE keyword, STAGE_2_MR.MET. 
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Figure 5.4: Example Runstream for Merging the Data  

  

 Figure 5.5 shows stage 3, data processing, from stage 2, STAGE_2_MR.MET 

in DATA keyword, that contain the PBL parameters for the AERMOD. The surface 

file, MET_INPUT.SFC, in the OUTPUT keyword contains boundary layer 

parameters including surface friction velocity, mixing height, and near surface winds 

and temperature. On the other hand, the profile file, MET_INPUT.PFL, in the 

PROFILE keyword produces the multi-level observations of temperature, winds, and 

fluctuating components of the wind.  

 

Figure 5.5: Example Runstream for Estimating Boundary Layer Parameters 

  

 Stage 3 includes determination of parameters to characterize surface 

characteristics in the SITE_CHAR keyword. In the AERMET’s user guide, the EPA 

provides guidance to specify those parameters based on land use (EPA, 2004).   
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In this example, land use was in rural areas. Figure 5.5 shows values of the albedo 

(0.2), bowen ratio (1.5), and surface roughness length (0.2) in the SITE_CHAR 

keyword. Selection of those parameters could affect the surface characteristics and 

model accuracy (Diosey, 2008).  

 Ultimately, two meteorological files, surface and profile data, are generated 

from stage 3 which would then be used in the AERMOD dispersion model. The data 

description and examples of the surface file and the upper-air file are shown in Tables 

5.3-5.4 and Figures 5.6-5.7 

Table 5.3: Data Description for Surface File (EPA, 2004) 

Field(s) Data Description 

1-5 Year (2-digit), month, day, Julian day, and  hour 

6 Sensible heat flux, watts per square meters (𝑊/𝑚2) 

7 Surface friction velocity, meters per second(𝑚/𝑠) 

8 Convective velocity scale (set to -9.0 for stable atmosphere), meters per second(𝑚/𝑠) 

9 Potential temperature gradient above the mixing height in Kelvin per meter (𝐾/𝑚𝑒𝑡𝑒𝑟) 

10 Convectively-driven mixing height (-999 for stable atmosphere), meters(𝑚) 

11 Mechanically-driven mixing height (computed for all hours), meters(𝑚) 

12 Monin-Obukhov length, meters(𝑚) 

13 Surface roughness length, meters(𝑚) 

14 Bowen ratio (non-dimensional) 

15 Albedo (non-dimensional) 

16-18 Wind speed, wind direction, and anemometer height that were used in the computations in 

Stage 3, meters per second(𝑚/𝑠), degrees, meters(𝑚) 

19-20 Temperature and measurement height that were used in the computations in Stage 3 

(𝐾 𝑎𝑛𝑑 𝑚𝑒𝑡𝑒𝑟𝑠) 
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Figure 5.6: First 52 Hours of the Boundary Layer Parameter File 

 

Table 5.4: Data Description for Profile File (EPA, 2004) 

Field(s) Data Description 

1-4 Year (2-digit), month, day, and hour 

5 Measurement height, meters (𝑚) 

6 Indicator flag: 1 = last level in profile for the hour, 0 = not the last 

level 

7-8 Wind direction and speed, meters per second (𝑚/𝑠), meters (𝑚) 

9 Temperature, Celsius 

10 Standard deviation of the lateral wind direction, degrees (𝜍𝐴) 

11 Standard deviation of the vertical wind speed, meters per second 

(𝑚/𝑠), (𝜍𝑤) 
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Figure 5.7: First 52 Hours of the Profile File 

 

 AERMOD Dispersion Model with Terrain 

 The AERMOD simulates pollutant plume based on available meteorological 

data provided by the AERMET and topographical features of a site under 

investigation provided by the AERMAP. The total concentration is a weighted sum of 

concentrations from both the horizontal plume and the terrain-following plume.  

 The AERMOD dispersion model in the AERMOD modeling system contains 

all algorithms necessary to combine source information, meteorological data, and 
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topography to produce an output file of concentrations at the specified receptor 

locations. 

 AERMOD requires two input files: a runstream setup file and a 

meteorological file. The runstream setup controls selected modeling options, as well 

as source location, receptor locations, meteorological data, and output options. The 

two types of meteorological data files, single and profile files, are provided by the 

AERMET meteorological preprocessor program.  

 The input runstream file works as a command language that can be divided 

into 5 functional pathways: 1) Control Pathway (CO), 2) Source Pathway (SO), 3) 

Receptor Pathway (RE), 4) Meteorology Pathway (ME), and 5) Output pathway 

(OU). The explanation of the five pathways is provided through an example in Figure 

5.8-5.12.  

 The control pathway (CO) controls dispersion options in the AERMOD 

dispersion model such as name of studied field and averaging time concentration. In 

Figure 5.8, for example, the field under investigation is DF3, and averaging time 

concentration for the model output is one hour as defined in the TITLEONE and 

AVERTIME keywords, respectively. The AERMOD gives an option to define the 

averaging time from one hour to twenty-four hours. In this study, a one-hour 

averaging time was selected because the shorter averaging time would allow the 

AERMOD to simulate a predicted concentration distribution closer to an 

instantaneous characteristic of odor concentration. 



 

 78 

 

 

Figure 5.8: Example Runstream for Control Pathway (CO) 

  The source pathway (SO) contains information of a source such as 

source geometry and characteristics. The source geometry includes type of the source 

and source coordinates. In this study, it is practical to consider biosolids land 

application as an area source. The source coordinates contains a user-defined origin 

that could be in the standard coordinate system. For example, it could be defined in 

the Universal Transverse Mercator (UTM) coordinate system containing easting and 

northing coordinate pairs. The elevation of the source is also taken into account. 

 In Figure 5.9, for example, the source geometry is defined in the LOCATION 

keyword including an area source, UTM coordinate pairs (752638, 4230281), and 

elevation 147 meters above sea level. The size of the area source, however, is defined 

in the source parameters (SRCPARAM) keyword, in this runstream 114.51 square 

meters. The size of the area source is the length of the X and Y sides of the field after 

the biosolids are applied, expressed in square meters. Because the tonnage of 

biosolids applied is in wet tons and the field area is limited by the number of acres 

permitted, there is a need to convert the daily biosolids applied area in to square 

meters.  
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Figure 5.9: Example Runstream for Source Pathway (SO) 

 

 The significant component when using a dispersion model includes a source 

emission rate. Emission rate is one of the most important factors to assess an odor 

impact. In addition, it could be used to follow the evolution of the source in terms of 

annoyance. Typically, odor emission levels are expressed as rate of release per time 

in odor unit per second (𝑜𝑢/𝑠) or rate of release per time per unit area(𝑜𝑢/𝑚2 − 𝑠). 

The detail of emission estimate is provided in Chapter 4. The estimated emission 

levels were then used as an input in the AERMOD dispersion model through the 

source pathway, SRCPARAM keyword. For this example, the estimated emission 

rate of 0.152 𝑜𝑢/𝑚2 − 𝑠 was used. 

 In addition, the other data needed as input to the source pathway involves the 

release height above ground. The release height is the vertical distance that a pollutant 

could be released to the air. There is no certain method to determine the release height 

value used in the model. Thus, the release height could be subjectively determined 

and, in this study, was assumed to release from the ground.  

 Another important pathway designed to investigate the effects of terrain to the 

dispersion process is receptor pathway (RE). The receptor pathway contains 

keywords that define the receptor information for a particular run. Defining a receptor 

grid is usually the first step.  
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 There are two types of receptor grids: Cartesian grid and Polar grid. The 

difference between these two grid systems is mainly the grid spacing which could be 

evenly spaced (Cartesian gird) or unevenly spaced (Polar grid). The Cartesian gird 

was selected to represent hypothetical receptor locations at specified time 𝑅(𝑥, 𝑦, 𝑧, 𝑡) 

when running the model because of its uniformity.  

 To facilitate the generation of elevated terrain and hill height, the terrain 

preprocessor called AERMAP, which uses the U.S. Geological Survey (USGS) 

Digital Elevation Model (DEM) data, may be used to generate terrain elevation for 

each receptor. This study, however, applied the Geographic Information System 

(GIS) to determine receptor terrain. 

 Figure 5.10 provides an example runstream for the receptor pathway (RE) 

with a defined Cartesian grid receptor network in the UTM coordinate system. The 

receptor’s terrain was determined by the GIS as shown in the GRIDCART CAR1 

ELEV, HILL keywords. 

 

Figure 5.10: Example Runstream for Receptor Pathway (RE) 
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 The meteorology pathway (ME), in Figure 5.11, processes the meteorological 

data obtained from the AERMET output, MET_INPUT.SFC for the surface file and 

MET_INPUT.PFL for the profile file. The SURFDATA and UAIRDATA keywords 

provide information of weather station identification and year data was processed.  

 

Figure 5.11: Example Runstream for Meteorology Pathway (ME) 

 

 The output pathway (OU) controls output options: the option for determining 

model outputs for different maximum concentrations and the option for plotting the 

results in a form that can be easily imported to another programs such as Excel 

spreadsheet. Figure 5.12 shows an example runstream file for the output pathway 

(OU). The AERMOD, with this OU runstream file, generated four levels of 

maximum concentration for defined receptors in four different files that can be 

exported to the spreadsheet.  

 

Figure 5.12: Example Runstream for Output Pathway (OU) 

 

 After all runstream files created, the AERMOD written in FORTRAN will run 

on the MS-DOS by default. To run the AERMOD, both input file and output file need 
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to be created in the same directory with the AERMOD program. An input file is 

basically a file that contains all input data and pathway code manually created by 

users and preprocessor AERMET. An output file is simply a blank file that the result 

is created.  

 The result generated from AERMOD is the average concentration values with 

relative date of concentration for selected receptor network, Cartesian grid (CAR), 

and selected average concentration time. In addition, if the model accounts for 

elevated terrain situation, the result would show relative elevation values for each 

grid location. Figure 5.13 shows an example of result in produced file of design 

values that can be imported into graphics software like the GIS for plotting contours. 

 

 

Figure 5.13: Example Output from the AERMOD 
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 Since the human nose can detect odors very quickly, odor problems usually 

occur in shorter periods of time, less than an hour. For that reason, we might need to 

convert average hourly concentrations to shorter averaging times such as 3-Minute 

concentration. Theoretically, the concentration value of the same location over 

different period of times follows a power law. A power law as a result is suggested as 

a possible conversion for use with single source and averaging times of 24 hours or 

less (Schnelle and Dey, 2000). Thus; 

                                                                 𝐶𝑠 = 𝐶𝑘  
𝑡𝑘

𝑡𝑠
 
𝑝

            (5.1) 

where   𝐶𝑠= concentration for time  𝑡𝑠         𝐶𝑘= concentration for time 𝑡𝑘  

  𝑡𝑠= longer averaging time               𝑡𝑘  = shorter averaging time 

𝑝   = power (values of p have ranged from 0.17 to 0.75; the suggested 

value is 0.2 for odor problem (Porter and Elenter, 2008) 

5.2 GIS-Based Odor Impact Assessment 

5.2.1 Introduction to Geographic Information System (GIS) 

The Geographic Information System (GIS) is an integration of computer software and 

geographical data designed for use to integrate, analyze, and visualize the data, to 

identify relationships, patterns, and trends and to find solutions to problems (GIS 

Dictionary, ArcGIS 9.2).  

 The first application of the GIS was developed by Roger Tomlinson for the 

national natural resource inventory in Canada. For the United States, GIS was first 

used in the military and intelligence imagery programs of the 1960s. In this study, 

GIS was employed as a base tool for supporting modeling and analysis. Particularly, 
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ArcGIS developed by the Environmental Systems Research Institute (ESRI) was used 

for data management, mapping, and spatial modeling and analysis.  

 ArcGIS consists of three functionality levels, ArcView, ArcEditor, and 

ArcInfo. ArcView makes the maps and data that ArcReader can view and print. 

ArcEditor gives ArcView functionality and has additional data creation and editing 

tools. ArcInfo gives complete ArcEditor functionality plus a full set of spatial 

analysis tools. This study employed ArcInfo that plays a significant role for mapping, 

and data management through ArcMap and ArcCatalog. 

 

 Mapping and Visualization with ArcMap  

 A GIS map contains a collection of layers called a data frame. The data frame 

has properties such as coordinate system. The coordinate system is a reference system 

used to represent information for a defined geographic location such as features, 

imagery, and observations (GIS Dictionary, ArcGIS 9.2).  In addition, it is used to 

integrate data sets for mapping and analysis.  

 There are two common coordinate systems: a geographic coordinate system 

and a projected coordinate system. The geographic coordinate system measures a 

spherical location from the earth’s center (in degree) to the earth surface, and it is 

represented as a latitude-longitude. The latitude angles are measured in the north-

south direction. For the northern hemisphere, the latitude is recorded as north (N), and 

south (S) in the southern hemisphere. The longitude measured angles in the east-west 

direction based on the prime meridian, an imaginary line from the North Pole through 

Greenwich to the South Pole. West of the prime meridian has a negative longitude 
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value. For example, in Figure 5.14 the geographic location has a latitude-longitude 

(40 degrees north, 50 degrees east).  

 The geographic coordinates in this study are all in the Northern Hemisphere 

and West of the prime meridian. As a result, a location can be expressed in a positive 

value of latitude and in a negative value of longitude. 

 

Figure 5.14: Example of the geographic coordinate system (GIS Dictionary, ArcGIS 9.2) 

 

 The projected coordinate system, on the other hand, measures an earth 

location by projecting it into Cartesian plane(𝑥, 𝑦) . The one horizontal (𝑥) represents 

east-west direction, and the one vertical (𝑦) represents north-south direction. The 

projected coordinate system is usually employed when preserving a shape or an area.  

 With well-defined coordinate systems, mapping in the GIS can be performed 

more accurately. In the GIS-Based Biosolids Odor Impact Assessment Models, the 

two coordinate systems were used for different purposes. The geographic coordinate 

system was specifically used for spatial analysis when the projected coordinate 

system was purposely used for area calculations.  
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 As previously mentioned, a map contains layers, and adding layers is 

considered the first task when mapping. However, deciding on what layers or 

information we need is a crucial step.  

 

 Data Management with ArcCatalog 

 ArcCatalog is a tool to provide an integrated and unified view of geographic 

information, which connects GIS to data source location and manages data properties. 

Data used in GIS may exit in many forms including files and databases. Some 

common tasks performed by the ArcCatalog include browsing and finding geographic 

information and defining, exporting, and importing data models and data sets.  

 

 ArcGIS Extensions and Geoprocessing 

 ArcGIS has Extensions that can be used for specific tasks. For example, the 

Geostatistical Analyst in the Extension was used to statistically analyze the values of 

concentration data and to create maps. 

 

5.2.2 GIS-Based Biosolids Odor Impact Assessment 

GIS-Based Odor Impact Assessment was developed to provide decision makers a 

systematic tool for assessing possible impacts from biosolids odor at land application 

sites. Basically, it can be used for supporting the AERMOD modeling setup and 

visualizing odor impact areas. Those tasks often include visualization and data 

management, mapping, and modeling to provide a better way to visualize odor impact 

areas. More specially, it generates information on terrains for use in the 

meteorological preprocessor (AERMET) and the dispersion modeling (AERMOD) 
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for model prediction. The assessment of odor impact was focused on making 

prediction concentration maps (C-Maps), probability maps (P-Maps) and intensity 

maps (I-Maps). The GIS-Based Odor Impact Assessment works in sequential steps 

and the procedure can be summarized below. 

 The first step is to create a map that contains a data frame for adding layers 

necessary to support the modeling setup. The accuracy of the map depends on the 

coordinate system. The geographic coordinate system North American Datum 1983 

(NAD 1983) was assigned to the data frame. Transformation of the coordinate system 

might be needed if the added layers are not in the same coordinate system as the data 

frame.  

 A model called the “Defined Projection Model” was created by the 

Geoprocessing for transformation of coordinate system. Basically, the model will 

convert an input layer coordinate system to the defined coordinate system. It could be 

used for both the feature and the raster data. Figure 5.15 shows the schematic of the 

Define Projection Model. 

 

Figure 5.15: Defined Projection Model 

 

 After defining coordinate systems, all the layers were added to the data frame. 

Layers added for supporting modeling setup were: 

1. Maryland Environmental Service’s Reuse Fields Data (MES Data) layer 

2. Virginia Counties layer 
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3. Weather stations for Hourly Surface Observations and Upper Air Data layer 

4. Elevation layer 

 For some layers, there is a need for preprocessing the data before adding them 

to the GIS. For example, the MES data had to be preprocessed for cleaning and 

compiling the data using a spreadsheet. The data with its geographic coordinates were 

then imported to the GIS as a feature data containing information of land application 

sites. Similarly, the weather stations data had to be preprocessed before adding them 

to the data frame. 

 For those others, it may come as a ready-to-use geographical data. The ESRI 

provides geographic information data in many dimensions including census and 

elevation.  The elevation data are raster data created by the U.S. Geological Survey 

(USGS). Typically, their values are stored as unit meters above sea level in the 

elevation layer. The elevation layer is derived from the global digital elevation model 

(DEM). However, the size of the layer might be too big, and it could slow down 

model running time.  

 A model called “Clip Raster Model” shown in Figure 5.16 was used to create 

a spatial subset of a raster data. To be clipped, the model needs four coordinates to 

define the clipped area. Figure 5.17 shows an example of clipping the elevation layer 

in Virginia (on the right) from the world elevation layer (on the left).     

 

Figure 5.16: The Clip Raster Model 
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Figure 5.17: Example Clipping of the Elevation Layer 

  

 The next step is to select the studied area. Since the accuracy of prediction is 

the main priority, selecting the studied area, in this case, was bounded by the distance 

of studied fields to the locations of weather stations. The closest weather stations will 

provide a more representative sample of weather condition in the field. Using the 

“Selection by Location” analysis tool in the GIS, the average distance of fields 

approximately closest to the weather stations were in Orange and Albemarle counties.  

 Orange County is a county located in the northern part of Virginia. As of the 

2007 census, the population was 32,276, and its population density was 94 people per 

square mile (PP_SQMI). The weather station in Orange County is located in Orange 

county airport with a coordinate (38.2472N, 78.0456W). Its elevation is 142 meters 

above sea level.   

 Albemarle County is a Virginia county located on the southwest side of the 

Orange County. The population in 2007 was 95,543. Its population density was 131.5 

PP_SQMI. The weather station is located in Charlottesville - Albemarle Airport. The 

airport is located at a coordinate (38.1383N, 78.4558W) and 192 meters above sea 

level.   
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 Figure 5.18 shows an example of GIS screenshot for the data frame 

“Supporting Modeling Setup” that contains MES field data layers, weather stations 

layer, Virginia counties layer, and elevation layer. 

 

Figure 5.18: Example GIS Screenshot for the Supporting Modeling Setup Data Frame 

  

 In addition to elevation layer, the hillshade values are needed in the 

AERMOD, through the receptor pathway (RE), to characterizing the terrain. The 

hillshade layer was created from the elevation data in ESRI Data & Map. An ArcGIS 

Extension tool called “Spatial Analyst” was used to create the hillshade layer with 

315 degrees of Azimuth angle of the light source and 45 degrees of Altitude angle of 

the light source above the horizon. 
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 The next step is characterizing receptor terrain. Determining receptor terrain is 

the required step for the receptor pathway (RE) in the AERMOD, and it can be done 

by use of “Supporting Modeling Setup” in the GIS. With all the layers added, a model 

developed called “Receptor Terrain Model” can be used to define receptor terrain and 

hillshade values. Figure 5.19 shows a schematic for the Receptor Terrain Model. 

 

Figure 5.19: Receptor Terrain Model 

  

 With all the required inputs the AERMOD simulated odor concentration in 

micrograms per cubic meters. The output of concentration values was stored with 

their coordinates in a specified receptor grid network. The odor concentrations were 

converted to grams per cubic meters or odor units per cubic meters (𝑂𝑈/𝑚2) for 

comparing with the measured odor concentration obtained by the Nasal Ranger field 

olfactometry, in Dilution-to-Threshold. Due to impossibility of measuring 

concentration values at every location, the Geostatistical Analyst was used for 

generating continuous concentration data. 
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 Geostatistical Analyst 

Geostatistical Analyst is an integration of Geostatistics and GIS. It is the advanced 

surface modeling that provides the tool for exploratory spatial data analysis (ESDA) 

and for creating statistical surface. The goal of the Geostatistics is to predict values at 

locations where measurement can be made but often available in a limited number of 

sampled points.  

 Typically, there are two groups of interpolation techniques: deterministic and 

Geostatistical interpolation or Kriging models. Deterministic interpolation relies on 

mathematical function, but the geostatistical interpolation depends on both 

mathematical and statistical methods with information of uncertainty. Despite 

differences in model algorithm the geostatistical interpolation provides information 

on prediction error.  

 Deterministic models are based on either the distance between points (e.g., 

Inverse Distance Weighted) or the degree of smoothing (e.g., Radial Basis Functions 

and Local Polynomials). Geostatistical models or Kriging are based on the statistical 

properties of the observations and provide some measure of the certainty or accuracy 

of the predictions while deterministic models do not. It also tells us how good the 

predictions are.  

 Geostatistics requires two main steps: spatial data analysis and modeling. The 

spatial data analysis serves as a tool to verify assumptions on spatial data: 

distribution, dependency, and stationarity. If those assumptions were satisfied, the 

modeling steps for spatial data are performed. 
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 Theoretically, Geostatistics works best when input data are Gaussian. If not, 

data have to be made close to Gaussian distribution. The tools available in 

Geostatistical Analyst used to explore data include a histogram and normal quantile-

quantile (Q-Q) plot. The histogram plots frequency histograms for the attributes in the 

data set. The important features of the distribution are its central value, its spread, and 

its symmetry. As a quick check, if the mean and the median are approximately the 

same value, we have one piece of evidence that the data may be normally distributed. 

The normal Q-Q Plot, on the other hand, compares the distribution of the data to a 

standard normal distribution providing another measurement of normality. The closer 

the points are to creating a straight line, the closer the distribution is to being 

normally distributed. 

 Another important feature of the data is the dependency. The dependency is 

referred to so that data from neighboring values are close to each other. The 

Semivariogram/Covariance cloud allows us to roughly examine that relationship. 

Moreover, the Semivariogram/Covariance modeling provides more details on 

investigating the dependency of the data. Figure 5.20 shows a semivariogram of 

concentration data with an evident of spatial dependence.  

 The other important feature, stationarity, also needs to be investigated when 

analyzing statistical data. Stationarity means that statistical properties do not depend 

on location. Therefore, the mean (expected value) of a variable at one location is 

equal to the mean at any other location.  

 



 

 94 

 

 

Figure 5.20: Semivariogram Modeling 

  

 After exploring the data, the interpolation technique could then be employed 

to generate a continuous surface, concentration plot in this case. Normally, Kriging, 

(Webster and Oliver, 2007), is divided into two distinct tasks: quantifying the 

structure of the spatial data and producing a prediction. Quantifying the structure, 

known as variography, is fitting a spatial-dependence model to data. Then, Kriging 

will use the fitted model from variography, the spatial data configuration, and the 

values of the measured sample points around the prediction location to make a 

prediction for an unknown value.  

 Basically, each Kriging method relies on the notion of autocorrelation. The 

typical Kriging equation could be expressed in a simple mathematical formula, 

                              𝑧 𝑠 = 𝜇 𝑠 + 𝜀(𝑠)               (5.2) 
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where z(s) is the variable of interest at any location in space (𝑠), decomposed into a 

deterministic trend𝜇(𝑠), and random, autocorrelated errors form 𝜀(𝑠). It is that 

formula that forms the basis for all of the different Kriging models. The summary of 

the different Kriging methods based on the variation of the formula is briefly 

described below. 

 1. Ordinary Kriging assumes that trend 𝜇(𝑠) is constant and unknown. 

 2. Universal Kriging, on the other hand, assumes variation of trends 𝜇(𝑠) and 

regression coefficients are unknown. 

 3. Simple Kriging would be used when trend 𝜇(𝑠)  is completely known 

whether constant or not. 

 4. Indicator Kriging is used when you perform transformation on z(s). For 

example, you can change it to indicator variable, where it is 0 if z(s) is below some 

value (e.g., 1 for odor concentration). 

 5. Probability Kriging may be used when you wish to predict the probability 

that z(s) is above the threshold value or not. 

 6. Last, disjunctive Kriging is used when you want to make unspecific 

transformation of the z(s), which is not used in this research. 

 The Geostatistical analyst was used in this study to create predicted odor 

concentration maps (C-Map) and probability maps (P-Map). The C-Map provides 

potential impact areas to neighborhoods. The predicted odor concentrations 

associated with the impact areas are comparable with discrete dilution scales of the 

Nasal Ranger field olfactometer, which is used to measure ambient odor strength. 
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Probability map (P-Map) is defined as a map containing probabilities of exceeding 

the defined threshold at receptor locations. It can be expressed as: 

    𝑃(𝐶 ≥ 𝐶𝑇)                                          (5.3) 

where 𝑃 is the probability of the predicted concentration exceeding the defined 

threshold concentration, 𝐶 is the predicted concentration, and 𝐶𝑇  is the threshold 

concentration. The P-Map can support decisions on biosolids distribution by 

providing a chance of human perception to particular odor levels. 

5.2.3 Biosolids Odor Impact Assessment 

Assessment of land-applied biosolids odor impact to nearby communities is a difficult 

task because of individual variation in odor perception. Generally, the human 

perception to odor is based on many factors including, for example, gender, age, and 

health condition. The first theory of sensation measurement as part of the 

psychophysics stated that the sensory responses to stimuli follows the power 

law(Stevens, 1960). In case of  odor perception, the relationship of the relative odor 

strength and the stimulus odor can be defined as: 

     𝐼 = 𝑘𝐶𝑛                                                (5.4) 

where 𝐼 is the relative odor strength or intensity, 𝐶 is the mass concentration of 

odorant, and 𝑘 and 𝑛 are constants that differ from one odorant to another. 

 To assess impacts from odors, it usually begins with an assessment of odor 

parameters. As previously mentioned in Section 4.1.2, U.S. Environmental Protection 

Agency (EPA) recommends using five independent parameters for the complete 

assessment: detectability, intensity, character, hedonics, and persistency. 

Furthermore, a conceptual model for citizen complaints was developed consisting of 
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odor character, odor intensity, duration, and frequency; the cumulative effect of these 

parameters may contribute to nuisance experience and possibly lead to complaints 

(McGinley et al., 2000).  

 The odor character is basically what the odor smells like. The odor intensity 

refers to overall strength of the perceived odor in referencing n-butanol scales that is 

the relative magnitude of the odor above the recognition threshold, as defined in 

ASTM E544-99, “Standard Practice for Referencing Suprathreshold Odor Intensity.” 

Duration is the period of time in which odorants are transported downwind to citizens 

and are perceived as odor. Longer period of perception can cause more nuisances to 

community. The frequency refers to how often the citizen experience odor episodes 

of any type.  

 The odor parameters proposed to assess impacts from biosolids odor usually 

requires field and laboratory odor testing. The laboratory odor testing requires 

collecting samples on the application date shipped overnight to an odor-testing 

laboratory. It is considered a test of the actual emission. On the other hand, the Nasal 

Ranger field olfactometer is used to measure odor concentration in ambient 

conditions. As previously described in Section 3.2.1, the Nasal Ranger field 

olfactometer is the current practice for Maryland Environmental Services (MES) to 

measure odor concentration in land application fields, and it can only be performed 

after biosolids being applied. For those reasons, it seems difficult to assess biosolids 

odor impact at land application sites beforehand.  

 In biosolids land application sites, a receptor usually sniffs the diluted odor. 

Depending on the individual variation of odor perception and the four parameters 
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described above, a receptor may or may not detect the odor. If the receptor detects the 

odor, then the odor in the atmosphere is above the detection threshold level that is 

equivalent to odor concentration value of 1 gram per cubic meter (𝑔/𝑚3) calculated 

by the odor dispersion model (McGinley and McGinley, 2002). A value less than 1 

represents no odor or sub-threshold, and a value greater than 1 represents odor at 

supra-threshold level. The results from the screening and refined analysis are, by 

default, in mass concentration units (i.e., micrograms per cubic meter,𝜇𝑔/𝑚3). A 

conversion factor needs to be applied to the results obtained from the EPA dispersion 

models.  

 In reality, assessment of odor impact to humans is very difficult. Human 

perception is subjective. Variations within individuals, among individuals, and among 

populations play significant roles. However, it is essential for biosolids generators to 

estimate potential impact.  In this study, two approaches were presented as possible 

ways to support assessment of biosolids odor impact at land application sites.  

 1. Intensity map (I-Map): the intensity map was developed from the Stevens’ 

power law that relates odor concentration with odor intensity as n-butanol referencing 

scale so called odor persistency. The greater value indicates higher intensity and then 

perception. Comparing the odor intensities of two candidate application fields for 

biosolids distribution could be helpful for selection of reduce nuisance conditions in 

nearby communities.  

 Similar to the P-Map, the concentration values are obtained from the predicted 

concentration map (C-Map). The constants 𝑘 and 𝑛 can be obtained from historical 

laboratory results. Typically, the values of the constants vary from one sample to 
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another. Deciding on method to estimate the values of 𝑘 and 𝑛 when creating I-Map 

requires careful consideration. However, it is appropriate to use the average values for 

the same odor source (i.e., biosolids odor from DCWASA). 

 Figure 5.21 shows the Intensity Map Model developed in the GIS to support 

creation of intensity maps. Basically, the prediction map in vector form has to be 

converted to raster. The power law was applied to generate the intensity map. 

 

Figure 5.21: Intensity Map Model 

 2. Estimated impact to population: this approach simply relates estimated 

impact area for each dilution scales with population density in that area. The impact 

area is estimated from a predicted concentration map (C-Map) using the 

Geoprocessing Spatial Statistics, See Figure 5.22.  

 

Figure 5.22: Impact Area Model 

 

 Table 5.5 provides an example of calculating the expected number of 

population affected by odor. The impact areas for each dilution levels were calculated 

from the Impact Area Model in Figure 5.21. The population density obtained from the 
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ESRI Data & Map is 94 per square mile. The expected number of population is a 

product of impact area in square meters and population density in square meters. 

 This approach, however, is intended to quantify general population potentially 

affected by different odor concentration categories not sensitive population. The 

estimation is respected to the fact that population density is varied depending on the 

area. For example, more populated areas will have higher population density. With 

the best census data available, nevertheless, the assessment of odor impact to 

population using population density is considered appropriate.  

 
Table 5.5: Example Calculation of Odor Impact to Population 

 

D/T Impact Area 

 (square meters) 

Population Density 

(per square mile) 

Expected  Population 

0-1 936128.186 94 34 

2-3 32445.533 94 1 

4-7 30693.859 94 1 

 

5.2.4 Simple Linear Regression for Model Validation 

 Regression analysis is a tool to identify inherent relationships among variables. It is 

basically the relationships between dependent and independent variables. In case that 

there exists a linear relationship between them, linear regression analysis is widely 

used to deal with finding that relationship.  

 In this study, to validate the results from the models with  measurement, 

simple linear analysis, (Walpole et al., 2002),was employed to investigate if a linear 

relationship exists. The linear relationship approach was the first attempt used to 

validate the model predictions with the measurement from Nasal Ranger 
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olfactometer. More complicated models can be employed in a future work. Equation 

5.5 shows  the typical linear model: 

                                               𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀                         (5.5) 

where 𝛽0 = intercept, 𝛽1 = slope, and 𝜀 = random error assumed to be normally 

distributed with 𝐸(𝜀) = 0, 𝑉𝑎𝑟(𝜀) = 𝜍2.  

 The  regression coefficients (𝛽0, 𝛽1) are estimated to find the smallest sum of 

squares. Then, the true regression line can be replaced with the least squares 

regression line:  

                                              

 𝑦 = 𝛽 0 + 𝛽 1𝑥 + 𝑒 

                           (5.6) 

where                         

𝛽 1 =
 (𝑥𝑖 − 𝑥 )(𝑦𝑖 − 𝑦 )

 (𝑥𝑖 − 𝑥 )2
 

     (5.7) 

     

𝛽 0 = 𝑦 − 𝛽 1𝑥  

                         (5.8) 

                                                      𝑒𝑖=𝑦𝑖 − 𝑦 𝑖                                         

    (5.9) 

 For the purpose of this study, the coefficient of determination (𝑅2) is used to 

explain the percentage of variation in dependent variable. It can be defined as 
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                                                             𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
     (5.10) 

where sum of squares total (SST) =  (𝑦𝑖 − 𝑦 )2, sum of squares error (SSE) =

 (𝑦𝑖 − 𝑦 𝑖)
2 =  𝑒𝑖

2, and sum of squares regression (SSR) = SST-SSE. Since the 𝑅2 

will always increase as the number of independent variables in the model increase, 

the adjusted 𝑅2 can be used to adjust this error. The adjusted 𝑅2 is defined as: 

    1 −  
𝑛−1

𝑛−𝑝
  

𝑆𝑆𝐸

𝑆𝑆𝑇
            (5.11) 

where n = number of the observations used for estimation and p = number of the 

variables to be estimated 

 In addition, a measure of the prediction accuracy is derived from the standard 

error of estimate (𝑆𝑒) where 

                                                              𝑆𝑒 =  
𝑆𝑆𝐸

𝑛−2
            (5.12) 

 The t-test is used to test the significance of a linear relationship. The null 

hypothesis 𝐻0: 𝛽1 = 0 (no significant linear relationship between dependent and 

independent variables) against 𝐻𝛼 : 𝛽1 ≠ 0 (significant linear relationship exists). The 

t-statistic is given by 

                                                              𝑡 =
𝛽 1

𝑆𝑡𝑑𝐸𝑟𝑟 (𝛽 1)
            (5.13) 

 For the simple linear regression, there are assumptions required to follow.  

1. The variance of the error term does not depend on independent variables. 

This assumption can be checked by plotting the independent variable with 

the residual. 

2. Errors are normally distributed, which can be checked by performing the 

normality test such as normal quantile – quantile (Q-Q) test. 
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3. The errors should be independent. To see whether this assumption holds, 

we can plot the errors in time-series sequence. If there is no pattern 

presented, the assumption appears to be satisfied. 

5.3 Case Studies: Screening Model 

5.3.1 Study Areas 

The Screen view was applied to predict biosolids odor concentration in 14 land 

application sites (45 fields) in Virginia. More specifically, the study focused on the 

application of biosolids to the fields in Albemarle and Orange counties for the periods 

of 2005 and 2006. 

 Albemarle County is located in Central Virginia about 110 miles southwest of 

Washington, D.C. As of the census of 2007, there were 95,543 people, 31,876 

households, and 21,069 families in the county. The population in 2000 was spread out 

with 28.53% under age 21, 42.78% from 22 to 49, and 28.69% from 50 or older. The 

county has a total area of 726.3 square miles, which 16% are crop area.  

 In 2005, for example, a site 05-A located in Albemarle county contained two 

fields: field 1 and field 2. The biosolids were applied to both fields on the same day. 

Emission rates used in this case study were estimated by using an expert judgment on 

the mass flow rate as stated in Section 4.2. The mass flow rate was assumed to be 

0.03048 meters per second(𝑚/𝑠). The emission rates for the site 05-A can be 

calculated from the known flow rate and the measured odor strength. Table 5.6 

provides a summary of the site characteristics. 
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Table 5.6: Summary of Site 05-A Characteristics 

 

 

Field Characteristics 

Field Designation 

1 2 

Date Applied 10/17/05 10/17/05 

Coordinate (Latitude, 

Longitude) 

(38.18N, 78.58W) (38.29N, 78.59W) 

Area Used (square meters) 240.73×240.73 351.21×351.21 

Measured Odor Strength 

(Dilution-to-threshold, 

D/T) 

4 4 

Estimated Emission Rate 

(𝑂𝑈/𝑠 − 𝑚2) 

0.156 0.156 

Wind Direction (Degrees) 67.5 67.5 

 

 Since the field odor concentrations were measured in discrete categories (0, 2, 

4, 7, 15, 30, and 60 D/T(s)); it is necessary to convert the measured odor 

concentrations to the best estimate thresholds using the geometric mean. The 

geometric mean is used when there is a lack of equal variance along the dilution 

ration scale (Stevens, 1962). An example below shows a calculation of the geometric 

mean between 4 and 7. The first step is to find an average of the sum of logarithms 

for lower D/T (4 D/T) and higher D/T (7 D/T). The result was transformed using a 

logarithm base 10 to make an equal variance along the logarithm scale. With the best 

estimate thresholds, the emission rates can be back-calculated using the same concept 

described in Section 4.2. The estimated emission rates in Table 5.5 were obtained by 

use of the best estimate thresholds. Table 5.7 provides the best estimate threshold 

values for Nasal Ranger field olfactometer scales. 

 (Log 4 + Log 7)/2 = (0.602+0.845) /2 = 0.7235   {100.7235  = 5} 
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Table 5.7: Best Estimate Thresholds 

 

Lower D/T Higher D/T Best Estimate Threshold 

0 1 1 

2 3 2 

4 6 5 

7 14 10 

15 29 21 

30 59 42 

 

 Orange County located in Northern Virginia had 32,276 people in 2007. There 

were 10,150 households and 7,441 families. As of the census of 2000, the population 

was spread out with 26.85% under age 21, 37.53% from 22 to 49, and 35.62% from 

50 or older. The total area in the county is 343.5 square miles, which about 26% are 

crop area. 

 Site 06-H is located in Orange County, VA. The site had three fields that were 

land-applied on July 19, 2005. Table 5.8 provides a summary of the site 

characteristics.  

Table 5.8: Summary of Site 06-A Characteristics 

 

Field Characteristics 

Field Designation 

2 3 5 

Date Applied 07/19/06 07/19/06 07/19/06 

Coordinate (Latitude, 

Longitude) 

(38.188N, 

78.123W) 

(38.185N, 

78.117W) 

(38.196N, 

78.121W 

Area Used (square meters) 83.19×83.19 140.53×140.53 143.24×143.24 

Measured Odor Strength 

(Dilution-to-threshold, D/T) 

2 7 7 

Estimated Emission Rate 

(𝑂𝑈/𝑠 − 𝑚2) 

0.061 0.305 0.305 

Wind Direction (Degrees) 157.5 157.5 157.5 
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5.3.2 Results  

Using the Screen View with input data from the 45 fields, the results were generated. 

For the site 05-A, the summary of inputs was provided in Table 5.9. The selected 

source type was an area source in rural area. The receptor height above ground was 

considered as a height of average person, in this study, 1.7 meters. An estimated area 

source for field 1 was 240.73 square meters and 351.21 square meters for field 2. The 

meteorology input was assumed for full stability classes.  

 
Table 5.9: Summary of Screen View Inputs for Site 05-A 

 

 Field Designations 

Required Inputs 1 2 

Dispersion Coefficient Rural Rural 

Receptor Height (meters) 1.7  1.7  

Emission Rate 

 𝑂𝑈/𝑠 − 𝑚2 

0.156  0.156  

Source Release 

Height(meters) 

0.1  0.1  

Area (square meters) 240.73 351.21 

Wind Direction 67.5 67.5 

Terrain Option Simple Simple 

Meteorology  Full Stability Full Stability 

Automated Distance Yes Yes 

  

 The Screen View simulated one-hour averaging concentration for ambient 

biosolids odor with 67.5 degrees wind direction for 130 meters to 1,500 meters from 

the center of the source. The output from the model, by default, was in micrograms 

per cubic meter (𝜇𝑔/𝑚3). Figures 5.23 and 5.24 show example outputs of 

concentrations from field 1 and field 2 with their relative distances.  

 However, it is practical to use the pseudo-dimensions of odor unit per cubic 

meter taking place of grams per cubic meter for modeling odor dispersion purpose 
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(McGinley and McGinley, 2002). Moreover, the dimensioned values of odor 

concentration can be compared with the dimensionless dilution ratio in Dilution-to-

Threshold (D/T). In this study, results in micrograms per cubic meter were converted 

to grams per cubic meter and then were expressed in D/T for use in comparison with 

field measurement. In this case study, the maximum one-hour concentration for field 

1 was found at 160 meters from the center of the source, 8 D/T. The maximum one-

hour concentration for field 2 was found at 216 meters from the source, 10 D/T. 

 

 
 

Figure 5.23: Screen View Output for Site 05-A, Field 1 

 

 
 

Figure 5.24: Screen View Output for Site 05-A, Field 2 
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 For site 06-H, the summary of inputs for field 2, 3, and 5 was provided in 

Table 5.10. The selected source type for the three fields was also an area source. The 

rural area was selected to calculate the dispersion coefficient. The receptor height 

above ground was considered as a height of average person, in this case, 1.7 meters. 

Estimated areas for field 2, 3, and 5 were 83.19, 140.53, and 143.24 meters, 

respectively. The meteorology input was assumed for full stability classes.  

 
Table 5.10: Summary of Screen View Inputs for Site 06-H 

 

 Field Designations 

Required Inputs 2 3 5 

Dispersion Coefficient Rural Rural Rural 

Receptor Height (meters) 1.7  1.7  1.7 

Emission Rate𝑂𝑈/𝑠 − 𝑚2 0.061  0.305  0.305  

Source Release Height(meters) 0.1  0.1  0.1 

Area (square meters) 83.19 140.53 143.24 

Wind Direction 157.5 157.5 157.5 

Terrain Option Simple Simple Simple 

Meteorology  Full Stability Full Stability Full Stability 

Automated Distance Yes Yes Yes 

 

 

 Using the same concept described previously, the maximum one-hour 

concentrations for those fields were expressed in D/T and found at 87 meters (1 D/T) 

for field 2, 111 meters (11 D/T) for field 3, and 112 meters (11 D/T) for field 5.  

 To investigate the variation of model outputs by using a different emission 

estimate approach, the emission rates estimated by three approaches described in 

Section 4.7 were applied to 47 land application fields.  Figures 5.25 – 5.27 show the 

results of predicted concentration for Site 05-C field 8 using three different emission 

rates: 0.153, 0.283, and 0.146 odor units per cubic meter-second, 
𝑂𝑈

𝑚2−𝑠
. The maximum 
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one-hour concentrations generated from those emission rates were found at the same 

distance, about 175 meters from the source, but different odor concentrations.  

 

 
 

Figure 5.25: Screen View Output for Site 05-C, Field 8  

(Emission Case 1 = 0.153 𝑶𝑼/𝒎𝟐 − 𝒔) 

 

 

Figure 5.26: Screen View Output for Site 05-C, Field 8 

 (Emission Case 2 = 0.283 𝑶𝑼/𝒎𝟐 − 𝒔) 
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Figure 5.27: Screen View Output for Site 05-C, Field 8  

 (Estimate Case 3 = 0.146 𝑶𝑼/𝒎𝟐 − 𝒔) 

5.3.3 Validation with Data 

The linear relationship of the predicted concentration and the measurement obtained 

by using the Nasal Ranger field olfactometer were verified by the scatter plots. More 

specifically, the predicted concentrations were plotted against the best estimate 

thresholds, 2, 5, and 10 Dilution-to-Thresholds (D/T). Since the measurement 

locations were not exact, the locations were approximated using subjective judgment 

along with the MES data and the GIS. 

 Figures 5.28-5.30 provides the scatter plots for the screening results obtained 

by using three different emission estimates. Theoretically, the scatter plot should 

appear as a straight line if a linear relationship exists.  Moreover, the scatter plots can 

tell how well the prediction matches the measurement. For example, in Figure 5.27, 

for the best estimate threshold 2 D/T and 10 D/T, the predicted concentration values 

fall in the correct ranges: 2 – 3 D/T for the best estimate threshold 2 D/T and 7 – 14 

D/T for the best estimate threshold 10 D/T. However, it varies from 2 D/T to 8 D/T in 
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case of the best estimate threshold 4 D/T. In Figures 5.28 and 5.29, the predicted 

concentration values were widely spread over the best estimate thresholds. 

 

 
 

Figure 5.28 : Scatter Plot for Screening Analysis (Emission Case 1) 

 

Figure 5.29 : Scatter Plot for Screening Analysis (Emission Case 2) 
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Figure 5.30 : Scatter Plot for Screening Analysis (Emission Case 3) 

 

 Despite investigating a linear relationship by the scatter plots, the regression 

analysis was applied to investigate how well the relationship is said to be linear. 

Tables 5.11 – 5.13 shows the outputs from the regression analysis. With all required 

parameters, the estimated regression line can be generated from the least squares 

estimators,  𝛽 1 and  𝛽 0, as shown in Figures 5.28 – 5.30.   

 Since the purpose of using linear regression analysis in this study is to validate 

the results from the screening analysis and the measurement, we focused on the 

explainatory parameters such as adjusted 𝑅2, the values  close to 1 describe 

explaintory performance of the model.  

 The regression analysis output for the screening analysis using the expert 

opinion for emission estimate (emission case 1) provides the highest adjusted 𝑅2. In 
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addition, with the significance level 𝛼 = 0.05, the linear relationships for regression 

coefficients are considered to be statistically significant. In constrast, the regression 

coefficients for predicted concentration in case 2 and case 3 are not statistically 

significant at the 95% confident level.  

 
Table 5.11: Output of Regression Analysis for Screening Analysis (Emission Case 1) 

 

 

 

Table 5.12: Output of Regression Analysis for Screening Analysis (Emission Case 2) 

 

Table 5.13: Output of Regression Analysis for Screening Analysis (Emission Case 3) 

 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8977 0.8058 0.8013 1.212764163

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 1 262.4001771 262.4001771 178.4068 < 0.0001

Unexplained 43 63.24426736 1.470796915

Standard

Regression Table Error Lower Upper

Constant 1.100504147 0.388190036 2.8350 0.0070 0.31764433 1.883363964

Predicted Concentration 0.692876891 0.051874076 13.3569 < 0.0001 0.588262847 0.797490934

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value
Confidence Interval 95%

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.1745 0.0305 0.0079 2.709698492

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 1 9.918410006 9.918410006 1.3508 0.2515

Unexplained 43 315.7260344 7.342465917

Standard

Regression Table Error Lower Upper

Constant 4.269339501 1.286441823 3.3187 0.0018 1.674982312 6.863696691

Predicted Concentration 0.138267797 0.118965487 1.1623 0.2515 -0.101648972 0.378184567

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value
Confidence Interval 95%

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.1257 0.0158 -0.0071 2.730099421

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 1 5.146402042 5.146402042 0.6905 0.4106

Unexplained 43 320.4980424 7.453442847

Standard

Regression Table Error Lower Upper

Constant 5.316884588 0.605025447 8.7879 < 0.0001 4.096734488 6.537034688

Predicted Concentration 0.015414543 0.01855057 0.8309 0.4106 -0.021996247 0.052825333

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value
Confidence Interval 95%
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 However, since the measurement values were only ranges on the Nasal 

Ranger field olfactometer scales, the predicted concentrations were associated with 

the ranges of the measurement scales. For examples, the predicted concentrations of 

4, 5, and 6 D/T(s) were associated with the range of 4-6 D/T(s) on the measurement 

scale, and the predicted concentrations of 7, 8, 9, 10, 11, 12, 13, and 14 were 

associated with the range of 7-14 D/T(s) on the measurement scale. The regression 

analysis might not be the appropriate approach to investigate the linear relationship. 

 A standard error of estimate (𝑆𝑒) in equation 5.12 can be  used to measure the 

accuracy of model predictions. Table 5.14 summarizes the standard error of estimate 

values for all three cases. Predicted odor concentrations from emission estimate case 

one provides the least standard error of estimate value, which indicates the best 

prediction accuracy.  

Table 5.14: Standard Error of Estimates for Screening Model Outputs 

Emission Case Standard Error of Estimate (𝑆𝑒) 

1 1.8924 

2 6.1832 

3 29.1850 

 

5.4 Case Studies: GIS-Based Odor Impact Assessment 

5.4.1 Study Areas 

In these case studies, the same land application sites in Albemarle and Orange 

Counties, as in the case of the screening models (45 land application fields), were 

investigated by the refined model, AERMOD.  
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5.4.2 Results  

The maximum one-hour predicted concentrations at hypothetical receptor locations 

with relative dates and times were generated by the AERMOD along with the GIS. 

The Cartesian grid network was selected to represent evenly spaced hypothetical 

receptors with a size of square kilometer (km × km). However, due to limited 

availability of meteorological data, only 27 land application fields could be generated 

from the AERMOD dispersion model. 

 The results of one-hour concentrations were converted to 3 minute-

concentrations, using 0.2 as a power value, accounting for the instantaneous 

characteristics of odor perception. Using the Geostatistical analyst in the Geographic 

Information System (GIS), the concentration prediction maps (C-Maps) were created 

to visualize potential odor impact areas.  

 Figure 5.31 provides an example of the concentration prediction map (C-Map) 

for site 06-H, field 3.The map shows the areas of predicted concentrations of 2 and 4 

dilution-to-thresholds (D/T). The category 2 D/T can be explained that a receptor can 

detect the odor from 2 to 3 D/T. Similarly, the 4 D/T represents odor perception of 4 

to 6 D/T. The wind direction (WDIR) originates from southwest direction. Another 

example of a prediction map is provided in Figure 5.32. The map shows the predicted 

concentration of 2 and 4 D/T. In both cases, the potential odor impacts to 

neighborhoods can be observed. 
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Figure 5.31: Concentration Prediction Map (C-Map) of Field 3, Site 06-H  

 

 

 
 

Figure 5.32: Concentration Prediction Map (C-Map) of Field 16, Site 06-G 

 

 The predicted odor concentration in dilution-to-threshold (D/T) has an 

advantage that the results from the model can be compared with the dilution scales of 

the Nasal Ranger field olfactometer also in D/T. However, the predicted 

concentration areas were focused on the areas that have the field olfactometer reading 

WDIR 

WDIR 
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greater than 2 D/T since the field olfactometer will interpret a reading of dilution 

scale of 2 D/T or less as 0 D/T. Therefore, only 13 prediction maps were created.  

 Unlike the concentration map, the probability map is a map containing 

probabilities of predicted concentrations exceeding a certain threshold. For example, 

this study used 7 D/T as the threshold that is defined as the dilution level that may 

create nuisance condition. Selection of the threshold is subjective and can vary from 

one practitioner to another. However, selection of lower dilution level is considered a 

safety factor for sensitive population.  

 The probability maps of eight land application fields were created. We 

focused on the areas that predicted odor concentration is 7 D/T or exceeding the 

category of 4 D/T (4-6 D/T). Figure 5.33 shows an example of the probability map of 

site 06-G field 16. The map shows three areas where the probabilities are in different 

ranges. The impact areas associated with the probabilities exceeding 7 D/T can be 

calculated and used to support a decision for selecting land application fields. The 

field with smaller areas of impacts with high probabilities is preferred than the larger 

areas of impacts with the same probabilities.  
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Figure 5.33: Probability Map (P-Map) of Field 16, Site 06-G 

  

 Intensity maps, as previously mentioned, were created from the power law of 

sensation. We obtained the data of the constants 𝑘 and 𝑛 from the DCWASA’s 

Department of Wastewater Treatment (DWT). There were 30 samples with the total 

sample size of 60. The constants vary from one sample to another. The analysis of 

variance (ANOVA) was used to confirm that the variations of the constants within 

sample and among samples exist. Tables 5.15 and 5.16 provide the result of the one-

way ANOVA. The null hypothesis (𝐻0) to be tested was whether at least two means 

are equal at the 0.05 level of significance. 

Table 5.15: ANOVA of Constant 𝒌 

 

 

 The grand mean of the 𝑘 value is 4.54. The sum of square computations gave 

treatment sum of squares (SSA) = 313.98513, error sum of squares (SSE) = 

Sum of Degrees of Mean

OneWay ANOVA Table Squares Freedom Squares

Between Variation 313.98513 29 10.82707 2.66757 0.0047

Within Variation 121.76331 30 4.05878

Total Variation 435.74844 59

F-Ratio p-Value
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121.76331, and total sum of squares (SST) = 435.74844. From the critical values of 

the F-Distribution, the critical region with 𝑣1 = 𝑘 − 1 = 29 and 𝑣2 = 𝑘(𝑛 − 1) = 30 

at the significance level = 0.05 gave 𝑓0.05 = 1.84.  

 The decision for this ANOVA results is to reject the null hypothesis and 

conclude that the 𝑘 values do not have the same mean (𝐹 − 𝑅𝑎𝑡𝑖𝑜 > 𝑓0.05).  

Table 5.16: ANOVA of Constant 𝒏 

 

 The grand mean of the 𝑛 value is 0.428. The sum of square computations gave 

SSA = 0.573668, SSE = 0.116350, and SST = 0.690018. From the critical values of 

the F-Distribution, the critical region with 𝑣1 = 𝑘 − 1 = 29 and 𝑣2 = 𝑘(𝑛 − 1) = 30 

at the significance level = 0.05 gave 𝑓0.05 = 1.84. 

      The decision for this ANOVA results is to reject the null hypothesis and 

conclude that the 𝑛 values do not have the same mean (𝐹 − 𝑅𝑎𝑡𝑖𝑜 > 𝑓0.05). 

 In summary, the results of the ANOVA indicated that the values of the 

constants vary from one sample to another. Using the best estimate of the constants is 

considered appropriate to create an intensity map. Figure 5.34 shows the power law 

graph with constants 𝑘 and 𝑛. Figure 5.35 shows an example of the intensity map of 

site 06-G field 16. The map shows odor intensities in referencing scale as n-butanol 

concentration with their impacted areas. The higher intensities imply higher 

perception. Even though, the intensity scale is not accounted for personal feeling, 

analysts can involve the intensity map for odor assessment as the best estimation for 

human perception. 

Sum of Degrees of Mean

OneWay ANOVA Table Squares Freedom Squares

Between Variation 0.573668 29 0.019782 5.100559 < 0.0001

Within Variation 0.116350 30 0.003878

Total Variation 0.690018 59

F-Ratio p-Value
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Figure 5.34: Power Law Graph of Biosolids Odor 

 

 

Figure 5.35: Intensity Map (I-Map) for Field 16, Site 06-G 

  

 The impact areas with expected numbers of population potentially exposed to 

biosolids odor at land application sites were estimated using the impact area model. 

The estimated impact area was multiplied by the population density of that particular 
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county to get expected numbers of population. Table 5.16 shows calculation for the 

13 prediction maps. At Site 06-H field 3, for example, the expected numbers of 

population that could perceive biosolids odor from 2 D/T to 6 D/T are only 1 person. 

 Note that since the population density was used for the estimation, the 

expected population, which may be exposed to odor is only the best estimate. The 

estimates can be improved if population densities for different land-used areas were 

used. For example, population density for rural area is less than the population 

density of the county; the expected number of population exposed to odor will be less 

than the expected number estimated in Table 5.17. However, the expected number of 

population exposed to odor in Table 5.17 was generated based on the best available 

information on the population density. Thus, the implementation of this approach 

requires careful consideration. 

 

Table 5.17: Expected Number of Population Exposed to Odor 

 

Site Field D/T Estimated Impact 

Area (square 

meters, 𝒎𝟐) 

Population 

Density (per 

square miles) 

Expected Number of 

Population 

05-C 7 0 969,553.6932 131.5 50 

  2 30,400.5304 131.5 2 

 8 0 974,427.3147 131.5 50 

  2 25,526.9089 131.5 1 

06-A 12 0 958,310.0100 131.5 49 

  2 40957.568111 131.5 2 

06-E 1 0 914275.429589 131.5 47 

  2 70997.769644 131.5 4 

  4 13994.378892 131.5 1 

06-F 1 0 946,608.6197 131.5 49 

  2 27,010.8639 131.5 1 

  4 25,648.0945 131.5 1 

06-G 15 0 936,128.1861 94 34 

  2 32,445.5329 94 1 

  4 30,693.8591 94 1 
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Site Field D/T Estimated Impact 

Area (square 

meters, 𝐦𝟐) 

Population 

Density (per 

square miles) 

Expected Number of 

Population 

 16 0 971,770.2293 94 36 

  2 23,920.4065 94 1 

  4 3,576.9423 94 0 

 17 0 982,032.5253 94 36 

  4 17,967.4747 94 1 

06-H 3 0 973,584.5387 94 36 

  2 21,255.5048 94 1 

  4 4,427.5346 94 0 

 5 0 980,375.0104 94 36 

  2 19,304.5550 94 1 

06-J 3 0 706,194.1395 94 26 

  2 293,805.8405 94 11 

06-K 1 0 950,240.8354 131.5 49 

  2 49,026.7427 131.5 3 

 5 0 990,323.4801 131.5 51 

  2 8,944.0980 131.5 0 

5.4.3 Validation with Data 

Similar to the screening analysis, the results of predicted concentration for these case 

studies were validated with the MES odor measurement. The scatter plots of the 

predicted concentration and the measurement obtained by using the Nasal Ranger 

field olfactometer were provided in Figures 5.36-5.38. Basically, the maximum 3-

minute predicted concentrations were plotted against the best estimate thresholds, 2, 

5, and 10 Dilution-to-Thresholds (D/T). As in the case of the screening analysis, the 

measurement locations were also not exact, and the subjective judgment along with 

the MES data and the GIS were required to roughly locate the measurement locations.  
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Figure 5.36: Scatter Plot for Refined Analysis (Emission Case 1) 

 

 

Figure 5.37: Scatter Plot for Refined Analysis (Emission Case 2) 
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Figure 5.38: Scatter Plot for Refined Analysis (Emission Case 3) 

 

Similar to the screening case, the standard error of estimate was used to measure the 

accuracy of model prediction. Table 5.18 shows standard error of estimate values for 

the three emission estimates. AERMOD outputs from emission case 2 by using 

statitstical inference provides the best performance for model prediction. 

Table 5.18: Standard Error of Estimates for Refined Model Outputs 

Emission Case Standard Error of Estimate (𝑆𝑒) 

1 3.3045 

2 3.0854 

3 3.7523 

 

5.5 Comparing Screening and Refined Models 

This study was conducted to investigate how well the screening analysis performed as 

compared to the refined model. It is a type of model validation technique when there 

are competing models. The competing models assume alternative hypotheses of the 
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system of interest (Cullen and Frey, 1999). A screening model simulates 

concentrations assuming worst-case meteorological conditions, and a refined model 

requires extensive inputs including full meteorological data and geography for 

prediction.  

 Both screening and refined models generate maximum one-hour 

concentration. However, in this case study, the conversion factor for shorter 

averaging time prediction was only applied to the refined model, AERMOD. It is 

because the screening models assume worst-case meteorological conditions; applying 

the conversion factor to the results from the screening models can lead to 

overestimation. Therefore, the testing hypothesis is that the results of one-hour 

concentration from screening models agree with the 3-minute averaging 

concentration results from refined models. 

 The regression analysis was performed to investigate how well the results 

from the Screen View agree with the results from the AERMOD. Figure 5.39 shows 

the scatter plot of the results from the two models. It can be noticed that the 

prediction of the Screen View models are overestimated compared with the results 

from the AERMOD.  
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Figure 5.39: Comparing Results from Screening and Refined Models 

 

 

 The regression output in Table 5.19 shows that, at the significance level 

𝛼 = 0.05, the regression coefficients are considered to be statistically significant. 

Thus, we can conclude that the linear relationship exists. In addition, the adjusted 𝑅2 

is almost 0.7 indicating that the model has a 70 percent predictive performance.  

 
Table 5.19: Output of Regression Analysis for Comparing AERMOD and Screen View 

 

 

Multiple Adjusted StErr of

Summary R R-Square Estimate

0.8281 0.6857 0.6732 2.118933616

Degrees of Sum of Mean of 

ANOVA Table Freedom Squares Squares

Explained 1 244.9381934 244.9381934 54.5534 < 0.0001

Unexplained 25 112.2469918 4.489879671

Standard

Regression Table Error Lower Upper

Constant 2.345788474 0.721359625 3.2519 0.0033 0.860120516 3.831456432

Refined Models 1.447118429 0.195926495 7.3860 < 0.0001 1.043600259 1.8506366

R-Square

F-Ratio p-Value

Coefficient t-Value p-Value
Confidence Interval 95%
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5.6 Implementation 

 Wastewater treatment facilities that recycle biosolids through land can apply 

the approach used in this thesis to support biosolids site selection. Selection of 

biosolids land application sites is basically a decision problem. In addition, it is 

repetitive decisions with great uncertainty of outcomes or consequences. Those 

outcomes, which are downwind odor concentrations, human perception to the odor, 

and responses, are difficult to predict especially those associated with subjectivity. 

However, it is a responsibility and necessary for wastewater facilities to assess the 

possible outcomes from their biosolids recycling programs. However, wastewater 

treatment plants do not usually have systematic and comprehensive approaches to 

assess impacts from biosolids odor at land application sites. This research provides an 

approach called source-transport-perception approach to obtain information on 

biosolids emissions and potential odor impacts. 

 From the conceptual model for biosolids site selection shown in Figure 1.1, on 

a daily operational basis, there are decisions to make for distributing biosolids to land 

application fields, which can be considered alternatives (𝑎𝑗 ) for decision makers. The 

decisions on where we can apply biosolids to on a specific day are subjected to the 

main criterion(𝐶𝑟): reducing adverse effects from biosolids such as negative public 

responses. 

 The logic for site selection is to find land application sites that are less likely 

to cause odor nuisance condition and odor annoyance to neighborhoods. Then one 

might raise a question such as “How do we know if this site is less likely to cause 

odor nuisance than others?” With no information of potential impact to population 
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available, such a question is hard to answer, and the selection of sites relies on 

subjective judgment.  

 Using the methodology described previously, we can obtain some information 

of potential impacts from biosolids odor at land application sites. With historical 

weather data, the AERMOD simulates one-hour averaging concentrations for 

biosolids odor in the dilution-to-threshold (D/T) of the following year. The 

preliminary schedule of biosolids distribution can be created regarding to the relative 

frequency of occurrence for D/T greater than 7, which is considered as a potential 

odor nuisance. Figure 5.40 provides an example of a distribution schedule for the 

whole year that serves as an initial assessment.  

 

Figure 5.40: Relative Frequency of D/T Greater Than 7 D/T  
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 The example assumes that we have eight candidate fields for the following 

year assuming with state permission and availability of field capacity. The stacked 

bar graph shows the annual frequencies for each field. In addition, the graph provides 

information on how often the potential nuisance conditions can occur for particular 

months. For example, field 06-J (3) has more potential odor nuisance for four months 

in the year: January, February, May, and November. It also implies that the 

distribution of biosolids to field 06-J (3) in other months is less likely to cause 

nuisance conditions, for example when comparing with distribution to field 06-G 

(15). However, the relative frequency does not mean that, in January, applying 

biosolids to the field 06-J (3) will promote nuisance condition than field 06-G (15). 

Further analysis for particular day or period should be conducted to obtain 

information on potential impacts to the candidate fields.  

 For example, decision makers might be interested to assess potential impacts 

for particular period such as from January 12 to 13. Using the historical weather data 

for this particular period, the predicted odor concentrations for the hypothetical 

receptors were generated from the AERMOD. The frequencies of D/T for each 

dilution categories can be obtained as shown in Table 5.20. The information we can 

extract from Table 5.20 is how often the odor concentrations fall into these dilution 

categories. 
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Table 5.20: Frequency of D/Ts for January 12-13 

D/T 06-E (1) 06-G (15) 06-H (5) 06-J (3) 

2 5 4 17 23 

4 6 12 20 23 

7 48 42 23 12 

15 21 9 2 7 

30 8 9 4  

60 2    

Total 90 76 66 65 

 

 Decision makers can use this information to assess potential odor nuisance if 

that field will be land-applied. Ranking based on the relative frequency of occurrence 

of D/T greater than 7 can be performed. The field 06-E (1) is considered to have more 

potential odor nuisance than other fields in this case, because there is higher 

frequency (79/90 = 0.88) comparing to the others (06-G (15): 60/76 = 0.79, 06-H (5): 

29/66 = 0.45, and 06-J (3): 19/65 = 0.29). 

 Furthermore, the methodology described in this thesis can also be used to 

select biosolids land application sites. The assessment of odor impact in term of the 

frequency of occurrence with a specified period can be performed. Ranking fields 

regarding to the frequency of occurrence may serve as a supporting tool for decision 

makers to reduce potential odor impact in the land application fields. 
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Chapter 6: Conclusions and Future Works 
 

6.1 Conclusions 

This dissertation was conducted to study the impact of biosolids odor emissions at 

land application sites. More specifically, we focused on the three important 

parameters associated with the odor problem at the land application sites: source, 

dispersion, and possible odor impact to human. The land application sites from the 

Blue Plains advanced wastewater treatment plant, managed by the District of 

Columbia Water and Sewer Authority (DCWASA) were used as case studies.  

 First we found that emission rates were the crucial variable to assess the 

impact of the biosolids odor to nearby communities. However, the availability of 

information on odor emissions was limited. There were only nine emission data 

available from experiments at the land application sites in 2003 and 77 odor 

concentrations data as the dilution-to-thresholds (D/T) available from experiments in 

2005. The probability distributions were developed to characterize the biosolids odor 

emissions at the fields and odor concentrations at the plant. Statistically, it can be 

described by the lognormal distribution.  

 An analysis of variance (ANOVA) was also employed to investigate the 

variation of odor emissions from day-to-day operations. The 14 emission samples 

were collected using the flux chamber method. The results from the ANOVA 

indicated that there were variations within the same field and from day-to-day 

operations. This implies that the estimate of emission needs to be updated regularly. 

 The study applied the U.S. Environmental Protection Agency (EPA)’s 

dispersion models to investigate odor dispersion in the land application sites. The 
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screening analysis using the Screen View was first applied to the MES field data in 

2005 and 2006. The three different approaches used for estimating biosolids odor 

emissions at the fields were input into the screening analysis. The first approach was 

to use the expert opinion on the air flow rate to calculate odor emission rates. The 

second approach was to use the best estimate from the probability distribution. The 

simulated-flux chamber method was the other approach to estimate biosolids odor 

emissions at the field. The predicted odor concentrations for 45 fields were generated 

from the screening models.  

 Standard error of estimate (𝑆𝑒) indicated that the emission estimate using the 

assumed air flow rate provided the best modeling performance in this study by 

comparing with the MES data. The regression analysis seemed inappropriate to 

investigate the linear relationship because the prediction concentrations can be 

associated with ranges of the Nasal Ranger field olfactometer scales.  

 The refined dispersion model, AERMOD, was also applied to predict the odor 

concentrations at the hypothetical receptor locations. In addition, the geographic 

information system (GIS) was used to support visualizing, modeling, and mapping to 

the AERMOD. Due to limited availability of the meteorological data, only 27 cases 

were generated. By focusing on the areas that have the odor concentration greater 

than 2 D/T, the predicted concentration maps (C-Map) for 13 fields were created 

expressing the areas for odor strength. The probability maps (P-Map) for exceeding 

certain odor level, 7 dilution-to-thresholds in this case, were also generated. The 7 

D/T was used as a criterion for potential odor complaints from neighborhoods. 
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 Similar to the screening analysis, the results generated from the refined 

models were compared to the measurement. Results from 𝑆𝑒  showed that the 

predicted concentration with odor emissions estimated by the probability distribution 

best described the modeling performance. 

 To assess the impact from biosolids odor, we proposed using two approaches 

to support the assessment. First, the intensity maps (I-Map), following Steven’s 

power law, were created to estimate the human perception from the stimulus odor 

concentrations. The other approach was to estimate size of population potentially 

affected by the odor concentration levels. It was intended to assess the odor impact on 

the general population and not sensitive individuals. This approach requires 

calculating areas for each odor strength categories. The population density for the 

study areas was used as a mean to assess the potential odor impact at land application 

sites. 

 In summary, this study is an integration of many subjects including, statistics, 

environmental engineering, and the geographic information system (GIS) to solve a 

very complex problem of odor emission, dispersion, and perception at the land 

application sites.    

6.2 Future Work 

Future work should be first focused on the data that will be used in modeling: 

emission data, meteorological data, and odor data for model validation.  

  The emission data, which are considered one of the most important inputs in 

a dispersion model, should be obtained regularly. More specifically, a comprehensive 

study for characterizing odor emissions at the Blue Plains treatment facility, during 
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disposal, and after land application should be conducted to provide decision makers 

with information on biosolids odor emissions.  More specially, the study will provide 

the information on how much odor is diluted from the Blue Plains to the land-applied 

biosolids. It will also help support assessment of odor impacts in the fields by 

providing information on emission rates that can be used in a dispersion model. An 

extension from Section 4.6 for the study of variation and uncertainty of odor 

emissions within the field and among fields should also be conducted. DCWASA 

may consider adding more resources such as people or devices to obtain emission 

data from various field locations. With information available, DCWASA can improve 

prediction of biosolids odor emission levels for future application. 

 DCWASA should consider an alternative if the meteorological data for 

particular periods are not available. As shown in the case studies in Section 5.4, 

modeling odor dispersion could not be performed with missing meteorological data. 

Numerical or simulation methods might be used when there is a lack of the 

meteorological data. 

 For validation purposes, information on measurement locations at land 

application fields should be recorded in coordinates. With more precise measurement 

location, validation of modeling results can be improved. 

 Second, with more emission data available, distributions of odor emission data 

can be developed. The distributions of that data can be incorporated to a dispersion 

model accounting for variation and uncertainty of emission rates. A stochastic 

dispersion model can be developed with an appropriate emission distribution.   
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 Last, a Geographic Information System (GIS)-based system for biosolids odor 

management can be developed. The Maryland Environmental Services (MES) field 

odor data can be transferred into the GIS database. It will enhance visualization of the 

field data geographically and improve management of the data. Modeling odor 

dispersion can also be incorporated into the GIS to reduce modeling and analysis 

times when assessing odor impacts for candidate fields. With the Geoprocessing tool 

in the GIS all modeling steps can be automated.  
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Appendices 
 

A-1: Maryland Environmental Services (MES) Field Data 

 
Date 

Unloaded 

County Site 

Name 

Field 

Designation 

Latitude Longitude D/T Measurement 

Time 

10/17/05 Albemarle 05-A 2 38.19685 -78.59137 4 10:45 AM 

10/17/05 Albemarle 05-A 1 38.18975 -78.58676 4 4:45 PM 

11/07/05 Albemarle 05-C 11 37.80588 -78.56181 4 9:10 AM 

11/07/05 Albemarle 05-C 12 37.80854 -78.56109 4 1:00 PM 

11/07/05 Albemarle 05-C 7A 37.81282 -78.55468 4 2:15 PM 

11/07/05 Albemarle 05-C 8 37.81065 -78.55485 4 11:30 AM 

11/08/05 Albemarle 05-C 14 37.80715 -78.56923 2 1:30 PM 

11/08/05 Albemarle 05-C 3 37.81276 -78.55032 2 1:30 PM 

11/08/05 Albemarle 05-C 7B 37.81224 -78.55414 2 1:30 PM 

11/15/05 Albemarle 05-B 5 37.79162 -78.57089 7 4:00 PM 

11/15/05 Albemarle 05-C 5 37.80403 -78.54683 7 1:00 PM 

11/15/05 Albemarle 05-C 6 37.80980 -78.54206 7 10:30 AM 

11/15/05 Albemarle 05-C 9 37.81463 -78.55995 7 9:00 AM 

04/26/06 Orange 06-E 1 38.17723 -78.23468 7 2:00 PM 

06/06/06 Orange 06-J 2 38.32127 -77.86198 2 12:00 PM 

06/06/06 Orange 06-J 3 38.32100 -77.85588 4 8:45 AM 

06/06/06 Albemarle 06-K 1A 37.98684 -78.66082 4 11:00 AM 

06/06/06 Albemarle 06-K 5 37.98531 -78.65629 4 9:30 AM 

06/06/06 Albemarle 06-K 6 37.98699 -78.66120 4 10:00 AM 

06/07/06 Albemarle 06-D 5 38.18676 -78.54874 2 3:00 PM 

06/07/06 Albemarle 06-K 1B 37.98684 -78.66082 2 3:00 PM 

06/13/06 Albemarle 06-D 1A 38.18222 -78.54522 4 9:00 AM 

06/13/06 Albemarle 06-D 1B 38.18200 -78.54579 4 10:00 AM 

07/05/06 Albemarle 06-A 12 38.21259 -78.50910 4 3:00 PM 

07/05/06 Albemarle 06-A 13 38.21211 -78.51360 4 10:10 AM 

07/10/06 Albemarle 06-A 6 38.14063 -78.46726 4 9:00 AM 

07/10/06 Albemarle 06-A 7 38.13718 -78.46747 4 10:00 AM 

07/11/06 Albemarle 06-A 7 38.13718 -78.46747 4 2:00 PM 

07/11/06 Orange 06-B 10 38.19494 -78.11783 4 3:00 PM 

07/11/06 Orange 06-B 11 38.19390 -78.11440 4 10:45 AM 

07/11/06 Orange 06-B 9 38.19092 -78.11761 4 2:15 PM 

07/17/06 Orange 06-B 5 38.19854 -78.11854 2 10:00 AM 

07/17/06 Albemarle 06-I 15 37.81288 -78.57368 4 10:00 AM 

07/17/06 Albemarle 06-I 16 37.81155 -78.57401 4 12:00 PM 
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Date 

Unloaded 

County Site 

Name 

Field 

Designation 

Latitude Longitude D/T Measurement 

Time 

07/18/06 Orange 06-C 3 38.18506 -78.11551 4 3:30 PM 

07/18/06 Orange 06-C 4 38.18790 -78.11651 4 10:00 AM 

07/18/06 Albemarle 06-F 1 37.79082 -78.57555 7 9:30 AM 

07/19/06 Orange 06-H 2 38.18808 -78.12317 2 2:00 PM 

07/19/06 Orange 06-H 3 38.18532 -78.11725 7 9:00 AM 

07/19/06 Orange 06-H 5 38.19617 -78.12122 7 11:00 AM 

07/25/06 Albemarle 06-F 10 37.79664 -78.57384 4 11:00 AM 

07/25/06 Albemarle 06-F 13 37.79849 -78.57549 4 10:00 AM 

07/25/06 Orange 06-G 15 38.13267 -77.95741 7 2:00 PM 

07/25/06 Orange 06-G 16 38.12973 -77.95852 7 11:00 AM 

07/25/06 Orange 06-G 17 38.12856 -77.95493 7 9:00 AM 

 

 

A-2: Verification of Global Maxima for Likelihood Function of Lognormal 

Distribution 
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A-3: AERMOD Model Formulation 

AERMET 

 

a. Derived Parameters in the CBL 

 

𝑢∗ =
𝑘𝑢𝑟𝑒𝑓

ln  
𝑧𝑟𝑒𝑓

𝑧𝑜
 − Ψm  

zref

L  + Ψm {
z0

L }
 

 

when  

 

 𝑢∗ - Friction velocity 

 

 𝑘 - Von Karman constant 

 

           𝑢𝑟𝑒𝑓  - Wind speed at reference height 

 

           𝑧𝑟𝑒𝑓  - Lowest surface layer measurement height for wind 

 

 z0 - Roughness length 

 

            Ψm  - Defined by Panofsky and Dutton (1984) for CBL and by Von 

           Ulden and Holtslag (1985) for SBL 

 

 L - Monin-Obukhov length 

 

𝐿 =  −
𝜌𝑐𝑝𝑇𝑟𝑒𝑓 𝑢∗

3

𝑘𝑔𝐻
 

when 

 

 𝜌 - Density 

 

            𝑐𝑝  - Specific heat at constant pressure 

 

 𝑇𝑟𝑒𝑓  - Ambient temperature in Kelvin that is representative of the     

            surface layer 

 

           𝐻 – Sensible heat flux 

 

           𝑔 - the acceleration of gravity 
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𝑤∗ =  
𝑔𝐻𝑧𝑖𝑐

𝜌𝑐𝑝𝑇𝑟𝑒𝑓
 

1/3

 

 

when 

 

 𝑤∗ - the convective velocity scale 

 

            𝑧𝑖𝑐  - the convective mixing height  

 

            𝑧𝑖𝑚  - the mechanical mixing height = 2300𝑢∗
3/2

 

 

 𝑧𝑖  – max(𝑧𝑖𝑚 , 𝑧𝑖𝑐 ) 

 

b. Derived parameter in the SBL 

𝜃∗ = −
𝐻

𝜌𝑐𝑝𝑢∗
 

 

when 

 

            𝜃∗ - the temperature scale 

 

𝐿 =
𝑇𝑟𝑒𝑓

𝑘𝑔𝜃∗
𝑢∗

2 

 

Vertical Structure of the PBL 

 

a. Wind speed 

 

For 𝑧 < 7𝑧0   

  

𝑢 𝑧 = 𝑢{𝑧 = 7𝑧0}  
𝑧

7𝑧0
  

    

 

For 7𝑧0 ≤ 𝑧 ≤ 𝑧𝑖  

 

            

𝑢 𝑧 =
𝑢∗

𝑘
 𝑙𝑛  

𝑧

𝑧0
 − Ψm  

z

L
 + Ψm  

𝑧0

L
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For 𝑧 >  𝑧𝑖  

 

  

𝑢 𝑧 = 𝑢{𝑧 = 𝑧𝑖} 

 

7𝑧0 - approximate height of roughness elements 

 

b. Potential temperature gradient 

 

In the convective boundary layer (CBL),  
𝜕𝜃

𝜕𝑧
= 0 

 

In the stable boundary layer (SBL) for the first 100 meters 

 

For 𝑧 ≤ 2 𝑚 

 

𝜕𝜃

𝜕𝑧
=

𝜃∗

𝑘(2)
 1 + 5

(𝑧 = 2)

𝐿
  

For 2 𝑚 ≤ 𝑧 ≤ 100 𝑚 

 

𝜕𝜃

𝜕𝑧
=

𝜃∗

𝑘𝑧
 1 + 5

(𝑧)

𝐿
  

 

 In the stable boundary layer (SBL) above 100 meters 

 

𝜕𝜃

𝜕𝑧
=

𝜕𝜃{𝑧𝑚𝑥 }

𝜕𝑧
𝑒𝑥𝑝  −

(𝑧 − 𝑧𝑚𝑥 )

0.44𝑧𝑖𝜃
  

 

 

𝑧𝑚𝑥  - 100 meters 

 

𝑧𝑖𝜃  – max(𝑧𝑖𝑚 , 100 𝑚) 

 

c. Vertical turbulence 

In the convective boundary layer (CBL), 

 

𝜍𝑤𝑇
2 = 𝜍𝑤𝑐

2 + 𝜍𝑤𝑚
2  

 

𝜍𝑤𝑇
2  - Total vertical turbulence 

 

𝜍𝑤𝑐
2  - the convective portion of the total variance 
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 For 𝑧 ≤ 0.1𝑧𝑖𝑐  

 

                          𝜍𝑤𝑐
2 = 1.6  

𝑧

𝑧𝑖𝑐
 

2/3

𝑤∗
2  

 

 For 0.1𝑧𝑖𝑐 < 𝑧 ≤ 𝑧𝑖𝑐  

 

                          𝜍𝑤𝑐
2 = 0.35𝑤∗

2  
 

 For 𝑧 > 𝑧𝑖𝑐  

 

                          𝜍𝑤𝑐
2 = 0.35𝑤∗

2𝑒𝑥𝑝  −
6(𝑧−𝑧𝑖𝑐 )

𝑧𝑖𝑐
   

 

𝜍𝑤𝑚
2  – the mechanical turbulence 

 

𝜍𝑤𝑚
2 = 𝜍𝑤𝑚𝑙

2 + 𝜍𝑤𝑚𝑟
2  

 

𝜍𝑤𝑚𝑙
2  – the current boundary layer 

 

 For 𝑧 < 𝑧𝑖  

 

               𝜍𝑤𝑚𝑙 = 1.3𝑢∗  1 −
𝑧

𝑧𝑖
 

1/2

  

 

For 𝑧 ≥ 𝑧𝑖  

 

𝜍𝑤𝑚𝑙 = 0  
 

𝜍𝑤𝑚𝑟
2  - pervious day’s boundary layer 

At 𝑧 = 0 

 

𝜍𝑤𝑚𝑟 = 1.3𝑢∗  
 

For 𝑧 > 𝑧𝑖  

 

𝜍𝑤𝑚𝑟 = 0.02𝑢{𝑧𝑖}  
 

In the stable boundary condition (SBL), 𝜍𝑤𝑇 = 𝜍𝑤𝑚  

 

d. Lateral turbulence 

 

In the convective boundary condition (CBL) 

 

𝜍𝑣𝑇
2 = 𝜍𝑣𝑐

2 + 𝜍𝑣𝑚
2  
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𝜍𝑣𝑐
2 = 0.35𝑤∗

2 

 

For 𝑧 ≤ 𝑧𝑖𝑚  

 

𝜍𝑣𝑚
2 =  

𝜍𝑣𝑚
2  𝑧𝑖𝑚  − 𝜍𝑣𝑜

2

𝑧𝑖𝑚
 𝑧 + 𝜍𝑣𝑜

2  

 

For 𝑧 > 𝑧𝑖𝑚  

 

𝜍𝑣𝑚
2 = 𝜍𝑣𝑚

2 {𝑧𝑖𝑚 } 

 

where 

 

𝜍𝑣𝑚
2  𝑧𝑖𝑚  = min⁡(𝜍𝑣𝑜

2 , 0.25
𝑚2

𝑠2
) 

 

𝜍𝑣𝑜
2 = 3.6𝑢∗

2 

 

In the stable boundary layer (SBL),   𝜍𝑣𝑇
2 = 𝜍𝑣𝑚  

 

 

 

 

 

 

AEMOD Concentration Predictions  

 

𝐶𝑠 𝑧𝑟 , 𝑦𝑟 , 𝑧 =
𝑄

 2𝜋𝑢 𝜍𝑧𝑠

𝐹𝑦

×   𝑒𝑥𝑝  −
(𝑧 − 𝑕𝑒𝑠 − 2𝑚𝑧𝑖𝑒𝑓𝑓 )2

2𝜍𝑧𝑠
2

 

∞

𝑚=−∞

+ 𝑒𝑥𝑝  −
(𝑧 + 𝑕𝑒𝑠 + 2𝑚𝑧𝑖𝑒𝑓𝑓 )2

2𝜍𝑧𝑠
2

   

 

𝑢  - wind speed 

 

𝜍𝑧𝑠  - Total vertical dispersion 
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𝑧𝑖𝑒𝑓𝑓  - Effective mechanical mixing height 

 

𝑕𝑒𝑠  - plume height 

 

 

𝐹𝑦  - Lateral distribution function 

𝐹𝑦 =
1

 2𝜋𝜍𝑦

𝑒𝑥𝑝  
−𝑦2

2𝜍𝑦
2
  

𝜍𝑦 = (
𝜍 𝑣𝑥

𝑢 
)/ 1 +

𝑥/𝑢 

2𝑇𝐿𝑦
 

𝑝

 

where  

 

𝑝 = 0.5 

 

𝑢  - the wind speed 

 

𝜍 𝑣  - Lateral turbulence velocity 

 

𝑇𝐿𝑦  - Lagrangian integral time scale 

 

 

A-5: Screening Model Outputs 
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A-6: Concentration Prediction Maps 
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A-7: Probability Map 
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A-8: Intensity Map 
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