
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: NOVEL METHODS FOR METAGENOMIC 

ANALYSIS 
  
 James Robert White, Doctor of Philosophy, 2010 
  
Directed By: Professor Mihai Pop, Department of Computer 

Science, Applied Mathematics, Statistics, and 
Scientific Computation Program Affiliate 

 
 
By sampling the genetic content of microbes at the nucleotide level, metagenomics 

has rapidly established itself as the standard in characterizing the taxonomic diversity 

and functional capacity of microbial populations throughout nature. The decreasing 

cost of sequencing technologies and the simultaneous increase of throughput per run 

has given scientists the ability to deeply sample highly diverse communities on a 

reasonable budget. The Human Microbiome Project is representative of the flood of 

sequence data that will arrive in the coming years. Despite these advancements, there 

remains the significant challenge of analyzing massive metagenomic datasets to make 

appropriate biological conclusions. This dissertation is a collection of novel methods 

developed for improved analysis of metagenomic data: (1) We begin with Figaro, a 

statistical algorithm that quickly and accurately infers and trims vector sequence from 

large Sanger-based read sets without prior knowledge of the vector used in library 

construction. (2) Next, we perform a rigorous evaluation of methodologies used to 



  

cluster environmental 16S rRNA sequences into species-level operational taxonomic 

units, and discover that many published studies utilize highly stringent parameters, 

resulting in overestimation of microbial diversity. (3) To assist in comparative 

metagenomics studies, we have created Metastats, a robust statistical methodology for 

comparing large-scale clinical datasets with up to thousands of subjects. Given a 

collection of annotated metagenomic features (e.g. taxa, COGs, or pathways), 

Metastats determines which features are differentially abundant between two 

populations. (4) Finally, we report on a new methodology that employs the 

generalized Lotka-Volterra model to infer microbe-microbe interactions from 

longitudinal 16S rRNA data. It is our hope that these methods will enhance standard 

metagenomic analysis techniques to provide better insight into the human 

microbiome and microbial communities throughout our world. To assist 

metagenomics researchers and those developing methods, all software described in 

this thesis is open-source and available online.  
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Chapter 1: Introduction 

Early microbiology 

As with most new fields of science, microbiology was born out of a major 

technological innovation – the microscope. Developed in the early 1600s, microscopes 

had limited application in biology until Antonie van Leeuwenhoek, a clothing merchant 

and amateur scientist, used a simple magnifying lens of exceptionally high quality to 

examine water from a lake near his home. Leeuwenhoek discovered a world of “little 

animalcules” many of which were actual bacteria (though this term did not appear for 

another 150 years [1]). In 1674 he shared his findings and sketches with the British Royal 

Society [2], revealing a mysterious and complex world hidden from our view.    

Improvements in microscopy through the late 19th century (e.g. staining) helped to 

encourage the field, but observation alone was not sufficient to infer the composition of 

these organisms or their natural functions. Novel techniques were needed to isolate and 

study each microorganism independently, but it was impossible to interrogate one cell at 

a time. Rather, the more practical approach was to study large populations of identical 

cells – a concept known as pure culture. Louis Pasteur and Robert Koch, two of the 

founders of modern microbiology, designed methods for the isolation, cultivation, and 

study of pure cultures, and these techniques have defined the field for more than a 

century. 

As researchers discovered many more microbes through cultivation, taxonomic 

classification posed a significant challenge. Morphological characteristics of bacterial 

cells were simple and limited, the cells reproduced asexually, and common metabolic 
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properties were not trustworthy indicators of phylogeny. In 1923, the Society of 

American Bacteriologists published the first edition of Bergey’s Manual of Determinative 

Bacteriology [3], a reference for the classification of culturable bacteria using 

morphological, physiological, and experimental characteristics. This reference has 

expanded dramatically into several large volumes, and now employs some of the 

molecular techniques I discuss below. 

Despite the rapid accumulation of information on culturable microbes in the first 

half of the 20th century, there was a glaring problem - most of the microbial world could 

not be cultured. This was evidenced by the “great plate count anomaly” in which 

population abundance estimates determined through microscope density measurements 

and dilution plating differed by several orders of magnitude [4, 5]. These differences 

were particularly extreme in soil environments, where it was estimated that less than 1% 

of the microbial community could be cultured using standard techniques [6]. The 

challenge of learning anything about this sizable majority of microbes seemed 

insurmountable, and most scientists focused on microorganisms that could be cultivated.   

 

16S rRNA gene surveys and metagenomics 

More than 300 years after the first observation of microbes a new technological 

innovation exposed microbiology to the unculturable majority. In the late 1970s and early 

80s, Carl Woese discovered that the 16S rRNA gene was an excellent phylogenetic 

marker due to its high information content, structurally conservative nature, and 

ubiquitous presence among prokaryotes [7-10]. Motivated by this result, Norman Pace 

and colleagues devised a method for rapidly sequencing 16S rRNA genes to 
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phylogenetically classify organisms [11]. Augmented by the development of universal 

PCR primers for 16S gene amplification, Pace’s sequencing methodology enabled 

scientists to sample microbial populations in virtually any habitat without culturing-bias.         

Since then, the 16S gene has proven to be one of the most important tools in 

microbial ecology [12], revealing a vast biodiversity of prokaryotes in many 

environments such as the ocean [13], soil [14], food products [15, 16], crude oil [17], and 

even the human gut [18-21]. Analysis of 16S markers now employs high-throughput 

sequencing technologies (e.g. Sanger and 454 pyrosequencing), which provide deeper 

sampling to observe community members that make up tiny fractions of the total 

population. Basic sequence analysis is easily automated, so much so that large 

computational infrastructures are already in place – webservers such as the Ribosomal 

Database Project (RDP) [22], GreenGenes [23], and MG-RAST [24] give researchers 

superior computing power and informative analysis of their data.  

After the paradigm shift to 16S rRNA surveys, there were new efforts to obtain 

more information about these microbes than simply their phylogeny. Researchers now 

sought to study environmental DNA samples with multiple species using shotgun 

sequencing. By 1997, the term ‘metagenomics’ was coined to describe this new approach 

to environmental microbiology [25]. Over the last decade, several pioneering studies 

have generated a great deal of interest and set precedents for future projects [26]. Here I 

discuss three of these landmark studies.  

Acid mine drainage. Published in 2004, the Acid Mine Drainage project (AMD) 

sampled biofilms growing on the acidic outflows located deep in the Richmond mine of 

Iron Mountain, California [27]. This environment had been carefully studied prior to 
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metagenomic analysis, and preliminary experiments indicated a low-complexity native 

microbial community with only five dominant species (three Bacteria and two Archaea). 

Despite this low diversity and a total over 100,000 Sanger reads generated from shotgun 

sequencing, assemblies of three of the species were largely incomplete. The AMD project 

illustrated the difficulty in acquiring sufficient genome coverage for organisms with 

lower relative abundances in a community, but also demonstrated how metagenomic data 

could be analyzed to infer how microbes potentially interact biochemically in a specific 

environment.  

The Sargasso Sea. This study, led by Craig Venter, sought to characterize the 

microbial diversity in the Sargasso Sea, which represents the middle of the North Atlantic 

Ocean, east of the Gulf Stream and south of North Atlantic current. Using a series of 

filters to isolate bacterial and archaeal cells from ocean water, researchers took surface 

samples at multiple sites and performed extensive shotgun sequencing. Over 1.66 million 

reads were generated totaling 1.36 billion base-pairs of DNA sequence, far more than any 

other previous metagenomic study [28]. This amazing volume of data resulted in 1.2 

million predicted genes, roughly an order of magnitude greater than the entire SwissProt 

database at the time. Examining the depth of coverage distribution across the 

metagenomic assembly, Venter and his team found high phylogenetic diversity in the 

Sargasso Sea with estimates of at least 1800 species in the environment. Unfortunately, it 

was later determined that the largest sample taken was contaminated by Shewanella and 

Burkholderia species, rendering it useless for ecological analysis [29]. This work was the 

first to perform significant deep sequencing of a high-complexity microbial population, 

and through its technical problems, affirmed the importance of sampling techniques, 
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quality control experiments and validation. Moreover, the Sargasso Sea served as a pilot 

study for the Global Ocean Sampling project, an around-the-world voyage that collected 

ocean samples approximately every 200 nautical miles, resulting in 7.7 million shotgun 

sequences, the largest raw metagenomic dataset to date.   

The Obese Gut Microbiome. While some scientists used metagenomics to 

investigate traditional environments like soil and water, others were interested in the 

structure and function of microbial communities within a host. At Washington University 

in St. Louis, Jeff Gordon and Peter Turnbaugh wanted to characterize microbes 

inhabiting the distal gut of obese and lean mice to determine if and how gut microbiota 

contribute to the pathology of obesity [30]. Using metagenomic and biochemical analyses 

to compare samples taken from genetically obese mice and their lean littermates, Gordon 

and Turnbaugh discovered that the obese gut microbiome maintained increased capacity 

for energy harvest and furthermore, that this trait was transmissible to germ-free mice. 

This work established an important application of metagenomics: characterization 

prokaryotic communities in a clinical setting to study how human diseases correlate with 

microflora.  

The field of metagenomics has quickly expanded from microbial ecology to other 

disciplines including medical microbiology, food safety, and wastewater treatment. The 

next section details the most comprehensive metagenomics collaboration currently 

underway.   
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The Human Microbiome Project 

A pinnacle achievement in human knowledge, the Human Genome Project 

represented the largest scientific collaboration in biology ever, spanning areas in 

molecular biology, computer science and statistics, engineering, and biotechnology. 3.3 

billion base-pairs later, as results from the analysis of the genome reached the scientific 

community, it became clear that the genomic differences between humans and other 

distantly related eukaryotes were more subtle than anyone had ever anticipated. The 

human genome contains roughly 20,000-25,000 protein-coding genes [31, 32], 

remarkably close to the mouse genome [33], and about 40% more than a fruit fly [34].  

However, if we think of humans as superorganisms that house thousands of 

microbial species, then the total number of genes increases to over 100,000. It is 

estimated that the microbial cells inhabiting a person outnumber somatic and germ cells 

by an order of magnitude. While bacteria are not present throughout the entire body, they 

are essential in many of our functions including digestion of complex carbohydrates, 

synthesis of helpful vitamins, defense against pathogens, and the production of fat cells. 

Therefore, we must alter our model of human beings to capture the fundamental 

symbiosis between our microbiota and ourselves. This new perspective on human genetic 

variation combined with advancements in parallel DNA sequencing technology has led to 

a natural extension to human genomic research: the Human Microbiome Project.      

    Initiated in 2007, the Human Microbiome Project (HMP) is a large 

interdisciplinary collection of metagenomics projects which as a whole aim to 

characterize the microbial communities inhabiting humans across the globe. The HMP 
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focuses on five major areas: the gut, oral cavity, sinus cavity, skin, and the female 

urogenital tract [35, 36]. Each region presents unique challenges to microbiologists. 

Some bacterial communities are incredibly diverse, whereas others are small and difficult 

to extract from human tissue.    

  The HMP will help to develop an infrastructure for clinical studies of human 

microbiota, and it is hoped that we will find ways to identify bacterial factors associated 

with human disease and learn how to modify our microbiota to improve our overall 

health. Major goals of the project include [35]: 

I. Developing a reference set of microbial genome sequences and 

preliminary characterization of the human microbiome 

II. Examining the relationship between disease and changes in the human 

microbiome 

III. Developing new technologies and tools for computational analysis 

IV. Establishing a Data Analysis and Coordinating Center (DACC) 

V. Assessing ethical, legal and social implications of HMP research 

 

This work 

This dissertation is a series of projects targeted toward achieving goal III, the 

development of new tools for computational analysis of large and complex metagenomic 

datasets. The direction of my research has been a function of the HMP and metagenomic 

datasets currently available and others in production. I have organized these projects 

based on their location in a sequence analysis pipeline: preprocessing (Chapter 2), 

processing (Chapter 3), and post-processing/modeling (Chapters 4 and 5). It is my hope 



 

 8 
 

that these ideas and associated software packages will be used to improve the analysis of 

data not only from the HMP, but future metagenomics studies of any environment.  

We begin with Figaro, a novel algorithm for trimming vector and other 

contaminant sequence from genomic and metagenomic datasets (generated by Sanger or 

potentially pyrosequencing technology) without prior knowledge of the artificial 

sequence itself (Chapter 2). The second study (Chapter 3) is a rigorous analysis of 

computational methodologies employed to cluster 16S rRNA sequences into species-like 

groups called operational taxonomic units (OTUs). In Chapter 4, we address challenges 

in post-processing large clinical metagenomic datasets with Metastats, a statistical 

methodology for detecting differentially abundant features between two populations. 

Finally, in an effort to push HMP data as far as possible, I have designed and validated a 

method for inferring microbe-microbe interactions using only longitudinal 16S rRNA 

data (Chapter 5). To close, Chapter 6 summarizes these works and discusses future 

research directions of considerable importance. 

 

Mathematical and computational contributions 
The following outlines my original mathematical and computational contributions 

made in each study: 

 

Chapter 2. I developed Figaro to utilize a novel statistical approach that infers unknown 

vector sequences from the data by examining overrepresented kmers at the beginnings of 

reads. Specifically, I model the frequency of each kmer as a Poisson process, and weight 

kmers according to the likelihood that they are indeed part of a vector sequence. 
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Moreover, I carefully selected statistics to model which kmers are most likely to represent 

the end of each vector sequence, providing more accurate trim points and thus 

maximizing overall read length. I implemented Figaro and supporting scripts in Perl and 

C++ to run quickly on millions of reads. In testing, Figaro trimmed 1.5 million Sanger 

reads in ~11 minutes.   

 

Chapter 3. I collaborated with Saket Navlakha to extend the semi-supervised clustering 

algorithm VI-cut in order to improve its performance when clustering 16S sequences into 

OTUs. Specifically, we incorporate the concept of forbidden nodes – nodes in a 

hierarchical decomposition that cannot be cut to create clusters. In the context of OTUs, 

this prevents the creation of large ambiguous clusters when parts of a tree lack sufficient 

taxonomic annotation. 

 

Chapter 4.  

I designed the Metastats statistical methodology to specifically suit the changing 

characteristics of annotated metagenomic data. Each component of the methodology is 

well known in statistical analysis (the nonparametric t-test, Fisher’s exact test, the false 

discovery rate), but to my knowledge the unique combination of these tests for large-

scale analysis of count data has not been employed, and certainly not in the context of 

comparative metagenomics.  

 

Chapter 5. 
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The generalized Lotka-Volterra model has been used in traditional ecology for 

many years. However, because the number of parameters in this model scales 

quadratically with the number of taxa, most studies only fit the gLV model to datasets 

involving two or three organisms. My original computational contribution is a 

comprehensive Monte Carlo optimization procedure that finds many gLV model fits of 

suboptimal quality and infers fundamental ecological interactions between members of a 

community based on culling the resulting distributions of parameter estimates. To my 

knowledge, this approach has never been taken before in the context of fitting gLV 

models or in metagenomics. I implemented this computationally intensive optimization 

procedure both in Matlab and multi-threaded C++ code to improve efficiency.   
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Chapter 2: Figaro – a novel statistical method for vector sequence 

removal 

Background 

Even as new sequencing technologies become increasingly available [37], Sanger 

sequencing remains the most widely used technique for decoding the DNA of organisms 

[38]. High-throughput Sanger sequencing begins by cloning a DNA fragment into a 

vector (usually a plasmid) that is then transfected into Escherichia coli in order to 

amplify the original DNA fragment. Short adapter sequences are often attached to the 

ends of the fragment to improve the efficiency of the cloning process [39]. The 

sequencing reaction is usually performed using universal sequencing primers that anneal 

within the vector in the vicinity of the fragment insertion site (splice site). As a result of 

this process (highlighted in Figure 1), each sequence contains a small section of the 

vector, as well as the adapters used during cloning, in addition to the original DNA 

fragment. For the purpose of this paper, we will refer to any such artifacts as vector 

sequence. These sequences must be flagged prior to further analysis of the data, in a 

process called vector trimming or vector clipping.  

Several software tools are available for vector removal: Lucy [40], Crossmatch 

(www.phrap.org/phredphrapconsed.html), and VecScreen (www.ncbi.nlm.nih.gov/ 

VecScreen). These programs compare each read to the sequence of the cloning vector, 

then flag sections of the read that have strong similarity to the vector (Crossmatch 

replaces vector sequence with Xs, Lucy provides a list of clipping coordinates in the fasta 

header, and VecScreen provides a BLAST-like output).  The alignments are performed 
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with relaxed parameters in order to account for the higher error rates at the beginning of 

reads (see Figure 2).  Furthermore this approach requires three sets of information: (i) the 

sequence of the cloning vector; (ii) the splice site used for sequencing; and (iii) the 

sequence of the cloning adapters (if used—information that is often lost when the 

sequences are deposited in public databases). Note that the NCBI Trace Archive provides 

a mechanism for recording the location within the read where the vector ends (vector clip 

point), however this information is often missing or incorrect. 

 

 

Figure 1. DNA from a sample (black) is cloned into a small circular piece of DNA called 

a vector (light gray).  Short adapters (white) are used to improve efficiency of cloning the 

sample DNA.  The molecule is then transfected into E. coli, amplified, and then 

sequenced from both ends starting from priming sites inside the vector. 
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Figure 2. Raw output from sequencing machines contains poor quality sequence on the 

ends as well as vector and adapter sequence, in addition to the DNA being sequenced. 

 

As an example, at the beginning of September, 2007, approximately 60% (735 

million out of 1.24  billion) of all shotgun reads from the NCBI Trace Archive had either 

no vector clip information, or a vector clip point of 0 or 1, indicating the vector clipping 

information was not provided (clip_vector_left = 0) or was arbitrarily set to the beginning 

of the read (clip_vector_left = 1).  Even when a vector coordinate is provided it is often 

incorrect, as described below. 

We examined the shotgun reads used to assemble the Xanthomonas oryzae 

px099a genome, a dataset for which both vector and quality clipping coordinates had 

been submitted to the Trace Archive by the sequencing center.  We considered all reads 

whose vector clip coordinate occurred at least 8 base pairs (bp) inside the high-quality 

region, then tallied the final 8 bp (8mer) of the supposed vector sequence.  These 8mers 

should represent the end of the vector sequence; therefore, they should be virtually 

identical across all reads with the exception of differences caused by sequencing errors.  

We examined 7,997 reads originating from a single sequencing library (library id 
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1041054961988).  Furthermore, we separately examined reads sequenced with the 

“Forward”, and “Reverse” trace direction in order to avoid any variability due to 

differences between the vector sequences flanking the splice site.  The results, 

summarized in table 1, highlight a much higher variability in the set of 8mers than can be 

explained by sequencing error alone, suggesting the vector clip points are incorrectly 

assigned. 

 

 

Trace 
direction Forward Reverse 

Number 
of reads 3,687 4,310 

 
Four 
most 

frequent 
8mers 
and 

frequency 
 

GCGCAGCG 
GCCGCAGC 
GATCCATT 
GTGCTGGA 

40 
29 
29 
26 

GCGCAGCG 
GTGCTGGA 
GGCGATCG 
TGGCCGAT 

46 
42 
37 
35 

Number 
of distinct 

8mers 
1,679 (45.5%) 1,858 (43.1%) 

Table 1. Frequency of 8mers extracted upstream from the annotated vector clip point in 

shotgun reads from Xanthomonas oryzae px099a.  We only considered reads from the 

library where the 5’ vector clip point was at least 8 bp to the right of the 5’ quality clip 

point. The reads were further binned by sequencing direction. The four most frequent 

8mers are shown together with their frequency.  The high level of variability indicates 

errors in the reported clipping coordinates. 
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In this work, we present an algorithm for detecting and removing the vector 

sequence from the 5’ end of reads without prior knowledge of the vector sequences used. 

This algorithm can, therefore, be used to correctly identify the vector clipping points for 

sequences obtained from public databases. The code was implemented as a single 

streamlined module, named Figaro, which can be easily integrated into a high-throughput 

computational pipeline. The code is distributed under an open-source license through the 

AMOS package (http://amos.sourceforge.net).   

Below we provide a detailed description of the trimming algorithm, and highlight 

its performance on three datasets: ~1.5 million Drosophila pseudoobscura reads; and in 

the de novo assembly of two bacterial genomes. 

 

Methods 

For a set of shotgun reads, Figaro infers the vector sequence from the frequency of 

occurrence of kmers (DNA segments of length k). Under the assumption that the vector 

DNA flanking the inserted sequences is the same for all the sequences in a dataset, the 

most frequent kmers in the data likely represent vector DNA. This assumption is 

generally true for shotgun sequencing data, with the following exceptions: (i) different 

sequencing libraries may use different vectors; (ii) the vector sequences upstream and 

downstream the splice-site are often different (hence “Forward” and “Reverse” reads are 

prefixed by different vector DNA); and (iii) when cloning adapters are used, two different 

strings, corresponding to distinct adapter sequence, may prefix the reads even from a 

single library and orientation. To improve accuracy, the reads are partitioned by library 

and sequencing direction, if such information is available. 
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Figaro operates in two phases: (i) identification of frequent kmers likely to 

represent vector DNA (called vectormers throughout the text); and (ii) estimation of the 

vector clip point for every read, on the basis of the vectormers identified in step (i). These 

two components of the algorithm are described in detail below.  

 

Detection of vectormers 

The vector sequence can be recognized by identifying kmers that are more frequent at the 

beginning of reads than anywhere else.  Intuitively, the beginning of reads represents the 

DNA from the vector which is shared by the majority of reads in a dataset. The remaining 

section of each read should be randomly sampled from the genome, leading to few 

commonalities between distinct reads in the dataset.  

A kmer frequency table is created which records the number of occurrences of 

each word of length k within adjacent windows of length L over the first E bases of all 

reads (a kmer is assigned to the window in which it starts, thus allowing us to count 

kmers that cross window boundaries).  We truncate all reads to a same length E in order 

to avoid artifacts due to the increased error rates at the ends of reads.  Given a maximum 

vector cut length, M, we declare the safe zone of the reads to be the region from base M 

to E (Figure 3).  For each kmer Ki, if si is the number of occurrences of Ki in the safe zone 

across all reads, then we define its arrival rate αi to be: 
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Given αi, we model the number of occurrences of Ki as a Poisson process.  Letting X be 

the frequency of Ki in a window of length t, X follows a Poisson distribution with 

parameter λ = tαi.  Considering fj, the frequency of occurrence of Ki within the jth window 
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of length L (Fig. 4), we can estimate the likelihood of observing at least fj occurrences of 

Ki in L base pairs given αi.  Mathematically, 
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where λ = Lαi.  A kmer is declared to be a vectormer if P(X ≥ fj ) < 0.001 for a window 

within the first M base pairs of a read.  By definition, we expect that 0.001*M/L of all 

kmers are incorrectly classified as vectormers.  For example, assuming the average length 

of a read is 800 bp, four false vectormers are expected within any read for M = 100 and L 

= 20. 

In large datasets we observed that our algorithm produced many false positives 

due to statistical noise and common sequencing errors.  To correct for this phenomenon, 

we retain only the most abundant vectormers, specifically, for a user-selected threshold T, 

we retain the T×100 most frequent vectormers.  This simple heuristic significantly 

reduces overtrimming. 

The implementation of Figaro uses k = 8 and L = 20.  By default M = 100 and E = 

500, but these parameters may be modified by the user.  A reasonable setting for the 

threshold T is automatically computed by Figaro depending on the number of reads in the 

dataset, however this value can also be controlled by the user. 
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Figure 3. Within the safe zone of all reads, we consider the number of occurrences of 

each kmer Ki, and calculate its average arrival rate.  The beginning of the read is 

separated into bins of length L and the frequency of each kmer within each bin is 

recorded. 

 
 
 
 
 

 
Figure 4. Frequency distribution for kmer Ki across first M bases of all reads.  High 

frequency counts at the beginning of reads indicate that Ki is a likely vectormer.  
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Vector clip estimation 

Once vectormers are computed, the algorithm first attempts to determine which 

vectormers are most likely to represent the ends of the vector sequences.  We call these 

vectormers endmers.  Assume a vectormer K has frequency of occurrence Q.  If it is the 

true end of the vector, all kmers directly to the right of this vectormer (kmers whose 

prefix is the (k-1) suffix of K) should have a frequency of roughly ¼ × Q (Fig. 5).  The ¼ 

parameter assumes equal distribution of the A, C, T, and G nucleotides in the genome. To 

account for the non-uniform distribution of nucleotides, we first estimate the G/C content 

of the organism being sequenced and adjust this threshold accordingly. Suppose the 

calculated G/C content is δ and the A/T content is ε = 1 - δ.  We declare a vectormer to 

be an endmer if the adjacent kmers ending in G and C both have frequency < Q × (δ/2 + 

0.1), and if the kmers ending in A and T both have frequency < Q × (ε/2 + 0.1).  

Furthermore, to prevent many spurious endmer declarations when a large number of 

vectormers are allowed, we only consider the 100 most frequent vectormers as possible 

endmer candidates.  Note that within these 100 vectormers, we only expect to find a 

small number of endmers (ideally four, however, sequencing errors might lead to a few 

more).   

    Once endmers are computed, we trim every sequence using the following algorithm.  

The first M base pairs of each sequence are examined right to left, using a 17 bp (10 

adjacent 8mers) moving window.  We consider we have encountered the end of the 

vector, and set the clip point accordingly, once we encounter a window containing 7 or 

more vectormers that ends in an endmer.  To improve vector detection in the presence of 
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sequencing errors, all kmers within one substitution of an endmer are also labeled as 

endmers.   

    Frequent sequencing errors can cause our algorithm to miss the end of the vector 

sequence (no window contains an endmer).  To account for this situation, we simply 

select the rightmost window containing 7 or more vectormers.  Within this window, we 

identify a rightmost kmer whose distance from the end of the vector is known, then adjust 

the clip point accordingly.  Note, that a side effect of our vectormer detection algorithm is 

that we can construct a de Bruijn graph (Pevzner et al., 2001) from the set of vectormers.  

Specifically, every vectormer represents a node in this graph, and two nodes are 

connected if the corresponding vectormers share a k-1 substring (e.g. TAAAAAAA and 

AAAAAAAG are neighbors in this graph).  Within this graph we mark the location of the 

endmers, and label each node with its distance (number of edges that need to be 

traversed) from the nearest endmer, i.e. its distance from the end of the vector.  This 

information is used, as described above, to correctly identify the end of the vector even if 

an endmer cannot be detected. In the rare case where we cannot identify any vectormer 

whose distance to the end of the vector is known we simply use the position of the 

rightmost window with 7 or more vectormers as the vector clip point.  Note that the 

specific parameters of this process were set heuristically to values that performed well in 

our experiments.  It is possible that in some cases they may need to be tuned for specific 

characteristics of the data being analyzed.  We clearly mark these parameters at the 

beginning of the Figaro source code to allow their easy modification, as we have not yet 

to identify a suitable automated procedure for estimating these parameters.    

 



 

 21 
 

 

Figure 5. A conceptual example of identifying endmers (i.e. a vectormer that is likely to 

be the end of the vector sequence.)  Note that the kmer GTCAAGCT has a frequency of 

Q (black dot).  Frequencies of adjacent kmers ending in A, C, G, and T (represented in 

different shades of gray) are significantly lower than Q. 

 
 

Results 

Vector trimming sensitivity and specificity 

To create a test in which we know exactly where the true vector ends, we have generated 

a set of artificial sequences based on shotgun reads from the Chlamydophila caviae gpic 

genome project [41] containing variable length vector sequence on their ends. We 

trimmed off the first 300 bases from each of the 19,633 reads, and attached a vector 

sequence of random length ranging from 10 to 50 bp generated from the SmaI cloning 
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site of the pUC18 vector (GenBank accession L09136).  No vector sequence was attached 

to about 20% of the reads.  Finally, we introduced a varying amount of error within the 

vector sequence to assess the performance of Figaro in the presence of sequencing errors.  

We ran Figaro on datasets with error rates ranging from 0% to 5%, and then 

compared the sensitivity and specificity of the results taking into account overtrimming 

and undertrimming.  The same parameters were used for all trials: T = 30, M = 60, and E 

= 500.  For each value of the parameter m, we denote a true positive (TPm) whenever the 

identified trimpoint is within m bases of the true trimpoint. Similarly overtrimming or 

undertrimming by more than m bases is denoted as a false positive (FPm) and false 

negative (FNm), respectively.  Sensitivity and specificity are defined as follows: 
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Table 2 displays the sensitivity and specificity of Figaro for all trials.  In the 

absence of errors, Figaro finds the vector sequence with 100% sensitivity, and rarely 

overtrims. The sensitivity and specificity remain high, even after introducing errors as 

high as 5% (higher than commonly encountered in practice).  The fact that Figaro 

overtrims even in the error-less test warrants further discussion.  We examined the reads 

that were overtrimmed by Figaro and found that the majority of these contained little or 

no vector (approx. 90% of these reads contained less than 15 bp of vector and 56% 

contained no vector).  In such situations our algorithm is unable to identify a clear vector 

boundary and resorts to an aggressive trimming strategy designed to avoid 

undertrimming.  In very few cases we found that overtrimming was due to significant 

homology between a section of the read and the end of the cloning vector.  Note that such 
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situations also cause overtrimming when using established, similarity-based, trimming 

software.  Furthermore Figaro is intentionally aggressive as a small amount of 

overtrimming is preferable to undertrimming. 

In order to evaluate our approach on real data, we used as a test set reads from the 

Drosophila pseudoobscura genome sequencing project [42].  We chose these particular 

data because the sequencing adapters used in the project are known [39].  Searching for 

the two adapter sequences (16 bp each) using nucmer [43, 44], we collected 1,506,679 

reads that matched at least 8 bp of an adapter with at least 90% identity.  The 3’ end of 

the vector was required to match within the first 50 bp of the read, and was labeled as the 

true vector trimpoint. We ran Figaro with T = 30, and M = 50 (maximum vector cut 

length of 50 bp). Figaro found the exact end of the vector sequences with 99.98% 

sensitivity and 99.15% specificity (table 3).  Without prior knowledge of the vector 

sequence, Figaro was able to detect and remove virtually all vector with negligible 

overtrimming. About 0.4% of the reads were overtrimmed by more than 3 bp and 0.01% 

of the reads were undertrimmed by more than 3 bp. Furthermore, the running time for 

this test was just short of 11 minutes, indicating that Figaro is efficient even for large 

eukaryotic projects. 

We also tested Figaro on a highly repetitive genome (maize, Zea mays [45]).  The 

results on 9,738 sequences from this genome were similar to those obtained for 

Drosophila - we achieved 100% SN1 and 99.6% SP1 - indicating our method is robust in 

the presence of repeats.  
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Error 
rate 

 SN0 SP0 
 SN3 SP3 

 SN5 SP5 

0%  100% 99.5%  100% 99.7%  100% 99.7% 
1%  99.6% 99.3%  99.9% 99.7%  99.9% 99.7% 
3%  98.0% 98.9%  99.0% 99.7%  99.1% 99.7% 
5%  96.5% 98.0%  98.3% 99.6%  98.6% 99.6% 

Table 2. Sensitivity and specificity results of Figaro on simulated vector contaminant 

sequence with different error rates.  For each value of the parameter m, a true positive 

(TPm) is counted whenever the identified trimpoint is within m bases of the true 

trimpoint. Similarly, overtrimming or undertrimming by more than m bases is denoted as 

a false positive (FPm) and false negative (FNm), respectively.  We define sensitivity, SNm 

= (TPm /(TPm +FNm)), and specificity, SPm = (TPm/(TPm +FPm)).  Introducing higher 

error rates reduces the program’s ability to detect the vector sequence boundary, but even 

with an error rate of 5%, Figaro performs well, effectively removing nearly all of the 

vector sequence without significantly overtrimming reads. 
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Max 
distance 

m 
SNm SPm TPm FNm FPm 

0 99.98% 99.15% 1,493,582 316 12,781 

3 99.99% 99.29% 1,500,662 186 5,831 

5 ~100% 99.72% 1,502,428 67 4,184 

10 ~100% 99.79% 1,503,481 54 3,144 

Table 3. Sensitivity and specificity results of Figaro on Drosophila pseudoobscura 

shotgun reads.  Using a threshold of 30, Figaro is able to remove virtually all vector 

sequence and only overtrims a small proportion of reads by more than 3 bp.  Note false 

positives and false negatives are computed only if they occur in the high-quality region of 

a read. 

 

Improving assemblies with Figaro 

To illustrate how Figaro can help to improve high-throughput genomic studies, we used 

the Celera Assembler [31, 46] to assemble the genomes of Chlamydophila caviae GPIC 

[41] and Coxiella burnetii RSA 493 [47], and compared these assemblies to available 

finished sequence.  These genomes were chosen because they have been recently 

finished, and full quality and vector trimming information is available in the NCBI Trace 

Archive. 

We constructed “Official” assemblies using the provided vector and quality 

trimming points explicitly; and “Base quality” assemblies using only the quality 

trimming information.  Additional assemblies were created using the output of Figaro 
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combined with the official quality trimming information.  Figaro was run separately for 

each sequencing library with T = 30, M = 200, and E = 500. 

Table 4 reveals that not only were the Figaro assemblies far superior to the “Base 

quality” assemblies, but they improved upon the “Official” assemblies.  The Figaro 

assemblies of C. caviae and C. brunetii produced contigs with a higher N50 size covering 

more of the reference sequence than their “Official” counterparts.  Furthermore, our 

trimming did not result in any additional mis-assemblies.  The C. brunetii “Base quality” 

assembly is a particularly good example of the need for accurate vector trimming. By 

using Figaro the resulting assembly increased the N50 contig size nearly seven fold over 

the “Base quality” assembly and by nearly 30% over the “Official” assembly. 
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Assembly 
Run 

# of 
contigs 

Contig 
N50 
(bp) 

%  
coverage 

# of 
errors 

in 
contigs 

Chlamydophila caviae GPIC 
Base 

quality 
252 9,466 93.0 0 

Official 209 11,731 95.0 1 

T = 30 203 13,044 96.1 1 

Coxiella brunetii RSA 493 
Base 

quality 1,535 1,232 77.9 0 

Official 719 6,713 94.8 0 

T = 30 643 8,118 95.6 0 

Table 4. Assembly results using Figaro on two microbial genomes.  The “Official” 

assemblies used the quality and vector trims provided with the read sets.  The “Base 

quality” assemblies only used the quality trims provided.  Assemblies were performed 

after trimming with Figaro using T = 30, M = 200 and E = 500.  Assemblies created using 

Figaro improve upon their “Official” counterparts by increasing overall contig size 

without introducing more errors or losing coverage.  The “coverage” column denotes the 

percent of finished sequence covered by assembled contigs; note assembly errors are not 

accounted for, i.e., partial contig matches are counted toward the coverage.  The 

ContigN50 column denotes that half the bases in the assembly are contained in contigs of 

the given length or greater. 
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Discussion 

Figaro is only intended as a tool for identifying and removing vector from the 5’ end of 

reads.  Often, entire reads consist of vector sequence (e.g. no fragment was inserted in the 

vector), while in short libraries vector sequence may also occur at the 3’ end of reads.  In 

such situations, our algorithm cannot detect the 3’ vector sequence due to the large 

variation in the amount of vector included in each sequence (at the 5’ end the vector ends 

roughly at the same location in every read), thus Figaro must be augmented with 

traditional vector trimming software.  Furthermore, since Figaro does not trim based on 

quality values, our software should be used in conjunction with a quality trimming 

program such as Lucy [40].  The software distribution includes several scripts that 

automate this process for common types of sequence data.  We also provide tools for 

actually trimming or masking the vector sequence in the dataset.   

Note that many sequencing projects use more than one library, and therefore, 

more than one vector.  When the number of libraries is large, Figaro may incur 

difficulties due to the statistical nature of its algorithm.  To avoid such problems, the 

scripts provided in the Figaro package automatically run our code on each library 

separately when library information is provided (e.g NCBI Trace Archive XML file). 

In addition, the algorithms implemented in Figaro implicitly assume the 

randomness of a typical shotgun process.  Therefore, Figaro cannot be used for targeted 

sequencing experiments where a same gene is sequenced across multiple samples.  Also, 

in EST sequencing projects, the use of Figaro may result in the incorrect removal of the 

polyA tail. Figaro is capable of removing relatively short adapter and vector sequences 

and therefore may be applicable to data generated using pyrosequencing technologies 
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such as 454 and Illumina. Though next-generation sequencing does not employ standard 

vector-based techniques, artificial sequences such as linkers, adapters and barcodes are 

often used to tag DNA fragments for pooled sequencing. Without identifying and 

removing these artificial sequences, pyrosequencing datasets would be extremely difficult 

to assemble and analyze. Figaro may prove useful in detecting and trimming these 

barcodes, but additional validation is required to sufficiently assess Figaro’s sensitivity in 

these circumstances.   

The various parameters controlling the execution of our code are automatically set 

to reasonable default values.  These values can also be controlled by the users if the 

default values are inappropriate for the data being processed.  For example, the parameter 

E, marking the end of the “good quality” section of a read, is usually set to 500, however 

its value should be increased or decreased depending on the average read length being 

analyzed.  Similarly, our code performs best if the parameter M (the window within 

which Figaro searches for the vector sequence) is set to a value close to the expected 

length of the vector. This parameter should, therefore, be adjusted if additional 

information is available regarding the distance of the sequencing primers from the 

cloning site. Note, however, that M should be set conservatively (greater than the 

expected length of the vector) in order to avoid undertrimming. 

Raw shotgun sequences are placed in the NCBI Trace Archive at an ever 

increasing rate, rapidly outpacing the availability of current assemblies for many 

genomes. Constructing independent assemblies from these data is complicated by the 

often incomplete or incorrect vector trimming information reported in the public 

databases.  The program described in this paper, Figaro, provides scientists with the 
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means to automatically detect and remove the vector sequence from shotgun reads 

without prior knowledge about the sequencing protocol, thereby enabling the large-scale 

re-assembly of public data. Furthermore, even if the vector sequence is known, Figaro 

provides an efficient and effective alternative to commonly used vector removal 

programs. 
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Chapter 3: Alignment and clustering of phylogenetic markers – 

implications for microbial diversity studies 

Note in this chapter, my contributions include running the comprehensive OTU 
methodology evaluation, sensitivity analysis of each methodology component, and 
modification of the VI-cut algorithm for OTU clustering. Saket Navlakha exclusively 
wrote the description of the modified VI-cut algorithm below. 

Background 

The human body is host to a massive ecosystem with thousands of commensal microbial 

species. Microbial diversity within the human body has recently been quantified through 

16S rRNA surveys [19, 48-50] and metagenomic methods. The latter provide a detailed 

view of the genomic composition and functional potential of human-associated microbial 

communities [21]. However this level of resolution comes with a high price-tag — 

billions of base-pairs need to be sequenced to ensure a sufficient level of sampling of 

complex communities [51] such as those found in the human gastrointestinal tract. 16S 

rRNA surveys provide limited insight into the composition of the commensal 

microbiome, however due to substantially lower costs, such studies are currently the only 

practical approach for studying large numbers of samples (such as those generated in a 

clinical setting). In this paper we explore the limits of the methods used to analyze 16S 

rRNA data, particularly the large impact of small changes in the parameters of the 

analysis process. We specifically focus on the most common strategy — the clustering of 

16S rRNA sequences into a collection of operational taxonomic units (OTUs) or 

phylotypes on the basis of sequence similarity. Taxonomic classification through database 

searches [50] or other fully supervised classification methods [52] are inherently limited 



 

 32 
 

due to the current undersampling of the global microbial population, only allowing 

accurate classification of a fraction of sequences (as low as 20% in some studies [19]).  

The OTU clustering process begins by constructing a multiple alignment (MSA) 

of the 16S rRNA sequences. The MSA is then used to estimate pairwise distances 

between individual sequences, expressed as the fraction of nucleotides that have changed 

as the sequences have evolved from their most recent common ancestor.  To accurately 

reflect evolutionary processes, the distances inferred from the MSA are corrected using 

one of several models of evolution [53]. The distances are provided as input to a 

hierarchical clustering algorithm (nearest neighbor, furthest neighbor, or average 

neighbor/UPGMA are commonly used).  Sub-clusters or OTUs are defined by applying a 

distance threshold, selected to roughly approximate a specific taxonomic level:  

thresholds between 1-3% are typically used to approximate individual species, 5% for 

individual genera, 15% for classes, etc. [14, 54, 55]. The first steps of this process (MSA 

– distance correction – distance matrix) are also the first steps in the phylogenetic 

analysis of a set of sequences. In this context an accurate MSA (often achieved through 

painstaking manual curation) and precise estimation of evolutionary distances is 

necessary. As we will discuss below, however, these steps might be unnecessary if the 

goal is the determination of the OTU structure of a community. 

The choice of MSA, the distance correction, clustering algorithm, and distance 

threshold varies considerably between studies, and, to our knowledge, there have been no 

comprehensive evaluations of the impact of methodological choices on the ecological 

conclusions of the analysis process. In this study, we rely on simulated datasets to 
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provide a comprehensive assessment of the extent to which individual parameters of the 

evaluation process affect the analysis of 16S rRNA data.   

We evaluate methodological choices in terms of how well the clustering of the 

sequences into a set of OTUs matches the clustering imposed by the known membership 

of the sequences to individual bacterial species.  As a measure of similarity between 

clusterings we use the Variation of Information (VI) metric. VI measures the amount of 

information lost or gained by changing from one clustering to another [56] and (in 

contrast to other methods for comparing clusterings, e.g. the Rand index) is based on a 

rigorous mathematical foundation (see Materials & Methods in this chapter).  

 

Results 

Simulated environments 

To construct a simulated environment of known composition, we collected 1677 full and 

partial 16S rRNA gene sequences from the Ribosomal Database Project II (release 9.57; 

RDP) [22] with complete taxonomic identification. The majority of these sequences were 

obtained from isolate genomes (96.2%) and had unambiguous taxonomic assignment, as 

defined by the fact that three independent databases (RDP, NCBI, and GreenGenes) 

agreed on their identity at the species level (see Methods). The simulated environment 

spans 49 species, 46 genera, 37 families, 21 orders, 12 classes, and seven phyla including 

Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Alpha-, Beta-, and 

Gammaproteobacteria make up 66% of the sequences in roughly equal proportions. A 

similar class distribution has been reported for microbial communities found in the 
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phyllosphere of the Atlantic rainforest [57]. Simulated datasets have previously been 

successfully used to evaluate methods for the assembly, gene finding, and binning of 

metagenomic data [58]. 

 

Comprehensive search of OTU methodologies  

We explored the parameter space of OTU methodologies by varying the MSA, distance 

correction, clustering algorithm, and distance threshold. Sequences were first aligned 

using three different MSA programs commonly employed for 16S analyses: NAST [59], 

MUSCLE [60], and ClustalW [61]. Each program successfully aligned all 1677 

sequences, and alignments were subsequently trimmed to within the span of all 

sequences. We then calculated distance matrices from each alignment using the Jukes 

Cantor (JC), Kimura-2 (K2P), and Felsenstein 84 (F84) distance corrections using the 

DNADIST program from the PHYLIP package [53] then clustered the sequences 

according to three hierarchical clustering strategies (nearest, average, and furthest 

neighbor) using DOTUR [62]. We finally determined phylotypes using a series of 

distance thresholds (D = 0.00 to 0.45 in 0.01 increments), producing a total of 749 

distinct OTU sets that were then compared against the known species-level clustering of 

our data.     

 

OTU variability 

The results of our analysis (summarized in Figure 6) reveal a large variation in the level 

of concordance of the OTU clustering with the true species-level composition of the 
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environment when varying methodology parameters. We specifically highlight the 

parameters with most impact — distance threshold (panel c), MSA (panels a and b), and 

clustering strategy (panel d) — parameters that accounted for 56, 33, and 7 percent of the 

variation, respectively, confirmed by ANOVA (see Materials & Methods). We did not 

observe a significant impact from the use of different distance correction measures (see 

Figure 9a and Methods). The corresponding number of OTUs generated by the different 

methodologies varied significantly (from 36 to 257) and none of the parameter 

combinations managed to capture the true species composition (49 OTUs, VI 

distance=0). A large variation in the OTU content is observed even when we fix the 

similarity threshold to 0.01 (approximately strain-level) — the number of OTUs ranges 

from 79 to 248 at this similarity level. Surprisingly, the best OTU clustering was obtained 

at a similarity threshold of 0.05 (Figure 6c) — a value larger than the thresholds usually 

used to approximate the species-level composition of an environment (0.01-0.03 [14, 19, 

49]).  In terms of alignment, methodologies employing ClustalW or NAST were roughly 

similar and performed better than those using MUSCLE (Figure 6b). The performance of 

ClustalW is somewhat surprising as MUSCLE was previously reported to outperform 

ClustalW when aligning protein sequences [60] and NAST is specifically designed for 

the alignment of 16S rRNA sequences.  In terms of clustering strategy, furthest neighbor 

resulted in the best agreement with the true species structure of our simulated 

environment (Figure 6d).  Even the best combination of analysis parameters (ClustalW, 

furthest neighbor, 0.05 distance threshold) led to an overestimate of the number of 

species in our sample, resulting in 56 OTUs. We found similar OTU variability for 10 

additional simulated 16S datasets (see below). This result highlights a fundamental 
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limitation of hierarchical clustering strategies for 16S rRNA analysis — only 42 of the 49 

species present in our sample corresponded to a homogeneous sub-tree within the best 

hierarchical clustering of our data. The remaining 7 species cannot be correctly clustered 

irrespective of the similarity threshold chosen. 

The results presented above highlight a wide variation in the OTU structure as we 

explore the parameters of the analysis process. To determine whether such variation is 

also present in the methodologies used in practice, we compared three analysis 

methodologies that performed well in our combinatorial search to several methodologies 

reported in published literature. The results shown in Table 5 indicate that the published 

methodologies can overestimate the diversity of the simulated environment, sometimes 

by more than 3-fold.  The fragmentation of the resulting OTUs is particularly striking 

among the most abundant phylotypes (Figure 7), where sequences belonging to the same 

species are distributed among multiple OTUs. In contrast, the methodologies chosen by 

our combinatorial search produce few mistakes. 
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Figure 6. (a) The number of OTUs found versus the VI distance from the true species 

clustering for 749 OTU sets. Generally, smaller clustering distances lead to many OTUs 

while larger clustering distances result in very few OTUs, both of which poorly 

approximate the species-level structure in the sample. Near 49 OTUs, the true number of 

species in the sample, the OTU sets are relatively closer to the true species-level 

structure. Detail of the lower-left corner of (a) re-colored by (b) MSA, (c) distance 

threshold, and (d) clustering algorithm. 
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Figure 7. Comparison of OTU sets to true species clusters. The innermost rings 

represents the 20 most abundant species in the sample. Each species shown has ≥ 40 

sequences in the dataset (total observations shown next to name of each species). The 
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middle ring displays OTUs of the methodology using the parameters that resulted in the 

closest approximation of the species structure. The outer ring is an OTU set generated 

from methodologies used to study microbial communities of (a) soil [14] and (b) termite 

hindguts [63]. We see that the published methodologies partition most species into 

several OTUs, resulting in a poor approximation of the species-level structure of the 

environment. Note that OTU sets from the middle and outer rings of (a) grouped the B. 

cepacia sequences with a less abundant species not shown (B. pseudomallei). Though the 

outer ring of (b) did not make this mistake, it heavily partitioned the B. cepacia 

sequences into seven OTUs. This demonstrates the potential variability of OTUs defined 

using different methodologies. 

 

 
 Correction MSA Clustering Distance OTUs Ace Chao1 Shannon VI 

      
    

 F84 ClustalW fn 0.05 56 79 116 3.39 0.044 

Optimal F84 NAST fn 0.06 56 78 176 3.39 0.054 

 JC MUSCLE fn 0.06 54 69 132 3.37 0.068 

          Drosophila 
(host) [64] JC ClustalW fn 0.03 70 109 162 3.49 0.087 

Marine sponge 
[65] F84 ClustalW fn 0.03 70 109 162 3.49 0.087 

Soil [14] JC NAST fn 0.03 99 150 169 3.66 0.157 

Deep sea 
biosphere [66, 

67] 
JC MUSCLE fn 0.03 96 396 466 4.66 0.190 

Termite hindgut 
[63] JC NAST fn 0.01 185 360 351 4.11 0.320 

Table 5. OTU sets closest to the true species clustering for each multiple sequence 

alignment. The “VI” column indicates the VI distance of each clustering from the true 

species clustering. Optimal methods are contrasted with five published methodologies. 

The “Correction” column corresponds to the evolutionary distance correction. Note that 

for the optimal methods using ClustalW and NAST alignments, the F84 and K2P 
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corrections produced identical OTU sets because the distance matrices were very similar, 

though not identical. All methods in this table used furthest neighbor (fn) clustering. The 

Ace, Chao1, and Shannon diversity estimators are also provided. 

 

Nonparametric estimators of richness and diversity 

The large variability in the OTU estimates produced by different methodologies had a 

significant effect on the inferred ecological parameters of the environment being studied.  

The Chao1 [68] and ACE [69] richness estimators and the Shannon diversity index [70] 

are measures commonly used to estimate the level of diversity present in an environment.  

These measures were highly sensitive to differences in OTU structure (Figure 8) even 

when distance thresholds were restricted within the range 0.01-0.05. Under the true 

species clustering, SAce = 57, SChao1 = 67, and H = 3.41. SAce and SChao1 estimates for the 

computed OTU clusterings ranged from 52 to 427 and 84 to 466 phylotypes, respectively, 

while Shannon diversity indices (H) ranged from 3.04 to 4.66. Accurate estimates of the 

diversity of an environment are particularly important when planning metagenomics 

sequencing projects, and a particular environment might not be studied if the diversity is 

incorrectly perceived to be too high to effectively sample.   
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Figure 8. Variability in nonparametric estimators and diversity indices using a clustering 

distances 0.01-0.05. Plots of (a) Ace and Chao1, and (b) Shannon measures reveal 

significant sensitivity to OTU sets. Each plotted methodology used either the MUSCLE, 

ClustalW, or NAST MSA; they also used either furthest, nearest, or average neighbor 

clustering, and one of the following evolutionary distance corrections: JC, K2P, or F84. 

The observed variability does not include the traditional confidence interval estimation of 

each statistic, which will add to the uncertainty in the estimators. 
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Partial masking of MSAs 

To improve phylogenetic analyses, researchers often remove hyper-variable segments of 

MSAs either manually or using a filter such as LaneMask [71, 72]. We explored the 

impact of this approach on OTU clustering.  Specifically, we used the GreenGenes 

LaneMask filter, which reduces a NAST alignment to 1287 highly conserved columns. 

The results are surprising — in our data, LaneMask resulted in a worse approximation of 

the true species composition than the unmasked alignment (see Figure 9b). This suggests 

that the use of a generic mask should be critically evaluated in the context of OTU and 

phylogenetic analyses. 

 

Pairwise versus multiple sequence alignments 

Comparison of the OTU clustering to a known standard using the information-theoretic 

VI distance is a general tool that can be used to evaluate other parameters of 16S rRNA 

analysis.  In particular, we evaluated whether a multiple sequence alignment is needed 

prior to clustering the data. An MSA is necessary for phylogenetic analyses in order to 

ensure that the pairwise distances between the sequences are consistent with their 

evolutionary history. Constructing an MSA, however, is computationally expensive, 

requiring time proportional to the cube of the number of sequences being analyzed, 

making this approach impractical for large numbers of sequences (pyrosequencing 

experiments, for example, often generate hundreds of thousands of sequences).  For the 

purpose of clustering, however, the direct computation of pairwise distances (performed 

in just quadratic time) appears to be sufficient. For distance thresholds in the range 0.02 - 

0.05, distances computed from pairwise alignments resulted in a more accurate OTU 
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structure than those obtained from MUSCLE or NAST MSAs, but performed slightly 

worse than those computed from ClustalW MSA (Figure 9c). This indicates that, at least 

for large datasets, multiple alignments can be replaced by direct computation of distances 

from pairwise alignments. 
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Figure 9. (a) OTU structures are not highly sensitive to varying distance corrections. 

Each point plotted uses identical MSA and clustering method (distance thresholds D = 

0.01 – 0.19) varying only the distance correction. The y-axis represents the VI distance 

from the true species using Olsen-corrected matrices, while the x-axis is the analogous 

distance using F84-corrected matrices (r2 = 0.9999). The dashed line is the function y = x. 

(b) Isolating the affect of using LaneMask on OTU quality. We applied LaneMask to a 
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NAST alignment provided by the GreenGenes website to check for improved OTU 

accuracy. Surprisingly, when using distance cutoffs of 0.00 to 0.10, the masked 

alignment provided a poorer approximation of the true species structure on average than 

the unmasked alignment. The dashed line is the function y = x. (c) Comparison of 

pairwise distance methods vs. multiple sequence alignments. The y-axis is the distance 

from the true species clustering. Pairwise distances produced OTUs with quality 

comparable to methods employing MSA programs. 

 

Supervised clustering alternatives 

Our analysis has so far made the assumption that one of the primary goals of a 16S 

analysis pipeline is to estimate the composition of an environment at a pre-specified 

taxonomic level (e.g. species). As demonstrated by our results, the OTU methodologies 

proposed in the literature fail to achieve this goal, generally overestimating the number of 

species.  Even by systematically evaluating various settings for the parameters of the 

analysis process, we could not obtain perfect concordance between the OTU structure 

and the species composition of the environment. This is in part due to the fact that the 

concept of “species” is born out of gross morphological and phenotypic traits of 

microorganisms, and therefore cannot be precisely mapped to fine-scale molecular 

measurements.  Furthermore, the rate of evolution varies across the tree of life, making it 

unrealistic to rely on a single distance threshold.  

As an alternative, we investigated the use of a semi-supervised clustering method 

to adaptively select a set of local distance thresholds that lead to OTUs that better fit the 

species composition of the environment.  Specifically, we employed VI-cut [73], a 
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clustering approach that identifies a cut within a hierarchical clustering tree that 

maximizes the fit with a labeled subset of the sequences.  In the case of 16S analysis, VI-

cut constructs a set of OTUs that optimally matches (in terms of VI distance) the species 

structure of an environment as inferred from a small subset of sequences that have known 

taxonomic assignments (for more details see Materials & Methods).   

We applied VI-cut to our data by simulating partial taxonomic knowledge of the 

dataset. For each MSA and the optimal distance correction (shown in Table 5), we 

randomly selected 10% of the sequences and provided VI-cut with their true labels. To 

assess the variability in the algorithm's results, we repeated this procedure 20 times. As 

seen in Figure 10a, VI-cut outperforms methodologies that employ a single distance 

threshold, irrespective of the MSA employed or the random selection of labeled 

sequences. The need for an adaptive threshold (such as that provided by the VI-cut 

approach) is highlighted in Figure 10b — the diameter of clusters corresponding to a 

single species in our data varies considerably among our sequences (from 0.01 to 0.07) 

and the semi-supervised learning algorithm implemented in VI-cut is able to closely 

approximate the true distribution of distance thresholds. Note that perfect concordance 

between OTUs and species cannot be achieved even with the best hierarchical clustering 

tree constructed from our data – this suggests that there may be better techniques for 

analyzing 16S rRNA data than common hierarchical clustering.   
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Figure 10. Results of VI-cut compared to standard methodologies. (a) Standard 

methodologies using a specific MSA with furthest neighbor clustering to find OTUs. 

Furthest neighbor clustering was used for all standard methodologies plotted. VI-cut was 

employed using the same MSA and distance correction in each plot. For each VI-cut trial, 

10% of the sequences were randomly selected and given labels. Over 20 trials, OTUs 

determined by VI-cut are stable and more accurate than the standard methodologies. (b) 

Distribution of true species distances. “Species” and distance cutoffs inferred by VI-cut 

to generate OTUs for one trial shown in (a). Singletons not shown. There is considerable 

variation (D = 0.01-0.07) in the optimal distance threshold among species. While 
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standard methodologies cut the tree at a single constant threshold, VI-cut allows for 

variable cutting distances, providing more flexibility for defining OTUs. 

 

Consistency of methods across multiple datasets 

To investigate the consistent improvement of the VI-cut methodology over other 

methods, we created ten additional 16S environmental samples – each sample containing 

500 randomly selected sequences from the original dataset. We repeated our comparison 

of VI-cut to other methods for these 10 simulated samples. Examining the results across 

each MSA, we found that VI-cut consistently produced the best species-level 

approximation compared to standard methodologies (Table 6). 

Finally, it is important to observe that clustering 16S rRNA sequences into a set 

of OTUs is a valuable analysis tool even if the resulting OTUs do not correlate with pre-

defined taxonomic entities.  The ad hoc choice of analysis parameters, however, 

complicates cross-study comparisons.  Our results highlight the need for standardizing 

16S rRNA metagenomic analysis methods, or in the very least, reporting results obtained 

with multiple distance thresholds or clustering algorithms. The data used in this study 

have been deposited in the FAMeS online database (http://fames.jgi-psf.org) — a 

repository for simulated metagenomic data [58]. 
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MSA Clustering Distance mean VI 
MUSCLE VI-cut adaptive 0.0589 
ClustalW VI-cut adaptive 0.0595 
ClustalW fn 0.03 0.0688 
MUSCLE fn 0.04 0.0691 
ClustalW fn 0.04 0.0697 
MUSCLE fn 0.05 0.0748 

NAST VI-cut adaptive 0.0762 
ClustalW fn 0.02 0.0838 

NAST fn 0.05 0.0845 
MUSCLE fn 0.03 0.0860 

NAST fn 0.06 0.0872 
ClustalW fn 0.05 0.0942 

NAST fn 0.04 0.0992 
MUSCLE fn 0.06 0.1025 
ClustalW fn 0.06 0.1176 

NAST fn 0.03 0.1222 
MUSCLE fn 0.02 0.1370 
ClustalW fn 0.01 0.1505 

NAST fn 0.02 0.1633 
NAST fn 0.01 0.2362 

MUSCLE fn 0.01 0.2629 

Table 6. Top-performing methodologies and performance of VI-cut, ranked by their 

mean VI-distance over 10 simulated datasets. We constrained the results to commonly 

accepted methods using furthest neighbor clustering and distance thresholds less than 

0.07. A distance threshold of 0.01 is consistently among the worst performing 

methodologies. VI-cut consistently results in the best clustering for each MSA. 

 

Materials & Methods 

Creation of simulated datasets 

The RDP database (release 9.57) [22] was downloaded and reduced to 16S sequences 

only containing full taxonomic identification. The total number of each species was 

calculated and 1860 sequences from the 50 most abundant species in the database were 
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selected. These sequences were required to be at least 800 base pairs. NAST [59] was run 

with default parameters, successfully aligning 1677 sequences (sequences with less than 

75% identity to one of the profile alignment sequences were removed). To screen for 

false annotations, these sequences were then reclassified down to the genus level using 

the RDP Naïve Bayesian classifier [52] and GreenGenes SimRank [23]. The RDP 

classifier assigned all sequences to their correct genus with ≥ 95% confidence. SimRank 

also classified all sequences to the correct genus. Finally, we ran BLASTN [74] with a 

word size of 20 on all 1677 sequences against the reduced RDP database with full 

taxonomic information. Every sequence in the simulated sample had at least one hit to a 

different sequence in the database with the same species annotation with an E-value < 1e-

50 and a bitscore > 1000. These three independent methods of validation strongly 

suggested that there are no spurious annotations in the simulated sample.      

 

Multiple sequence alignment 

All 1677 were aligned using MUSCLE, ClustalW, and NAST [59-61] using default 

parameters. ClustalW was run with the “Fast” option for pairwise alignments. In the 

NAST alignment, all columns containing only gaps were removed, and each MSA was 

trimmed so that every sequence spanned the entire alignment.  

 

Distance corrections and clustering methods 

Distance matrices with Jukes-Cantor, Kimura 2-parameter, and Felsenstein84 corrections 

were computed using DNADIST with default parameters from the PHYLIP package [53]. 
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Olsen sand F84 distance-corrected matrices were also generated using the ARB package 

[75] for additional validation. All distance matrices served as input to DOTUR [62] 

which uses nearest neighbor, average neighbor, and furthest neighbor clustering to create 

OTUs. DOTUR additionally creates OTUs by varying a constant distance threshold D 

which is used as a criterion for merging two clusters in one. Distance thresholds ranged 

from 0, 0.01, 0.02, … 0.45, resulting in a total of 749 OTU sets created by different 

methodologies.    

 

Measures of similarity for clusterings 

We employed two measures of similarity between clusterings: the Rand index [76] and 

the Variation of Information (VI) metric [56]. Examining the values of all clusterings 

according to the Rand index and the VI, we found identical rankings between the two 

metrics. Because the Rand index tends to concentrate near 1 given more clusters, we use 

the VI as the measure of comparison between clusterings. In order to provide a reference 

set of VI distances for known clusters, we measured the VI between the true species 

clustering and the true phylum, class, order, family, and genus clusterings (Table 7). 

 

True clustering VI 
Phyla 0.171 

Classes 0.109 
Orders 0.058 

Families 0.026 
Genera 0.008 
Species 0 
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Table 7. Variation of information (VI) distances of true taxonomic clusterings to the 

known species clustering. 

 

Computation of the Rand index and variation of information for clusterings 

The variation of information criterion is a measure of similarity between two partitions 

(or clusterings) of a given set [56]. For this study, the set is the 1677 16S sequences 

selected for the artificial environmental sample. Mathematically, a given clustering C, is 

a partition of a set S into disjoint subsets (clusters) where: 

  

! 

C = {C1,C2,K,CM }, Ci"C j =#,  and $
i=1

M

Ci = S. 

If there are m elements in set S, and we let mi be the number of elements in cluster Ci, 

then 

! 

m = m
i

i=1

M

" . Given two clusterings, C and D, we can examine all pairs of points in S 

and see whether C and D agree on whether or not they should be in the same cluster. Any 

pair of points will fall exclusively into one of the four following categories: 

11 – The point pair is in the same cluster for both C and D.   

00 – The point pair is in different clusters for both C and D. 

10 – The point pair is in the same cluster for C, but not for D. 

01 – The point pair is in the same cluster for D, but not for C. 

Accordingly, the total number of point pairs falling into each category is N11, N00, N10, 

and N01. Given these values, the Rand index is computed as: 

! 

R C,D( ) =
N
11

+ N
00

N
11

+ N
00

+ N
10

+ N
01

. 
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To compute the Variation of information between two clusterings, we first find the 

probability that a randomly selected sequence is in a particular cluster, that is, 

! 

P i( ) =
m

i

m
. Given this discrete probability distribution, the uncertainty of the random 

variable i, is the entropy associated with clustering C, defined as: 

! 

H(C) = " P(i) # logP(i).

i=1

M

$  

Now, suppose we have two clusterings  

! 

C = {C1,C2,K,C
M

}, and D = {D1,D2,K,D " M 
}. Then 

we calculate the joint distribution

! 

P(i, j) =
Ci"Dj

m
 describing the similarity of all pairs 

of clusters between C and D. The mutual information between the clusterings C and D is 

then defined to be 

! 

I C,D( ) = P(i, j)log
P(i, j)

P(i)P( j)
j=1

" M 

#
i=1

M

# , 

and finally, the variation of information between C and D is defined as the sum of the 

individual clustering entropies less 2 times the mutual information: 

! 

VI C,D( ) = H(C) + H(D) " 2I C,D( ). 

If C and D are identical clusterings, then H(C)=H(D)=I(C,D), and the VI = 0. The VI 

distance is a true metric, satisfying symmetry, non-negativity, and the triangle inequality. 

 

VI-cut method for defining OTUs 

VI-cut is a procedure that finds a clustering from a hierarchical tree decomposition T that 

optimally matches a partial set of known labels, as defined by the variation of 

information metric [73]. A clustering is defined by choosing a set of nodes in T. Each 
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chosen node c corresponds to a single cluster consisting of all the leaves (sequences) in 

the subtree rooted at c. The chosen nodes represent a node-cut in the tree such that each 

leaf belongs to exactly one cluster. 

Let D represent the partial clustering of annotated sequences such that sequences 

with the same label are grouped together. The set of chosen nodes corresponds to a node-

cut K, which induces a clustering AK. The VI-cut algorithm finds the AK that minimizes 

the VI distance to D: 

! 

min
K

 VI(A
K

,D)  

Although there are exponentially many number of possible node-cuts in T, VI-cut finds 

the optimal one efficiently using dynamic programming. For this study, we modified the 

VI-cut algorithm by incorporating forbidden nodes, i.e. nodes in T that VI-cut is not 

allowed to choose. Specifically, any node n with a corresponding distance ≥ 0.07 was 

forbidden. This means that if the cluster induced by n contains a pair of sequences which 

have a pairwise distance ≥ 0.07 then n is not allowed to be chosen. 

To incorporate forbidden nodes into the VI-cut algorithm, we first ran the 

standard VI-cut algorithm. If the clustering returned contained a forbidden node n, we 

moved down the tree and replaced n with its closest unforbidden descendants such that 

each sequence is still placed in only one cluster. This modification forces the method to 

cut the tree at distances < 0.07, which helps to cluster large subtrees with multiple species 

that may not have any known labels. 

 

ANOVA of methodology components 

In order to isolate the individual impact of each component in an OTU methodology, we 
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examined the 200 methodologies resulting in the lowest VI distance from the true species 

clustering, and performed a multi-way analysis of variance (ANOVA) considering four 

factors: multiple sequence alignment, evolutionary distance correction, clustering 

algorithm, and distance threshold. Using a linear model with no interactions, we found 

that the distance threshold alone explains 56% of the total variance in VI (Table 8). This 

impact was followed by the MSA, the clustering algorithm, and finally the distance 

correction, which explained 33%, 7%, <0.01% of the total variance, respectively. This 

model explains 97% of the total variance, indicating that component interactions are 

negligible for our purposes. An F test did not detect any statistically significant 

differences between distance corrections (F = 0.002, P = 0.998). We extended this 

comparison to include the Olsen distance correction in ARB [75], which we found 

produced OTUs virtually identical to those created using the F84 correction (Figure 6a).  

 

Parameter Sum of 
Squares 

Degrees of 
freedom Mean Sq. F Prob > F 

Distance threshold 0.4411 11 0.0401 23.0160 < 0.0001 
MSA 0.0480 2 0.0240 13.7843 < 0.0001 

Clustering 0.0099 2 0.0050 2.8503 0.0604 
Distance correction < 0.0001 2 < 0.0001 0.0020 0.9980 

Error 0.3171 182 0.0017   
Total 0.7910 199 0.0708   

Table 8. Multi-way ANOVA table assessing components used in OTU methodologies. 

The factor with the largest effect on the quality of the OTUs was the distance threshold, 

followed by the MSA, and then the clustering algorithm. The distance correction 

explained < 0.01% of the variance and no statistically significant difference could be 

detected between the corrections (P = 0.998). 
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Chapter 4: Statistical methods for detecting differentially abundant 

features in clinical metagenomic samples 

Background 

Broad sequencing of bacterial populations allows us a first glimpse at the many microbes 

that cannot be analyzed through traditional means (only ~1% of all bacteria can be 

isolated and independently cultured with current methods [77]). Studies of environmental 

samples initially focused on targeted sequencing of individual genes, in particular the 16S 

subunit of ribosomal RNA [67, 78-80], though more recent studies take advantage of 

high-throughput shotgun sequencing methods to assess not only the taxonomic 

composition, but also the functional capacity of a microbial community [18, 30, 81].  

Several software tools have been developed in recent years for comparing 

different environments on the basis of sequence data. DOTUR [62], Libshuff [82], ∫-

libshuff [83], SONs [84], MEGAN [85], UniFrac [86], and TreeClimber [87] all focus on 

different aspects of such an analysis. DOTUR clusters sequences into operational 

taxonomic units (OTUs) and provides estimates of the diversity of a microbial population 

thereby providing a coarse measure for comparing different communities. SONs extends 

DOTUR with a statistic for estimating the similarity between two environments, 

specifically, the fraction of OTUs shared between two communities. Libshuff and ∫-

libshuff provide a hypothesis test (Cramer von Mises statistics) for deciding whether two 

communities are different, and TreeClimber and UniFrac frame this question in a 

phylogenetic context. Note that these methods aim to assess whether, rather than how 

two communities differ. The latter question is particularly important as we begin to 
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analyze the contribution of the microbiome to human health. Metagenomic analysis in 

clinical trials will require information at individual taxonomic levels to guide future 

experiments and treatments. For example, we would like to identify bacteria whose 

presence or absence contributes to human disease and develop antibiotic or probiotic 

treatments. This question was first addressed by Rodriguez-Brito et al. [88], who use 

bootstrapping to estimate the p-value associated with differences between the abundance 

of biological subsytems. More recently, the software MEGAN of Huson et al. [85] 

provides a graphical interface that allows users to compare the taxonomic composition of 

different environments. Note that MEGAN is the only one among the programs 

mentioned above that can be applied to data other than that obtained from 16S rRNA 

surveys.  

These tools share one common limitation — they are all designed for comparing 

exactly two samples — therefore have limited applicability in a clinical setting where the 

goal is to compare two (or more) treatment populations each comprising multiple 

samples. In this paper, we describe a rigorous statistical approach for detecting 

differentially abundant features (taxa, pathways, subsystems, etc.) between clinical 

metagenomic datasets. This method is applicable to both high-throughput metagenomic 

data and to 16S rRNA surveys. Our approach extends statistical methods originally 

developed for microarray analysis. Specifically, we adapt these methods to discrete count 

data and correct for sparse counts. Our research was motivated by the increasing focus of 

metagenomic projects on clinical applications (e.g. Human Microbiome Project [36]).  

Note that a similar problem has been addressed in the context of digital gene 

expression studies (e.g. SAGE [89]).  Lu et al. [90] employ an overdispersed log-linear 
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model and Robinson and Smyth [91] use a negative binomial distribution in the analysis 

of multiple SAGE libraries. Both approaches can be applied to metagenomic datasets. We 

compare our tool to these prior methodologies through comprehensive simulations, and 

demonstrate the performance of our approach by analyzing publicly available datasets, 

including 16S surveys of human gut microbiota and random sequencing-based functional 

surveys of infant and mature gut microbiomes and microbial and viral metagenomes. The 

methods described in this paper have been implemented as a web server and are also 

available as free source-code (in R) from http://metastats.cbcb.umd.edu. 

 

Materials & Methods 
 
Our approach relies on the following assumptions: (i) we are given data corresponding to 

two treatment populations (e.g. sick and healthy human gut communities, or individuals 

exposed to different treatments) each consisting of multiple individuals (or samples); (ii) 

for each sample we are provided with count data representing the relative abundance of 

specific features within each sample, e.g. number of 16S rRNA clones assigned to a 

specific taxon, or number of shotgun reads mapped to a specific biological pathway or 

subsystem (see below how such information can be generated using currently available 

software packages). Our goal is to identify individual features in such datasets that 

distinguish between the two populations, i.e. features whose abundance in the two 

populations is different. Furthermore, we develop a statistical measure of confidence in 

the observed differences.  

The input to our method can be represented as a Feature Abundance Matrix 

whose rows correspond to specific features, and whose columns correspond to individual 
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metagenomic samples. The cell in the ith row and jth column is the total number of 

observations of feature i in sample j (Figure 11). Every distinct observation is represented 

only once in the matrix, i.e. overlapping features are not allowed (the rows correspond to 

a partition of the set of sequences). 

 

 

Figure 11. Format of the feature abundance matrix. Each row represents a specific taxon, 

while each column represents a subject or replicate. The frequency of the ith feature in the 

jth subject (c(i,j)) is recorded in the corresponding cell of the matrix. If there are g 

subjects in the first population, they are represented by the first g columns of the matrix, 

while the remaining columns represent subjects from the second population.  

Data normalization  

To account for different levels of sampling across multiple individuals, we convert the 

raw abundance measure to a fraction representing the relative contribution of each feature 

to each of the individuals. This results in a normalized version of the matrix described 
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above, where the cell in the ith row and the jth column (which we shall denote fij) is the 

proportion of taxon i observed in individual j. We chose this simple normalization 

procedure because it provides a natural representation of the count data as a relative 

abundance measure, however other normalization approaches can be used to ensure 

observed counts are comparable across samples, and we are currently evaluating several 

such approaches. 

 

Analysis of differential abundance  

For each feature i, we compare its abundance across the two treatment populations by 

computing a two-sample t statistic. Specifically, we calculate the mean proportion 
it
x , 

and variance 2

it
s  of each treatment t from which nt subjects (columns in the matrix) were 

sampled:  

! 

x it =
1
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We then compute the two-sample t statistic:   
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Features whose t statistics exceeds a specified threshold can be inferred to be 

differentially abundant across the two treatments (two-sided t-test).   
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Assessing significance   

The threshold for the t statistic is chosen such as to minimize the number of false 

positives (features incorrectly determined to be differentially abundant). Specifically, we 

try to control the p-value—the likelihood of observing a given t statistic by chance. 

Traditional analyses compute the p-value using the t distribution with an appropriate 

number of degrees of freedom. However, an implicit assumption of this procedure is that 

the underlying distribution is normal. We do not make this assumption, but rather 

estimate the null distribution of ti non-parametrically using a permutation method as 

described in Storey and Tibshirani [92]. This procedure, also known as the nonparametric 

t-test has been shown to provide accurate estimates of significance when the underlying 

distributions are non-normal [93, 94]. Specifically, we randomly permute the treatment 

labels of the columns of the abundance matrix and recalculate the t statistics. Note that 

the permutation maintains that there are n1 replicates for treatment 1 and n2 replicates for 

treatment 2. Repeating this procedure for B trials, we obtain B sets of t statistics: t1
0b, …, 

tM
0b, b = 1, …, B, where M is the number of rows in the matrix.  For each row (feature), 

the p-value associated with the observed t statistic is calculated as the fraction of 

permuted tests with a t statistic greater than or equal to the observed ti: 

! 

pi =
# ti

0b
" ti ,b =1,...,B{ }

B
. 

This approach is inadequate for small sample sizes in which there are a limited number of 

possible permutations of all columns. As a heuristic, if less than 8 subjects are used in 
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either treatment, we pool all permuted t statistics together into one null distribution and 

estimate p-values as: 

! 

pi =
1

BM
# j : t j

0b " ti , j =1,...,M{ }
b=1

B

# . 

Note that the choice of 8 for the cutoff is simply heuristic based on experiments during 

the implementation of our method.  Our approach is specifically targeted at datasets 

comprising multiple subjects — for small data-sets approaches such as that proposed by 

Rodriguez-Brito et. al. [88] might be more appropriate. 

Unless explicitly stated, all experiments described below used 1000 permutations. 

In general, the number of permutations should be chosen as a function of the significance 

threshold used in the experiment. Specifically, a permutation test with B permutations can 

only estimate p-values as low as 1/B (in our case 10-3). In datasets containing many 

features, larger numbers of permutations are necessary to account for multiple hypothesis 

testing issues (further corrections for this case are discussed below). Precision of the p-

value calculations is obviously improved by increasing the number of permutations used 

to approximate the null distribution, at a cost, however, of increased computational time. 

For certain distributions, small p-values can be efficiently estimated using a technique 

called importance sampling.  Specifically, the permutation test is targeted to the tail of the 

distribution being estimated, leading to a reduction in the number of permutations 

necessary of up to 95% [95, 96]. We intend to implement such an approach in future 

versions of our software.  
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Multiple hypothesis testing correction  

For complex environments (many features/taxa/subsystems), the direct application of the 

t statistic as described can lead to large numbers of false positives. For example, choosing 

a p-value threshold of 0.05 would result in 50 false positives in a dataset comprising 1000 

organisms.  An intuitive correction involves decreasing the p-value cutoff proportional to 

the number of tests performed (a Bonferroni correction), thereby reducing the number of 

false positives. This approach, however, can be too conservative when a large number of 

tests are performed [21]. 

An alternative approach aims to control the false discovery rate (FDR), which is 

defined as the proportion of false positives within the set of predictions [97], in contrast 

to the false positive rate defined as the proportion of false positives within the entire set 

of tests. In this context, the significance of a test is measured by a q-value, an individual 

measure of the FDR for each test.  

We compute the q-values using the following algorithm, based on Storey and 

Tibshirani [92]. This method assumes that the p-values of truly null tests are uniformly 

distributed, assumption that holds for the methods used in Metastats. Given an ordered 

list of p-values, p(1) ≤ p(2) ≤ … ≤ p(m), (where m is the total number of features), and a 

range of values λ = 0, 0.01, 0.02, …, 0.90, we compute 

! 

ˆ " 
0
#( ) =

#{p j > #}

m 1$ #( )
. 

Next, we fit 

! 

ˆ " 
0
#( ) with a cubic spline with 3 degrees of freedom, which we denote 

! 

ˆ f , 

and let 

! 

ˆ " 
0

= ˆ f (1) . Finally, we estimate the q-value corresponding to each ordered p-

value. First, 

! 

ˆ q p(m )( ) = min p(m ) " ˆ # 0,  1( ) . Then for i = m-1, m-2, …, 1,  



 

 64 
 

! 

ˆ q p(i)( ) = min  
ˆ " 0 #m # p( i)

i
,  ˆ q p( i+1)( )

$ 

% 
& 

' 

( 
) . 

Thus, the hypothesis test with p-value

! 

p
(i) has a corresponding q-value of 

! 

ˆ q p
(i)( ) . Note 

that this method yields conservative estimates of the true q-values, i.e. 

! 

ˆ q p
(i)( ) " q p

( i)( ). 

Our software provides users with the option to use either p-value or q-value thresholds, 

irrespective of the complexity of the data. 

 

Handling sparse counts  

For low frequency features, e.g. low abundance taxa, the nonparametric t–test described 

above is not accurate [98]. We performed several simulations (data not shown) to 

determine the limitations of the nonparametric t-test for sparsely-sampled features. 

Correspondingly, our software only applies the test if the total number of observations of 

a feature in either population is greater than the total number of subjects in the population 

(i.e. the average across subjects of the number of observations for a given feature is 

greater than one). We compare the differential abundance of sparsely-sampled (rare) 

features using Fisher’s exact test. Fisher’s exact test models the sampling process 

according to a hypergeometric distribution (sampling without replacement). The 

frequencies of sparse features within the abundance matrix are pooled to create a 2x2 

contingency table (Figure 12), which acts as input for a two-tailed test.  Using the 

notation from Figure 12, the null hypergeometric probability of observing a 2x2 

contingency table is: 
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! 

p =

R
1

f
11

" 

# 
$ 

% 

& 
' 
R
2

f
21

" 

# 
$ 

% 

& 
' 

n

C
1

" 

# 
$ 

% 

& 
' 

, where 

! 

R
1

= f
11

+ f
12
,

R
1

= f
21

+ f
22
,

C
1

= f
11

+ f
21
,

n = f
11

+ f
12

+ f
21

+ f
22
.

 

By calculating this probability for a given table, and all tables more extreme than 

that observed, one can calculate the exact probability of obtaining the original table by 

chance assuming that the null hypothesis (i.e. no differential abundance) is true [98].  

Note that an alternative approach to handling sparse features is proposed in 

microarray literature. The Significance Analysis of Microarrays (SAM) method [99] 

addresses low levels of expression using a modified t statistic. We chose to use Fisher’s 

exact test due to the discrete nature of our data, and because prior studies performed in 

the context of digital gene expression indicate Fisher’s test to be effective for detection of 

differential abundance [100].  

 

 

Figure 12. Detecting differential abundance for sparse features. A 2x2 contingency table 

is used in Fisher’s exact test for differential abundance between rare features. f11 is the 

number of observations of feature i in all individuals from treatment 1. f21 is the number 

of observations that are not feature i in all individuals from treatment 1. f12 and f22 are 

similarly defined for treatment 2. 
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Creating the Feature Abundance Matrix 

The input to our method, the Feature Abundance Matrix, can be easily constructed from 

both 16S rRNA and random shotgun data using available software packages. Specifically 

for 16S taxonomic analysis, tools such as the RDP Bayesian classifier [52] and 

Greengenes SimRank [23] output easily-parseable information regarding the abundance 

of each taxonomic unit present in a sample. As a complementary, unsupervised approach, 

16S sequences can be clustered with DOTUR [62] into operational taxonomic units 

(OTUs). Abundance data can be easily extracted from the “*.list” file detailing which 

sequences are members of the same OTU. Shotgun data can be functionally or 

taxonomically classified using MEGAN [85], CARMA [101], or MG-RAST [24]. 

MEGAN and CARMA are both capable of outputting lists of sequences assigned to a 

taxonomy or functional group. MG-RAST provides similar information for metabolic 

subsystems that can be downloaded as a tab-delimited file.  

All data-types described above can be easily converted into a Feature Abundance 

Matrix suitable as input to our method.  In the future we also plan to provide converters 

for data generated by commonly-used analysis tools.  

 

Data used in this paper  

Human gut 16S rRNA sequences were prepared as described in Eckburg et al. and Ley et 

al. (2006) and are available in GenBank, accession numbers: DQ793220-DQ802819, 

DQ803048, DQ803139-DQ810181, DQ823640-DQ825343, AY974810-AY986384. In 

our experiments we assigned all 16S sequences to taxa using a naïve Bayesian classifier 

currently employed by the Ribosomal Database Project II (RDP) [52]. COG profiles of 
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13 human gut microbiomes were obtained from the supplementary material of Kurokawa 

et al. [102]. We acquired metabolic functional profiles of 85 metagenomes from the 

online supplementary materials of Dinsdale et al. (2008) (http://www.theseed.org/ 

DinsdaleSupplementalMaterial/).  

 

Results 

Comparison with other statistical methods  

As outlined in the introduction, statistical packages developed for the analysis of SAGE 

data are also applicable to metagenomic datasets. In order to validate our method, we first 

designed simulations and compared the results of Metastats to Student’s t-test (with 

pooled variances) and two methods used for SAGE data: a log-linear model (Log-t) by 

Lu et al. [90], and a negative binomial (NB) model developed by Robinson and Smyth 

[91]. 

We designed a metagenomic simulation study in which ten subjects are drawn 

from two groups - the sampling depth of each subject was determined by random 

sampling from a uniform distribution between 200 and 1000 (these depths are reasonable 

for metagenomic studies). Given a population mean proportion p and a dispersion value 

φ, we sample sequences from a beta-binomial distribution Β(α,β), where α = p(1/φ -1) 

and β = (1-p)(1/φ -1). Note that data from this sampling procedure fits the assumptions 

for Lu et al. as well as Robinson and Smyth and therefore we expect them to do well 

under these conditions. Lu et al. designed a similar study for SAGE data, however, for 

each simulation, a fixed dispersion was used for both populations and the dispersion 
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estimates were remarkably small (φ  = 0, 8e-06, 2e-05, 4.3e-05). Though these values 

may be reasonable for SAGE data, we found that they do not accurately model 

metagenomic data. Figure 13 displays estimated dispersions within each population for 

all features of the metagenomic datasets examined below. Dispersion estimates range 

from 1e-07 to 0.17, and rarely do the two populations share a common dispersion. Thus 

we designed our simulation so that φ is chosen for each population randomly from a 

uniform distribution between 1e-08 and 0.05, allowing for potential significant 

differences between population distributions. For each set of parameters, we simulated 

1000 feature counts, 500 of which are generated under p1 = p2, the remainder are 

differentially abundant where a*p1 = p2, and compared the performance of each method 

using receiver-operating-characteristic (ROC) curves. Figure 14 displays the ROC results 

for a range of values for p and a. For each set of parameters, Metastats was run using 

5000 permutations to compute p-values. Metastats performs as well as other methods, 

and in some cases is preferable. We also found that in most cases our method was more 

sensitive than the negative binomial model, which performed poorly for high abundance 

features.   
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Figure 13. Dispersion estimates (φ) for three metagenomic datasets used in this study. 

These plots compare dispersion values between (A) obese and lean human gut taxonomic 

data, (B) infant and mature human gut COG assignments, and (C) microbial and viral 

subsystem annotations. We find a wide range of possible dispersions in this data and 

significant differences in dispersions between two populations. 
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Figure 14. ROC curves comparing statistical methods in a simulation study. Sequences 

were selected from a beta-binomial distribution with variable dispersions and group mean 

proportions p1 and p2. For each set of parameters, we simulated 1000 trials, 500 of which 

are generated under the null hypothesis (p1 = p2), and the remainder are differentially 

abundant where a*p1 = p2.  For example, p=0.2 and a=2 indicates features comprising 

20% of the population that differ two-fold in abundance between two populations of 

interest. Parameter values for p1 and a are shown above each plot.  
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Our next simulation sought to examine the accuracy of each method under 

extreme sparse sampling. As shown in the datasets below, it is often the case that a 

feature may not have any observations in one population, and so it is essential to employ 

a statistical method that can address this frequent characteristic of metagenomic data. 

Under the same assumptions as the simulation above, we tested a = 0 and 0.01, thereby 

significantly reducing observations of a feature in one of the populations. The ROC 

curves presented in Figure 15 reveal that Metastats outperforms other statistical methods 

in the face of extreme sparseness. Holding the false positive rate (x-axis) constant, 

Metastats shows increased sensitivity over all other methods. The poor performance of 

Log-t is noteworthy given it is designed for SAGE data that is also potentially sparse. 

Further investigation revealed that the Log-t method results in a highly inflated dispersion 

value if there are no observations in one population, thereby reducing the estimated 

significance of the test.  

Finally, we selected a subset of the Dinsdale et al. [18] metagenomic subsystem 

data (described below), and randomly assigned each subject to one of two populations 

(20 subjects per population). All subjects were actually from the same population 

(microbial metagenomes), thus the null hypothesis is true for each feature tested (no 

feature is differentially abundant). We ran each methodology on this data, recording 

computed p-values for each feature. Repeating this procedure 200 times, we simulated 

tests of 5200 null features. Table 9 displays the number of false positives incurred by 

each methodology given different p-value thresholds. The results indicate that the 

negative binomial model results in an exceptionally high number of false positives 
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relative to the other methodologies. Student’s t-test and Metastats perform equally well in 

estimating the significance of these null features, while Log-t performs slightly better.  

These studies show that Metastats consistently performs as well as all other 

applicable methodologies for deeply-sampled features, and outperforms these 

methodologies on sparse data.  Below we further evaluate the performance of Metastats 

on several real metagenomic datasets. 

 

 

 
Figure 15. ROC curves comparing statistical methods in a simulation study for extreme 

sparse sampling. Sequences were selected from a beta-binomial distribution with variable 

dispersions and group mean proportions p1 and p2. For each set of parameters, we 

simulated 1000 trials, 500 of which are generated under the null hypothesis (p1 = p2), and 

the remainder are differentially abundant where a*p1 = p2. For example, p=0.2 and a=2 
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indicates features comprising 20% of the population that differ two-fold in abundance 

between two populations of interest. Parameter values for p1 and a are shown above each 

plot. 

 
 
 

 Number of False Positives 
P ≤  Metastats Student-t Log-t NB 

0.001 7 4 4 109 
0.005 25 25 24 121 
0.01 51 52 43 133 

Table 9. Comparison of false positives found by different methodologies. Using real 

metagenomic data, we simulated features with no differential abundance by randomly 

dividing subjects from a single population into two subpopulations. We found that for a 

stringent p-value threshold of 0.001, the negative binomial model (NB) resulted in a false 

positive rate 20 times higher than the other methodologies. The Log-t of Lu et al. resulted 

in the lowest false positive rate among the methods tested while Student’s test and 

Metastats performed equally well.  
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Taxa associated with human obesity 

In a recent study, Ley et al. [20] identified gut microbes associated with obesity in 

humans and concluded that obesity has a microbial element, specifically that Firmicutes 

and Bacteroidetes are bacterial divisions differentially abundant between lean and obese 

humans. Obese subjects had a significantly higher relative abundance of Firmicutes and a 

lower relative abundance of Bacteriodetes than the lean subjects. Furthermore, obese 

subjects were placed on a calorie-restricted diet for one year, after which the subjects’ gut 

microbiota more closely resembled that of the lean individuals.   

We obtained the 20,609 16S rRNA genes sequenced in Ley et al. and assigned 

them to taxa at different levels of resolution (note that 2,261 of the 16S sequences came 

from a previous study [19]). We initially sought to re-establish the primary result from 

this paper using our methodology. Table 10 illustrates that our method agreed with the 

results of the original study: Firmicutes are significantly more abundant in obese subjects 

(P = 0.003) and Bacteroidetes are significantly more abundant in the lean population (P < 

0.001). Furthermore, our method also detected Actinobacteria to be differentially 

abundant, a result not reported by the original study. Approximately 5% of the sample 

was composed of Actinobacteria in obese subjects and was significantly less frequent in 

lean subjects (P = 0.004). Collinsella and Eggerthella were the most prevalent 

Actinobacterial genera observed, both of which were overabundant in obese subjects. 

These organisms are known to ferment sugars into various fatty acids [103], further 

strengthening a possible connection to obesity. Note that the original study used Students 

t-test, leading to a p-value for the observed difference within Actinobacteria of 0.037, 9 
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times larger than our calculation. This highlights the sensitivity of our method and 

explains why this difference was not originally detected.   

To explore whether we could refine the broad conclusions of the initial study, we 

re-analyzed the data at more detailed taxonomic levels. We identified three classes of 

organisms that were differentially abundant: Clostridia (P = 0.005), Bacteroidetes (P < 

0.001), and Actinobacteria (P = 0.003). These three were the dominant members of the 

corresponding phyla (Firmicutes, Bacteroides, Actinobacteria, respectively) and followed 

the same distribution as observed at a coarser level. Metastats also detected nine 

differentially abundant genera accounting for more than 25% of the 16S sequences 

sampled in both populations (P ≤ 0.01). Syntrophococcus, Ruminococcus, and Collinsella 

were all enriched in obese subjects, while Bacteroides on average were eight times more 

abundant in lean subjects. 

For taxa with several observations in each subject, we found good concordance 

between our results (p-value estimates) and those obtained with most of the other 

methods (Table 10). Surprisingly, we found that the negative binomial model of 

Robinson and Smyth failed to detect several strongly differentially abundant features in 

these datasets (e.g the hypothesis test for Firmicutes results in a p-value of 0.87). This 

may be due in part to difficulties in estimating the parameters of their model for our 

datasets and further strengthens the case for the design of methods specifically tuned to 

the characteristics of metagenomic data. For cases where a particular taxon had no 

observations in one population (e.g. Terasakiella), the methods proposed for SAGE data 

seem to perform poorly.  
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   P values 

Taxon Obese Lean Metastats Student-t Log-t NB 

Phyla       

Bacteroidetes 2.902 ±1.067 25.652±4.576 0.0002 0.0000 0.0004 0.0000 

Firmicutes 89.318±2.223 72.833±4.812 0.0028 0.0025 0.0030 0.8701 

Actinobacteria 4.490±1.345 0.447±0.179 0.0037 0.0371 0.0004 0.0773 
       

Classes       
Bacteroidetes 

(class) 2.722±1.065 25.652±4.576 0.0001 0.0000 0.0005 0.0001 

Actinobacteria 
(class) 4.490±1.345 0.447±0.179 0.0024 0.0371 0.0004 0.1858 

Clostridia 84.633±2.388 66.907±5.799 0.0036 0.0042 0.0052 0.9797 
       

Genera       

Syntrophococcus 2.380±0.383 0.666±0.337 0.0014 0.0077 0.0067 0.4860 

Terasakiella 0.000±0 0.115±0.115 0.0016 0.1986 0.9963 0.0166 

Ruminococcus 26.276±4.454 10.707±2.094 0.0023 0.0207 0.0039 0.6639 

Marinilabilia 0.010±0.010 0.138±0.138 0.0024 0.2353 0.0467 0.0011 

Collinsella 3.565±1.187 0.154±0.154 0.0052 0.0451 0.0046 0.6545 

Bacteroides 1.841±0.963 14.623±4.444 0.0056 0.0023 0.0105 0.0012 

Paludibacter 0.000±0 0.093±0.069 0.0059 0.0896 0.9963 0.0000 

Bryantella 0.461±0.051 0.151±0.102 0.0065 0.0072 0.0304 0.0487 

Desulfovibrio 0.031±0.031 0.145±0.145 0.0073 0.3390 0.2315 0.0156 

Table 10. Differentially abundant taxa between lean and obese human gut microflora. 

For the phylum, class, and genus levels (mean percentage ± s.e., p-value ≤ 0.01) we 

successfully re-established the major result of Ley et al., and uncovered a new difference 

within Actinobacteria. Both Firmicutes and Actinobacteria have significantly higher 

relative abundances in obese people, while Bacteroidetes make up a higher proportion of 

the gut microbiota in the lean population. Results reveal Clostridia as the primary 

component of the differential abundance observed within Firmicutes, and Bacteroidetes 

and Actinobacteria classes explain the differential abundance observed within the 
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corresponding phyla. Using this p-value threshold, we expect less than one false positive 

among these results. The last four columns display the computed p-values for different 

statistical methods, including Metastats and the overdispersion methods of Lu et al. (Log-

t) and Robinson and Smyth (NB).  These results reveal NB and Student’s t-test to be 

overly-conservative. 

 

Differentially abundant COGs between mature and infant human gut microbiomes 

Targeted sequencing of the 16S rRNA can only provide an overview of the diversity 

within a microbial community but cannot provide any information about the functional 

roles of members of this community. Random shotgun sequencing of environments can 

provide a glimpse at the functional complexity encoded in the genes of organisms within 

the environment. One method for defining the functional capacity of an environment is to 

map shotgun sequences to homologous sequences with known function. This strategy 

was used by Kurokawa et al. [102] to identify clusters of orthologous groups (COGs) in 

the gut microbiomes of 13 individuals, including four unweaned infants. We examined 

the COGs determined by this study across all subjects and used Metastats to discover 

differentially abundant COGs between infants and mature (> 1 year old) gut 

microbiomes. This is the first direct comparison of these two populations as the original 

study only compared each population to a reference database to find enriched gene sets. 

Due to the high number of features (3868 COGs) tested for this dataset and the limited 

number of infant subjects available, our method used the pooling option to compute p-

values (we chose 100 permutations), and subsequently computed q-values for each 

feature. Using a threshold of Q ≤ 0.05 (controlling the false discovery rate to 5%), we 
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detected 192 COGs that were differentially abundant between these two populations 

(Table A1). See Table 11 for most abundant detected COGs and others discussed below.  

The most abundant enriched COGs in mature subjects included signal 

transduction histidine kinase (COG0642), outer membrane receptor proteins, such as Fe 

transport (COG1629), and Beta-galactosidase/beta-glucuronidase (COG3250). These 

COGs were also quite abundant in infants, but depleted relative to mature subjects. 

Infants maintained enriched COGs related to sugar transport systems (COG1129) and 

transcriptional regulation (COG1475). This over-abundance of sugar transport functions 

was also found in the original study, strengthening the hypothesis that the unweaned 

infant gut microbiome is specifically designed for the digestion of simple sugars found in 

breast milk. Similarly, the depletion of Fe transport proteins in infants may be associated 

with the low concentration of iron in breast milk relative to cow’s milk [104]. Despite 

this low concentration, infant absorption of iron from breast milk is remarkably high, and 

becomes poorer when infants are weaned, indicating an alternative mechanism for uptake 

of this mineral. The potential for a different mechanism is supported by the detection of a 

Ferredoxin-like protein (COG2440) that was 11 times more abundant in infants than in 

mature subjects, while Ferredoxin (COG1145) was significantly enriched in mature 

subjects.   
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  Mature Infants  

COG id Description mean stderr mean stderr 
Metastat 
qvalue 

COG0205 
6-

phosphofructokinase 0.0017 0.0001 0.0006 0.0002 0.0313 

COG0358 
DNA primase 

(bacterial type) 0.0024 0.0001 0.0008 0.0001 0.0072 

COG0507 

ATP-dependent 
exoDNAse 

(exonuclease V), 
alpha subunit - 

helicase superfamily I 
member 0.0016 0.0001 0.0008 0.0001 0.0349 

COG0526 

Thiol-disulfide 
isomerase and 
thioredoxins 0.0028 0.0002 0.0014 0.0002 0.0371 

COG0621 
2-methylthioadenine 

synthetase 0.0017 0.0001 0.0008 0.0002 0.045 

COG0642 
Signal transduction 

histidine kinase 0.0132 0.0009 0.007 0.0004 0.027 

COG0667 

Predicted 
oxidoreductases 
(related to aryl-

alcohol 
dehydrogenases) 0.0012 0.0001 0.0021 0.0001 0.0282 

COG0739 

Membrane proteins 
related to 

metalloendopeptidases 0.0024 0.0001 0.0006 0.0001 0.0072 

COG0745 

Response regulators 
consisting of a CheY-
like receiver domain 
and a winged-helix 

DNA-binding domain 0.0076 0.0003 0.0051 0.0004 0.0352 

COG0747 

ABC-type dipeptide 
transport system, 

periplasmic 
component 0.0011 0.0001 0.0027 0.0003 0.0352 
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COG1113 

Gamma-
aminobutyrate 

permease and related 
permeases 0.0002 0.0001 0.0018 0.0003 0.0349 

COG1129 

ABC-type sugar 
transport system, 

ATPase component 0.0013 0.0001 0.0028 0.0003 0.0492 
COG1145 Ferredoxin 0.0017 0.0001 0.0005 0.0002 0.0217 

COG1196 
Chromosome 

segregation ATPases 0.0017 0.0001 0.0007 0.0001 0.0108 

COG1249 

Pyruvate/2-
oxoglutarate 

dehydrogenase 
complex, 

dihydrolipoamide 
dehydrogenase (E3) 

component, and 
related enzymes 0.0006 0.0001 0.0011 0.0001 0.0349 

COG1263 

Phosphotransferase 
system IIC 

components, 
glucose/maltose/N-
acetylglucosamine-

specific 0.0012 0.0001 0.0031 0.0003 0.0313 

COG1475 

Predicted 
transcriptional 

regulators 0.0025 0.0002 0.0014 0.0002 0.0435 

COG1595 

DNA-directed RNA 
polymerase 

specialized sigma 
subunit, sigma24 

homolog 0.0053 0.0004 0.0013 0.0003 0.0206 

COG1609 
Transcriptional 

regulators 0.003 0.0002 0.0092 0.0013 0.0424 

COG1629 

Outer membrane 
receptor proteins, 

mostly Fe transport 0.012 0.0016 0.0013 0.0007 0.0313 

COG1762 

Phosphotransferase 
system 

mannitol/fructose-
specific IIA domain 

(Ntr-type) 0.0004 0.0001 0.0017 0.0002 0.0293 
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COG1961 

Site-specific 
recombinases, DNA 

invertase Pin 
homologs 0.0059 0.0004 0.0018 0.0006 0.0345 

COG2204 

Response regulator 
containing CheY-like 
receiver, AAA-type 
ATPase, and DNA-

binding domains 0.0019 0.0002 0.0005 0.0002 0.0421 

COG2244 

Membrane protein 
involved in the export 

of O-antigen and 
teichoic acid 0.0019 0.0001 0.0009 0.0001 0.0229 

COG2376 
Dihydroxyacetone 

kinase 0.0002 0 0.0009 0.0001 0.0278 

COG2440 
Ferredoxin-like 

protein 0 0 0.0002 0 0.0394 

COG2893 

Phosphotransferase 
system, 

mannose/fructose-
specific component 

IIA 0.0003 0.0001 0.0011 0.0001 0.0352 

COG3250 

Beta-
galactosidase/beta-

glucuronidase 0.0056 0.0004 0.0023 0.0006 0.0435 

COG3451 

Type IV secretory 
pathway, VirB4 

components 0.0033 0.0001 0.0009 0.0003 0.0157 

COG3505 

Type IV secretory 
pathway, VirD4 

components 0.0029 0.0001 0.001 0.0003 0.0278 

COG3525 
N-acetyl-beta-

hexosaminidase 0.0016 0.0002 0.0004 0.0001 0.0352 

COG3537 
Putative alpha-1,2-

mannosidase 0.002 0.0003 0.0002 0.0002 0.0352 

COG3711 
Transcriptional 
antiterminator 0.0004 0.0001 0.002 0.0003 0.0339 

COG3712 
Fe2+-dicitrate sensor, 
membrane component 0.0023 0.0003 0 0 0.028 

COG4206 

Outer membrane 
cobalamin receptor 

protein 0.0021 0.0003 0.0003 0.0001 0.0313 
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COG4771 

Outer membrane 
receptor for 

ferrienterochelin and 
colicins 0.0039 0.0005 0.0006 0.0003 0.0366 

Table 11. Differentially abundant COGs between infant and mature human gut 

microbiomes using a q-value threshold of 0.05. Of the 192 differentially abundant COGs 

detected, this table displays the most abundant 25 COGs in either mature or infant gut 

microbiomes. Using this threshold we expect less than 10 false positives in this dataset. 
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Differentially abundant metabolic subsystems in microbial and viral metagenomes 

A recent study by Dinsdale et al. profiled 87 different metagenomic shotgun samples 

(~15 million sequences) using the SEED platform (http://www.theseed.org) [18] to see if 

biogeochemical conditions correlate with metagenome characteristics. We obtained 

functional profiles from 45 microbial and 40 viral metagenomes analyzed in this study. 

Within the 26 subsystems (abstract functional roles) analyzed in the Dinsdale et al. study, 

we found 13 to be significantly different (P ≤ 0.05) between the microbial and viral 

samples (Table 12). Subsystems for RNA and DNA metabolism were significantly more 

abundant in viral metagenomes, while nitrogen metabolism, membrane transport, and 

carbohydrates were all enriched in microbial communities. The high levels of RNA and 

DNA metabolism in viral metagenomes illustrate their need for a self-sufficient source of 

nucleotides. Though the differences described by the original study did not include 

estimates of significance, our results largely agreed with the authors’ qualitative 

conclusions. However, due to the continuously updated annotations in the SEED database 

since the initial publication, we found several differences between our results and those 

originally reported. In particular we found virulence subsystems to be less abundant 

overall than previously reported, and could not find any significant differences in their 

abundance between the microbial and viral metagenomes.   
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Subsystem microbial viral Metastats 

p value 
Carbohydrates 17.01 ± 0.77 12.87 ± 0.82 0.001 

Amino Acids and Derivatives 9.29 ± 0.46 7.58 ± 0.55 0.019 
Respiration 8.24 ± 1.34 3.89 ± 0.46 0.001 

Photosynthesis 7.13 ± 2.38 1.16 ± 0.36 0.017 
Cofactors, Vitamins, and Pigments 5.54 ± 0.27 6.44 ± 0.26 0.022 

Experimental Subsystems 4.88 ± 0.31 5.80 ± 0.36 0.050 
DNA Metabolism 3.99 ± 0.24 9.18 ± 1.06 0.001 

Cell Wall and Capsule 3.73 ± 0.27 5.64 ± 0.71 0.009 
RNA Metabolism 3.65 ± 0.21 5.23 ± 0.71 0.033 

Nucleosides and Nucleotides 3.38 ± 0.18 7.72 ± 0.74 0.001 
Membrane Transport 2.04 ± 0.11 1.30 ± 0.15 0.001 
Nitrogen Metabolism 1.47 ± 0.08 0.93 ± 0.10 0.001 

Fatty Acids and Lipids 1.46 ± 0.07 1.05 ± 0.11 0.004 

Table 12. Differentially abundant metabolic subsystems between microbial and viral 

metagenomes (mean percentage ± s.e., p-values ≤ 0.05). Using this threshold we expect 

less than one false positive in the dataset. We find that viral metagenomes are 

significantly enriched for nucleotides and nucleosides and DNA metabolism, consistent 

with the viruses’ need for self-sufficiency. Processes for respiration, photosynthesis, and 

carbohydrates are overrepresented in microbial metagenomes.  

 

Discussion 

We have presented a statistical method for handling frequency data to detect 

differentially abundant features between two populations. This method can be applied to 

the analysis of any count data generated through molecular methods, including random 

shotgun sequencing of environmental samples, targeted sequencing of specific genes in a 

metagenomic sample, digital gene expression surveys (e.g. SAGE [100]), or even whole-

genome shotgun data (e.g. comparing the depth of sequencing coverage across assembled 
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genes). Comparisons on both simulated and real dataset indicate that the performance of 

our software is comparable to other statistical approaches when applied to well-sampled 

datasets, and outperforms these methods on sparse data. 

Our method can also be generalized to experiments with more than two 

populations by substituting the t-test with a one-way ANOVA test. Furthermore, if only a 

single sample from each treatment is available, a chi-squared test can be used instead of 

the t-test. [98].   

In the coming years metagenomic studies will increasingly be applied in a clinical 

setting, requiring new algorithms and software tools to be developed that can exploit data 

from hundreds to thousands of patients. The methods described above represent an initial 

step in this direction by providing a robust and rigorous statistical method for identifying 

organisms and other features whose differential abundance correlates with disease. These 

methods, associated source code, and a web interface to our tools are freely available at 

http://metastats.cbcb.umd.edu.   
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Chapter 5: Inferring microbial interaction webs from time-series 
metagenomic data 
 
Note in this chapter, my contributions include designing the interaction interference 
methodology and performing all computational experiments. Peter Turnbaugh and 
Jeff Gordon performed the actual humanized mouse experiments in a previously 
published study. I apply my methodology to their data as described below. 

Background 

In the newly established field of metagenomics, high-throughput DNA sequencing 

technologies enable researchers to examine the taxonomic composition and functional 

capabilities of complex microbial environments. Most recent metagenomic studies have 

focused on samples from a single time-point, however evidence is mounting that 

microbial communities are often not at equilibrium, rather are constantly shifting state 

and even oscillating [105-108]. Consequently, there is an immediate need for studies 

examining the temporal variation in microbial populations [26, 109]. 

Only a limited number of metagenomics studies have investigated the spatial and 

temporal dynamics of microbial communities. Eckburg et al. performed 16S rRNA 

analyses on mucosal samples along the human endogenous intestinal tract (as well as 

fecal samples), revealing not only extensive bacterial diversity, but also remarkable 

variation throughout the major sections of the colon [19]. Ley et al. analyzed the 

temporal changes in obese human gut microbiota over the course of a diet [20]. This 

study found that in obese subjects placed on a diet, the gut microflora shifted towards a 

state similar to that of their lean counterparts. Using 16S-based oligonucleotide arrays to 

characterize taxonomic diversity, Palmer and colleagues followed the development of gut 

microbiota in infants from birth through the first year of life, and found that although the 
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same groups of microbes dominate gut microflora, the entire community is highly 

variable during the first year of life for each individual newborn [80]. Additional 

metagenomic studies have explored the dynamic change of microbial communities within 

ocean water and sediment at different depths [110, 111], on apple surfaces during crop 

cycles [15], and inside the human gut throughout the course of antibiotic treatments [48].  

Longitudinal studies will not only describe a new dimension of bacterial 

populations for scientists, they will also aid in modeling these systems. Computational 

models, supplemented by longitudinal data, will provide an opportunity to realistically 

model community dynamics and validate predictions. In this context, mathematical 

models can be used to study the underlying interactions between microbes, evaluate the 

effects of environmental factors, and ultimately, forecast the reaction of a microbial 

population to perturbation.   

In this study, we employ the generalized Lotka-Volterra (gLV) model to predict 

microbe-microbe interactions from time-series metagenomic data. This model has been 

widely applied in studies of microbial and macro-scale (i.e. animal) ecology to 

characterize trophic and non-trophic interactions between organisms [112-114]. A variety 

of dynamic regimes can be captured using the gLV model including equilibrium 

convergence, periodicity, and chaos (i.e. unpredictable behavior beyond some time 

window). Furthermore, in contrast to other modeling approaches (such as generalized 

additive models [115, 116]), the gLV model formulation allows an intuitive interpretation 

of its parameters as natural ecological measures and interactions between members of a 

community. For the purposes of this work, we focus on (i) the prediction of interaction 
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direction (e.g. taxon i inhibits/enhances the growth rate of taxon j) and (ii) the ancillary 

estimation of interaction strengths in the approximated web.  

We present a reliable prediction methodology that computes confidence scores for 

interaction direction based on the distributions of estimated parameters in the gLV model. 

We further validate our approach on several simulated microbial populations. Applying 

our method to a metagenomic dataset following “humanized” mouse gut microbiota over 

a period of eight weeks, we identify several compelling interactions between dominant 

members of the intestinal tract.  

 

Materials & Methods 

Modeling microbial communities 

Recent studies attempting to model interacting microbial populations have typically used 

one of two approaches: generalized additive models (GAMs) and generalized Lotka-

Volterra (gLV) models, which we now compare below. 

GAMs are a general statistical regression approach that incorporate smoothing 

splines to describe nonlinear relationships between the predictor and response variables 

[117]. In the context of organismal communities, the change in abundance (or logarithmic 

abundance) of the ith organism, 

! 

"N
i
, is modeled as a sum of nonparametric smooth 

functions: 

! 

"Ni = bi + f ij N j( )
j

# + $i .   (1) 

Here, Nj is the abundance (or log abundance) of taxon j, bi is an intercept term, 

! 

fij N j( )  is 

a smooth function specifying the effects of taxon j on taxon i, and 

! 

"
i
 is a noise term. 
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Trosvik and colleagues have used this approach to model both artificially constructed and 

natural bacterial communities [116, 118].    

In contrast, generalized Lotka-Volterra models are deterministic models 

developed specifically for analyzing communities comprised of interacting individuals 

(originally in the context of predator-prey relationships). These models have been 

employed for decades in ecological studies of natural interacting populations at macro- 

and micro-scales [112-114]. A discrete version of the gLV model is formulated as the 

following system of first-order difference equations:  

! 

Ni t +1( ) = Ni t( )exp ri 1+
1

Ki

" ijN j t( )
j
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where

! 

N
i
t( )  is the density of taxon i at time t, 

! 

r
i
 is the reproductive rate of taxon i, and Ki 

is its carrying capacity within the environment (i.e. the theoretical equilibrium of taxon i 

in the absence of all other taxa). Each coefficient 

! 

" ij  is a measure of the overall effect of 

taxon j on taxon i.  

The general interaction web can be represented as a matrix:  
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in which any symmetric pair 

! 

" ij ," ji( ), defines the relationship between taxa i and j (see 

Table 13). Organisms within the same taxon are assumed to be competing, thus αii = -1 

for all i. This model represents the discrete version of the generalized Lotka-Volterra 

ODE model: 



 

 91 
 

! 

˙ N i = riNi +
ri

Ki

" ijNiN j

j=1

n

# ,       (3) 

where the rate of change of the ith taxon 

! 

˙ N 
i
, depends on its current abundance

! 

N
i
 as well 

as the abundances of all other taxa 

! 

N j . An excellent description of the Lotka-Volterra 

model, as well as other ecological models, is found in [112].  

There are several notable differences between the GAM and gLV approaches. 

GLV models presume the widely accepted law of mass action, that is, two populations 

interact at a rate proportional to the product of their abundances [119, 120], while in a 

GAM setting such effects are difficult to model (the influence of taxon j on taxon i in 

equation (1) does not depend on the abundance of taxon i). Both models require 

estimation of (m2+m) parameters corresponding to m2 interactions between organisms 

and m additional species-specific parameters (intercept terms in GAM, and carrying 

capacities and growth rates in gLV).  In gLV, the interactions are defined by constant 

parameters, while in GAM each interaction is a smooth function whose parameters 

(number of knots and their positions) must also be estimated.  Thus, GAMs require a 

larger number of parameters to be estimated, making it difficult to accurately learn these 

models from the limited data available. In conclusion, the GAM and gLV approaches are 

complementary — GAMs provide more flexibility in modeling the density dependence of 

the interaction between organisms, while gLVs better approximate the physical process 

of interacting populations and are easier to interpret. Here we provide a first application 

of the gLV ecological models to metagenomic time-series data. 

An attractive property of the gLV model is the ability to generalize over 

aggregates of organisms, e.g. by modeling an environment at a higher taxonomic level. 
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Suppose we have a community with three interacting taxa, then the equation describing 

the abundance of taxon 1, is: 

! 

N1 t +1( ) = N1 t( )exp r1 1+
"N1 t( )
K1

+
#12N2 t( )
K1

+
#13N3 t( )
K1

$ 

% 
& 

' 
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) 

* 
+ 
, 

- 
. 
/ 

, 

which reduces to  

! 

N1 t +1( ) = N1 t( )exp "0 + "1N1 t( ) + "2N2 t( ) + "3N3 t( ){ }. 

 

Assuming that taxa 2 and 3 are members of the same higher-level taxon, which we denote 

as 2’, they can be grouped:

! 

N " 2 
t( ) # N2

t( ) + N
3
t( ). Therefore,  

! 

N1 t +1( ) = N1 t( )exp "0 + "1N1 t( ) + " # 2 N # 2 t( ){ } 

where

        " # 2 =
"2N2 t( ) + "3N3 t( )

N # 2 t( )
.

 

Now, we see that the coefficient β2’ is dependent on the abundances of its associated 

members, implying it is changing over time. We must then require that the relative 

abundances of taxa 2 and 3 do not change with respect to each other, i.e. for some 

positive rational value p, 

! 

N
2
t( ) = p " N

3
t( ). Under this criterion, 

! 

" # 2 
=
"

2
p + "

3

(p +1)
 and is 

constant. Thus the effect of the higher-level taxon (2’) is a linear aggregate of its 

members if the relative abundances of the members do not change over time.  

Additionally, we must also show how this aggregation modifies the equations 

defining taxa 2 and 3 in order to formulate an equation for the higher-level taxon (2’). We 

need to reconcile the following equations: 
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! 

N2 t +1( ) = N2 t( )exp " 0 + "1N1 t( ) + " 2N2 t( ) + " 3N3 t( ){ }

N3 t +1( ) = N3 t( )exp # 0 + #1N1 t( ) + # 2N2 t( ) + # 3N3 t( ){ }

N $ 2 t +1( ) = N $ 2 t( )exp %0 +%1N1 t( ) +%2N $ 2 t( ){ }

 

where ζ’s, γ’s, and ϕ’s are all real numbers. Using the same requirement relative 

abundance criterion as above,

! 

N
2
t( ) = p " N

3
t( ), we have: 

! 

N2 t +1( ) = N2 t( )exp " 0 + "1N1 t( ) + " # 2 N # 2 t( ){ }

N3 t +1( ) = N3 t( )exp $ 0 + $1N1 t( ) + $ # 2 N # 2 t( ){ }
, 

and summed, 

! 

N2 t +1( ) + N3 t +1( ) = N2 t( )exp " 0 + "1N1 t( ) + " # 2 N # 2 t( ){ }

+N3 t( )exp $ 0 + $1N1 t( ) + $ # 2 N # 2 t( ){ }
.  (1) 

 

Because 

! 

N " 2 
t( ) # N2

t( ) + N
3
t( ),  

! 

N " 2 t +1( ) = N2 t( ) + N3 t( )( )exp #0 +#1N1 t( ) +#2N " 2 t( ){ }

= N3 t( ) p +1( )exp #0 +#1N1 t( ) +#2N " 2 t( ){ }.
   (2) 

From equations (1) and (2), we see that if we require the effects of each taxon on taxa 2 

and 3 to be equivalent, (i.e. 

! 

"
0

= #
0
,  "

1
= #

1
,  " $ 2 

= # $ 2 ), then we can reconcile the 

equations: 

! 

N2 t +1( ) + N3 t +1( ) = N2 t( ) + N3 t( )( )exp " 0 + "1N1 t( ) + " # 2 N # 2 t( ){ }
= N # 2 t +1( ).

 

Therefore, if we assume that the relative abundances of a set of taxa do not change with 

respect to each other, and further, that other members of the population have identical 

individual effects on these taxa, then the set may be aggregated into one higher taxon in 
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the gLV model. This aggregate property generalizes to any number of members in a 

higher-level taxon. 
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  αij 
  - 0 + 

- competition ammensalism parasitism 

0 ammensalism neutrality commensalism αji 

+ predation commensalism mutualism 

Table 13. Signs of interaction coefficients associated with major population interactions. 

αij and αji are symmetric components in the interaction matrix. In this notation, the 

predation and parasitism relationships imply that taxon i is the prey and the parasite 

relative to taxon j. If αij is zero, it implies that taxon j has no effect on the growth rate of 

taxon i. In our model formulation, we assume members of the same taxon are competing, 

hence, αii = -1 for all i. 

 

Learning a model from the data 

Usually the parameters of the gLV model are determined empirically through controlled 

laboratory experiments. In the context of metagenomic studies, such experiments are 

impractical or even impossible. Thus, we explored whether these parameters can be 

directly learned from time-series data. Specifically, we attempt to find a set of parameters 

that minimize the difference (usually expressed as a least-squares criterion) between the 

observed data and the model predictions. We evaluated several regression methods: 

dynamic regression – an analytical method traditionally used in the context of Lotka 

Volterra models [112-114]; nonlinear least squares – a gradient-descent approach; and 
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two gradient-free methods: Nelder-Mead and pattern search.  These methods are briefly 

described below: 

Dynamic regression converts the Lotka-Volterra model into a linear formulation 

according to the equation:   

( )
( )

( )

( )0

1
ln

i i

i ij j

ji i

i ij j

j

N t r
r N t

N t K

N t

!
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# $+
= +% &% &

' (

= +

)

)
 

allowing model parameters to be estimated through linear regression.  

The nonlinear least squares method [121] employs a gradient descent algorithm to 

estimate model parameters. The basic assumption of this approach is that surface of the 

objective function being minimized (in our case the least squares difference between 

model predictions and time-series data) is smooth. The Nelder-Mead [122] and pattern 

search [123]  methods do not make this assumption, rather they explore the search space 

in a systematic fashion while attempting to minimize the objective function. Nelder-Mead 

explores the space through a series of operations performed on simplices within the 

search space, while pattern search follows the direction determined by the values of the 

objective function along the vectors of a positive basis of the search space. These 

methods were found to be more robust when optimizing potentially non-smooth functions 

or in high-dimensional spaces where gradient computations are expensive. 

Nonlinear least squares, Nelder-Mead, and pattern search optimizations were 

performed using implemented MATLAB routines. All three methods employed the same 

constraints on the number of steps allowed (‘MaxIter’ = 1000) and the maximum number 

of function evaluations (‘MaxFunEvals’ = 1e6), and stopping criteria.  
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  To avoid getting trapped in local minima, we restart the NLS, NM, and PS 

searches from a collection of random starting points.  Specifically, when evaluating the 

performance of different regression methods we relied on simulated communities 

comprising 2,3, and 4 taxa (as described below), and sampled 10,000 random points 

within the search space, selected the best 10 in terms of fit between model and data, and 

used these as the starting point for the optimization procedure.  All three methods were 

run on the same set of initial starting points.  For the analysis of the actual metagenomic 

data we selected the best 10,000 starting points for the NLS procedure from among 

500,000 random samples of the search space. All computational analyses were performed 

in MATLAB v. R2009a (The Mathworks Inc. Natick, MA).  

 

An inference methodology with confidence values 

Recall that given a time-series metagenomic dataset our goals are (i) to predict the 

qualitative interaction directions (+/-) for each pair of taxa, and (ii) to accurately estimate 

the parameters of the full gLV model. The inference methods described in the previous 

section answer these goals however do not provide any measure of confidence in the 

predicted parameters given the fact that the underlying data are noisy.  In other words, if 

small changes in the underlying data or the inference algorithm lead to large differences 

in estimated parameters (either in sign or magnitude) the resulting model cannot be 

trusted.  To evaluate the stability of the fitting procedure we developed a stochastic 

extension of the NLS technique. As described before, NLS minimizes a least-squares 

objective function O(x) starting from some initial point in the parameter space x0. The 

resulting minimizer, x0*, is a set of parameters in the gLV model that minimizes the 
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difference between the observed longitudinal data and the model predictions. However, 

x0* is likely only a local minimizer, that is, there exists a different set of parameters x* 

such that O(x*) < O(x0*). We cannot exhaustively search the parameter space for a global 

minimum, so instead we randomly select a set of initial points x1,…, xm and perform NLS 

starting from each one, resulting in minimizers x1*,…, xm*, respectively. We then 

examine the distribution of each parameter’s estimates across these minimizers to 

compute a confidence value for each predicted interaction.   

Given a set of minimizers x1*,…, xm*, we first sort these in order of goodness fit 

(that is, by corresponding values of O(x1*),…,O(xm*) from smallest to largest). To reduce 

the effect of outliers we focus on just subset of the estimated models by excluding the 

bottom ϕ fraction of the models (with respect to goodness of fit). The sign of each 

interaction coefficient is set to the majority vote within the remaining models. For a 

particular interaction coefficient, αij, the confidence in our prediction is the proportion of 

selected models that agree with the majority-vote interaction (+ or -) for that coefficient. 

For example, if ϕ = 0.05, we compute confidences after discarding the bottom 5% of 

models. Similarly, the magnitude of each parameter in the gLV model is found by 

computing its average (and standard error) over all selected models.  

 

Small interaction network simulation design  

We simulated 11 five-taxon communities by randomly selecting model parameters 

according to the following equations: 
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! 

Ki ~Unif 500,105( )
ri ~Unif 0.8r*,1.2r*( ),  where r* = 0.5

" ij ~ s #Unif 0.5,4( ),  where

s =
 1 with probability 0.25

-1 otherwise

$ 
% 
& 

' 
( 
) 

 

Ni 0( ) ~ Ki + Ki #G 0,0.25( )

 

where G(0,0.25) is a Gaussian distribution with mean 0 and standard deviation 0.25. All 

datasets represented fully connected networks, i.e. every taxon influences every other 

taxon in some way. From these initial abundances, we simulated 20 consecutive time 

points, and required all taxon abundances to remain within the range of [10, 1e6] (prior to 

introducing error), thus preventing extinction or explosion of any taxon. 

Once a satisfactory model was generated, we added noise to the data according to 

an error parameter 

! 

"  such that 

! 

N
i
t( ) = N

i
t( ) + " #µ

i
#G 0,1( ) , 

where µi is the mean abundance of taxon i throughout the time-series. The validation set 

of 11 five-taxa communities used γ = 0.03.   

 

Humanized gnotobiotic mouse gut dataset 

In brief, purified adult human fecal microbiota were first transplanted via gavage into 

germ-free C57BL/6J mice. After initial colonization, mice remained on a low-fat mouse 

chow diet for four weeks. Subsequently, half of the mice were switched to a model 

Western diet high in fat and sugar, and followed over the course of two months. Weekly 

fecal samples were collected from each mouse and prepared for deep 16S rRNA 454 FLX 

pyrosequencing. Details of experimental protocols including mouse humanization, gut 



 

 100 
 

microbial community DNA preparation, diet treatments, and 16S rRNA environmental 

pyrosequencing (and assignment) are described in Turnbaugh et al. [124]. Relative 

abundance measurements in each sample were calculated from corresponding 16S 

sequence taxonomic assignments.  

Our analysis screened out rarely observed taxonomic classes (< 1% of the 

population on average) due to poor measurement of relative abundance. We normalized 

relative abundances for each sample by multiplying by 105 (to approximate 16S 

copies/nl). This roughly corresponds to the ~1011 cells/ml observed in mouse and human 

faecal samples [125]. 

To compensate for the fact that only weekly time points available per subject, we 

fit the average abundances of each class using a shape-preserving piecewise cubic 

Hermite interpolation. Daily abundance numbers were extracted from the interpolated 

curve in order to ensure a smooth model fit. 10,000 stochastic NLS iterations were run 

for each individual mouse time-series dataset. Constraints on model parameters during 

the fitting procedure required: (1) interaction coefficients to remain within (-10, 10), (2) 

the universal growth rate between 0 and 2, and (3) the carrying capacity of each taxon to 

remain within its minimum observed value and 10 times its maximum observed value 

(maximum observed values ranged from 2.4e3 to 7.2e5 16S/nl across all taxa). 

Constraints were required to fit the model to realistic parameters in reasonable 

computational time, and fitted parameter sets typically did not approach the limits of the 

constraints.  
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Results 

Prediction of small interaction webs 

We first designed a simulation study to evaluate the quality of different methods for 

predicting microbial interaction networks in environments with few taxa. Using the 

discrete-time gLV model, we generated time-series datasets describing the dynamics of 

systems with up to four interacting taxa, and then attempted to re-discover the structure 

of the interaction network, as well as evaluate the quality of the fitted parameters.  

The interaction network in each simulation is fully connected (i.e. no interaction 

coefficients are 0), and allows for mutualistic (+,+), competitive (-,-) and antagonistic (+,-

) relationships. We assessed several techniques for data fitting: dynamic regression 

(DyR), nonlinear least squares (NLS), Nelder-Mead (NM), and pattern search (PS) (see 

Methods for details). The different procedures are compared through the false 

interpretation rate (FIR), defined as the proportion of interspecific interaction 

coefficients with incorrect assignments (i.e. the sign of the estimated coefficient is 

wrong).   

Table 14  displays the accuracy of the predictions found in our simulations. In 

simulations involving two taxa, all methods performed well, frequently resulting in FIRs 

<1%. In general, the dynamic regression approach handled data with no error very well 

(FIRs < 4%), but had decreased performance for datasets with high error-rates. Model fits 

from NLS, NM, and PS methods typically outperformed dynamic regression (Figure 16). 

On average, the NLS method produced better results than the other methods for realistic 

data (error rates between 3% and 5%).  
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  False Interpretation Rate  
  Dynamic 

regression NLS NM PS 

2 taxa Error rate 
(γ)       

 0% 0 0 0.015 0 
 3% 0.020 0.001 0.005 0 
 5% 0.035 0.005 0.005 0.01 

3 taxa Error rate 
(γ)     

 0% 0.018 0.071 0.168 0.175 
 3% 0.125 0.061 0.180 0.170 
 5% 0.175 0.070 0.155 0.155 

4 taxa Error rate 
(γ)     

 0% 0.0367 0.0783 0.2508 0.2742 
 3% 0.2158 0.0767 0.2525 0.2575 
 5% 0.2825 0.0992 0.2442 0.2442 

Table 14. Structure accuracy results for small networks. For each error rate, we 

simulated the dynamics of 100 microbial environments with known interaction webs. 

Inference methods were run on the same time-series datasets in each trial. False 

interpretation rates are defined as the proportion of incorrectly inferred interactions 

across each corresponding set of 100 simulated datasets. See Methods for details of 

simulated communities.    
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Figure 16. Model accuracy (a. mean ± s.e.m, b. median) in 400 simulated two-taxa 

systems. One hundred time-series datasets (each with a unique gLV model parameters) 

were simulated for each error rate (0, 1, 3, and 5%, shown in legend). The NLS, NM, and 

PS methods resulted in more accurate model fits than dynamic regression in 96%, 99%, 

and 86% of the trials, respectively. We found in these simulations that dynamic 

regression often resulted in very poor model fits, preventing further predictive modeling 

and simulation of microbial systems. In trials where the residual error of the DyR method 

was beyond floating-point representation (25 of the 400 trials), we reassigned the error to 

the largest computed residual error found across all DyR trials. Residual error is defined 
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as the sum-of-squared differences between the observed data and model predictions (see 

Methods). 

 

 

 

We also tested the use of simple Pearson (i.e. linear) correlations of growth rates 

(and absolute abundance) between taxa as a way to detect interactions. However, strong 

linear correlations cannot translate to interaction direction between organisms, so one 

could not infer a competitive, mutualistic, or antagonistic relationship, but simply an 

interaction of some type. Simulating 1000 4-taxa communities (with an error rate of 3%), 

we examined what proportion of interactions would be missed if we required growth 

rates (or absolute abundances) to have a correlation coefficient of at least 0.15 to indicate 

an interaction. In this case, linear correlations of growth rates and abundances failed to 

detect 30% and 45% of the true interactions, respectively. Due to their poor detection 

ability and vague interpretation, we advise against usage of linear correlations to 

approximate microbial interactions in this context. It is clear from these trials that 

estimating interactions even for small food webs can be a formidable task.      

 

Validation of regression approach 

The methods employed above are limited in that they do not provide a measure of the 

significance of each inferred interaction coefficient. The challenge in resolving an 

interaction web requires a more reliable approach where the confidence in each 

interaction prediction is measured, and predictions can therefore be ranked in terms of 
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confidence. We propose a stochastic fitting methodology that generates a consensus 

interaction matrix, in which the sign of each interaction coefficient is given a confidence 

level based on the distribution of optimized fits.  

Briefly, our method first runs the NLS fitting procedure for a predetermined 

number of iterations. We then sort the resulting parameters sets in order of goodness of 

fit, and discard a proportion of inferred models (designated by a parameter ϕ between 0 

and 1) before generating consensus confidence values. For example, if ϕ = 0.05, we 

compute confidences using the top 95% of optimized fits (i.e. we ignore model fits in the 

bottom 5%). Given a particular interaction coefficient, αij, the confidence value is the 

proportion of selected fits that agree with the majority-vote interaction (+ or -) for that 

coefficient. (See Methods for details.)  

We validated our methodology using 11 five-taxa simulated datasets, each with a 

unique set of model parameters. These five gLV models correspond to 220 interspecific 

interaction coefficients, which form our test set. We ran the stochastic NLS procedure for 

10,000 iterations per dataset, and subsequently generated consensus confidence scores 

using a series of values for ϕ. Figure 17a displays the computed ROC curves (sensitivity 

vs. FIR) for the test set. We discovered that culling a large proportion of optimal fits (e.g. 

ϕ = 0.95 or 0.99) produced higher FIRs than trials utilizing smaller values of ϕ. 

Additionally, we found that applying a stringent confidence threshold allowed for reliable 

prediction of the majority of interactions with a negligible FIR. As an example, using ϕ = 

0.5 with a confidence cutoff of 0.98 (i.e. 98% among the models ranked in the top half, 

according to goodness of fit to the simulated time-series data), our method correctly 

predicts 69.5% of the interactions, and achieves an FIR of less than 1%.      
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The ecology research community has made extensive efforts to describe the 

“strength” of interactions between members of a food web [126]. Different goals and 

driving questions among researchers have led to conflicting definitions of interaction 

strength, but the purposes of this study, we define strength as the quantitative value of the 

interaction coefficients in the gLV model; these values provide a normalized measure of 

the per capita effect of members of the population on each taxon. In line with aim (ii), we 

sought to assess the accuracy of the estimated interaction coefficients in our 

methodology, considering the same range of values for ϕ and confidence cutoffs used to 

generate the ROC curves in Figure 17a. For each confidence cutoff and ϕ value, we 

computed the average error rate of the predicted interaction coefficients (Figure 17b), and 

observed that larger values of ϕ resulted in more accurate approximations of interaction 

strength. Indeed, using a confidence threshold of 0.95, a ϕ value of 0.5 resulted in a 36% 

decrease in the average error rate over a more stringent ϕ = 0.99. For each particular 

value of ϕ, a decrease in the confidence threshold tended to increase the average error 

rate. 

For ϕ values ≤ 0.5 and confidence thresholds ≥ 0.75, the average error rate 

remained below 0.8. In our simulations, the magnitude of an interaction coefficient was 

on average 2.25. This high relative error rate suggests that despite our success in 

predicting the general interaction (a sign of + or -), there is considerable room for 

improvement in estimating interaction strength. Considering the empirical performance 

of the parameters in our validation study, we let ϕ = 0.25 and employ a confidence 

threshold of 0.85 in all analyses described below.     
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Figure 17. Sensitivity analysis on validation data. (a) Sensitivity vs. FIR for 11 

simulated five-taxa communities. Here we define sensitivity as the proportion of 

interactions that are correctly predicted. The legend displays values of ϕ  used for each 

ROC curve. By considering a large number of putative model fits, we can infer the 

majority true interactions between taxa with a reasonably low FIR. Observing the ‘0.99’ 

curve (in which we only use the top 1% of fits), we see worse performance in predicting 

interactions between taxa. (b) Corresponding mean error rates of estimated interaction 

coefficients. As ϕ  decreases, the mean error rate of the interaction coefficients decreases 

significantly, indicating that considering more putative model fits results in better overall 

estimation of interaction strength.  
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Microbial dynamics of mice on a Western diet 

We applied our methodology to data from a metagenomic study investigating the 

dynamics of humanized mouse gut microflora. Twelve gnotobiotic mice were augmented 

with human gut microbiota and fed a mouse chow diet for four weeks. Subsequently, six 

of the mice continued on a mouse chow diet, while the remaining six mice were switched 

to a representative Western diet high in fat and sugar. For each mouse, deep 

pyrosequencing of the 16S rRNA V2 hypervariable region was performed on bacterial 

communities isolated from fecal samples over the course of eight weeks. Sequences were 

assigned to a taxonomy creating a taxonomic profile for each sample. Though the average 

gut microflora of the chow-fed mice remained relatively stable, the microbe populations 

in mice on the Western diet shifted dramatically throughout the study (Figure 18a).  

To assess the potential microbial interactions in these models of the human gut, 

each time-series profile of mice switched to the Western diet was evaluated using our 

methodology. We assume that the microbial interaction web between any two mice in the 

study is the same, so our goal was to see if predicted microbial interactions were 

conserved across the different mice.  

 

Model consistency.  We separately learned the parameters of the gLV model for each 

individual mouse and found a high level of concordance between the individual models.  

Despite the fact that some time-series profiles exhibited remarkably different dynamics 

over the course of the study (Figure 18a), computed confidence values for each 

interaction coefficient were strongly correlated across all mice (Table 15). Furthermore, 
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estimated carrying capacities were highly correlated (mean pairwise Pearson’s r2 value = 

0.948).  This lends support to the robustness of our methods to variable temporal patterns.  

 

Inferred growth rates. Our implementation of the gLV model employs a universal net 

growth parameter for all taxa. Averaged across all humanized mice, the inferred growth 

rate was approximately 0.44 (with a standard deviation of 0.01), implying the bacterial 

population in the distal gut has a very slow turnover rate (~1.6 days). This stagnant state 

has also been observed previously in humans [20, 127] and has been attributed to host-

associated factors including the immune response and the neutral pH levels of the colon 

[127, 128]. 
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Figure 18. Humanized mouse gut microbiota analysis. (a) Time-series 16S profiles of 

six humanized mice fed a high fat Western diet. Each plot represents a different mouse. 

The y-axes represent normalized 16S gene copies per nanoliter of fecal material (see 

Methods for normalization details). Taxa are shown in the corresponding colors: 

Bacteroidetes (orange), Bacilli (blue), Clostridia (purple), Erysipelotrichi (red), and other 

Firmicutes (black). (b) Predicted interactions with high confidence between bacterial 

members of the humanized mouse gut community. Indicated interactions maintained 

confidence values greater than 0.85 for all studied mice. The remaining 13 possible 

interactions had relatively low levels of confidence. Displayed with each arrow is the 

general effect in parentheses (+ or -) along with the average confidence value across all 

mice. In this case, all arrows suggest an overall inhibitory effect (-) of one organism on 

another. No taxon was found to significantly enhance the growth of any other organism.     
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 WM1 WM2 WM3 WM4 WM5 WM6 
WM1 1 0.941 0.930 0.923 0.977 0.920 
WM2  1 0.819 0.829 0.887 0.875 
WM3   1 0.981 0.972 0.972 
WM4    1 0.975 0.876 
WM5     1 0.911 
WM6      1 

Table 15. Pairwise correlation coefficients of confidence values for predicted 

interactions. Each cell displays the Pearson’s r2 value of confidence scores between 

humanized germ-free mice. We observe that computed confidence scores are highly 

correlated across each time-series dataset, indicating the microbial interactions with the 

greatest confidence are conserved across mice. Note grey cells are redundant, i.e. the r2 

value of (WM1,WM2) is equal to the r2 of (WM2,WM1).  

 

 Bacteroid. Bacilli Clost. Erysip. Other Firm. 
Bacteroidetes  0.78 (0.04) 1.15 (0.05) 0.96 (0.05) 1.39 (0.12) 

Bacilli 0.03 (0.06)  0.32 (0.02) 0.36 (0.02) 0.12 (0.06) 
Clostridia 1.33 (0.12) 1.18 (0.10)  1.28 (0.10) 0.94 (0.13) 

Erysipelotrichi 0.19 (0.01) 0.61 (0.02) 0.45 (0.01)  0.20 (0.06) 
Other Firmicutes 0.43 (0.02) 0.43 (0.03) 0.51 (0.02) 0.51 (0.01)  

Table 16.  Average (std. err) of interaction coefficient magnitude estimates across six 

Western-fed humanized mice. 
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Predicted interactions. A full diagram of the interactions predicted by our model is 

shown in Figure 18b. Interaction coefficients with the greatest confidence typically 

involved the Bacteroidetes or Clostridia populations. Our model predicts that Bacilli, 

Clostridia, Erysipelotrichi, and the subpopulation of remaining Firmicutes all inhibit the 

growth of Bacteroidetes with confidence values greater than 0.85 (for all individual 

mice). Similarly, Bacteroidetes, Bacilli, and Erysipelotrichi all inhibit the growth of 

Clostridia with corresponding confidences values greater than 0.90. No taxa were 

predicted to enhance the growth of any other group in our results. Table 16 displays the 

range of estimated magnitudes of all interaction coefficients.  

Several of the interactions inferred from the data are supported by prior studies.  

For example, our model implies that Clostridia and Bacteroidetes are strongly 

competitive, a result also found in microarray-based studies of infant gut microflora 

[116]. We have observed this same predicted interaction from preliminary modeling 

analysis following the gut microbiota of obese humans on a low-calorie fat-restricted or 

carbohydrate-restricted diet for 1 year (data not shown). Furthermore, a recent genomic 

study reported on transcription profile modification in members of these two classes 

when introduced simultaneously in the guts of gnotobiotic mice. When co-colonized with 

Eubacterium rectale, Bacteroidetes thetaiotaomicron adapts by up-regulating a subset of 

genes for degrading gylcans that E. rectale is unable to metabolize. In turn, E. rectale 

down-regulates a large number of genes encoding for gylcoside hydrolases and 

specializes in the breakdown of simple sugars such as cellobiose and lactose when co-

colonized with B. thetaiotaomicron [129]. The alteration of each species toward differing 

metabolisms and the limited effects of co-colonization on gene transcription rates for cell 
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replication supports the notion of a general competitive interaction between Clostridia 

and Bacteroidetes as predicted by our methods. 

 

Carrying capacities. Our methodology consistently predicted that the Clostridia 

population had the highest carrying capacity in the environment, followed by 

Bacteroidetes; Erysipelotrichi and Bacilli had relatively similar carrying capacities. It is 

crucial to understand these carrying capacities are measured in 16S gene copies per 

nanoliter, rather than cells/nl, due to the multicopy nature of the 16S rRNA gene (see 

Discussion below).  

Examining predicted interactions that influence the growth rate of Bacteroidetes, 

the effects of Clostridia and Other Firmicutes were significantly greater than that of 

Bacilli and Erysipelotrichi (paired T-test, P < 0.008 for all concomitant tests). There was 

no significant difference between the interaction strengths of Clostridia and Other 

Firmicutes on Bacteroidetes. Additionally, the interaction strength of Erysipelotrichi on 

Clostridia was significantly greater than that of Bacilli (paired T-test, P < 0.003). 

 

Discussion 

We have presented a systematic methodology for predicting microbial interactions in 

time-series metagenomic datasets. Our methods were validated using simulated temporal 

dynamics of interacting communities and we further applied this framework to a series of 

metagenomic datasets describing mouse gut microbial dynamics during a prototypic 

Western diet. The key to our approach is a measurement of confidence for each predicted 

interaction coefficient based on the distribution of parameter estimates in the gLV model. 
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 Our method is linked to the assumptions of the generalized Lotka-Volterra model, 

which may be violated in some studies of microbial communities. For example, the 

model also assumes that its parameters (carrying capacities, growth rates, and the 

interaction coefficients) do not depend on the abundance of the individual members of 

the community. These assumptions are clearly an over-simplification (e.g. quorum 

sensing mechanisms are density-dependent), and future work is necessary to evaluate 

how these simplifications affect the overall results of our analysis.  

 In the application of our methods to the humanized mouse gut data, our 

observations are based on the abundances of taxonomic classes, each of which is a 

combination of multiple species. A related property of the gLV model is the ability to 

generalize over aggregates of organisms, e.g. by modeling an environment at a higher 

taxonomic level. However, to reasonably merge a set of taxa S into a higher taxon, strong 

assumptions are required (e.g. the relative abundances of the taxa within S do not change 

over time). See Methods for a mathematical discussion of these assumptions. Note strict 

assumptions based-on taxonomic aggregation play a role in other approaches (e.g. 

generalized additive models [116]), and this issue remains an open problem.  

 Several inherent limitations exist when studying spatiotemporal dynamics 

using metagenomic sequence data. Though the 16S rRNA gene is an excellent candidate 

for amplification with universal PCR primers, the number of known copies per genome 

ranges from one to 15 (e.g. Clostridium paradoxum) [130], suggesting that taxonomic 

abundance profiles of microbial communities are highly skewed. Additionally, 

phylogenetic marker studies (and environmental genome shotgun projects in general) 

often lack the important measure of cell density - defined as the number of cells per unit 
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volume (e.g. cells/mL) (note however for the Western diet mouse gut study described 

above, previous studies have found stable microbial densities in mouse cecal samples 

[131]). Several experimental approaches hold significant promise in mitigating these 

uncertainties, including: microarrays, qPCR [111], flow cytometry [132] and other 

microfluidics devices [133]. The methods we present in this paper will remain applicable 

even as metagenomic data improves in accuracy. 

 While our methods predict qualitative interactions quite well, we have also shown 

that measurement of interaction strength is significantly more difficult. Because no model 

can capture all aspects of these communities, methodologies for predictive modeling will 

require comprehensive datasets for training as well as rigorous experimental evaluation. 

Nonetheless, in the spirit of optimism and hope, we conclude this discussion with a 

speculative application in which we use gLV models to study the dynamics of gut 

microbiota in dieting obese human subjects. Our goal is simple to state but incredibly 

challenging to reach: determine which taxonomic groups require manipulation in order to 

shift the obese gut microbiome structure to a lean-like state.  Although the following 

results should be taken with a grain of salt, the approach we take illustrates how we could 

hypothetically utilize mathematical modeling to forecast the effects of an environmental 

perturbation to achieve a desired alteration. We have selected this application because of 

the available available and obesity’s poignant impact on our lives – everyone in the 

United States knows someone who is obese – and this is why you shall humor the pages 

below.  

 Recent studies have revealed that human obesity is correlated with a detectable 

shift in the phylum-level microbiota of the distal gut [20, 21, 134]. Specifically, 
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Firmicutes and Actinobacteria are enriched in obese individuals, while lean subjects 

maintain relatively higher abundances of Bacteroidetes. Ley et al. further report that 

obese subjects following a one-year low-calorie fat-restricted or carbohydrate-restricted 

diet showed significant changes in their overall gut microbial populations. As the subjects 

lost weight, their gut microbe levels more closely resembled that of their lean 

counterparts. Similar studies of germ-free mouse models have re-enforced the correlation 

of host adiposity not only with taxonomic composition, but also the microbial capacity 

for energy harvest [30, 135]. 

We analyzed data from ten obese subjects placed on a low-calorie diet over the 

course of one year [20]. Each subject provided faecal samples throughout the year; the 

taxonomic composition of each sample was approximated using targeted 16S rRNA gene 

sequencing. On average, the relative abundance of Bacteroidetes increased during 

dieting, while Actinobacteria and Firmicutes populations were depleted. These 

community shifts are inclined towards a host ecology similar to the lean human 

population [20, 21]. 

After fitting our gLV model to the data, we discovered several parameter sets 

resulted in both a quantitatively and qualitatively sufficient fit. Examining the top 100 

model fits, we found parameter sets largely agreed on several phylum interactions (see 

Figure 19). There exists strong evidence for three competitive interactions: Bacteroidetes-

Proteobacteria, Bacteroidetes-Firmicutes, and Firmicutes-Verrucomicrobia. 

Actinobacteria appear to enhance the growth of Bacteroidetes, and Bacteroidetes in turn 

promote Verrucomicrobia. In contrast, the overall effect of Bacteroidetes on 
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Actinobacteria and Verrucomicrobia on Bacteroidetes could not be established due to 

conflicting interaction signs in the parameter sets. 

Despite the consensus on interactions indicated by estimated parameters, the gLV 

model is very sensitive to minor changes and is capable of exhibiting nonlinear behavior 

including chaos. We manually manipulated one of the best fitting parameter sets and 

discovered that altering a single variable can dramatically affect the overall dynamics of 

the community. Figure 20 displays a bifurcation diagram created by varying only one 

interaction coefficient, (the effect of Firmicutes on Bacteroidetes). Depending on this 

parameter, the community may converge to a single equilibrium, a periodic oscillation, or 

transition to chaotic behavior. 
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Figure 19 Phylum-level interaction matrix. Analyzing parameter estimates of the top 

100 model fits, we find strong evidence for several protagonistic and antagonistic 

relationships. Each cell in the matrix displays the sign of the estimate, along with a level 

of confidence based on the top best 100 fits. Red cells indicate competitive interactions 

between species, while blue cells indicate an asymmetric antagonistic relationship. Gray 

cells are interactions disregarded by preliminary analysis of the data. 
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The past decade has seen several advancements in prebiotic and probiotic 

therapies for maintaining a healthy gut microbial population and treating population 

imbalances that result in diseases such as ulcerative colitis, inflammatory bowel disease, 

Crohn’s disease, and pouchitis. Prebiotics are non-digestible food elements (e.g. inulin, 

fructo-oligosaccharides, or galacto-oligosaccharides) aimed to stimulate growth of 

specific bacterial groups, whereas probiotics contain live bacterial cultures to be ingested 

in moderation to benefit the host. Regardless of the approach, these treatments seek to 

encourage a healthy ecosystem through microbial manipulation. Though knowledge of 

the specific mechanisms of action for these treatments is not known, their effects on the 

general health of the intestinal tract are well studied [136, 137]. 

For the average obese subject, our best-fitting model predicts that only the 

Bacteroidetes and Firmicutes converge to within 5% of their equilibrium in the first year 

of dieting. The remaining three dominant phyla require at least an additional six months 

to reach comparable levels. To investigate whether we could increase the overall 

convergence rate, we simulated the microbial responses to probiotic/prebiotic therapies 

by altering the initial abundances of each phylum. As most treatments are only known to 

affect a subset of the microbial population in the gut, we limited our experimentation to 

manipulating each phylum individually. Each treatment has an associated microbial load 

effect – i.e. the proportional difference between a phylum and its equilibrium after 

treatment. For example, a load effect of 0.7 means the abundance of the phylum is 30% 

less than the equilibrium; 1.2 means that abundance is 20% greater than equilibrium. We 

examined a range of load effects (0.7 – 2.0), as practical treatments will not produce 

identical results in all patients.    
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We discovered that boosting the Bacteroidetes levels toward the lean equilibrium 

increases the convergence rate of all bacterial phyla. Table 17 displays the time each 

phylum takes to converge given a particular therapy designed to increase the abundance 

of Bacteroidetes. If a treatment with a load effect of 2.0 exists, our model predicts that all 

phyla would converge (within 5% of equilibrium) in six months or less; this cuts the 

overall convergence time roughly in half. If we could achieve such a convergence rate, 

then the altered microbiota would hypothetically extract less energy from the patient’s 

nutrients and potentially accelerate the fat-depletion and weight loss effects of dieting. 

Manipulation of other populations did not produce a successful convergence rate increase 

for all phyla. This result suggests that the Bacteroidetes population may be an ideal target 

for obesity-related probiotic/prebiotic therapies, which is intriguing given that most 

probiotic therapies for the gastrointestinal tract utilize members of the Firmicutes or 

Actinobacteria [128, 138, 139].  

To step back for perspective, we have gone from 16S longitudinal data in a 

clinical study – to modeling the dynamics of the obese gut microbiome – to forecasting 

which taxonomic groups are targets for shifting this community type toward a lean-like 

state. The Bacteroidetes hypothesis is most likely incorrect (I hope to eventually check 

it), but the general approach demonstrates how we can go from data to a dynamic 

hypothesis with a clear follow-up experiment. It is a beautiful example of the circular 

relationship of scientific experiments and quantitative analysis.        

There is tremendous promise for the field of metagenomics, particularly in its 

translation to biotechnology and medicine. However, crucial prerequisites for this 

translation include not only comprehensive temporal datasets, but also novel quantitative 
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approaches including mathematical modeling to forecast how these complex systems 

react to treatments and environmental changes. The results we present here are just a first 

step in this direction.  
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Figure 20. Microbial community transition to chaos. This bifurcation diagram displays 

the long term dynamics of the Bacteroidetes population versus the value of a single 

parameter in our model. By varying α(BF), (the interaction coefficient of Firmicutes and 

Bacteroidetes) we observe dramatic shifts in the stability of the community. For example, 

when α(BF) equals -0.06, the Bacteroidetes population achieves a long-term equilibrium. 

However, if we set α(BF) to -0.09, the Bacteroidetes population converges to a period-

two steady state oscillation. Further decreasing of this parameter leads to a period 

doubling cascade and eventual transition into chaos, where the long-term dynamics of the 

population are highly sensitive to this one parameter. 
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   Probiotic/prebiotic load effect 

  No 
treatment 0.70 0.90 1.00 1.50 1.80 2.00 

Actinobacteria 79 29 22 21 15 13 12 

Proteobacteria 166 117 102 93 18 6 5 

Bacteroidetes 91 42 2 3 4 4 4 

Firmicutes 28 21 20 20 19 19 19 
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Verrucomicrobia 39 27 26 26 24 24 24 

Table 17. Potential population impacts of probiotic/prebiotic therapies on 

Bacteroidetes. We define the treatment ‘load effect’ as the relative abundance of 

Bacteroidetes after treatment compared to its equilibrium abundance predicted by our 

model (e.g. 0.7 implies the treatment increased the level of Bacteroidetes to within 30% 

of the true equilibrium, 1.0 implies the treatment increased the Bacteroidetes abundance 

to the exact equilibrium value.) Time to convergence represents the number of weeks 

needed to maintain within 5% of the predicted equilibrium. Without treatment, 4 out of 5 

phyla converge within two years. Our model predicts that stimulating Bacteroidetes 

population growth decreases the time to convergence for all observed phyla. We find that 

overloading the Bacteroidetes levels to twice the equilibrium dramatically increases 

convergence rates such that all phyla converge within six months. Similar manipulation 

of other phyla did not produce the same level of success, suggesting the Bacteroidetes 

should be the focus of future probiotic/prebiotic obesity therapies.  
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Chapter 6:  Conclusions and further study 

The primary goal of my graduate research has been the development of improved 

methods for metagenomic analysis in order to advance our understanding of the human 

microbiome and other microbial populations. The ideas presented here represent novel 

contributions spanning elements of preprocessing, processing, and post-processing of 

metagenomic sequence data.  

Figaro, a novel vector-trimming algorithm, can rapidly detect and remove vector 

sequence from multiple metagenomic sequence libraries without prior knowledge of the 

vector sequences themselves, thereby assisting researchers in many aspects of 

metagenomics including assembly, gene-finding and annotation. Since its publication in 

2008, this open-source software has over 950 downloads at SourceForge.net.  

In the direct processing of environmental 16S rRNA sequences, we performed a 

comprehensive analysis of OTU clustering methodologies that have been employed to 

estimate the diversity of microbial communities in landmark studies for the last decade. 

We have found that the choice of parameters in these methodologies is extremely 

important for accurate clusters, and that most studies have used parameters that are too 

stringent, resulting in inflated estimates of microbial diversity. While this observation has 

been slow to catch on, many leaders of the HMP are now aware and will hopefully 

require further validation of OTU-based analysis. As most HMP studies now utilize 454 

pyrosequencing technology (and potentially Illumina in the future), there is an immediate 

need for rigorous evaluation of OTUs created from reads much shorter than the Sanger-

based sequences used in our study. Pyrosequencing reads currently cannot span multiple 

hypervariable regions of the 16S gene, and thus there is less phylogenetic information to 
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classify and compare sequences. Additionally, 454 technology has been reported to 

produce unique artifacts in metagenomic data such as perfect and near-perfect replicates, 

which can severely skew relative abundance estimates [140]. 

In the context of 16S rRNA surveys, laboratory preparation, PCR primer bias, and 

chimeric sequences can also dramatically affect results. To understand the extent of each 

of these effects, a validation study must be performed in which a bacterial community of 

known composition (e.g. identifiable species, relative abundance information) is sampled 

and surveyed using standard techniques. Thus, a 16S taxonomic profile could be 

compared to an approximate truth, and the sequence dataset may be analyzed for 

sequencing errors, chimeras, unobserved species, and biased relative abundance 

measurements. This approach would give the microbial ecology community important 

insight into how well these protocols describe the true microbial population.    

For post-processing annotated metagenomic and 16S rRNA datasets, we 

presented Metastats, a statistical methodology for detecting differentially abundant 

metagenomic features between two populations in large-scale clinical studies. 

Implemented as a fully automated websever, to date Metastats has received over 700 jobs 

by 80 unique users. In future work, this methodology could be extended to include 

comparisons of three or more populations using nonparametric ANOVA with the F-

statistic, or perhaps multiway-ANOVA to find interactions between multiple factors. 

Often software packages risk feature overload, thereby alienating the user; Metastats has 

been designed to be rigorous but streamlined, and additional extensions will need to 

conform to this standard.  
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Finally, moving from post-processing into modeling, we described a methodology 

for inferring microbial interaction webs from time-series 16S datasets. While there are 

many technical and experimental issues that require further validation, this project 

represents a step toward the holy grail of metagenomics: to model the dynamics of a 

microbial community and accurately forecast how a perturbation could attain a desired 

result. This achievement would dramatically impact many fields of science including 

medical microbiology, environmental sustainability, bioenergy generation, waste 

disposal, and industrial crop management.  

As we continue to move toward this dream, we already know many of our 

challenges – specific technological and experimental innovations must be realized 

including precise estimation of microbial cell density, improvements in DNA sequencing 

technology, and unbiased taxonomic profiling protocols. These innovations will happen, 

and they will take us ever closer toward our ultimate goal. The future of metagenomics is 

not in the hands of microbiologists alone. There is room for many areas of expertise 

including mathematics, computer science, engineering, medicine, chemistry, geology, 

and oceanography – and all are vital.      
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Appendices 
 

Appendix 1: Differentially abundant COGs in comparison of infant and adult gut 

microbiomes 

 

COG id Description mature mean infant mean Metastat 
qvalue 

COG0249 Mismatch repair 
ATPase (MutS family) 0.001601 0.000527 0.00722 

COG0358 DNA primase (bacterial 
type) 0.002438 0.000766 0.00722 

COG0427 Acetyl-CoA hydrolase 0.000542 0.000131 0.00722 

COG0482 

Predicted tRNA(5-
methylaminomethyl-2-

thiouridylate) 
methyltransferase, 

contains the PP-loop 
ATPase domain 

0.000917 0.000270 0.00722 

COG0574 
Phosphoenolpyruvate 

synthase/pyruvate 
phosphate dikinase 

0.001271 0.000407 0.00722 

COG0739 
Membrane proteins 

related to 
metalloendopeptidases 

0.002441 0.000608 0.00722 

COG0793 Periplasmic protease 0.001465 0.000333 0.00722 

COG1808 Predicted membrane 
protein 0.000168 0.000000 0.00722 

COG3152 Predicted membrane 
protein 0.000086 0.000424 0.00722 

COG3956 

Protein containing 
tetrapyrrole 

methyltransferase 
domain and MazG-like 

(predicted 
pyrophosphatase) 

domain 

0.000301 0.000022 0.00722 
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COG4277 
Predicted DNA-binding 
protein with the Helix-

hairpin-helix motif 
0.000319 0.000032 0.00722 

COG5000 

Signal transduction 
histidine kinase 

involved in nitrogen 
fixation and metabolism 

regulation 

0.000239 0.000003 0.00722 

COG5545 
Predicted P-loop 

ATPase and inactivated 
derivatives 

0.001442 0.000185 0.00722 

COG0543 

2-polyprenylphenol 
hydroxylase and related 

flavodoxin 
oxidoreductases 

0.001034 0.000581 0.00894 

COG0037 

Predicted ATPase of the 
PP-loop superfamily 

implicated in cell cycle 
control 

0.001276 0.000497 0.01084 

COG0332 3-oxoacyl-[acyl-carrier-
protein] synthase III 0.000951 0.000243 0.01084 

COG0612 Predicted Zn-dependent 
peptidases 0.001507 0.000451 0.01084 

COG1013 

Pyruvate:ferredoxin 
oxidoreductase and 

related 2-
oxoacid:ferredoxin 

oxidoreductases, beta 
subunit 

0.000794 0.000279 0.01084 

COG1014 

Pyruvate:ferredoxin 
oxidoreductase and 

related 2-
oxoacid:ferredoxin 
oxidoreductases, 
gamma subunit 

0.001017 0.000207 0.01084 

COG1074 

ATP-dependent 
exoDNAse 

(exonuclease V) beta 
subunit (contains 

helicase and 
exonuclease domains) 

0.000933 0.000398 0.01084 
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COG1112 
Superfamily I DNA and 

RNA helicases and 
helicase subunits 

0.000872 0.000092 0.01084 

COG1196 Chromosome 
segregation ATPases 0.001676 0.000651 0.01084 

COG1449 Alpha-amylase/alpha-
mannosidase 0.000181 0.000000 0.01084 

COG1636 Uncharacterized protein 
conserved in bacteria 0.000355 0.000034 0.01084 

COG2385 Sporulation protein and 
related proteins 0.000646 0.000112 0.01084 

COG4880 

Secreted protein 
containing C-terminal 
beta-propeller domain 

distantly related to WD-
40 repeats 

0.000069 0.000000 0.01084 

COG1774 Uncharacterized 
homolog of PSP1 0.000523 0.000097 0.01275 

COG0208 Ribonucleotide 
reductase, beta subunit 0.000215 0.000675 0.01565 

COG0445 
NAD/FAD-utilizing 
enzyme apparently 

involved in cell division 
0.001017 0.000295 0.01565 

COG1086 
Predicted nucleoside-

diphosphate sugar 
epimerases 

0.000869 0.000198 0.01565 

COG3451 
Type IV secretory 
pathway, VirB4 

components 
0.003289 0.000942 0.01565 

COG3775 
Phosphotransferase 
system, galactitol-

specific IIC component 
0.000182 0.000498 0.01565 

COG3488 Predicted thiol 
oxidoreductase 0.000121 0.000000 0.01708 

COG1797 Cobyrinic acid a,c-
diamide synthase 0.000454 0.000092 0.01934 

COG1595 

DNA-directed RNA 
polymerase specialized 
sigma subunit, sigma24 

homolog 

0.005279 0.001297 0.02057 
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COG0192 S-adenosylmethionine 
synthetase 0.000799 0.000479 0.02167 

COG0465 ATP-dependent Zn 
proteases 0.001276 0.000704 0.02167 

COG1145 Ferredoxin 0.001656 0.000496 0.02167 

COG2059 Chromate transport 
protein ChrA 0.000818 0.000186 0.02167 

COG0514 Superfamily II DNA 
helicase 0.001192 0.000560 0.02270 

COG2244 

Membrane protein 
involved in the export 

of O-antigen and 
teichoic acid 

0.001940 0.000897 0.02291 

COG0466 ATP-dependent Lon 
protease, bacterial type 0.000871 0.000320 0.02330 

COG3884 Acyl-ACP thioesterase 0.000300 0.000000 0.02330 

COG1881 Phospholipid-binding 
protein 0.000052 0.000359 0.02348 

COG0674 

Pyruvate:ferredoxin 
oxidoreductase and 

related 2-
oxoacid:ferredoxin 

oxidoreductases, alpha 
subunit 

0.000832 0.000256 0.02435 

COG1748 
Saccharopine 

dehydrogenase and 
related proteins 

0.000493 0.000063 0.02518 

COG0323 
DNA mismatch repair 

enzyme (predicted 
ATPase) 

0.000773 0.000366 0.02701 

COG0642 Signal transduction 
histidine kinase 0.013205 0.007023 0.02701 

COG0653 
Preprotein translocase 
subunit SecA (ATPase, 

RNA helicase) 
0.001037 0.000452 0.02701 

COG2878 

Predicted 
NADH:ubiquinone 

oxidoreductase, subunit 
RnfB 

0.000526 0.000121 0.02701 

COG4864 Uncharacterized protein 
conserved in bacteria 0.000190 0.000017 0.02701 

COG1162 Predicted GTPases 0.000691 0.000241 0.02783 

COG2376 Dihydroxyacetone 
kinase 0.000187 0.000919 0.02783 
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COG3505 
Type IV secretory 
pathway, VirD4 

components 
0.002877 0.000955 0.02783 

COG1493 

Serine kinase of the HPr 
protein, regulates 

carbohydrate 
metabolism 

0.000463 0.000110 0.02795 

COG3712 Fe2+-dicitrate sensor, 
membrane component 0.002259 0.000031 0.02795 

COG0667 

Predicted 
oxidoreductases (related 

to aryl-alcohol 
dehydrogenases) 

0.001171 0.002134 0.02818 

COG1409 Predicted 
phosphohydrolases 0.001283 0.000361 0.02818 

COG3294 Uncharacterized 
conserved protein 0.000116 0.000000 0.02818 

COG5368 Uncharacterized protein 
conserved in bacteria 0.000226 0.000000 0.02818 

COG1864 DNA/RNA 
endonuclease G, NUC1 0.000215 0.000020 0.02823 

COG1762 

Phosphotransferase 
system 

mannitol/fructose-
specific IIA domain 

(Ntr-type) 

0.000436 0.001694 0.02929 

COG4877 Uncharacterized protein 
conserved in bacteria 0.000182 0.000000 0.02932 

COG1083 
CMP-N-

acetylneuraminic acid 
synthetase 

0.000191 0.000025 0.03131 

COG1629 
Outer membrane 
receptor proteins, 

mostly Fe transport 
0.011997 0.001276 0.03131 

COG2344 AT-rich DNA-binding 
protein 0.000424 0.000061 0.03131 

COG3385 FOG: Transposase and 
inactivated derivatives 0.000276 0.000033 0.03131 

COG0205 6-phosphofructokinase 0.001712 0.000558 0.03131 
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COG0602 Organic radical 
activating enzymes 0.000839 0.000437 0.03131 

COG0731 Fe-S oxidoreductases 0.000191 0.000000 0.03131 

COG1035 
Coenzyme F420-

reducing hydrogenase, 
beta subunit 

0.000351 0.000063 0.03131 

COG1072 Panthothenate kinase 0.000007 0.000230 0.03131 

COG1263 

Phosphotransferase 
system IIC components, 

glucose/maltose/N-
acetylglucosamine-

specific 

0.001155 0.003075 0.03131 

COG1350 

Predicted alternative 
tryptophan synthase 

beta-subunit (paralog of 
TrpB) 

0.000213 0.000002 0.03131 

COG1351 Predicted alternative 
thymidylate synthase 0.000225 0.000000 0.03131 

COG1541 Coenzyme F390 
synthetase 0.000647 0.000180 0.03131 

COG1757 Na+/H+ antiporter 0.001080 0.000395 0.03131 

COG2152 Predicted glycosylase 0.000518 0.000046 0.03131 

COG3426 Butyrate kinase 0.000291 0.000054 0.03131 

COG3635 
Predicted 

phosphoglycerate 
mutase, AP superfamily 

0.000230 0.000000 0.03131 

COG3943 Virulence protein 0.000900 0.000197 0.03131 

COG4206 
Outer membrane 

cobalamin receptor 
protein 

0.002057 0.000252 0.03131 

COG4658 

Predicted 
NADH:ubiquinone 

oxidoreductase, subunit 
RnfD 

0.000552 0.000203 0.03131 

COG3414 
Phosphotransferase 
system, galactitol-

specific IIB component 
0.000062 0.000556 0.03388 

COG3711 Transcriptional 
antiterminator 0.000408 0.001954 0.03388 
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COG1961 
Site-specific 

recombinases, DNA 
invertase Pin homologs 

0.005869 0.001827 0.03454 

COG2365 Protein tyrosine/serine 
phosphatase 0.000250 0.000040 0.03454 

COG0033 Phosphoglucomutase 0.000050 0.000381 0.03492 

COG0507 

ATP-dependent 
exoDNAse 

(exonuclease V), alpha 
subunit - helicase 

superfamily I member 

0.001603 0.000850 0.03492 

COG0708 Exonuclease III 0.000799 0.000381 0.03492 

COG0790 FOG: TPR repeat, 
SEL1 subfamily 0.000726 0.000169 0.03492 

COG1113 
Gamma-aminobutyrate 
permease and related 

permeases 
0.000178 0.001834 0.03492 

COG1160 Predicted GTPases 0.000899 0.000499 0.03492 

COG1188 

Ribosome-associated 
heat shock protein 
implicated in the 

recycling of the 50S 
subunit (S4 paralog) 

0.000388 0.000155 0.03492 

COG1249 

Pyruvate/2-oxoglutarate 
dehydrogenase 

complex, 
dihydrolipoamide 

dehydrogenase (E3) 
component, and related 

enzymes 

0.000635 0.001138 0.03492 

COG1440 
Phosphotransferase 
system cellobiose-

specific component IIB 
0.000100 0.000672 0.03492 

COG2195 Di- and tripeptidases 0.001438 0.000580 0.03492 

COG2509 
Uncharacterized FAD-

dependent 
dehydrogenases 

0.000871 0.000205 0.03492 

COG2887 RecB family 
exonuclease 0.000219 0.000035 0.03492 
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COG3487 Uncharacterized iron-
regulated protein 0.000084 0.000000 0.03492 

COG3560 
Predicted 

oxidoreductase related 
to nitroreductase 

0.000182 0.000015 0.03492 

COG3935 
Putative primosome 

component and related 
proteins 

0.000472 0.000189 0.03492 

COG3968 
Uncharacterized protein 

related to glutamine 
synthetase 

0.001022 0.000193 0.03492 

COG4912 
Predicted DNA 
alkylation repair 

enzyme 
0.000322 0.000068 0.03492 

COG0337 3-dehydroquinate 
synthetase 0.000588 0.000290 0.03515 

COG0367 
Asparagine synthase 

(glutamine-
hydrolyzing) 

0.000776 0.000280 0.03515 

COG0549 Carbamate kinase 0.000230 0.000763 0.03515 

COG0686 Alanine dehydrogenase 0.000259 0.000039 0.03515 

COG0724 RNA-binding proteins 
(RRM domain) 0.000296 0.000000 0.03515 

COG0745 

Response regulators 
consisting of a CheY-
like receiver domain 
and a winged-helix 

DNA-binding domain 

0.007579 0.005100 0.03515 

COG0747 
ABC-type dipeptide 

transport system, 
periplasmic component 

0.001052 0.002682 0.03515 

COG1592 Rubrerythrin 0.000845 0.000235 0.03515 

COG1875 

Predicted ATPase 
related to phosphate 
starvation-inducible 

protein PhoH 

0.000200 0.000003 0.03515 

COG2239 
Mg/Co/Ni transporter 
MgtE (contains CBS 

domain) 
0.000604 0.000184 0.03515 

COG2374 Predicted extracellular 
nuclease 0.000185 0.000012 0.03515 
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COG2893 

Phosphotransferase 
system, 

mannose/fructose-
specific component IIA 

0.000255 0.001083 0.03515 

COG3525 N-acetyl-beta-
hexosaminidase 0.001608 0.000385 0.03515 

COG3537 Putative alpha-1,2-
mannosidase 0.001956 0.000221 0.03515 

COG3950 
Predicted ATP-binding 

protein involved in 
virulence 

0.000174 0.000026 0.03515 

COG4422 Bacteriophage protein 
gp37 0.000472 0.000085 0.03515 

COG4657 

Predicted 
NADH:ubiquinone 

oxidoreductase, subunit 
RnfA 

0.000468 0.000113 0.03515 

COG5495 Uncharacterized 
conserved protein 0.000248 0.000037 0.03515 

COG1125 

ABC-type 
proline/glycine betaine 

transport systems, 
ATPase components 

0.000075 0.000381 0.03560 

COG3292 
Predicted periplasmic 
ligand-binding sensor 

domain 
0.000649 0.000000 0.03560 

COG2002 
Regulators of 

stationary/sporulation 
gene expression 

0.000478 0.000078 0.03627 

COG3774 
Mannosyltransferase 

OCH1 and related 
enzymes 

0.000245 0.000026 0.03627 

COG0019 Diaminopimelate 
decarboxylase 0.001153 0.000618 0.03664 

COG0137 Argininosuccinate 
synthase 0.000502 0.000220 0.03664 

COG0164 Ribonuclease HII 0.000532 0.000271 0.03664 

COG0540 
Aspartate 

carbamoyltransferase, 
catalytic chain 

0.000610 0.000339 0.03664 

COG0618 Exopolyphosphatase-
related proteins 0.000544 0.000108 0.03664 

COG0833 Amino acid transporters 0.000077 0.000493 0.03664 
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COG1390 Archaeal/vacuolar-type 
H+-ATPase subunit E 0.000176 0.000040 0.03664 

COG3882 

Predicted enzyme 
involved in 

methoxymalonyl-ACP 
biosynthesis 

0.000080 0.000000 0.03664 

COG4771 

Outer membrane 
receptor for 

ferrienterochelin and 
colicins 

0.003898 0.000551 0.03664 

COG0526 
Thiol-disulfide 
isomerase and 
thioredoxins 

0.002811 0.001441 0.03706 

COG0572 Uridine kinase 0.000665 0.000211 0.03770 

COG0459 Chaperonin GroEL 
(HSP60 family) 0.000655 0.000433 0.03826 

COG0532 Translation initiation 
factor 2 (IF-2; GTPase) 0.000875 0.000453 0.03826 

COG0632 
Holliday junction 

resolvasome, DNA-
binding subunit 

0.000477 0.000223 0.03826 

COG0646 

Methionine synthase I 
(cobalamin-dependent), 

methyltransferase 
domain 

0.000453 0.000155 0.03826 

COG0785 Cytochrome c 
biogenesis protein 0.000040 0.000118 0.03826 

COG1077 
Actin-like ATPase 

involved in cell 
morphogenesis 

0.000730 0.000281 0.03826 

COG1089 GDP-D-mannose 
dehydratase 0.000324 0.000051 0.03826 

COG1262 Uncharacterized 
conserved protein 0.000177 0.000014 0.03826 

COG1362 Aspartyl 
aminopeptidase 0.000764 0.000195 0.03826 

COG1579 
Zn-ribbon protein, 

possibly nucleic acid-
binding 

0.000139 0.000000 0.03826 

COG2234 Predicted 
aminopeptidases 0.000437 0.000096 0.03826 

COG2264 Ribosomal protein L11 
methylase 0.000436 0.000190 0.03826 

COG3174 Predicted membrane 
protein 0.000092 0.000000 0.03826 
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COG3643 Glutamate 
formiminotransferase 0.000194 0.000014 0.03826 

COG4360 

ATP 
adenylyltransferase 

(5',5'''-P-1,P-4-
tetraphosphate 

phosphorylase II) 

0.000049 0.000000 0.03826 

COG5015 Uncharacterized 
conserved protein 0.000163 0.000012 0.03826 

COG0124 Histidyl-tRNA 
synthetase 0.000618 0.000350 0.03908 

COG2859 Uncharacterized protein 
conserved in bacteria 0.000113 0.000000 0.03908 

COG3176 Putative hemolysin 0.000335 0.000053 0.03908 

COG4833 Predicted glycosyl 
hydrolase 0.000248 0.000017 0.03908 

COG3206 

Uncharacterized protein 
involved in 

exopolysaccharide 
biosynthesis 

0.000553 0.000073 0.03923 

COG2440 Ferredoxin-like protein 0.000016 0.000182 0.03938 

COG2273 Beta-glucanase/Beta-
glucan synthetase 0.000311 0.000036 0.03991 

COG4804 Uncharacterized 
conserved protein 0.000768 0.000139 0.04142 

COG0326 Molecular chaperone, 
HSP90 family 0.000763 0.000233 0.04210 

COG0536 Predicted GTPase 0.000688 0.000357 0.04210 

COG0676 
Uncharacterized 

enzymes related to 
aldose 1-epimerase 

0.000058 0.000253 0.04210 

COG0781 Transcription 
termination factor 0.000416 0.000252 0.04210 

COG1589 Cell division septal 
protein 0.000081 0.000344 0.04210 

COG1643 HrpA-like helicases 0.000149 0.000649 0.04210 

COG1696 
Predicted membrane 

protein involved in D-
alanine export 

0.000768 0.000253 0.04210 

COG1819 
Glycosyl transferases, 

related to UDP-
glucuronosyltransferase 

0.000174 0.000049 0.04210 
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COG2081 Predicted flavoproteins 0.000734 0.000238 0.04210 

COG2204 

Response regulator 
containing CheY-like 
receiver, AAA-type 
ATPase, and DNA-

binding domains 

0.001946 0.000471 0.04210 

COG2755 Lysophospholipase L1 
and related esterases 0.001422 0.000516 0.04210 

COG3408 Glycogen debranching 
enzyme 0.000492 0.000092 0.04210 

COG4856 Uncharacterized protein 
conserved in bacteria 0.000217 0.000080 0.04210 

COG1609 Transcriptional 
regulators 0.003002 0.009242 0.04240 

COG1052 
Lactate dehydrogenase 

and related 
dehydrogenases 

0.000930 0.000367 0.04298 

COG4123 Predicted O-
methyltransferase 0.000501 0.000181 0.04298 

COG1115 Na+/alanine symporter 0.001166 0.000400 0.04313 

COG2768 Uncharacterized Fe-S 
center protein 0.000548 0.000122 0.04313 

COG4775 
Outer membrane 
protein/protective 
antigen OMA87 

0.001002 0.000177 0.04313 

COG4092 

Predicted 
glycosyltransferase 
involved in capsule 

biosynthesis 

0.000040 0.000000 0.04341 

COG0083 Homoserine kinase 0.000105 0.000369 0.04346 

COG1198 
Primosomal protein N' 
(replication factor Y) - 
superfamily II helicase 

0.000829 0.000412 0.04346 

COG1475 Predicted transcriptional 
regulators 0.002502 0.001376 0.04346 

COG1649 Uncharacterized protein 
conserved in bacteria 0.000652 0.000107 0.04346 

COG2966 Uncharacterized 
conserved protein 0.000510 0.000305 0.04346 
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COG3250 Beta-galactosidase/beta-
glucuronidase 0.005604 0.002297 0.04346 

COG4231 

Indolepyruvate 
ferredoxin 

oxidoreductase, alpha 
and beta subunits 

0.000375 0.000064 0.04346 

COG0621 2-methylthioadenine 
synthetase 0.001714 0.000781 0.04498 

COG0707 

UDP-N-
acetylglucosamine:LPS 
N-acetylglucosamine 

transferase 

0.000795 0.000474 0.04498 

COG4099 Predicted peptidase 0.000171 0.000015 0.04589 

COG1129 
ABC-type sugar 
transport system, 

ATPase component 
0.001257 0.002756 0.04924 

Table 18 Differentially abundant COGs in comparison of infant and adult gut 
microbiomes. 
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