
ABSTRACT

Title of dissertation: EXPERIMENTAL INVESTIGATIONS
OF CAPILLARY EFFECTS ON
NONLINEAR FREE-SURFACE WAVES

James D. Diorio, Doctor of Philosophy, 2009

Dissertation directed by: Professor James Duncan
Department of Mechanical Engineering

This thesis presents the results of three experiments on various aspects of the

effects of surface tension on nonlinear free-surface waves. The first two experiments

focus on capillary effects on the breaking of short-wavelength gravity waves, a prob-

lem of interest in areas of physical oceanography and remote sensing. The third

experiment is concerned with the bifurcation of solitary capillary-gravity waves, a

problem that is relevant in the study of nonlinear, dispersive wave systems.

In the first set of experiments, streamwise profile measurements were made of

spilling breakers at the point of incipient breaking. Both wind-waves and mechan-

ically generated waves were investigated in this study, with gravity wavelengths in

the range of 10–120 cm. Although it has been previously argued that the crest

shape is dependent only on the surface tension, the results reported herein are to

the contrary as several geometrical parameters used to describe the crest change

significantly with the wavelength. However, the non-dimensional crest shape is self-

similar, with two-shape parameters that depend on a measure of the local wave



slope. This self-similarity persists over the entire range of wavelengths and breaker

conditions measured, indicating a universal behavior in the near-crest dynamics that

is independent of the method used to generate the wave. The measured wave slope

is found to be related to the wave growth rate and phase-speed prior to breaking, a

result that contributes towards the development of a breaking criterion for unsteady

capillary-gravity waves.

The second set of experiments examines the cross-stream surface structure

in the turbulent breaking zone generated by short-wavelength breakers. Waves in

this study were generated using a mechanical wedge and ranged in wavelength from

80–120 cm. To isolate the effects of surface tension on the flow, the important ex-

perimental parameters were adjusted to produce Froude-scaled, dispersively-focused

wave packets. The results show the development of “quasi”-2D streamwise ripples

along with smaller cross-stream ripples that grow as breaking develops and can be-

come comparable in amplitude to the streamwise ripples for larger breakers. It is

found that the amplitude of the cross-stream surface ripples scale as λ̄3, where λ̄ is

the average wavelength of the wave packet. The cross-stream ripple activity appears

to be highest in the “troughs” of the larger streamwise ripples, with the appearance

of persistent “scar”-like features. Based on these observations, a simple model for

the coupling between the vorticity and capillary structure in the breaking zone is

conjectured.

The third set of experiments focuses on the generation of capillary-gravity

waves by a pressure source moving near the minimum phase speed cmin. Near this

minimum, nonlinear capillary-gravity solitary waves, or “lumps”, have been shown



to exist theoretically. We identify an abrupt transition to a wave-like state that

features a localized solitary wave that trails the pressure forcing. This trailing

wave is steady, fully localized in 3D, elongated in the cross-stream relative to the

streamwise direction, and has a one-to-one relationship between height and phase

speed. All of these characterisitics are commensurate with the freely propogating

“lumps” computed by previous authors, and a quantitative comparison between

these previous numerical calculations and the current experiments is presented. At

speeds closer to cmin, a new time-dependent state is observed that can qualitatively

be described by the shedding of solitary depressions from the tips of a “V”-shaped

pattern. These results are discussed in conjunction with a new theoretical model

for these waves that employs nonlinear and viscous effects, both of which are crucial

in capturing the salient features of the surface response. While discussed in the

context of water waves, these results have applicaiton to other wave systems where

nonlinear and dispersive effects are important.
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Chapter 1

Introduction

1.1 Waves on a liquid free-surface

The study of waves on a liquid free-surface is one of the oldest and scientifically

richest areas of fluid mechanics. With origins dating as far back as the work of Sir

Isaac Newton, extended through the 18th and 19th centuries by such luminaries

as Laplace, Cauchy and Stokes, and aided in no small part over the centuries by

societal dependence on shipping needs, surface wave theory has revealed itself to be

a seemingly endless supply of complex phenomena. For a truly absorbing review of

the historical developments of surface wave theory see [3, 4].

In an ideal sense, a liquid surface is considered to be “free” if it is exposed to

an atmosphere of gas or vapor and subject only to a constant normal stress, like

pressure. A more realistic scenario is one in which the atmosphere can also interact

with the surface through shear, heat flux and mass flux [5]. This second, more

complicated surface is sometimes referred to as a liquid-gas interface. Placing the

peculiarities in appellation aside, in this thesis we consider a “free liquid surface”

to be of the second type, where the liquid surface is free to interact with a vapor or

gaseous atmosphere, as opposed to a liquid-solid or liquid-liquid boundary. The most

ready examples of such free surfaces are open bodies of water such as lakes, oceans

and rivers. Free surfaces also arise in many other fluid mechanics applications such

1



as film and coating flows, liquid jets, droplets, and open channel flows. Regardless

of the application, when a liquid free surface is disturbed from equilibrium, wave

motion can result. This wave motion is typically due to the action of two restoring

forces: gravity and capillarity (i.e. surface tension). Which force dominates depends

on the scale of the motion. To see this mathetmatically, consider first the Navier-

Stokes equation

Du

Dt
= −gk̂ +

1

ρ
∇ · σ (1.1)

where u is velocity, g is gravity, k̂ is the vertical unit vector, ρ is the fluid density,

and σ is the stress tensor with components given by

σij = −Pδij + µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ δijλ
∂uk

∂xk

(1.2)

where P is pressure, δij is the Dirac delta function, µ is the coefficient of shear

viscosity, ui are the components of velocity, and λ is the coefficient of dilational

viscosity. For water, the liquid can be considered incompressible (∇ · u = 0) so the

last term in equation 1.2 is zero. Water waves are also typically considered to be

inviscid (µ = 0), although in reality there is a very small viscous boundary layer near

the free-surface. However, it will be shown in section 1.3 that this boundary layer is

typically quite small in comparision to the wavelength of the waves, except for very

small capillary waves (. 1 mm), so the inviscid assumption is often quite accurate

and σij = −Pδij. For an inviscid, irrotational, incompressible fluid, equation 1.1

can be written as Bernoulli’s equation

P = Patm − ρgz − ρ

[

∂φ

∂t
+

∇φ · ∇φ

2

]

(1.3)

2



where Patm is the pressure in the gaseous atmosphere at the free surface, z is the

depth below the free surface (taken as negative moving downwards), and φ is the

velocity potential, such that u = ∇φ. Because of incompressibility, the velocity

potential is governed by Laplace’s equation ∇2φ = 0. The fluid motion is then

prescribed by Laplace’s equation subject to appropriate boundary conditions at the

free surface.

If we are considering fluid motion near a free surface z = η(x, y, t), the forces

on an element of the free surface must balance. If the fluid is considered to have

constant surface tension τ , then the normal force balance on the surface yields [6]

Pη + τ

(

1

Rx

+
1

Ry

)

= Patm (1.4)

where Pη is the pressure in the fluid evaluated at the free surface and Rx and Ry

are the radii of curvature of the free surface in the x and y directions, respectively,

with positive curvature concave upwards. Equation 1.4 shows that the pressures on

the two sides of the surface are equal except for a capillary pressure term.

Evaluating Bernoulli’s equation at the free surface, making use of equation 1.4

and rearranging yields a dynamic boundary condition at the free surface, namely

[

∂φ

∂t
+

∇φ · ∇φ

2

]

η

+ gη − τ

ρ

(

1

Rx

+
1

Ry

)

= 0 (1.5)

Using U and L as velocity and length scales, respectively, we can write equation 1.5

in nondimensional form as

[

∂φ

∂t
+

∇φ · ∇φ

2

]

η

+
1

Fr
η − 1

We

(

1

Rx

+
1

Ry

)

= 0 (1.6)

where all the quantities are now nondimensional. The nondimensional groups in

3



equation 1.6 are the Froude number Fr = U2/gL and Weber number We = ρU2L/τ .

Equation 1.6 shows that for large length scales (Fr → 0) the gravity term is dom-

inant, while for small length scales (We → 0) capillary forces are most impor-

tant. The two effects are of the same order near the gravity-capillary length scale,

lgc = (τ/gρ)1/2.

Since both φ and η are unknown in equation 1.6, it is necessary to have a

second boundary condition in order to form a closed system for solving Laplace’s

equation. This second boundary condition is obtained by noting that fluid particles

move with the free surface. The resulting kinematic boundary condition is

[

∂φ

∂z

]

η

=
∂η

∂t
+

[

∂φ

∂x

]

η

∂η

∂x
+

[

∂φ

∂y

]

η

∂η

∂y
. (1.7)

Equation 1.7, along with equation 1.5 and Laplace’s equation forms a closed set of

equations for the fluid motion. Note that equations 1.5 and 1.7 are evaluated at

the free surface, which is unknown a priori. One can see that equations 1.5 and

1.7 are greatly simplified if they are evaluated at the undisturbed water surface

and if we ignore the nonlinear terms. The conditions for this simplification are met

when ∇φ and ∇η are small, e.g. when the amplitude of the wave motion is small in

comparison to the wavelength [7]. We can define a slope parameter ǫ = ak where a is

the wave amplitude and k is the wavenumber k = 2π/λ, where λ is the wavelength.

For ǫ ≪ 1 or infinitesimal waves, the wavemotion is said to be linear. When the

wave amplitude is finite, the resulting wave motion is said to be nonlinear. As we

shall see, the interplay between gravitational, capillary and nonlinear effects is very

important in controlling the surface wave dynamics.
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1.2 Pure gravity waves

For the case of pure gravity waves (i.e. τ = 0) it can be shown that, for small

amplitude (i.e. ǫ ≪ 1), solutions of the form η = acos(k ·x−ωt) are possible. Here

k is the wavenumber vector, x is the position vector and ω is the angular frequency,

ω = 2π/f . For waves over a flat impermeable bottom, in order to satisfy the free

surface boundary conditions and Laplace’s equation, ω and k must be related by

the linear dispersion relation [8]

ω2 = gk tanh(kH) (1.8)

where H is the total depth of the fluid. For the case where the fluid depth is much

larger than the wavelength (i.e. kH → ∞), the gravity-wave phase-speed cp (≡ ω/k)

is cp = (g/k)1/2 so that longer wavelength (smaller k) waves propogate faster than

shorter wavelengths. While this dispersion relation is derived for the case of linear

gravity waves, nonlinear effects only slightly modify this relation so that, to a good

degree of approximation, the linear theory can often be used.

For pure gravity waves of finite amplitude, the free surface begins to deviate

from a sinusoidal shape. This problem was originally considered by Stokes [7] who

showed that for a monochromatic wave train the wave shape formed broader troughs

and sharper crests as ǫ increased, approaching a limiting form of a 120◦ corner

flow at the crest (i.e. the “Stokes limit”). Stokes’s solution essentially amounts to

the appearance of increasingly higher harmonics in the wave profile as the degree

of nonlinearity is increased. It has since been shown that real gravity waves are

unstable at slopes below the Stokes limit [9], and waves can evolve to “breaking”,
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with the formation of a fluid jet that issues from the wave crest and then impacts

the wave front face. This jet impact encapsulates a large amount of air and some of

the energy of the initially irrotational wave is converted into turbulent energy near

the free surface, as well as producing spray and bubbles in the breaking zone.

If we are considering waves on deep bodies of water such as lakes and oceans,

such steep gravity waves can be generated by a variety of mechanisms. In cases

where the free-surface is subject to wind, waves can be driven directly by the wind

motion and several models of this process have been proposed, such as the resonance

of pressure fluctuations for small amplitude waves [10] or a “sheltering” pressure at

larger amplitude [11]. Generally speaking, the energy input rate from the wind to the

waves appears to increase with the difference between the wave phase speed and the

wind speed. Because of the combined effects of nonlinearity and dispersion, water

waves also exhibit a phenomenon known as wave-wave interaction. This idea was

first put forth by Phillips [12], [13] who demonstrated that a continuous transfer of

energy between different Fourier components of interacting wave fields was possible

through a type of resonant interaction at third order in the wave slope. A similar

approach was used by Benjamin and Feir [14] who showed that, to second order in

the wave slope, a monochromatic wave train is unstable to upper and lower “side-

band” frequencies that grow exponentially in time. This wave-wave interaction is a

slow process that occurs over many wave periods. Many experiments ([15], [16], [17],

[18, 19], [20], [21]) and numerical calculations [22] have confirmed the existence of

these unstable side-bands, as well as observing that the initially uniform wave train

degenerates into wave groups as the process develops. The steepness of individual
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wave crests increases as a wave moves through these groups and for significantly

modulated wave trains the waves can break.

1.3 Capillary effects

When we begin to consider capillary effects on surface waves, some interesting

dynamics begin to emerge. First, it can be shown that with surface tension, the

dispersion relation (equation 1.8) is modified to include a capillary dispersion term

[8]

ω2 =

(

gk +
τ

ρ
k3

)

tanh(kH). (1.9)

As was mentioned in section 1.1, water waves are typically considered to be inviscid,

though in reality there is a small viscous layer that forms near the free surface

with a thickness on the order of δ = (2ν/ω)1/2 where ν is the kinetmatic viscosity

(≡ µ/ρ). The inviscid assumption therefore requires that the quantity kδ ≪ 11.

One can use equation 1.9 to convince oneself that, in deep water, such a condition is

adequately satisfied for all but the smallest of waves (∼ 1 mm or less). As the wave

steepness increases viscous effects can begin to play a role [23], but to leading order

in the wave slope the inviscid approximation is often sufficient. In the experiments

discussed herein, the waves are considered to be inviscid, except for the discussion

on gravity-capillary solitary waves in Chapter 4, where recent theoretical models

show the inclusion of viscous effects to be important in capturing the qualitiative

surface features observed in the experiments.

1The quantity kδ can also be thought of in terms of the Reynolds number based on the gravity
wavelength and phase speed. This is because kδ = (2νk2/ω)1/2 = (4πν

cλ )1/2, kδ ∝ 1/
√

Re.
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Dividing both sides of equation 1.9 by k2 and using the fluid depth H as a

length scale and U = (gH)1/2 as a velocity scale, we can write an equation for the

dimensionless phase speed c′p as

c′2p =
(

1 + Bok′2
)

tanh(k′) (1.10)

where the primes denoted dimenless quantities and Bo is the Bond number Bo =

τ/(ρgH2) = l2gc/H
2. Bo = 0 corresponds to the deep-water limit while Bo → ∞

is the shallow-water limit. An interesting feature of this dispersion relation is that

the phase velocity, cp, obtains a minimum that depends on the value of the Bond

number. For Bo ≫ 1/3 (shallow water), the minimum occurs in the long-wave

limit, km = 0, and has a minimum phase speed cmin = (gH)1/2. For Bo ≪ 1/3

(deep water), the minimum occurs at a finite wavenumber, km = (ρg/τ)1/2, with

minimum phase speed cmin = (4gτ/ρ)1/4. For deep water with a surface tension of

73 dynes/cm, cmin ≈ 23 cm/s. The importance of such phase-speed minima can be

seen by taking the derivative of cp with respect to k, namely

dcp

dk
=

dω/dk

k
− ω(k)

k2
=

1

k
(cg − cp) (1.11)

where cg is defined to be the group, or energy velocity ∂ω/∂k. At any extrema,

dcp/dk = 0, and equation 1.11 shows that cp = cg at this point. Extrema of cp(k),

where the phase and group velocities are equal, are known bifurcation points of non-

linear solitary waves [24], [25], [26], [2], [27], [28]. In fact, similar such solitary waves

have been observed in other areas of physics [29], [30], [31], and research into the wave

behavior near such minima offers new insight into the physics of nonlinear waves
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in dispersive media. Therefore, recent experiments on the generation of gravity-

capillary solitary waves will be discussed in Chapter 4.

In addition to altering the dispersion relationship, capillary forces can also

affect the dynamics near the crests of steep gravity waves, where the curvature of

the free surface is high. For gravity wavelengths typically less than about 1 m, the

crest jet found in long-wavelength breaking waves may be replaced by a rounded

bulge and capillary waves on the front wave face [32], [33]. In such cases, the

breaking process is triggered by the appearance and growth of a small separated

shear layer near the free surface [34, 35, 36]. This small turbulent patch is driven

downwards by gravity and “spills” down the front wave face, generating capillary-

scale ripples on the free surface. Although they lack the significant air-entrainment

of their larger wavelength counterparts, these “micro-breakers” [37] are prevalent on

the ocean surface under typical conditions and are known to play an important role

in processes in the upper ocean such as air-sea interaction and energy dissipation

[38, 39, 40, 41, 42, 43, 44], as well as effecting remote sensing devices through the

generation of small-scale surface ripples [45, 46, 47, 48]. Because of their ubiquity

and importance in such areas, Chapters 2 and 3 will discuss two experiments looking

at the effects of surface tension on short-wavelength spilling breakers.

1.4 Thesis outline

Needless to say, research on nonlinear waves and capillary flows extend well

beyond the topics of wave breaking and gravity-capillary solitary waves, and the
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above discussion is meant to highlight just two fluid dynamic examples of ways in

which capillary forces can affect wave dynamics on a free surface. However, the

importance and applicability of these flows to areas of fluid mechanics, physical

oceanography and nonlinear wave theory makes them a topic worthy of scientific

inquiry, the results of which could contribute in a variety of disciplines. While this

section is designed to give an introduction to the overarching physics of the problem,

the remainder of this dissertation will focus on relevant background and experiments

related to three specific topics. The first two topics are similar in nature, and are

both related to the effects of surface tension on the dynamics of short-wavelength

breaking waves. Chapter 2 is an investigation of the streamwise wave shape at the

point of incipient breaking. Emphasis is placed on how the capillary-induced crest

geometry changes with both the wavelength and the method used to generate the

wave, and what these results might contribute to the development of a breaking

criterion for unsteady brekaers. Chapter 3 is concerned with the dynamics of the

free surface once breaking begins and focuses on the growth of cross-stream surface

fluctuations, which are dominated by the interaction of capillary-forces with the

turbulent structure in the underlying fluid. The third topic, discussed in Chapter

4, examines the generation of non-linear capillary-gravity solitary waves near the

minimum phase speed. Experimental results are presented that show how such

waves may be excited by the motion of a small pressure source on the free surface,

and several distinct response states are found. Chapter 5 provides a summary of

the work and conclusions.
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Chapter 2

Streamwise profile measurements of spilling breakers at incipient

breaking1

2.1 Abstract

In this set of experiments, the profiles of incipient spilling breaking waves with

wavelengths ranging from 10 to 120 cm were studied experimentally in clean water.

Short-wavelength breakers were generated by wind while longer-wavelength break-

ers were generated by a mechanical wave-maker using either a dispersive focusing or

side-band instability mechanism. The crest profiles of these waves were measured

with a high-speed cinematic laser-induced fluorescence technique. For all the wave

conditions reported herein, wave breaking was initiated with a capillary-ripple pat-

tern as described in [1]. The results show that several geometrical parameters used

to describe the crest change with the relative wavelength of the wave, but remain

insensitive to the breaker method used. Although the crest shape does vary, it is

found to be self-similar with two geometrical parameters that depend only on the

slope of a particular point on the front face of the gravity wave. The scaling rela-

tionships appear to be universal for the range of wavelengths studied and hold for

waves generated by mechanical wave-makers and by wind. The slope measure is

found to be dependent on the wave phase speed and the rate of growth of the crest

1Some of the work presented in this chapter can also be found in Diorio et al., Journal of Fluid

Mechanics, 2009 [49]
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height prior to incipient breaking.

2.2 Summary of previous work

As was discussed in Chapter 1, surface tension plays an important role in

short wavelength and/or weak breakers causing the formation of a rounded crest

and capillary waves appearing on the front wave face. This phenomenon has been

investigated over the years through a combination of experiments, theories and

numerical calculations. Some of the earliest works were by Schooley [50] and Cox

[51], who reported on measurements of high-frequency capillary waves on the front

face of gravity waves in wind-wave flumes. The gravity wavelengths studied were in

the range of about 1–10 cm. The measurements in [51] also revealed the presence

of these waves even in the absence of wind. Longuet-Higgins [52] produced a theory

to explain the existence of these capillary waves, considering surface tension as

a small perturbation to the flow inside a steep gravity wave. It was shown that

the capillary waves derive their energy from the larger gravity wave, giving rise

to the nomenclature of “parasitic” capillary waves. Later, Crapper [53] offered a

different theory, considering the case of non-linear capillaries on a variable stream.

More observations of small wavelength wind-waves have been reported, although

very few measurements of precise wave profiles are available. Okuda [54] used flow

visualization to investigate the velocity distributions near the surface of a wind-

wave field. The results showed a thickened vorticity layer near the crest of waves

whose height was near or greater than the significant wave height. Photographs
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of laboratory wind waves reported by [55] showed the presence of a bulge and a

train of small capillary waves on the leeward side of the wave crest and streaky

patterns on the wind-ward side that were likely due to the high vorticity layer found

in [54]. Reference [55] also used the specular reflection of a light source to measure

the wavelength of the capillary waves as a function of distance from the crest, and

compared these measurements to the theory of [52]. It was shown that there was

qualitative agreement between the theory and experiment when the surface drift

velocity was taken into account.

Reference [33] calculated the effect of surface tension on the development of a

breaking wave generated due to a side-band instability. For wavelengths less than

about 0.5 m, a small bulge is formed, and small capillary waves appear upstream

of the leading edge. Calculations by Longuet-Higgins [56] on the effect of surface

tension on the crest instability of the almost-highest wave showed similar results:

a bulge forms on the crest, and a train of capillary waves appears upstream of the

toe. A particularly important result of these calculations was that in the presence

of surface tension, the non-dimensional length of the bulge Lm/λ (where Lm is the

distance from the toe to the point of maximum height) increases as the wavelength

decreases. Improving on his earlier theories, Longuet-Higgins [57] also theorized

that the capillary-bulge pattern formed near the crest of steep waves is part of

a “capillary jump” system. It was suggested that this jump is connected to the

existence of solitary capillary-gravity waves [24], where the height of the wave is

related to the phase speed. If the fluid particle speed upstream of the jump exceeded

1.414(g′τ/ρ)1/4, a stream of capillary waves would occur. Here g′ is an “apparent
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gravitational acceleration” felt by a short ripple riding on a longer gravity wave

and is given by g′ = gcos(θ) − κq2, where θ is the angle of tilt of the surface, κ

is the local surface curvature and q is the particle speed. In the theory, the wave

steepness required to meet such a jump condition decreased with the wavelength of

the wave. The jump in height is thought to be located at the point on the wave

profile where the gradient in the surface velocity reaches its minimum value. This

theory was verified in a semi-quantitative fashion by the calculations of Y. Yao that

are included in [57]. In addition to supporting the theory, the numerical calculations

showed that the shape and size of the capillary waves scale with (τ/ρg)1/2 rather

than with the length of the gravity wave. Similar profiles were reported in [58] and

[59] in computations employing a pressure forcing (to simulate wind) and viscous

dissipation. Good agreement with laboratory experiments of mechanically generated

waves with lengths in the range of 5-10 cm was also reported.

In detailed experiments, Duncan and colleagues [32, 60, 1] used a photographic

technique that employed a laser light-sheet and a high-speed camera to make profile

measurements of two-dimensional mechanically generated waves. Very weak break-

ers with wavelengths in the range of 80–120 cm were investigated in this study. For

these waves in clean water, a bulge-capillary wave system formed on the forward face

of the wave crest, even though the wavelengths were relatively long. These profiles

were qualitatively similar to the profiles computed by Longuet-Higgins [23, 57, 56]

and Tulin [33] for times up to just before the wave began to break. In [1] the crest

profiles just before the onset of turbulent flow were found to be independent of wave

frequency, giving further evidence that the crest flow is dominated by gravity and
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surface tension in weakly spilling breakers, and should scale with (τ/ρg)1/2. The

experiments of Duncan et al. also qualitatively highlighted the breaking process and

the production of turbulence. A short time after the formation of the bulge-capillary

system, the toe begins to move down the front face of the wave, and longer turbulent

ripples replace the bulge and capillary waves. This turbulent patch grows in size and

eventually covers a significant portion of the wave crest. Particle image velocimetry

(PIV) measurements reported in [36] revealed the presence of vorticity near the toe

of the wave just as the toe started to move down the wave front face. The size of

this vortical region increased as the toe progressed. It was theorized [23] that the

capillary waves upstream of the toe are a substantial source of vorticity that may be

advected into the crest region, although the boundary layer thickness proposed in

this theory was too thin to be verified in [36]. In another experiment [61] wave-height

gauges were used to measure the wave slope close to the crest of “near-breaking”

wind waves and found the slope to be independent of the wavelength, indicating a

self-similarity in the asymmetric profile shape. The same similarity was found even

for waves generated mechanically. The authors used this result to imply that beyond

a certain point of the wave evolution, the breaking process is controlled by factors

other than the wavelength or the wind speed. These results, combined with the

numerical and experimental observations that 2-D breakers scale as (τ/ρg)1/2, lend

evidence that the crest profile shapes for breaking wind waves should also be scale

invariant, depending only on the surface tension and gravity. However, no detailed

measurements exist to fully support this claim.

Clearly, the wave shape and flow field at the moment before breaking begins are

15



critical aspects of breaking waves. However, a general incipient breaking condition

for unsteady waves has been elusive, and the most successful work has been with

steady waves. This work began with Stokes [7] who showed that the limiting form

of the crests of a steady periodic gravity wave train is a corner flow with an included

angle of 120◦ and a stagnation point at the crest. In [62] it was found that steady

waves produced by towing a two-dimensional hydrofoil at constant depth, angle of

attack and speed would continue to break once disturbed if the slope of the wave’s

forward face was greater than 17◦. The stagnation point idea was also used by

Banner and Phillips [37] in considering the effect of a surface wind drift layer on

the breaking criterion for a steady wave. In experiments with hydrofoil produced

waves and a turbulent surface wake [63], it was found that the breaking criterion

had the same functional form as in the Banner and Phillips theory, but was reached

when the flow speed at the crest was 50 percent of the wave phase speed. Work

to determine a breaking criterion for unsteady waves has been less successful. This

is partly because the wave goes through a range of shapes as it breaks and both

the theory and the experiments are more difficult than in steady waves. Recent

work in this area includes [64], [65] and [66] which focus on waves breaking within

modulating wave packets. These studies emphasize the role of the rate of increase

of energy at the maximum height of the wave packet envelope on the breaker type

(spilling to plunging). Also, [67] found through numerical calculations that in deep-

water modulating gravity wave trains, a wave crest will evolve quickly to breaking

whenever the local maximum particle speed exceeds one-half the phase velocity of

the dominant wave train. The relationship between this latter breaking criterion for
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unsteady waves and that of [63] for steady waves is not known, even though both

occur when the particle speed reaches one-half the wave phase speed.

In view of the previous work discussed here, one of the goals of the current

work is to measure the crest shape for spilling breakers at incipient breaking for a

range of breaker wavelengths and under a variety of breaking conditions. Results of

such experiments would offer insight into the breaking process, including testing the

appropriateness of the crest scaling length (τ/ρg)1/2 and aiding in the development

of a general incipient breaking criterion for unsteady waves. Therefore, the results

of 2D profile measurements for various waves generated by different techniques,

including wind, are presented in this chapter.

2.3 Experimental details

2.3.1 The wave tank

The experiments were carried out in a wind-wave tank that is 11.6 m long

by 1.22 m wide and 2.1 m tall with a water depth of 0.91 m, see figure 2.1. The

tank includes a programmable wave-maker that spans the width of the tank with a

vertically oscillating wedge with a wedge angle of 30 degrees. The wedge is located

at one end of the tank and mounted to the laboratory wall. A servo-motor, which is

controlled by a PC, can drive the wedge vertically while a position sensor monitors

the current wedge location. The position information is fed back into the servo-

motor to actively correct any errors in the motion. This feed-back system controls

the wedge position to within a run-to-run rms error of ±0.1%. The facility also
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features an instrument carriage which rides on top of the tank. This carriage is

supported by four hydro-static oil bearings to reduce vibrations on the tank walls

and is towed by a towing cable cranked via a second servo-motor. A second position

sensor monitors the location of the carriage, also providing feedback to the carriage

motor. The same PC controls both the wedge and carriage motors so accurately

coordinated motions between the two can be obtained.

The tank also includes a wind tunnel which is positioned in front of the wave-

maker. The tunnel is powered by two 5.6 kW fans that are mounted to the ceiling of

the laboratory and drive air toward the wave-maker. An entrance section consisting

of ducting, two sets of turning vanes, three screens and a honeycomb is used to

condition and redirect the air flow so that it moves parallel to the water surface in

the direction away from the wave-maker. Measurements of the mean air flow leaving

the entrance section were made using a pitot tube and it was found that the mean

air velocity varied by less than 7% over the cross section of the tank at the fastest

fan speed. After passing through this entrance section, the airflow is contained by

the side walls of the water tank, a series of clear Acrylic plates that form the lid,

and the water below. The lid plates are positioned 0.78 m above the mean water

level and end 1 m before the end of the tank to allow the air to exit. The bottom

of the entrance section of the wind tunnel is 10.2 cm above the mean water level.

This gap allows waves generated by the wave-maker, which is located behind the

entrance section, to enter the tank. The area between the wave-maker and the back

of the wind tunnel is sealed with flexible material in order to minimize reverse air

flow under the entrance section. The mean air-speed at a point halfway down the
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Figure 2.1: Schematic of wave tank with wave-maker, wind tunnel and instrument
carriage.

tank was measured with a pitot tube and the maximum value was found to be about

9.1 m/s (or about 18 knots).

At the far end of the tank, a small beach comprised of a horse-hair mat on a

tilted Acrylic plate was placed below the wind tunnel exit to damp wave reflections.

When the wedge is used to produce waves, the breaking process occured before any

waves reflected back into the measurement area. When the wind is on, the driving

force of the wind quickly damps any upstream travelling wave reflections, in addition

to the damping effect of the beach. The measurement section is also kept far enough

away from the beach that the effect of reflected waves is negligible.

Because of the importance of surface tension in these experiments, a combina-

tion of a surface skimmer and a diatamacious-earth water filtration system is used

to keep the surface free of any contaminants and surfactants. For waves generated

mechanically, this filtration system is kept on in between runs, typically about 30

minutes. For these waves, a custom-built Langmuir trough is placed in the tank

and surface tension measurements are made in situ using a Willhelmy plate. For

the wind-wave experiments, the Acrylic plates that form the lid of the wind tunnel
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make in situ measurement infeasible, so a small bench top tank was constructed

for measuring the surface tension. First the surface is skimmed for at least an hour

before the wind is turned on. Once the wind is turned on, and before any exper-

iments begin, a sample of water is taken from the bulk near the exit of the wind

tunnel and placed in the bench top tank. The surface tension is then measured

using the same Langmuir trough-Willhelmy plate device mentioned above. In all

of these experiments, the surface tension was measured to be 73 dynes/cm and the

water was considered to be relatively free of any surfactants.

2.3.2 Wave generation

Waves were generated using three different methods. The first method was a

dispersive focusing technique similar to that used in [68]. Briefly, in this method

a packet of waves with varying frequency is generated in such a manner that the

packet converges as it travels down the tank. This convergence causes the remaining

waves in the packet to increase in amplitude, and a breaking wave may form if the

initial amplitudes are large enough. Linear deep-water gravity wave theory is used

to compute the motion for the wave-maker, though the resulting wave motion is

highly nonlinear when the packet converges. The wave packet consists of the sum

of N sinusoidal components and the wave-maker motion to produce these waves is

given by

zw = w(t)
2π

N
A

N
∑

i=1

1

ki

cos

(

xb

(

ωi

c̄g

− ki

)

− ωit + φ

)

(2.1)
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Case No. No. of runs f̄(Hz) λ̄(cm) A/λ̄

1 3 1.15 118.06 0.0505

2 1 1.26 98.34 0.0505

3 1 1.42 77.43 0.0505

4 1 1.42 77.43 0.0496

5 1 1.42 77.43 0.0487

Table 2.1: The parameters of the five wave-maker motions used with the dispersive
focusing technique. In this table, f̄ is the average frequency of the wave packet,
λ̄ = g/(2πf̄ 2) is the wavelength of the average frequency according to linear theory,
and A/λ̄ is the non-dimensional amplitude of the wave-maker motion. Note that
the first case was done three times, yielding seven experiments total. The value of
the other parameters used in equation 2.1 are as follows: N = 32, xb = 6λ̄ and
φ = 90◦. The windowing function w(t) is described in [1].

where A is an adjustable constant called the wave-maker amplitude, xb is the hori-

zontal position of the breaking event, t is time, ki and ωi are the wavenumber and

radian frequency of each component, c̄g is the average of the group velocities of the

N wave components, and φ is a phase shift, typically taken to be π
2
. w is a window-

ing function that is designed to give the wave-maker zero motion when the sum of

the components results in very small motion (see [1] for further details). For each

motion, we can define an average wavepacket frequency f̄ and a non-dimensional

wave-maker amplitude A/λ̄, where λ̄ = g/(2πf̄ 2) is the wavelength of the average

frequency. Five different wave-maker motions were studied with this technique and

the values of the parameters used can be found in table 2.1.

In the second method, the wave-maker is used to generate a sinusoidal wave
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train of initial frequency f0 and initial slope a0k0, where a0 is the wave amplitude

(different from the parameter A above) and k0 is the wavenumber according to

linear theory. The amplitude a0 is the average height of the waves produced by a

given wave-maker motion, and is measured 5 m away from the wave-maker using

a capacitance-type wave height gauge. According to the theory of Benjamin and

Feir [14], a sinusoidal gravity wave train is unstable to upper and lower “side-band”

perturbations with frequencies in the range f± = f0(1 ±
√

2a0k0), with the fastest

growing instability located at f± = f0(1±a0k0). These side-band frequencies interact

with the main carrier wave, causing an initially uniform wave train to modulate into

wave groups. If the envelope of these groups is sufficiently steep, waves may begin to

break as they pass through the group. This theory has since been slightly modified

to include a parameter β, such that the fastest growing instabilities are located at

f± = f0(1 ± βa0k0), where the value of β is dependent on the wave slope and the

specifics of the wave-maker [69], [16], [18]. In our facility, waves were first generated

with the primary component only and the frequency spectra were computed from

the measured wave height data. It was found that the fastest growing side-bands

were typically located at f± = f0(1±0.75a0k0) or β = 0.75. However, the wave tank

is not long enough to let these side-bands grow naturally (i.e. more wave periods are

needed for the wave train to modulate sufficiently to cause breaking). Therefore, the

wave-maker is run again but with the side-band frequencies superimposed on the

main wave train at an amplitude γa0 where γ ≪ 1. The values of the parameters

used with this method are summarized in table 2.

In the third method, the wind was used to generate waves. In the conditions
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No. of runs f0(Hz) a0k0 f+(Hz) f−(Hz) γ

3 2.3 0.30 2.81 1.79 0.015

Table 2.2: The parameters used for the three waves generated using the side-band
instability mechanism. In this table, f0 is the frequency of the main wave train, a0k0

is the measured wave slope, where a0 is the amplitude of the initially unmodulated
sinusoidal wave train measured at a distance of 5 m from the wave-maker using
a capacitance probe, and k0 is determined from f0 via linear theory. f+ is the
frequency of the upper side-band, f− is the frequency of the lower side-band, and γ
is the ratio of the side-band input amplitudes to the input amplitude of the main
wave train.

studied herein, the wind speed at the center line of the wind tunnel ranged from 6.0

to 7.2 m/s and the fetch at the location of the measurements ranged from 3 to 5.5

m from the beginning of the wind-tunnel test section. The wind velocity profile as a

function of height above the water surface was measured with a pitot tube, starting

2 cm above the mean water level. An estimate of the friction veloctiy at the water

surface was obtained by computing dU/dy at the mean water level via a linear fit to

these wind-profile measurements. It was found that Uτ ≈ 1.8 cm/s and the waves

are considered to be over-driven (i.e. the wave phase speed is much lower than the

wind speed at the centerline of the tank). Capacitance-type wave-height gauges

were used to measure the dominant wave frequencies under these wind conditions.

The peak frequencies ranged from roughly 2.5 to 3.5 Hz, which, via linear theory,

yield wavelengths in the range of 10 to 25 cm. In all, measurements for 18 different

breakers are reported in this section (7 generated by dispersive focusing, 3 generated

by side-band instabilities and 8 generated by wind).
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2.3.3 Wave profile measurement

The profiles of the breaking waves were measured photographically with a

Laser-Induced-Fluorescence (LIF) method that employs a high-speed digital movie

camera. A beam from an Argon-Ion laser operating at 7 W is directed through

a series of mirrors to optics that are mounted on the instrument carriage. These

optics redirect the light sheet downward and a cylindrical lens spreads the beam

into a thin vertical light sheet. This light sheet is located at the center plane of

the tank and is 25 cm wide (in the streamwise direction) and 1 mm thick (in the

cross-stream direction) at the mean water level. In order to make the light sheet

visible at the water surface, Fluorescene dye was mixed into the tank water. A high-

speed camera (Phantom v9, Vision Research), mounted on the side of the carriage,

images the intersection of the laser sheet and water surface from the side and slightly

above and in front of the wave crest. Images of a patterned checkerboard placed in

the plane of the light sheet were used to calibrate the camera images and to test

for any parallax error caused by the slight viewing angle. The camera was set to

record 1632-by-1200 pixel images with 8 bit grey levels at 250 images per second.

Because the optics that form the light sheet and the camera are mounted to the

carriage, images can be taken of the breaking wave crests as they propagate down

the tank. The camera runs on an internal clock and is triggered by the start of the

wave-maker (which also triggers the start of the carriage motion). For the cases

with mechanically generated waves, the carriage motion was synchronized with the

wave motion by trial and error by varying the carriage starting position, the starting
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time relative to the wave-maker motion, the acceleration and the final speed from

run-to-run. For cases where the wind was used to generate waves, the approximate

phase speed of the waves was determined at the fetch of interest and the carriage

was run repeatedly at this speed. A run was considered successful when a wave was

seen to break in the camera’s field of view. It is emphasized that the geometrical

and propagation characteristics of breaking wind waves measured at the same wind

speed and fetch vary from one event to another.

Wave crest profiles were extracted from each image by use of a MATLAB

routine consisting of a series of steps. First a threshold function is applied to convert

low gray levels to black and high gray levels to white to create a uniform dark

background and enhance image intensity. Next, the gradient of the image intensity

field in both the x and y directions was obtained by applying a centered difference

mask at each pixel. A threshold is applied to this gradient image to create a binary

image where high magnitude gradients are considered edge pixels and assigned a

value of 1 (white) and all other pixels are assigned a value of 0 (black). This binary

image shows no edge pixels in the air but many edge pixels from the water surface

downwards, particularly at the air water interface. Lastly, starting from a surface

edge pixel at the far left of the image, the program searches the nearest neighbor

pixels in a clockwise fashion to find other edge pixels that are to the right of the

starting pixel. If another edge pixel is found, the program joins consecutive pixels

and the process continues, snaking the edge of the image from left to right. Due

to the high resolution of the camera and the presence of bright and dark spots

cause by surface curvature, this technique can sometimes lead to spurious edges or
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gaps in the profile. This problem is fixed by allowing certain pixels of the profile

to be manually inserted or removed by the user. The accuracy of the wave profile

depends on the quality of the image and the resolution of the camera. Different

camera lenses with various magnifications were used depending on the desired field

of view (wider angle lenses tended to be used for the wind-wave experiments so

as to capture more potential breaking events). In the well-focused images prior to

breaking, the free surface can typically be located to within one pixel, which was

0.3 mm in the physical plane for the lowest magnification used.

2.4 Results and discussion

2.4.1 Crest geometry

Figure 2.2 contains LIF images of the crest region of three waves at the point

of incipient breaking (defined as the last frame before the toe point begins to move

and referred to as t = 0 herein) during three different experiments. The images

have been cropped to show a 5-by-2-cm region near the wave crest and all the waves

are moving from right to left. The wave in figure 2.2(a) was generated using the

dispersive focusing technique, and has an average wavelength λ̄ of roughly 120 cm

and an amplitude of 8 cm as measured from the undisturbed water level to the crest.

The wave in figure 2.2(b) was generated by the side-band instability method and

has a wavelength λ0 = 2π/k0 of roughly 30 cm and an amplitude of 1.8 cm. The

wave in figure 2.2(c) was generated directly by the wind and has a wavelength of

approximately 13 cm (as measured by the high-speed camera) and a crest height
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(a)

(b)

(c)

Bulge

Toe

Capillary
waves

Figure 2.2: Images of wave crests at incipient breaking from high-speed movies in
three separate experiments. Each image shows a 5 cm x 2 cm section near the wave
crest, and the waves are moving from right to left. Each wave was generated using a
different method and has a different wavelength (λ) and amplitude (a). a) Dispersive
focusing, λ̄ = 120 cm, a = 8 cm. b) Side-band instability, λ0 = 30 cm, a = 1.8 cm. c)
Wind-driven, λ = 13 cm, a = 0.7 cm. The wavy boundary between the black region
at the top of each image and the non-uniform grey region below is the wave crest
profile at the intersection of the light sheet and the water surface. The light and
dark patterns seen below this boundary are the result of two refraction processes:
the first as the light sheet enters the water creating a non-uniform pattern in the
fluorescing dye and the second as the non-uniform light intensity in the glowing dye
within the light sheet is viewed through the water surface between the camera and
the light sheet.
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of 0.7 cm above the mean water level in the tank before the wind was turned on.

As can be seen from the figure, a capillary-bulge pattern appears in all the images

(see figure 2.2(a) for nomenclature). This pattern includes a round bulge formed

on the forward (left) face of the wave crest and a train of capillary waves upstream

(to the left) of the leading edge (toe) of the bulge, as described in section 2.2. At

the instant in time after the images shown, the toe, which was stationary relative

to the wave crest prior to these images, begins to move down the wave face and a

turbulent flow ensues, see [1] and [36].

Figure 2.3(a) shows the wave crest profiles taken from the images in figure 2.2.

In this plot, the profiles are aligned at the toe point to remove the large differences

in wave crest height and thereby allow better comparison of the crest profiles. As

can be seen from the figure, though the shape of the profiles are qualitatively similar,

the variations in the slopes of the free surface upstream of the toe and the curvature

of the bulge are quite pronounced. Generally speaking, both of these quantities

increase with the wavelength of the breaking wave. This trend in local surface slope

is qualitatively similar to the theory of [57]. In this theory, a capillary jump, which

forms the capillary-bulge system, occurs at the point on the wave profile where the

flow speed in the reference frame of the crest equals the minimum phase speed of

capillary-gravity waves and the gradient of the flow speed at the surface is high.

In [57] it was shown that the surface slope at this point decreases with decreasing

gravity wavelength. The profile shapes shown in figure 2.3(a) are also qualitatively

similar to those found in numerical calculations of short-wavelength steep waves

[70], [58], [59], [33] and [56].
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Figure 2.3: Crest profiles of the three waves shown in figure 2.2. (a) After aligning
the profiles at the toe point. (b) After rotating each profile so that the slope of the
front face at the toe is horizontal, and scaling the horizontal and vertical axes by
Ls and tp, respectively (see insert in (a)).

In order to compare the profile shapes quantitatively, a few geometric param-

eters are defined. These parameters include the vertical distance (∆z) from the

maximum height of the profile to the toe point, the length of the first capillary wave

(λc) upstream of the toe, a mean surface slope at the toe (m), a bulge length (Ls)

and a bulge thickness (tp), see the inset in figure 2.3(a). In order to obtain values

for m, a polynomial (anywhere from 2nd to 4th order) was fit to the front wave face

from the toe to a point 3 cm upstream of the toe. This polynomial was forced to

pass through the toe point which is defined numerically as the point in the profile

with maximum upward curvature. The purpose of this polynomial is to follow the

overall shape of the front face of the gravity wave near the crest, while ignoring the

undulations due to the capillary waves. A typical fit is shown in the inset of figure

2.3(a). The slope of this polynomial at the toe point is then chosen as m = tan θ

(see the inset in figure 2.3(a) for the definition of θ). The values of m measured in
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this study were found to be between 0.3–1.5, which correspond to θ = 17–56 degrees

(note that θ at the crest of a limiting form Stokes wave is 30 degrees). The length

of the bulge, Ls, is defined as the distance from the toe to the crest profile following

a straight line with slope m. The bulge thickness tp is defined as the maximum

perpendicular distance from the line forming Ls to the surface of the bulge.

Using the parameters m, Ls and tp measured for each wave at incipient break-

ing, the crest profiles are plotted in figure 2.3(b) in the local scaled coordinate system

X ′/Ls−Z ′/tp where X ′ is directed from the toe along the line Ls and Z ′ is perpendic-

ular to X ′. When viewed in this non-dimensional way, the similarity of the profiles

in the crest region is quite striking, considering the large differences in gravity wave

amplitude, wavelength and generation method. The scaled crest profiles for all the

other incipient breaking waves studied herein are similar to these, but are not shown

here in order to make the plot clearer. Instead, a plot of the average scaled profile

and the standard deviation distribution computed from all 18 waves is shown in

figure 2.4. The mean profile has a single maximum at X ′ ≈ 0.42Ls and goes to zero

at X ′ = 0 and Ls. The standard deviation reaches a peak of 12% on the front face

of the wave; however, careful analysis of the processing techniques indicates that

much of this variation can be attributed to the selection of the incipient breaking

image frame and the toe position. The precise image frame when breaking begins

is difficult to define because it is the frame before the toe starts moving from rest.

Thus, its initial motion between frames is quite small. The toe position is taken as

the point of maximum upward curvature of the profile. While its determination is

done with a consistent numerical procedure, the result is sometimes a little off the
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Figure 2.4: Average and standard deviation of the scaled and rotated bulge
profiles for all 18 waves studied herein. A 3rd order polynomial of the form
Z ′/tp = p1(X

′/Ls)
3 + p2(X

′/Ls)
2 + p3(X

′/Ls) + p4 was fit to the averaged data
with coefficients p1 = 2.143, p2 = −7.297, p3 = 5.253 and p4 = −0.08123.

position one might choose by eye. The primary effect of changing both the incipient

breaking image frame and the toe position is a slight horizontal shift of the peak in

the profile. This results in a right-left shift of the nearly vertical parts of the profile

near X ′/Ls = 0 and 1, thus creating the large standard deviations there.

The parameters Ls and tp are plotted versus m in figures 2.5(a) and (b),

respectively. As can be seen in figure 2.5(a), the data appear to follow a single

curve, independent of the method used to generate the wave. The curve has a

negative slope that decreases with increasing m. The values of tp (figure 2.5(b))
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Figure 2.5: Plots showing the variation of (a) Ls and (b) tp with the local slope
parameter, m. � wind waves, + side-band waves, and ◦ focused waves.

show a fair amount of scatter but generally tp decreases with increasing m. This

scatter is primarily because tp is a very small quantity that changes rapidly as the

waves approach breaking and because errors in the measurement of the slope m

cause changes in tp.

In the numerical calculations for steady waves (λ ≈ 0.5 m) in a liquid with a

very high surface tension (9 and 16 times the surface tension of water) presented in

[57], the shape of the bulge and, of course, lengths describing the capillary-ripple

system, scale only with the gravity-capillary lengthscale (τ/ρg)1/2, see figure 18 in

[57]. A similar result was found in the experiments of [1] for unsteady mechanically

generated breakers with wavelengths ranging from 70 to 118 cm, see their figure 23.

In contrast, the present results, which cover a wide range of wavelengths and a single

value of (τ/ρg)1/2, indicate that Ls and tp increase substantially as m decreases.

However, it should be noted that at the higher values of m, where the wavelengths

are the same as those studied in [1], Ls and tp are relatively constant.
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Using the measured ∆z data, estimates to the underlying flow speed at the toe

point qt were obtained by using the steady Bernoulli equation (see equation 1.3) and

by assuming that there is a stagnation point at the crest of the wave. While the flow

is clearly unsteady and there is no experimental verification of the stagnation point

at the crest, the above result is used here in an attempt to gain some understanding

of the flow and capillary waves. The result is qt =
√

2g∆z. A plot of the estimated

values of qt versus wave slope m is shown in figure 2.6(a). A linear fit to the data

yields a y–intercept of roughly 25 cm/s. This last result is rather interesting because

on a flat water surface (i.e. m = 0) a train of (linear) gravity-capillary waves has

a minimum phase speed of roughly 23 cm/s (see Chapter 1). This means that, in

a frame of reference moving with the wave train, the underlying fluid speed is 23

cm/s. In a similar vain, the results here imply that as the wave slope approaches

zero (i.e. flat water) the underlying fluid speed at the point where the capillaries

form is roughly equal to this minimum. While by no means rigorous, the results of

such a simple estimate to the flow speed near the crest appear to be consistent with

what might be expected physically.

When possible, measurements were also made of the wavelength of the primary

capillary wave upstream of the toe, λc. A plot of λc versus m is shown in figure 2.6(b).

Due to a lack of spatial resolution and camera angle in some movies, measurements of

λc are not available for several of the dispersively focused wave cases. The measured

values of λc range from about 4 to 5 mm, decreasing slightly with increasing m.

Because these capillary waves are stationary relative to the crest, the phase speed of

these waves relative to still water must equal qt. Using the estimated values of qt from
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Figure 2.6: Measurements and analysis of the length of the first capillary wave
upstream of the toe, λc. (a) The flow speed at the toe, qt (as calculated from
the measured ∆z and Bernoulli’s equation), versus local slope parameter m. The
straight line is a least-squares fit to the data. (b) The wavelength (λc) of the first
capillary wave upstream of the toe versus m. � wind waves, + side-band instability
waves, ◦ focused waves, � linear gravity-capillary wave theory, and H nonlinear
capillary wave theory (maximum amplitude). Due to a lack of spatial resolution
in some images, measurements of λc were not made for several of the dispersively
focused wave cases.

figure 2.6(a), capillary wavelengths were calculated using both the linear dispersion

relationship for gravity-capillary waves (q2
t = c2

p = g/kc+(τ/ρ)kc, where kc = 2π/λc,

see Chapter 1), and the non-linear dispersion relationship for capillary waves of

maximum amplitude (q2
t = c2

p = 0.657(τ/ρ)kc, from [71]). To our knowledge there is

no analytical solution for the nonlinear dispersion relationship for gravity-capillary

waves of maximum amplitude. The results from these calculations are also shown

in figure 2.6(b). As can be seen from the figure, in spite of the approximate nature

of the theory, the wavelengths calculated using the linear and non-linear dispersion

relationships bracket the measured values of λc with the estimates from the non-

linear dispersion relationship providing the best estimate. Clearly the approximation

for the underlying flow speed at the toe presented here has some physical validity.

34



2.4.2 The slope parameter, m

The above results have shown the importance of the slope parameter m in

determining the wave crest shape at incipient breaking. The next question is: what

determines m for a given breaker? Here we explore the hypothesis that m at incipient

breaking is a function of both the phase speed, cp, and the rate of change of the crest

height just prior to breaking. The phase speed is chosen because it is related to the

wavelength and, as discussed above, it appears on both theoretical and experimental

grounds that m decreases with decreasing wavelength. In the present experiments,

the wavelengths were typically too large to be measured directly by the high-speed

camera, except for some of the wind-wave cases where the wavelength was smaller

than the camera’s field of view. However, the phase speed was measured directly by

determining the speed of the crest as seen in the movies and then adding the known

speed of the instrument carriage. The wave phase speeds fell in the range of 50–70

cm/s for waves generated by the wind and the side-band instability mechanism, and

from 90–120 cm/s for the waves generated using dispersive focusing.

A useful measure of the rate of change of wave height at breaking is difficult to

determine. This is because the rate of change of wave height, while strongly positive

in the early stages of the approach to breaking, is close to zero (in some cases even

slightly negative) the moment breaking begins for many of the waves. Based on

data for the dispersively focused breakers as shown in Appendix A, an average wave

crest growth rate P = [z(0)−z(−0.23T )]/(0.23T ) is used in the present work, where

z(t) is the maximum height of the wave profile at a given time and T is the wave
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Figure 2.7: Contour plot of the slope m as a function of the dimensionless wave phase
speed cp/cmin and the non-dimensional average growth rate P/cp. The contours are
from a least-squares fit of a second-order polynomial, m = a1(cp/cmin) + a2(P/cp) +
a3(cp/cmin)2 +a4(P/cp)

2 +a5(cp/cmin)(P/cp), to the data. The shape of the contours
is only supported by the experiments in the vicinity of the data points. The face
color of each data point indicates its value of m according to the color legend at the
right. Five of the data points for wind waves were not included in these plots because
random surface fluctuations or insufficient movie frames prior to breaking prevented
obtaining P by the method used here, see Appendix A. The values of the various
coefficients of the fit are: a1 = 0.14, a2 = −2.27, a3 = 0.00, a4 = −63.60, a5 = 3.89.

period. On intuitive grounds, a time of 0.25T was desired for this measurement;

however, it turned out that 0.23T was the maximum value that could be used in the

analysis of the largest number of high-speed movies due to the tank side columns.

The values of P were then divided by the corresponding values of cp to give an

average dimensionless growth rate, which is essentially the rate of change of wave

slope with dimensionless time t/T [2]. The values of cp were divided by the minimum

2That is, P/cp = ∆Ak/∆tω = 1

2π ∆ǫ/∆(t/T ).
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phase speed of gravity-capillary waves, cmin. A least-squares fit of a second-order

polynomial m = f(cp/cmin, P/cp) to the data set was performed and the resulting

contour plot of m on the cp/cmin-P/cp plane is given in figure 2.7. The data points

on the plot are color coded on the same scale as the contours so that the accuracy of

the fit can be estimated from visual inspection. The value of the fit parameters are

given in the caption to figure 2.7. The root-mean-square error from the fit is 5.5%

of the average of the measured values of m, indicating that the concept that m is a

function of cp and P has some validity. From this plot, it can be seen that for low

wave phase speeds (shorter wavelengths) the growth rate has little effect on m, while

for the highest phase speeds, m increases significantly with growth rate. This result

is in agreement with our intuition that long waves with rapidly increasing amplitude

become strong breakers. In particular, plunging breakers were never observed in

the wind-generated and side-band instability waves, which have relatively short

wavelength, while with appropriate wave generation parameters, plunging breakers

(where the local surface slope becomes vertical during the approach to breaking)

can be generated at longer wavelengths with the dispersive focusing technique.

The dimensionless crest height growth rate, P/cp, used here should be dis-

tinguished from the parameter µ used by [64], [65] and [66] which is the average

dimensionless growth rate of the local energy density at the peak of the wave packet

envelope. In those previous works, the parameter µ is related to the evolution of

the wave packet envelope while P/cp is the rate of change of amplitude of a single

wave crest as it moves through a packet.
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2.5 Summary and conclusions

The crest profiles of spilling breakers with wavelengths in the range of 10–120

cm were investigated experimentally. These waves were generated with a mechanical

wave-maker and with wind. It was found that the bulge-capillary wave system that

appears on the forward faces of short wavelength spilling breakers is qualitatively

similar for all the waves studied herein. The bulge was found to have a self-similar

shape where its length and thickness are used as scaling parameters, which in turn

are found to be functions of the slope (m) of the mean water surface just upstream

of the leading edge (toe) of the bulge. This scaling seems to be independent of wave

generation method, leading one to believe that at least some features of mechani-

cally generated and wind waves are quite similar. It was found that m is a function

of the wave phase speed cp and the average growth rate P of the wave amplitude

before breaking begins. The data indicate that for the low-phase-speed waves m is

independent of P while for the higher-phase-speed waves m increases with increas-

ing growth rate. Finally, estimates of the length of the first capillary wave upstream

of the toe that were made. A simple theory based on estimates of the flow speed at

the toe and the capillary-gravity wave dispersion relationship compared well with

the measured values. The results of this study show that breaking is a multi-scale

nonlinear phenomenon in which the local gravity wave (10 to 120 cm wavelength)

slope controls the surface-tension-dominated crest shape (≈ 1 cm wavelength). The

fact that the scaling parameters are unaffected by wind supports the theory [23] that

the dynamics of the capillary-ripple pattern at the crest are dominated by energy
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transfer from the gravity wave rather than the wind. The fact that various crest

paramaters were found to be dependent on wavelength implies that the concept of

using (τ/ρg)1/2 as a definitive crest length scale should be reinterpreted. Further-

more, our data lend strength to the idea of using wave phase speed and wave growth

rate as a breaking criteria, a result which could prove beneficial in more realistic

ocean environments.
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Chapter 3

Cross-stream profile measurements of unsteady spilling breakers

3.1 Abstract

The results in the previous chapter discussed the shape of the wave crest

just prior to breaking and the role of surface tension in altering the wave dynam-

ics. Up until this point in the wave evolution both the underlying flow and the

wave profile remain remarkably two-dimensional. However, once breaking begins

the formation of near-surface shear layers introduces vorticity into the flow, and

the capillary-bulge pattern gives way to a more complex three-dimensional surface

ripple pattern. However, little information exists regarding the shape of the sur-

face in the cross-stream direction during breaking, in particular when the scale of

the flow (and hence the relative effect of surface tension) is changed. Therefore, in

these experiments, the cross-stream profiles of spilling breakers with wavelengths 80

– 120 cm were measured. A mechanical wave-maker was used to generate breakers

via dispersive focusing and a cinematic Laser Induced Fluoresence (LIF) technique

measured the 2D cross-stream wave profile. The results show the generation of

“quasi”-2D streamwise ripples in the breaking zone. However, superimposed on the

larger streamwise ripples are smaller cross-stream ripples. In the early stages of

breaking these cross-stream ripples are small, but they grow as breaking develops

and can be almost equal in amplitude to the streamwise ripples in the strongest
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breakers studied. The cross-stream ripples have wavelengths in the range of 1 to

4 cm, a range where capillary forces are important, and their amplitude is found

to scale with the breaker wavelength to the third power and linearly with the am-

plitude of the wave-maker motion. Measurements of various 1D surface gradients

show the presence of “scar”-like surface features that appear to be generated in the

troughs of the streamwise ripples, indicating perhaps the presence of cross-stream

spatial structure. A possible vortical mechanism to help explain these observations

is conjectured.

3.2 Summary of previous work

As was discussed in the previous chapter, the effect of surface tension on short

wavelength and/or weak breakers is quite profound, with the commonly observed

“plunging jet” being replaced by a rounded crest and capillary waves appearing on

the downstream wave face. A short time after the capillary-bulge pattern forms at

the crest, vorticity appears in the sub-surface flow and the wave quickly transitions

to turbulence. This process is most readily seen in the PIV measurements presented

in [36] that show the growth of a vortical region near the toe of the crest bulge at

the moment breaking begins. The precise source of this vorticity is still unknown,

although several interpretations have been proposed. It has been argued [23] that

the parasitic capillary waves are a substantial source of vorticity in the crest region,

and this vorticity is much larger than the vorticity contributed by the gravity wave

itself. Lin an Rockwell [34], in a PIV experiment with a steady breaker produced
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by a submerged hydrofoil, stated that the fluid deaccleration around the sharply

curved surface of the breaker was the largest source of vorticity. Reference [35]

offered further analysis using PIV measurements of a steady breaker produced by

flow through a honeycomb. It was asserted that the major source of vorticity is

the deacceleration of a thin free-surface fluid layer prior to breaking, and that this

vorticity is then injected to the rest of the flow through the action of viscosity.

The initial vorticity produced in the breaking region grows rapidly and large

coherent vortical structures begin to emerge in the sub-surface flow as breaking

develops. In a field of waves, such as wind-waves on the ocean surface, this can lead

to fully developed turbulence in the sub-surface motions. The turbulence statistics

of such flows has been studied in the field ([72], [73], [74]) and in experiments ([75],

[76]). In laboratory measurements, 2D PIV has been one of the most common

methods used to visualize vortex structures beneath breakers, and much work has

been done in this area, in particular by Siddiqui and colleagues ([77, 43, 78]), as well

as [36], [79], [80], and [81]. [82] and [83] investigated the connection between such

coherent motions in the unstable shear flow beneath breakers and the streamwise

ripples generated on the water surface. In [82], the physics generating the ripples in

the wake of a submerged hydrofoil were explored using a linear stability analysis of

the shear flow in the breaking region. Measurements of the frequencies of the ripples

in the wake and the wavelengths of the ripples at the breaker were captured well with

this linear stability analysis. [83] employed a 2-D, two-fluid Navier-Stokes solver with

a level-set technique to study the near surface flow and surface fluctuations produced

by a submerged hydrofoil. This work captured the effect of surface tension under
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weaker breaking conditions. Spectra of the free surface fluctuations were found to

be in good agreement with the experiments of [82]. The presence of an intense shear

flow at the toe, which gives rise to coherent vortex-structures near the breaker crest,

was also reported.

Coherent structures and ripples that occur in streamwise planes (i.e. with vor-

ticity oriented in the cross-stream direction) are ostensibly the dominant features

in breakers, as the largest fluid velocities and highest surface curvatures are in the

streamwise direction. However one of the hallmarks of turbulence is the rapid re-

orientation of vorticity and in many canonical turbulent flows, streamwise oriented

structures are dynamically significant (e.g. the “braid” vortices in free-shear layers

and “low-speed streaks” in boundary layer turbulence). It is no surprise therefore

that the sub-surface flow and surface ripples produced by breakers are 3D in na-

ture, and a few groups have looked into various aspects of this problem. [45] used

wave height gauges to measure the cross-stream (“lateral”) and streamwise (“longi-

tudinal”) coherence levels of surface fluctuations at several locations along a steady

breaker produced by a submerged hydrofoil. Lateral coherence levels were found

to decrease very rapidly within less than 50 mm separation between probes, while

longitudinal coherence remained significant over almost half the wavelength. This

led to the description of breaking zones as comprised of “laterally compact, incoher-

ent sources, which radiate longitudinal oscillations”. [84] reported measurements of

the cross-stream profiles of waves, also generated by a submerged hydrofoil. They

found that no clear cross-stream wavelength emerged and that the flow essentially

remained 2D, although the amplitude of the cross-stream oscillations did increase
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with Froude number. [85] used PIV to measure the streamwise oriented vorticity

in a wind-wave field to understand the development of surface streaks (Langmuir

circulations). The measurements showed very clearly the development of streamwise

vortex structures, although these structures took many wave periods to develop, and

were not necessarily the result of individual breaking events. [86] used the results of

a 3D LES computation to develop a model for the structure of vorticity in plunging

and spilling breakers with no surface tension (i.e. a jet is formed at the crest). It

was found that streamwise oriented “scars” formed on the jet, and the location of

these scars corresponded to voids in streamwise oriented “rib” vortices. [87] also

developed a hybrid stereo-PIV system to look at the 3D flow structure under shal-

low water plunging breakers, showing the existence of braid-like vortices over the

top of larger roller vortices created by the jet impact. An interesting set of results

was published by [88] who developed a 3D Navier-Stokes solver that handled the

non-linear boundary conditions at the free surface without approximation through

the use of a coordinate transformation. Because the boundary conditions are satis-

fied exactly, [88] showed the applicability of their numerical scheme to wind driven

gravity-capillary waves by means of an applied pressure forcing similar to that of

[58]. The results show a clear cross-stream structure near the crest of steep gravity

waves with parasitic capillaries on the forward face. [88] also identify cross-stream

“streaks” in the crest region that are aligned in the flow direction with average

intervals of roughly 0.6 cm, which is close to the earlier experimental observations

made by [55] for waves in a wind-wave flume. The location of these streaks appears

to correspond with the location of cross-stream surface undulations.

44



Part of the problem with understanding the formation of cross-stream surface

structures is that it is still not quite known exactly how the sub-surface turbulence

interacts with a real free surface (i.e. with waves and surface tension present), partic-

ularly in a transient event like breaking where the turbulence is not fully developed,

highly anisotropic and located very close to the free surface. A comprehensive re-

view of this problem, along with a categorization of different surface flows based on

turbulent length and velocity scales, is given in [89]. Much of our knowledge about

turbulence near a free surface comes from studying canonical flows such as vortex

rings, axisymmetric jets or homogenous turbulence. [90] provides an extensive re-

view of early work in this area, including details of different mechanisms of vortex

reconnection at a free surface and the various treatments of free-surface boundary

conditions. Since this review, additional experiments on vortex rings interacting

with a clean and contaminated free surface were presented by [91], and [92]. [93]

further studied the problem of an obliquely rising vortex ring with a numerical cal-

culation of the Navier-Stokes equation with a viscous free surface. It was found that

while surface depressions did form near the center of the surface connected vortices,

in general the surface elevation did not correlate well with the vertical component

of vorticity, ωz, in particular when the vorticity distribution was not vertically ax-

isymmetric. In experiments on a vertically oriented free-shear layer interacting with

a free surface, [94] and [95] used simultaneous PIV and surface gradient measure-

ments to correlate the component of normal vorticity to the surface elevation. The

raw results showed low correlation levels, ∼ 0.2, seemingly in agreement with [93].

However [95] showed that conditionally correlating the vertical vorticity and surface
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height, to take into account the appropriate sign of each, revealed much higher cor-

relation levels, ∼ 0.8, leading to the conclusion that the ripples on the surface are

the result of surface-connected vortices. In contrast [96], in numerical simulations of

open channel turbulence, showed that free surface “splats” (turbulent upwelling) and

“antisplats” (turbulent downwelling) were created by streamwise oriented, counter-

rotating vortex pairs ejected off the bottom boundary, and that surface connected

vortices had little do with the existence of these surface features. In recent works by

Savelsberg & Van de Water ([97], [98]), the correlation between the surface fluctu-

ations and sub-surface flow was studied experimentally. A scanning laser technique

was used to measure the gradient of the surface fluctuations while 2D PIV was used

to measure the flow near (≈ 1mm below) the free surface. It was found that the

convective acceleration field ξ = −(u · ∇)u/g and the surface gradient field corre-

lated fairly well for the irregular flow behind a submerged cylinder, but poorly for

homogenous grid generated turbulence. [98] broke the convective acceleration field

into strain and rotational components to determine the effect of each type of motion

on the surface fluctuations. For the irregular flow behind a cylinder, both strain and

rotation type motions contributed equally, while rotation type motions were slightly

stronger in homogenous turbulence. The authors used this result to conclude that

the model of surface dimples above vertically oriented turbulent eddies may be too

simple in homogenous turbulence.

The prevalence of three-dimensional vorticity under breaking waves coupled

with the complicated manifestations of vorticity on free surfaces and the effects of

surface tension on the dynamics makes the study of cross-stream surface structures
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produced by breaking waves a relevant research question. Therefore, in this chapter

detailed measurements of cross-stream surface profiles of unsteady spilling breakers

are presented.

3.3 Experimental details

3.3.1 Wave generation: isolating the effect of surface tension

The facility used in these experiments is the same as described in Chapter

2. The waves in this study were generated using the dispersive focusing technique

similar to that used by previous authors ([68], [1]) and as described also in Chapter

2. Three different average wavepacket frequencies f̄ , with five different wave-maker

amplitudes A were used. Because the small surface ripples generated during breaking

are strongly affected by surface tension, we would like to isolate this effect1. In order

to do this, all of the relevant experimental parameters (such as the water depth,

submergence of the wedge wave-maker, the amplitude of the wave-maker motion,

etc.) were scaled with the nominal wavelength λ̄ (= g/2πf̄ 2). Defining the Froude

number as Fr = U2/gL, where U and L are characteristic velocity and length scales,

respectively, we note that if L ∝ λ̄, and U2 = L2f̄ 2 ∝ λ̄, then the Froude number is

independent of the wavelength2 . A constant Fr implies a ratio between inertial and

gravitiy effects that is scale independent. That is, in the absence of surface tension,

1Viscosity also plays a role in damping the motion of the surface rippples but, for reasons
discussed in Chapter 1, we shall ignore such affects here.

2Linear deep water gravity waves naturally have constant Froude number that is independent
of wavelength. This can be seen, for example, by taking U2 = c2

p = gλ/2π and L = λ. Here
we are merely pointing out that the experiments have been scaled so that dispersively focused
wave-packets generated with different f̄ all have the same Froude number.
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the resulting non-dimensional wave motions in z/T–t/T coordinates are identical

(here z is the wave height and T the wave period). However, in real waves with

surface tension, the Weber number We = ρU2L/τ is not wavelength independent,

and the capillary restoring force is stronger for smaller waves than for larger ones.

Thus using Froude scaled breakers allows us to investigate the effect of surface

tension on the breaking process.

The values of the different parameters used for each case are given in table

3.1. Other details of the experimental parameters are given in the table caption.

For each condition, several side-view images (like those in Chapter 2) were also

taken to determine the height of the wave at breaking hb. It should be noted that

changing A/λ̄ does not affect the breaking wave height dramatically (typically only

a few percent), but it does affect the visual “strength” of the breaker. With these

wave-maker amplitudes, the breakers range from very weak spillers at f̄ = 1.40 Hz

and A/λ̄ = 0.0514, to strong spillers where a jet nearly forms at the wave crest

at f̄ = 1.15 Hz and A/λ̄ = 0.0522. Taking U2 = Ū2 = gλ̄/2π (i.e. the phase

speed of the average component of the wave packet), L = hb = 0.07λ̄, τ = 0.073

N/m, ρ = 1000 kg/m3, and ν = 1 × 10−6 m2/s, the important nondimensional

groups are found to be Fr ≈ 2.3 for all waves, and We = (1.35, 2, 2.97) × 104 for

f̄ = 1.40, 1.26 and 1.15 Hz, respectively. It should be noted that the large values

of We are a result of using Ū and λ̄ as the velocity and length scales, although

surface tension effects are most important near the wave crest, where there is no

definitive velocity or length scale. Perhaps a more revealing nondimensional number

to highlight the effect of surface tension is the ratio of the minimum gravity-capillary
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f̄ (Hz) λ̄ (cm) Uc (cm/s)

1.40 79.58 94.49

1.26 98.24 102.11

1.15 117.94 112.80

Table 3.1: The wave-maker and carriage parameters used for the cross-stream profile
experiments. f̄ is the average frequency of the wave packet, λ̄ is the wavelength of the
average frequency, and Uc is the final speed of the carriage. For each frequency, five
different values of A/λ̄ (the normalized wave-maker amplitude) were used: 0.0514,
0.0516, 0.0518, 0.0520, 0.0522. For each frequency, the carriage delay time from
the start of the wave-maker motion, td, was 12.22, 12.47 and 13.23 seconds for f̄ =
1.40, 1.26, 1.15 Hz, respectively. Other motion parameters include: the normalized
submergence of the wedge hs/λ̄ = 0.358, normalized water depth H/λ̄ = 0.9308,
the normalized breaker distance xb/λ̄ = 6.2, the phase of the wave-maker motion
φ = −90◦, and the acceleration of the carriage Ü = 50.0 in/s2. Note that the depth
of submergence of the wedge was controlled by changing the offset of the wedge
position sensor so that the tip of the wedge was the appropriate distance below the
mean water level when the position sensor read zero.

wavelength λmin = 2π(τ/gρ)1/2 to the gravity wavelength λ̄. Such a ratio yields

0.022, 0.018, 0.015 for f̄ = 1.40, 1.26 and 1.15 Hz, respectively. Regardless of the

form, it is clear that the smaller wavelengths (higher frequencies) are more affected

by the fluid surface tension.

3.3.2 Wave profile measurement

As in the experiments of Chapter 2, the profiles of the breaking waves were

measured photographically with a Laser-Induced-Fluorescence (LIF) method that

employs a high-speed digital movie camera. However, in this set of experiments, the

carriage optics spread the laser beam into a sheet oriented across the width of the
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tank. This sheet spans the width of the tank and is 1 mm thick in the streamwise

direction at the mean water level. Another difference is that the high-speed camera

(Phantom v9, Vision Research) is now mounted to the instrument carriage on the

inside of the tank, see figure 3.1. The camera is located downstream of the light

sheet, and looks upstream at the intersection of the light sheet and water surface

from above. Both the camera and light sheet are mounted to the carriage which is

set to move with the approximate speed of the breaking wave crest. The carriage

parameters are adjusted so that the light sheet is located at the wave crest when

breaking begins, see below.

One experimental difficulty that must be overcome with this setup is finding

a location and look-down angle for the camera that provides a trade off between

an unobstructed view of the light sheet and vertical resolution of the image. As

the wave breaks, large turbulent ripples generated in front of the laser sheet (that

is, between the laser sheet and camera) can cause the line of sight to the crest

profile to become blocked and lead to errors in the profile measurements. This was

observed in the measurements of unsteady spillers reported by [99]. In order to

obtain high-quality images the camera must be high enough to see into any ripple

troughs, which requires a large lookdown angle. Because of the large look down

angles, when the wave height changes during breaking the distance from the crest

to the camera lens changes, which can cause profiles to be out of focus. This problem

is mitigated by the use of a tilt-shift lens which is used in all of the experiments.

Large viewing angles, however, reduce the vertical resolution of the images so small

amplitude ripples may not be resolved. Finally, the camera has to be positioned a
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Figure 3.1: Schematic of the setup for measuring the cross-stream profiles. The
laser light sheet is oriented across the tank, and a high-speed camera images the
intersection of the laser sheet and water surface from the front (downstream) side
of the breaker. Both the camera and light sheet optics are mounted to the carriage
and move with the speed of the breaking wave crest. The camera has a tilt-shift
lens mounted on it to handle the large look down angle. A second camera, also
attached to the carriage but positioned outside the tank, images the position of the
laser sheet relative to the wave crest from the side.

safe distance above the mean water level to prevent water droplets or spray from

collecting on the camera body and lens. Unfortunately, as with the viewing angle

dilemma, mounting the camera too high again reduces vertical resolution; for a given

viewing angle θ, and height h, the distance from the camera sensor to the light sheet

is given by L = h/sin(θ).

The interplay between all of these factors was dealt with by trial and error.

The camera was mounted at a fixed horizontal distance from the light sheet, and was

initially positioned at a “safe” distance above the mean water level (roughly three

times the typical wave amplitude used in the experiments ∼ 20 cm). The camera was

51



then angled downwards until the mean water level was in the center of the image. A

patterned checkerboard was placed underneath the laser sheet and the tilt-shift lens

and camera focus were adjusted until both the top and bottom of the checkerboard

image were sharp. A breaking wave was then generated and recorded and the movie

was investigated for any visual signs of blockage, which appear as dark patches

or out of focus edges in the profile. If the movie was unsatisfactory, the camera

would be raised, the viewing angle increased, the tilt-shift lens and focus would be

adjusted, and another movie would be taken. This process was continued until the

recorded movies appeared to be free of blockage. For these experiments, the camera

was placed a horizontal distance of 1 m from the light sheet, and anywhere from 76–

89 cm above the mean water level, with the tilt-shift lens set in the range of 40–45

degrees tilt; the precise height and angle depended on the frequency and amplitude of

the wave being investigated. With this configuration, one camera pixel corresponded

to roughly 0.2 mm in the physical plane. Profile measurements are extracted from

the camera images using the processing and edge-detection techniques described in

Chapter 2.

Because the laser sheet and high-speed camera measure the cross-stream profile

at a single streamwise location, it is important to ensure that the light sheet is

located at or near the crest of the wave of interest when breaking begins. Therefore,

in addition to the profile camera located inside the tank, a second camera (Phantom

v4, Vision Research) is mounted to the carriage on the outside of the tank; see figure

3.1 (end view). This camera, which is synchronized with the profile camera, is used

to locate the approximate position of the light sheet relative to the wave crest as
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the wave breaks. The second camera views the light sheet from the side and is back

lit with white light so that the location of the wave crest is clearly visible. Using

this side-view camera the carriage speed can be chosen emprically to match the

approximate speed of the wave crest as it breaks. Here we say the “approximate”

speed because the wave crest is rather flat and its shape changes as it approaches

breaking, so precisely defining what point on the wave is “the crest” can be a bit

ambiguous. Furthermore, the crest speed does change slightly in the approach to

breaking and although the carriage motion could be made more complex to perhaps

mimic these changes, for simplicity the carriage is run at constant speed. However,

it is possible to repeatedly and accurately position the light sheet very near the

(apparent) crest at the moment breaking begins. This is accomplished by varying

the delay time between the carriage motion and the wave-maker motion, td, and

the various delay times used are reported in the caption to table 3.1. While this

carriage motion is highly repeatable, there is a natural variation in the streamwise

location of the breaking event, which can be as high as 2 cm, see [1]. The result is

that if the laser sheet is too close to, or perhaps slightly ahead of, the wave crest,

it is possible for the wave to begin breaking behind the light sheet. As the toe and

ripples advance down the front face they “pierce” the light sheet, causing a sudden

jump in the surface height that is not processible. In order to avoid this problem,

the start delay of the carriage relative to the wave-maker was adjusted so that the

light-sheet was located just behind, but not quite at, the wave crest when breaking

began, so the leading edge of the breaking zone is located in front of (downstream)

of the light sheet. Using the images from the side-view camera, and considering the
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natural variation of the breaker, we estimate the light sheet to typically be located

in the range 1–3 cm behind the wave crest when breaking begins, a range of about

0.03 wavelengths for the smallest breakers investigated.

3.4 Results and discussion

3.4.1 Frequency dependence: the effect of Weber number

Figure 3.2 shows a sample of images recorded by the cross-stream profile cam-

era for f̄ = 1.26 Hz and A/λ̄ = 0.0522. The width of each image in the physical

plane is 22 cm (a little less than a quarter of a wavelength). Each image corresponds

to a different time after the wave begins to break (defined as when the toe begins

to move down the front face). In these images, the horizontal is the cross-stream

(y) direction, while the vertical is the z direction, see the axes in figure 3.1. Herein

the term “cross-stream ripples” refers to the variation of the wave profile in the

cross-stream (y) direction, while the term “streamwise ripples” refers to variation

in the streamwise (x) direction. The images in figure 3.2 clearly show the develop-

ment of cross-stream ripples as the breaking progresses. Images such as these were

processed to obtain a 2D cross-stream profile at each moment in time. Quantities

such as the horizontally averaged mean water level, the ripple amplitude, and the

ripple wavelength were obtained from these profiles.

Figure 3.3 (upper curves) shows the cross-stream averaged wave height z̄ as

function of time t for three different runs with f̄ = 1.26 Hz and A/λ̄ = 0.0522. In

this plot, z̄ is scaled by λ̄ and t is scaled by the wave period T . Because z̄ is averaged
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(a)

(b)

(c)

Figure 3.2: Images taken by the cross-stream camera during a typical breaking
event. The camera looks at the wave from the front and moves with the speed of
the crest. For these three images, f̄ = 1.26 Hz and A/λ̄ = 0.0522. The intersection
of the main dark and light regions near the top of the image is the cross-stream
wave profile at the intersection of the laser sheet and water surface. The bright and
dark spots in the lower part of the images are due to two refraction effects. First,
the laser light enters the water and is refracted by the rippled surface. Next, this
refracted light is being viewed by the camera looking through the rippled surface
that is between the light sheet and camera. Each image corresponds to a different
time after the toe begins to move: (a) 0.1 wave periods. The toe is spilling down
the front face. (b) 0.3 wave periods. The turbulent region has advanced farther
and the profile begins to show cross-stream undulations. (c) 0.5 wave periods. The
cross-stream ripples are more numerous and larger in amplitude.

55



0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t/T

1
0
×

σ
/
λ

z
/
λ

 

 

Figure 3.3: Plots of the nondimensional horizontally averaged wave height z̄/λ̄ (up-
per curves) and nondimensional standard deviation of the cross-stream wave profile
σ/λ̄ (lower curves) versus nondimensional time t/T . Data are presented from three
separate runs with f̄ = 1.26 Hz and A/λ̄ = 0.0522. Note that σ is scaled by a factor
of 10.

horizontally, variations in z̄ are the result of 2D streamwise ripples. Also plotted

on the same set of axes is a measure of the typical amplitude of the cross-stream

ripples σ (lower curves). An obvious choice for σ would be the standard deviation

of the cross-stream profile, as this would remove the effect of changes in z̄ and

capture only the cross-stream fluctuations. However, it was found that for most of

the waves the breaking process does not begin uniformly across the tank, with some

parts of the wave crest breaking before others. That is, the waves have a slight three-

dimensional shape to them at breaking, something that is commonly observed even

in wave tanks. This slight asymmetry causes one side of the profile to be higher or

lower than the other side during the early stages of breaking, creating large standard
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Figure 3.4: Figure showing how large cross-stream asymmetries in the breaker pro-
files can affect the measurement of the smaller ripples. The solid curve is a cross-
stream wave profile with the mean removed. Notice the average value on the left
is higher than on the right so that if the rms is taken about zero an unphysically
large value of rms is recorded. The dashed line is a 4th-order polynomial fit to the
profile that captures the long-wavelength undulation. Taking the rms about this fit
yields a more physically reasonable rms.

deviations even when no cross-stream ripples were visibly present, see figure 3.4. In

order to remove this effect, after subtracting the value of z̄, the resulting profile was

fitted with a 4th-order polynomial. The goal of this polynomial fit was to capture

the long-wavelength undulations of the profile created by the asymmetric breaking.

The value of σ was then computed as the rms of the difference of the actual profile

(with z̄ removed) from this fitted profile. This technique of using a higher order

polynomial is essentially a high-pass filter, reducing the amplitude contributions of

the longest wavelength waves and the spurious peaks in the value of σ. The order

of the polynomial was chosen by repeatedly increasing the leading order until the

difference between successive fits was small and the peaks of σ remained unchanged.

For this data, the rms of the difference between using a 4th and 5th-order fit was

typically only a few percent of the maximxum value of σ, and the heights and
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locations of the peaks were nearly identical. As a final check, we also compared the

temporal location of the peaks of σ with the corresponding images from the high-

speed camera for several cases. The surface indeed showed more ripples at these

times and we are confident that using a 4th-order fit retains the high frequency cross-

stream structure while reducing the large scale three-dimensional breaking effects.

The effectiveness of this method at reducing contributions from longer wavelengths

while not degrading those from shorter wavelengths implies a certain separation of

length scales in the cross-stream direction. A similar technique was employed for

computing the cross-stream wave spectra (see below).

The curves of z̄ in figure 3.3 show the repeatability of the wave motion from

run-to-run. The curves are remarkably similar, in particular in the early and later

stages of breaking (t/T < 0.4 and t/T > 0.8). In between these limits, the mean

water level undergoes a series of oscillations. For a given wave these oscillations

are fairly regular, but the profiles show some variation from run-to-run. These

oscillations in z̄ are due to “quasi-2D” streamwise ripples, or “rollers”, that are

generated at the leading edge of the breaking region and are oriented parallel to the

wave crest. Because of their slower phase speed relative to the wave crest, these

ripples are swept back over the crest and measured in the plane of the light sheet as

it passes by. To help explain this, figure 3.5 shows streamwise profile measurements

made by [1] (their figure 14). The profiles are from a wave with f̄ = 1.42 Hz and A/λ̄

= 0.0487, conditions which were not studied in the present work. The profiles are

taken in a frame of reference moving with the wave crest and each successive profile

is plotted 1 mm above the previous profile for clarity (i.e. moving upward in the
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Figure 3.5: Figure 14 from [1] showing the streamwise profile history for a spilling
breaker generated by the dispersive focusing technique. In their experiment, f̄ =
1.42 Hz and A/λ̄ = 0.0487. Each profile has been offset 1 mm from the previous
profile for clarity. Note the periodic generation of streamwise ripples in the breaking
zone.

plot is moving forward in time). The profile history clearly shows the development

of periodic streamwise ripples that move slower than the wave crest. The location

of these streamwise ripples in the current experiments is also visually supported

by the second high-speed camera which images the breaking process from the side.

At times when z̄ is at a local minimum, the laser sheet is observed to be in the
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Figure 3.6: Plots of z̄/λ̄ and σ/λ̄ versus nondimensional time t/T for three different
values of f̄ . Data are from runs with A/λ̄ = 0.0522 and f̄ = 1.40 Hz (solid curve),
1.26 Hz (dashed curve) and 1.15 Hz (dashed-dotted curve). Each curve is the average
of three runs. Note that σ is scaled by a factor of 10.

“troughs” of these rollers. We term these streamwise ripples “quasi-2D” because

while on average they extend across the measurement area, they are not uniform

in the cross-stream, but instead are rippled as evidenced by the non-zero values of

σ/λ̄ in figure 3.3. Like the curves for z̄, the general shape of the curves for σ are

reproducible, but the details vary from run-to-run in the middle of the breaking

process (say 0.4 < t/T < 0.8). The value of σ shows peaks as well, and these peaks

are nearly coincident with the location of the local minima of z̄ indicating that

the strongest cross-stream fluctuations are at the troughs of the larger streamwise

ripples. This will be discussed in more detail in section 3.4.3.

Figure 3.6 shows z̄/λ̄ and σ/λ̄ versus t/T for three different frequencies all with
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Figure 3.7: Plot of σ̄/λ̄ versus We, where σ̄ is the value of σ from figure 3.6 averaged
over the range 0.4 < t/T < 0.7. Note that σ̄ is scaled by a factor of 10. A linear
relation between σ̄/λ̄ and We implies σ̄ ∝ λ̄3.

A/λ̄ = 0.0522. Each of the curves in figure 3.6 is obtained from the average of 3 runs

at each condition. The curves of z̄/λ̄ have been adjusted slightly so as to coincide

at a common feature, in this case the beginning of the streamwise oscillations (at

t/T ≈ 0.3). This helps to make the effect of the Froude scaling more apparent. As

was mentioned in section 3.3.1, without surface tension or visocity (or breaking),

the wave profiles should collapse in z/λ̄ − t/T coordinates. We see that this is

mostly true for these waves, as the general shape of the curves are quite similar.

The occurence of the quasi-2D ripples, however, do not appear to Froude scale, as

both the amplitude and period of the ripple oscaillations increase. For example,

for f̄ = 1.40 Hz, the spacing between the fist two minima of z̄ is ∆t = 0.075T ,

whereas for f̄ = 1.15 Hz, ∆t = 0.13T , an increase of more than 70%. This lack

61



of scaling matches intuition as the ripples are not simply governed by gravity and

inertia alone, but instead are generated by the shear layer at the leading edge of the

breaker and are influenced by surface tension and viscosity, which have a stronger

effect at smaller wavelengths. For a clearer picture of this shear layer see the PIV

measurements of [34] and [36]. In addition to the growth of the streamwise ripples

with λ̄, the typical amplitude of the cross-stream ripples also increases with λ̄, as is

shown by the plots of σ/λ̄ in figure 3.6. The shape of the curves of σ show general

similarity, with growth in the cross-stream ripple ampltiude occuring at around 0.2

wave periods after breaking, peaking near 0.5 wave periods and then a slow decline.

For f̄ = 1.15 Hz, the cross stream ripples still have significant amplitude even up to

one full wave period after breaking begins3. Again it is found that the location of

the peaks in the values of σ coincide with the local minima of z̄ for each condition.

This is more clear in figure 3.6 where each curve is the average of several runs, so

some of the variation from run-to-run has been smoothed out. Furthermore, the

cross-stream ripples appear to have a large jump in amplitude between f̄ = 1.26

and 1.15 Hz, indicating a non-linear relationship between the gravity wavelength λ̄

and the size of the cross-stream surface fluctuations. To illustrate this, the values

of σ were averaged over the range 0.4 < t/T < 0.7, the approximate range over

which the maximum of σ occurs. The result (σ̄/λ̄) is plotted versus the Weber

number in figure 3.7. While only three points are available, the data appear fairly

linear. It is worth noting that with the definition of We given in section 3.3.1,

3We remind the reader that this data is taken in a frame of reference moving with the wave
crest. When the crest stops breaking there is a decrease in the surface ripples. There may, however,
still be turbulence and ripples left behind the wave crest at a stationary location.
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(a) For caption see page 65

Figure 3.8

We ∝ λ̄2 (because U2, L ∝ λ̄). Therefore, a linear relation between σ̄/λ̄ and We

implies that σ̄ ∝ λ̄3. This result is somewhat significant when we consider that the

amplitude of the gravity wave scales directly with the wavelength, but the scale of

the three-dimensional deformations shows a more sensitive dependence.

Figure 3.8 shows profile histories for the three different wave frequencies all

with A/λ̄ = 0.0522. In these plots, the mean of each profile has been removed, and

each profile has been plotted 1.5 mm above the previous profile for clarity (that
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(b) For caption see page 65

Figure 3.8

is, moving upward in these plots is moving forward in time). Each profile history

extends from the frame where breaking begins to one wave period post-breaking.

Each figure has the same size and range so comparison between various features

can be made directly. In these histories, the slope of a line connecting a feature

from profile-to-profile indicates its speed relative to the camera. For example, the

streamwise profile histories presented in [1] and reproduced here in figure 3.5 clearly

show some streamwise ripples that are moving slower than the wave crest. In the
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(c)

Figure 3.8: Cross-stream profile histories for three different frequencies with a nor-
malized wave-maker amplitude A/λ̄ = 0.0522. (a) f̄ = (a) 1.40 Hz, (b) 1.26 Hz,
(c) 1.15 Hz. The horizontally averaged mean has been removed and each profile
has been offset from the previous one by 1.5 mm in the vertical. Each figure shows
profiles for one wave period post-breaking.

cross-stream profile histories of figure 3.8 the largest energy (amplitude) features

appear more as standing waves, as evidenced by the lack of any clearly sloped

ridges. Taking a closer look we see there do appear to be some small scale features

that move laterally across the field of view; for example, see figure 3.8(b) from about

100 to 150 mm on the vertical axis where light “V” shaped ridge lines appear. The
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(a) For caption see page 68

Figure 3.9

shape of these features will be discussed more in section 3.4.3. Looking at the profile

histories in figure 3.8, the wavelength of the cross-stream ripples appears to increase

with wavelength. To quantify this, we can compute the slope spectrum of each

profile to get a measure of the dominant wavelengths present. As was mentioned

above, cross-stream non-uniformity in the early stages of breaking causes long-wave
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(b) For caption see page 68

Figure 3.9

contributions to the spectra. To lessen this effect, the mean of the profile was

removed, and a straight line was fit to the result. This fit was then subtracted out of

the profile, and the result from that was used in computing the slope spectrum. The

1D spectra were computed as |Ω(k)| = |DFT (z′)| where z′ is the derivative in the

cross-stream direction and DFT is the discrete Fourier transform. This technique of
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(c)

Figure 3.9: Cross-stream spectra history for three different frequencies with a nor-
malized wave-maker amplitude A/λ̄ = 0.0522. Data are plotted as contour plots
where red indicates large values and blue indicate lower values (note the scale color
scale is the same in the three plots). Data are for f̄ = (a) 1.40 Hz, (b) 1.26 Hz, (c)
1.15 Hz. Each plot is the average of 3 runs at the same condition and shows spectra
for one wave period post-breaking.

subtracting out a linear fit and taking the transform of the slope weights the higher

wavenumber contributions more heavily, and essentially removes the contributions

of longer wavelengths (lower wavenumber). Performing these operations on each
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profile, we can create a “spectra history”, which shows the behavior of the cross-

stream wave spectrum as a function of time after breaking. Results showing the

nondimensional spectra kλ̄ versus nondimensional time after breaking t/T for three

different frequencies with A/λ̄ = 0.0522 are shown in figure 3.9. The spectra in

figure 3.9 are the averaged result from three runs at each condition. The spectra are

plotted as contour plots with the horizontal axis corresponding to non-dimensional

wavenumber and the vertical axis corresponding to wave period (moving upwards

is moving forward in time). Each of the figures has the same vertical color scale.

Although these spectra do not show any clearly dominant wavelengths, some general

observations can be made. Comparing the spectra for f̄ = 1.40 and 1.26 Hz (figures

3.9(a) and (b), respectively) we see significantly broader peaks that stretch to higher

wavenumber, implying an assortment of smaller wavelength ripples (note that for

f̄ = 1.26 Hz, kλ̄ = 200 implies a ripple wavelength of about 3 cm). For f̄ = 1.26

Hz the peaks are also more elongated in the vertical direction, indicating that these

wavelengths persist for longer times during breaking. Comparing f̄ = 1.26 and

1.15 Hz (figures 3.9(b) and (c), respectively) we see the emergence of much stronger

peaks in the range 200 < kλ̄ < 300. These wave components gradually fade out as

breaking progresses.

Finally, it seems worth noting that the time delay between when breaking

begins (again, defined as when the toe first starts to move) and the emergence of

significant peaks in the spectra appears to grow with the wavelength. In (a) peaks

begin to appear at around t/T = 0.3 while for (b) and (c) they appear at around

0.35 and 0.4, repectively. This means that it takes an increasingly longer time for
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the cross-stream ripples to be measured by the light sheet, which is approximately

at the wave crest when breaking begins. It is unclear what exactly causes this

increased delay; perhaps it takes longer for the breaking region to develop, or the

surface ripples have a higher phase-speed relative to the carrier wave, so it takes them

longer to be “swept” back over the crest. We believe this increase in delay time to

be a real, however it should be noted that it is difficult to determine the precise

distance between the crest and the laser sheet, in particular because the crests are

highly rounded due to surface tension and the wave shape is continuously deforming.

A better understanding of this phenomenon might require further investigation.

3.4.2 Amplitude dependence

Figure 3.10 shows plots of z̄/λ̄ and σ/λ̄ for five different wave-maker amplitudes

with f̄ = 1.26 Hz. Each curve is the average of at least two runs and they have

been slightly adjusted horizontally so that the location of the first local minima of

z̄ coincide. Finally, the curves of z̄ have been offset in the vertical for clarity. The

plot shows that as the wave-maker amplitude increases, the period of the streamwise

ripples increases. For example, for A/λ̄ = 0.0514 the spacing between the first two

minima of z̄ is roughly ∆t = 0.08T whereas for A/λ̄ = 0.0522, we find ∆t =

0.10T , an increase of about 25%. While the actual amplitude of the wave does

not increase substantially with A/λ̄ the breaker appears noticeably stronger, almost

forming a small jet at A/λ̄ = 0.0522. The typical cross-stream ripple amplitude

also increases with wave-maker amplitude, as is evident from the curves of σ in
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Figure 3.10: Plot z̄/λ̄ and σ/λ̄ versus t/T for f̄ = 1.26 Hz and with 5 different
wave-maker amplitudes. The curves of z̄ have been offset successively by 0.04 in the
vertical for clarity. Starting from the bottom they are A/λ̄ = 0.0514 (solid), 0.0516
(dashed), 0.0518 (dashed-dotted), 0.0520 (dotted), and 0.0522 (bold solid). Note
that the values of σ have been scaled by a factor of 10. Each curve is the average
of at least 2 runs.

figure 3.10. Averaging the values of σ over the time-period from the location of the

first maximum of σ to the time when breaking begins to slow (say from roughly

t/T = 0.24 to t/T = 0.5), we find that the averaged maximum σ̄ increases fairly

linearly with wave-maker amplitude A/λ̄, see figure 3.11, ranging from about 0.5 to

1.0 mm. Note that in figure 3.11, σ̄ is dimensional.

Slope spectral histories for these five different wave-maker motions are shown

in figure 3.12. The wavenumber is nondimensionalized by the wavelength λ̄ and

time by the wave period T . Each set of contours is the average result of at least
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Figure 3.11: Plot of σ̄ versus A/λ̄ for f̄ = 1.26 Hz. σ̄ is the value of σ from figure
3.10 averaged over the range 0.24 < t/T < 0.5. The solid line connects consecutive
points. Note that σ̄ is dimensionl.

two runs and each has the same vertical scale. For these wave conditions, kλ̄ = 200

corresponds to a wavelength of roughly 3 cm. As the wave-maker amplitude is

increased, clearer peaks begin to emerge in the wave spectra. These peaks are

concentrated mostly in the range of 150 < kλ̄ < 400, or about 4 cm down to about

1.5 cm in wavelength.

3.4.3 History of the surface gradient and curvature

In addition to profile and spectral histories, the time variation of the surface

gradient, surface curvature, and the gradient of the surface curvature can also be

computed. In addition to being useful quantities in their own right, as they are a
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(a) For caption see page 76

Figure 3.12

measure of high-frequency surface components, measuring surface derivatives might

provide some physical insight into the underlying flow. For example, as was dis-

cussed in Chapter 1, the pressure near a free surface can be broken down into terms

involving the surface curvature (i.e. a jump in pressure caused by capillary forces),
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(b) For caption see page 76

Figure 3.12

the surface height (i.e. hydrostatic pressure) and residual dynamic pressure (see

equations 1.3 and 1.6). Therefore, gradients of such quantities could be related to

pressure gradients, which are in turn related to fluid accelerations. Such a connec-

tion between surface ripples and underlying fluid motions has been investigated by
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(c) For caption see page 76

Figure 3.12

other authors ([93], [94], [95], [96], [97, 98]), although no clear consensus on the

precise origin of surface ripples has emerged, and the physics may be dependent on

the details of the flow. Furthermore, in our experiments the flow field is highly un-

steady and information is only obtained along one-dimension, so full measurements
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(d)

Figure 3.12: Cross-stream spectra history for f̄=1.26 Hz and four different wave-
maker amplitudes A/λ̄. (a) 0.0514, (b) 0.0516, (c) 0.0518, (d) 0.0520. The case with
A/λ̄=0.0522 is shown in figure 3.9(b). Each plot shows spectra for one wave period
post-breaking.

of surface gradients are not possible. Nevertheless, we found that profile histories

of various 1D surface derivatives yielded some interesting results that may elucidate

certain features of the cross-stream structure in the spilling zone.
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The gradient, curvature, and gradient of curvature histories are created in the

following way. For each raw cross-stream profile, the horizontally averaged mean

was first removed, and derivatives along the y direction were computed numerically.

Each time a raw gradient was computed, the result was smoothed using a moving

average filter to reduce noise, and the subsequent gradient was computed from this

smoothed result. Each resulting profile is then be plotted above the previous to

create a history of that quantity (gradient, curvature, etc.) However, instead of

plotting each profile as a separate line (as in the profile histories of figure 3.8), the

profiles can be “meshed” together to form a surface in the y/λ̄-t/T plane. This

resulting surface is then colored according to its value on a gray scale, with white

being the highest values and black being the lowest. Figure 3.13 contains a series of

plots showing such histories for a particular experiment with f̄ = 1.15 Hz and A/λ̄ =

0.0522. The plots correspond to: (a) the surface height h (with the mean removed),

(b) the surface gradient, (c) the surface curvature (κ = ∂2h/∂y2/[1 + (∂h/∂y)2]3/2),

and (d) the gradient of the surface curvature. In the plots of figure 3.13, data at

a constant t/T value are from one profile, while the data at a constant y/λ̄ value

are from profiles taken at different times. Therefore, these plots show the temporal

behaviour of a 1D cross-stream profile and its 1D derivatives taken in a frame of

reference moving with the crest, not an instantaneous view of the water surface or

its 2D gradients.

The dashed black lines in figures 3.13(a)–(d) correspond to the time when the

value of z̄ is at a local minimum (see the discussion of figure 3.6). The history

of the surface height (figure 3.13a) shows natural horizontal striations (at least for
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(a) For caption see page 81

Figure 3.13

t/T < 0.5) which appear to coincide with the minimum of z̄. Interestingly, when

z̄ is a minimum, the cross-stream surface does not appear to have very many large

amplitude surface features, even though σ peaks at these locations (see again figure

3.6). This means that when z̄ is at a minimum, the cross-stream surface rippes
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(b) For caption see page 81

Figure 3.13

are small, but numerous and highly fluctuating so as to create a large standard

deviation. This conclusion is supported by the fact that the plots of the surface

gradient and surface curvature (figures 3.13b and c) show large values near these

locations. Furthermore, the histories of surface gradient, surface curvature, and the
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(c) For caption see page 81

Figure 3.13

gradient of surface curvature all show the presence of thin, “scar-like” lines where the

surface shape changes sharply. Some of these scars have small y velocity components,

as evidenced by their less than vertical slope in y/λ̄−t/T coordinates, but on average

do not appear to have a preferential right-left direction. The generation of these scars
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(d)

Figure 3.13: Histories of the cross-stream amplitude and its varioius deriva-
tives for one run with f̄ = 1.15 Hz and A/λ̄ = 0.0522. (a) surface height
h (with the mean removed), (b) surface gradient ∂h/∂y, (c) surface curvature
κ = ∂2h/∂y2/[1+(∂h/∂y)2]3/2, (d) gradient of surface curvature ∂κ/∂y. The dashed
black lines correspond to the time when the value of z̄ is at a minimum.

seems to coincide with the location of the minimum of z̄ and can persist for up to as

much as one-tenth of a wave period in a frame of reference moving with the crest.

81



It is a bit difficult to accurately identify what exactly should be considered a scar

or not, as their density, strength and length show variation across the image, so any

method to determine their spacing would be rather coarse. Regardless, based off of

visual inspection of the surface at around 0.35 wave periods, we measure an average

spacing of roughly 0.026 wavelengths (3 cm). In as far as the sum of these quantities

represents acceleration and deaccleration of the fluid in the cross-stream direction,

it may be that the formation of these surface scars are connected with the presence

of high or low speed “streaks” in the fluid near the free surface. Such streaks have

been observed near the crests of steep waves in wind-wave experiments ([55]) and

in more recent numerical calculations ([88]). The latter work identified an average

spacing between the streaks to be about 0.6 cm for initial gravity wavelengths of

7.5 cm (a ratio of 0.08). Looking more closely at the curvature plot (figure 3.13c)

we see that these thin scars are predominately positive, indicating regions of high-

upward curvature. Such curvatures are reminscent of steep capillary waves which

have large upward curvatures in the wave troughs, as opposed to gravity waves

which have large negative curvature at the wave crests. Although the size of the

cross-stream ripples precludes them from being pure capillary waves it is clear that

the dominant contributions to the surface curvature are coming from the troughs of

the cross-stream ripples. A better understanding of these surface features further

investigation.

We conclude with a discussion of one possible mechanism that may account

for the formation of the observed cross-stream ripple pattern. PIV measurements

of both steady and unsteady breakers have shown the presence of a separated shear

82



layer just upstream of the breaking region. This shear layer introduces cross-stream

oriented vorticity that viscously diffuses outward with distance away from the lead-

ing edge of the layer (and with time in the unsteady case); see for example the

measurements of [36] or the experiments and numerical calculations of [86, 87].

Consider the simple scenario of a series of co-rotating vortices that are generated at

the leading edge of the shear layer and located near the free-surface. Arrays of sim-

ilar such vortices have been observed in PIV measurements of steady spillers ([34],

[35]) and in the unsteady spillers of [36]. Next consider these vortices to be near

the larger quasi-2D streamwise ripples, as depicted in figure 3.14. Although there

is no definitive justification for such a choice, it was shown by [100] that an array of

co-rotating vortices near a free surface would create a “vortex wave” with the wave

elevated above the vortex core. We see that with such a configuration the troughs

of the streamwise ripples are regions of very high shear, and one might expect large

turbulence fluctuations (and hence ripple production) in these areas. Furthermore,

such a scenario could result in the formation of smaller streamwise oriented vor-

tices in the region between the main vortices, a situation analagous to the observed

streamwise “braid” vortices that stretch between the larger turbulent rollers in mix-

ing layer turbulence. The presence of elongated streamwise vortex structures could

help explain the production of cross-stream ripples and surface scars in the troughs

of the larger streamwise ripples.
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Figure 3.14: A schematic showing a possible model for the distribution of vorticity
in the shear layer produced by a spilling breaker showing the location of high shear
regions in the troughs of the streamwise ripples.

3.5 Summary and conclusions

In this work, the cross-stream structure of the rippled surface generated by

short-wavelength spilling breakers was investigated experimentally. An LIF method

was used to measure two-dimensional surface profiles in a frame of reference moving

with the breaker crest. Three different wave-maker frequencies and five different

wave-maker amplitudes were investigated. With these five amplitudes the waves

vary from weak spillers to nearly plunging breakers at the largest amplitude and

wavelength. The wave-maker motions were Froude scaled and the changes in the

cross-stream statistics are the result of the turbulence generated in the breaker

and surface tension. For all the wave conditions studied, it was found that the

average cross-stream water height z̄ shows periodic oscillations once breaking begins.

These oscillations in wave height are due to the generation of larger, “quasi-2D”

streamwise ripples that are oriented nearly parallel to the wave crest. These ripples

do not Froude scale as they are generated by the underlying turbulent flow. Both

the amplitude and the period of these larger ripples increase with wavelength and

wave-maker amplitude, with the depedence on wavelength being the stronger of the
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two. The standard deviation of the amplitude of the cross-stream ripples also show

distinct peaks in the early stages of breaking. These peaks are found to coincide

with the local minima of z̄, indicating that the cross-stream ripples are strongest in

the regions between the larger streamwise ripples. In these regions, the cross-stream

ripples appear small and numerous with rapid changes in slope and curvature, rather

than broad and large. A measure of the typical amplitude of the cross-stream ripples

generated during breaking was found to increase with λ̄3 and linearly with the wave-

maker amplitude A. In dimensional terms, the observed cross-stream ripples were

in the range of 0.5 – 2.0 mm in amplitude. The cross-stream ripples, which are

small in the initial stages of breaking, grow rapidly and are largest at about half

a wave period after breaking begins. For the weakest breakers studied, the cross-

stream ripples remain small relative to the streamwise ripples, and the flow remains

essentially 2D. For the strongest breakers, the cross-stream ripples can grow to be

almost half the height of the streamwise ripples, so 2D approximations in these larger

breakers may fail to capture significant physics. Wavenumber spectra histories of

the cross-stream profiles reveal the presence of broad spectral peaks, in particular

at the intermediate wave condition, with wavelengths as low as 3 mm up to as high

as 45 mm. The spectra appear much more concentrated at lower wavenumber for

the largest wavelength studied.

Plots of the surface gradient and curvature show the presence of distinct sur-

face “scars”; thin, persistent regions where the surface fluctuations are large. These

features are primarily generated in the regions between the large streamwise ripples

and remain for as long as 0.1 wave periods in a frame of reference moving with the
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crest. The dominant observed features have high upward curvature, implying the

presence of sharply curved troughs, similar to steep capillary waves. It is hypothe-

sized that the scars might correspond to the location of near surface high and low

speed “streaks” that are a common feature of many canonical turbulent flows and

have been observed near the crest of steep gravity-capillary waves. Based on these

observations, a simple model for the vortical flow near the crest of spilling breakers

is conjectured.
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Chapter 4

Non-linear gravity-capillary waves generated by a moving pressure

source1

4.1 Abstract

The wave pattern generated by a pressure source moving horizontally over

a free liquid surface was investigated experimentally using a combination of cine-

matic shadowgraph and laser induced fluoresence (LIF) measurements. The pressure

source moves at speeds below the minimum phase speed for linear gravity-capillary

waves cmin. At these speeds, freely-propogating, three-dimensional, nonlinear soli-

tary waves, or “lumps”, are known to exist theoretically. In the experiments, several

distinct responses are found depending on the speed and magnitude of the applied

forcing. At low speeds, regardless of forcing, the pattern exhibits no wave-like be-

havior and the response resembles the stationary state. However at a critical speed,

but still below cmin, there is an abrupt transition to a wave-like state that features

a marked increase in the response amplitude and the formation of a fully-localized

solitary depression downstream of the pressure forcing. This solitary depression

is steady, elongated in the cross-stream relative to the streamwise direction, and

qualitatively resembles the freely-propogating solutions reported in numerical com-

putions. The speed where this transition occurs decreases with increased forcing

1Some of the work presented in this chapter can also be found in Diorio et al., Physical Review

Letters, 2009 [101]
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indicating that nonlinear effects are important over a wider range of the parameter

space. For speeds very close to the transition point time-dependent oscillations are

observed and their dependence on speed and forcing are reported. The amplitude

of the solitary depression decreases with speed and is independent of the level of

forcing, indicating a one-to-one relationship between amplitude and phase speed, a

known feature of solitary waves. As the speed approaches cmin a second transition

is observed. The steady solitary-depression gives way to an unsteady state charac-

terized by the periodic shedding of localized depression waves from the tails of a

“V” shaped pattern. These results are the first experimental evidence of the bifur-

cation of 3D gravity-capillary solitary waves and are discussed in connection with

recent theoretical and numerical results on the nature of solitary waves in nonlinear

dispersive systems.

4.2 Summary of previous work

As was discussed in Chapter 1, in the presence of both surface tension and

gravity, water waves are governed by the well-known dispersion relation

ω2 =

(

gk +
τ

ρ
k3

)

tanh(kH) (4.1)

where H is the fluid depth. This dispersion relation holds for a train of linear waves

(i.e. infinitesimal amplitude). As shown in Chapter 1, an interesting feature of

this dispersion relation is that the phase velocity obtains a minimum depending on

the value of the Bond number, Bo = τ/(ρgH2). For Bo ≫ 1/3 (shallow water),

the minimum occurs in the long wave limit, kmin = 0, and has a minimum phase
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speed cmin
p = (gH)1/2. For Bo ≪ 1/3 (deep water), the minimum occurs at a finite

wavenumber, kmin = (ρg/σ)1/2, with minimum phase speed cmin = (4gσ/ρ)1/4, or

about 23 cm/s in clean water.

The physical implication of this phase speed minimum is that for an object

moving moving at a constant velocity slower than cmin, no (linear) waves are gen-

erated. Knowledge of this minimum in the phase speed has certainly been noted

(e.g. [102], [103]) but interest in the behavior of nonlinear waves near this condition

has begun to generate more interest lately. Because the phase and group velocities

are equal there (see Chapter 1), extrema of c(k) are known as bifurcation points

of non-linear solitary waves. In fact, long wavelength solitary waves in shallow or

finite depth water, both for pure gravity and gravity waves with surface tension,

are some of the oldest nonlinear phenomena in fluid mechanics ([104], [105], [106]).

Solitary-type envelope solutions for pure gravity waves in deep water have also been

reported ([107, 108], [109]). However, it was not until the late 1980s and early 1990s

that researchers began to tackle the problem of gravity-capillary solitary waves in

deep water. This began with the numerical computations of solitary-wave profiles

by [24]. Later work made use of the Nonlinear Schrödinger (NLS) equation as a

model to compute the wave amplitude near the minimum phase speed ([26] and

[25]). One of the important results found was that at the minimum phase speed,

linear periodic waves bifurcate into envelope-solitons of permanent form of which

the profiles computed by [24] were merely a special case. Section 3 of [110] presents

a comprehensive review of the early work in this area.

The early mathematics of gravity-capillary solitary waves mostly considered
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2D solutions, that is, the variation of the amplitude along a 1D line2. However,

many of the mathematical models being used, such as the NLS or KdV equations,

have 3D analogs that permit solutions with weak cross-stream variation; the 2D

NLS and Kadomstev-Petviashvili (KP) equation, respectively ([111]). Therefore, it

would seem plausible that gravity-capillary solitary waves may exhibit 3D behavior

as well. This 3D extension was applied to the water wave problem by [2] using a

generalized Benney-Luke equation, an extension of the KP equation that included

surface tension and topographical forcing. Their calculations showed a solitary wave

whose streamwise profile resembled the 2D “plane wave” solutions, but also remained

confined in the transverse (cross-stream) direction, see figure 4.1. These “lump”

solutions, however, are typically computed from equations that depend on long-

wavelength assumptions (KP equation), have arbitrary phase between the envelope

and carrier wave (NLS), or are only weakly non-linear (KP and NLS) and therefore

are not useful in deep water (where kmin is finite) or at larger amplitudes. Therefore,

one of the main goals of recent research has been to develop models that capture

the three-dimensional solitary wave physics in deep water (i.e. Bo ≪ 1/3).

In 2005, three different groups presented advances in this area. [28] used an

asymptotic approach, similar to that used by [112] and [113] for 3D gravity wave

packets, to construct small-amplitude wave-packet lumps that travelled slightly be-

low the minimum phase speed for Bo less than (but still near) 1/3. The results

of this analysis showed that two solutions, one with a central depression and one

2Some authors refer to these types of waves as “1D solutions”, and waves that vary in both
x and y as “2D”, so that the remaining dimension (z or height) is implied. Here we adopt the
convention that the term 2D corresponds to height variation along a line, and the term 3D to
height variation along a surface.
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Figure 4.1: Figure 1 from [2] showing a lump solution to the KP equation for
Bo > 1/3. Note that the scale in y is much larger than the scale in x so the wave
is much broader in the y (cross-stream) direction.

with a central elevation, bifurcate at the minimum phase speed, analogous to the

bifurcation of plane-waves in 2D. [27] also computed 3D localized wave packets on

water of infinite depth from the full Euler equations by means of a boundary inte-

gral method. In the small amplitude limit, these waves behave like wave-packets,

consistent with the asymptotic results of [28]. At higher amplitudes, the waves

transform into completely localized disturbances, resembling the 2D solutions com-

puted by [24]. Finally, [114] also showed that travelling solitary wave packets exist,

with continuous solutions spanning the range from the long wave limit, where they

are governed by the KP equation, down to the wave-packet limit, governed by the

Davey-Stewartson model. [115] continued their work by studying the generation

of lumps in a two-layer fluid system, where the upper layer is bounded by a rigid

wall. This system also features a phase speed minimum at finite wavenumber and

is governed by the 2D Benjamin equation ([116]). [115] showed that in the neigh-

borhood of the minimum, the problem resembles that of free-surface lumps. [117]
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investigated the same problem using their boundary integral method applied to the

full non-linear equations, and confirmed the results of the weakly non-linear model

of [115]. Most recently, [118] developed a new model equation that mimics the be-

havior of the Euler equations near the minimum phase speed and at a finite wave

number (i.e. fully deep water limit). It was shown that all 2D solitary waves are

unstable to transverse perturbations and evolve into lumps, analogous to transverse

instabilities observed in shallow water. [118] also investigated the stability of the

lump solutions themselves, showing that elevation type lumps are unstable, while

depression type lumps are stable at larger amplitude. This last result is commensu-

rate with the result of [119] who investigated the stability of lumps with Bo ≈ 1/3

with a 5th-order KP equation.

Some numerical researchers have included forcing in their models in order to

simulate a moving pressure source. [120] examined the surface waves generated by

a moving pressure source with Bo < 1/3 but finite depth. A 2D boundary integral

method was applied to the fully non-linear equations to show that depression and

elevation type waves exist under both zero and non-zero forcing. [121] used a similar

technique but in 3D and with the inclusion of an artificial viscosity. Although their

work focused mostly on the super-critical case (i.e. c > cmin), the solitary waves

profiles computed below cmin had a shape that was slightly asymetric with respect to

the streamwise direction. The main wave trough moved slightly behind the forcing

and the elevation of the leading edge became higher than the trailing edge. Their

results also showed that the maximum amplitude of the wave pattern transitioned

smoothly from c < cmin to c > cmin. This is in contrast to their earlier work ([122])
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for the case of zero viscosity which showed a minimum value c∗ < cmin such that no

solutions existed for c∗ < c < cmin, and time-dependent solutions could be expected.

A model that has been used in comparison with the current experiments is that

developed recently by Cho and Akylas [101]. Instead of using the 2D fully nonlinear

viscous water-wave equations, these authors employ a simple model equation that

captures the interplay between nonlinear and dispersive effects in the region near

the minimum phase speed. Briefly, following the work of [123], one can expand

the dispersion relation to second order around kmin and add an imaginary part to

represent the wave decay rate due to viscous damping, see [102]. This yields

ω = −iν̃ |k|2 − 1

4
sgn(k)(1 + 2 |k| + k2 + 2l2) (4.2)

where the parameter ν̃ = ν(4g)1/4(τ/ρ)3/4, ν being the kinematic viscosity; in cgs

units, ν = 0.01, g = 981, ρ = 1 and σ = 73, so ν̃ = 0.003. Equation 4.2 can

be combined with a moving pressure forcing, A′p(ξ, y), ξ = x + αt, where α is a

nondimensional speed parameter α = c/cmin where c is the speed of the applied

pressure forcing. Assuming quadratic nonlinearity [123], the following equation for

the free-surface elevation η(ξ, y, t) is obtained

ηt − ν̃(ηξξ + ηyy) − (
1

2
− α)ηξ −

1

4
H{ηξξ + 2ηyy − η} − β(η2)ξ = A′pξ (4.3)

Here, A′ denotes the peak amplitude of the applied forcing and H{f} = F−1{−isgn(k)F{f}}

stands for the Hilbert transform, with

F{f} =
1

2π

∞
∫

−∞

f(x)e−ikxdx (4.4)
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being the Fourier transform. The coefficient of the nonlinear term in equation 4.3

is set to β =
√

11/2/8. This ensures that, for ν̃ = 0 and α slightly below the

bifurcation point α = 1, free solitary-wave and lump solutions of equation 4.3 agree,

to leading order, with their weakly nonlinear counterparts of the full water-wave

equations ([28]).

In contrast to the progress in the mathematical formulation of lumps, there has

been remarkably little progress made in experiments. [124] observed isolated features

with sharp curvatures in gradient images of a wind-wave field. Measured profiles of

these features looked similar to the numerical profiles calculated by [24] although no

actual velocity of the features was recorded. In a more thorough experiment, [125]

used a narrow 2D slit to create an impinging air jet on the surface of a recirculating

water channel. A small amount of chalk powder was used to make the free surface

visible to a camera positioned on the side of the tank. When the free stream water

velocity was below the minimum phase speed, a localized wave formed directly

beneath the impinging jet. The shape of the free surface matched very well with the

earlier calculations of [24] for 2D solitary waves. Measurements of the surface slope

as a function of wave speed also showed good agreement with the theory, although

the wave pattern was not completely steady, showing some lateral instabilities, in

particular at lower speeds. Measurements were also made of the slope and position of

the wave pattern after the air was turned off, so the wave became a freely propagating

wave damped by viscosity. The surface slope decreased as a function of time and

the wave moved upstream, indicating an increase in velocity with decreasing wave

slope, another result consistent with the theory. More recently, [126] measured
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the properties of the wave packet generated by a water drop on a free surface. A

localized wave packet was found that propagated at constant velocity and with little

diffusion. The wavelength of the carrier waves and the group velocity of the packet

were near the minimum of the dispersion curve, so it is plausible that the waves

observed were solitary waves.

To the best of the author’s knowledge no other experimental work has been

done on deep water gravity-capillary solitary waves, while theoretical advancements

have been abundant. The results of the experimental works are both qualitatively

and quantitatively consistent with the 2D theory, but they do not address the 3D

nature of the problem that appears to be so evident in more recent calculations.

Furthermore, theoretical and experimental results regarding the unsteady behavior

and stability of any lumps that may exist are lacking. Clearly, experiments in this

area are long overdue. Therefore, results of experiments looking at the non-linear

gravity-capillary wave pattern generated by a moving pressure source travelling

below the minimum phase speed are presented in this chapter.

4.3 Experimental details

4.3.1 Experimental setup

The experiments were carried out in a tank that is 7.3 m long, 76 cm wide and

91 cm deep, see figure 4.2. The sides and bottom of the tank were constructed out

of translucent glass, and the tank was filled with water to a depth of approximately

H = 60 cm. The surface tension, measured with a Willhelmy plate, was maintained
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at τ = 73 dynes/cm throughout the experiments via a surface skimmer and filtration

system, so that Bo ≪ 1/3 (i.e. deep water). A pipe with inner diameter D = 2.5

mm was positioned 1 cm above the water surface and mounted on a translation

stage, which is attached to a carriage that rides on top of the tank. The pipe was

secured in a silicone slot between two aluminum plates and mounted to the carriage

with vibration reducing bushings to prevent the pipe from shaking when the carriage

was moving. The carriage was towed by a steel cable attached to a servo-motor and

the speed of the motor is controlled by a PC. The carriage is accelerated from rest

to a constant speed Uc at an acceleration of 10 cm/s2. We define a speed parameter,

α = Uc/cmin. This speed parameter was in the range 0.6 < α < 1.03 for these

experiments. Output from a linear displacement position sensor that monitors the

position of the carriage as a function of time revealed that the carriage speed varied

by less than 0.3% from the nominal speed during an individual run and the average

speed varied by 0.01% from run-to-run. A pressure disturbance was made on the

water surface by connecting a pressurized airline to the 2.5 mm tube. By controlling

the air flow-rate with a flow metering valve, various amounts of forcing were applied.

We define a forcing parameter, ǫ = h0/D, where h0 is the depth of the water surface

depression created by the air-forcing when the carriage is stationary. For these

experiments, the forcing parameter was in the range 0.3 < ǫ < 0.69. Measurements

of h0 using a high-speed camera showed a variation of about 5% of the mean from

run-to-run for a given forcing, see the discussion in section 4.3.2.
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Figure 4.2: Schematic of the experimental setup used in the solitary wave exper-
iment. A small pipe (2.5 mm ID) is mounted in a vibration reducing casing and
attached to a movable carriage. A pressurized air line pushes air through the pipe to
generate a small depression on the water surface. A high-speed camera (not shown)
images the pattern from the side. The pipe is towed in the x (streamwise) direction,
and is mounted on a translational stage so it can be displaced in the y (cross-stream)
direction.

4.3.2 Measurement details

In order to measure the wave pattern, two different techniques were used:

laser-induced fluorescence (LIF) and shadowgraph. In the LIF method, Fluourescin

dye was added to the water and a small (∼ 5 cm wide and ∼ 1mm thick) laser

light sheet was projected onto the water surface from below. This light sheet was

oriented so that its long axis was in the direction of the carriage motion (i.e. the x or

streamwise direction). A high-speed camera (Phantom 9, Vision Research, 1632 x

800 pixels at 800 fps) was positioned outside the tank and remained stationary. The

camera imaged the intersection of the laser sheet and water surface from the side

and slightly above the mean water level. In this configuration, the camera recorded

images as the wave pattern passed by, and these images were then used to track the

height of a particular point using the edge detection algorithms described in section
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2.3.3. For these experiments, one pixel corresponded to roughly 0.02 mm in the

physical plane. Tracking the height of one point as a function of time yields z(t),

which, assuming the pattern to be steady, can be converted to a 2D profile, z(x),

using the known speed of the carriage and frame-rate of the camera. In this method,

the frame rate was set to 500 fps. This processing method was particularly useful

for obtaining a “wide” view of the pattern since a large number of images (> 1000)

can be taken that captured both the approach and departure of the wave pattern

from the measurement area. However, because of lighting limitations, the frame rate

was low enough that this method only captured 4 or 5 frames near the center of the

pattern, or a streamwise distance of about 2 mm. To obtain a more detailed view

in this region, a 2D profile was extracted from a single image near the center of the

wave pattern, again using the edge detection techniques described in section 2.3.3.

Note that, in the end, both of these analysis techniques yield z(x) for a single movie.

Since the pipe was mounted on a translation stage, it could be displaced accurately

in the cross-stream (y) direction. Repeating a set of experimental conditions with

the pipe at different y-locations yielded several 2D (z(x)) profiles that were combined

together to form a detailed 3D (z(x, y)) picture of the pattern. To ensure that the

streamwise (x) location of the pattern was the same at each frame from different

movies, the camera was triggered by the passage of the pipe through a laser-photo-

diode circuit. The position of the pipe in the high-speed movie was repeatable to

within 0.5 mm (≈ 1/5 pipe diamters) from run-to-run using this method.

One draw back of the LIF method is that the laser light could become highly

refracted in regions of high surface curvature, which were primarily in the plane of
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the light sheet, making detailed measurements of quantities such as the maximum

depth unreliable. Therefore, in the shadowgraph technique, the camera was reposi-

tioned to view the pattern from just below the mean water level and a white light

source backlit the image to create contrast between the air and the water. This

technique removed the refraction issue and allowed for very detailed measurements

of the underwater profile as well as accurate measurement of the maximum depth

of the depression. Because the length scales are small (∼ 1 mm) an accurate mea-

sure of the mean water level was important. To this end, a checkerboard pattern

with diagonal lines was mounted vertically and partially submerged so it could be

viewed by the camera below the water surface. The location where the diagonal

lines were seen to change direction (because of reflection off of the underside of the

free surface) was called the mean water level. With this method we are confident

that we can locate the mean free surface to within 5 pixels (0.1 mm in the physical

plane). The accuracy of this method, combined with the accuracy of the air-flow

monitoring system, is the source of the 5% error in h0 mentioned above. Shadow-

graph measurements were also made with the camera mounted to the carriage. To

prevent camera shake in the images, the camera was connected to a custom-made

1/2 inch-thick aluminum plate that acted as a brace for both the camera body and

the lens element. This plate was then attached to a ball-mount tripod head (Arca

Swiss Monoball) and was attached to the carriage using vibration isolation bushings.

Because the camera moved with the pipe in this configuration, it captured any time

dependent behavior of the wave pattern at various towing speeds.
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4.4 Results and discussion

4.4.1 Behavioral states and a critical jump condition

In order to understand the qualitative shape of the surface wave pattern at

various speeds, the high-speed camera was first mounted to the carriage and pic-

tures were taken of the wave pattern from above the water surface. These images,

presented in figure 4.3, show the three-dimensional pattern that forms around the

pipe as it moves at various towing speeds. In all the photos, the pipe (and hence the

forcing) is moving from right to left. The surface is back-lit and the light and dark

patterns formed are caused by ridges and depressions with various slopes and curva-

tures. Roughly speaking, the dark patterns represent downward sloping faces that

are blocked from the light and the light patterns are ridges or crests that are well

illuminated. At low speeds, 4.3(a), there is a depression located directly beneath

the air-jet which is fairly symmetric in the streamwise and cross-stream planes and

the pattern resembles the stationary condition. We call this configuration state I.

At higher speeds, a trailing wave forms that lags the location of the pressure forcing

(b). This trailing wave has larger cross-stream extent, and moves further behind the

air-jet as the speed increases (c–d). We call this asymmetric configuration state II.

As the towing speed approaches cmin, the wave exhibits time-dependent behavior,

and begins to stretch out into a “V” shape (e). We call this time-dependent state

state III. Finally, above cmin, the air-jet creates a steady wave pattern with a wave

“cone” that is typical of the wave pattern generated by fast moving objects.

To further elucidate the shape of the wave pattern in states I and II, shadow-
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Figure 4.3: Images of the wave pattern taken from above the water surface with
the high-speed camera. The forcing parameter is approximately ǫ = 0.43. The
pressure forcing (and the pipe) are moving from right to left. (a) α = 0.905, (b)
α = 0.927, (c) α = 0.948, (d) α = 0.970, (e) α = 0.981, (f) α = 1.03. The pipe OD
is approximately 3.2 mm for scale.

graph images are shown in figure 4.4. In these images, the camera views the wave

pattern from slightly below the mean water level, so the top half of the image is

merely a reflection across the water surface. In all of these images the air-jet is

moving from right to left. Although it is not shown in these cropped images, the

pipe is visible in the raw images and a rough pipe position can be determined3. The

3Here we say “rough” because the camera is focused on the wave pattern, not the pipe. Although
they are at nearly the same working distance from the camera lens, the wave pattern is being
viewed through water, while the pipe is being viewed through air. This results in a difference in
path lengths of the light coming from each object, so while the wave pattern appears in focus, the
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Figure 4.4: Shadowgraph images showing the shape of the wave pattern for several
values of the speed parameter α for ǫ = 0.43. The images are taken from slightly
below the water surface so the top half of the image is a reflection. In all cases, the
air-jet is moving from right to left. The black lines denote the approximate position
of the pipe when the photo was taken. Each image is roughly 9.5 by 7 mm in the
physical plane. (a) α = 0.73, (b) α = 0.82, (c) α = 0.90, (d) α = 0.90, (e) α = 0.92,
(f) α = 0.95. The letters correspond to the points on the curve in figure 4.5.

approximate location of the pipe at the moment the image was taken is denoted

by the dark vertical lines in the images. For low α the pattern is in state I with a

symmetric shape and the pipe located over the point of maximum depth, as in (a–c).

This shape resembles the case when the pipe is stationary and is essentially a linear

response. For larger α, the pattern is in state II, with the forcing located ahead of

the point of maximum depth, and the formation of a trailing wave, as in (d–f). One

can also notice that the depth of this trailing wave decreases and it moves further

pipe appears out of focus, so its precise position is difficult to determine. What we report here is
merely based off of visual observation.
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behind the pressure forcing as α is increased.

The transition between states I and II is abrupt; a small change in α can yield a

dramatically different response. In fact, the two images in figures 4.4(c) and (d) are

from experiments with the same value of α, indicating that at some speeds there may

even be a kind of bimodal behavior. To investigate this transition, the peak depth of

the wave pattern, hmin, was measured as a function of the speed parameter α. This

peak depth was normalized by h0 and results are shown in figure 4.5 for ǫ = 0.43.

Note that the quantity hmin/h0 is being reported as positive, although these are

depression type waves. Each data point in the figure represents a measurement

from a separate experimental run. The data in figure 4.5 show that, at low speeds,

the depression gradually increases in depth with increasing speed. The noise level

in this region, say for α < 0.85, is quite low. However, at a certain critical speed

αc, with αc ≈ 0.9 for this particular case, there is a discontinuous jump in hmin/h0.

Points below this jump (i.e. on the lower curve) are always observed in state I while

the points after the jump (i.e. on the upper curve) are observed to be in state II.

This is supported by the location of the letters in figure 4.5 which correspond to

the conditions for the pictures in figure 4.4. Near the jump, we see more noise in

the experimental data, and even the bimodal behavior mentioned above. Take, for

example, the six runs with α ≈ 0.9; four were observed to be in state I, while two

were observed to be in state II. This small overlap between the two curves may

be due to small errors in carriage speed or air-flow rate rather than some purely

bimodal behavior, but it is clear that the response of the system is very sensitive

to the experimental conditions in this region of the parameter space. Furthermore,
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Figure 4.5: Normalized peak depth of the wave pattern, hmin/h0, versus α for ǫ =
0.43. Each data point is taken from a different experiment. The letters correspond
to the approximate location of the images in figure 4.4.

near the jump condition, oscillations begin to appear in the wave pattern, another

reason for higher experimental noise in this region. This will be discussed more fully

in the next section. As a side-note, the shape of the curve in 4.5 seems to resemble

the response of a damped, driven, non-linear oscillator near the resonance condition,

where the amplitude is observed to jump with small changes in the forcing frequency.

The value of αc where the transition between states I and II occurs is dependent

on the level of forcing. This is shown grahpically in figure 4.6 which shows a plot of

hmin/λmin versus α for four different values of ǫ. Here the choice of the minimum

gravity-capillary wavelength λc = 2π(τ/gρ)1/2 as the non-dimensionalizing paramter

is useful as the data curves collapse in state II (note that if we had instead chosen h0
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Figure 4.6: Normalized peak depth of the wave pattern hmin/λmin versus the speed
parameter α. Four different values of ǫ are shown. ◦ ǫ = 0.30, � ǫ = 0.43, 3

ǫ = 0.51, △ ǫ = 0.69. Note that all the data fall on a common line in state II,
independent of the level of forcing. Points above this curve at high values of α
represent conditions where the pattern is in state III, see text. The points with the
∗ are the approximate values from the inviscid, freely propogating lump solutions
calculated by [27], their figure 6.

as the length scale the curves would not collapse in this region since h0 is different

for each case). Because λmin is the same for each case, the universal behavior of the

curves indicates that in state II there is a one-to-one relationship between wave depth

and phase speed, a behavior that is typical in the theory and calculations of gravity-

capillary solitary waves. For example, also shown in figure 4.6 are approximate data

from [27] for steady numerical calculations of freely propogating lumps (their figure

6). As can be seen in the figure, the numerical calculations of [27] do not match the

curve for state II, although they do appear to roughly intersect the state I-state II

transition point for the two lowest forcings (ǫ = 0.30 and ǫ = 0.43). For high levels
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of forcing and high towing speeds, the data appear to move away from this universal

curve, showing a different kind of behavior; see for example the points for ǫ = 0.69

and α > 0.90 in figure 4.6. As will be seen, the behavior of the wave pattern in this

region is due to a transition to the time-dependent state III and will be analysed

in the next section. It is clear from figure 4.6 that the value of αc decreases as

ǫ increases, indicating that nonlinear effects are important over a broader range

of speeds when the forcing is higher. Figure 4.6 also shows the transition region

appears to broaden with increased forcing, so that the jump is less abrupt.

4.4.2 Time-dependent behavior

As was described in the previous section, at low α a stable, symmetric state I

response is observed while for higher α a stable, asymmetric state II reponse is seen.

In between, there is a transition between the two states. This transition is very

abrupt for low ǫ but becomes more gradual at higher ǫ. However, as is shown below,

regardless of the value of ǫ, a clear time-dependent behavior is observed near the

transition point. Similarly, for high values of α and ǫ, time-dependent motions are

also observed although these motions are of a different character and are therefore

referred to seperately as state III.

4.4.2.1 Transition to state II

To measure the time-dependence near the transition from state I to state II,

the camera was mounted to the carriage to take shadowgraph movies in a frame
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Figure 4.7: Plot of the normalized peak depth of the wave pattern hmin/h0 as a
function of time for ǫ = 0.43 and various values of α. ◦ α = 0.88, � α = 0.89, ⋄
α = 0.905, ▽ α = 0.907, △ α = 0.909.

of reference moving with the pipe. This allows the time-dependent behavior of the

pattern to be recorded as the pressure forcing moves down the tank. The camera

was triggered with the start of the carriage motion so the intial startup could also

be captured. The results are presented in figure 4.7 which show the normalized peak

depth of the wave pattern hmin/h0 as a function of time for ǫ = 0.43 and several

values of α near αc. The camera passes in front of a column of the tank half-way

through the carriage motion (from about 5–5.5 seconds), so there is a small gap in

the curves. It should be noted that for the shadowgraph measurements presented in

the previous section, the camera (which was stationary) was positioned about 30 cm

beyond this column, so the moving camera passes the original shadowgraph location

at around t = 7 seconds. For low values of α, the pattern appears to be stable in the

lower state I, and the wave resembles the pictures shown in figure 4.4(a–c). As the

towing speed is increased, the maximum depth shows oscillations in the vertical (z)
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Figure 4.8: Plot of the normalized peak depth of the wave pattern hmin/h0 as a
function of time for ǫ = 0.30 (upper plot) and ǫ = 0.51 (lower plot) for various
values of α. Upper plot: ◦ α = 0.927, � α = 0.938, ⋄ α = 0.940, ▽ α = 0.9440, △
α = 0.9444. Lower plot: ◦ α = 0.856, � α = 0.862, ⋄ α = 0.873, ▽ α = 0.884, △
α = 0.888.

direction. Both the amplitude and the period of these oscillations appear to increase

with increasing towing velocity. Finally, after only a small additional change in α

(∆α = 0.002 or about 0.05 cm/s), the pattern jumps into the higher state II, where

it appears to be relatively stable again, and the wave resembles the photograph

shown in figure 4.4(d).

The range over which these oscillations occur and their amplitude are also
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affected by the level of forcing. This is presented graphically in figure 4.8, which

shows the normalized height as a function of time for ǫ = 0.30 (upper plot) and

ǫ = 0.51 (lower plot), for several values of α near αc (time-dependent data for

ǫ = 0.69 were not recorded). In both of these cases we see similar behavior: a stable

state I hmin at low speeds, oscillations that increase in both amplitude and period

as α is increased, and finally a “jump” to state II. For ǫ = 0.30 this jump is very

sudden; the difference in speed between the highest two curves in the upper plot is

only 0.01 cm/s. For ǫ = 0.51, the jump region is broader; for example the difference

in speed between α = 0.873 (diamonds) and α = 0.884 (down triangles) is 0.25

cm/s. Although, even for α = 0.884, the wave pattern was even observed to be

stable in state II, briefly transition to state I, then back to state II (see figure 4.8

lower plot), so there still appears to be some instability even for a larger difference

in towing speed.

The oscillations in figures 4.7 and 4.8 appear to decay as the wave propagates,

indicating that they may be transient. The period of the oscillations are very large

(∼ 1 s) in comparison to a capillary-gravity time scale (∼ (τ/ρg3)1/4 ≈ 0.017s), and

persist even though the wave pattern has traveled many wavelengths at a constant

speed (1 second of time is roughly 100 tube diameters). To investigate whether the

oscillations eventually decay to zero, the shadowgraph setup was moved to allow

movies to be recorded further down the tank from where the motion starts. Due

to lighting limitations, this setup could not capture the entire motion in a single

run. Figure 4.9 shows hmin/h0 versus time for ǫ = 0.43 and α = 0.905, with the

data from the extended run plotted along with the original data from figure 4.7 for
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Figure 4.9: Plot of the normalized peak depth of the wave pattern hmin/h0 as a
function of time for ǫ = 0.43 and α = 0.905. ⋄ are the original data and ◦ are the
data from the extended run.

comparison. The camera passes in front of another tank column between roughly 10

and 11 seconds so there is another gap in the data. The figure shows that while the

amplitude of the oscillations does decrease, it does not appear to reach zero, at least

over the range measured. Furthermore, at late times, the oscillation period does not

appear to be as regular as it was near the startup. Unfortunately the length of this

data set reaches the physical limitations of our experimental facility, so whether or

not the wave pattern settles to a steady state near αc, given enough time, is still an

open question.

4.4.2.2 State III behavior

After passing through the region of unsteady behavior below αc, the wave pat-

tern becomes steady again in state II, and the wave shape resembles that in figure

4.4(f) with two peaks, one located under the forcing, and the larger depression lag-
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ging the forcing. As is shown in figure 4.6, as the towing speed is increased further,

the amplitude of this trailing depression decreases. As the amplitude of the follow-

ing wave decreases, the amplitude of the leading wave actually increases, eventually

becoming larger than the following wave if the towing speed is high enough. Even-

tually, for high levels of forcing and high towing speeds, the relationship between the

amplitude and phase speed of the wave departs from the universal behavior noted in

figure 4.6 (see for example the points with ǫ ≥ 0.40 and for α > 0.905) and the wave

pattern begins to exhibit a time-dependent behavior. The oscillations of the wave

in this upper region are characterisitcally different from the oscillations observed

between state I and state II. The wave motion does not appear to be strictly peri-

odic, but it does have a rather well defined “cycle” with the “shedding” of solitary

depressions from the tips of a “V”-shaped pattern. Figure 4.10 shows images of the

water surface as the wave passes through one of these cycles. In this image sequence,

the camera was mounted to the carriage and moved with the pipe. Initially the wave

has a “V” shape as shown in figure 4.10(a). The pattern then stretches out as two

disturbances are shed from the tips of the “V” (b–c) producing a more localized,

linear response (d). The nonlinear response quickly grows again and the “V” shaped

pattern is observed once more (e–f). The temporal spacing between each image is

0.36 seconds. These images have been found to match quite well with the numerical

calculations of Akylas et al. based on the simple model equation discussed in section

4.2, [101].

This same shedding cycle is shown in figure 4.11 which presents a sequence

of shadowgraph images of the pattern taken from below the water surface. For
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Figure 4.10: Sequence of images showing the “shedding” oscillation of the wave
pattern in state III from above the water surface for ǫ = 0.43 and α = 0.981. The
images are separated by 0.36 s in time. (a) The pattern begins as a “V” shape. (b–c)
The pattern stretches out as two small disturbances are shed backwards from the
tips of the “V”. (d) The response momentarily resembles a localized, linear response.
(e–f) The nonlinear response quickly grows and the “V”-shaped pattern is observed
once more.

these images, the camera was also mounted to the carriage and moved with the

pipe. The parameters are ǫ = 0.51 and α = 0.958; note that these are different

than the parameters for the images in figure 4.10. The temporal spacing between

each image in figure 4.11 is 0.2 seconds. The pattern begins with a small trailing

wave pattern 4.11(a), and the dip under the pressure forcing grows (b). As the
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Figure 4.11: Sequential shadowgraph images taken from below the water surface
showing the oscillation of the wave pattern for ǫ = 0.51 and α = 0.958. The spacing
between each image is 0.2 seconds. (a) The wave begins with a trailing depression.
(b) The amplitude of the peak under the forcing grows. (c) As the peak grows it
moves backwards (moving slower than the forcing) (d) As the main peak moves back
further, the trailing wave grows in amplitude, and is eventually “shed” in (e). (f) A
new trailing peak is formed and the pattern begins to retake its original shape (g)
and (h).

amplitude increases, the phase speed decreases and the peak begins to move behind

the pressure forcing (c) and the amplitude of the following wave increases as well

(d). As this “peak” continues to move back, the trailing wave is “shed” (e), and is
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eventually replaced by the backwards propogating peak (f). The wave then returns

to a shape similar to its original configuration (g–h). As the images in figures 4.10–

4.11 show, as the speed approaches cmin a highly time-dependent, highly-3D pattern

develops, although this pattern does not appear to have a very regular period. For

speeds even closer to cmin the various shapes of the wave do not necessarily resemble

those in figure 4.11 as the wave pattern becomes highly extended behind the forcing

and the ability of the shadowgraph technique to understand the wave shape (i.e.

a 2D projection of a 3D pattern) becomes rather limited. Preliminary results of

the work by Akylas and colleagues (personal communication) have shown that the

time dependent behavior at high towing speeds may be the result of secondary and

tertiary “resonances”, with multiple solutions at a given value of α.

4.4.3 Three-dimensional shape

In addition to the changes in the streamwise shape of the pattern, the cross-

stream shape is also affected by the towing speed. Variation in the cross-stream

shape was measured using the LIF technique. By measuring a series of 2D profiles

in the x−z plane, and with the pipe at various y locations, it is possible to combine

these profiles together to form a surface z(x, y). It is important to note that while

this method accurately measured the majority of the wave pattern, it was rather

poor at resolving the details of the depression directly beneath the pipe. This is

because the highly curved surface under the pipe caused large refraction patterns

and line-of-sight blockage in the image that made accurate measurement somewhat

114



unreliable. Furthermore, the small size of the pipe, the finite width of the laser sheet

and the finite spacing between the y locations all compounded to make the actual

surface under the pipe almost undetectable with the LIF method. For example, the

width of the light sheet (≈ 1 mm) and the spacing between consecutive y locations

(2.5 mm) are nearly the same as the diameter of the pipe, so any features that have

a width on the order of the pipe diameter will only appear in a single z(x) profile.

So, while two distinct peaks can be seen in shadowgraph images shown in figure

4.4(f), one beneath the pipe and one trailing it, only the latter, which is much wider

in the cross-stream direction, is resolved using the LIF technique.

Figure 4.12 shows a typical set of results obtained using the LIF method. The

figure shows a surface plot, z(x, y), with underlying contours, of the wave pattern at

ǫ = 0.43 and α = 0.95. In the figure the pipe motion is in the negative x direction.

Lines in the x− z plane are obtained by tracking the location of the free surface at

one horizontal location in a single movie, and each line was obtained from a different

movie with the pipe placed at a different y position. The figure is exaggerated by a

factor of 10 in the vertical (z) direction. One conclusion that can be made from this

surface plot is that even though each z(x) slice was obtained from a different run,

the data appear to line up in the y (cross-stream) direction very well, indicating

that the pattern is both steady and repeatable. The surface shows a very clear

3D pattern that is highly localized in all directions, elongated in the cross-stream

relative to the streamwise, and very clearly resembles the gravity-capillary lump

solutions computed by previous authors; see for example figure 4.1. The asymmetry

between the streamwise and cross-stream directions is shown more clearly in figure
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Figure 4.12: A typical surface plot obtained using the LIF method with ǫ = 0.43
and α = 0.95. The data are obtained by tracking the height of a single point in
a movie as the wave passes by. Each line in the x − z plane is obtained from a
different run with the pipe at a different y location. The x and y axes are scaled the
same, but the vertical scale is exaggerated by a factor of 10. The smooth variation
of the pattern in the y direction is indicative of the repeatability and steadiness of
the wave pattern.

4.13 which contains plots of the streamwise and cross-stream profiles at the center

of the wave pattern. The streamwise profile also shows a slight asymmetry, with

the elevation of the leading edge (to the left) smaller than the trailing edge. This

is somewhat in contrast with the results of [121] who found the leading edge to be

larger in their numerical calculations of a pressure source moving near cmin. Closer

analysis of the streamwise profile in figure 4.13 also shows that the trough is not

symmetric either; the downstream edge appears to have a slight change in curvature

near x ≈ −3 mm. As the shadowgraph data showed, this is most likely the location

of the leading depression that is located beneath the pipe, but is unable to be

resolved accurately with the LIF method.

Figure 4.14 shows the dependence of the 3D behavior of the wave pattern on

the translation speed for a constant value of the forcing parameter ǫ. The figure
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Figure 4.13: Streamwise (solid) and cross-stream (dashed) profiles at the center of
the surface pattern shown in figure 4.12.

shows a top view (x − y plane) of the wave pattern with ǫ = 0.43 but with three

different values of the speed parameter α. All three plots are colored on the same

vertical scale so direct comparisons can be made. The pattern appears to change

only slightly between α = 0.86 and α = 0.90 (a–b), with a marginal increase in depth

and cross-stream extent; these are state I responses. However, between α = 0.90

and α = 0.95 (b–c), we see a marked increase both in the depth and the cross-

stream size of the wave pattern, all while remaining highly localized; this is a state

II response. The clear 3D character of the wave pattern in state II, coupled with

the distinct nonlinear response of the wave amplitude above αc leads us to believe

that the wave pattern trailing the pressure forcing in state II is a gravity-capillary

lump that is being excited by the motion of the pressure forcing.
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Figure 4.14: Top view (x-y plane) of the reconstructed wave pattern for ǫ = 0.43
and at three different values of α. (a) α = 0.86, (b) α = 0.90, (c) α = 0.95.

4.5 Summary and conclusions

The results presented here have shown that a pressure source moving over a

free liquid surface at speeds below the linear minimum phase speed creates a wave

pattern that is locally confined in 3D. These solitary waves, commonly referred to as

lumps, are elongated in the cross-stream direction relative to the streamwise direc-

tion, and have a phase speed that is related to the wave depth. For a given forcing,

the maximum wave depth hmin increases slightly with increasing speed, until at

a certain critical speed, where hmin “jumps” and the wave pattern looks qualita-

tively different. After this jump, hmin appears insensitive to the level of forcing

and shows a one-to-one relationship with the phase speed. The point of maximum

depth, while initially located directly beneath the forcing, begins to trail the forcing
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beyond this jump condition. In the region near, but below the jump condition,

oscillations appear in the wave pattern. Both the period and the amplitude of

these oscillations increase as the wave speed is increased, and the range of speeds

over which these oscillations occur depends on the level of applied forcing. Time-

dependent behavior is also observed at high towing speeds, given a large enough

forcing. This time-dependent behavior may be related to the existence of secondary

and tertiary “resonances” observed in some numerical solutions. The results of this

work comprise the first experimental investigations of the three-dimensional nature

and time-dependent behavior of gravity-capillary solitary waves on deep water, and

help to elucidate the physics of solitary waves in nonlinear dispersive media.
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Chapter 5

Summary of contributions and future work

This thesis presented some experimental investigations of capillary effects on

free-surface waves. In particular, our goal was to understand some of the compli-

cated surface phenomena that result from nonlinear effects such as wave breaking

and the formation of gravity-capillary solitary waves. While the current work was

directed in these specific areas, the results have some broader implications in fluid

mechanics as well as in other areas such as physical oceanography and nonlinear

wave theory. As waves steepen, driven either by direct wind forcing or nonlinear

interactions, capillary effects can become important near the wave crest just prior

to breaking. Although it was previously held that the crest shape at breaking was

independent of the breaker wavelength, the current results are to the contrary. Sev-

eral measurements of the crest shape showed significant change in our experiments,

a result most likely attributed to the fact that the current work covered a larger

range of wavelengths than previously reported. This change in crest shape is impor-

tant because it implies a coupling between the small scales, which are dominated by

surface tension, and the larger scales, which are dominated by gravity, so attempts

to understand the dynamics at small scales independently may be misguided. It was

also found that plotting the various crest measurements versus a certain measure

of the wave slope revealed a monotonic behavior that is independent of the method
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used to generate the wave. This indicates that the wave dynamics near breaking

are unaffected by the wind. This result is particularly useful because it leaves open

the possibility for studying the small surface features produced by breaking, such as

ripples, drops and bubbles, without the need to recreate wind conditions experimen-

tally or numerically. Interestingly, although the dimensional shape changes with the

dynamics of the gravity wave, the non-dimensional crest shape remains remarkably

self-similar over a large range of wavelengths and breaker types. Finally, the slope of

the wave at breaking, and hence the shape of the crest, was found to be a function

of the wave growth rate and phase speed, a result which contributes to our under-

standing of a universal breaking criterion. Although this result was determined for

individual waves, it seems plausible that it is related to the breaking criterion put

forth by [64] who used the growth rate of the energy at the peak of the modulating

wave packet as a means of determining breaking. How these two results are related

is an area for future investigation.

Once breaking begins, the flow quickly transitions from an essentially 2D irro-

tational flow to a 3D turbulent flow that produces an assortment of surface ripples

in the breaking zone. The experiments presented here represent some of the first

investigations into the three-dimensional nature of the surface ripples generated by

unsteady spilling breakers. The results show very clearly the presence of periodic

streamwise ripples generated at the leading edge of the breaker, an observation

in agreement with previous experiments. An entirely new result is that the pe-

riod of these ripples appears to be related to the generation of three-dimensional

surface motions, as evidenced by the large variation in the cross-stream ripple ampli-
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tude. Moreover, this flurry of cross-stream activity coincides with the troughs of the

streamwise ripples, as opposed to their crests as was previously believed. Both the

streamwise and cross-stream ripples do not Froude scale, further substantiating the

idea that these motions are controlled by turbulent length scales and surface tension.

The typical cross-stream ripple amplitude was found to have a cubic dependence on

the breaker wavelength, a result that may serve well in obtaining estimates of small-

scale fluctuations from observations of breaker phase speeds or wavelengths in the

field. Measurements of 1D cross-stream surface gradients showed the existence of

thin and persistent “scar”-like regions in the breaking zone. These features appear

to be produced in the troughs of the streamwise ripples, and may be the result of

low or high-speed “streaks” that have been observed near the crest of steep waves.

We use these results to speculate a possible model for the distribution of vorticity in

the early stages of breaking. Measurements or numerical calculations of the time-

dependent flow velocity in this region would certainly sharpen our understanding of

the sub-surface turbulence and its role in the production of 3D ripples.

Finally, the nonlinear wave pattern generated by a moving pressure source

was also investigated. Water waves by nature are dispersive and feature a min-

imum phase speed at finite wavenumber. Local extrema of the phase speed are

known bifurcation points between linear wave trains and solitary-wave type solu-

tions. Morever, if this extrema happens to be a minimum, 3D solitary wave solutions

may be expected. In this thesis it was shown that a moving pressure source can

produce a stationary 3D wave pattern that travels at speeds below the minimum

phase speed. An entirely novel result is that the wave pattern undergoes a series of
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transitions that result in a dramatic change of the wave state. At speeds far below

the linear minimum no waves are produced, and the pattern resembles the stationary

case. However, at a certain speed there is an abrupt transition to a wave-like state

with an asymmetric pattern that forms behind the pressure forcing. This wave is

elongated in the cross-stream direction and is qualitatively in agreement with recent

numerical calculations. It was also shown that in this state the maximum depth of

the wave has a one-to-one relationship with the phase speed, a common feature of

solitary wave behavior. The boundary between these first two states appears to

be unstable, with the appearance of periodic oscillations in the wave pattern. At

even higher speeds, but still below the minimum, there is a second transition to a

time-dependent state that features the shedding of solitary depressions from the tips

of a “V”-shaped pattern. The abrupt transitions between these various states are

somewhat analogous to resonances in forced non-linear oscillators, although the pos-

sibility that several such “resonances” might exist is intriguing. Although this work

pertains to waves on water surfaces, the results generalize to other areas of physics

with dispersive wave systems and phase speed minima, such as the generation of

rotons in superfluid helium or waves in plasmas.
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Appendix A

Wave growth rate

To illustrate the choice of the average growth rate, P , consider the wave crest

height versus time data for focused breakers plotted in figure A.1. In this plot, the

crest height, z(t), is nondimensionalized by its maximum value for each wave, and

the time t is nondimensionalized by the average wave frequency (tf̄) with t = 0 the

time of incipient breaking. Data are shown for the seven dispersively focused waves.

As can be seen from the plot, the instantaneous rate of change of dimensionless

crest height is nearly zero at incipient breaking for all the waves. However, the wide

range of changes in height over the time period from say tf̄ = −0.2 to tf̄ = 0 for

the various waves indicates a wide range in average rate of growth. The data in

figure A.1 are consistent with a wave crest traveling through a wave packet envelope

and breaking when the wave reaches the position of the maximum height of the

envelope. The crest height data for the side-band waves and some of the wind

waves show similarly shaped curves.

Values of P could not be computed for five of the wind waves. The problem

in computing P for these waves stems from the fact that wind waves break at

random times and locations and that they interact with other wave components

during breaking. Because they occur randomly, it is difficult to get a full movie of

the breaking event; see description of procedure for obtaining movies of these waves
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Figure A.1: Non-dimensional height (z(t)/zt=0) versus non-dimensional time (tf̄) for
the dispersively focused breakers. Here z(t) is the wave height at any time t with
t = 0 the time of incipient breaking, zt=0 is the wave height at incipient breaking
and f̄ is the average frequency of the wave packet.

at the end of section 2.3.3 . Thus, in some of the waves there was no photographic

record of the breaking event for the required 0.23 wave periods prior to incipient

breaking. The interaction of the breaker with other wave components is seen in the

movies as the pre-breaking crest moves over small slow-moving wave components.

Sometimes the breaking event is triggered by this interaction. While the crest

shape data at the incipient condition was included in the geometry parameter plots

for these breaking events, a growth rate could not be obtained since these waves

can break even when the crest height has been constant or decreasing up to the
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point where the long wave interacts with the short wave. Our relationship between

cp/cmin, P/cp and m is not valid for these waves since the breaking mechanism does

not involve a continuous increase in amplitude leading up to incipient breaking.

It is interesting that, even for these breaking events, the geometrical parameters

describing their crest shape fall on the same curve when plotted versus m as the

data from the other waves.
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[122] EI Părău, JM Vanden-Broeck, and MJ Cooker. Three-dimensional gravity-
capillary solitary waves in water of finite depth and related problems. Physics

of Fluids, 17(12), DEC 2005b.

[123] B Akers and PA Milewski. A model equation for wavepacket solitary waves
arising from capillary-gravity flows. Studies in Applied Mathematics, 122:249–
274, 2009.

[124] X Zhang. Capillary-gravity and capillary waves generated in a wind wave tank:
observations and theories. Journal of Fluid Mechanics, 289:51–82, 1995.

[125] M Longuet-Higgins and X Zhang. Experiments on capillary-gravity waves of
solitary type on deep water. Physics of Fluids, 9(7):1963–1968, JUL 1997.

[126] GZ Zhu, ZH Li, and DY Fu. Experiments on ring wave packet generated by
water drop. Chinese Science Bulletin, 53(11):1634–1638, JUN 2008.

135


