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Chapter 1: Introduction 

This dissertation contributes to the literature on the market design of auctions. I 

use computational and experimental techniques to make two types of contributions to 

the literature. First, I provide software that implements a state-of-the-art algorithm for 

solving multi-unit auctions with asymmetric bidders. This methodological 

contribution can be used by other economists to solve a variety of auction problems 

not considered in this dissertation. Second, I undertake the study of one auction 

environment in particular, utilizing my software to generate hypotheses when bidders 

participate in a particular sealed-bid, asymmetric multi-unit auction. These 

hypotheses are then tested in an experimental setting.  

Broadly speaking, economists study auctions for three reasons: (1) because a 

substantial amount of commerce is organized by auctions; (2) because many forms of 

exchange can be modeled as auctions, especially when strategic behavior is 

important; and (3) to determine how auctions can be used to achieve a suite of design 

goals. The first two reasons to study auctions are purely positive, while the third 

develops techniques that can be used for normative purposes. 

The motivation to study auctions from a positive perspective is obvious: billions 

of dollars of commerce are organized by auctions each year. Commodities such as 

eggs and tobacco (Sosnick (1963)), as well as differentiated goods such as wine and 

art (Ashenfelter (1989)), have been traded at auction for many hundreds of years. 

More recently, internet auctions have become important formats for the exchange of 

basic consumer goods (eBay, Yahoo!, etc.; Lucking-Reiley (2000)), and for business 

procurement and supply chain management (Elmaghraby (2000)). Basic market 
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institutions such as the trading floor of a stock or commodity exchange can be 

usefully modeled as “double-auctions” (Friedman and Rust (1993)). Enduring 

research agendas have sought to determine why some trades are usually organized as 

auctions (Bulow and Klemperer (2009) and Wang (1993)), how well auctions 

aggregate information distributed over many agents (Wilson (1977)), in what 

circumstances the famed revenue equivalence theorem1 fails to hold (Maskin and 

Riley (2000)), or simply how results derived in the study of auctions relates to 

traditional price theory (Bulow and Roberts (1989)). 

The study of auctions from a mechanism design perspective considers how 

auctions can be used to obtain desirable outcomes such as optimal revenue or 

economic efficiency (Myerson (1981)), accurate price discovery (Hong and Shum 

(2004)), minimal winner’s curse (Levin, Kagel and Richard (1996)), etc. Indeed, 

auctions are not only manipulated to improve outcomes in existing markets, but are 

used in the creation of markets. Auctions of emissions permits, for example, allow 

economists to harness the power of markets to increase total social welfare by 

allocating property rights in an efficient way. The issues involved in the manufacture 

and manipulation of auctions are issues of market design, the field of economics 

concerning “The Economist as Engineer” (Roth (2002)).  

Some of the more prominent applications of actively-designed auctions include 

the use of auctions to sell government debt (Back and Zender (1993)), to distribute 

property rights for natural resources (Cramton (2009)) or spectrum rights (McMillan 

(1994)), to encourage environmental conservation (Latacz-Lohmann and Van der 

                                                 
1 The revenue equivalence theorem posits that in the benchmark model of auctions, the English, Dutch, 
first-price sealed-bid, and the second-price sealed-bid auctions all yield the same revenue to the seller. 
See McAfee and McMillan (1987). 
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Hamsvoort (1997)), and to price externalities (Joskow, Schmalensee and Bailey 

(1996)).  

In each of the applications above, the designer of the auction is responsible for 

conceptualizing every facet of the market. As Al Roth puts it, “Market design 

involves a responsibility for detail, a need to deal with all of a market’s 

complications, not just its principal features. Designers therefore cannot work only 

with the simple conceptual models used for theoretical insights into the general 

working of markets. Instead, market design calls for an engineering approach.”2 The 

design of an auction market in practice goes beyond simply choosing from a menu of 

available auctions. Instead, the design process includes defining the property right or 

good to be auctioned, specifying the rules of the auction and the terms of payment, 

and in many cases includes rules governing behavior after the auction. 

A great deal of auction theory exists to guide the choices of market designers. 

However, in many cases theory provides only a rough guide. Practical details of the 

auction environment often violate one or more assumptions of the theoretical 

literature. Furthermore, even in those cases when the assumptions of a mathematical 

model are satisfied, equilibrium theory may offer only qualitative predictions. There 

are relatively few circumstances in which equilibrium theory can provide useful 

quantitative predictions of measures of interest, such as expected revenue and surplus. 

That is, theory often fails to provide a means to evaluate the economic significance of 

the difference between competing auction designs. 

Even very small complications to the benchmark models of auction behavior 

make it impossible to generate quantitative revenue or efficiency comparisons using 
                                                 
2 Roth (2002). 
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existing theory. For example, when bidders in an auction are in some way dissimilar 

(or asymmetric), it is in general not possible to provide a closed-form expression of 

equilibrium bidding behavior (there are exceptions, but they are special cases). 

Without an explicit expression of each bidders’ strategy, the market designer can 

often still make comparative static predictions, but certainly cannot quantify expected 

revenue, efficiency, or the distribution of surplus amongst bidders. 

Because of the frequent need to incorporate details that render analytical 

solutions difficult or impossible to derive, a market designer typically makes use of 

complementary tools: computational methods can be used to generate predicted 

bidding functions, and experimental methods can be used to test the predictions.  

The first part of this dissertation, comprising chapters 2 and 3, develops a 

computational technique that can be used to effectively approximate equilibrium 

bidding strategies in auction games. Bidding strategies are functions that specify an 

action (a bid) for every situation a bidder might face. Armantier, Florens and Richard 

(2008) introduced the concept of Constrained Strategic Equilibrium (CSE), a 

technique that approximates bidding strategies by imposing a parametric form. 

Chapter 2 reviews the literature on related computational techniques, and 

demonstrates how the CSE approach differs. Chapter 3 contains details of my 

implementation of the CSE algorithm. CSE_SOLVER, a suite of modular Matlab 

programs, implements the CSE algorithm and can be used to solve an arbitrary 

auction problem.  

Chapter 3 contains some extensions to the algorithm originally proposed by 

Armantier, Florens and Richard (1998). First, I demonstrate how bidding strategies 
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can be approximated by monotonically increasing polynomials. I show how positive 

polynomials can be used to approximate monotonic functions.3 Strategies that 

increase monotonically are often assumed in theory. The use of a functional form that 

is totally flexible, and yet is monotonic by construction, provides a computational 

method to match the theory. Using a function that is monotonic by construction 

enables the researcher to solve CSE problems with numerical techniques designed for 

unconstrained optimization. The benefit is potentially faster, more reliable solution of 

the set of fundamental equations that result from the CSE approach.  

I also introduce to the economics literature a technique for distribution estimation 

that is particularly well-suited to estimating the distributions generated during Monte 

Carlo simulations. Monte Carlo simulations are used in the CSE algorithm to 

approximate first order conditions of the constrained equilibrium. The solution of the 

system of equations generated by the CSE problem relies crucially on the ability to 

estimate the distribution of winning bids from these Monte Carlo simulations. The 

density estimation technique discussed in chapter 3, known as Target Distribution 

Estimation (TDE), allows a researcher to incorporate knowledge about the form of 

the distribution of the bids, while still maintaining the flexibility of a nonparametric 

estimator. The CSE procedure typically uses nonparametric density and distribution 

estimation techniques, as the distribution of the bids is not known a priori. However, 

the distribution of the type draws (values in a buy-auction and costs in sell-auction) is 

of course known. The distribution of equilibrium bids is a transformation of the 

                                                 
3 Positive polynomials are polynomials that always take on positive values, despite the fact that no 
restriction is made on the coefficients. Positive polynomials are constructed using a convolution 
method explained in chapter 3. 
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known distribution of types. The TDE makes use of this information and can improve 

algorithm performance when standard nonparametric techniques fail. 

The second part of the dissertation, comprising chapters 4 and 5, use the 

computational techniques developed in chapters 2 and 3 to examine asymmetric 

multi-unit auctions. Asymmetric auctions are notoriously difficult to solve – standard 

numerical techniques used to derive equilibrium bidding functions rely on the 

specification of differential equations. These differential equations are derived from 

the first order conditions of each bidder’s objective function. When multiple units are 

auctioned simultaneously, the system of differential equations quickly becomes 

unmanageable. The CSE_SOLVER algorithm is robust enough to solve both 

benchmark auctions currently found in the literature, and a series of multi-unit 

auctions specified in chapter 4 of this dissertation. An experimental test of the 

predictions is presented in chapter 5 of this dissertation. Laboratory experiments are 

used to evaluate the predictions of the computational models. While individual 

behavior deviates from equilibrium predictions, aggregate results and comparative 

static predictions are consonant with the computational results. 

Terminology and Notation 

Terminology 

Bidder Types 

In the auction theory literature, it is common to refer to a bidder’s preferences, 

the draws from nature that characterize a bidder, as that bidder’s type. The term type 

is a generic placeholder for more descriptive, but more context-specific terms. For 
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instance, a bidder’s value for an item might be the draw from nature that uniquely 

characterizes the bidder in a buy-auction, an auction in which there is a single seller 

and many buyers, while a bidder’s cost of producing an item might be the equivalent 

term in a sell-auction, an auction in which there is a single buyer and many sellers. 

Throughout the dissertation I will use the term type when I discuss a generic situation 

or result, but will also use more specific terminology such as value or cost when it is 

appropriate. 

Auction Types 

As above, I will refer to auctions in which many buyers compete to purchase 

item(s) from a single monopolistic seller as “buy-auctions” and to auctions in which 

many sellers compete to provide item(s) to a single monopsonistic buyer as “sell-

auctions.” 

Constrained Strategic Equilibrium (CSE) 

I will refer to Constrained Strategic Equilibrium, or CSE, as both an algorithm 

and an equilibrium concept distinct from Bayesian Nash Equilibrium (BNE). A BNE 

is defined by a set of strategies such that the strategy of each player is a best response 

to the strategies of all other players. A CSE is defined by a set of constrained 

strategies such that each player’s strategy is a best response to the strategies of all 

other players. When I refer to solving for a CSE numerically, I will refer to the CSE 

algorithm. 

Notation 

X ≡  Bidder type (draw from nature), a random variable. The ith bidder’s type is 

denoted iX . 



 

 8 
 

x ≡  The realization of a bidder type. The realization of the ith bidder’s type is denoted 

ix . In Monte Carlo experiments, several realizations are drawn for each bidder’s type. 

The draw of the ith bidder’s type in the mth Monte Carlo experiment is denoted imx . 

( )F ≡i  Cumulative distribution function of the draw from nature, x . 

b ≡  Bid. 

( )i is x ≡  Strategy of player i; a mapping from type-space to bid-space. ( )i ib s x= . 

a ≡  A coefficient of a parametrized bidding strategy. 

( )G ≡i  Cumulative distribution function of the critical (marginal) bid. 

( ) ( )g dG=i i . 

( )H ≡i  Cumulative distribution function of the target distribution (used in a 

procedure to estimate an unknown distribution). 

( ) ( )h dH=i i . 

( )p x ≡  A polynomial (I use this notation to represent a generic polynomial, as 

opposed to a positive or a monotonic polynomial). 

ija ≡  The jth coefficient of the bidding function of the ith representative bidder. 

i ≡a  The vector of coefficients parameterizing the ith representative bidder’s strategy. 

ijb ≡  Same as ija  (sometimes necessary to distinguish one type of coefficient from 

another). 

( )km x ≡  A thk -stage monotonic polynomial. 

( )km x′  The derivative of a thk -stage monotonic polynomial, which is itself a positive 

polynomial. A positive polynomial ( )km x′  is expressed in nested form as  

 ( ) ( ) ( )1k k km x m x q x−′ ′= , 

where  

( ) ( )2 2 21 2k k k kq x xa x a b⎡ ⎤≡ − + +⎣ ⎦ , and  

( )0m x′ ≡ λ  by definition. 

λ ≡  The multiplicative parameter of the positive polynomial ( )m x′ . 
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( )j
ld ≡  Coefficient on x  to the power l  in the thj  step of the positive polynomial. 

• Notation is used to express ( )lq x  in a more compact and convenient way. 

 ( ) ( ) ( ) 2
0 1 2

j j j
jq d d x d x⎡ ⎤= + +⎣ ⎦ , therefore, ( )( ) ( ) ( ) 2 2

0 1 21,  2 ,  j j j
j j jd d a d a b= = − = + . 

( )j
lD ≡  The total coefficient on x  to the power l  in the thj  step of the positive 

polynomial. The total coefficient is a function of all of the coefficients d  from the 
thj  and all previous steps, { } { }{ }(1) (1) (1) ( ) ( ) ( )

0 1 2 0 1 2, , ,..., , ,j j jd d d d d d d≡ . 



 

 10 
 

Chapter 2: A Simulation Approach to Approximating 

Equilibrium 

Introduction 

Two things are accomplished in this chapter: I review the literature on 

computational techniques used to approximate equilibrium bidding functions, and I 

set up the general problem to be solved using the CSE approach.  

The literature review is focused on a technique pioneered by Marshall, et al. 

(1994), hereafter MMRS. The MMRS-type approach is the dominant approach in the 

literature on numerical computation of auction equilibrium. Several authors have 

followed in the footsteps of MMRS, making meaningful improvements to the original 

algorithm. The basic idea behind the MMRS approach stays the same, however, and 

there are similarities between the MMRS approach and the constrained strategic 

equilibrium approach first introduced by Armantier, Florens and Richard (1998), 

which is implemented in this dissertation. 

Both algorithmic approaches use as building blocks the first order conditions of 

each bidder’s objective function, although the expression of these objective functions 

are different in each algorithm. The objective function of bidder i in a first-price, 

sealed-bid auction in its most general form can be written ( ) ( ), Pr |i iU x b win b× : the 

utility of winning with a bid of b, multiplied by the probability of winning with that 

same bid. Under the MMRS approach, the expression of ( )Pr |i win b  is explicit – the 

probability of winning with a particular bid is expressed only in terms of primitives of 
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the model, including the known distributions of each bidder’s type. The CSE 

approach is more direct. Rather than expressing the probability of winning in 

primitive terms, the probability is estimated directly from Monte Carlo experiments. 

The MMRS approach leads to a more explicit representation of the objective 

function, and thus the first order condition, which requires unique input “by-hand” in 

order to make the algorithm appropriate for a particular auction problem. The CSE 

approach sacrifices some accuracy for greater generality.  

Relaxing the Assumptions of the Benchmark Auction Model: 

Why Computational Approaches are Necessary 

Computational techniques are a valuable tool used in the analysis of many real-

world auction institutions. Computational techniques are most useful for analyzing 

auctions when: 

1. Equilibrium strategies are known not to exist, but benchmark bid 

functions would be useful to derive. 

2. It is unknown whether or not equilibrium strategies exist. 

3. Equilibrium strategies are known to exist, but it is difficult or impossible 

to derive analytical expressions for the bid functions. 

 

Auctions in which bidders draw their types from more than one probability 

distribution, commonly referred to as asymmetric auctions, are a good example of 

auctions that often require computational analysis for one of the three reasons above. 

The symmetry assumption captures the notion that all bidders in an auction share 

a common uncertainty and outlook. Each bidder knows their own type but not that of 
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their opponents. Bidder i views all opposing bidders as having drawn their types from 

a certain distribution, and believes each other bidder assumes the same, so that the 

only thing differentiating bidders is the realization of their draw. Formally, suppose 

that each of N bidders draw their preferences for an item independently from a 

continuous distribution F, that each bidder knows their own draw from F but not that 

of any other bidder, that each bidder is risk-neutral, and that these facts are common 

knowledge among all bidders.4 This model is known as the symmetric Independent 

Private Values (symmetric IPV) model of auctions. Assuming all bidders are 

motivated by profit maximization, it is straightforward to find a single strategy s that 

characterizes the equilibrium behavior of all bidders in a first-price, sealed-bid 

auction. 

Symmetry is the principal assumption of the benchmark IPV model of auctions 

relaxed in this dissertation. Relaxing the symmetry assumption means allowing each 

of the N bidders in the auction to draw their preferences from an idiosyncratic 

distribution ,  1,...,iF i N= .5  

We study asymmetric auction models because there is often reason to believe 

that bidders are ex ante heterogeneous, and so will pursue idiosyncratic strategies. 

The rules of an auction might favor certain classes of bidder, as in FCC spectrum 

auctions (Ayres and Cramton (1996), McMillan (1994)) and government procurement 

                                                 
4 F is commonly assumed to be twice continuously differentiable and to be defined on a compact 
support. 
5 Allowing for bidders to draw their preferences from idiosyncratic distributions is the most common 
way to relax the symmetry assumption. However, it is sometimes assumed that bidders draw their 
preferences from a single distribution, but that other differences between bidders generate an 
asymmetry. For instance, bidders might behave differently for some reason, or it might be assumed 
that bidders have idiosyncratic utility functions, or that bidders are treated differently in the auction 
because of an observable trait, etc. Such assumptions would also lead to a model that would properly 
be termed asymmetric (Hubbard and Paarsch (2009)). 
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(McAfee and McMillan (1989), Denes (1997), Hubbard and Paarsch (2009), 

Krasnokutskaya and Seim (2009), Marion (2007), Marion (2009)). In many more 

cases there is no favoritism inherent in the auction rules, but there are observable 

differences between the bidders that partially reveal a bidder's type. Cramton (1995) 

provides some salient examples in the context of the U.S. Narrowband PCS6 auction:  

Of the 25 bidders, a few bidders were known to have high values because of 

their large market share, prior product development, or other advantages. 

PageNet, for example, had by far the largest market share in paging going into 

the auction. It also had a well developed product, VoiceNow, that required a 

substantial slice of narrowband spectrum for nationwide distribution. McCaw 

was known to have deep pockets, as were some of the other large firms 

(AirTouch and BellSouth). These differences were known by all. The relevant 

auction model to analyze was clearly one with asymmetric bidders. (p. 50). 

 

The General (Asymmetric) IPV Model 

Before proceeding further, it will be helpful to introduce in detail the 

fundamental auction problem we are seeking to solve. The fundamental auction 

problem will be introduced in the context of a single-unit auction. This setting is the 

easiest to analyze, and all of the literature I subsequently review deals exclusively 

with this case. The problem will be generalized to the multi-unit case later in the 

dissertation.  

                                                 
6 Auction for nationwide narrowband personal communication services. 
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Suppose that each of the N bidders draw types, or values, from a (potentially) 

idiosyncratic distribution iF  on compact support. That is, we know that ~i ix F , and 

[ ] ,i i ix x x∈ . Bidders are risk neutral and so the utility of winning a buy-auction with 

bid b when a bidder’s type is ix  can be expressed as  

 ( ); i iu b x x b= − . 

Index the bidders by 1,2,..., N  and, without loss of generality, consider the 

problem of deciding what to bid from the perspective of bidder 1. Bidder 1 seeks to 

maximize the expected returns from bidding, i.e. the bidder seeks to maximize 

 ( ) ( )1 Pr |x b win b− . (1) 

The probability that bidder 1 will win with a bid of b is the probability that each 

of the other 1N −  bids will be below b. Assuming that the 1N −  other bidders follow 

strategies ( ) ( ) ( )2 2 3 3, ,..., N Ns x s x s x , the probability can be expressed as 

 ( ) ( ) ( ) ( )( )1 2 2 3 3Pr ... N Nx b b s X b s X b s X− > > >∩ ∩ ∩ . 

Assuming that strategies are monotonically increasing in x , i.e. that each bidder 

submits bids that are non-decreasing in their value for the item, we know that each of 

the strategies is  has an inverse. Denote the inverse function corresponding to is  by 

iφ . Then bidder 1’s problem can be rewritten in a more useful form as 

 ( ) ( ) ( ) ( )( )1 2 2 3 3Pr ... N Nx b b X b X b Xφ φ φ− > > >∩ ∩ ∩ . 
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Using the inverse strategies allows us to express bidder 1’s objective function in 

a more useful form because we know the distribution of each iX  by assumption. 

Isolating the iX  in the expression allows us to use the knowledge of the distributions 

iF  and the independence of each draw ix   to finally write bidder 1’s objective 

function as 

 ( ) ( )( ) ( )( ) ( )( )1 2 2 3 3 ... N Nx b F b F b F bφ φ φ− × × × × . 

To find the optimal b, differentiate with respect to b in order to obtain the first 

order condition 

 ( ) '
1

2 {2,..., }, 1

.
NN

i i j i
i j N j i i

x b f F Fφ
= = ≠ =

⎡ ⎤⎛ ⎞
− × × =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∏ ∏  (2) 

This first order condition gives us a differential equation (in terms of iφ ) that 

characterizes the equilibrium of the auction. The boundary conditions of the ordinary 

differential equation can be written 

 ( )  i i ib xφ =  (3) 

and 

 ( )i i ib xφ = , (4) 

where  ib  denotes the bid corresponding to the lowest possible type-draw  ix  and ib  

denotes the bid corresponding to the highest possible type-draw ix . 
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When the N differential equations (2)-(4) (one-per-bidder) are simultaneously 

satisfied by a set of optimal strategies ( ) ( )1 1{ ,..., }N Ns x s x , we have a candidate 

equilibrium.7 

In order to gain intuition, it is instructive to set up the model in a special case. 

Suppose there are two bidders, i.e. that N=2. In that case, the objective function of 

bidder 1 simplifies to 

 
( ) ( )( )
( ) ( )( )

1 2 2

1 2 2

Pr

,

x b b s X

x b F bφ

− > =

− ×
 (5) 

and the resulting first order condition can be written 

 ( ) ( )( ) ( ) ( )( )'
1 2 2 2 2 2x b f b b F bφ φ φ− = . (6) 

This yields an ordinary differential equation describing how the inverse bid 

function 2φ  varies with b . The exact same procedure, when performed from the 

perspective of bidder 2, yields 

 ( ) ( )( ) ( ) ( )( )'
2 1 1 1 1 1x b f b b F bφ φ φ− = . (7) 

Along with a set of boundary conditions, these two equations characterize the 

equilibrium. To further simplify the example, let [ ]1 2, 0,1X X ∈ . This, with one 

additional assumption discussed below, is the first model specified by MMRS.8  With 

the assumption of [0,1] common support, we can write the boundary conditions: 

 ( ) ( )1 20 0 0φ φ= = , (8) 

                                                 
7 Finding a solution to the system of differential equations does not constitute a proof of equilibrium. 
To prove that the N-tuple ( ) ( )1 1{ ,..., }N Ns x s x is an equilibrium, we must show that none of the 

bidders can profitably deviate from the strategy ( )i is x . 
8 MMRS specify a number of different permutations of their basic model of coalitions. The model here 
is analogous to their “coalition versus coalition” model. 
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and 

 ( ) ( )1 2 1b bφ φ= = . (9) 

To see why (8) holds in equilibrium, realize that a bidder with a value draw of 0 

will never submit a bid 0b > , as doing so can only result in a loss. To see why there 

is a single maximum bid b  for both bidders, suppose otherwise. Suppose ( )1 1 1bφ =  

and ( )2 2 1bφ =  and, without loss of generality, suppose 1 2b b> . In this case, whenever 

bidder 1 realized a value of 1, bidder 1 could reduce their bid to 2b  without reducing 

their probability of winning the auction. Therefore, 1 2b b b= =  and we get   (9).9 

The system of differential equations (6) and (7), with boundary conditions (8) 

and (9), completely characterize the equilibrium in the MMRS two-bidder case. 

In general, the asymmetric auction model (2)-(4) cannot be solved analytically. 

That is, a closed-form expression cannot be derived for the equilibrium strategies of 

each of the bidders. In the next section, numerical solution techniques developed by 

MMRS to solve (6)-(9) (a special case of (2)-(4))will be reviewed in detail. Although 

many special cases of the asymmetric model have been solved explicitly,10 the 

computational approach is necessary for the analysis of the vast majority of 

asymmetric auction problems.   

                                                 
9 Using the assumption of a common support allows me to derive (8) and (9) using the straightforward 
arguments above. Without the assumption of a common support [0,1], similar boundary conditions can 
still be established, but the necessary argument is more nuanced. The specific example here contains 
all the necessary intuition and comes at the cost of very little generality. 
10 Vickrey (1961) famously solved a very special case in which one bidder draws their value from a 
degenerate distribution. A model with two bidders and uniform distribution of types was solved first by 
Griesmer, Levitan and Shubik (1967). Their model was later generalized by Kaplan and Zamir (2007). 
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Computational Approaches: A Review of the Literature 

In order to generate predicted bidding functions when analytical solutions to (2)-

(4) are unknown, authors have resorted to a number of different computational 

strategies. I will not attempt to provide a complete catalog of available techniques, 

but will discuss the major methods that have been employed, and characterize the 

advantages and disadvantages of each.  

The seminal paper in the field of numerical analysis of auctions was by Marshall, 

et al. (1994). MMRS construct a model that can be re-cast as a special case of (6) - (9) 

when the distributions iF  are assumed to be uniform. MMRS use this model to study 

collusion. The MMRS model allows for a sort of “supper-bidder” to form as a result 

of cooperation among sub-groups of the N bidders. These super-bidders act 

differently than any atomistic bidder would, creating an asymmetry that makes it 

difficult to derive an analytical solution. The basic technique pioneered by MMRS 

attempts to numerically solve the differential equations (6) and (7). MMRS specify an 

approximating function for the (transformed) inverse strategies (in this case the 

approximating function is a series of piecewise polynomial expansions at regular 

intervals). Rather than choosing a starting value that satisfies (8) and using a standard 

shooting algorithm, the major innovation of MMRS is the development of a back-

stepping algorithm. To see why this unusual method of solving the differential 

equations (6) and (7) is necessary, rearrange (6) to isolate the inverse strategy 

function. 

 ( ) ( )( )
( ) ( )( )

2 2'
2

1 2 2

F b
b

x b f b
φ

φ
φ

=
−

. (10) 
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Substitute in the identity11 ( ) ( )
'
2 '

2 2

1b
s X

φ =  and invert both sides of (10) to get 

 ( ) ( ) ( )( )
( )( )

1 2 2'
2 2

2 2

x b f b
s X

F b
φ

φ
−

= . (11) 

As 2X  approaches its lower support from the right (so that ( )2 bφ  approaches 0), the 

denominator of the expression above tends to zero, and so the slope of the bid 

function 2s  tends to infinity. This makes the differential equation behave poorly near 

the lower support.12 Because of this pathology, the differential equation (11) cannot 

be solved using standard techniques. 

MMRS solve this problem by employing a back-solve method. They select a 

starting point for their algorithm by guessing b  in (9) and step backwards, tracing out 

the differential equation until a solution is found such that both (8) and (9) are 

simultaneously satisfied. 

The virtue of the MMRS algorithm is its accuracy. The drawback of this 

technique for solving auction problems is its lack of generality – the program needs to 

be modified substantially for use in more complex cases. This is because the 

technique uses a considerable amount of input, i.e. a significant amount of work is 

done “by hand” prior to running the algorithm. In order to express the differential 

equation in terms of the primitives of the model iF , the system must be explicitly 

                                                 
11 The derivative of an inverse function is the reciprocal of the derivative of the original function 

evaluated at the value of the inverse: ( )
( )( )

1
' 1

1df x
f f x

−
−

= . 

12 Technically speaking, the differential equation (11) is not Lipschitz. 
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rewritten for every special case considered. Additionally, MMRS use a 

transformation of the original differential equations that enhances numerical stability. 

Several contributions following in the tradition of MMRS use increasingly 

sophisticated methods to improve the convergence properties of the original 

algorithm. Li and Riley (2007) recently offered a substantial generalization of the 

MMRS algorithm that, among other improvements, uses a more intelligent procedure 

to select the intervals used in the approximation of iφ . Li and Riley characterize the 

system of differential equations more generally, allowing for more than two types of 

bidders and for the fundamental preference parameter to be distributed other than 

uniform. Riley and Li have made their algorithm, implemented in a software 

distribution called BIDCOMP2, available for download.13 

Gayle and Richard (2008) offer an alternative software package that, like 

BIDCOMP2, solves a general system of differential equations that characterize any 

single-unit asymmetric IPV model.14,15 The implementation of Gayle and Richard 

allows for arbitrary combinations of distributions of the preference parameter. For 

example, a hybrid distribution of types can be specified based on data the user 

possesses. This distribution can then be fed into the Gayle and Richard solver. The 

essential idea behind the Gayle and Richard algorithm is unchanged from MMRS and 

Li and Riley, however. Gayle and Richard seek to solve the same differential 

equations as MMRS and Li and Riley – the major improvement offered by Gayle and 

Richard (2008) is in the accuracy with which they approximate the inverse bid 

                                                 
13 The download page is located at http://www.econ.ucla.edu/riley/bidcomp/, although, as of this 
writing, several of the files necessary to run key examples are missing due to broken links. 
14 Gayle and Richard’s software is available at http://capcp.psu.edu/AsymmetricAuctions/index.html. 
The software is programmed in FORTRAN90.  
15 Gayle and Richard’s software solves an auction problem with a fixed reserve price. 
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functions. Gayle and Richard use local Taylor-series as the approximating function in 

their particular application.  

Although we have focused on MMRS-type approaches thus far, there are other 

notable approaches to numerically computing equilibrium. 

Athey (1997) takes the approach of discretizing the action space – she restricts 

bidders to submit one bid from a finite menu of possible bids. This simplification 

allows a much more straightforward approach to calculating equilibrium – Athey 

solves a best response (fixed-point) problem at a finite number of points. Athey 

proceeds by solving a series of individual optimization problems, each determining 

the point at which a bidder switches from bidding at one discrete point to the next-

highest discrete point. 

Bajari (2001) compares the performance of three algorithms, two of which are 

similar to the algorithms we have already reviewed, and one of which is similar in 

spirit to the algorithm used in this dissertation. Bajari’s first algorithm is again 

essentially that of MMRS – by finding a solution to the one stable boundary 

condition, the fundamental differential equations can be solved. Bajari reports that 

this algorithm, though fast and efficient for solving the auction problems posed by 

MMRS, can be slow to converge in his applied work. Bajari’s second algorithm 

begins with an initial guess of the bidding functions (usually the guess is the zero-

profit bid function where each bidder submits a bid equal to their type) and then 

computes a (potentially infinite) series of best responses. In some sense, this is similar 

to Athey’s algorithm, but the continuous action space means that cycling can easily 

occur and the algorithm can terminate without giving useful feedback. Bajari’s 



 

 22 
 

second algorithm can be quick to converge, especially if a good guess of the 

equilibrium bidding function can be provided, but again, infinite cycling is possible.16 

Finally, Bajari’s third algorithm is similar to the methods introduced by 

Armantier, Florens and Richard (1998), and so to the methods that I use in this 

dissertation. Bajari’s third algorithm uses global polynomials to approximate the 

inverse bid functions. Rather than guessing an endpoint value that satisfies a 

boundary condition and back-solving, Bajari treats the differential equation as an 

equality constraint (which can be transformed into a system of zeros) that should 

approximately hold when a high-order polynomial is used to estimate the inverse bid 

function with sufficient precision. Using a polynomial to approximate the equilibrium 

inverse bidding function reduces the problem to one of finding coefficients that 

minimize a system of transformed differential equations (the transformed equations 

should theoretically equal zero in equilibrium, so minimizing their value provides an 

effective algorithm). Bajari evaluates the fundamental differential equations at a grid 

of points covering the range of feasible bids, and uses a nonlinear least squares 

algorithm to find the polynomial coefficients that minimize the transformed 

equations. 

The Constrained Strategic Equilibrium technique is similar to Bajari’s third 

algorithm. The CSE algorithm was first introduced by Armantier, Florens and 

Richard (1998), and further developed in Armantier and Richard (2000) and 

Armantier, Florens and Richard (2008). 

                                                 
16 I have implemented this algorithm myself and have found that it often cycles when used to solve 
extremely simple multi-unit auctions, even if reasonable starting points are provided. 
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Constrained Strategic Equilibrium 

The idea underlying the Constrained Strategic Equilibrium technique is both 

extremely simple and totally general. Although I develop the technique here in the 

context of auctions, the technique applies to Bayesian games in general. 

Before developing the formal framework, it will be helpful to introduce the 

intuition behind CSE. One way to understand the idea of a CSE is to view it as an 

extension of Rothkopf’s (1969) original “markup” model. Rothkopf’s initial insight 

was to consider what bidders might do if they were constrained to submit bids that 

were linear functions of their draws. The markup strategy is simple and intuitive: a 

buyer will submit a bid that is some constant markup17 of his draw from nature, a x× , 

the parameter a  being a fraction in the range [0,1], and chosen intelligently to 

maximize expected gains. In the context of a particular common value model, 

Rothkopf showed that if the bidding functions ( );s x a  were constrained to be linear, 

i.e. of the form ( );s x a ax= , and a set of coefficients a  were found to define an 

equilibrium of the restricted game, then these same coefficients would be an 

equilibrium of the unrestricted game as well. Rothkopf’s conclusions are not relevant 

to the IPV model here, but his simple suggestion to consider linear strategies 

foreshadows the CSE approach. 

Note the similarity between Rothkopf’s idea and the discretization of the action 

space imposed by Athey (1997). Both assumptions simplify the search for an 

                                                 
17 Rothkopf introduced his model in the context of a procurement auction, i.e. an auction where bidders 
compete to sell an item to a single buyer. The term “markup” then had the intuitive appeal of referring 
to price as a markup of each bidder's cost of production. In the context of an auction where a single 
seller receives bids from many buyers, a more appropriate term might be “mark-down” instead. We 
will use Rothkopf's original language for consistency. 
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equilibrium by restricting the action space in some way. Athey discretizes the action 

space by positing that each bidder chooses from a menu of available bids; Rothkopf 

allows for bidders to choose instead among a family of linear strategies. While 

Athey’s method requires a point-by-point analysis of the auction problem, Rothkopf’s 

method uses a single coefficient to define the entire strategy profile. 

In general, the CSE approach is to use a set of coefficients to define the strategy 

profile. Rather than restrict the strategy space to be parameterized by a single 

coefficient per bidder (Rothkopf's linear case), Armantier, Florens and Richard 

(2003) proposed that an arbitrary number of coefficients per bidder could be used to 

parameterize the strategy profile. 

In order to develop the CSE solution procedure, we will set up the same problem 

reviewed above in (6) through (9) as a constrained strategy problem. We will then 

generalize the notation and procedure so that the CSE algorithm can handle any 

auction problem. 

Recall from above that there are two bidders, each of whom draws their type 

from an idiosyncratic distribution iF . To solve for an equilibrium strategy of bidder 1 

with unconstrained strategies, we must find some bid b that maximizes bidder 1’s 

objective function for every possible value of X . We did this above by finding 

 ( ) ( )1 1 1 1* arg max{ Pr | }b x b win b= − . 
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To solve for an equilibrium of the constrained strategy model, we substitute 

( )1;s x 1a ,18 a strategy constrained to take a particular functional form, for b in (1) to 

get 

 ( )( ) ( )( )1 1 1; Pr | ;x s x win s x− 1 1a a . (12) 

The ( )1;s x 1a  can in principal be any function that can be parameterized by a vector 

of coefficients 1a , for example an ordinary quadratic polynomial ( )1;s x =1a  

2
10 11 1 12 1a a x a x+ + . Rather than finding the argmax 1 *b  of (1), we search for the 

optimal coefficients 1 *a  of (12). That is, we seek to find19 

 ( )( ) ( )( )1 1 1 1* arg max{ ; Pr | ; }x s x win s x a= −1 1a a , 

for any possible realization 1x . 
Let 1G  be the distribution of the highest bid that is not submitted by bidder 1. 

Then we can immediately rewrite (12) as  

 ( )( ) ( )( )1 1 1 1; ;x s x G s x− 1 1a a . (13) 

Note the difference between how the probability of winning is represented in (5) 

and how it is represented in (13). Herein lies a key difference between the CSE 

algorithm implemented in CSE_SOLVER and MMRS-type algorithms. To obtain an 

expression for ( )Pr |win b in (5), we noted that bidder 1 wins when ( )2 2b s x> . In 

order to transform the expression ( )Pr |win b  into a function of the known 
                                                 
18 Recall that bold notation is used to represent vectors of coefficients (see the Notation section in 
chapter 1). 
19 Note that the imposition of constrained strategies need not be very restrictive at all. Since ( );s x a  

can take on any parameterized form, we can approximate the true strategy function ( )s x  to any 
degree desirable. In particular, the Weierstrass theorem tells us that we can approximate any 
continuous function to a desired degree of accuracy using a simple polynomial. See Armantier, Florens 
and Richard (2003) for a more detailed argument justifying the imposition of parametric form. 
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distributions iF , we used the assumed monotonicity of the strategy 2s  to isolate 2X . 

This allowed us to rewrite ( )( )2 2Pr b s X>  as ( )( )2 2Pr b Xφ > , and since we know 

the distribution of 2X , we were finally able write the probability of winning 

explicitly as ( )( )2 2F bφ . 

The CSE algorithm takes a more direct approach. Rather than expressing the 

probability of winning in terms of the distribution of types, we express the probability 

of winning in terms of the distribution of bids. Given the distribution and density of 

types and the relationship ( )b s x= , we can derive the density of bids ( )g b  using a 

straightforward transformation of variables 

 ( ) ( ) dxg b f x
db

= . 

If there exist strategies s mapping types to bids, and the types are random variables, 

then the bids themselves are also random variables. 

Rather than expressing the probability of winning in terms of the distribution of 

types, the CSE algorithm estimates the probability of winning directly in terms of the 

distribution of bids. Using this definition of 1G  in (13), we can proceed to solve for 

the equilibrium strategies by maximizing expected profits. 
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The choice variables of bidder 1 are the parameters 1a  of the strategy s . The 

first order condition with respect to the jth parameter 1 ja  is written 

 ( )( ) ( )( ) ( )( )( )1 1 1 1 1 1
1

; ; ; 0
j

s g s x x s x G s x
a
∂

× × − − =
∂ 1 1 1a a a , (14) 

where 
1 j

s
a
∂
∂

 denotes the partial derivative of the parameterized strategy function with 

respect to the jth parameter and 1 1dG g= . If there are k parameters specifying the 

strategy s , we have k first order conditions corresponding to bidder 1’s objective 

function 

 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

1 1 1 1 1 1
11

1 1 1 1 1 1
12

1 1 1 1 1 1
1

; ; ; 0

; ; ; 0

...

; ; ; 0,
k

s g s x x s x G s x
a
s g s x x s x G s x

a

s g s x x s x G s x
a

∂
− − =

∂
∂

− − =
∂

∂
− − =

∂

1 1 1

1 1 1

1 1 1

a a a

a a a

a a a

 (15) 

where the only difference between each of the first order conditions above is 

accounted for by the first term, the partial derivative of the strategy function with 

respect to the appropriate coefficient. 

By an exactly analogous procedure, we also get k first order conditions 

corresponding to the objective function of bidder 2 

 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

2 2 2 2 2 2
21

2 2 2 2 2 2
22

2 2 2 2 2 2
2

; ; ; 0

; ; ; 0

...

; ; ; 0.
k

s g s x x s x G s x
a
s g s x x s x G s x

a

s g s x x s x G s x
a

∂
− − =

∂
∂

− − =
∂

∂
− − =

∂

2 2 2

2 2 2

2 2 2

a a a

a a a

a a a

 (16) 
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To find the coefficients ( )*, *1 2a a  that completely characterize an equilibrium in 

constrained strategies, we approximately solve the system of equations (15) and (16). 

Note that equations (15) and (16) are expressed in terms of a single realization of the 

pair ( )1 2,X X . Of course, we seek to find coefficients ( )*, *1 2a a  that approximately 

solve (15) and (16) for arbitrary realizations of 1X  and 2X . To do this, we use 

Monte Carlo sampling and a penalty function representation of each first order 

condition. That is, we use Monte Carlo sampling to find coefficients ( )*, *1 2a a  that 

minimize a summarization of the first order conditions when 1X  and 2X  take on 

arbitrary values. 

M-good, N-bidder Case 

Generalizing from the two-bidder case is straightforward. The CSE problem with 

N bidders and M identical goods at auction is a system of N M k× ×  equations, where 

k is the degree of the parameterized strategy functions ( )1,s x 1a , ( )2 2,s x a , .., 

( ),N Ns x a . 

 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

1 1 1 1 1 1
11

1 1 1 1 1 1
1

2 2 2 2 2 2 2 2 2
21

; ; ;

0...
...

; ; ;
0
0; ; ;
...

... 0

; ; ;

k

N N N N N N N N N
Nk

s g s x x s x G s x
a

s g s x x s x G s x
a
s g s x x s x G s x

a

s g s x x s x G s x
a

∂⎛ ⎞− −⎜ ⎟∂⎜ ⎟
⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟∂

=⎜ ⎟ ⎜ ⎟
∂⎜ ⎟ ⎜ ⎟− −

⎜ ⎟ ⎜ ⎟∂
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠
⎜ ⎟∂

− −⎜ ⎟⎜ ⎟∂⎝ ⎠

1 1 1

1 1 1

a a a

a a a

a a a

a a a

 (17) 
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The only difference between the M-unit case and the single-unit case is in the 

estimation of the distribution and density of the marginal bid, iG  and ig . In the 

single-unit case of a buy-auction, ( )iG x  represents the probability that the highest 

bid of all bidders except i is less than x. In the M-unit case, ( )iG x  represents the 

probability that the Mth-highest bid of all bidders except i is less than x.  

Stages of the CSE Algorithm 

To sum up, the stages of the CSE algorithm are: 

1. (Strategy Choice): Specify a family of functions to represent each bidder’s 

strategy. 

2. (Initialization Stage):  Specify starting values 0
1 2{ , ,..., }Na a a  for the 

parameters of each bidder’s k-parameter strategy (the superscript “0” above 

denotes the initial stage). 

3. Evaluate the first order condition with parameters 0
1 2{ , ,..., }Na a a  for each 

auction. Note that there are mc auctions, where mc is the Monte Carlo size. 

4. Calculate a single value for each first order condition based on a penalty 

function Ω :20  

                                                 
20 In practice, the quadratic penalty function is typically used. 
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( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

1 1 1 1 1 1
1 11

11

1 1 1 1 1 1
1 11

21
2 2 2 2 2 2 2 2 2

1 21

; ; ;

...

... ; ; ;

; ; ;...

...

mc

m m m m
m
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m m m m
m kk

mc

m m m m
m

Nk

s g s x x s x G s x
a

foc
s g s x x s x G s x

afoc
foc s g s x x s x G s x

a
foc

=

=

=

⎛ ⎞∂
Ω − −⎜ ⎟∂⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛ ⎞∂⎜ ⎟ Ω − −⎜ ⎟∂⎜ ⎟ ⎝ ⎠≈⎜ ⎟

⎛ ⎞∂⎜ ⎟ Ω − −⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑

∑

1 1 1

1 1 1

a a a

a a a

a a a

( )( ) ( )( ) ( )( )( )
1

; ; ;
mc

N Nm N Nm Nm N N Nm N
m Nk

s g s x x s x G s x
a=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞∂⎜ ⎟Ω − −⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠
∑ a a a

 

5. (Optimization Stage): Use an optimization routine to solve the system of 

equations above that approximate the parameterized set of first order 

conditions. Solve in terms of the choice variables 1 2{ , ,..., }Na a a . 

6. Evaluate the candidate equilibrium characterized by 1 2{ , ,..., }*Na a a , the result 

of step 5. 

7. If the equilibrium is satisfactory,21 stop; else increase the degree of the 

approximating function: k = k + 1. 

8. Return to step 2.

                                                 
21 Methods of evaluating candidate solutions are discussed in more detail in chapter 4. 
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Chapter 3: Implementation of the CSE Algorithm 

Introduction 

In this chapter I discuss implementation of the CSE algorithm. I review the key 

components of a successful implementation, and discuss my specific choices of how 

to execute the algorithm. Finally, the procedure is benchmarked; it is used to solve 

auction problems (both symmetric and asymmetric) appearing in the literature. 

Recall that there are two defining characteristics of the CSE algorithm: 

1. The bid function itself is approximated by a parameterized continuous 

function. Other state-of-the-art algorithms use point-wise approximations 

rather than continuous parameterizations of the bid function, and/or 

approximate the inverse bid function rather than the bid function itself. 

2. The conditional probability of winning, as embodied in the distribution 

and density of the marginal bid, is estimated directly based on Monte Carlo 

experiments. MMRS-type algorithms represent the probability of winning as a 

transformation of variables based on the distribution of types. 

A successful implementation of the CSE algorithm requires that the conditional 

probability of winning be estimated accurately, that the parameterization of the 

bidders’ strategies be flexible yet parsimonious, and that a robust optimization routine 

can be used to find the solution to the necessary first order conditions (a system of 

zeros). 

The algorithm is implemented as a suite of Matlab programs called 

CSE_SOLVER, which can be used to find approximate solutions to the equilibrium 
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bidding functions in any pay-as-bid, sealed-bid auction. I discuss especially the 

constrained strategies that I implement in CSE_SOLVER, and how I estimate the 

probability of winning for each bidder. I make use of available optimization routines 

that can be integrated directly into the suite of programs. 

The algorithm is programmed in a modular style that allows any auction game to 

be submitted to the solver without modification of the core script. The user writes a 

script that carries out any desired number of instances of a given auction22 and returns 

a vector of critical bids.23 CSE_SOLVER uses this vector to estimate G, the 

probability of winning from the perspective of a given bidder, and g, the associated 

density. The first order conditions are formed based on the user’s choice of 

parameterization of the strategies and the estimates of G and g, and then one of 

several optimization routines can be used to find the set of coefficients that solves the 

system of zeros. 

The implementation of the CSE algorithm uses two strategies to estimate the 

probability of winning based on data generated from Monte Carlo experiments. Either 

kernel methods or orthogonal polynomials are used to estimate G and g in the initial 

stage and, if necessary, target distribution methods are used for increased accuracy in 

a refinement stage. Kernel and orthogonal polynomial methods are well known, so I 

will provide only a cursory review of how they are implemented. The target 

distribution method is much less well known. I provide a full explanation of the target 

distribution method below. 

                                                 
22 This script solves the winner determination problem. 
23 The script provided for this purpose is itself easy to manipulate. For most auctions, only a few 
parameters will need to be changed. If an auction is to be solved that does not conform to the script 
provided, only the self-contained winner determination problem script needs to be provided by the 
user. 
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Parameterized Strategies 

Both basic global polynomials and monotonic polynomials are implemented in 

CSE_SOLVER. The construction of monotonic polynomials is discussed at length 

below. These strategy functions can be used to approximate with arbitrary precision 

any continuous function. In theory, each of these functions is capable of 

approximating an arbitrary function. In practice, the four parameterizations offer 

advantages and disadvantages.  

Polynomial Strategies 

( ) ( ) 1 2
, , 1 ,2 ,1 ,0; ; ...K K

i K i i K i K i i is x a p x a a x a x a x a x a−
−= ≡ + + + + +  

There are several advantages to using a basic polynomial to approximate bidding 

functions. Simple global polynomials are extremely flexible. The Weierstrass 

approximation theorem tells us that any continuous function defined on a bounded 

interval can be uniformly approximated by a single polynomial. Polynomials are also 

extremely easy to construct and fast to evaluate using Horner’s method. As a purely 

practical matter, if the estimated bidding functions are to be exported to another 

software package, say for use in a structural econometric exercise, global polynomials 

are equally easy to represent in any computer language, including in a spreadsheet. 

However, in some cases numerical problems can arise with a single global 

representation of the bidding strategies. It is well known that polynomials tend to 

diverge near the endpoints of a closed interval when fit to data. This behavior, known 

as Runge’s phenomenon, can make polynomial strategies ill-behaved at times. In 
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addition, high-order polynomials can fit data too well, taking on spurious features of 

the simulated data (“overfitting”), and often becoming non-monotonic. 

Monotonic Polynomial Strategies 

( ) ( ) ( ) ( )' ' 2 2 2
1 1 2k k k k k km x m x m x xa x a b−

⎡ ⎤= = × − + +⎣ ⎦∫ ∫  

In auction theory, it is commonly assumed that bidding functions are monotonic. 

Equilibrium strategies are known to be monotonic in many situations where 

computational methods are needed to derive explicit bidding functions (Lebrun 

(1996); Lebrun (1999)). In each of the MMRS-style algorithms reviewed in chapter 1, 

the assumption of monotonicity is maintained in order to derive an inverse bidding 

function. As a purely theoretical matter, then, it is desirable to have the option to 

force the constrained strategy to be monotonic. Moreover, if an equilibrium bidding 

function either does not exist or cannot be found, the assumption of monotonicity is 

likely a desirable feature of any approximate solution.  

Of course, a regular polynomial construction could be used in conjunction with a 

constrained optimization technique. That is, we could search for the polynomial 

functions that most nearly satisfy the system of first order conditions, subject to the 

constraint that the derivative of the polynomial function be non-negative. However, 

using polynomials that are monotonic by construction allows for the same 

unconstrained optimization methods to be used without extra feasibility iterations. All 

control variables (coefficients of the parameterized strategies) will result in a solution 

to the constrained problem that is, at the very least, a feasible solution to the 

unconstrained problem, which can save computing time. Should it be impossible to 
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find a solution to the system of first order conditions with a given tolerance, using 

monotonic polynomials ensures that the closest solution we can find is theoretically 

feasible, and so provides a good model of behavior. 

In addition, the use of monotonic polynomials avoids some of the numerical 

issues associated with “regular” polynomials. Although high-order monotonic 

polynomials can still overfit simulated data, the problems of non-monotonicity are of 

course eliminated, which causes the polynomials to hold shape much better near the 

extremes of the support.  

Finally, “cold starts” to the algorithm are easier to implement with monotonic 

polynomials. When selecting a starting value for a set of strategy parameters, the user 

typically needs to provide parameters that are reasonably close to the optimum – a 

“hot start.” An algorithm that relies on a hot start can be slow to converge with poor 

starting values. When the user has little information on which to base the choice of 

the initial parameters, a cold start can be performed instead – several potential starting 

values can be chosen randomly. When the coefficients of a regular polynomial are 

randomly chosen, many of the resulting strategies are likely to be non-monotonic, 

infeasible strategies. This problem is solved without any loss of flexibility by using 

monotonic polynomials. 

The construction of the monotonic polynomials uses a conflation method. Rather 

than the set of coefficients multiplying each power of the ordinary polynomial, the 

choice variables of the monotonic polynomial strategy are based on a fully factored 

expression of the polynomial in terms of its roots. We express the constraints on the 
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fully factored version of the polynomial function, and then expand the expression to 

its most easily parameterized form.  

The construction of the monotonic polynomial strategies proceeds in two stages. 

First, we construct strictly positive polynomials, i.e. polynomials that never take on 

negative values. I denote these positive polynomials by ( )m′ i . In the second stage, a 

monotonically increasing polynomial is generated by integrating the positive 

polynomial. I denote the monotonic polynomial by ( )m i . The method derived below 

is due to Elphinstone (1983) and is implemented as part of the distribution of 

CSE_SOLVER. 

Constructing Positive Polynomials 

In this section I outline some defining characteristics of positive polynomials. 

These characteristics are used to generate a procedure for constructing positive 

polynomials. Our goal is to create a formula that can express any positive polynomial 

(and so is fully general), while never expressing a non-positive polynomial.  

Let 0 1, ,..., na a a  be a series of n coefficients. Notice that any and every 

polynomial in one variable can be expressed as ( ) 0

n j
jj

p x a x
=

= ∑ . We would like to 

derive a similarly flexible formula that can represent any positive polynomial, but that 

is incapable of expressing a non-positive polynomial.  

We are interested in creating a polynomial that is positive everywhere in a single 

variable (a bidder’s type). Since we are only interested in functions of one variable, it 

is helpful to think graphically. The most obvious characteristic of the graph of a 

positive polynomial in one variable is that it never crosses the x-axis. A polynomial 

that crosses the x-axis is somewhere not strictly positive. This is equivalent to the 
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condition that positive polynomials have no real solutions z  to the equation 

( ) 0p z = . Said another way, positive polynomials have no real roots. This is the first 

important characteristic that we will use in deriving a constructive representation of 

positive polynomials.  

We combine two basic results from the theory of algebra to derive the second 

important characteristic of positive polynomials. The two basic results are: (1) the 

fundamental theorem of algebra says that a polynomial of degree n has n roots24 and 

(2) if a polynomial has an odd number of roots, at least one root must be real.25 Since 

a positive polynomial has no real roots, we can conclude from (2) alone that a 

positive polynomial cannot have an odd number of roots. So, taken together, (1) and 

(2) imply that positive polynomials must be of even degree. That is, the highest power 

to which the argument x is raised must be an even number. To see why, the chain of 

logic proceeds as follows: (2) implies that any function without a real root must have 

an even number of roots and (1) implies that a polynomial with an even number of 

roots must itself be of even degree. As a result, we know that a positive polynomial 

can be constructed from paired terms. This way, the highest power to which x is 

raised will necessarily be divisible by two. Whereas a standard polynomial in one 

variable can be constructed by a simple summation formula, j
jj

a x∑ , a positive 

polynomial should be constructed from terms that appear in pairs,  i.e. 

( ) ( )1 2j jj
x xϕ ϕ∑  where the pair 1 2,j jϕ ϕ  are some simple functions that always 

appear together. We turn next to the exact form of these paired terms. 

                                                 
24 That is, n solutions 1 2, ,..., nz z z  to the equation ( ) 0jp z = . These roots can be real or complex.  
25 This is because complex roots only appear in conjugate pairs (see, for example, Weisstein). 
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We have thus far established two characteristics shared by all positive 

polynomials, the no-real-roots condition and the even-degree condition. To finally 

construct our first representation of a positive polynomial, realize that every 

polynomial26 can be represented in irreducible form by  

 ( )( ) ( )1 2 ... nx z x z x zλ − − − , (18) 

where λ  is a scalar constant, and again the letter z represents the roots of the 

polynomial. Said another way, every polynomial can be completely factored so that it 

can be expressed as a constant multiplied by a series of terms ( ) , 1,...,jx z j n− = , 

where each jz  is a root of the polynomial.  

We now collect our three facts. Since a polynomial is everywhere positive if and 

only if it has only complex roots, and these roots appear only in conjugate pairs, and 

every polynomial can be represented in irreducible form as in (18), then we can 

represent every strictly positive polynomial, ( )'m x , by a sequence of complex 

conjugate pairs multiplied together.  

 ( ) ( )( )
1

k

j j
j

m x x z x z
=

′ = λ − −∏ , (19) 

where λ  is a constant27, jz  is a complex root of ( )m x′ , and jz  is its conjugate. 

Complex numbers are made up of a real number α , plus an imaginary number i 

multiplied by another real number β . The conjugate is formed by changing the sign 

of the imaginary part. Plugging this representation into (19) we get  

                                                 
26 All polynomials can be represented this way, not just positive polynomials. See Binmore and Davies 
(2001), for example. 
27 The constant λ  is the coefficient multiplying the highest-order term of the polynomial. 
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 ( ) ( )( ) ( )( )
1

k

j j j j
j

m x x i x iβ β
=

′ = λ − α + − α −∏ . (20) 

Equation (20) can be expanded and simplified to yield  

 ( ) 2 2 2

1

2
k

j j j
j

m x x x β
=

′ ⎡ ⎤= λ − α +α +⎣ ⎦∏ . (21) 

 Note that the imaginary part of the expression (19) has vanished entirely, which 

enables us to use (21) as the basis for a numerical representation of any positive 

polynomial.  

Since λ , { }1,..., kα = α α , and { }1,..., kβ β β=  are simply arbitrary constants, we 

can make some useful substitutions and represent (21) in an equivalent, but more 

computationally attractive way. Let 2 2
j

j
j j

a
β

α
=
α +

 and 2 2
j

j
j j

b
β
β

=
α +

. Then  

 ( ) ( )2 2 2

1

1 2
k

j j j
j

m x xa x a b
=

⎡ ⎤′ = λ − + +⎣ ⎦∏  (22) 

is entirely equivalent to (21). This can be seen easily by substituting the 

definitions of ja  and jb  into (22).  

The equation (22) is superior to (21) because it has a structure that facilitates 

simple iterative calculations. One of the reasons polynomials are used so often to 

approximate unknown functions is because polynomials of degree n  are related in a 

straightforward way to polynomials of degree 1n + . For example, a polynomial 

( ) 2
2 0 1 2p x a a x a x= + +  is equal to ( ) 2 3

3 0 1 2 3p x a a x a x a x= + + +  when 3 0a = . 

Because of this, if we find that an unknown function is well-approximated by the 

quadratic polynomial ( )2p x , then we can begin our search for the best-fitting cubic 
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polynomial using the starting values { }0 1 2, , ,0a a a . The standard representation of a 

general polynomial, ( )0 0
; ,..., n j

n n jj
p x a a a x

=
= ∑  has the property that 

( ) ( )0 1 0; ,..., ; ,..., ,0n n n np x a a p x a a+= ; equation (22) also has this property. To 

calculate a positive polynomial of degree 2, we set 1k = . To calculate a positive 

polynomial of degree 4, we set 2k = ; the values 1a  and 1b  can be used as starting 

values. 

Constructing Monotonic Polynomials 

In this section I show how to group the estimated coefficients of the positive 

polynomial ( )m x′  in order to make integration by the power rule straightforward. 

This enables construction of the monotonic polynomial ( ) ( )m x m t dt′= ∫ . The task is 

conceptually simple, but is difficult to reduce to a reasonable number of steps (so that 

the number of computer operations does not grow too quickly as we increase k ). If 

the expansion of (22) resulted in an expression like  

 ( ) 1 2
0 1 2 ... k

k km x D D x D x D x′ = + + + + , 

such that the coefficient Dτ  multiplied x  to the power τ , then we could obtain 

( )km x  by a simple application of the power rule  

 ( ) ( )
2 12 3

21 2
0 ...

2 3 2 1

k
k

k k
D xD x D xm x m x D x

k

+

′= = + + + +
+∫ . 

The expansion of (22) is unfortunately quite a bit messier. As it stands, the terms 

multiplying each successive power of x  are a combination of the parameters 

{ }, ,a bλ .We need a way of rewriting (22) which makes grouping terms that multiply 
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the same power of x  computationally simple. To collect terms, I introduce some new 

notation.  

 Since (22) is calculated iteratively, we can write any given positive 

polynomial as a product of 1k +  terms  

 ( ) ( ) ( ) ( ) ( )0 1 2 ...k km x m x q x q x q x′ ′= , (23) 

where ( )0m x′ = λ  is the value of the positive polynomial when 0k = , and each 

term ( )jq x  represents the bracketed term in (22), i.e.  

 ( ) ( )2 2 21 2j j j jq x xa x a b⎡ ⎤= − + +⎣ ⎦ . (24) 

Let the term multiplying 0x  inside the brackets in (24) be denoted ( )
0

jd , the term 

multiplying 1x  be denoted ( )
1

jd , and the term multiplying 2x  be denoted ( )
2

jd . Then 

we can rewrite (22) as  

 ( ) ( ) ( ) ( ) 2
0 1 2

1

k
j j j

j

m x d d x d x
=

′ ⎡ ⎤= λ + +⎣ ⎦∏ , (25) 

where  

 

( )
0

( )
1

( ) 2 2
2

1

2

j

j
j

j
j j

d

d a

d a b

=

= −

= +

. (26) 

We can now see that for 2k =  we have 

 

( )' (1) (2) (1) (2) (1) (2) 2
2 0 0 0 1 0 2

(1) (2) (1) (2) 2 (1) (2) 3
1 0 1 1 1 2

(1) (2) 2 (1) (2) 3 (1) (2) 4
2 0 2 1 2 2

[

         

         ]

m x d d d d x d d x

d d x d d x d d x

d d x d d x d d x

= λ + + +

+ + + +

+ + +

. 
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Note that there are three separate sets of coefficients multiplying 2x : (1) (2)
0 2d d , 

(1) (2)
1 1d d , and (1) (2)

2 0d d . We want to collect terms so that we can express ( )2m x′ , a 

fourth degree polynomial, in terms of just five coefficients. Notice that the sole 

coefficient multiplying x  to the power τ  is the sum of all m nd d  such that m n τ+ = . 

We can collect terms so that we can express ( )2m x′  in the desired form  

 ( ) (2) (2) (2) 2 (3) 3 (4)
2 0 1 2 3 4m x D D x D x D x D′ ⎡ ⎤= λ + + + +⎣ ⎦ , 

where  

 

( )
( )
( )

(2) (1) (2)
0 0 0

(2) (1) (2) (1) (2)
1 0 1 1 0

(2) (1) (2) (1) (2) (1) (2)
2 0 2 1 1 2 0

(2) (1) (2) (1) (2)
3 1 2 2 1

(2) (1) (2)
4 2 2

D d d

D d d d d

D d d d d d d

D d d d d

D d d

=

= +

= + +

= +

=

. 

In this case, we accomplished the grouping of terms by simple inspection. We 

would like to express the coefficients such that the grouping of terms was 

"automatic".  

By expressing the coefficients in matrix form, we accomplish our goal of 

grouping terms during the construction of the positive polynomial. Let ( )kDτ  represent 

the sole coefficient multiplying x  to the power τ  of a positive polynomial of degree 

2k  (recall that the degree of the positive polynomial is twice k , since the formula 

(22) always yields polynomials of even degree). Examining the first few values of k  

reveals a simple pattern.  

• 1:k =  
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(1) (1)
0 0

(1) (1) (1)
1 1
(1) (1)
2 2

by definition.
D d

D D d
D d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

• 2 :k =  

(2) (2)
0 0

(1)(2) (2) (2)
01 1 0

(2) (1)(2) (2) (2) (2)
12 2 1 0
(1)(2) (2) (2)
23 2 1

(2) (2)
4 2

0 0
0

0
0 0

D d
DD d d

D DD d d d
DD d d

D d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(2) (2) (1)
0 0 0

(1)(2) (2) (2) (1) (2) (1)
01 0 1 0 0 1
(1)(2) (2) (2) (2) (1) (2) (1) (2) (1)

12 1 0 2 0 1 1 0 2
(1)(2) (2) (2) (1) (2) (1)
22 1 2 1 1 2

(2) (2) (1)
2 2 2

0 0
0

0
0 0

d d d
dd d d d d d
dd d d d d d d d d
dd d d d d d

d d d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜= = + +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ +⎜ ⎟ ⎜⎝ ⎠
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎟
⎟
⎟
⎟

. 

The general formula for computing the coefficients efficiently is  

 

( )
0
( ) ( )

( 1)1 0( )
00 ( ) ( )

2 1( )
11 ( )

2( )
2 ( )

0
( ) ( )
1 0( )

2 ( ) ( )
2 1

( )
2

0 ... 0 0
... ... ...
... ... ...

0 ... 0 ...
... 0 ... 0

...
... ... ...
... ... ...
0 0 ... 0

k

k k
kk

k k
k

k
k

k

k k
k
k k k

k

d
d d DD
d d DD

d
D

d
d d

D
d d

d

−

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

( )

( 1)

( 1)
2

( 1)
2 1 1

...

k

k

k
k

D

D

−

−

−
− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (27) 

For a polynomial of degree 2k , the single coefficient on 0x  is constructed by 

multiplying the "new" coefficient ( )
0

kd  by the single coefficient on 0x  in a polynomial 

of degree ( )2 1k − . The single coefficient on 1x  is constructed by summing two 

terms: (1) multiply the coefficient ( )
1

kd  by the single coefficient on 0x  in a 
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polynomial of degree ( )2 1k − ; (2) multiply the coefficient ( )
0

kd  by the single 

coefficient on 1x  in a polynomial of degree ( )2 1k − . The pattern continues. 

Combinations of the "new" coefficients are multiplied by all existing terms from a 

lower-degree polynomial to create new terms. 

Utilizing this matrix representation, we can calculate the sole coefficients 

multiplying all powers of x , i.e. powers 0,..., 2k , using just k  matrix operations. 

This representation makes integrating the positive polynomial computationally 

simple, and allows us to generate any monotonic polynomial using the coefficients 

from (27) directly in the simple expression 

 ( )
1

0 1

j
k j

k j

D x
m x

j

+

=
=

+∑ . (28) 

Estimating G and g 

I use three different techniques to estimate the distribution and density of the 

marginal bid. As suggested by Armantier (2006), I have implemented an estimation 

strategy based on orthogonal polynomials. Armantier suggests using orthogonal 

polynomials because of their speed. However, I have found that a strategy combining 

kernel methods and interpolation to be just as fast, and much more accurate in most 

cases. Finally, I have implemented a target distribution method which, although 

slower to calculate than either orthogonal polynomials or kernel methods, can provide 

smoother estimates. Because the target distribution method sacrifices speed for 

accuracy, it is most useful as a final refinement to the CSE procedure. In the 
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following sections, I will briefly discuss orthogonal and kernel estimation methods, 

and discuss the target distribution method in slightly more detail. 

Orthogonal Series Method 

The unknown density of the critical bid, ( )g i , can be nonparametrically 

estimated by  

 ( ) ( ) ( )
0

ˆ ˆ
n

k k
k

g x w x a xϕ
=

= ∑ , 

where ( )w x  is a weighting function, ˆka  are coefficient weights to be estimated, 

and ( )k xϕ  are functions chosen to be mutually orthonormal with respect to the 

weighting function ( )w x . The functions ( )k xϕ  are mutually orthonormal if the 

following two conditions hold: 

(i.) ( ) ( ) ( )
1 if 
0 if 

b

k ja

j k
x x w x dx

j k
ϕ ϕ

=⎧
= ⎨ ≠⎩

∫  

(ii.) ( )0 1xϕ = . 

There are several families of polynomials that can serve as the ϕ  family of 

functions. Among them are Legendre, Chebyshev, Laguerre, and Hermite 

polynomials. Legendre polynomials have the particularly attractive property that the 

weighting function that causes condition (i.) to hold is simply ( ) 1w x = . The 

coefficient weights are estimated by  

 ( )
1

1ˆ ,  for 1, 2,..., .
MC

k k i
i

a x k n
MC

ϕ
=

= =∑  



 

 46 
 

The advantage of estimating density functions by orthogonal polynomials is that 

an estimate of the density at any given point x can be calculated without calculating 

the density at all other points – that is, the estimation is entirely local. In addition, 

orthogonal polynomials can be computed by a recurrence relation, which makes 

computation numerically attractive. The number of computations needed to arrive at 

an estimate is relatively small. Additionally, since we need to carryout out MC 

instances of the auction in order to determine the winner, we need to do very few 

additional calculations in order to estimate ˆka . 

The technique is not without its drawbacks. Although the procedure of estimating 

a density function on a compact interval is simple and computationally attractive, the 

estimate is not necessarily smooth. As opposed to kernel methods, density estimates 

using the orthogonal series technique can only be smoothed by increasing the Monte 

Carlo size or the degree of the approximating polynomial, and the optimal degree of 

the polynomial approximation is difficult to determine.28  

Kernel Method 

A kernel estimator is of the form 

 ( )
1

1ˆ
MC

i

i

x xg x K
MC h h=

−⎛ ⎞= ⎜ ⎟⋅ ⎝ ⎠
∑ , 

where h is a bandwidth parameter, K is the kernel function, and 

1 2{ , ,..., }MCx x x are the observed data. The kernel function can be any function; 

popular choices are the normal pdf, the triangle pdf, or the epanechnikov pdf. As the 
                                                 
28 The approximation by orthogonal polynomials converges to the true function as n →∞ . For 
practical purposes, n needs to be large enough such that the difference between successive orthogonal 
coefficients is small. The value of n necessary to provide an accurate estimate of the unknown function 
is unknown a priori, a fact which favors the more robust kernel method, in my experience. 
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preceding list makes clear, the kernel function itself is often a probability density 

function, but this is not required.29 

Target Distribution Method 

The target distribution method is based on a simple premise. Every two 

continuous distribution functions ( )G i  and ( )H i  are related by at least one 

transformation function ( )t i  such that ( ) ( )( )G x H t x= .30 Suppose G is the unknown 

distribution function we wish to estimate. We can then select H , the target 

distribution, and estimate G by ( )( )ˆH t x . By estimating the transformation function 

and fixing the target distribution, we obtain an estimate of the unknown distribution 

Ĝ  that (i) incorporates any prior information we may possess as to the form of the 

true distribution that generated our data, (ii) incorporates information on the support 

of the distribution, and (iii) is sufficiently flexible to provide excellent performance 

even when the target distribution is chosen poorly. 

The target distribution method is nonparametric in the sense that no assumption 

is made as to the form of G. On the other hand, we do place restrictions on H in order 

to ensure that our estimate Ĝ  is itself a distribution function, and that the same 

procedure yields ˆĝ dG= , an estimate of the density that has all the properties of a 

p.d.f.  

                                                 
29 See Turlach (1993) and Härdle and Linton (1994) for details on properties of the kernel and 
desirable selection criteria. 
30 See Elphinstone (1983) and citations therein.  
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Since H is selected to be a continuous distribution, ( )( )H t x  is a distribution so 

long as ( )t x  is monotonically increasing. Therefore, ( )( ) ( )( ) ( )'d H t x h t x t x
dx

=  is a 

well-behaved probability density function, again so long as ( )t x  is monotonically 

increasing. 

As H is fixed and G is unknown, the computation necessary to carry out the 

target method reduces to finding an appropriate estimate ( )t̂ x . The estimate must be: 

(i) monotonically increasing and (ii) sufficiently flexible to estimate the true ( )t x . 

Using an unrestricted polynomial to estimate ( )t x  is tempting, as the Weierstrass 

theorem tells us that ( )t x  can be estimated to any desired degree of accuracy with a 

polynomial over a closed interval. However, it is also well known that the best 

approximation of a monotonically increasing function is not necessarily itself a 

monotonically increasing function. That is, an unrestricted polynomial fits 

requirement (ii), but not requirement (i). This was Elphinstone’s original motivation 

for the procedure to generate monotonic polynomials by conflation, which I outlined 

above.  

The CSE Solution in Benchmark Cases  

First-price auction with uniformly distributed values  

Probably the most well known sealed-bid auction model is the first-price 

symmetric IPV model with uniformly distributed values. Any advanced 
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microeconomics or introductory game theory text will include analysis of this auction 

model. The unique equilibrium bidding function is well known to be  

 ( ) 1Ns x x
N
−

= . 

The Bayesian Nash Equilibrium is a linear function of the value draw x. Thus in 

this case, the CSE of the auction problem is exactly identical to the unconstrained 

BNE.  

We will solve this auction posed as a CSE problem when N = 2. Doing so will 

provide a great deal of insight into how the algorithm works, and demonstrates the 

accuracy of the CSE algorithm in a basic case.  

Restricting ourselves to a simple linear function, recall that the first order 

condition of the CSE problem from the perspective of bidder 1 can be written: 

 ( ) ( )( ) ( )( ) ( )( )( )1 1 1 1 1 1 1 1 1
1

; ; ; ; 0d s x a x s x a g s x a G s x a
da

− − = . (14) 

When ( )1 1 1 1;s x a a x= , ( )1 1 1
1

;d s x a x
da

=  and the first order condition can be expressed 

as 

( ) ( )( ) ( )( )( )1 1 1 1 1 1 1 1; ; 0x x a x g s x a G s x a− − = . 

In a symmetric equilibrium, 1 2a a a= = , and the analytical expressions for g and 

G are 1
a

 and x , respectively. Substituting in, we get: 

 ( ) 1 0x x ax x
a

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

. 

Figure 1 illustrates the approach (and the challenge) of trying to find an 

equilibrium by approximating the first order condition. Figure 1 shows the analytical 
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first order condition for all values of x ( [ ]0,1x∈ ), evaluated at candidate solutions for 

the linear coefficient a between 0 and the BNE value of 0.5. The coefficient a is 

represented on the front-facing (left-to-right) axis, and the values x are represented on 

the right-facing (front-to-back) axis. The optimal (BNE) coefficient is located at the 

far right of edge of the 3D plot. The value of the first order condition is zero for all 

values of x along the right edge of the graph. As a decreases (along the front-facing 

axis, a decreases from right-to-left) the first order condition diverges from zero for 

values of 0x > , with the magnitude of the first order condition increasing in x.  

Figure 1 shows the value of the first order condition for all possible values of x.  

It is the average value, however, of the first order condition we are evaluating with 

the Monte Carlo technique. The average of the first order condition will be 0 at the 

BNE coefficient *a , since in equilibrium the value of (14) is 0 for every x. The 

average value of the first order condition is plotted in Figure 2. That is, the front-to-

back axis in Figure 1 is collapsed by averaging all values along a “slice” of Figure 1 

for a fixed value of a. This produces a single line representing the value of the first 

order condition as a increases from left to right. Starting from 1a =  (bid = value), the 

first order condition approaches zero smoothly from below.  

The following Mathematica code generates Figure 1and Figure 2. 

(* FOC for a buy-auction *) 
foc[x_,a_]:=(x-a*x)*(x/a)-(x^2) 
 
Plot3D[foc[x,a],Cao and 
Tian),{a,0.0000000000001,0.5},AxesLabel→{Style[x,FontSize→18],Style[
a,FontSize→18],Style[foc,FontSize→18]}] 
 
avgfoc[a_]:=Sum[foc[x,a],{x,0,1,0.01}]/101 
 
Plot[avgfoc[a],{a,0.0000000001,1},AxesLabel→{Style[a,FontSize→18],St
yle[foc,FontSize→18]}] 
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Figure 1 – Analytical FOCs of a buy-auction 

 

 

Figure 2 – Average FOCs as a varies 
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The approximation of the distribution and density functions G and g introduces 

Monte Carlo error into this procedure. All the simulation error we get is generated by 

the difference between the Monte Carlo estimates ĝ  and Ĝ  and their true values 1
a

 

and x . The following MATLAB code generates estimates of g and G using kernel 
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methods and a Monte Carlo size of 1e4, and plots the value of the first order 

condition for potential coefficients a over the range of x. 

% Set the pseudo-random number stream for replicability. 
stream = RandStream('mrg32k3a'); 
RandStream.setDefaultStream(stream); 
stream.Substream = 1; 
  
% Evaluate the FOC at even intervals over the domain of x. 
x1 = (0:0.01:1)'; 
% Evaluate the FOC for all feasible values of the coefficient a. 
a = 0.2:0.01:1; 
% Draw random numbers for bidder 2. This is the Monte Carlo sample. 
x2 = random('unif',0,1,1e4,1); 
% Form a grid of the data for 3D plot. 
[A1,X1] = meshgrid(a,x1); 
[A2,X2] = meshgrid(a,x2); 
% Bids of bidder 2. 
B2 = A2.*X2; 
% Make container arrays for the density and distribution. 
PDF = zeros(size(A1)); 
CDF = zeros(size(A1)); 
% Fill in the density and distribution. 
for i = 1:1:size(X1,2) 
    PDF(:,i) = ksdensity(B2(:,i),X1(:,i).*A2(1,i),... 
        'support',[0 A2(1,i)],'function','pdf'); 
    CDF(:,i) = ksdensity(B2(:,i),X1(:,i).*A2(1,i),... 
        'support',[0 A2(1,i)],'function','cdf'); 
end 
% Evaluate the FOC. 
FOC = X1.*((X1 - A1.*X1).*PDF - CDF); 
% Exclude values of x very close to 1 due to numerical instability. 
X1(98:101,:) = []; A1(98:101,:) = []; FOC(98:101,:) = []; 
% Plot the FOC over all values of (x,a). 
surf(X1,A1,FOC) 
xlabel('x') 
ylabel('a') 
zlabel('foc') 
colormap hsv 
axis([0 1 0 1 -2 2]) 
 

The result of the code is displayed in Figure 3. The approximation of the first 

order condition appears to be quite good, although some numerical problems are 

hidden here by the exclusion of points x close to 1 (see Figure 6 and the discussion 

below). The approximate solution can be seen by tracing the line of light green across 

a slice of the surface when a is about 0.5. 
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Figure 3 – Simulated FOCs of a buy-auction 

 

 

In order to see the surface corresponding to a = 0.5 (the equivalent of the right 

edge of Figure 1) we look at Figure 4, which stops at a = 0.5 to isolate the slice of 

Figure 3 along that edge. We can see that at the BNE solution, the value of the 

simulated first order condition is very near to zero (colored in red).  

% Plot the FOC over all values of (x,a) s.t. a <= 0.5. 
surf(X1(:,1:31),A1(:,1:31),FOC(:,1:31)) 
xlabel('x'  ,'FontSize',16) 
ylabel('a'  ,'FontSize',16) 
zlabel('foc','FontSize',16) 
colormap hsv 
axis([0 1 0 0.5 0 2]) 
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Figure 4 – Simulated FOCs of a buy-auction (focused) 

 

 

Once again, we collapse the surface by averaging over the x-values for a given 

value of the coefficient a. The results are shown in Figure 5.  

% Figure 5 -- Average of the x-values at a = 0.5. 
avgfoc = mean(FOC,1); 
plot(A1(1,:),avgfoc); hold on; 
plot(A1(1,:),zeros(size(A1(1,:))),'col','red'); hold off; 
xlabel('a','FontSize',16) 
ylabel('Average FOC','FontSize',16) 
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Figure 5 – Simulated average FOCs as a varies 
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The constrained equilibrium solution is actually found to be 0.4964 based on a 

grid search with step size 0.0001. The simulation error of 0.0036 is mostly due to 

errors in the estimation of the density of the winning bid g, and these errors are 

mostly clustered at the upper end of the range of x values. The disturbance for values 

when x is close to 1 can be seen in the front of Figure 4, where there appears to be a 

wave along the leading edge of the FOC surface. 

% What is the exact minimum? Is it at a = 0.5? 
% Do a very fine grid search. 
a = 0.45:0.0001:0.55; 
x1 = (0:0.01:1)'; 
[A1,X1] = meshgrid(a,x1); 
[A2,X2] = meshgrid(a,x2); 
B2 = A2.*X2; 
PDF = zeros(size(A1)); 
CDF = zeros(size(A1)); 
for i = 1:1:size(X1,2) 
    PDF(:,i) = ksdensity(B2(:,i),X1(:,i).*A2(1,i),... 
        'support',[0 A2(1,i)],'function','pdf'); 
    CDF(:,i) = ksdensity(B2(:,i),X1(:,i).*A2(1,i),... 
        'support',[0 A2(1,i)],'function','cdf'); 
end 
FOC = X1.*((X1 - A1.*X1).*PDF - CDF); 
avgfoc = mean(FOC(1:96,:),1); 
minindx = find(foo == min(foo)); 
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trueMin = A1(1,minindx); 
% Result --> 0.4965. 
 

Taking a closer look: the following MATLAB code examines in greater detail the 

slice of the surface in Figure 4 when a = 0.5. It is instructive to examine the 

estimation of g and G at this point, as it illustrates the difficulty of accurately 

estimating the distribution of a bid on a compact support. The result of this exercise is 

shown in Figure 6.  

% Estimate G and g for the BNE coefficient a = 1/2. 
% Set coefficient a = 0.5; 
a = 0.5; 
% Form bids for bidder 2. 
b2 = a*x2; 
% Estimate density. 
[pdf xi] = ksdensity(b2,'support',[0,1*a],'function','pdf'); 
% Estimate distribution. 
[cdf xi] = ksdensity(b2,'support',[0,1*a],'function','cdf'); 
% Plot both pdf and cdf. 
[ax,h1,h2] = plotyy([xi' xi'],[pdf' (ones(size(xi))/(1/2))'],... 
    [xi' xi'],[cdf' (xi/(1/2))']) 
set(h1(1),'LineStyle','.');set(h1(2),'Color','black'); 
set(h2(1),'LineStyle','.');set(h2(1),'Color','blue'); 
set(h2(2),'Color','black'); 
legend(h1,'PDF Estimate','PDF Actual','Location',[0.2,0.65 0.05 
0.01]) 
legend(h2,'CDF Estimate','CDF Actual','Location',[0.6 0.45 0.05 
0.01]) 
xlabel('Bid') 
set(get(ax(1),'Ylabel'),'String','Probability Density') 
set(get(ax(2),'Ylabel'),'String','Cumulative Distribution') 
title('Kernel Estimates: Pr(win|bid)') 
% Note that you may need to re-size the graphics window in order for 
text annotations to appear as shown. 
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Figure 6 – Kernel Estimates: Pr(win|bid) 
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The estimate of G is quite good over the entire range of x, so much so that 

estimated points overlay and obscure the true value of the CDF. The estimate of g is 

less precise. Nonparametric methods are in a way “local” – the value of a density 

estimate at a given point draws on nearby data. Points near either end of a compact 

support necessarily have fewer data points within a given window, since no data 

appears above (below) the upper (lower) endpoint of the distribution. I have found 

instability near the endpoints of the support of bids using both kernel methods and 

orthogonal polynomials. Using these estimates of the PDF and CDF of bidder 2’s bid, 

we can evaluate the first order condition at evenly spaced intervals over the domain of 

x. 

% Evaluate the first order condition at values along x. 
x1 = (0:0.01:1)'; 
b2 = 0.5*x2; 
g = ksdensity(b2,0.5*x1,'support',[0 0.5],'function','pdf'); 
G = ksdensity(b2,0.5*x1,'support',[0 0.5],'function','cdf'); 
foc = x1.*((x1 - 0.5.*x1).*g - G); 
plot(x1,foc,'col','red') 
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xlabel('x','FontSize',16); ylabel('FOC','FontSize',16); 
 

Figure 7 – FOC over x for a = 0.5 (BNE). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

x

F
O

C

 



 

 59 
 

 

The instability of ĝ  as 0x →  has no visible influence on the estimated first 

order condition displayed in Figure 7. The estimation error in that region is 

overwhelmed by the small values of ( )( )1 1 1;x s x a− , the gain from winning the 

auction, in the first order condition (14). As 0x → , notice that ( )1 1 1;s x a x→  (see the 

equilibrium bidding function in Figure 8) and so the term multiplying g becomes 

extremely small. On the other hand, the estimation error in ĝ  as 1x →  has a 

significant impact on the first order condition, which can be seen clearly in Figure 7. 

The profit from winning the auction in this region is relatively large, meaning that 

estimation errors in ĝ  are amplified. For this reason, we exclude from our 

calculations values of the first order condition as x approaches the upper (lower) end 

of its support in a buy- (sell-) auction.  

Figure 8 – BNE bid function 
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The MMRS coalition vs. coalition model  

The MMRS coalition-vs-coalition model can be estimated by the CSE technique, 

and the solutions from the two competing algorithms can be compared. The 

components of the model are as follows. There are 5 total bidders (n = 5); two 

coalitions form, where the first coalition is either of size 4 or 3 (the second coalition 

is either of size (1 or 2); draws of value are from the uniform [0,1]; a coalition bids 

according to its highest value (i.e. a coalition of 3 individuals behaves as if its value is 

the highest among its three individual draws). 

We will focus here on a single case of the MMRS model. The MMRS algorithm 

with coalitions of size 4 and 1 produces the bidding functions represented in Figure 9 

(originally appearing as Figure 1A in Marshall, et al. (1994) and reproduced here with 

permission from Elsevier – see appendix). The same model, submitted to 

CSE_SOLVER, gives the results displayed in Figure 10. 

Figure 9 – Bidding functions in MMRS coalition model 
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Figure 10 – CSE bidding functions in MMRS coalition model 
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You can see in Figure 10 that the bidding functions arrived at by the CSE 

algorithm are nearly equal to those of MMRS. Figure 11 makes the near-equivalence 

more apparent by overlaying the two plots, showing just how close the two 

techniques are. The two figures have been overlaid using Mathematica, which allows 

the plots to be manipulated onto the same scale. I have stretched the CSE plot so that 

the aspect ratio matches as nearly as possible the exact dimensions of the original 

plot, which appears as an image underlying the CSE plot.  
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Figure 11 – MMRS/CSE bidding functions overlaid 
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The CSE procedure does not quite match the MMRS estimates, which are 

reported accurate to 6 to 8 digits.31 The CSE procedure can be improved, however, by 

imposing the added condition that ( ) ( )1 21; 1;s s=a a , the condition that MMRS 

algorithm relies on for convergence. This condition is imposed simply by restricting 

one of the four coefficients (the choice of which one is arbitrary) needed to estimate a 

quadratic CSE. We simply choose one of the coefficients, in this case we fix the 

coefficient on the second squared-term, and solve the identity: 

 

( ) ( )
( ) ( )

( )

1 2

2 2
11 12 21 221 1

22 11 12 21

1; 1;

.
x x

s s

a x a x a x a x

a a a a
= =

=

+ = +

= + −

a a

 

This restriction means that the CSE bidding functions will be defined by a total of 

three coefficients 
21

* * *
11 12{ , , }a a a , and will be arrived at by solving a system of three 

                                                 
31 The accuracy measure quoted here refers to the estimate of the bid of each coalition when the type 
draw is 1. This boundary condition defines the entire bid function under the MMRS technique.  
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equations. The modification needed to implement this procedure in CSE_SOLVER is 

straightforward. The result of running the restricted CSE model is shown in Figure 

12. The overlay of the two plots is nearly perfect.32  

Figure 12 – MMRS/ Restricted CSE bidding functions overlaid 
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Notes: The CSE bidding function of the coalition of 4 is given by 

0.3286x + 0.3053x^2, while the CSE bidding function of the coalition 

of 1 is given by 0.9116x - 0.2778x^2. 

 

The important question is whether or not the difference between the CSE 

estimates and the more exact MMRS solutions are economically meaningful. For the 

coalition model replicated above, MMRS report the auctioneer’s expected revenue 

and bidders’ expected per-capita surplus. The exact values reported in MMRS are 

compared to the CSE results in Table 1 below. The auctioneer’s expected revenue and 

                                                 
32 Using the same measure of accuracy given in MMRS, the restricted CSE method is within 0.0035 of 
the MMRS estimate of the upper support of the distribution of bids. The estimate of the upper support, 
denoted by *t , is given in Table 1 on page 204 of MMRS. I subtract from that value the figure 
0.63385650948398442, which is the bid of a bidder with a type draw of 1 using the coefficients given 
in the notes under Figure 12. 
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the per-capita surplus of the coalition bidders are estimated identically to at least 3 

significant digits. The improvement in per-capita surplus from optimal unilateral 

deviation is less than 1.5% for both coalitions. The profitability of optimal deviation 

from the CSE strategies is extremely low.  

Table 1 – Revenue and surplus comparison 

Auct. k1 k2
0.5057 0.0567 0.0860
0.5139 0.0565 0.0817
-0.0082 0.0002 0.0043Diff

k1 = 4
k2 = 1

Coalition vs. Coalition

MMRS
CSE

 

 



 

 65 
 

Chapter 4: Asymmetric Multi-Unit Auctions with a 

Quota 

Introduction 

In this chapter, we use the CSE approach to study asymmetric procurement 

auctions wherein sellers from two classes draw costs from different distributions. 

When sellers are asymmetric, a cost-minimizing buyer discriminates among classes 

of sellers to enhance competition (Myerson (1981)). Establishing quota—a limit on 

the number of offers that can be accepted from any one class—discriminates simply 

and effectively. A binding quota increases demand scarcity from the perspective of 

low-cost sellers, which causes them to lower their offers. The CSE approach is used 

to solve for the equilibrium strategies of asymmetric auctions with and without a 

quota, and we find a quota enhances competition and lowers total procurement cost. 

The quota we impose are similar to mechanisms used widely in practice. In 

government procurement of construction contracts, for example, “set asides” are used 

to reserve some contracts for minority-owned and small businesses, effectively 

placing quota on the number of contracts available for non-minority-owned or large 

businesses. Because the mechanism is widely used to promote social goals and can 

also lead to better outcomes for the buyer, our findings have both positive and 

normative implications. 

When sellers are asymmetric, the optimal auction is one that discriminates 

between sellers (Myerson (1981), Bulow and Roberts (1989)). While the conditions 

that characterize an optimal auction have been known for some time, implementation 
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remains an open issue. How might a procuring agent, knowing that sellers are 

observably different in their ability to produce a good, structure an auction that 

accounts for this asymmetry? Direct implementation of the optimal auction requires 

that the procuring agent have knowledge of the distribution of seller costs and the 

ability to discriminate perfectly between sellers. Since neither of these two conditions 

is likely to be met in practice, we investigate the returns to a simple mechanism that a 

buyer can easily implement. The mechanism imposes a quota, a limit on the number 

of winning offers that can come from any single class of sellers, to increase 

competition within that class. That is, the auctioneer specifies ex ante that he will 

accept no more than x offers from a defined class of sellers.  

We find motivation to study simple price discriminating methods in many 

practical applications. Private firms engage in contract procurement using auctions. 

Every level of government procures goods from suppliers that are observably 

heterogeneous in some way. Popular examples include defense-related procurement, 

procurement of infrastructure contracts, and procurement of fleet vehicles. The 

federal government also procures environmental services from heterogeneous private 

landowners using an auction procedure.33 A mechanism that encourages competition 

through discrimination could also exist in markets with less structure than a formal 

auction. Firms, for example, hire from heterogeneous labor pools. Firms cannot 

perfectly discriminate between workers, and so must pay some workers more than 

their reservation wage (Ayres and Cramton (1996)).  

                                                 
33 Although many similar programs exist, the largest single example of what are known as 
conservation auctions is the Conservation Reserve Program implemented by the U.S. Department of 
Agriculture. See Kirwan, Lubowski and Roberts (2005) for details. 
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What we refer to as a quota is similar to what some in the auction literature call 

set-asides. When multiple units of a good are being auctioned by the government 

(whether they be items to be sold or contracts to be purchased), set-asides reserve 

some number to be won by qualified bidders. Qualified bidders are bidders selected 

based on observable characteristics, often race or business size, meant in most cases 

to promote social goals, such as encouraging participation by a minority class of 

bidders (Denes (1997)). Milgrom (2004) presents a simple example of how set-asides 

can increase competition in an auction and so enhance the auction outcome from the 

bid-taker’s perspective.34 The fact that set-asides are used both in the sale of public 

goods such as spectrum (Ayres and Cramton (1996)), and in government 

procurement, provides a positive motivation for our study. That is, in addition to or 

despite possible social goals, governments or firms may use set-asides to reduce 

procurement costs. 

Quotas reduce procurement costs when sellers of several dissimilar classes 

compete to sell multiple goods.35 Sellers compete against rivals both similar and 

dissimilar to themselves. Sellers from these dissimilar classes, having observable 

characteristics that distinguish them, will offer toward a common margin. This 

margin is set by a mix of within-class and between-class competition. When one class 

of sellers has lower opportunity costs than another, a quota enhances within-class 

competition. The intuition is straightforward: by limiting the number of winning 

                                                 
34 Milgrom’s example (of a forward auction, as opposed to a reverse, or procurement, auction) is 
particularly simple in that the distribution of bidder values does not overlap. Thus the high-value 
bidders in his example always win all the goods in an auction without set-asides. Our examples are 
more general, as we allow for cost distributions to overlap. 
35 Similarly, in an auction to sell (rather than procure) multiple items, a seller would benefit from quota 
when buyers of many different classes compete to purchase. 
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offers, demand from that group declines. The artificial scarcity makes offers more 

competitive. The tradeoff is that between-class competition is sacrificed: when a low-

cost seller is eliminated, high-cost sellers face less competition.  

McAfee and McMillan (1989) provide an example in a context of international 

trade, which we modify slightly for our own purposes. There are six firms, two 

foreign and low-cost and four domestic and high-cost, competing for two government 

contracts. Unrestricted competition is characterized by weak competition within the 

class of low-cost foreign firms. The marginal foreign firm competes with domestic 

firms to fulfill the second contract, while the stronger foreign firm extracts substantial 

rents. McAfee and McMillan investigate how price preferences influence the 

procurement cost of an auction. If a quota were imposed that mandated a maximum 

of one foreign and one domestic firm to fulfill the government’s need, the low-cost 

foreign firms would be forced to compete directly with each other. Rent that would 

have been extracted by low-cost foreign firms is reduced while rent accruing to 

domestic firms increases. The net effect of a quota depends on the net balance of 

offsetting influences: low-cost foreign firms face tougher competition, while high-

cost domestic firms inflate their offers in the absence of direct foreign competition. In 

this polar example, quota has effectively created two separate auctions, one in which 

only foreign firms compete, and one in which only domestic firms compete.  

The total effect of a quota on procurement cost is the sum of enhanced 

competition within classes and reduced competition between classes. A quota is thus 

most beneficial to the buyer when within-class competition is low among low-cost 

sellers. This happens if demand for the marginal unit typically comes from a high-
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cost class. In single-price auction without the restriction of a quota, what we will refer 

to as an “open” auction, sellers from the low-cost class will offer toward the same 

margin as sellers from the high-cost class and thereby extract substantial rents. 

Setting a quota effectively reduces the surplus captured by low-cost sellers. 

While the idea of discriminating among sellers was laid out in the seminal paper 

on optimal auctions (Myerson (1981)), the method of discrimination considered here 

is new in important ways. Most auction papers focusing on implementation of a 

discriminating policy have examined what are known as bid preferences, a 

discounting of offers for the sole purpose of determining winners. For example, bid 

preferences in auctions for the procurement of transportation contracts in California 

take the following form (Krasnokutskaya and Seim (2009); Marion (2009)). A 

qualified “small bidder” wins a contract so long as its offer is within 5% of the lowest 

offer by an unqualified seller. Such a preference could be formulated as an actual 

discount to the qualified offer for the purposes of evaluation only (Hubbard and 

Paarsch (2009)). That is, the bid-taker will rank discounted offers, equal to (1-

preference) × offer, from lowest-to-highest, selecting the lowest discounted offer as 

the winning offer and paying the winning seller their full undiscounted offer. Such 

bid preference programs are common in government procurement (Hubbard and 

Paarsch (2009)), and have been applied in high stakes auctions such as the first 

auctions for spectrum in the United States (Ayres and Cramton (1996)). Bid 

preferences are also used in, for example, procurement for snow contracts (Flambard 

and Perrigne (2006)), and have been studied in experimental settings (Corns and 

Schotter (1999)). A persistent finding is that procurement cost can be reduced by 
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some positive bid preference, so long as the bid preference does not inhibit 

participation by strong sellers.36  

Perhaps because most auction research in the area of bid discrimination considers 

single-unit auctions, set-asides and quotas, which apply only to multi-unit auctions, 

have received less study. In a multi-unit context quota neatly handles a problem 

inherent to the preference approach. To implement a price-preference mechanism, the 

auctioneer must know which class of sellers is low-cost and which are high-cost, and 

also have a good understanding of cost differences between classes. Such information 

is not necessary with quota. There are many applications, such as auctions for 

conservation land, when the auctioneer is less likely to know which class is low-cost 

and which is high-cost but nevertheless expects costs to differ widely across classes. 

In this case, providing a bid preference to the wrong party could increase 

procurement cost. On the other hand, a quota can be used by the bid-taker to 

encourage competition, even if the bid-taker is not able to identify which group of 

sellers is relatively low-cost, and which group of sellers is relatively high-cost. The 

bid-taker could always place a binding limit on the number of bids from any one 

group that can be accepted. Note that to enforce this rule, the bid-taker need not be 

able to identify which group of sellers is relatively low-cost. The only requirement is 

that the sellers themselves be aware of this fact. 

Our research applies quota in an independent private values (IPV) model of a 

one-shot, sealed-bid auction. Since our focus is on procurement, we model a pay-as-

bid auction as opposed to a uniform price auction. Almost all government 

                                                 
36 We do not analyze the effect on participation of imposing a quota. Since there is no participation 
cost in our model, we assume that each potential bidder will find it in their interest to submit a bid, 
since the expected profit from doing so is at least weakly positive. 
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procurement auctions use the pay-as-bid format. Thus our analysis differs from that 

of Ayres and Cramton (1996), who investigate bid preferences and set-asides in 

multiple-round, open-bid auctions, and from Denes (1997), who studies multiple 

auctions over time.  

In the next section, we construct a simple two-class model of a procurement 

auction for multiple goods. We examine a number of special cases to illustrate how 

large differences in opportunity cost between classes of sellers can lead to low levels 

of within-class competition. We then estimate bidding functions in these cases using 

the CSE approach to computation. 

Model 

Suppose there are two classes of sellers. Type A Sellers draw their costs from 

distribution AF , while Type B sellers draw their costs from distribution BF . There 

are N total sellers, An  Type A sellers, and likewise Bn  Type B. The fact that there are 

An  Type A sellers and Bn  Type B sellers is common knowledge to all, including the 

bid-taker. However, it is only required that sellers know the characteristics of AF  and 

BF , while the buyer may remain ignorant of these characteristics.  

Type A sellers draw their costs, c , independently from a distribution AF  on 

support ,A Ac c⎡ ⎤⎣ ⎦  and Type B sellers draw their costs from a distribution BF  on 

support ,B Bc c⎡ ⎤⎣ ⎦ . The distribution BF  is constructed from distribution AF  by an 

additive parameter δ . This captures the simplest type of class asymmetry – sellers 

perceive intra-group cost heterogeneity identically, regardless of their class, and 
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sellers perceive the other group as similar to themselves but with a different average 

cost (sellers are ex ante high-cost or low-cost).  

Consider the problem from the perspective of an arbitrary seller (say seller 1). 

The buyer will accept the lowest m  of the offers submitted by the N  sellers, so the 

probability of a given offer being accepted is the probability that the offer is below 

the thm  lowest of all the other offers. Each seller submits a single offer.  

This is the form of the basic model. We will use this model to investigate how 

procurement cost, and the rent accruing to sellers, increases as within-class 

competition decreases. To do so, and to provide quantitative predictions for our 

laboratory experiment, we must derive bidding functions for our model.  

Symmetric Sellers  

Let 1 2 1, ,..., NY Y Y −  represent the cost draws of each of the 1N − sellers that are not 

seller 1, ordered from lowest-to-highest. The unique symmetric equilibrium bidding 

strategy of the auction when 0δ = is 

 ( ) [ ]|M Mx E Y Y xβ = > . 

PROOF: See Weber (1983) or Ortega-Reichert (1968). 

The intuition behind this result is simple. A seller facing 1N −  competitors that 

are ex ante identical will submit an offer just low enough to be among the m  lowest. 

If the equilibrium is symmetric, i.e. every seller follows the same strategy, only those 

sellers with the lowest m  cost draws will be accepted. Therefore, each seller forms 

their expectations of what the thm  lowest cost draw will be, conditional on it being 

greater than their own draw (conditional on winning). 
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With the analytic bid functions given in the proposition, expected procurement 

cost is easily seen to be [ ]mm E Ci  where mC  is the thm  lowest amongst all N  cost 

draws.37  

Uniquely in the symmetric case we can derive an analytic solution to the 

equilibrium bidding function. Since our main interest is in investigating auctions with 

asymmetric sellers, we will need to introduce the CSE technique for estimating 

bidding functions.  

Asymmetric Sellers 

The sharp prediction of behavior and total procurement cost holds only when all 

sellers are identical ( 0δ = ). When we consider asymmetric classes of sellers, there is 

no single strategy that sellers from both groups will follow in equilibrium. Solving for 

equilibrium bidding functions when sellers are asymmetric is notoriously difficult 

(Gayle and Richard (2008)). Rather than relax the assumption of asymmetry, we use 

the CSE algorithm discussed in chapters 2 and 3 to compute equilibrium strategies. 

Considering constrained strategies often proves advantageous in two ways. First, by 

constraining the strategy space we can solve auction models that would otherwise 

prove intractable. Second, strategies that are simple functions of a seller’s private 

information often prove to be more useful predictors of actual behavior than Nash 

predictions (Kagel and Richard 2001). Since some of the predicted bidding functions 

presented here will be tested in the lab, it is important to note this as-yet unmentioned 

benefit of the constrained approach. 

                                                 
37 This is the thm  order statistic from N  draws and is distinct from what was denoted by mY  in the 

proposition. mY  denoted the thm  order statistic from 1N −  draws. 
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The CSE approach has another benefit. When a BNE does not exist, we can 

approximate likely outcomes by finding strategies that form a near-equilibrium. That 

is, we can identify strategies that lead to a situation where the incentives for any one 

seller to deviate are extremely low. The requirement for a BNE is, of course, that 

unilateral deviation be unprofitable. A constrained strategic equilibrium is one in 

which the expected profit from deviation is made arbitrarily small. 

By restricting attention to strategies that follow a particular functional form, we 

are able to estimate bidding strategies numerically. We present here a more detailed 

explanation of the program only in the linear case, but the extension to polynomial 

strategies is straightforward, and has been reviewed at length in chapters 2 and 3. We 

attempt to find the best coefficient a , given the assumption that every seller restricts 

themselves to linear strategies, and that every seller in a group implements the 

same a . For an arbitrary Type A seller, this amounts to maximizing the offer net of 

costs, multiplied by the probability that the offer is accepted. This is given by 

  ( ) ( )A i i A ia c c G a c− , (29) 

whereG is the distribution of the critical offer, the offer above which no offers will be 

accepted. Note that the critical offer may be submitted by a member of either 

group A or group B , so specifyingG analytically not a simple matter. To find the 

optimal Aa , we differentiate to obtain first order condition 

 ( ) ( ) ( ) 0i A i i A i i A ic G a c c a c c g a c− − = , (30) 
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where g  is the derivative of G . By doing likewise from the perspective of an 

arbitrary Type B seller, we obtain a system of zeros that can be solved using readily 

available numerical recipes.38,39  

Having found *Aa  that most nearly satisfies the first order condition, which we 

call our optimal constrained strategy of order 1 (k=1), it is natural to wonder how 

good this equilibrium approximation is. For instance, supposing that 1An −  sellers 

follow the strategy of bidding *Aa c×  and Bn  sellers follow the strategy of bidding 

*Ba c× , how well could the omitted Type A seller do by changing their offer? The 

concept of equilibrium being built on the idea of unilateral deviation, it is natural to 

measure the “goodness” of an equilibrium approximation by how well one seller 

could do by discarding the *a -strategy in favor of another; we would like this 

seller’s profit from deviating to be as small as possible. If the benefits to pursuing 

another strategy are large, we might suppose that sellers would no longer restrict 

themselves to simple linear strategies. Instead, it seems reasonable to assume that 

sellers might pursue more complex strategies, should the reward to doing so be 

substantial. In what follows, we estimate a constrained strategic equilibrium as a 

sequence of polynomials. We then measure the goodness of a constrained strategic 

                                                 
38 We use canned routines included in MATLAB’s optimization toolbox and KNITRO, a suite of 
algorithms made freely available for academic and personal use by Ziena (http://www.ziena.com/). 
39 We find the vector of polynomials ( ) ( ),A B

K Kc cβ β⎡ ⎤⎣ ⎦  that most nearly satisfy (30), subject to 

theoretical restrictions. We force A
Kβ  and B

Kβ  to be monotonic and for ( ),A B B B
K c cβ =  . The last 

restriction means that a bidder receiving the worst possible cost draw will submit a bid exactly equal to 

their cost draw. 
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equilibrium of degree K by the increase in expected profit an unconstrained seller can 

obtain if all other sellers abide by the constrained strategy.40  

Numerical Results 

In all cases we fix Type A sellers to draw their costs from the uniform 

distribution on [0,100]. We generate asymmetry by making a Type B distribution that 

shifts the Type A distribution by a constantδ , giving a support on[ ],100δ δ+ . 

Symmetric Sellers 

We first demonstrate the CSE technique when sellers are symmetric, which 

allows us to benchmark the CSE against the well-known equilibrium bid strategy 

derived by Weber (1983) and Ortega-Reichert (1968).41 We show how successively 

higher-degree polynomials better approximate the true equilibrium bid function. We 

also illustrate a measure of the approximation error that we can apply even to the 

asymmetric case that has no known closed-form solution. We examine the 

asymmetric cases in the next subsection.  

Figure 13 shows the Nash Equilibrium bid function and the linear CSE bids when 

10 sellers compete for the right to sell 6 identical goods to the bid-taker. The linear 

strategy approximation captures the general slope of the Nash Equilibrium bid 

function quite well. A better approximation is desirable, however. To see why, we 

calculate the best response of a unilateral deviator. If all but one seller were using the 

linear CSE strategy, how well could one informed player do by optimizing on his 
                                                 
40 That is, we allow a single bidder to deviate by following the best unilateral strategy, where this new 
strategy is constrained by a K K> . K is chosen to be sufficiently large that the deviating bidder is 
essentially unconstrained. 
41 See the theorem by Weber and Ortega-Reichert above. 
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own? The answer turns out to be that a nearly 16% increase in average profits is 

possible if a seller optimally deviates. We denote by ( )Q k  the measure of 

approximation quality with Monte Carlo size mc for any degree k of the CSE ( 1k =  

for linear strategies, 2k =  for quadratic strategies, etc.). ( )Q k  is calculated as  

 
( ) ( )* ( ) ( ) ( )

, ,2
1 1

( )

1 ; ;
( )

mc mc
CSE k CSE k CSE k

i i j i i j
i j

CSE k

b s b s
mc

Q k
− −

= =

⎡ ⎤
Π −Π⎢ ⎥

⎣ ⎦=
Π

∑∑
, 

where ( );i ib s−Π represents the profits accruing to seller i when seller i submits the 

bid ib , and all other sellers follow the strategy is− , *
ib is the optimal bid for seller i , 

conditional on all others bidding according to ( )CSE k , and ( )CSE kΠ is the expected 

profit from following the equilibrium strategies. 42  

Figure 13 – Symmetric Auction with Linear Strategies 
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42 The numerator of this measure of equilibrium stability is referred to as 4C by Armantier, Florens, and 
Richard. 
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An arbitrary seller following the linear CSE strategy will earn an average profit 

of $19.15, according to our computations. If this same seller optimally deviates while 

all his competitors follow the CSE strategy, he can expect to earn an additional $3.00, 

which amounts to the 16% increase reported above.  

We increase the degree of the polynomial strategy in order to approximate a 

constrained equilibrium with a lower benefit to unconstrained deviation. Figure 14 

displays the results of the quadratic CSE, again against the benchmark of the 

theoretical equilibrium. A large improvement in the approximation quality is 

immediately obvious, even from a cursory examination of the figure. This apparent 

improvement is confirmed by the (2)Q  statistic. The advantage to optimal deviation 

has declined markedly, from 16% in the linear case to 2.5% in the quadratic case. The 

quadratic strategies approximate true equilibrium more closely, and generate a much 

lower payoff to deviation from the constrained strategy. 

Figure 14 – Symmetric Auction with Quadratic Strategies 
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Increasing the degree of the polynomial of the constrained strategy makes the 

quality of the approximation arbitrarily precise. Figure 15 shows the optimal quintic 

(CSE(5)) bid function as compared to the true Nash Equilibrium bids. In this case, the 

approximation is so good that the two lines overlay each other almost perfectly, so 

much so that they are difficult to distinguish. As a reference for the approximation 

quality possible with the CSE approach, the ( )5Q  statistic is 0.75%.  

Figure 15 – Symmetric Auction with Quintic Strategies 
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Asymmetric Sellers  

Now that we have demonstrated how well the computational technique works, 

we apply it to several asymmetric auctions. We calculate equilibrium approximations 

in three cases of asymmetry: low asymmetry ( 25δ = ), medium asymmetry ( 50δ = ), 

and high asymmetry ( 75δ = ). These cases are selected to demonstrate the decline in 

competition among low-cost sellers that occurs as the between-class heterogeneity 

increases (as δ  increases). Note that in each case there are five Type A sellers and 
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five Type B sellers, and the procuring agent wishes to purchase six units. We begin 

by presenting the results graphically. The bidding functions for low, medium, and 

high asymmetry cases are presented in Figure 16 through Figure 18. Since there is no 

theoretical equilibrium for comparison, we plot only the highest-degree CSE bid 

function computed (CSE(5)). There are several things to notice.  

Figure 16 – Low Asymmetry Auction with Quintic Strategies 
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Figure 17 – Medium Asymmetry Auction with Quintic Strategies 
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Figure 18 – High Asymmetry Auction with Quintic Strategies 
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In the low, medium, and high asymmetry cases, Type B sellers bid more 

aggressively than Type A sellers with the same cost draw. Since Type B sellers 

compete against a stronger cohort (they bid against four other Type B sellers and five 

Type A sellers rather than the reverse), the probability of a Type B seller winning is 

everywhere lower than the probability of a Type A seller winning. This result is 

consistent with theory. See, for example, Krishna (2002), p. 48. The phenomenon has 

been described as “weakness leads to aggression” (Krishna (2002); p. 47). Because 

weak sellers face stiffer competition, they face a lower conditional probability of 

winning. Ex ante, a strong seller is more likely to win than a weak seller, both having 

submitted the same bid. This lower probability of winning induces weak sellers to bid 

closer to their true cost; hence, “weakness leads to aggression.”  

Although Type B sellers bid more aggressively in all scenarios, the degree to 

which they bid more aggressively is increasing in the between-class heterogeneity. 

The relative aggressiveness of sellers can be seen as the vertical difference between 

Type A and Type B bid functions in Figure 16 through Figure 18. The distance 

between the bid functions increases as Type B sellers are progressively made weaker 

(i.e. their cost distributions are shifted higher), from the low asymmetry case in 

Figure 16 to the high asymmetry case in Figure 18. The increasing difference in 

bidding functions between Type A and Type B sellers is a result of Type A sellers 

increasing their bids in response to the weaker competition provided by 

Type B sellers. The same low-cost seller will increase their bid from about $70 in the 

low asymmetry case, to just below $90 in the medium asymmetry case, and finally to 
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about $100 in the high asymmetry case. These low-cost sellers extract the most rent 

from the auction process, and are the ones targeted by the imposition of a quota.  

The takeaway is that low-cost bidders are extracting rent because of the 

observable heterogeneity of the high-cost bidders. The greater is the observable 

heterogeneity, all else equal, the greater the rent extracted by the low-cost bidders. 

We have claimed that imposing a quota can reduce procurement cost by substantially 

reducing the rent accruing to low-cost bidders. We now examine the computed bid 

functions in auctions with a quota in order to determine if that claim is borne out.  

We present the estimated bid functions for auctions with a quota in Figure 19 

through Figure 22. The symmetric, low-, medium-, and high-asymmetry cases are 

presented, just as they were for the open auctions. In each case, the quota is enforced 

by a simple rule. The bids of no more than four Type A sellers and four Type B sellers 

can be accepted. The imposition of a quota has a pronounced impact on bidding 

behavior. When faced with both within- and between-group competition, low-cost 

sellers bid much more aggressively. As a direct demonstration of the quota-effect, we 

present Figure 23, which plots the bid functions before and after the imposition of a 

quota in the medium asymmetry case (the case will be examined in the laboratory 

experiment). Note the tradeoff of imposing a quota: Type A sellers submit 

significantly lower bids in an auction with a quota than in an open auction, while 

Type B sellers inflate their bids slightly to reflect their increased chances of winning 

under the quota regime.  
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Figure 19 – Symmetric Auction with Quota and Quintic Strategies 
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Figure 20 – Low Asymmetry Auction with Quota and Quintic Strategies 
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Figure 21 – Medium Asymmetry Auction with Quota and Quintic Strategies 
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Figure 22 – High Asymmetry Auction with Quota and Quintic Strategies 
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Figure 23 – Medium Asymmetry Auction Comparison 
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Using these estimated bid functions, we are able to compute the total 

procurement cost to the bid-taker in constrained equilibrium. Table 2 presents the 

expected total procurement cost in low-, medium-, and high-asymmetry cases, with 

and without a quota. The imposition of a quota decreases procurement cost in all 

cases, although when asymmetry is low the difference is negligible. When between-

group asymmetry is high, however, the difference becomes more pronounced. We 

find that a quota can be an effective means to reduce procurement cost in situations of 

high seller asymmetry, while posing little risk of increasing procurement cost when 

groups of sellers are similar.  
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Table 2 – Expected Total Procurement Cost 

Open Auction Quota Auction
381.6442 380.4208
(17.8699) (18.2493)

Open Auction Quota Auction
457.2948 452.2005
(16.112) (17.364)

Open Auction Quota Auction
531.4892 509.7331
(13.7573) (21.2654)

Open Auction Quota Auction
643.5566 564.8096
(15.668) (24.7912)

Expected Procurement Cost from Monte Carlo
Simulations.
Standard deviations in parentheses.

Symmetric Auction

Low Asymmetry Auction

Medium Asymmetry Auction

High Asymmetry Auction

 

A quota is capable of lowering procurement cost when sellers are asymmetric 

while not raising procurement cost when sellers are symmetric. This is a consequence 

of the fact that the returns to competition are increasing at a decreasing rate. In the 

IPV model of auctions, increasing competition reduces the rent accruing to the 

winning seller. However, as the number of sellers tends to infinity, the auction 

becomes perfectly competitive (see McAfee and McMillan (1987), for example); the 

effect of an extra seller on the behavior of existing sellers becomes negligible. That is, 

the returns to competition are increasing at a decreasing rate. Imposing a quota in an 

auction creates artificial scarcity, and thus competition. The greatest increase in 
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competition comes when we move from having one seller in an auction to having 

two. The marginal increase in competition is still high when we add a third, but 

declines as we continue to add additional sellers. Likewise, the returns to enforcing a 

small bit of competition, by creating artificial scarcity, are highest when the amount 

of competition starts out low, as it does among the Type A sellers in the auctions 

without a quota. In exchange for this extra competition encouraged among Type A 

sellers by the imposition of a quota, we increase the probability that a Type B seller 

will win the auction. This represents a decrease in competition facing Type B sellers. 

However, since Type B sellers were winning infrequently, i.e. competition was high, 

the decrease in competitive forces among Type B sellers is reduced from a point of 

relatively high competition.  

In the final chapter of the dissertation we turn to experimental evidence, where 

we examine bidder behavior in laboratory auctions constructed to match the medium-

asymmetry case.  
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Chapter 5:  Experimental Evidence 

Introduction 

We have two motivations for subjecting the quota mechanism to laboratory 

testing. First, closed-form theoretical predictions are difficult if not impossible to 

derive, so empirical validation complements the numerical computations presented 

above. Second, behavior may systematically differ from theory. We show a price 

discriminating mechanism that is “implementable” in the sense that: (1) the rules can 

be explained easily to sellers and (2) the results are robust to “misbehavior” by 

sellers. Human sellers are known to misbehave in that they do not always bid 

according to standard game theoretic concepts, even in environments where the 

mathematical theory suggests bidding should be straightforward.43 Thus, we desire to 

check that our results are robust to the actions of boundedly rational sellers. We put 

the auction institutions to their most rigorous test not by simulating particular types of 

misbehavior unilaterally, but by allowing a group of human sellers to compete for 

cash in a laboratory setting. 

Experimental Procedures 

We report on the results from 17 experimental sessions. Ten undergraduate 

students from the University of Maryland participated in each session. All 

experiments were computerized, using custom software.44 In each session, five of the 

                                                 
43 It is well known, for example, that bidders in second-price sealed-bid auctions frequently fail to 
submit bids equal to their costs, even though doing so is unambiguously optimal. See Kagel (1995), 
e.g. 
44 A hearty thanks goes to Daniel Hellerstein for his custom-designed auction software. 
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subjects were labeled as Type A sellers, and five of the subjects were labeled as Type 

B sellers. This information was provided on-screen; subjects did not know the Type-

identities of any of their competitors, but did know that there were a total of five Type 

A and five Type B sellers. Additionally, subjects knew that Type A sellers drew their 

costs randomly, with each amount between $0.00 and $100.00 being equally likely to 

occur, while Type B sellers drew costs between $50.00 and $150.00.  

Subjects entered the lab and were randomly assigned to a role, which 

corresponded to information displayed for them on their computer terminal when they 

sat down. Each subject listened as the instructions were read aloud. This way, each 

subject began with the same set of information, and any questions were answered 

publicly if part of the instructions were unclear.45 Subjects were then given time to re-

read the instructions on their own before the first auction began.46 Each subject had 

an opportunity to practice in their role before participating in an auction for real 

money. 

The treatment in the experiment was whether or not a quota was imposed. The 

design we employed was a within-design. Each subject participated in both open 

auctions and auctions with a quota. Because every subject participated in both 

treatments, we can make both within- and between-comparisons. The order of 

treatments was varied to control for learning effects, and in some sessions an “A-B-

A”-type design was employed to determine if individual bidding behavior within a 

treatment varied with experience. Because we varied the order in which subjects 

                                                 
45 Subjects were asked to raise their hand if they had a question. A monitor would listen to the question 
and the answer would then be given publicly if the question pertained to all subjects. 
46 We include some screenshots from the computerized auction environment in the appendix. This 
includes a “Welcome” screenshot that began every set of instructions. A full set of screenshots, as well 
as instructions for all treatments, are available upon request. 
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faced different auction mechanisms, we are confident that our results are not 

influenced systematically by seller learning or order effects.47 During a given 

experimental treatment (each treatment lasted for at least 10 auctions), subjects 

maintained their Type-identity. That is, subjects did not change between Type A and 

Type B in sequential auctions.48  

We focus only on the medium asymmetry case in our experimental analysis. 

While there is probably some merit to confirming that procurement cost is further 

reduced by a quota as the between-group heterogeneity gets larger, we were 

concerned about perceived fairness in the experimental auctions.49 Further, it seems 

intuitively obvious that the benefit of employing any discriminating mechanism 

should increase as seller heterogeneity increases. Consequently we didn’t believe that 

it was necessary to test the quota auctions under the high asymmetry condition. On 

the other hand, we also do not test the quota mechanism when between-group 

heterogeneity is low. Given that we observe more aggressive bidding in our 

experimental sessions than we expected, this would have been desirable. We leave 

this for future research.  

Results 

We begin our analysis by presenting the data in full. Figure 24 shows a scatter plot of 
all bids against all costs in the open auction treatment, while  

                                                 
47 We discard the first 3 rounds of each treatment in our regression analysis, a standard practice in 
experimental economics, mean to account for an initially steep learning curve. Our results are robust to 
the inclusion or exclusion of additional rounds. We find no evidence for end-of-round type effects, and 
so do not exclude any auctions at the end of a treatment sequence. 
48 We did, however, experiment with changing bidder Types over treatments. 
49 When between-group heterogeneity is large, one group necessarily earns far larger profits than the 
other 
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Figure 25 shows a scatter plot of all bids against all costs in the quota treatment. The 

bidding behavior by Type and quartile is also summarized in Table 3. A brief 

inspection reveals that bidding behavior in the lab does broadly conform to that 

predicted by our computational results. In the open auction, competitive bids are 

almost flat, and centered about the predicted equilibrium margin (about $87). When 

cost draws are above the predicted margin, bids increase close to linearly with costs. 

On the other hand, in Figure 25 we see that bids from those with the lowest costs are 

depressed significantly by the imposition of a quota. The average bid for subjects 

with costs below $80 is reduced by about $10. The predicted impact of imposing a 

quota seems to be realized. Strong sellers feel increased competition and bid more 

aggressively as a result. The tradeoff should be that weaker sellers, on average, bid 

less aggressively. Their increased chance of winning should have caused them to 

increase their bids. Comparing the mean Type B bids from the auctions with and 

without a quota in Table 3, it would seem instead that Type B sellers bid more 

aggressively.50 

                                                 
50 These calculations are fully inclusive, however, and so the means may be unduly influenced by 
“throw away” bids. Individuals who assessed their chances of winning as being almost zero sometimes 
submitted excessively high bids. 
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Table 3 – Bidding Behavior 

0 - 25 25 - 50 50 - 75 75 - 100 50 - 75 75 - 100 100 - 125 125 - 150

79.13 80.86689 92.04782 103.1273 94.81788 96.44045 129.6281 190.2178
(1.72) (1.15) (2.49) (2.98) (6.45) (0.74) (5.81) (18.03)

65.01 71.01 81.28 93.34 83.16 97.04 128 153.32
(1.59) (1.66) (1.04) (1.17) (0.99) (1.32) (8.03) (9.47)

0 - 25 25 - 50 50 - 75 75 - 100 50 - 75 75 - 100 100 - 125 125 - 150

62.30483 39.40278 21.63756 6.525411 17.0264 4.443 0.546931 -0.02237
(1.99) (1.24) (1.07) (0.75) (0.93) (0.56) (0.25) (0.07)

50.8 30.13 12.88 1.66 16.62 4.06 0.45 -1.53
(1.70) (1.81) (1.08) (0.30) (1.23) (0.55) (0.22) (1.63)

Highest bid in each 
group rejected

Mean Profit 
(SE)

No Limits -- Open Auction

Quota Auctions

Cost

Auction Restrictions

None

Seller Profits
Type A Type B

Mean Profit 
(SE)

Mean Profit 
(SE)

Mean Profit 
(SE)

Mean Profit 
(SE)

Mean Profit 
(SE)

Mean Profit 
(SE)

Mean Profit 
(SE)

No Limits -- Open Auction

Quota Auctions

Seller Bids
Type A Type B

Cost
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)
Mean Bid 

(SE)

Highest bid in each 
group rejected

Auction Restrictions

None
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Figure 24 – Scatterplot of Bid Data 
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Figure 25 – Scatterplot of Bid Data 
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Formal analysis of the experimental data follows the same pattern from the 

presentation of the computational evidence. We first present an econometric model of 

the bidding functions. We then present the empirical distribution of procurement cost 

with and without a quota. We calculate a series of counterfactual procurement cost 

distributions to increase the power of our tests and to check the robustness of our 

conclusions. We fit a panel model to our data and use it to predict procurement cost 

over a number of draws – a Monte Carlo experiment. The imposition of a quota has a 

more pronounced impact than anticipated.  

Econometric Model 

As in our computational model, we specify our econometric model such that each 

subject’s bid is a polynomial function of their cost draw. The panel nature of the data 

allows us to control for the effect of subject-specific bidding behavior by including 

fixed or random effects in our specification. That is, we specify 

 , , ,
1

K

i t i k i t i t
k

b cα β ε
=

= + +∑ i , 

where ,i tb ( ),i tc is the bid (cost draw) of subject i in auction t, ,i tε is a normally 

distributed error term, and 'siα and the 'sβ are parameters to be estimated.51  

We estimated both regressions in which Type A and Type B bids were pooled, 

and in which Type A and Type B bids were modeled separately.52 That is, we 

                                                 
51 In all specifications, a Hausman test supports the use of random effects in the sense that the null 
hypothesis of consistency is not rejected. Therefore, since random effects are more efficient than fixed 
effects under the null hypothesis, we report only the results of models with random effects. 
52 We ran the regression in which Type A and Type B bids were modeled separately by including a full 
set of interaction terms of a dummy variable (D=1 if Type B, 0 otherwise) with each polynomial cost 
term. This is not identical to running two completely separate models in the case of a panel data 
regression. However the results, both the predictions and the resulting statistics, are very similar. 
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estimated regressions where only a single bidding function was specified, which 

would be appropriate if Type A and Type B bidding behavior was indistinguishable, 

and regressions where Type A and Type B bid functions had independent coefficients. 

For both the pooled and separate regressions, we ran restricted and unrestricted 

models.53 We present here only the unrestricted models. The omitted results are 

qualitatively similar.  

We present the results in Table 4 for open auctions, and Table 5 for auctions with 

a quota. The pooled models (single bid function) fit the data well, but the chi-square 

statistic testing the joint significance of all interacted variables in regressions (2) and 

(4) lead us to conclude that Type A and Type B seller behavior should be modeled 

separately. The predictions from our selected model are shown in Figure 26. In fact, 

the predictions of the model look extremely similar to what was predicted by theory, 

as can be seen by comparison with Figure 23. We run a simple Monte Carlo 

experiment, showing what the distribution of procurement cost would be in repeated 

experiments, assuming the estimated coefficients of our econometric model are the 

true coefficients. The results are displayed in Figure 27. The mean procurement cost 

in an auction without a quota is $526.56, compared to a mean procurement cost of 

$477.53 in an auction with a quota.  

                                                 
53 We use our econometric model to test the theoretical restrictions placed on our computational model. 
Specifically, we test whether or not ( )B B Bc cβ = , or whether the bidder with the highest possible cost 

draw submits a bid equal to their cost draw. With this restriction and the assumption of monotonicity, 
this implies that no Type B bidder would bid more than Bc . Additionally we test whether or not we 
can impose the restriction that ( )A B Bc cβ = . In all cases our data rejects the theoretical restrictions 

based on a likelihood ratio test. Consequently, the coefficients we derive in our CSE calculations are 
not directly comparable to the coefficients we estimate econometrically. The predicted bidding 
behavior, however, is comparable. 
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Table 4 – Econometric Model of the Open Auction 

main
Cost 0.316* (2.57) -0.470* (-2.02)
Cost 2̂ -1.620** (-3.29) 3.267* (2.34)
Cost 3̂ 3.401*** (4.59) -7.062* (-2.29)
Cost 4̂ -1.596*** (-4.30) 5.625* (2.48)
Cost*B 5.205* (2.02)
(Cost 2̂)*B -16.20* (-2.54)
(Cost 3̂)*B 22.82** (3.19)
(Cost 4̂)*B -12.09*** (-3.63)
B -0.659 (-1.72)
Constant 0.532*** (48.74) 0.565*** (41.18)

sigma_u
Constant 0.0595*** (14.60) 0.0595*** (14.62)
sigma_e
Constant 0.0589*** (53.33) 0.0584*** (53.33)
Observations 1556 1556
t statistics in parentheses
* p<0.05,  ** p<0.01,  *** p<0.001
B=1 if TypeB,  0 otherwise

chi2(  4) =  428.55
chi2(  4) =   20.83

Test of 
joint 

chi2(  4) = 4555.81

Bid Bid
Type A  & B  Pooled

(1)
Fully interacted model

(2)
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Table 5 – Econometric Model of the Auction with Quota 

main
Cost 0.361* (1.99) -0.254 (-0.74)
Cost 2̂ -1.168 (-1.67) 2.757 (1.39)
Cost 3̂ 2.535* (2.48) -6.547 (-1.52)
Cost 4̂ -1.151* (-2.31) 5.712 (1.82)
Cost*B -1.780 (-0.52)
(Cost 2̂)*B 0.986 (0.12)
(Cost 3̂)*B 4.754 (0.50)
(Cost 4̂)*B -5.476 (-1.23)
B 0.425 (0.83)
Constant 0.440*** (28.88) 0.451*** (23.23)

sigma_u
Constant 0.0437*** (8.30) 0.0412*** (8.36)
sigma_e
Constant 0.0500*** (32.65) 0.0495*** (32.72)
Observations 590 590
t statistics in parentheses
* p<0.05,  ** p<0.01,  *** p<0.001
B=1 if TypeB,  0 otherwise

chi2(  4) =  491.52
chi2(  4) =    8.58

Test of 
joint 

chi2(  4) = 2947.84

Type A  & B  Pooled
Bid

Fully interacted model
Bid

(3) (4)
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Figure 26 – Predicted Bidding Functions 
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Figure 27 – Distribution of Procurement Cost in Repeated Experiments 
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We use the same estimated coefficients to run an additional counterfactual 

experiment. We predict what the procurement cost would have been if the exact cost 

draws received by sellers in the auctions without a quota were instead obtained in the 

auctions with a quota, and vice-versa. Simply, we swap the cost draws received by 

subjects in the quota treatment with the cost draws received by subjects in the open 

auction treatment. We do this to ensure that our findings are not an artifact of a set of 

lucky draws that somehow made the quota treatment appear to produce more 

aggressive bidding and lower procurement costs.  

When we apply the estimated coefficients to the swapped cost draws, we obtain 

results summarized in Figure 28. Nonparametric tests confirm that the data do not 

come from identical distributions. Procurement cost in auctions with a quota is 

significantly lower than in auctions without a quota.  

Figure 28 – Distribution of Procurement Cost in Repeated Experiments with 
Actual Cost Draws 
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We have thus far examined the procurement costs that would be realized, on 

average, if sellers followed the strategies given by our econometric model. Some 

amount of “smoothing” takes place when we base our procurement cost estimates on 

our econometric model, however, since the influence of outliers is minimized. We 

turn finally to a direct analysis of the observed procurement cost data in each auction 

of the laboratory experiment.  

Procurement Cost 

We plot a histogram of the procurement cost under both treatments over all 

sessions in Figure 29. It is apparent that the mean procurement cost in an auction with 

a quota is lower than the mean procurement cost in an auction without a quota. A 

Komogorov-Smirnov test rejects the null hypothesis of identical distributions, 

supporting the finding that procurement cost is lower in an auction with a quota. The 

Kolmogorov-Smirnov test statistic54 is based on the maximum distance between the 

two empirical CDFs, which we plot in Figure 30. The empirical CDF of procurement 

cost in an auction without a quota stochastically dominates the empirical CDF of 

procurement cost in an auction with a quota. A Mann-Whitney rank-sum test bolsters 

our conclusion (rank-sum = 7054; p-value = 4.6e-9).  

                                                 
54 The value of the test statistic here is 0.3624, with an associated p-value of 6.2e-7. 
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Figure 29 – Distribution of Procurement Cost 

$300 $350 $400 $450 $500 $550 $600 $650 $700 $750
0

10

20

30

40

50

60

70

80

$300 $350 $400 $450 $500 $550 $600 $650 $700 $750
0

5

10

15

20

25

30

Auction with a Quota

No Quota Auction

 
 

Figure 30 – Empirical CDFs of Procurement Cost 
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We carry out a recombinant estimation procedure to complement the above 

tests.55 In order to make sure that our procurement cost statistics are not unduly 

influenced by a small number of anomalous bids, we recombine bids made in a given 

auction with bids made in other auctions. In this way, we can create hypothetical 

auctions – auctions that did not take place but could have taken place, thus increasing 

our sample size. To be clear, we present a simple example. Denote by ,t ib the bid 

placed by seller i in auction t, [1,10],  [1, ]i t T∈ ∈ . Each auction 1,…,T occurred inside 

the lab, generating payments to subjects. A vector of bids exists for each auction that 

did take place, for example the first: ( )1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10        b b b b b b b b b b . An 

outcome that could have occurred but did not is given by 

( )28,1 63,2 46,3 27,4 37,5 11,6 57,7 66,8 85,9 25,10        b b b b b b b b b b , i.e. the bid of the first seller in the 

28th auction, the second seller in the 63rd auction, and so on. This vector of bids 

represents an auction for which we can calculate our outcome of interest, 

procurement cost.  

The assumption underlying the procedure is exchangeability. The manifestation 

of this assumption in terms of a sealed-bid auction is simply that when a subject 

makes a bid, there are only two pieces of information relevant to his decision: (1) his 

cost draw; (2) his knowledge of the distribution of his opponents’ costs. If this 

assumption is reasonable, it allows us to treat the bids submitted in any auction as 

exchangeable, and thus to create a large set of valid hypothetical auctions that we can 

evaluate. 

                                                 
55 See Mullin and Reiley (2006) for further details on the recombinant estimator.  
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We carry out a recombinant procedure using the algorithm outlined in the 

appendix. We use this algorithm to generate auctions, which we then solve and 

compute procurement cost statistics for. The results are summarized by the histogram 

presented in Figure 31. The conclusions we drew from the raw data are supported by 

what we find using the recombinant procedure. Mann-Whitney and Kolmogorov-

Smirnov tests again reject the null hypothesis of identically distributed procurement 

costs.  

Figure 31 – Procurement Cost under Recombinant Procedure 
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The key question we have set out to answer is whether or not the changes we 

observe in seller behavior between auctions without a quota and auctions with a quota 

add up to a more cost-effective auction from the perspective of the bidtaker. The 

experimental results do confirm our computational finding that auctions with a quota 

are more cost-effective. The difference in total procurement cost between the two 
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institutions is more than we expected, however. We estimate that average 

procurement cost was reduced by 8.7% in the auctions with simple quota as compared 

to the open auctions (Table 6). Compare this to an expected reduction in procurement 

cost of 4.1%. Total procurement cost was lower than expected in all experimental 

auctions. Auctions without a quota were 2.4% less costly than expected, while 

auctions with a quota were 7.1% less costly than expected.  

Table 6 – Experimental / CSE Comparison 

Open Quota Open Quota
Avg cost $518.57 $473.30 $531.49 $509.73

SD 63.24 54.19 13.76 21.27
N 200 76 10,000 10,000

Total Procurement Cost

Experimental Simulated
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Chapter 6:  Conclusions 

In this dissertation I have outlined the CSE procedure proposed by Armantier, 

Florens and Richard (2008) for approximating the equilibrium bid functions of an 

auction. I have explored the performance of the procedure in relation to the prevailing 

computational methods in the literature, and I have programmed an algorithm that 

allows a CSE solution to be found for a general auction problem. The modular nature 

of this algorithm allows many auction problems to be solved using a consistent 

program, avoiding rewriting for special cases. This is the first work of which I am 

aware to apply a computational equilibrium program to a multi-unit auction case. In 

those cases when an analytical equilibrium can be found, it has been shown that the 

computational algorithm yields nearly exact results, even in the multi-unit case.  

The CSE algorithm has been used to predict outcomes in a multi-unit, 

asymmetric procurement auction problem, and these predictions have been compared 

to the outcomes of a laboratory experiment. The direction of the comparative static 

predictions given by the CSE algorithm have been confirmed by the laboratory 

experiment. 

The CSE algorithm and computational program given here can be useful for 

market design problems in many areas of economics. 
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Appendices 

Appendix A – Permission to Reproduce Figures 

What follows is the exact text of the license agreement obtained in order to be 

able to reproduce Figure 1A in Marshall, et al. (1994).  
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Appendix B – Instructions for Laboratory Experiment 

The following screenshots are samples of the instructions used for the laboratory 

experiment reported in chapter 5. The instructions had a modular design such that the 

order of treatment could be varied continuously and randomly. Thus the entire 

instructions for any one experimental session were composed of instructions similar 

to those displayed here. Instructions used in a given session and for a given treatment 

are available upon request. 

 

Welcome! 
Today you will be participating in an experiment on economic decision making.  

If you follow the instructions and make good decisions, you can earn a considerable 
amount of money, which will be paid to you after the experiment is over.  

Just for participating in this experiment, you will receive a participation payment of 
$5.00. However, you can earn substantially more by actively taking part in the 
experiment. Your total earnings will be paid to you in cash at the conclusion of the 
experiment.   

We will begin by conducting several auctions. In each auction, you and all other 
participants are sellers and there is a single buyer. The single buyer is a computer. 
The buyer will be purchasing tickets, which you will be given, in each auction.  

We will be conducting 40 auctions today, one after the other. Each auction will take 
about 1 minute. They are all separate, independent auctions. Your bid and earnings in 
any one auction will have no influence on your earnings in any other auction.  

These instructions will describe how the auction works and prepare you for the 
auctions. After describing each topic, a list of bullet points will be provided to 
summarize the topic just introduced. During the experiment you will be able click on 
the Summary of this auction's rules link in the upper left-hand corner of your web 
browser to bring up these bullet-point summaries and recall topics quickly.  
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Auction Instructions 
During an auction, each one of you will have a single ticket that you may offer for 
sale to the buyer.  

To offer your ticket for sale, you will submit a bid. The lower your bid the higher the 
chance your bid will be accepted. If your bid is accepted, you will receive your bid 
minus a cost that will be posted on your ticket. You will only incur this cost if your 
bid is accepted.  

The cost of your ticket will be randomly determined separately and independently for 
each bidder in each auction in the experiment.  

Both the cost and your bid will be denominated in a currency called E-Bucks. Each E-
Buck will be converted into dollars at the end of the experiment at a rate of .05 real 
dollars per E-Buck.   

Thus your total earnings 
for the experiment will be: 
   

(Your $5.00. participation payment )  
+  

(Your net earnings ) ×  ( 
the .05 E-
bucks 
Conversion 
Rate 

)
  

... and where Your net 
earnings  equals :   

(Sum of your accepted bids ) 
-  

(Sum of costs on your accepted tickets )  
 

 

Types of Bidders 
There are two types of bidders in the room. Some of you are Type A bidders and some 
of you are Type B bidders. You will find out which type you are, and the cost of your 
ticket, when you advance to the bidding screen.  

For Type A bidders, cost may be any amount (rounded to the penny) between and 
including $0 and $100, with each amount being equally likely.  

Imagine a roulette wheel with the stops labeled at $0.00, $0.01, $0.02,..., $99.98, 
$99.99, $100.00  
A hard spin of the wheel would make each of these values equally likely.  
Similarly, for Type B bidders cost may be any amount (rounded to the penny) 
between and including $50 and $150, with each amount being equally likely.  

You may note that the range of Type B cost is higher than the range of Type A.  
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Before each auction you will be given a new ticket, with a new randomly chosen cost, 
regardless of whether or not you sold your ticket in the previous auction. In other 
words, each auction is truly independent. Your actions in any auction will have no 
bearing on your earnings in any other auction. 

 

 

 

 

 

 

More on Bidder Types  
Even though you will receive a new ticket before each auction, your bidder Type will 
remain the same.  

•  If you are a Type A bidder, you will always be a Type A bidder.  
•  If you are a Type B bidder, you will always be a Type B bidder.  

Your random cost for any round will be known to you and only you. Do not let 
anyone else see it. You will learn your random cost at the beginning of each timed 
round. You will have up to a minute to submit your bid after learning your random 
cost. You can, however, submit a bid as soon as you like after learning your random 
cost.  

We will review how you submit your bid in a few moments.  

Although the cost of your ticket differs from other bidders in the room, the buyer 
values all tickets equally. To the buyer, any one ticket is as good as any other ticket.  

Review of Types of Bidders  

•  There are 10 total bidders (you plus 9 others).  
•  There are two Types of bidders:  

•  5 of you are a Type A bidders  
•  5 of you are a Type B bidders.  

•  Each ticket has a cost printed on it. 
The cost, randomly drawn from the Type A or Type B interval, will be 
different for every auction.  
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Rules of the Game 
During each auction you will have a chance to submit any bid you choose by clicking 
in the Your bid  textbox on the screen and using your number keys.  

Once all bidding tickets are received, they will be compiled and winners will be 
determined.  

The buyer will accept the lowest 6 bids in each auction.  

Payments will be calculated as follows:  

• If your ticket is rejected, you will earn nothing for that auction.  
• If your ticket is accepted, you will receive your bid minus the cost printed on 

your ticket.  
• Please note carefully: If your bid is less than your cost, and your ticket is 

accepted, you will lose money in that auction. This amount (converted from 
E-bucks to dollars) will be subtracted from your $5.00 participation payment.  

 

Making an offer 
We will run one practice auction so that you can familiarize yourself with the bidding 
screen and the process. You may raise your hand to ask questions at any time during 
the practice auction.  

• To submit a bid simply click in the Your bid  textbox on the screen and use 
your number keys to enter your offer.  

• The practice auction and all other auctions are timed.  
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• By the conclusion of the timed round, you must submit a bid for your ticket.  
• You may submit your offer at any time before the timed round expires, if you 

wish.  
• There is a timer on the offer screen to assist you in budgeting your time. If 

you have not submitted a bid by the time the auction expires, the bid displayed 
on-screen will be submitted for you automatically.  

You may not converse with other participants during the entire experiment. 
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