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This study uses an atmospheric general circulation model to examine the re-

gional and global climate response to the Messinian Salinity Crisis (MSC) ∼6 Ma.

During this time, the tectonic collision of the African and European plates isolated

the Mediterranean Sea (MedSea) from the Atlantic Ocean. MedSea level is esti-

mated to have fallen between 1000-2000 m and desiccation may have lasted for 90

kyr. Our results show that the substantial MedSea depression generates planetary-

scale atmospheric waves responsible for significant climate effects throughout the

Northern Hemisphere. A notable deepening of the Aleutian Low and a significant

equatorward shift in the Atlantic jet stream are evident.

Cyclical patterns in Messinian sediments suggest alternating wet and dry climate

during the MSC. These cycles have been attributed to variations in the Earth’s pre-

cession. This is the first study to detail how reduced MedSea level alters orbitally-

driven climate change during the Late Miocene. Reduced MedSea level results in

wetter conditions to the Northeast, in particular the Alps, consistent with proxy



data. This signal is robust under all precession signals and is supported by evi-

dence of greater weathering of the Alps during the MSC. Desiccation and lowered

MedSea level results in greater precipitation over the Guinea Coast region of North

Africa. Greater runoff from this region is supported by proxy evidence of higher

monsoon intensity and enhanced total organic carbon accumulation throughout the

Messinian.

We couple our model to an online aerosol model to examine the response of dust to

varying orbital parameters and to MedSea desiccation. Modeling dust source and

transport changes in response to decreased dustiness during precession minimum

shows that warmer tropical North Atlantic SSTs, attributed to increased insolation

in the absence of dust, enhances evaporation and favors more precipitation over the

western tropical North Atlantic. This stresses the importance of allowing dust to

respond to climate change and including prognostic dust in paleo-simulations that

examine changes in the West African monsoon.

Enhanced dust loading over the tropical North Atlantic Ocean occurs when the

Mediterranean is desiccated. This reduces the net radiative flux at the surface,

which cools SSTs north of the Equator and shifts the ITCZ towards the Southern

Hemisphere, consistent with theories that link African dust with extended Sahel

droughts. Greater ocean productivity results from nutrient rich iron-laden dust wa-

ters, which is consistent with increased benthic foraminiferal accumulation rates off

the African coast between 5.8 Ma and 5.25 Ma. The dustier Northern Hemisphere

inhibits convective precipitation in the tropical North Atlantic and large-scale pre-

cipitation over Eastern Europe and into Central Asia, in agreement with proxy



evidence of greater aridity in these regions between 6.2 and 5 Ma. Our results show

that a desiccated Mediterranean has a significant impact on Northern Hemisphere

sea-ice formation during precession maximum, which agrees with δ18O proxies. Sea

ice growth spreads southward, especially in the Labrador and Bering Seas. Inter-

estingly, proxy data studies show discontinuous sea-ice in the Labrador Sea and

south of Greenland, as well as concurrent ice-rafting in both the northwest Pacific

and Gulf of Alaska sites in the late Miocene, a few million years prior to Northern

Hemisphere glaciation.
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ical study of the climate response to lowered Mediterranean Sea level during the
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Chapter 1

Introduction

1.1 Abstract

Roughly six million years ago, tectonic movements isolated the Mediterranean

Sea (MedSea) from the Atlantic Ocean, an event known as the Messinian Salinity

Crisis (MSC). Subsequent evaporative drawdown of the MedSea resulted in a sub-

aerial depression with a depth between 1500-2500 m. During the Late Messinian,

paleoclimate records indicate enhanced productivity in the Atlantic Ocean, increased

aridity in Central Asia, and glaciation in the Northern hemisphere. Nevertheless the

mechanisms that generate such changes are still speculative. Here we use the NCAR

Community Atmosphere Model coupled with a Slab Ocean Model (CAM-SOM) to

examine the regional and global climate response to the complete desiccation and

reduced MedSea level during the late Miocene.

Our results show that the substantial MedSea depression generates planetary-scale

atmospheric waves responsible for significant climate effects throughout the North-

ern Hemisphere. A notable deepening of the Aleutian Low and a significant equa-

torward shift in the Atlantic jet stream are evident. In DJF, vertical ascent at the

northern margin of the MedSea results in a 1.5-2.5 mm day−1 precipitation anomaly

at reduced MedSea level over the Alps, consistent with proxy data. Annual mean

area averaged MedSea evaporation is slightly higher than control conditions. Ex-

1



cept when salinity is a substantial barrier to evaporation, our results suggest that

a partially filled basin cannot exist in equilibrium and the MedSea must either be

partly connected to the Atlantic Ocean or completely desiccated. Base level lower-

ing, which alters the water budget, must be taken into account when considering

the freshwater budget during the MSC.

Cyclical patterns in Messinian sediments suggest alternating wet and dry climate

during the MSC. These cycles have been attributed to variations in the Earth’s pre-

cession. We examine how orbital variations, namely precession maximum (P+) and

minimum (P-), drive hydrological changes during the MSC. This is the first study to

detail how reduced MedSea level (Lowered Sea, LS) alters orbitally-driven climate

change during the Late Miocene. The spatial pattern of anomalous precipitation

over the MedSea with wetter conditions in the NE and drier conditions in the SW

in consistent under all precession signals and is supported by evidence of greater

weathering over the Alps during the MSC (Willett et al. (2006)). Desiccation and

lowered MedSea level results in higher precipitation over the Guinea Coast region

of North Africa. Greater runoff from this region is supported by proxy evidence

of higher monsoon intensity and enhanced total organic carbon accumulation. The

hydrological cycle of Northern Africa is sensitive to both precession changes and

MedSea level changes.

We couple CAM-SOM to an online aerosol model to examine the effect of precession

changes on dust production and the effect of a desiccated MedSea. Modeling the

dust source and transport changes in response to decreased dustiness during pre-

cession minimum shows that warmer tropical North Atlantic SSTs, attributed to
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increased insolation in the absence of dust, enhances evaporation and favors more

precipitation over the western tropical North Atlantic. This stresses the importance

of allowing dust to respond to climate change and including dust feedbacks in paleo-

simulations that examine changes in the West African monsoon.

Enhanced dust loading over the tropical North Atlantic Ocean occurs when the

Mediterranean is desiccated. This reduces the net radiative flux at the surface,

which cools SSTs north of the Equator and shifts the ITCZ towards the Southern

Hemisphere, consistent with theories that links African dust with extended Sahel

droughts. Greater ocean productivity results from nutrient rich iron-laden dust wa-

ters, which is consistent with increased benthic foraminiferal accumulation rates off

the African coast between 5.8 and 5.25 million years ago (denoted Ma for mega-

annum). The dustier Northern Hemisphere inhibits convective precipitation in the

tropical North Atlantic and large-scale precipitation over Eastern Europe and into

Central Asia, in agreement with proxy evidence of greater aridity in these regions

between 6.2 and 5 Ma.

Our results show that a desiccated Mediterranean has a significant impact on North-

ern Hemisphere sea-ice formation during precession maximum, which agrees with

δ18O proxies. Sea ice growth spreads southward, especially in the Labrador and

Bering Seas. Interestingly, proxy data studies show discontinuous sea-ice cover from

the Labrador Sea to the south of Greenland, and concurrent ice-rafting in both the

northwest Pacific and Gulf of Alaska sites in the late Miocene, a few million years

prior to Northern Hemisphere glaciation.
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1.2 Introduction

Paleoclimate records indicate enhanced productivity in the Atlantic Ocean,

increased aridity in Central Asia, and glaciation in the Northern hemisphere during

the late Messinian. Nevertheless the mechanisms that generate such changes are still

speculative. One possible source is the oceanographic isolation of the Mediterranean

Sea (MedSea), which resulted in substantial MedSea level fall beginning at 5.96 Ma

and desiccation between 5.59 to 5.50 Ma. This spectacular event occurred in the

Messinian (7 to 5.3 Ma), the last stage of the Miocene epoch (23.8 to 5.3 Ma), and is

known as the Messinian Salinity Crisis (MSC). From a climate dynamics perspective,

the MSC is an illuminating event to study, yet sophisticated modeling tools have

not been used to shed light on the regional and global climate impacts triggered

by the MSC. Hydrological changes may have important feedbacks on the climate

system. This may bring sizeable climate impacts from regional to hemispheric scales.

One interesting aspect to examine includes the effect of topography on climate.

Topographic forcing can result in the propagation of Rossby waves, which can link

external forcing in one location to more distant locations via teleconnections. The

MedSea is in an ideal location to study storm track effects due to its proximity to the

Atlantic/North African/Asian waveguide. Focusing our analysis on the large-scale

pattern of variability that results from anomalous forcing will allow us validate our

simulated atmospheric response against the geological proxy record.
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1.2.1 The Messinian Salinity Crisis

The Mediterranean Sea (MedSea), an arid region dominated by atmospheric

subsidence, has suffered from a water deficit since the Miocene epoch (Fauquette et

al., 2006) when it attained a near-modern configuration. Currently, constant water

inflow from the Atlantic Ocean inhibits the MedSea from evaporating. However,

roughly 6 Ma, during the late Miocene, the oceanic gateways linking the Atlantic

Ocean and MedSea were restricted and closed (Hsu et al. (1973)). Evaporative

drawdown of the MedSea resulted in a subaerial depression with a depth greater

than 1000 m (Hsu et al. (1973); Barber, 1981; Gargani and Rigollet, 2007). Evi-

dence of the closure of the straits connecting the Atlantic and the MedSea is found

in observations of deep abyssal flow in the North Atlantic Ocean (Hassold et al.,

2006). Incised riverbeds along the periphery of the MedSea and a thick (up to 3

km in some regions) unit of evaporites on the MedSea floor (Hsu, 1973; Krijgsman

et al, 1999) are evidence of this desiccation. Cyclical variations in the sedimentary

pattern suggest high frequency salinity changes attributed to orbital forcing since

variations in seasonal insolation can drive changes in the hydrological cycle.

The Messinian was marked by 18 glacial-interglacial cycles (Hodell et al. (2001)) and

three peaks of glaciation occurred just after the initiation of the Messinian Salinity

Crisis (MSC) (Vidal et al. (2002)). Evidence of tidewater glaciation dating from

the Latest Miocene was discovered in the Yakataga Formation in the Gulf of Alaska

(Lagoe et al., 1993). Krissek (1995) gives evidence of ice rafted debris (IRD) be-

tween 5.5 and 6 Ma in the Gulf of Alaska and Kurile/Kamchatka (Site 881, ∼ 162◦E,
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47◦N) regions. In fact two prominent glacial effects occurred during the “Messinian

Gap”, the final stage of a major drawdown roughly 5.6-5.5 Ma (CIESM, 2008). Sun

and Liu (2006) suggested that a 6% reduction in global oceanic salinity during the

MSC may have resulted in greater sea ice formation due to the higher freezing point

of the lower salinity water.

Messinian deposits in deep ocean basins are rarely preserved and many existing

cores are incomplete due to bottom water erosion and severe carbonate dissolu-

tion. Nevertheless, a continuous record of the Miocene is found in ODP Site 959

in the eastern equatorial Atlantic. ODP Site 959 is located in the African trade

winds region, where ocean biogeochemistry and coastal upwelling play significant

roles. Reduced calcium carbonate concentrations and enhanced carbon dissolution

is observed off the equatorial African coast between 5.8 and 5.2 Ma, coinciding with

the Mediterranean desiccation event. Wagner (2002) suggests that corrosive deep

waters were a consequence of reduced global oceanic salinity by more than 6% due

to the MSC. A reduction in oceanic salinity causes undersaturation with respect to

calcium carbonate and more extensive calcium carbonate dissolution in the ocean

(Ryan et al., 1973). Poor preservation of foraminiferal assemblages between 5.75

and 5.4 Ma at Site 959 is noted as a consequence of dissolution effects in Norris

(1998). Furthermore, Wagner (2002) observed increased productivity in the eastern

North Atlantic at 5.65, 5.6, and 5.55 Ma, a period of global cooling. These peaks

coincide with the final isolation, drawdown and erosion of the MedSea that occurred

between roughly 5.59 to 5.5 Ma. Diester-Hauss et al. (2003) suggests an additional

source of organic matter (food) was active during this time. During this period, an
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exposed MedSea floor may become a source region for dust production. Increased

dust generation in the Late Miocene may have contributed to spikes in the δ18O

record. Nutrients contained in dust may enhance productivity in marine and ter-

restrial ecosystems thus sequestering more atmospheric carbon dioxide and cooling

global climate. We will examine this theory further through the implementation of

an interactive aerosol model.

The enormous change in the level of the MedSea during the MSC can be expected

to have brought about significant impacts on the Mediterranean climate. The basin

itself must have experienced a substantial warming due to the change in elevation

alone. Beyond this obvious impact, topographic changes may be expected to cause a

response in the regional geopotential height field patterns that in turn imply changes

in the overall regional circulation and storm tracks. Differences in storm track char-

acteristics, such as intensity, frequency and location may result in significant changes

in the hydrological cycle of the Mediterranean region (Mariotti et al. (2002)). Shifts

in storm tracks can lead to droughts or floods, as storms transport copious amounts

of heat, moisture and momentum (Chang, 2003). The associated changes in the

local water budget may have implications in the surrounding regions by altering the

availability of atmospheric moisture.

1.2.2 Topographic forcing on climate

There is a long history of utilizing numerical models to examine the influ-

ence of topography on climate (Cook and Held, 1991; Grose and Hoskins, 1978;
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Kutzbach et al., 1993; Manabe and Terpstra, 1974; Ramstein et al., 1997; Seager

et al., 2002; Zhongshi et al., 2007). In our atmosphere, stationary waves, or de-

partures of the extratropical time mean flow from zonal symmetry, can be both

orographically and thermally forced (Held and Ting, 1989; Held et al., 2002). Wave

propagation is one fundamental way by which fluid carries energy from one loca-

tion to another. Orographically forced stationary waves can propagate zonally and

meridionally, contribute to the forcing of atmospheric jets (Nigam and DeWeaver,

2003), and control the location of storm tracks (Held and Ting, 1989). Storms

transport copious amounts of heat, moisture, and momentum, and therefore shifts

in storm tracks can lead to substantial regional-scale and hemispheric-scale variabil-

ity (Chang et al., 2002; Mariotti et al., 2002). Storm tracks and stationary waves

are mutually dependent. Heating affects how the flow interacts with orography and

forces planetary-scale waves that transport heat, energy, and momentum, result-

ing in atmospheric teleconnections (Muller and Ambrizzi, 1995; Liu and Alexander,

2007). Anomalous heat and momentum fluxes can then shift storm tracks, resulting

in anomalous flow (Held et al., 1989).

According to Wallace and Gutzler (1981), to a first approximation the climatological

stationary wave pattern can be described by forced Rossby waves (planetary-scale

waves) that are equivalent barotropic. This means that the amplitude of the geopo-

tential and velocity perturbations increase with height while phase lines are constant

with height. In a barotropic fluid of constant depth, Rossby waves result from the

β-effect, or the gradient of planetary vorticity. Previous studies have shown that

outside of forcing regions, barotropic models of linear wave theory are qualitatively
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comparable to baroclinic models in representing wave trains (Hoskins and Karoly,

1981; Ambrizzi and Hoskins, 1997). Therefore, stationary waves can be explained by

the two-dimensional barotropic Rossby wave propagation. The stationary wave re-

sponse is dependent on the zonal state as well as size and location of the topographic

barrier. Under this assumption, it becomes possible to diagnose the anomalous flow

that results from some external forcing.

Linear shallow water theory can be used to separate individual forcing terms from

the total atmospheric response (Nigam and DeWeaver, 2003). However, the rela-

tive contribution of orographic and thermal forcing to stationary waves has been

shown to be dependent on the prescribed low-level zonal mean winds (Held and

Ting, 1990). Lee (1995) used a linear barotropic model to show that in a zonally

varying background flow barotropic eddy steering controls the location, horizontal

structure, and amplitude of storm tracks. Storm track properties critically depend

on the properties of the disturbances that interact with the storm track (Lee, 1995;

James, 2007). Lee (2000), using a linear barotropic model, found that barotropic

dynamics are very important for storm tracks along North Africa and the Middle

East. As eddies propagate equatorward from the Atlantic storm track, they receive

energy when they encounter cyclonic shear on the poleward side of the subtropical

jet. The refractive index can be used to examine wave propagation characteristics.

Rossby waves are reflected at turning latitudes where the refractive index is zero and

propagate towards critical latitudes where the refractive index becomes very large.

Meridionally propagating waves tend to bend towards a large meridional gradient

of the absolute vorticity. The subtropical jet, which has a significant gradient in
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absolute vorticity, therefore creates a waveguide effect, allowing eddies to propa-

gate along the subtropical jet rather than to the equator. These waves may also be

meridionally trapped (Lee, 2000; Hoskins, 1983). Perturbations become meridion-

ally trapped in regions of easterlies because the squared refractive index becomes

negative. Therefore regions of positive refracted index become preferred Rossby

wave propagation paths (Hsu and Lin, 1992).

Held (1983) studied the effects of eliminating mountains and found that in the ab-

sence of mountains, the equivalent barotropic trough over eastern North America

is significantly reduced and flow across the North Atlantic becomes more zonal.

Seager et al. (2002) studied the influence of North American mountains on the

thermohaline circulation and temperature contrast between Western Europe and

eastern North America, and found that half of the temperature difference is due to

forced orographic stationary waves. It is difficult to attribute what features of an

anomalous circulation result from orographic and thermal forcing in a GCM. Simple

modeling can be used to determine what features of the atmospheric response to

external forcing are explained by linear theories of Rossby wave propagation.

Local changes in the Mediterranean region have been shown to have remote impacts

in modern observations. The water budget of the MedSea has been positively corre-

lated to the North Atlantic Oscillation (NAO) (Mariotti et al., 2002), a large-scale

circulation pattern characterized by a seesaw in the sea level pressure (PSL) between

the subtropical Azores high and the Icelandic low. Li et al. (2006) showed that an

idealized 2 K cooling of the MedSea resulted in changes to both the Aleutian and

Icelandic Lows (Li et al., 2006). This exemplifies the role the MedSea has on the
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environment and the teleconnectivity between the Mediterranean and remote loca-

tions, suggesting the importance of global modeling as opposed to higher-resolution

regional modeling studies.

We will focus our efforts on examining the atmospheric response to both orographic

and thermal forcing using an atmospheric general circulation model (AGCM). We

shift our focus from questions that are addressable in simpler models to questions

that can only be addressed in more sophisticated models. We examine the role of oro-

graphic forcing, orbital forcing and dust radiative forcing during the Late Miocene,

and compare our model results with the evidence of the paleoclimate record, bringing

a critical perspective to both the model output and the paleoclimate reconstruction.

This work is divided into six chapters. Chapter 2 provides a description of the

atmospheric general circulation model and boundary conditions used in this study.

Chapter 3 examines the influence of orographic forcing on regional and hemispheric

climate. Chapter 4 investigates the orbital modulation on the hydrological cycle of

the MedSea and North Africa. In Chapter 5, an online dust aerosol model is coupled

to the AGCM in order to determine the role of an exposed basin on aerosols and the

resulting dust feedback on the Late Miocene climate. Chapter 6 presents a summary

and ongoing future work.
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Chapter 2

Atmospheric General Circulation Model

2.1 Description of model

In this study on the climate response to the evaporation and desiccation of

the Mediterranean Sea during the Messinian Salinity Crisis, we used the NCAR

Community Atmosphere Model (CAM) version 3 (Collins et al. (2004)) coupled to

the Community Land Model (CLM3), a Slab Ocean Model (SOM) and a thermo-

dynamic sea ice model. Although Sea Surface Temperatures (SSTs) in the SOM

are able to respond to changes resulting from a modified MedSea and atmospheric

changes, the SOM does not simulate the full ocean circulation, but rather assumes

seasonally varying but otherwise fixed ocean heat transport. An alternative ap-

proach would have been to hold SSTs fixed, while allowing ocean-atmosphere heat

fluxes to vary as air temperatures over the ocean changed. Our choice was to al-

low the mixed layer temperature to adjust to changes in model fluxes, rather than

to require large changes in air-sea fluxes to hold SST constant. Climate modeling

studies often utilize this SOM/sea ice configuration of CAM (a short list includes:

Gibbard et al., 2005; Kirkevag et al., 2008; Mahowald et al., 2006; Maloney and

Sobel, 2004; Vavrus et al., 2008), which accounts for oceanic heat transport without

incurring the computational costs of implementing a fully dynamic ocean model.

For the local changes in the Mediterranean climate investigated here, ocean circu-
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lation feedbacks are unlikely to have had a first-order effect on the change due to

the MSC. However, ocean-atmosphere feedbacks are more important for the remote

effects seen throughout the Northern Hemisphere.

The atmospheric model uses a terrain-following hybrid coordinate with a spectral

Eulerian dynamical core and is comprised of 26 vertical levels. The SST dataset in

the SOM requires two additional fields specifying mixed layer depths and surface

flux balance information. Horizontal oceanic heat transport is represented by com-

pensating heat sources and sinks known as the Q flux, which are derived by running

a fixed-SST model to equilibrium, and setting the Q flux equal to the local heating

or cooling in the ocean mixed layer that compensates for loss or gain of energy to

the atmosphere via the modeled aerodynamic fluxes.

For these experiments CAM3 is run at T42 resolution (an equivalent grid spac-

ing of roughly 2.8◦x 2.8◦). CAM3 is coupled to the CLM3 (Oleson et al., 2004),

which incorporates biogeophysics, hydrological cycle, biogeochemistry and dynamic

vegetation. The vegetation is divided into plant functional types (PFT) that are

characterized by structure. The vegetation structure, including leaf and stem area

index as well as canopy height, is input to each grid cell for each PFT. Due to ex-

tensive computational requirements to run with the full dynamic vegetation model,

our experiments use fixed, prescribed vegetation. A detailed model description is

provided in Collins et al. (2004) and Oleson et al. (2004).

2.2 Isolation of the Mediterranean Sea

While previous AGCMmodeling studies of the MSC have used paleo-physiography

(Gladstone et al., 2007), they did not examine the impact of desiccation and the
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role of Mediterranean Sea level on the atmosphere. We believe our efforts are the

first to detail both the regional and global effects due to changes in the MedSea level

during the MSC. Five experiments were performed using the NCAR CAM3-SOM to

simulate the MedSea base level changes that occurred during the MSC and isolating

the effect of each separate component on the atmosphere (Table 3.1).

Normally, the Atlantic Ocean provides a heat flux into the MedSea, and the MedSea

is a substantial source of heat for the overlying atmosphere. During the MSC, the

MedSea was isolated from the Atlantic in the sense that there was no substantial

heat flux into the Mediterranean. The present barotropic (two-way) mass flux into

the Mediterranean through the straits of Gibraltar is 0.8 Sv with a net inflow of

0.05 Sv to balance net evaporation in the MedSea (Lafuente et al., 2002). Assuming

it took 100,000 years for the MedSea to evaporate, the net annual water flux into

the MedSea must be less than 10−3 Sv (we assume the surface area of the MedSea

is 2.5 x 1012 m2 and its depth is 1000 m). If we assume it took just 10,000 years

to evaporate, then a net water flux of 10−2 Sv is required into the MedSea. Since

the ocean heat flux associated with a transport of 10−2 Sv is negligible, we use the

term isolation in the sense that any Atlantic water heat flux to the MedSea is in-

consequential. For all the experiments, the horizontal ocean heat transport (Q flux)

into the MedSea is shut down to represent the isolation of the MedSea from strong

ocean heat transport during the MSC. Q flux was computed from an uncoupled run

forced with fixed SSTs, observed sea ice cover, and the MedSea converted to land.

The missing heat flux is redistributed globally, though an adjustment procedure in

which the Q fluxes are derived in order to balance the ocean heat budget at the fixed
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SST values. The effect on the model climate of changing Q-flux itself is discussed

in Chapter 3.

2.2 Boundary conditions

Trace gas concentrations, including atmospheric CO2, are set to present-day

levels based on alkenone-based estimates of the partial pressure of CO2 in the at-

mosphere (pCO2) (Pagani et al., 1999), the pressure difference between the ocean

and atmosphere,that indicate pCO2 values were above pre-industrial values during

the late Messinian. We use the default CO2 concentration in CAM, which is set to

350 ppm.

In our study, mountain topography was set to modern day elevations following

Kuhlemann’s (2007) paleogeographic maps. Kuhlemanns (2007) 8 Ma paleotopo-

graphic map of central Europe is comparable to Smith and Sandwell’s (1997) present-

day topographic map based on Geosat, ERS-1/2, and Topex/Poseidon altimeters.

Although a substantial region of the Alps extended above 2000 m for the entire

Miocene, rapid uplift beginning around 5 Ma brought about significant topographic

changes in southern Europe (Kuhlemann, 2007). However, the orographic relief of

the Alps is crudely represented at T42 resolution and elevations do not extend above

1500 m, with only 2 grid boxes extending above 750 m (Fig. 3.1).

Since only insignificant plate tectonic movements have occurred since the Tortonian

(Ruddiman and Kutzbach (1989)), we followed the Francois et al. (2006) and Step-

phun et al. (2006) studies and assumed a modern day land-sea distribution for our
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Messinian runs. Most MSC modeling studies incorporate Tortonian (∼ 8 Ma) paleo-

geography, which overestimates changes in sub-basin area and volume (Meijer et al.

(2004); Meijer and Krijgsman, 2005; Meijer, 2006; Stepphun et al., 2006). According

to Meijer et al. (2004), Messinian geography would most likely be intermediate be-

tween the present day configuration and their reconstruction. Considering the crude

representation of the land/ocean distribution at T42 resolution (46 grid points com-

prise the Mediterranean Sea), the incorporation of paleogeography is not expected

to modify our results. Modern day vegetation is also used in this study, except when

the MedSea was removed (refer to the UL and LL simulations).

Although the Greenland ice sheet did not form until the late Pliocene (near 2.37

Ma) (Shackleton et al., 1984), in order to minimally disturb the model and focus

solely on changing MedSea boundary conditions we chose not to remove the Green-

land ice sheet. Lunt et al. (2004) removed the Greenland ice sheet in a coupled

climate model and found surface temperature anomalies to be localized and circu-

lation changes that consist of decreased geopotential height over the North Atlantic

and increased geopotential height throughout central Eurasia. This circulation re-

sponse is similar to what we find when we lower the MedSea base level (Chapter

3).

2.3 Limitations in our Model Simulations

Our simulations are not perfect and we can expect further changes in the

Messinian Mediterranean water budget if we included better physical representa-
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tions. Evaporation increases with increasing temperatures, wind velocities and re-

duced water salinities. It is important to note that in the real world, the Dead

Sea doesn’t evaporate completely because its increased salinity reduces the water

vapor pressure at the surface of the sea (Raoult’s Law), reducing evaporation. An

extremely salty LS might have somewhat lower E-P than our results indicate, since

this mechanism is not included in the model. However, double diffusion, which is

not included in this model, may result in a positive feedback. Thermal diffusivity is

much greater than salt diffusion. When thermal diffusion occurs, the salt particles

become much denser than the medium and precipitate to the sea floor. This process

occurred during the MSC when a large (1000-3500 m) layer of halite accumulated on

the MedSea floor (Krijgsman and Meijer (2008)). The density of the deep MedSea

would become higher than the surface, which would increase the stratification of the

sea and weaker turbulent mixing. The surface of the MedSea, which would have a

lower concentration of salt would heat up faster than if the salt concentration was

distributed evenly. This results in a feedback that would accelerate evaporation.

We also do not take into account the change in the volume of the MedSea. As

the MedSea evaporates, the volume decreases. The smaller volume of water would

receive the same amount of insolation, thus increasing the surface temperature of

the sea and further increasing evaporation, resulting in a positive feedback loop.
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2.4 Model Validation

2.4.0.1 Seasonal Cycle

Assuming the long-term mean of the MedSea water deficit is balanced by the

water flux at the Gibraltar Strait gives the following equation:

G = E − P − R−B, (2.1)

where E is evaporation, P is precipitation, R is runoff and B is the net flux from

the Black Sea to the MedSea. The magnitude of net inflow from the Black Sea is

small in comparison to precipitation and Atlantic water inflow: presently, the Black

Sea contributes roughly 0.21 mm day−1 to the MedSea (Mariotti et al. (2002)).

However, paleo-depth measurements suggest the Black Sea also experienced a sub-

stantial drop in sea level (Bartol and Govers (2009); Popescu et al. (2006); Gillet

et al. (2007)), which further exacerbated the water deficit during the MSC. Assum-

ing an average basin depth of 2,500 m, and current rates of P, E and B, the MedSea

would evaporate in approximately 5,000 years. Since one evaporative draw down

would not account for the massive salt layer (Hsu et al. (1973)), several studies

have suggested the MedSea went through several cycles of desiccation and refilling

(Meijer and Krijgsman (2005)). Conversely, since a closed MedSea would evaporate

quickly, Roveri et al. (2001) suggests desiccation and flooding episodes were not

externally (orbitally) forced. The evolution of the Messinian desiccation depends

critically on the freshwater budget since MedSea level is highly dependent on the

freshwater budget when isolated (G=B=0).
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In Chapter 3 we discuss the impact of altering the horizontal heat transport (Q flux)

on global climate. We can hypothesize that in the absence of Q flux, an isolated

MedSea might be cooler and evaporate less. To examine this further we compare the

seasonal cycle of evaporation and precipitation in our control (US), a CAM-SOM

control run (Cntl) and climatology based on 1979-1999 shown in Mariotti et al.

(2002)) (referred to as M02) (figure 2.1). In Mariotti et al. (2002), precipitation is

from the Climate Prediction Center Merged Analysis of Precipitation (CMAP) (Xie

and Arkin (1996)) and evaporation is from the University of Wisconsin–Milwaukee

(UWM) Comprehensive Ocean–Atmosphere Data Set (COADS) (da Silva et al.

(1994)). MedSea averages of the hydrological components are calculated using Gaus-

sian weights over the region 30◦to 46◦N and 6◦W to 37◦E. The standard deviation

(shaded gray) is shown for our US simulation. This shows large variability in the

seasonal cycle of MedSea precipitation, especially in the summer and fall. Figure 2.1

shows that MedSea evaporation in the Cntl run agrees well with M02 in the winter.

Throughout the rest of the year, evaporation possesses the same cycle but has a

larger magnitude than M02. Precipitation, on the other hand, is in better agree-

ment with M02 during the last half of the year and deviates from M02 estimates

during the winter and spring. Eliminating the Qflux into the MedSea in our US run

leads to a reduction in evaporation and precipitation compared to M02 (4.3). Our

US simulation shows greater amplitude in the seasonal cycle of evaporation with a

strong minimum persisting from the winter through the spring and large maximum

during the late summer. In our US simulation, precipitation is reduced throughout

the year and reaches a minimum approximately three months after the evaporation
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minimum. The minimum in E-P corresponds to the minimum in evaporation and

occurs between February and March. Greater evaporation from July to September

is associated with more rain, and thus little change in E-P.

The annual mean freshwater deficit (E-P-R) of the US and LS simulations are much

higher than modern estimates given in M02 (table 4.3). Our control (US) MedSea

water deficit of 2.16 mm day−1 is 58% higher than the modern water deficit in M02

(1.37 mm day−1), while our LS water deficit value of 2.33 mm day−1 is 70% higher

than current estimates. Comparing E-P-R values in US P− and US P+ to US gives

a 31% decrease and 7% increase in the freshwater budget, respectively. The level of

the MedSea has the largest effect on the freshwater deficit at precession minimum.

Reduced MedSea level increases evaporation by 7% and reduces precipitation by

14% under P- orbital forcing, increasing the freshwater deficit by 28%. The geo-

logical record shows that during past periods of an intense North African monsoon

(at P-), the MedSea water deficit is reduced and deep-water formation is inhibited

(Nolet and Corliss (1990)).

Comparing our data to the current climate shows, that the CAM-SOM (Cntl) sim-

ulation has a good representation of the seasonal variability of the MedSea water

budget parameters. However, eliminating the heat flux into the MedSea results in

a significant and substantial departure from the current climate.
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2.5 Figures
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Figure 2.1: Annual cycle of evaporation-precipitation (E-P) (top), evaporation (mid-

dle) and precipitation (bottom) averaged over the Mediterranean Sea (6◦W-37◦E,

30◦-46◦N) for our control US (dotted), a CAM-SOM control run with no Q-flux mod-

ification (Cntl) (dashed), and present day estimates (Mariotti et al. (2002) (solid).

Presend day esitmates of precipitation are from the CMAP dataset and evaporation

from the UWM/COADS. This data is presented in Mariotti et al. (2002). The stan-

dard deviation calculated over the last 30 years of model simulation and is shown

for the US simulation.
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Chapter 3

Desiccation Experiments

3.1 Abstract

Roughly six million years ago, tectonic movements isolated the Mediterranean

Sea (MS) from the Atlantic Ocean, an event known as the Messinian Salinity Crisis

(MSC). Subsequent evaporative drawdown of the MS resulted in a subaerial de-

pression with a depth between 1500 and 2500 m. In this study, five simulations

are run using the National Center for Atmospheric Research (NCAR) Community

Atmosphere Model version 3 (CAM3) configured with the slab ocean model. Three

simulations have been performed to test the climate impacts to desiccation and to

changing the MS base level. In this study, the MS base level is reduced 750 m in

the Half Land simulation (HL), and 1500 m in the Lowered Sea (LS) and Lowered

Land (LL) simulations. The HL and LL simulations differ from the LS in that

the surface is converted to land, representing the complete desiccation of the MS.

The substantial MS depression generates planetary-scale atmospheric waves respon-

sible for significant climate effects throughout the Northern Hemisphere. A notable

deepening of the Aleutian Low and a significant equatorward shift in the Atlantic

jet stream are evident. In DJF, vertical ascent at the northern margin of the MS

results in a 1.5-2.5 mm day-1 precipitation anomaly in the LS run over the Alps,

consistent with proxy data. Annual mean area averaged MS evaporation is slightly
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higher than control conditions. Except when salinity is a substantial barrier to evap-

oration, our results suggest that a partially filled basin cannot exist in equilibrium

and the MS must either be partly connected to the Atlantic Ocean or completely

desiccated. Base level lowering, which alters the water budget, must be taken into

account when considering the freshwater budget during the MSC.

3.2 Introduction

Changes in global sea level, orbital forcing, climate change (Hodell et al., 2001;

Warny et al., 2003), and the orogenic uplift (Krijgsman et al. (1999);Duggen et al.

(2003)) have all been cited as isolating MedSea from the Atlantic Ocean during

the MSC (Seidenkrantz et al., 2000; Warny et al., 2003). Krijgsman et al. (1999b;

2001) used astronomical dating methods to deduce that plate tectonics triggered the

MSC by severing the connection between the MedSea and Atlantic Ocean at 5.96

Ma. Benthic foraminifera and stable isotope data show that vertical uplift as early

as the latest Tortonian (approximately 11 to 7 Ma) began restricting the Rifian

Corridor in Northern Africa, one of several gateways (the others being the Rifian

corridors, which closed at different times during the Late Miocene (Betzler et al.,

2006; Martin et al., 2001)) that existed between the Mediterranean and the Atlantic

prior to the onset of the MSC (Seidenkrantz et al., 2000; Kouwenhoven et al., 2003).

Additionally, pollen data analysis confirms that climate variations did not initiate

the MSC (Warny et al., 2003; Fauquette et al., 2006). However, a lowering of global

sea level resulting from glaciation may have contributed to further isolation of the

24



MedSea by modulating the water level at the existing straits (Adams et al., 1977;

Aharon et al., 1993; Hodell et al., 1986). The benthic δ18O signal, a commonly used

paleoclimate indicator of glacio-eustatic sea-level changes, suggests that ice forma-

tion prior to the MSC led to a decrease in global sea level of nearly 70 m (Hodell et

al., 1994; Hodell et al., 2001; Clauzon et al., 1996).

Here we summarize the aspects of the history of the Messinian desiccation most

relevant to our simulations. Please refer to Hilgen et al. (2007) and CIESM (2008)

for a detailed history of Messinian events in the Mediterranean Sea. Isolation from

the Atlantic Ocean during the MSC in combination with a negative MedSea annual

water budget led to the deposition of a thick layer of evaporites (Krijgsman et al,

1999a). The ”Lower Evaporite” unit, consisting of gypsum anhydrite and dolomite

rocks, was deposited between 5.96 and 5.6 Ma (CIESM, 2008). Krijgsman et al.

(1999a) suggests the massive layer of halite, potash and magnesium salts was de-

posited between the ”Lower Evaporite” and ”Upper Evaporite” units. Anhydrite

and magnesium salts are characteristic of extremely hot (greater than 35◦C), dry

environments (Hsu, 1972; Rouchy and Caruso, 2006). Our Lowered Land simula-

tion (see Section 3.3) represents the ”Messinian Gap”, when the combined effects of

tectonic uplift and two peak glacial stages resulted in the isolation of the MedSea

and the final stage of a major drawdown roughly 5.6-5.55 Ma (CIESM, 2008).

The ”Upper Evaporite” unit and Lago-Mare facies were deposited between ∼ 5.6

and 5.33 Ma. The Upper Evaporite unit, consisting of gypsum and marl, marks a

change in the MedSea hydrological budget influenced by precession-driven climate

changes (Krijgsman et al., 2001). Shallow brine pools formed more than 1000 m
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below world sea level (Roveri et al., 2006). According to Blanc (2006), the ”Upper

Evaporites” were deposited in a closed basin in which Atlantic water inflow is sup-

pressed, the eastern MedSea basin surface was reduced ∼ 1700 m, and the western

MedSea basin surface was reduced ∼ 1500 m. Reduced marine inputs and increased

freshwater inputs brought about Lago-Mare conditions in the latest stage of the

MSC (Rouchy et al., 2001). Our Lowered Sea simulation is meant to represent this

latest phase of the MSC and tests the sensitivity of the climate impacts to sea level,

a very important consideration in determining under what conditions a brackish

Mediterranean (as in the Lago-Mare) could be maintained.

3.3 Experimental design

While previous AGCMmodeling studies of the MSC have used paleo-physiography

(Gladstone et al. (2007)), they did not examine the impact of desiccation and the

role of Mediterranean Sea level on the atmosphere. We believe our efforts are the

first to detail both the regional and global effects due to changes in the MedSea level

during the MSC. Five experiments were performed using the NCAR CAM3-SOM to

simulate the MedSea base level changes that occurred during the MSC and isolating

the effect of each separate component on the atmosphere (Table 3.1).

In our control upper sea (US) run, we simulate the impact of isolating the MedSea

from the Atlantic Ocean. The sea level and surface characteristics of the MedSea are

unchanged but the new Q flux is implemented. All other runs are compared to the

US run, so that the climate changes due to the changes in sea level and surface type
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are isolated, and the Q flux alteration does not contribute to the modeled climate

changes. A sensitivity test is conducted to investigate the effect of changing land

surface characteristics over the MedSea. In this upper land (UL) experiment (which

does not represent any real state of the MedSea during the Messinian), we convert

the MedSea to land but the terrain remains at the present day sea level. Changing

the land surfaces causes changes in the fluxes of heat, momentum and water to the

overlying atmosphere, the impact of which is included in our simulations (Oleson et

al., 2004). At T42 resolution only three grid points over the MedSea are considered

to be completely ocean and the other 34 Mediterranean grid boxes are partial land-

ocean points (land fraction is less than 0.6). In order to remove the Mediterranean

Sea these ocean and partial ocean-land boxes are converted to land. In order to

account for the change from ocean to land, soil color, texture and plant characteris-

tics were added. These values were taken from a grid box over the Saharan Desert

at 8◦E, 18◦N. We assumed that the land characteristics of a desiccated basin would

be similar to a point representing a desert. The UL run allows us to examine the

atmospheric response to the thermal forcing due to surface characteristic changes,

without the topographic changes accompanying the MSC.

In the lowered sea (LS) experiment, the MedSea level is reduced up to a maximum

of 1500 m, a conservative estimate of sea level fall during the MSC and consistent

with paleoriver profiles in Gargani (2004), and water remains in the basin. The

elevation was lowered as a linear function of land fraction in each grid box. The

deepest point is located in the eastern sub-basin. Much of the surface of the basin

is between 700 m to 1400 m below sea level with only three grid points in the center
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of the MedSea that reach a maximum depth of 1500 m. This was done to examine

the effect of sea level fall on the climate and allows us to examine the atmospheric

response to purely orographic forcing.

In the lowered land (LL) experiment, the surface of the MedSea is converted to land

and is lowered in the same manner as the LS simulation. Surface characteristics are

the same as the land sensitivity (UL) run. In the LL run the basin is fully desiccated

(no water remains in the basin). This experiment examines the effect of complete

evaporation and sea level fall in the MedSea. A half land (HL) simulation is also

conducted in the same manner as the LL run, except that the surface is lowered

only 750 m.

There are several reasons to keep our simulations simple. First, knowledge of ap-

propriate Messinian boundary conditions is not perfect. Ongoing tectonic processes

throughout this time make constructing paleogeography complicated. Focusing on

the atmospheric response allows us to concentrate computational resources on res-

olution and running multiple scenarios. While other groups have modeled the Late

Miocene climate, most have focused on the Tortonian (11.6-7.2 Ma) (Francois et al.

(2006), Micheels et al. (2007)), or did not account for the reduction in MedSea level

or desiccaiton (Favre et al. (2007), Gladstone et al. (2007)). Our study is unique in

that it takes into account the reduction in Mediterranean Sea level and allows SSTs

to respond to the associated atmospheric changes.
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3.4 Results

Simulations were integrated for 70 years. Climatological annual and monthly

means are calculated over the last 30 years of the model runs except for the HL sim-

ulation, which was integrated for 55 years and means were computed over the last 15

years of the model run. The climatological monthly means were then used to calcu-

late monthly climatological standard deviations. A student’s t-test was performed

to determine where the experiments were statistically different from the control run

and values that were statistically different at the 0.05 or less critical level of sig-

nificance are shown. Changing the horizontal heat transport in the ocean, Q flux,

has several important implications for global climate in our simulations (discussed

further in Section 3.4.3), therefore we discuss anomalies between the four experi-

ments (UL, HL, LL, and LS) and our control simulation (US), rather than a true

control run (without implementing the new Q flux). This ensures that any artificial

changes due to the implemented Q flux are identical in all simulations and the re-

sponses shown are due to thermal and orographic effects of an altered MedSea. The

modeled atmospheric response to topographic forcing may vary as model resolution

and momentum transport schemes vary. We plan future experiments at higher spa-

tial resolution that will help to clarify the extent to which our results depend on the

specific model used and to comparing our results with other modeling groups using

different climate models.

Lowering the surface topography of the Mediterranean Sea results in an 80-hPa (Fig.

3.1B) and 160-hPa (Fig. 3.1C and 3.1D) annual mean surface pressure anomaly over
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the Mediterranean basin relative to our control. This pressure change is slightly

lower than the pressure change expected from the hypsometric equation. Assuming

heights are fixed above 500 h-Pa, potential temperature, θ, is conserved following the

flow, and parcels near the surface flow down to the bottom of the basin conserving

θ, Z is an array from -1500 m to 5500 m, and θ = T0 + (Zi +1500)/7000 ∗ T1, where

T1 = 20 K and is an estimate of the increase in θ from the surface to 500-hPa and

T0 = 285 K. A 1500 m reduction in surface elevation results in a 186-hPa increase

in surface pressure.

3.4.1 Lowered Sea results

3.4.1.1 Temperature response

Figure 3.2 shows the winter (December-February) (left) and summer (June-

August) (right) temperature anomaly for the northern hemisphere. Lowering the

sea level of the MedSea leads to a clear warming of the Mediterranean basin (Fig.

3.2E–H). Using back of the envelope type calculations and assuming an adiabatic

lapse rate from sea level down to the lowered Mediterranean predicts a warming of

14 K. We expect the warming to be somewhat less than this, since the terrestrial

lapse rate is strongly governed by the surface energy budget, which is not strongly

height-dependent (Meyer, 1992).

The area averaged MedSea (defined as: 6◦W-37◦E, 30◦–46◦N) surface temperature

(TS) anomaly in DJF is warmest when water is retained in the basin (LS). In the

LS basin, the surface temperature warms 4.4 K in DJF and 3.6 K in JJA. We expect

30



the LS basin to be warmer than the LL basin because of the higher heat capacity

of water that should allow the basin to retain the heat that was gained during the

summer.

Figure 3.2 shows that while thermal forcing lead to a large warming in the Mediter-

ranean region and cooling in the Gulf of Alaska (Figs. 3.2A and 3.2B), orographic

forcing results in a stronger global response (Figs. 3.2E-3.2H). The planetary wave

response to orographic forcing is stronger over the Eurasian continent during the

winter and leads to a larger area of cooling in the North Pacific during the summer.

Figure 3.3 shows zonal (east-west) and vertical cross sections of summer and winter

temperature anomalies (shaded) and wind anomalies (vectors) averaged meridion-

ally from 30◦to 40◦N. During the winter, advection of warm, moist air into India is

orographically lifted near the Himalayas resulting in anomalous precipitation and

upper level divergence near 75◦N. At upper levels, the westward flowing branch of

this diverging air converges with upper level Westerlies over the MedSea. There is

greater ascent in the middle and upper troposphere over the MedSea when water re-

mains in the basin (Fig. 3.3E) compared to when the basin is completely desiccated

(LL) (Fig. 3.3C).

3.4.1.2 Circulation and atmospheric water balance

In our modeling study, topographically and thermally induced changes in re-

gional wind results in the transport of moisture-laden air into southern Europe (Figs.

3.4C-3.4F). Figure 3.4 shows seasonal anomalies in Omega (vertical velocity) (con-
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toured) and wind anomalies (vectors) throughout the Mediterranean Sea, Europe,

Northern Africa, and Southern Eurasia.

In DJF, the wind field shows anomalous cyclonic (counterclockwise) rotation at the

surface, which is representative of low atmospheric pressure. In contrast to the sim-

ulations where the height field is unchanged (UL) and the winds over the MedSea

are primarily zonal (flowing from east to west), lowering the height field (LS and

LL runs) generates strong southerly flow over the central and eastern MedSea. The

vertical velocity field shows descent at the northwestern edge of the MedSea where

the atmospheric flow enters the basin and ascent at the northeastern edge of the

MedSea where the wind exits the basin (Fig. 3.4C and 3.4F).

Changes in the wind pattern are consistent with changes in the hydrological cycle

(Fig. 3.5). Figure 3.5 is plotted in the same fashion as Fig. 3.4 but shows total

precipitation anomalies (convective and large scale precipitation). A significant in-

crease in precipitation occurs along the northeastern margin of the MedSea in the

LS simulation (Fig. 3.5E). Enhanced precipitation in this area is consistent with

enhanced southerly winds that push air up the slope of the northern edge of the

basin. In DJF a topographically forced precipitation anomaly of 1.5-2.5 mm day−1

extending from Italy to Bulgaria occurs in the LS simulation (Fig. 3.5E). This is

more than a 50% relative increase in precipitation.

The presence of both warm temperatures and abundant water in our LS simulation

results in a higher total precipitable water (vertically integrated throughout the

entire atmosphere) over the MedSea compared to the LL simulation (Fig. 3.6). Pre-

cipitable water is the amount of water vapor in a vertical column extending from the
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surface to the top of the atmosphere. Higher precipitable water may supply more

energy to the atmosphere and thus generate and sustain weather disturbances. Pre-

cipitation and latent heat changes not only depend on precipitable water but also

on topographically induced changes in vertical velocity. This additional energy is

only liberated when upward motion or radiative cooling results in condensation.

A notable and substantial DJF relative precipitation increase occurs over eastern

North Africa (> 100%) in the LS simulation and India (> 50%) in both the LS and

LL simulations (Fig. 3.5C and 3.5E).

The impact of the desiccation of the MedSea on the annual atmospheric water bud-

get integrated over the Mediterranean Sea (6◦W-37◦E, 30◦N-46◦N) is shown in Table

3.2. Our LS simulation results in an annual MedSea averaged E-P of 2.57 mm day−1

compared to our control climate E-P of 2.32 mm day−1. Figure 3.7 shows the percent

difference in annual mean water budget components (P, E and E-P) for the UL, LL

and LS simulations. In our LS simulation, evaporation increases by 5 to 25% from

east to west (Fig. 3.7H) while E-P transitions from negative values in the northeast

to positive values in the southwest (Fig. 3.7I). If salinity is not a substantial barrier

to evaporation, the basin is unlikely to refill completely, since a substantially filled

basin (as in the LS simulation) increases evaporation (3.48 mm day−1) compared to

control conditions (3.35 mm day−1) preventing complete refilling until some larger

climatic event occurs, or until a tectonic event reopens the connection with the

Mediterranean. It is important to note that in the real world, the Dead Sea doesn’t

evaporate completely because its increased salinity reduces the equilibrium vapor

pressure of water over it (Raoult’s Law), reducing evaporation. An extremely salty
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LS might have somewhat lower E-P than our results indicate, since this mechanism

is not included in the model.

3.4.1.3 Planetary wave response

Figures 3.8 and 3.9 show the winter (December-February) (left) and summer

(June-August) (right) geopotential height (Z) anomaly for the northern hemisphere.

Monthly averages of geopotential height show maximum variance near the semi-

permanent lows and explain a substantial portion of the wintertime atmospheric

circulation. A difference in the average geopotential height field indicates variabil-

ity in the circulation and therefore changes in the paths that storms tend to follow.

Large changes in the boundary conditions of the MedSea produce an orographically

forced planetary wave response that results in changes in both the height field (Figs.

3.8 and 3.9) and temperature field (Fig. 3.2) throughout the Northern Hemisphere.

Figures 8 and 9 display the geopotential height response for all three experiments

(UL, LL and LS) at 850-hPa and 300-hPa, respectively. The development of a

wave train that propagates throughout the Northern Hemisphere is apparent in

the 300-hPa maps of geopotential height anomalies. A significant deepening of the

geopotential height field over the Gulf of Alaska is seen in both the LS and complete

desiccation scenarios (Figs. 3.9E and 3.9G). The Aleutian and Icelandic lows are

both semipermanent lows through which synoptic scale low-pressure systems fre-

quently pass and intensify (Zhu et al., 2007). These centers have significant effects

on the atmospheric circulation in the Northern Hemisphere.
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Climatological winter anomalies in both the LS and complete desiccation (LL) simu-

lations result in a barotropic response over the Mediterranean Region with vertically

stacked low height anomalies from the surface to the upper troposphere. Low heights

also extend from the lowered basins (LS and LL) across the North Atlantic reaching

the North American continent. Higher heights occur downstream from the MedSea

over Russia and Eastern Europe. This dipole pattern produces strong southerly

winds at the surface (Figs. 3.4C and 3.4E).

Changes in precipitation can be related to the large-scale stationary wave response

and subsequent variations in storm tracks. Eddy Kinetic Energy and the variance

of meridional wind at 250-hPa, a good diagnostic for storminess (Lau, 1988; Chang,

2003), were examined to determine if changes in the storm track dynamics occurred.

Figure 3.10 shows the variance of the 250-hPa meridional wind component for the

control US run (Fig. 3.10A) and the anomalies for the LS (Fig. 3.10B), UL (Fig.

3.10C) and LL (Fig. 3.10D) simulations. The meridional wind variance shows a

moderate and significant equatorward shift near the entrance region of the MedSea

(Figs. 3.10B and 3.10D). A more intense remote response in the LS winter compared

to the LL winter is related to a more zonal (W-E) storm track across the Atlantic

basin with intensified storm energetics at the entrance region of the MedSea and

decreased atmospheric stability over the basin. We can deduce that the changes in

precipitation along the storm track were related to the presence of anomalously high

total column precipitable water and possibly to a small shift in storm energetics.
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3.4.2 Lowered Land results

3.4.2.1 Temperature response

The area averaged surface temperature of the LL basin warms 2.7 K in DJF

and 11.1 K in JJA. In JJA, the surface of the lowered MedSea is warmest when

water is removed (LL, HL and UL). The increased warming in the LL run compared

to the LS is due to the smaller surface heat capacity of land compared to water.

Locally, surface heating results in a 10-hPa decrease in surface pressure over the

lowered basin (not shown).

Anomalously warm air extends up to 700-hPa above the MedSea (Figs. 3.3D and

3.3F) leading to increased atmospheric instability, which perturbs the storm track

and leads to a strong global response in the geopotential height field (Figs. 3.8F

and 3.8H and Figs. 3.9F and 3.9H).

The vertical cross sections (Fig. 3.3) show that during the winter the overlying

atmosphere experiences similar warming when the level of the MedSea is lowered

(LL and LS) and is independent of the surface characteristics. In the winter, the

atmosphere drives temperature changes at the surface because solar forcing is weak.

In the summer, when solar forcing of diurnal variability is much larger, the surface

forces temperature changes in the atmosphere and the temperature response of

the overlying atmosphere depends on the surface heat capacity. This allows the

atmosphere above the LL to warm much more than the atmosphere above the LS.
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3.4.2.2 Circulation and atmospheric water balance

In JJA, the development of cyclonic rotation to the north and anticyclonic

rotation to the southeast of the MedSea (Figs. 3.4D and 3.4F) results in a south-

westerly flow across the lowered MedSea. This air entrains moisture and transports

warm, humid air into southeastern Europe and North Africa (Figs. 3.2D and 3.2F).

Since the absolute humidity, or vapor density, of warmer air is higher than for cooler

air the warmer air contains more moisture (Fig. 3.6F). Zonal flow subsides as it en-

ters the basin in the west and rises as it exits the basin in the east (Figs. 3.3D and

3.3F) resulting in a 0.5–1 mm day−1 precipitation anomaly over the Alpine region

(Fig. 3.5C). Typically, the Mediterranean climate consists of warm, dry summers,

however, moisture is released when the air is orographically lifted at the northern

margin of the basin (Fig. 3.5F). This is a 10% relative increase in precipitation.

JJA precipitation is enhanced by 0.5-1.5 mm day−1, more than a 100% increase

compared to the control simulation, near modern Greece (Fig. 3.5F). Large subsi-

dence occurs to the east of the basin over the Arabian Peninsula.

Diminished moisture inhibits precipitation and leads to a sufficient reduction in an-

nually averaged MedSea evaporation (0.31 mm day−1 for the LL runs) (Figs. 3.7B

and 3.7E) so that the E-P budget of the basin is brought very close to balance.

The integrated Mediterranean watershed E-P is reduced to -0.03 mm day−1 from

2.32 mm day−1 under control conditions (Table 3.2). Since the system is almost to

equilibrium a seasonal shallow sea might exist, becoming deeper in wet years and

shallower in dry years. Our results have neglected the ability of salinity to reduce
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the vapor pressure over a very briny sea, which might allow for a permanent shallow

sea (as it currently does for the Dead Sea).

3.4.3 Impact of changing Q flux

In order to isolate the MedSea from the Atlantic Ocean the horizontal heat

transport in the ocean, Q flux, was altered (see Section 3.3). This change was found

to have several implications for global climate. Figures 3.11 and 3.12 shows the

differences between our simulations (US, UL, LS, and LL) and a CAM3-SOM control

simulation (CNTL) run at the same resolution (T42) but without a change in Q flux

(the CAM3-SOM control simulation (CNTL) run at the same resolution (T42) but

without a change in Q flux (the CAM-SOM control simulation (CNTL) (available

online at: http://www.cgd.ucar.edu/ccr/CPT/climatology.html) was integrated for

40 years and averages were taken over the last 10 years of model simulation).

3.4.3.1 Temperature

Figure 3.11 shows differences in the TS field. The upper four panels in Fig.

3.11 show the differences between the runs in which the elevation of the MedSea

was unchanged (US and UL) and the control (CNTL). The lower six panels in Fig.

3.11 show the differences between the runs in which we lowered the elevation of the

MedSea (HL, LL and LS) and the control (CNTL). Differences between the upper

four and lower six panels are due to the lowering and/or evaporation of the MedSea.

When the SOM is allowed to adjust, heat fluxes arise in the atmosphere that tends
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to move the SST slightly away from the values to which the Q fluxes adjusted. The

new oceanic heat flux scheme alters the SST pattern in the Atlantic basin, since SST

anomalies are consistent among all panels. Removing the heat flux supplied to the

MedSea from the Atlantic Ocean results in cooler Mediterranean SSTs during the

winter and a slight warming during the summer (Figs. 3.11A and 3.11B). In DJF

cooling in the MedSea is reduced in the LL and LS simulations (Figs. 3.11G and

3.11I) due to adiabatic heating of air parcels as they encounter the lowered basin

(Figs. 3.11E, 3.11G, and 3.11I). A significant warming of the MedSea occurs during

the summer when the sea level is lowered (LS) (Fig. 3.11J) but is more robust

when the water is removed from the MedSea (UL, HL and LL) (Figs. 3.11D, 3.11F,

and 3.11H). Thermal and orographic forcing during the summer results in cooler

SSTs off the Aleutian Islands (Figs. 3.11D, 3.11H and 3.11J) and warming to the

northeast of the MedSea (Figs. 3.11F, 3.11H and 3.11J).

3.4.3.2 Geopotential height

Figure 3.12 shows the differences in geopotential height between our simula-

tions and the CNTL run. While the implemented Q flux results in lowered geopo-

tential heights in the tropics, northeast of the MedSea in DJF (Fig. 3.12A), and a

narrow region in the far North Pacific in JJA (Fig. 3.12B), topographic and thermal

forcing due to changing the MedSea elevation and surface type result in the remote

middle and high latitude geopotential height response as evident in the lower four

panels (Figs. 3.12G–J). We note that DJF geopotential heights over the Gulf of
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Alaska in DJF are lowered with respect to the CNTL run, but are not statistically

significant at the 95% level (Fig. 3.12G and 3.12I).

3.5 Discussion

Our modeling framework tests the impact of complete desiccation and lowered

MedSea level while keeping other factors constant. A schematic illustration of the

global climate effects of the MSC is shown in Fig. 3.13. The simulated climate

implications of the MSC are not confined to the Mediterranean region, but instead

propagate globally through variations in the storm track. A global barotropic down-

stream response occurs throughout the Northern Hemisphere during both seasons

when the elevation of the MedSea is lowered (LS and LL) but is strongest during the

winter in our LS simulation. This planetary wave response propagates downstream

and initiates global changes in the height field. In the LS and LL winter simula-

tions a modest but significant equatorward shift in the variance of the meridional

wind, a diagnostic of storm track intensity is evident. The large-scale stationary

wave response leads to strong temperature anomalies in both winter and summer.

Annually, the LS and complete desiccation simulations result in a notable deepening

(300 hPa) of the Aleutian Low. The stationary wave response to topography tends

to be only weakly non-linear, so that our results, specifically the remote response,

are likely not strongly sensitive to the heights of the Mediterranean mountains.
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3.5.1 Temperature

3.5.1.1 Local response

Lowering the MedSea level led to a 160-hPa decrease in the annual surface pres-

sure relative to the control run. Strong adiabatic warming occurred as air rushed

into the deep basin. During the summer, our simulation of the complete desicca-

tion of the MedSea resulted in the largest warming. In JJA, the TS over the basin

warmed by more than 10 K. In DJF, the LS and complete desiccation simulations

showed similar warming of 6 K.

Fauquette et al. (2006) gives annual mean precipitation and annual mean temper-

ature estimates based on pollen reconstructions at various sites along the MedSea

coastline corresponding to the MSC. Comparing proxy data to our model results is

difficult since pollen data is based on individual sites, while modeled data is aver-

aged over a grid box on the order of 2x105km2. Fauquette et al.’s (2006) proxy data

for the MSC period corresponds to the Lower Evaporite phase in all sites except

the Maccarone and Torre Sterpi, which correspond to the Upper Evaporite phase.

The LS simulation gives estimates of annual mean temperatures that are within the

range of proxy data at all locations except in Northern Italy, which is too cool in the

LS run compared to Fauquette et al. (2006) but consistent with cooler conditions

found in Bertini (2006). The LL simulation is too warm (∼3 K) near the Maccarone

and Eraclea Minoa sites. In all of our simulations (LL, LS, and US), temperatures

near Torre Sterpi are between 5–10 K cooler than those suggested by proxy data.
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3.5.1.2 Remote response

During the Miocene, proxy data indicates warmer (compared to present) higher

latitudes and similar temperatures in the tropics reducing the meridional tempera-

ture gradient (Dutton and Barron, 1997). Faunal and oxygen isotope data suggest

cooler conditions during the Messinian compared to the middle and early Miocene.

Moreover, hiatuses within Messinian aged deep-sea sections correspond to major

climatic cooling in the North Pacific (Barron and Keller, 1982) and northwestern

Canada and Alaska (White et al., 1996).

Our results show cooling of high latitude ocean regions. There is support for this in

the geological record. Strong cooling over the North Pacific, specifically off the coast

of the Aleutian Islands, occurs throughout the year in the LS and complete desic-

cation scenarios. Lowering the sea level of the MedSea results in an annual cooling

of more than 0.5 K in the North Pacific. While this cooling is not strong enough to

result in glaciations it can lead to a continuing trend toward high latitude glaciation.

Cooling in the Gulf of Alaska is in accord with evidence of initial tidewater glaciation

in the Yakataga Formation (far North Pacific) between 5.0 and 6.7 Ma (Lagoe et

al., 1993) and IRD beginning between 5.5 to 6 Ma in the Kurile/Kamchatka region

(Site 881, ∼ 162◦E, 47◦N) (Krissek, 1995). It is interesting that the development

of IRD is coincident with restriction of Atlantic water into the MedSea. Strong

and statistically significant cooling of the North Atlantic SSTs occurs in the LS and

complete desiccation scenarios, but may be related to changes in Q flux. Utilizing a

coupled model may result in important feedbacks in the thermohaline circulation as
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it is expected the salinity of the Atlantic Ocean will be reduced due to the absence

of Mediterranean outflow water. Lower salinity and cooler waters in the North At-

lantic would reduce the overturning circulation and lead to important consequences

for global climate.

3.5.2 Water Budget

3.5.2.1 Mediterranean Sea

In our LS simulation, we concluded that changes in the local zonal wind pattern

and higher precipitable water values in a partially desiccated basin led to a large

positive anomaly in precipitation that extends from the Alps eastward into Bulgaria

during boreal winter. The precipitation anomaly over the Alps is greater than

1.5-2.5 mm day−1, a 50% increase compared to the US simulation. This anomaly

is substantial when compared to climatological area averaged precipitation, which

varies between 1.4–4.8 mm day−1 during the winter in this region (Mariotti et al.,

2002). Willett et al. (2006) suggested that wetter conditions during the Lago-Mare

period led to the abrupt cessation of outward growth in the Alps due to increased

weathering. Our results suggest that a switch in the zonal winds due to the lowered

elevation of the MedSea during the Messinian coupled with the availability of water

could allow air parcels to entrain water as they move across the lowered basin. This

water is precipitated as air is topographically lifted at the northeastern edge of the

Mediterranean Sea. The transport of water from the MedSea to the Alps during

the Lago-Mare period may have led to increased weathering. Rouchy and Caruso

43



(2006) state that the transition to the Lago-Mare period occurred when a wetter

climate existed near the mountainous regions along the coast of the MedSea. Our

precipitation response in our LS simulation tends to support these conclusions and

correlates well with evidence suggesting a relatively moist central and northern Italy

during the Messinian stage (Bertini, 1994).

Mean annual precipitation estimates in our control (US) simulation are substantially

lower than Fauquette et al.’s (2006) estimates and are most likely a result of the

modified Q fluxes. The LS and LL simulations are too dry compared to proxy data

with the exception of Northern Italy and the Gibraltar Strait where the LS climate

is humid, consistent with proxy evidence (Fauquette et al., 2006; Bertini, 1994;

Rouchy and Caruso, 2006).

3.5.2.2 North Africa

Griffin (2002) suggests periods of insolation minimum in combination with

the poleward migration of Africa led to the northward shift of monsoon and desert

zones and speculates the drawdown of the MedSea intensified the wet phase in North

Africa, which consequently supplied more moisture to the MedSea and allowed for

the transition to the Upper Evaporite layer. An increase in precipitation occurs over

northeastern Africa, an area of low-level convergence, in DJF in the LS simulation.

While the magnitude is small (< 0.5 mm day−1) it comprises more than a 100%

relative increase in precipitation. Lago Mare conditions may have also resulted from

the initiation of the North African monsoon during precession minimum conditions,
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which would have supplied the Mediterranean region with greater precipitation and

runoff, as suggested by Griffin (2002).

3.6 Concluding remarks

There is still uncertainty regarding the formation of halite on the bottom of

the MedSea during the MSC. Box model studies (Meijer, 2006) and budget calcu-

lations (Krijgsman and Meijer, 2008) have been performed to determine the water

budget and strait exchange necessary to reach saturation. Meijer and Krijgsman

(2005) found that the degree of saturation in the MedSea is critically dependent on

the freshwater budget. However, in the absence of any clear alternative, previous

studies of water and salt budgets have used present day hydrological fluxes (Meijer

and Krijgsman, 2005; Meijer, 2006). Meijer and Tuenter (2007) found that pre-

cession minimum reduces the MedSea net water loss (E-P-R) by 20% in a coupled

model of intermediate complexity. In our LS simulation, which uses present day

orbital forcing, area averaged MedSea evaporation is slightly higher than control

conditions. Moreover, the area averaged MedSea precipitation is equivalent to the

US simulation. Unless salinity is a substantial barrier to evaporation, our results

suggest that a partially filled basin cannot exist since a partially filled basin increases

evaporation compared to the control. The MedSea must either be partly connected

to the Atlantic Ocean (and filled to sea level) or completely desiccated, or else in

rapid transition from one state to the other.

Eddy contribution to the zonal mean moisture, heat and momentum budget is signif-
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icant at 30◦N. At this latitude there is a substantial increase in meridional stationary

eddy moisture, momentum and heat flux when the Mediterranean basin is a desert.

Although the elimination of Mediterranean Outflow Water due to the isolation of

the MedSea during the MSC should have led to reduction in North Atlantic Deep

Water formation and thus poleward heat and energy transport, our results suggest

the contribution of eddies may have prevented abrupt global climate change during

this event.

Base level lowering, which alters the water budget, must be taken into account when

considering the freshwater budget during the MSC. To get the most quantitatively

useful information for the MSC we must take into account all known changes in-

cluding paleo-physiography, orbital changes, and MedSea level variations. We are

currently investigating these changes in further experiments with CAM3. A future

paper will discuss the effect of orbital precession, on the water budget of the Med-

Sea. We are also planning coupled model experiments to investigate the response of

the thermohaline circulation of the Atlantic Ocean to the loss of the Mediterranean

outflow water.
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3.7 Tables
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Table 3.1: Description of our simulations conducted using NCAR CAM3-SOM.

CASE NAMES Messinian Event Description

CNTL (Control Run) n/a Used to determine the impact of our implemented Q flux on climate

US (Upper Sea) Control Horizontal heat transport through the strait is eliminated

UL (Upper Land) Sensitivity to check the sensitivity of removing the MedSea

Sensitivity to check the sensitivity of removing the MedSea

HL (Half Land) Sensitivity to MedSea level lowering Same as UL but now the surface is lowered 750 m.

Sensitivity to MedSea level lowering Same as UL but now the surface is lowered 750 m.

LL (Lowered Land) ”Messinian Gap” Same as UL Simulates the ”Messinian Gap”

but now the surface is lowered 1500 m. when the MedSea was completely desiccated.

LS (Lowered Sea) ”Upper Evaporite” layer. Same as US Simulates the period when the ”Upper Evaporite” layer was deposited.

but now the surface is lowered 1500 m. Shallow, briny pools of water existed thousands of meters below sea level.

48



Table 3.2: Area averaged annual mean evaporation, precipitation and annual at-

mospheric water budget (E-P) integrated over the Mediterranean Sea (6◦W-37◦E,

30◦N-46◦N).

CASE Evaporation Precipitation Annual Water Budget (E-P)

[mm day−1] [mm day−1] [mm day−1]

US 3.35 1.00 2.32

UL 0.46 0.56 -0.04

LL 0.31 0.37 -0.03

LS 3.48 0.88 2.57
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3.8 Figures

Figure 3.1: Annually averaged surface pressure anomalies (hPa) for the UL (A),

HL (B), LL (C), and LS (D) simulations. All panels show statistically significant

differences at the 95% level only.
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Figure 3.2: Northern Hemisphere Polar Stereographic plots of surface temperature

(TS) anomalies (K) for the UL (A and B), HL(C and D), LL (E and F), and LS

(G and H) simulations. Winter (DJF) anomalies are on the left and summer (JJA)

anomalies are on the right. All panels show statistically significant differences at

the 95% level only.
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Figure 3.3: Meridional (north-south) vertical cross sections of temperature anoma-

lies (shaded) (K) and wind anomalies (vector) (m s-1) averaged latitudinally from

30◦to 40◦N for the UL (A and B), LL (C and D) and LS (E and F) simulations.

Winter (DJF) anomalies are on the left and summer (JJA) anomalies are on the

right. All panels show statistically significant differences at the 95% level only.
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Figure 3.4: Vertical velocity (shaded) (Pa s−1) at 500-hPa, and wind anomaly (vec-

tors) (m s−1) at 850-hPa over the Mediterranean and Southern Eurasia for the UL

(A and B), LL (C and D), and LS (E and F) simulations. Winter (DJF) anoma-

lies are on the left and summer (JJA) anomalies are on the right. All panels show

statistically significant differences at the 95% level only.
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Figure 3.5: As Fig. 3.4 but showing total precipitation (mm day−1). Total precipi-

tation includes both convective and large-scale precipitation.
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Figure 3.6: As Fig. 3.4 but showing the vertically integrated precipitable water (kg

m−2).
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Figure 3.7: Annual mean percent change in precipitation (left column), evaporation

(middle column), and evaporation minus precipitation (right column) (mm day−1)

over the Mediterranean and Southern Eurasia for the UL (top row), LL (middle

row), and LS (bottom row) simulations. All panels show statistically significant

differences at the 95% level only.
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Figure 3.8: As Fig. 3.2 but showing the geopotential height anomalies (m) at 850–

hPa. 57



Figure 3.9: As Fig. 3.2 but showing the geopotential height anomalies (m) at 300–

hPa. 58



Figure 3.10: Northern Hemisphere Polar Stereographic plots of DJF 250–hPa merid-

ional velocity variance for the US (A) and anomalies for the UL (B), LL (C), and

LS (D) simulations. Anomaly panels show statistically significant differences at the

95% level only.
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Figure 3.11: Northern Hemisphere Polar Stereographic plots of surface temperature

anomalies (K) for the US (A and B), UL (C and D), HL (E and F), LL (G and H),

and LS (I and J) simulations. Differences are with respect to a control run with

no change in Q flux (CNTL). Winter (DJF) anomalies are on the left and summer

(JJA) anomalies are on the right. Only statistically significant differences are shown.
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Figure 3.12: As Fig. 3.11 but showing the geopotential height anomalies (m) at

300–hPa.
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Figure 3.13: A schematic illustration of the most salient changes that occurred in

our simulations of the MSC. The circles with vertical lines indicate locations where

surface temperatures warmed. The circles with horizontal lines indicate locations

where surface temperatures cooled. The H’s are regions where the surface pressure

increased and the height field was raised and the L’s indicate regions where the sur-

face pressure decreased and the height field was lowered. The positive sign indicates

where the annual E-P was positive (LS run) and the negative sign indicates where

the annual E-P was negative (LS run). The thick black arrow indicates where the

winter storm track was strengthened (LS and LL run).
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Chapter 4

Orbital Forcing Experiments

4.1 Abstract

In this chapter we use the NCAR Community Atmosphere Model configured

with a Slab Ocean to investigate how orbital variations, namely precession maximum

(P+) and minimum (P-), drive hydrological changes during the MSC. Previous Late

Miocene modeling studies (Favre et al; Gladstone et al., 2006; Steppuhn et al.,

2006; Francois et al., 2006; Murphy et al., 2009) have not taken into account orbital

forcing. This is the first study to detail how reduced MedSea level (Lowered Sea, LS)

alters orbitally-driven climate change. We focus on regional hydrological changes in

the MedSea and the North African summer monsoon response, which is sensitive

to MedSea level. Increased precipitation and runoff over the northern periphery of

the MedSea and increased evaporation of the MedSea at reduced sea level occurs

under all orbital signals. Sinced lowered MedSea level increases the water deficit,

the fresh to brackish water conditions during the Lago Mare event is expected to

occur at precession minimum and at relatively high MedSea level. Another robust

feature occurs over the West African monsoon region where reduced MedSea level

substantially increases precipitation over this region.
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4.2 Introduction

The Mediterranean Sea (MedSea) is a semi-enclosed sea that has a strong sea-

sonal cycle consisting of hot, dry summers and mild, wet winters. Atlantic Ocean

water enters the MedSea at the surface of the Gibraltar Strait. High evaporation and

evaporative cooling increases the density of the water and results in deep-water for-

mation in the eastern MedSea. Below the surface of the strait, highly saline MedSea

deep-water enters the Atlantic Ocean and sinks to a depth of ∼1000 m. This water

mass is known as Mediterranean outflow water (MOW) and is the warmest (13◦C),

saltiest (38.4 psu) water at this depth in the global ocean (Price and Baringer, 1994).

The salinity of marginal basins, such as the MedSea, is especially sensitive to small

climate perturbations. Roughly 6 Ma during the Messinian Salinity Crisis (MSC),

tectonic collision between Africa and Europe closed the Mediterranean-Atlantic con-

nection. The elimination of Atlantic inflow and high rates of evaporation, resulted

in the evaporation and desiccation of the MedSea. Evaporation deposited between

1000-3000 m of evaporites that consist of alternating sequences of gypsum and shale.

Cyclical sediments represent high-frequency salinity changes resulting from orbitally-

induced climate variability (Krijgsman et al. (1999)).

Periodic changes in the Earth’s orbital parameters, which include precession, obliq-

uity, and eccentricity, affect the distribution and strength of incident insolation and

may be the primary driving force in past climate change events on timescales from

20 kyr to 100 kyr (Zachos et al. (2001)). Precession is the change in the orientation

of the Earth’s axis with respect to fixed stars; full cycles occur over approximately

64



19,000 and 23,000 years. Precession maximum (minimum) occurs when winter (sum-

mer) solstice is at perihelion. Eccentricity, the departure of the Earth’s orbit around

the sun from a perfect circle, influences the net seasonal and annual insolation and

has a quasi-periodicity of 400,000 and 100,000 years. Eccentricity modulates the

influence of precession such that during periods of high eccentricity, the effect of

precession on seasonal insolation is strong. The tilt of the Earth’s axis relative to

the orbital plane, or obliquity, alters the latitudinal distribution of incident solar

radiation. Orbital forcing plays an important role in the North African monsoon

(Kutzbach (1981); Kutzbach and Otto-Bliesner (1982)). Precessional forcing has a

significant effect on the climate of North Africa and Southeast Asia (Floegel and

Wagner (2006); Griffin (2002)).

The first stage of the MSC is characterized by the “Lower Evaporite” unit and con-

tains 16-17 precessional cycles. It is hypothesized that evaporite deposition in the

Mediterranean would occur during precession maximum (P+), which is character-

ized by increased aridity and higher dust flux from the Sahara; precession minimum

(P-), characterized by wetter conditions and low dust flux, would subsequently re-

fill the basin (Sierro et al. (1999);Krijgsman et al. (1999);Larrasoana et al. (2006)).

Greater boreal summer insolation has been shown to shift the ITCZ northwards

(Ruddiman, 2001). Modeling studies have shown that the circulation within the

MedSea is very sensitive to changes in freshwater fluxes. Increased freshwater in-

put into the MedSea inhibits deep-water convection and deposits organic-rich layers

known as sapropels (Rossignol-Stick (1983)). Griffin (2002) suggested the drawdown

of the MedSea transported greater moisture to North Africa, initiating the Ziet Wet
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Phase, which would consequently have supplied more runoff to the MedSea.

The second stage of the MSC, the “Upper Evaporite” unit, contains at least eight

precessional cycles (CIESM (2008)). The “Upper Evaporite” unit marks a change

in the MedSea hydrological budget influenced by precession-driven climate changes

(Krijgsman et al. (2001)). The latest stage of the “Upper Evaporite” unit, the Lago-

Mare, is characterized by a significant shift in the MedSea water balance towards

fresher conditions. The upper unit consists of gypsum and marls, characteristic of

hypersaline condtions, while the lower unit, the Lago-Mare event, is characteristic

of non-marine deposits of fresh to brackish water conditions (∼5-20 g/l) (CIESM

(2008)). The Lago-Mare event indicates a change in the hydrological conditions

of the MedSea and increased freshwater input into the MedSea. Cooler and wet-

ter (mostly near the mountainous regions) conditions are believed to have existed

during the Lago-Mare event (Rouchy and Caruso, 2006). Can a precession-driven

increase in freshwater runoff tip the MedSea water balance to allow for Lago-Mare

condition?

The level of the MedSea during evaporite deposition is still controversial, since the

level depends on the uplift rate at the straits and the water budget of the Med-

Sea. Hilgen et al. (2007) and Krijgsman et al. (2001) favor a deep water model

with continuous surface water input from the Atlantic, but blocked return flow at

depth. Clauzon et al. (1996) suggests a shallow water model that underwent several

cycles of desiccation and refilling. The Gargani and Rigollet (2007) modeling study

shows numerous MedSea falls between 500-2500 m but states that uncertainty in the

Mediterranean water budget would impose a +-10% uncertainty on the estimation
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of MedSea level. Meijer and Krijgsman (2005) found that the degree of halite and

gypsum saturation in the MedSea is critically dependent on the freshwater budget,

especially in the eastern sub-basin where there is greater fresh water runoff into the

sea. Previous studies on the salt precipitation in the MedSea have used present-day

hydrological fluxes (Meijer (2006); Meijer and Krijgsman (2005)). External forcing

has been a key constraint on understanding past salinity transitions. How do pre-

cession forced changes in the regional climate alter the MedSea hydrological cycle?

These climate changes may be responsible for the major salinity fluctuations from

marine (35-38 g/l) to hypersaline (130-160 g/l) conditions during the MSC. This

work improves upon past modeling efforts on the MSC and is the first to examine

the effect of external forcing on hydrological fluxes during the Late Miocene.

Murphy et al. (2009) found that reduced MedSea level increases the water deficit

compared to control conditions, suggesting that a partially-filled basin cannot be

sustained. Uncertainty regarding the water budget leads to uncertainty in the des-

iccation process and in determining the cause of major salinity transitions. It is

also important to determine how sea-level-induced climatic changes feed back on

the hydrological cycle, and therefore the desiccation process, during the MSC. We

utilize an atmosphere-mixed layer ocean general circulation model to examine the

role of the Mediterranean Sea level on precession-driven changes in regional water

budget to provide improved estimates of palaeo-hydrological fluxes.
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4.3 Experimental design

The NCAR Community Atmosphere Model (CAM) version 3 (Collins et al.

(2004)) coupled to a Slab Ocean Model (SOM) and the Community Land Model

(CLM3) is used in this study. CAM uses a terrain following hybrid coordinate with

a spectral Eulerian dynamical core that has 26 vertical levels. While the SOM does

not simulate the full ocean circulation, Sea Surface Temperatures (SSTs) are able to

respond to atmospheric changes. The mixed layer SOM includes a thermodynamic

sea ice component. A greater discussion on the implemented horizontal oceanic heat

transport can be found in Murphy et al. (2009). Salinity dynamics are not accounted

for in the SOM. The Community Land Model (CLM3) (Oleson et al. (2004)) incor-

porates biogeophysics, hydrological cycle, and biogeochemistry. A river transport

model is utilized in CLM to transport total runoff over land to the ocean. Human

water consumption and irrigation are not taken into account (Oleson et al. (2004)).

Greater detail of this model is provided in Collins et al. (2004) and Oleson et al.

(2004).

All simulations are run at T42 resolution (an equivalent grid spacing of roughly

2.8◦x 2.8◦). Branch runs were integrated from the equilibrated state of the Lowered

Sea (LS) and Upper Sea (US) simulations described in Murphy et al. (2009). A

simple set up of prescribed present-day vegetation and present-day greenhouse gas

concentrations are used. Table 4.2 describes the orbital characteristics used in each

simulation. Since the number sedimentary patterns do not account for changes in

obliquity, we keep obliquity and eccentricity constant in our precession minimum
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and precession maximum simulations. Obliquity is held at the present day value

of 23.45◦and eccentricity is increased to 0.05 to account for maximum seasonality

in orbital precession. Under a more circular orbit, such as the present (eccentricity

is 0.0167), precession has a negligible climatic effect. Precession in our experiment

will have a larger effect on climate in our maximum precession simulations (LS P+,

US P+). Jackson and Broccoli (2003) found that many climate variables respond

linearly with respect to eccentricity. Maximum and minimum values of precession

during the MSC are taken from Laskar et al. (1993). In the Lowered Sea and Upper

Sea maximum precession simulations (LS P+, US P+), the Earth’s vernal equinox

at perihelion is set to 90◦; in the Lowered Sea and Upper Sea minimum precession

simulations (LS P−, US P−), it is set to 270◦.

Runoff in CLM is comprised of surface (qover), sub-surface drainage (qdrai) and

runoff from glaciers, lakes and wetlands (qrgwl).

R = qover + qdrai+ qrgwl = E − P +∆SoilMoisureStorage (4.1)

Since we are not running with an active River Transport Model, we cannot calcu-

late the volume of runoff at deltas. Instead, we show the column level runoff as

simulated by the land model. Runoff from glaciers, lakes and wetlands accounts for

any deficit in the water budget and can be negative. Three MedSea grid points that

are considered wetland regions add a negative contribution to total runoff. In our

results, annual and seasonal averages of total runoff do not include this contribution.
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4.4 Results

4.4.1 Insolation response

Climate change in our US P+ and US P- simulations are driven by differences

in the spatial and temporal distributions of insolation. This external forcing is due

to changes in the orbital parameters that are described in Table 4.2. Figure 4.1

shows the seasonal cycle of insolation averaged for the Northern Hemisphere (NH)

for present day orbital parameters (green), maximum precession (red) and mini-

mum precession (blue). Precession minimum results in stronger seasonality in the

NH, with stronger insolation in the summer and weaker insolation in the winter.

Precession maximum reduces this seasonality. Seasonal insolation in our modern

simulation (US CLIM) is closer to precession maximum. Similar to Braconnot et al.

(2007) we calculate seasons based on the present day calendar rather than a celestial

calendar, which is based on the time equinoxes. Figure 4.2 shows a latitude versus

time plot of mean (figures 4.2A, 4.2B and 4.2C) and anomalous (figures 4.2D, 4.2E

and 4.2F) zonally averaged insolation. Figure 4.2F shows the difference between

precession minimum and maximum. In the Arctic, there is more insolation from

May through July and less from August through October. Between November and

March, there are minimal differences in insolation between maximum and minimum

precessional forcing. In the Northern Hemisphere, insolation is increased (decreased)

by more than 80 W m−2 in the summer (winter). In general, insolation is a function

of latitude. Although the seasonal distribution of heat is different in our minimum

precession simulations compared to our maximum and modern precession runs, the
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annual global mean of incident solar flux does not vary much within our orbital

simulations. The present day global annual mean insolation is 341.842 W m−2 and

becomes 342.095 W m−2 and 342.281 W m−2 for the precession minimum and max-

imum simulations, respectively.

Precession forced variations in seasonal insolation (P- relative to P+) results in

strong global temperature changes (4.3). Figure 4.3 shows the seasonal differences

in surface temperature. Precession minimum leads to a strong cooling in winter

and spring (figures 4.3A, 4.3C) that is strongest over land. During the summer,

higher insolation under precession minimum conditions leads to a warming that is

strongest over land due to higher specific heat compared to the ocean. Strong conti-

nental heating results in greater precipitation over the Northern Africa and Northern

South America, while reducing precipitation over nearby ocean regions (figure 4.4).

Evaporative cooling and cloudier conditions cool North Africa in the summer. In

the fall, opposite hemispheric patterns arise. In the NH, a reduction in insolation

leads to cooling; the opposite is true in the SH. We would expect precession mini-

mum to result in a cooler autumn and warmer spring, however, because of the tilt

of the Earth’s axis, in boreal autumn the NH (SH) receives less (more) insolation

at precession minimum compared to precession maximum.

Precession minimum results in stronger convergence over North Africa which leads

to wetter conditions over Northern Africa and the MedSea (figure 4.5). Figure 4.5

shows the difference in summertime (JJA) velocity potential and divergent wind

fields at 850-hPa (figure 4.5a) and 200-hPa (figure 4.5b) due to precession changes.

The large-scale circulation in the summer is characterized by convergence at the
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surface and divergence aloft in southeast Asia. This ascending motion is associated

with the monsoon circulation. Divergence at the surface and convergence aloft in-

dicate subsiding motions in the southern tropical Atlantic. The largest precession

difference occurs over Northern Africa, where precession minimum forces strong as-

cending motion. We also find anomalous rising motion over Northern South America

and increased subsidence over much of the North Pacific Ocean. Figure 4.4B shows

JJA anomalous precipitation due to precession changes. It is apparent that the

large-scale subsidence and ascending motions shown in Figure 4.5 are associated

with greater precipitation over Africa, Indonesia and the Amazon and drier condi-

tions in the North Pacific. Anomalous convergence occurs in the Atlantic and Indian

Ocean around 10◦S. Intense divergence over the Pacific corresponds to reduced pre-

cipitation. A reduction in the annual mean temperature of the NH during precession

minimum shifts tropical precipitation into the Southern Hemisphere (fig 4.6). An-

nually, there is greater precipitation over Northern Africa and the MedSea during

P-. Interestly, reduced precipitation over India and increased precipitation over the

eastern MedSea is consistent with theories linking remote changes in strength of the

Indian monsoon to subsidence and aridification over the eastern MedSea (Rodwell

and Hoskins (1996)). Our results show an increase in precipitation over the Bolivian

Altiplano in agreement with findings that wet cycles in sediment cores drilled in the

tropical Andes are correlated with precession minimum orbital conditions (Baker

et al. (2001)).
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4.4.2 Mediterranean Sea Hydrological Cycle

4.4.2.1 Comparison with proxy data

In the Gladstone et al. (2007) Late Miocene study, MedSea level lowering and

desiccation were not taken into account. These features have been shown to shift the

precipitation distribution and alter the water budget, respectively (Murphy et al.

(2009)). Figure 4.7 shows the influence of reduced MedSea level on the water budget

terms for precession maximum (left) and precession minimum (right). The spatial

pattern at precession maximum is very similar to present day, where reduced MedSea

increases precipitation over the Northeastern MedSea and decreases precipitation in

the southeastern MedSea. This pattern is observed under both precession signals

and should be reflected in the observational record.

Fauquette et al. (2006) used the relationship between relative pollen abundance of

each individual taxon sampled and climate to quantify the climate of periods for

which there are currently no modern analogs of the pollen spectra. This is achieved

by transposing the climate requirements of the maximum number of modern taxa to

the fossil data. The most likely value corresponds to the weighted mean. Here, we

compare our simulations to mean annual precipitation based on the available pollen

data. Figure 4.8 shows Fauquette et al. (2006) proxy data for the period correspond-

ing to “Lower Evaporite” deposition (roughly 5.96-5.59 Ma). The black circles show

the data values based on pollen reconstructions with corresponding error bars that

reflect the uncertainty in each data value. There are eleven sites located around the

periphery of the MedSea. Carmona, Andalucia, and Tarragona are located in South-
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ern Spain; Bou Regreg and Habibas are in Northwestern Africa; Eraclea Minoa and

Racalmuto are located in Sicily; Torre Sterpi, Borgo Tossignano, and Maccarone are

located in Northern Italy; Site 380A is in the Black Sea. Our control US simula-

tions are marked in blue at modern (diamond), minimum (triangle), and maximum

(square) values of precession. Our LS simulations are marked in red. Finally, the

green stars show present day climatological values based on the CMAP dataset (Xie

and Arkin (1996)). Comparing the proxy data to current precipitation values high-

lights the difference in precipitation during the “Lower Evaporite” deposition. The

Italian and Black Sea pollen data show an increase in annual mean precipitation

compared to present day. Our LS simulation results in wetter conditions along the

Northeastern border of the MedSea compared to our US simulation, which is in

better agreement with proxy data. This suggests there was reduced MedSea level

during the “Lower Evaporite” phase.

Comparisons between model data and pollen sites is problematic, since pollen is

derived from a core and is representative of the immediate local environment, while

model output is derived from a grid box whose center is closest to the core. Each

model grid box has an area on the order 105 km2. CMAP data is given at an even

coarser resolution (2.5x2.5◦grid spacing)

.
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4.4.3 Mediterranean Sea Temperature

Comparing the seasonal cycle of temperature in the US and Cntl runs to

NCEP-NCAR Reanalysis data shows that eliminating the horizontal heat trans-

port to the MedSea cools the basin in the winter and warms it in the summer;

however, the amplitude of the seasonal cycle is consistent with that of the NCEP-

NCAR Reanalysis (figure 4.9). In the annual mean, Mediterranean SST in our US

run is similar to the present day, while the LS run is slightly warmer than present

day. The MedSea is the coolest in February and warmest in August in all runs,

which agrees with the data. SST has a strong influence on evaporation within the

MedSea. Warmer SSTs at reduced MedSea sea level, leads to greater evaporation

and results in a precipitation maximum in August. In January and February, the

MedSea surface temperature in the US run is reduced by nearly 3◦C compared to

reanalysis data. In the summer, the MedSea is warmed by roughly 3◦C. CAM-SOM

simulations are generally too warm during the summer, yet is in good agreement

throughout the rest of the year. Reducing the MedSea sea level (LS) leads to a

large warming throughout the year. In August, the LS run is 5◦C warmer than

NCEP-NCAR reanalysis. Typically, the MedSea gains 5.2 ± 1.3 W m−2 through

advective heat flux (Macdonald et al. (1994)). In the absence of heat flux into the

MedSea, adiabatic compression into the lowered basin results in a LS that is as

warm as the PD during the winter. While reduced MedSea leads to strong heating

in the summer, the elimination of horizontal heat transport into the MedSea during

the winter prevents the LS SSTs from exceeding PD temperatures. This may ex-
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plain why reconstructions based on pollen do not show large climate change during

the MSC in locations around the MedSea periphery. Precession minimum results

in greater seasonality in Mediterranean SST, with maximum SST reached in July,

consistent with insolation maximum forcing. In July, US P- is 7◦C warmer than

NCEP-NCAR Reanalysis. When the sea is reduced, the SST maximum lags one

month.

4.4.4 Water budget of North Africa

In Section 4.4.1 we showed that orbital forcing has a strong influence on precip-

itation through changes in seasonal insolation. Annually, there is more precipitation

over the MedSea and North Africa, especially Northeastern Africa, during precession

minimum compared to precession maximum (4.6). Figure 4.7 shows the changes in

the water budget due to reduced MedSea level. We zoom in to focus our discussion

on the MedSea, North Africa and sourthern Eurasia. Precipitation over North Africa

is dependent on both the precession signal and the level of the MedSea. During pre-

cession maximum, orographic forcing from reduced Mediterranean Sea level results

in the development of anomalous low pressure (counter-clockwise rotation) center to

the west and a high pressure (clockwise rotation) to the east of the Mediterranean.

During the winter, LS anomalous circulation results in greater moisture transport

from the Atlantic Ocean to Northwestern Africa. Increased vertical velocity leads

and moisture convergence results in a wetter northwestern Sahara in DJF (this is a
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50-75% increase in precipitation with respect to our control climate). Our results

show that at reduced Mediterranean Sea level (-1500 m below sea level) the Sahara

is warmer and Northern sub-Saharan Africa is cooler on annual time scales.

There are also features that are consistent under both precession signals. In Sec-

tion 4.4.2 we discussed how reduced MedSea level increases precipitation to the

northeast of the MedSea and reduces precipitation to the southwest of the MedSea.

Reduced MedSea level moistens the region between the Guinea Coast and the Sahel,

and reduces precipitation over Northeastern Africa into the Arabian Peninsula and

through Turkey. The development of anomalous high pressure over Northeastern

Africa (near Egypt) occurs in response to anomalous cooling. Over this region cold

air causes the atmosphere to contract, leading to convergence in the upper atmo-

sphere and subsidence below. Subsiding air lowers the relative humidity, leading to

greater aridity in this region. This feature is consistent with proxies that record a

transition from arid to humid conditions in the Adana Basin of Southern Turkey

from the late Messinian into the early Pliocene (Darbas et al. (2008)).

The annual cycle of precipitation averaged between 10◦W to 20◦E over North Africa

for the Cntl and modern day based on CMAP data is shown in figure 4.10CD). The

anomalous precipitation over this region due to reduced MedSea level is shown for

modern (figure 4.10A) and minimum precession forcing (figure 4.10B). Comparing

the Cntl simulation to the CPC Merged Analysis of Precipitation (CMAP) dataset

shows that North African precipitation extends ∼5◦too far north into the Saharan

Desert. There are deficiencies in simulating the timing of the West African monsoon

in CAM-SOM. Precipitation begins about 2 months too early in the Cntl simulation,
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which leads to less precipitation occurring over the summer monsoon months (June-

September). There will also be limitations in simulating precipitation over eastern

North Africa, particularly the Ethiopian Highlands, due to model resolution and

unrealistic topography. Nevertheless, we are more concerned with the difference in

precipitation over North Africa due to the Messinian desiccation. Our results show

that during boreal summer a reduced MedSea results in greater precipitation over

North Africa. This response is consistent under both modern precession and min-

imum precession forcing. Strong continental heating during precession minimum

orbital forcing leads to a substantial increase in rain over the Saharan desert, ex-

tending to ∼30◦N for a partially filled MedSea (LS P-) and ∼3◦N for a filled MedSea

(US P-). This suggests that the drawdown of the MedSea is not responsible for in-

creasing the humidity of North Africa during the Zeit Wet phase (Griffin (2002)).

Instead the Zeit Wet phase may result from a combination of MedSea isolation and

precession minimum conditions.

During boreal summer, precession minimum results in increased warming over sub-

tropical oceans (4.3B). Greater evaporation over subtropical oceans transports more

atmospheric water vapor to the Guinea Coast. During precession minimum, reduced

MedSea level results in stronger westerly flow extending from the Atlantic Ocean

into North Africa between ∼4◦N to 15◦N (figure 4.11), resulting in greater pre-

cipitation compared to the US simulation. This represents a positive feedback in

which more moisture transport into Africa leads to greater latent heat release and

increased precipitation.

Increased solar forcing over the Northern Hemisphere during boreal summer under
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precession minimum drives a dynamical response that involves a strengthening of

the meridional overturning circulation over Africa (figure 4.12). The top and middle

panels of figure 4.12 shows the JJA merdional stream function for precession min-

imum (left) and precession maximum (right) averaged zonally from 10◦W to 20◦E

for our US (top) and LS (middle) simulations. The bottom panels show the differ-

ence in the stream function due to reduced MedSea level. Deep heating over the

MedSea is advected over Northern Africa and leads to ascending motion. Conver-

gence occurs at the surface between 20-30◦N (figure 4.12E). Precipitation develops

when the moist air reaches the convergence zone over North Africa. This results

in greater precipitation under the rising branch and a northward penetration of the

West African Monsoon. More precipitation over North Africa results in evaporative

cooling.

4.4.4.1 Runoff

When the MedSea was isolated from the Atlantic Ocean, the MedSea climate

consisted of warm, and relatively wet summers; however, during the remainder of

the year, MedSea precipitation is reduced compared to PD (figure 4.7). Preces-

sion minimum forcing results in a distinct seasonality in precipitation. Figure 4.13

shows the contributions of the various terms to the freshwater budget. Runoff into

the MedSea is calculated by masking values where the land mask is equal to one

(indicating land only points) and averaging over values that have land fractions be-

79



tween 1 and 0 (partial land points). The freshwater budget of a filled MedSea under

precession minimum conditions (US P-) shows a substantial departure from modern

orbital conditions (US). An extremely large increase in runoff occurs in late sum-

mer, corresponding to a peak in precipitation. In August, runoff into the MedSea

is increased by an order of magnitude. Precipitation reaches its minimum value in

June and causes a second, smaller peak in the fresh water deficit. The freshwater

deficit is greatest in September when evaporation remains high but precipitation

and runoff are reduced.

Tuenter et al. (2003) used a simple coupled model to show that during precession

minima both net precipitation over the MedSea and runoff from the northern periph-

eral regions are increased. Precession minimum results in greater runoff from both

the Northern borderlands and in the southeastern MedSea, where the Nile River

is the largest contributor. Area-averaged MedSea evaporation is slightly increased

and precipitation and runoff are substantially increased under precession minimum

compared to precession maximum.

MedSea level has a significant impact on runoff (fig. 4.14). When the MedSea is

reduced, there is a substantial reduction in runoff from Northeastern Africa, consis-

tent with greater subsidence over this region. More runoff is supplied to the MedSea

from the Northern borderlands due to greater precipitation. Most runoff enters the

basin in DJF. Reduced MedSea level during the MSC may have also supplied more

runoff to the Ivory Coast.

Precession maximum reduces the volume of runoff that enters the MedSea. Table

4.3 shows that under present day orbital parameters 0.19 mm day−1 of runoff en-
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ters the MedSea. Under precession maximum this reduces to 0.13 mm day−1, on

the contrary, runoff entering the sea is almost doubled under precession minimum

conditions (0.36 mm day−1).

Runoff is increased at reduced MedSea level owing to greater rain over the Northern

borderlands. Runoff reaches 0.27 mm day−1 under a reduced MedSea under modern

orbital forcing and is highest at 0.40 mm day−1 under precession minimum condi-

tions.

The level of the MedSea does not have a large impact on area-averaged MedSea

precipitation under precession maximum. On the contrary, the level of the MedSea

largely reduces precipitation by 14% and increases evaporation by 7% under preces-

sion minimum, leading to a larger MedSea water deficit compared to filled conditions.

4.4.5 African Easterly Jet

A large thermal contrast develops between land and sea in boreal summer. As

the continents warm up, this induces a monsoonal circulation as a thermal low devel-

ops over Africa. This is strengthened under precession minimum, when the surface

radiative forcing is increased relative to PD and precession maximum conditions. A

heat low forms over North Africa and drives a monsoonal response. The strongest

surface meridional temperature gradient is shifted northwards. Vertical wind shear

develops to maintain thermal wind balance, creating a strong easterly jet, known

as the African Easterly Jet (AEJ), centered around 600-hPa at the northern edge
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of the ITCZ (4.15a,b). The AEJ is a region of moisture divergence and subsidence

over the southern Sahara. Cook (2000) observed a reduction in the AEJ when the

low-level baroclinicity is diminished. This has been observed when the prevailing

climate over the Sahara is humid (Rowell (2003)) and is in agreement with our con-

trol US P- simulation in which the magnitude of the AEJ is diminished compared

to our US P+ simulation (4.15a).

Reduced MedSea level warms the region through adiabatic compression as air flows

into the deep basin (Murphy et al. (2009)). This shifts the region of maximum

meridional temperature gradient, and consequently the AEJ, northwards. Drier

conditions over North Africa at maximum precession results in a stronger AEJ com-

pared to minimum precession.

4.4.5.1 Implications for Dust Transport

Horizontal and vertical wind shear generates African Easterly Waves that

transport African dust westward to the Caribbean and the North America. AEW

are responsible for about 30

4.5 Concluding remarks

Prior to the re-establishment of Atlantic inflow at the end of the Miocene, the

MedSea experienced increased freshwater dilution and a Lago-Mare formed. Re-

duced MedSea level leads to enhanced precipitation and runoff from the northern
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borderlands. These features are present in all orbital forcing simulations. Preces-

sion minimum results in a 110% and 90% increase in runoff into the MedSea under

reduced and current MedSea level, respectively, compared to the modern orbital

forcing control simulation. A 13% (31%) decrease in the MedSea water deficit oc-

curs for the reduced MedSea level (control MedSea level) at precession minimum

compared to modern orbital forcing. During precession minimum, reduced MedSea

level substantially increases runoff, yet precipitation is reduced and evaporation is

increased compared to filled MedSea conditions. Therefore, precession minimum

can only tip the MedSea water balance to allow for Lago-Mare deposits under

relatively high MedSea level. Changes in runoff can have implications on deep-

water formation within the MedSea where increased freshwater input to the eastern

MedSea inhibits deep-water formation. This should slow the thermohaline circula-

tion and initiate sapropel (organic-rich sediments) deposition. Sapropels are mostly

formed in the Eastern MedSea which has greater river runoff. During precession

minimum, reduced MedSea level substantially dries Northern Africa and decreases

runoff. However, use of a slab ocean model prohibits specifically examining changes

in the Mediterranean circulation. The spatial pattern of anomalous precipitation

over the MedSea with wetter conditions in the northeast and drier conditions in the

southwest is consistent under all precession signals.

ODP Site 659, which is located near 18◦N in the eastern Atlantic, just west of the

Sahel, records past changes in African monsoon intensity. Greater precipitation over

the Guinea Coast at reduced MedSea level results in more runoff into the eastern

tropical Atlantic. This is in agreement with proxy evidence of enhanced total or-
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ganic carbon accumulation (TOC) off equatorial West Africa at 5.65, 5.6 and 5.5Ma

(Wagner, 2002).

The impact of oceanic circulation change on upwelling patterns, particularly off the

West African coast, may impose feedbacks on the climate in our precession simula-

tions. It has been shown that CCSM3 does not correctly simulate upwelling in the

eastern tropical Atlantic, a feature that may influence West African monsoon rainfall

(Meehl et al. (2006)). Changes in North and South Atlantic SSTs account for up to

50Generally, enhanced precipitation over North Africa during precession minimum

reduces African dust production. Our simulations do not take this into account

as dust loading has a seasonal cycle that is set at modern conditions. Although

CCSM allows for vegetation-atmosphere interactions, we fail to take soil moisture

and albedo changes into account due to the implementation of a spatially prescribed

vegetation dataset. Soil moisture changes have been shown to enhance hydrological

feedbacks in climate models (Kutzbach et al. (1996);Levis et al. (2004)).

Eolian deposition patterns in the eastern tropical Pacific Ocean indicate the ITCZ

was displaced northwards of 7◦N prior to 5 Ma and began shifting southwards at

the beginning of the Pliocene (Hovan, 1995). Our Late Miocene study shows that

reduced Mediterranean Sea stand results in greater precipitation over this region.

However, the effect of restriction and closure of the Panama Strait on atmospheric-

oceanic dynamics in this region should not be ignored.
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4.6 Tables

Table 4.1: Description of the acronyms used for the simulations described in this

article.

MedSea level Current Orbital forcing Precession Max Precession Min

Upper Sea US CLIM, US US P+ US P-

Lowered Sea LS CLIM, LS LS P+ LS P-
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Table 4.2: Orbital forcing applied to the simulations described in this article.

Simulation US, LS US P+, LS P+ US P-, LS P-

Obliquity 23.44627 23.44627 23.44627

Eccentricity 0.0167 0.05 0.05

Precession 102 90 270
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Table 4.3: MedSea freshwater budget terms averaged over the region 3◦to 46◦N and

6◦W to 37◦E (sea points only). Averages of hydrological components are calcu-

lated using Gaussian weights. PD is present day orbital forcing, P+ is precession

maximum orbital forcing, and P- is precession minimum orbital forcing.

Simulation US LS US P+ LS P+ US P- LS P-

Evaporation (E) (mm day−1) 3.35 3.48 3.33 3.44 3.37 3.61

Precipitation (P) (mm day−1) 1.00 0.88 0.88 0.88 1.53 1.32

Runoff (R) (mm day−1) 0.19 0.27 0.13 0.20 0.36 0.40

Water deficit [E-P-R (mm day−1)] 2.16 2.33 2.32 2.36 1.48 1.89
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4.7 Figures

Figure 4.1: Annual cycle of Northern Hemisphere averaged insolation (W m−2) for

our US simulation under modern (green), precession maximum (red) and precession

minimum (blue) orbital conditions.
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Figure 4.2: Annual cycle of zonally averaged insolation at the surface for our US

precession minimum (A), precession maximum (B), and modern (C) orbital con-

ditions. Panel D shows the difference between minimum and modern precession.

Panel E shows the difference between maximum and modern precession. Panel F

shows the difference between minimum and maximum precession.
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Figure 4.3: The difference in surface temperature (K) between precession minimum

and maximum for our US simulation at DJF (A), JJA (B), MAM (C), SON (D).
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Figure 4.4: As Fig. 4.3 but for total precipitation (mm day−1). Total precipitation

includes both convective and large-scale precipitation.
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(a) (b)

Figure 4.5: Climatological JJA Velocity potential (shaded) and wind (vectors) at

850-hPa (left) and 200-hPa (right) for our US simulation at precession maximum

(top), precession minimum (middle), and the difference between precession minimum

and maximum (bottom). All panels show statistically significant differences at the

95% level
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Figure 4.6: The difference in annual mean precipitation (A), evaporation (B), and

E-P (C) (mm day−1) between our control precession minimum (US P-) and control

precession maximum (US P+) simulations. All panels show statistically significant

differences at the 95% level only.
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(a) (b)

Figure 4.7: Annual mean difference in precipitation (top), evaporation (middle), and

evaporation minus precipitation (bottom) (mm day−1) over the Mediterranean and

Southern Eurasia between the LL and US simulations at precession maximum (left)

and precession minimum (right). All panels show statistically significant differences

at the 95% level only.
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Figure 4.8: Precipitation at various sites surrounding the Mediterranean Sea. Black

circles are values of precipitation from Fauquette et al. (2006). Error bars represent

uncertainty in the method used to reconstruct the climate. Our LS simulations

are represented with red markers and our US simulations are represented with blue

markers. Present day values from the CMAP dataset are shown in green stars.

Precession minimum simulations are denoted with triangles, precession maximum

with squares and modern precession with diamonds.
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Figure 4.9: Annual cycle of surface temperature (◦C) averaged over the Mediter-

ranean Sea (6◦W -37◦E, 30◦-46◦N) for our control US (blue), a CAM-SOM control

run with no Q-flux modification (Cntl) (black), and our LS simulation (red). Mod-

ern precession experiments are given in solid lines, precession minimum in small

dashed lines, and precession maximum in long dashed lines. The green dots are

calculated from the NCEP-NCAR reanalysis dataset.
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Figure 4.10: Annual cycle of precipitation (mm day−1) averaged over North Africa

(10◦W-20◦E) shown fm 10◦S to 30◦N. The difference between the LS and US is shown

in panel A. The difference between the LS and US at precession minimum is shown

in panel B. Panel C shows the climatology from the CAM-SOM Cntl simulation.

Panel D shows the climatology based on the CMAP dataset.
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Figure 4.11: Annual mean vertical velocity (shaded) (Pa s−1) at 500-hPa, and wind

anomaly (vectors) (m s−1) at 850-hPa over the Mediterranean and Southern Eurasia

for the LS simulation. All panels show statistically significant differences at the 95%

level only.
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Figure 4.12: Sumertime (JJA) zonal mean meridional stream function averaged over

North Africa (10◦W -20◦E) shown from the equator to 50◦N for the US (top), the LS

(middle), and the anomalies (bottom) at precession minimum (left) and precession

maximum (right). Positive values represent anticyclonic, or clockwise, movement.

Negative values represent cyclonic, or counterclockwise, movement.
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Figure 4.13: Annual cycle of evaporation-precipitation-runoff (E-P-R) (top), evap-

oration (second), precipitation (third), and runoff (bottom) averaged over the

Mediterranean Sea (6◦W-37◦E, 30◦-46◦N) for our control US (blue) and LS (red)

simulations at modern precession (solid), precession maximum (long dash) and pre-

cession minimum (short dash) simulations. The standard deviation calculated over

the last 30 years of model simulation and is shown for the US simulation.
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Figure 4.14: Annual mean runoff anomaly (mm day−1) for the LS simulation at

precession maximum (top) and precession minimum (bottom). All panels show

statistically significant differences at the 95% level only.
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(a) (b)

Figure 4.15: Meridional (north-south) vertical cross sections of summertime (JJA)

zonal mean wind (m s−1) for the LS (left) and US (right) simulations at precession

minimum (a) and precession maximum (b).
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Chapter 5

Dust forcing experiments

5.1 Abstract

Regional hydrological changes have important feedbacks on eolian dust sources.

This may bring sizeable climate impacts from regional to hemispheric scales. Pa-

leoclimate records indicate enhanced productivity in the Atlantic Ocean, increased

aridity in Central Asia, and glaciation in the Northern hemisphere during the late

Messinian. Nevertheless the mechanisms that generate such changes are still spec-

ulative. One possible source is the oceanographic isolation of the Mediterranean

Sea, which resulted in substantial Mediterranean Sea level fall beginning at 5.96

Ma and desiccation with subaerial exposure between 5.59 to 5.50 Ma. We examine

the role of an exposed basin on aerosols and the resulting dust feedback on climate

using the NCAR Community Atmosphere Model (CAM3.1) configured with a slab

ocean and coupled with an online aerosol model. Dust transport and deposition is

prognostic in the model and atmospheric dust loading influences the climate system

through radiative forcing. This study shows that an additional dust source from

the desiccation of the MedSea may have contributed to glacial events and increased

oceanic productivity shown in the geological record.
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5.2 Introduction

General circulation models that implement advanced atmospheric tracer trans-

port algorithms are capable of reproducing current patterns of dust transport and

deposition (Tegen et al. (2002), Mahowald et al. (2006)). In the CCSM aerosol

model it is mainly vegetation changes, not winds or soil moisture changes that will

promote dust production. The ability for models to accurately simulate changes in

dust deposition during the past is fundamental for evaluating climate models that

are involved in future projections of climate change since hydrological changes can

impact the dust cycle. Dust source regions, entrainment of dust into the atmosphere,

and deposition regions are likely to change with changing climate (Mahowald et al.,

2006).

In the Late Miocene, the oceanographic isolation of the MedSea resulted in substan-

tial MedSea level fall. Consequently, the MedSea underwent a great drying episode

known as the Messinian Salinity Crisis (MSC) in which it may have been desiccated

for as long as 90 kyr, between 5.59 and 5.50 Ma (CIESM, 2008). The role of an ex-

posed basin on aerosols and the resulting dust feedback on climate is an interesting

aspect of the MSC. Subaerial exposure may have provided a substantial dust source

area, and increased dustiness during this period may have implications on global

climate through radiative forcing. Due to its proximity to a significant dust source

(the Saharan Desert), precession-forced changes in dustiness are expected to impact

the North Atlantic. Recent observational studies have shown that nearly 70% of the

SST trend in the tropical North Atlantic is due to mineral aerosols, where reduced
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dust cover warms SSTs off the coast of West Africa between 10-20◦N (Evan et al.

(2009)).

Dust radiative feedbacks alter the atmospheric circulation through changes in sur-

face fluxes of heat and momentum. A weaker atmospheric circulation inhibits the

mobilization of dust. Reduced dust mobilization means less dust is absorbed into the

atmosphere, imposing a negative feedback. Atmospheric dust loading can scatter

and absorb incoming and outgoing radiation, changing the local albedo and poten-

tially cooling the surface while warming the atmosphere. Dust can indirectly affect

the radiation budget through impacts on cloud properties, such as particle size and

size distribution. The radiative effect of dust is still undertain (Miller et al. (2004)).

Just as dust impacts climate through changes in radiative fluxes and optical prop-

erties, climate influences the amount, location and residence time of dust. Bound-

ary layer mixing affects the lifetime of aerosols through changes in dry deposition.

Similarly, wet deposition removes dust from the atmosphere through precipitation.

Mineral aerosols may also serve as cloud condensation nuclei (CCN) and influence

precipitation patterns both locally and globally. Recent studies have suggested

that dust suppresses precipitation (Rosenfeld et al. (2001)) since a larger number

of smaller particles would inhibit collision and coalescence, processes that lead to

precipitation. This suggests a strong connection between dust and regional hydro-

logical cycles. Reduced wet deposition increases the residence time of dust, and may

also have a positive feedback on dust; less precipitation would lead to desertification

and more dust (Nicholson (2000), Hastenrath (1990)). Atmospheric heating in the

dust layer may influence convection. An examination of the effects of precession
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variations and prognostic dust will provide a detailed and thorough analysis of the

hydrological cycle under the different plausible scenarios during the MSC.

Jones et al. (2004) suggested that a climate-dust feedback mechanism may lead to

more intense African Easterly Waves. The African Easterly Jet transports dust

westward across the Atlantic Ocean. Dust particles contain important limiting nu-

trients such that deposition of dust over land and ocean may enhance photosynthetic

carbon fixation. Sedimentation and deposition over the ocean may result in greater

productivity since iron-laden dust particles provides this micro-nutrient to marine

organisms (Jickells et al., 2005). Iron fertilization is especially important in olig-

otrophic (high nutrient, low chlorophyll) regions of the world ocean (Archer and

Johnson, 2000). In terrestrial ecosystems, photosynthetic productivity is affected

not only by climate change but also by key nutrients, such as nitrogen, phosphorus

and iron, all found in dust particles.

Observational evidence suggests dust aerosols from playas containing shallow water

bodies contribute significantly to the radiative effects of dust plumes (Reynolds et

al., 2007). Reynolds et al. (2007) showed that lowered surfaces that contain a shal-

low water reservoir might contribute more dust aerosols to the overlying atmosphere

because their surfaces are soft and can be easily lifted by the wind. Conversely, dry

surfaces do not contribute as much dust. Topographic lows in arid regions are also

important sources of dust due to the accumulation of particles that have been eroded

and washed down by water or blown in by the wind (Prospero et al., 2002). Salt-rich

dust aerosols from the bottom of lowered basins with a shallow layer of water con-

tribute significantly to the radiative effects of dust plumes (Reynolds et al., 2007).
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There were 18 glacial-interglacial oscillations that occurred in the Late Miocene from

∼6.26 to 5.50 Ma. (Hodell et al., 2001). Two prominent glacial events occurred in

the Messinian Gap period when isolation of the MedSea and erosion occurred. The

glacial stages during this interval were the TG12 at 5.51 Ma and TG14 at 5.58

Ma. During the TG12, δ18O values exceeded the Holocene by ∼0.5%. Reports

of ice-rafted debris off Greenland and in the Norwegian Sea suggest glaciers were

large enough to reach sea level during the late Miocene (Jansen and Sjoholm, 1991;

Larsen et al., 1994). In Pakistan, the δ18O of soil carbonates documents increased

aridity at similar to 5.5 Ma (Zhisheng et al. (2001)). This coincides with a peak in

upwelling fauna at ODP Site 722 in the Arabian Sea.

What role would increased dust generation in the Late Miocene have on global

climate? Nutrients contained in dust may enhance productivity in marine and ter-

restrial ecosystems, thus sequestering more atmospheric carbon dioxide and cooling

global climate (Martin (1990), Okin et al. (2004)). Could the MSC have contributed

to spikes in the δ18O record? Increased biogenic blooms in the ocean may also result

in changes in bio-optical heating, thus altering SSTs (Timmermann and Jin (2002)).

Calcium Carbonate (CaCO3) content is correlated with benthic foraminifera oxygen

isotope changes, a proxy for high-latitude temperature and ice volume. The proxy

record shows that diatoms that only live in sea ice were abundant in the North Pa-

cific by 5.5 Ma (Lyle et al. (2008)), several million years prior to large-scale Northern

Hemisphere glaciation.

If the MedSea went through several cycles of complete desiccation during the MSC,

it probably became a source region for desert dust and aerosols. Proxy evidence of
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aeolian dust in the eastern MedSea correlates with a northward shift in the African

monsoon (Larrasoaa et al., 2003). In fact,Ruddiman and Kutzbach (1989) exam-

ined proxy data and found low dust flux records in the North Atlantic during the

period of 8-5 Ma and concluded this was related to the North African wet phase.

Analogously, a less humid Africa and dry Mediterranean basin would provide a sub-

stantial dust source region. A larger dust source will contribute more CCN that will

be available for precipitation processes. Although this indirect effect of dust is not

included in this model. Although, changes in the direct radiative forcing may impli-

cations on the water budget. An examination of the effects of precession variations

and dust sources will provide a detailed and thorough analysis of the hydrological

cycle under the different plausible scenarios during the MSC.

5.3 Experimental Setup

The National Center for Atmospheric Research Community Climate System

Model (CCSM3) is a fully coupled atmosphere, ocean, land and sea-ice model

(Collins et al. (2004)). For our study we use slab ocean model (SOM) and a mineral

aerosol model in which dust in prognostic. The dust source mechanism and deposi-

tion is described in Mahowald et al. (2006). Modeled dust sources are typically dry

regions containing strong winds, and dust sources are a function of total leaf area

plus stem area index (Mahowald et al. (2006)). These indices are monthly mean

values that are estimated from satellite data and are held fixed in all runs. When
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this value is below 0.1, dust generation increases as a linear inverse function of veg-

etation cover. The wind friction threshold velocity increases with water content but

is particle size dependent. The threshold velocity increases more quickly for smaller

particles due to dielectric effects than for larger particles, which have greater mass

and can easily subside. The aerosol model includes both dry and wet deposition and

has a log-normal size distribution within the bins. Four separate size bins are used

because of the large differences in the lifetime and optical properties of different

sized particles.

While the SOM does not simulate the full ocean circulation, sea surface tempera-

tures (SSTs) are able to respond to atmospheric changes. SSTs evolve in response to

dust radiative effects (Yoshioka et al. (2007)). The mixed layer SOM includes a ther-

modynamic sea ice component and the atmosphere model uses a terrain-following

hybrid coordinate with a spectral Eulerian dynamical core that has 26 vertical lev-

els. A greater discussion on the implemented horizontal oceanic heat transport can

be found in Murphy et al. (2009). The Community Land Model (CLM3) (Oleson

et al., 2004) incorporates biogeophysics, hydrological cycle, and biogeochemistry. A

river transport model is utilized in CLM to transport total runoff over land to the

ocean; however, human water consumption and irrigation are not taken into account

(Oleson et al., 2004). The vegetation is divided into plant functional types (PFT)

that are characterized by its structure. The vegetation structure, including leaf and

stem area index as well as canopy height, is input to each grid cell for each PFT.

Greater detail of this model is provided in Collins et al. (2004) and Oleson et al.

(2004).
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Table 5.1 describes the additional simiulations described in this chapter. All simu-

lations are run at T42 resolution (an equivalent grid spacing of roughly 2.8◦x 2.8◦).

Branch runs were integrated from the equilibrated state of the Lowered Sea (LS)

simulation described in Murphy et al. (2009). Prescribed present-day vegetation

and present-day greenhouse gas concentrations are used. Several simulations were

performed using restart conditions from the Lowered Land simulation in Murphy

et al. (2009). We simulated the effect of a Mediterranean desert under precession

maximum and minimum conditions. Since the cyclical sedimentary patterns are

too frequent to account for changes in obliquity, we keep obliquity and eccentricity

constant. Obliquity is held at the present day value of 23.45◦ while eccentricity is

increased from 0.0167 to 0.05 to account for maximum seasonality in orbital preces-

sion. As in Chapter 3, our LL simulations take vegetation and soil characteristics

from a grid square over Northern Africa. In each of these branched simulations we

now turn on dust, meaning that dust is prognostic in these new simulations. Dust

alters climate through radiative effects. We run an additional simulation in which

we remove dust (LL P + NODUST ). This is done by setting the aerosol scaling

factor to zero in the active radiation calculation. The difference between our desic-

cated MedSea at precession maximum (LL P+ DUST ) and the simulation without

dust (LL P + NODUST ) will provide a way to calculate the dust feedback effect

on the atmosphere.
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5.4 Results

5.4.1 Precession-forced changes in Atmospheric Dust

In Chapter 4 we discussed the precessional effect on global precipitation, which

consists of increased precipitation in the extratropics and decreased precipitation in

the tropics and high latitudes during summer solstice (precession minimum orbital

forcing) (Chapter 4, Figure 4). On annual time scales, a peak in precipitation oc-

curs off the northern coast of South America. In fact, sediment traps and shelf

sediments in the tropical Cariaco Basin, off the coast of Venezuela, show, in addi-

tion to a glacial-interglacial eccentricity frequency, a significant and coherent preces-

sional relationship. According to Martinez et al. (2007), inorganic chemical proxies

found in Cariaco sediments, namely Ti/Al, record variability in terrigenous source

and/or flux, with variations corresponding to changes in the ITCZ. Increases in

Ti/Al correspond to precession-induced moistening over the Cariaco Basin, which

would discharge more runoff and deposit more dust (due to wet deposition), during

both glacial and interglacial periods (Martinez et al., 2007). This chemical ratio is

independent of eustatic sea-level variations. Orbital forcing is expected to have an

impact on the atmospheric concentration of dust through associated changes in the

water cycle. Precession minimum results in a strong summer monsoon that reduces

the aridity of North Africa and decreases the atmospheric dust optical depth over

much of the NH, with the exception of extreme Northern Africa and the eastern

MedSea (figure 5.1). During this time, atmospheric dust loading is reduced over the

tropical Atlantic and extending into the Caribbean. A reduction in dust deposition
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(not shown) off the South American coast suggests that river input of chemical el-

ements is more important that wet deposition of dust during periods of precession

minimum forcing.

Figure 5.2 examines the anomalous changes in surface temperature due to changes

in precession with prognostic dust (fig. 5.2A) and climatological dust (5.2B). Figure

5.2C shows the dust forcing on surface temperatures. While precession minimum

forcing has a cooling effect on SSTs (figs. 5.2A, 5.2B), reduced dust loading over the

tropical North Atlantic Ocean increases the incident solar radiation and warms SSTs

north of the equator. This feature is consistent with recent studies that show dust

forcing cools tropical North Atlantic SSTs, but in the opposite sense (Evan et al.

(2009)). A classic Atlantic dipole pattern appears in anomalous SSTs, with warm-

ing north of the equator and cooling south of the equator (fig. 5.3), which has been

shown to further amplify the North African precipitation signal (Braconnot et al.

(2007)). Warmer SSTs enhance evaporation, which shifts the ITCZ northwards and

produces more precipitation, particularly in the western tropical North Atlantic.

Paleo-monsoon studies, in particular the Paleoclimate Modelling Intercomparison

Project (PMIP), have recently shown that vegetation feedbacks may be less impor-

tant for rainfall over Africa (Braconnot et al., 2007), yet these studies use models

with seasonally-prescribed dust based on modern climatology. Our results suggest

that dust may damp ocean and vegetation feedbacks. This emphasizes the role

dust has on the tropical hydrological cycle and suggests that among vegetation and

ocean-dynamical feedbacks, we must also take into account dust-radiative feedbacks

in paleo-studies of the monsoon. Reduced precipitation in the equatorial Pacific ex-
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acerbates the double ITCZ problem that is inherent in the CAM (Hack et al., 2006).

5.4.2 Dust deposition and optical depth

Figure 5.4 shows the annual mean dust deposition for our desiccated Med-

Sea simulations (panels A), our control simulations (panels B) and the difference

between the two (panel C) for precession maximum orbital forcing (left) and preces-

sion minimum orbital forcing (right). The anomalous dust optical depth illustrates

the contribution of annual mean atmospheric dust loading from a MedSea contribu-

tion source. The annual zonal mean dust optical depth is plotted to the right of each

panel. The top panels show a second dust peak at 35◦N. Atmospheric dust loading

from a MedSea dust source forced with precession maximum is almost as large as the

Saharan source, which is evident at 18◦N. Table 5.2 gives the global and NH annual

mean dust optical depths for each simulation. Our control simulations are within

the range of values given in Mahowald et al. (2006). Using the SOM, Mahowald

gives a global dust optical depth value of 0.037, which is consistent with our value of

0.039 for the US P- DUST simulation. Precession maximum results in greater dust

loading. Dust fluxes are correlated with the global ice volume: typically, a reduced

hydrological cycle and stronger atmospheric circulation during glacial periods result

in a dustier atmosphere (Rea (1994)). Precession maximum orbital forcing results

in less insolation during NH summer, which reduces sea-ice melt, while stronger

insolation in the winter increases evaporation. Greater moisture transport and pre-
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cipitation leads to more ice buildup.

The annual mean NH dust optical depth is increased from 0.09 in our control

(US P+ DUST ) to 0.14 under desiccated conditions (LL P+ DUST ). Under pre-

cession minimum orbital forcing, the Mediterranean dust source becomes larger than

the Saharan. This is consistent with wetter conditions in North Africa. The annual

mean NH dust optical depth is increased from 0.07 in our control (US P − DUST )

to 0.11 under desiccated conditions (LL P− DUST ). Our results show that a Med-

Sea desert doubles the global annual mean dust optical depth compared to control

conditions. Considerably higher dust optical depth values occur over the North-

ern Hemisphere in the summer, with positive values over the eastern North Pacific

Ocean. High values of dust optical depth occur over central and eastern Asia in the

spring and summer. Deep Sea Drilling Project Site 397, located near 27◦N off the

northwest Africa coast, records moderate-sized dust influx maxima between 6 and

5.5 Ma (Stein (1985)).

5.4.3 Dust Radiative Forcing

To determine the radiative forcing of dust in our simulations, we run our model

for one year, turning on the passive aerosol radiative forcing calculation. This al-

lows us to obtain aerosol forcing factors. Figures 5.5 and 5.6 show the shortwave

radiative forcing of dust at the top of the atmosphere (A), within the atmosphere,

and at the surface for precession minimum (fig. 5.5) and precession maximum (5.6)
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forcing. Dust radiative forcing reduces the solar flux at the surface and top of the

model over most of the NH. A large reduction of more than 40 W m−2 is found over

North Africa. Our precession maximum simulations show stronger dust radiative

forcing at high latitudes compared to precession minimum. This is the result of a

> 60% increase in atmospheric dust loading.

5.4.4 Climate Response

5.4.4.1 Temperature

Local changes in aerosol cover may affect temperature via the scattering of

sunlight and reduction in surface solar radiation. This is shown over the Med-

Sea and North Africa where greater dust loading significantly decreases insolation.

Although we would expect surface cooling due to greater reduction of incident in-

solation, the dust results in warming: Figure 5.7 shows the anomalous change in

surface temperature resulting from a Mediterranean desert with prognostic dust (fig.

5.7A), climatological dust (fig. 5.7B), due to a Mediterranean dust alone (fig. 5.7C),

and due to all dust in the model (fig. 5.7D). In our model dust has a lower albedo

than the bright, desert surface. More dust loading over the desert leads to more

absorbed solar radiation, which increases the surface temperature. Without dust in

the atmosphere, the desert surface reflects more solar radiation.

Outgoing longwave radiation (OLR) is a function of surface temperature. How-

ever, dust and clouds tend to reduce the OLR from clear sky values. In Murphy
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et al. (2009), reduced Mediterranean sea level raises the surface temperature due

to adiabatic compression, resulting in a 20 W m−2 increase in OLR compared to

control conditions. Dust loading when the MedSea produces dust acts as a blanket

inhibiting OLR from escaping into space. Greater dust loading reduces the annual

mean outgoing radiation by 10 W m−2 over the MedSea and North Africa. These

competing effects depend on the cloud type, cloud water content, surface albedo.

Locally, the surface temperature is increased because the trapping of OLR by dust

dominates over the reduction in insolation due to increased albedo.

5.4.4.2 Precipitation

Changes in convective precipitation are mostly confined to the tropics, where

strong localized latent-heat release in ascending air plays a bigger role in precipi-

tation processes than large-scale systems. Figure 5.8 shows the difference in total

precipitation between the desiccation simulations and the control for our prognos-

tic dust (figure 5.8A), and climatological dust (figure 5.8B) simulations. Figure

5.8C shows the anomalous total precipitation attributed to dust from the MedSea,

and figure 5.8D shows the effect of all dust. Increased heating from dust drives a

stronger circulation from the Atlantic to North Africa resulting in increased precip-

itation along the Guinea Coast during precession maximum. Figures 5.8C and 5.8D

show that dust shifts tropical precipitation into the Southern Hemisphere. Namely,

there is a shift in convective precipitation into the Southern Hemisphere. Shifting
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of the ITCZ leads to a decrease in high cloud amount and an increase in OLR in

the tropical North Atlantic. Figure 5.8D shows that dust results in drying over the

Sahel. This is consistent with theories that increased dustiness plays a fundamental

role in the Sahel drought (Brooks and Legrand (2000)). Greater atmospheric dust

loading and westward advection across the Atlantic Ocean decreases precipitation

over northern South America, including most of the Amazon.

A MedSea dust source results in a drier Asia (figure 5.8). The Red-Earth Formation,

located in Central China, was formed between 22-2.6 Ma and has long recorded the

history of aridification in central Asia. Since ∼6.2 Ma, aeolian dust deposition is

recorded at the central Loess Plateau the existence of deserts in the Asian interior.

According to Zheng et al. (2004), the North Pacific and the Red Clay Formation

at Jiaxian show moderately enhanced dust input values during the interval between

about 5 and 7 Ma ago, reflecting a period of increasing aridity in Central Asia.

Aridity was intense between ∼6.2–5 Ma and weaker from ∼5–3.6 Ma, coinciding

with a decline in sediment accumulation rates in the Indian Ocean between 5.5–4

Ma in the Indian Ocean. This suggests the MSC may have contributed to Asian

aridification in the Late Miocene.

A MedSea desert leads to a further reduction in precipitation regionally during pre-

cession minimum (figure 5.9). Continental heating during precession minimum is

enhanced due to the warming effect of dust. This is consistent with a stronger circu-

lation in the tropical Atlantic and Indian Oceans and into Africa (figure 5.10). When

this anomalous westerly current reaches the East African mountains, orographic lift-

ing results in a precipitation maximum. Increased precipitation over eastern North
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Africa is only significant (at the 95% confidence level) in our prognostic dust runs.

The moisture comes from the Atlantic, and not the MedSea as suggested by Griffin

(2002). Our results suggest that heating from increased atmospheric dust loading

during summer solstice allows circulation changes that support a wet phase over

northeastern Africa. In the Indian Ocean, increased advection towards warm Africa

results in less precipitation over India (figure 5.9C).

Under all orbital conditions, lowering the MedSea level leads to drying over Eastern

Europe due to a reduction in large-scale precipitation, attributed to the poleward

advection of dry, dust-laden air from the MedSea. Eastern Europe is drier in our P-

runs compared to P+ (figure 5.8 and figure 5.9, respectively). This is in agreement

with pollen data from Western Bulgaria that shows an abrupt change during the

MSC. This change is represented by a sharp decrease in woody taxa and spreading

of drier and more open vegetation. An opening of vegetation is correlated with a

decrease in mean annual precipitation (Utescher et al., 2009).

5.4.4.3 Northern Hemisphere sea-ice cover

With the exception of desert surfaces, atmospheric dust reduces the surface

temperature of the NH. Cooling is accentuated over the high latitudes, where surface

temperature is reduced more than 1.5◦C. Reduced MedSea level results in extrat-

ropical stationary waves evident in the anomalous geopotential height pattern that

resembles an annular mode. A MedSea dust source contributes to even greater cool-
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ing over the high Arctic. This is due to the development of a strong low-pressure

system, and reduced geopotential heights at 250-hPa (figure 5.11) over the Arctic

that prohibits heat transport, cooling the region, and resulting in greater sea-ice pro-

duction (figure 5.12). Figure 5.11C shows the new geopotential height pattern due

to dust forcing. Stationary extratropical waves are excited by the tropical response

to the dust change. Our calculation of the dust radiative forcing suggests greater

cooling over the Arctic at P+ compared to P- because of a substantial increase in

dust at mid-latitudes. Precession minimum conditions leads to higher pressure over

the North Atlantic Ocean and lower pressure off the coast of Greenland (figure 5.13).

This advects more heat into the Norwegian Sea, resulting in warmer temperatures

and reduced sea-ice formation (figure 5.14). Figure 5.15 (taken from Hodell et al.,

2001) shows that two prominent glacial events (TG12 and TG14 denoted with red

arrows), took place during the Messinian gap. Our results suggest that NH cool-

ing due to a higher dust concentration during the MSC may have contributed to

increased sea-ice formation in the Arctic.

5.5 Discussion

In northeastern Brazil, the Sahel and other semi-arid tropical regions, vege-

tation has a strong feedback on climate through radiative and hydrological effects.

Our results show that dust decreases precipitation over the Amazon and northern

South America due to a southward shift in the ITCZ. However, Okin et al. (2004)
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suggests that nutrients in Saharan dust deposition over the Amazon sustains long-

term productivity, a feature that is not included in our model. Enhanced dustiness

during the Pliestocene, a period of global cooling and arid conditions, may be one

feature that sustained the Amazon rainforest when climate conditions would favor

dieback. Greening of the Sahara under precession minimum forcing would further

act to reduce dust loading, suggesting amplification in the dust-hydrological cycle

feedback response.

Strontium (Sr) isotopes record both the rate of weathering and provenance of the

weathered material. The production rate of carbonates is also linked to the Sr cycle

as S+2 readily subsititutes for Ca+2 in the production of marine carbonates, which

is a primary sink for the element from seawater (Lyle et al., 2002). Sr/Ca ratios of

coccolithophores may be affected by paleoproductivity and therefore have recently

been used as a proxy for paleoceanographic changes. Sr/Ca ratios suggest increased

productivity in the western Tropical Atlantic during the late Miocene (Billups et al.

(2004)). The partition coefficient for benthic foraminifera, DSr, is positively corre-

lated with rates of organic carbon fixation and calcification. DSr shows a large peak

at the end of the Messinian at the northern edge of the Brazilian shelf, known as

the Ceara Rise (King et al. (1997)). Increased atmospheric dust transport across

the North Atlantic during the Messinian gap may result in increased productivity

along this region. The peak is at the end of a slow rise since the beginning of the

late Miocene that has been attributed to increased weathering and nutrient input

to the ocean following the vertical uplift of Tibet.

The Mg/Ca ratio of foraminiferal shells is a proxy for past temperature change.
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Benthic foraminiferal accumulation rates (BFAR) are considered to be a good proxy

for export paleoproductivity. Lange and Berger (1993) suggest the increased oc-

currence of radiolaria and echinoids off the equatorial West African coast between

5.8 Ma and 5.25 Ma indicates either an increase in productivity or a temporary

intrusion of silica-rich water masses. Typically, peaks in radiolaria occur during

warm periods indicated in the δ18O record. However, one peak occurs at around 5.7

Ma during a cold stage. In the Indian Ocean, ODP Site 721, located off the coast

of Saudi Arabia, shows broad maximum in sedimentation rates and % CaCO3 at

5.6 Ma, while BFAR derived paleoproductivity shows a distinct maxima at 5.8 Ma

(Diester-Haass et al., 2006). Our results suggest that an additional MedSea dust

source in the Late Miocene may have contributed to increased productivity in these

regions at this time.

Guo et al. (2004) found evidence of greater aridity in Central China between 6.2 and

5 Ma. From 6 to 5.5 Ma, Atlantic Deep Sea Drilling Project Site 397, located on the

African continental shelf at 27◦N, shows a maximum in mass accumulation rates and

moderate-sized dust influx maxima. Stein (1985) suggests this is a result of north

Saharan aridity and an intensified atmospheric circulation. On the contrary, the

record shows south Saharan humidity (Tiedemann et al. (1989)). Our results favor

increased humidity in the Sahel and sub-Saharan North Africa when the MedSea

level is reduced. The effect of dust on this region leads to more arid conditions.

We have shown that MedSea level has a significant impact on Northern Hemisphere

sea-ice formation. At reduced MedSea level, sea ice growth spreads southward, espe-

cially in the Labrador and Bering Seas. Interestingly, Wolf and Thiede (1991) found
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discontinuous sea-ice cover in the Labrador Sea to the south of Greenland since the

late Miocene times, a few million years prior to Northern Hemisphere glaciation.

Significant tidewater glacial effects occurred between 6 and 4.2 Ma. Proxy data in-

dicates that ice-rafting began by 5.5-6.0 Ma in both the northwest Pacific and Gulf

of Alaska sites (Krissek (1995)). ODP Site 881 (∼48◦N,162◦E) lying just outside

the Sea of Okhotsk shows a peak in mass accumulation rates of coarse sand-sized

IRD at 5.5 Ma. This site is within the zone of southward advancing sea ice in our

LL P− simulation.

5.6 Concluding remarks

This study has examined the influence of the MSC on climate during the Late

Miocene Messinian Gap period. This study shows that an additional dust source

from the desiccation of the MedSea may have contributed to glacial events and

increased oceanic productivity shown in the geological record.

Precession-minimum orbital forcing reduces the aridity of North Africa. Modeling

the dust source and transport changes in response to decreased dustiness shows

that warmer tropical North Atlantic SSTs attributed to increased insolation in the

absence of dust enhances evaporation and favors more precipitation over the western

tropical North Atlantic. This stresses the importance of allowing dust to respond

to climate change and including prognostic dust in paleo-simulations that examine

changes in the tropical hydrological cycle. Enhanced dust loading over the tropical
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North Atlantic Ocean occurs when the Mediterranean is desiccated. This reduces

the net radiative flux at the surface, which cools SSTs north of the Equator and

shifts the ITCZ towards the Southern Hemisphere, consistent with theories that

links African dust with extended Sahel droughts. Greater ocean productivity results

from nutrient rich iron-laden dust waters, which is consistent with increased benthic

foraminiferal accumulation rates off the African coast between 5.8 Ma and 5.25 Ma.

The dustier Northern Hemisphere inhibits convective precipitation in the tropical

North Atlantic and large-scale precipitation over Eastern Europe and into Central

Asia, in agreement with proxy evidence of greater aridity in in these regions. Our

results show that a desiccated Mediterranean has a significant impact on Northern

Hemisphere sea-ice formation during precession maximum, which agrees with d18O

proxies. Sea ice growth spreads southward, especially in the Labrador Sea, Bering

Sea and Sea of Okhotsk. Interestingly, proxy data studies show discontinuous sea-ice

cover from the Labrador Sea to the south of Greenland, and concurrent ice-rafting

in both the northwest Pacific and Gulf of Alaska sites in the late Miocene, a few

million years prior to Northern Hemisphere glaciation
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5.7 Tables

Table 5.1: Description of the acronyms used for the simulations described in this

article.

MedSea level Prognostic Dust Climatological Dust No Dust

Upper Sea P- US P- DUST US P- CLIM

Lowered Land P- LL P- DUST LL P- CLIM

Upper Sea P+ US P+ DUST US P+ CLIM

Lowered Land P+ LL P+ DUST LL P+ CLIM LL P+ NODUST
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Table 5.2: Annual mean dust optical depth averaged over the Northern Hemisphere

and the global.

Simulation US P − DUST US P + DUST LL P − DUST LL P + DUST

NH mean 0.074 0.090 0.114 0.142

Global mean 0.039 0.047 0.059 0.073
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5.8 Figures

Figure 5.1: The difference in annual mean dust optical depth between our control

precession minimum (US P − DUST ) and control precession maximum (US P +

DUST ) prognostic dust simulations. A zonal mean plot is attached to the right

edge of the map.
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Figure 5.2: Panel A gives the difference in annual mean surface temperature (K)

between our US P- DUST and US P+ DUST prognostic dust simulations. Panel

B gives the difference in annual mean surface temperature (K) between our US P-

CLIM and US P+ CLIM simulations with a dust seasonal cycle based on present-

day climatology. Panel C shows the difference between panel A and panel B, which

is the difference between our prognostic dust and climatological dust simulations.

A zonal mean plot is attached to the right edge of each map.127



Figure 5.3: As Fig. 5.2 but showing total precipitation (mm day−1). Total precipi-

tation includes both convective and large-scale precipitation.
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(a) (b)

Figure 5.4: Annual mean dust deposition anomaly for the LL (panel a, top) and US

(panel b, middle) simulations at precession maximum (left) and precession minimum

(right). The difference in annual mean dust deposition between our LL and US

simulations at precession maximum (panel C left) and precession minimum (panel

C right). All panels show averages for our prognostic dust simulations. A zonal

mean plot is attached to the right edge of each map.129



Figure 5.5: The DJF seasonal mean shortwave radiative forcing of dust for the top

of the atmosphere (top), middle of the atmosphere (middle) and surface (bottom)

at precession minimum. The LL prognostic dust simulations are shown on the left

and the US prognostic dust simulations are shown on the right.
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Figure 5.6: As Fig. 5.5 but for precession maximum.
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Figure 5.7: Annual mean surface temperature anomaly (K) at precession maximum

for the prognostic dust (A), climatological dust (B), and the double difference (C).

Panel D shows the difference between our LL prognostic dust (LL P+ DUST) and

our LL no dust (LL P+ NODUST) simulations, showing the effect of all dust.
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Figure 5.8: As Fig 5.7 but for total precipitation (mm day−1). Total precipitation

includes both convective and large-scale precipitation.
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Figure 5.9: The difference in annual mean total precipitation (mm day−1) between

our LL and US simulations at precession minimum. Total precipitation includes

both convective and large-scale precipitation. Panel A shows the difference for our

prognostic dust simulations. Panel B shows the difference for our climatological

dust simulations. Panel C shows the difference between panel A and panel B, which

is the difference between our prognostic dust and climatological dust simulations.

This double difference effectively shows the effect of dust.
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Figure 5.10: Annual mean vertical velocity (shaded) (Pa s−1) at 500-hPa, and wind

anomaly (vectors) (m s−1) at 850-hPa at precession minimum for the prognostic dust

(top) and climatological dust (bottom) simulations. All panels show statistically

significant differences at the 95% level only.

135



Figure 5.11: Northern Hemisphere Polar Stereographic plots of geopotential height

anomalies (m) at precession maximum for the prognostic dust (A), climatological

dust (B) and the double difference (C).
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Figure 5.12: As Fig. 5.11 but for annual mean sea-ice anomaly at precession maxi-

mum.
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Figure 5.13: As Fig. 5.11 but for precession minimum.
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Figure 5.14: As Fig. 5.12 but for precession minimum.
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Figure 5.15: Figure 9 from Hodell et al. (2001). The TG12 and TG14 glacial events

occur during the period of the “Messinian Gap” from 5.59 to 5.5 Ma. The time

scale is from 5000 kyr to 7000 kyr with a tickmark at every 100 kyr. Oxygen isotope

signals were measured on benthic foraminifera at ODP Site 982 (57◦N, 15◦W) in

the North Atlantic. During the “Messinian Gap” the complete desiccation, erosion

and deposition of halite occurred.
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Chapter 6

Conclusions

6.1 Summary

Paleoclimate records indicate enhanced productivity in the Atlantic Ocean,

increased aridity in Central Asia, and glaciation in the Northern hemisphere during

the late Messinian. In this dissertation, we try to explain these mechanisms by

modeling an extreme event that occurred within the MedSea. Climate changes in

the MedSea have been correlated with the NAO (Hurrell (1995)). The MedSea also

lies on the edge of the African-Asian waveguide, enhancing the teleconnectivity of

the region. Regional hydrological changes have important feedbacks on the climate

system on hemispheric to global scales. The oceanographic isolation of the MedSea

resulted in substantial MedSea level fall beginning at 5.96 Ma and desiccation with

subaerial exposure between 5.59 to 5.50 Ma. We used the NCAR Community At-

mosphere Model to examine the climate response to reduced MedSea level, orbital

variations, and to a MedSea dust source. Focusing our analysis on the large-scale

pattern of variability that results from anomalous forcing allows us to validate our

simulated atmospheric response against the geological proxy record, bringing a crit-

ical perspective to both the model output and the paleoclimate reconstruction.

In Chapter 3, we examined the atmospheric response to complete desiccation and

lowered MedSea level while keeping other factors constant. Reduced MedSea level
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increased evaporation and decreased precipitation, thus increasing the water deficit,

making it difficult to sustain a partially filled MedSea, despite the significant in-

crease in precipitation occuring over the Alps when the MedSea level is low. This

response is consistent with evidence of increased weathering of the Alps during the

Late Miocene. Globally, a MedSea depression generates planetary-scale atmospheric

waves that lead to a hemispheric response that includes a notable deepening of the

Aleutian Low and an equatorward shift in the Atlantic jet stream.

In Chapter 4, we examined how MedSea level change and orbital forcing combine

to alter the hydrological budget. While reduced MedSea leads to strong heating in

the summer, the elimination of horizontal heat transport into the MedSea during

the winter prevents the LS SSTs from exceeding PD temperatures. Reduced Med-

Sea level leads to enhanced precipitation and runoff from the northern borderlands.

This feature is robust in all orbital forcing simulations. Since reduced sea level in-

creases the water deficit of the MedSea, we find that precession minimum can only

tip the MedSea water balance to allow for Lago-Mare deposits under relatively high

MedSea level. Our LS simulations result in increased rainfall over the West African

monsoon region. This result occurs under all precession signals. Greater runoff from

the Guinea Coast may be correlated to enhanced organic carbon accumulation in

this region during the Late Miocene.

In Chapter 5, we showed that a desiccated MedSea becomes a significant dust source.

In our dust model, higher dust loading over North Africa and the MedSea results

in regional warming. Since we do not account for the chemical composition of dust

this result may change since salt is much more reflective than sand. Enhanced dust
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loading over the tropical North Atlantic Ocean occurs when the Mediterranean is

desiccated. This reduces the net radiative flux at the surface, which cools SSTs

north of the Equator and shifts the ITCZ towards the Southern Hemisphere. The

dustier Northern Hemisphere inhibits convective precipitation in the tropical North

Atlantic and large-scale precipitation over Eastern Europe and into Central Asia, in

agreement with proxy evidence of greater aridity in Central China between 6.2 and

5 Ma. Our results show that a desiccated Mediterranean has a significant impact on

Northern Hemisphere sea-ice formation. While significant glaciation of the Northern

Hemisphere did not occur until roughly 3 Ma (Moran et al. (2006)), there is proxy

evidence of localized glaciation in the Gulf of Alaska and the North Atlantic as early

as the latest Miocene, coinciding with the MSC (Jansen and Raymo (1996); Vidal

et al., 2002; Zellers and Gary (2007)).

6.2 Paleo-vegetation

Tuenter et al. (2003) and Larrasoana et al. (2006) studied the effects of or-

bital forcing on the African summer monsoon and found that the stronger land-

sea temperature contrast during precession minima resulted in an African summer

monsoon that was displaced further poleward and had greater precipitation. The

resulting vegetation changes over the Saharan desert due to greater precipitation are

expected to give a positive feedback on the monsoon (Harrison et al., 1998). Veg-

etated land has a lower albedo than the desert; this leads to increased absorption
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of radiation at the surface. Stronger surface heating would produce greater vertical

ascent over the Saharan region, which can lead to more precipitation. Incorporating

paleo-vegetation in modeling studies has resulted in significant temperature depar-

tures (Dutton and Barron (1997); Otto-Bliesner and Upchurch, 1997). Lohmann

et al. (2006) showed significant warming of the global oceans in a Late Tortonian

model configured with paleo-geography and paleo-vegetation (Figure 5, taken from

Lohmann et al. (2006)). This shows the importance of incorporating a dynamical

vegetation model in paleostudies.

Most paleoclimate modeling studies incorporate globally uniform soil texture and

soil color due to the lack of quantitatively useful data. This has consequences for

the availability of soil moisture (Shellito and Sloan, 2005) as well as surface temper-

ature as soil color changes greatly affect the surface albedo. The amount of sand

and clay in soil determines both soil thermal and hydrologic properties. Vegetation

has important feedbacks on climate through biogeophysics, the hydrological cycle,

and biogeochemistry. Vegetation changes will influence evapotranspiration, surface

albedo, carbon feedbacks, and dust generation. These feedbacks have played im-

portant roles in past climate change (Dutton and Barron (1997); Otto-Bliesner and

G.R. Upchurch (1997); Levis et al. (2004); Haywood and Valdes (2006)). Global

reconstructions of biome distributions based on proxy data are sparse. The Pliocene

Research, Interpretation and Synoptic Mapping (PRISM) project, part of the US

Geological Survey climate change research effort, has made significant contribu-

tions to reconstructing the vegetation distribution of the Pliocene (∼3.3-3.0 Ma)

(Chandler et al. (2008)). Yet global maps of Late Miocene biomes are still unavail-
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able (Lunt et al. (2008)) and few Late Miocene studies have examined the role of

vegetation on climate during the MSC (Favre et al. (2007)). Favre et al. (2007)

did not take into account the extreme fall in MedSea level, which has been shown

to have a significant effect on both the local and global climate (Murphy et al.,

2009). Implementing dynamical vegetation models can be used for obtaining Late

Miocene vegetation maps. Incorporating the new vegetation distribution in paleo-

climate modeling studies will provide the most accurate assessment of the climate

and greatly improve our understanding of the climate during the MSC.

Preliminary results using our Late Miocene climate output to force a dynamic veg-

etation model shows large changes in the Mediterranean basin, central Asia, and

Australia. Within the MedSea there is a change to desert vegetation while open

woodlands and steppic ecosystems occur in the regions surrounding the dried basin.

In central Asia, desert regions expand, which interestingly corresponds to the birth

of the Taklimakan Desert (Sun and Liu, 2006).

6.3 Future work and implications

Mediterranean Outflow Water (MOW) provides a large source of salty water to

the intermediate depths of the North Atlantic. MOW is one of three sources in the

North Atlantic that contribute to North Atlantic Deep Water (NADW) formation

(Talley (1996)), the subsurface component of the Atlantic meridional overturning

circulation (MOC), and is characterized as a salinity and density maximum (Reid
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(1994)). Due to its high salinity, MOW influences the variability of the Atlantic

meridional overturning circulation (MOC) (Calmanti et al., 2006) but its impacts

on the MOC are unresolved. Reid (1979) suggested that without the MOW, the

strength of the NADW and Antarctic Bottom Water (AABW) formation would

be reduced. Chan and Motoi (2003) found that eliminating the exchange of heat

and salinity between the Mediterranean Sea (MedSea) and the Atlantic in a coupled

model leads to a decrease in North Atlantic and Southern Ocean sea surface temper-

atures (SST). A 20We use the Coupled Climate System Model version 3 (CCSM3)

to model the consequences of the closure of the straits connecting the MedSea to

the Atlantic Ocean, focusing on the elimination of Mediterranean Outflow Water

(MOW) from the Atlantic Ocean in the Late Miocene. We will examine important

feedbacks in the MOC resulting from changes in the MOW and compare results to

available proxy data. In addition, the increase in spatial resolution from T42 to T85

will allow enhanced realism and allow us to realistically model diurnally varying

katabatic winds in the desiccated MedSea basin. Sun and Liu (2006) suggested that

a 6 ppt reduction in global oceanic salinity during the MSC (Hsu et al. (1977)) may

have resulted in greater sea ice formation due to the higher freezing point of the

lower salinity water. Lower salinity and cooler waters in the North Atlantic due to

the elimination of the MOW would reduce the MOC and lead to important conse-

quences to global climate. We will determine if the elimination of the transport in

the Gibraltar Strait, a lowered MedSea base level, and the climatic and hydrological

impacts resulting from topographic forcing of a lowered MedSea basin, influences

the salinity of the world ocean. The coupled system model may result in important
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feedbacks in the thermohaline circulation as it is expected that the salinity of the

Atlantic Ocean will be reduced due to the absence of MOW. Lower salinity and

cooler waters in the North Atlantic would reduce the overturning circulation and

lead to important consequences to global climate. This effect can subsequently in-

fluence global temperature through changes in heat transport.

Throughout the second half of the 20th century, the MedSea has become increas-

ingly salty and warmer (Roether et al. (1996)). Under the IPCC-A2 global warming

scenario, the MedSea is expected to warm an additional 3.1◦C and the salinity will

increase 0.48 partial salinity units by the end of the 21st century (Somot et al.

(2006)). The Coupled Model Intercomparison Project (CMIP3) simulations predict

a substantial decrease in freshwater input to the MedSea by the end of the 21st

century as well as a warming-enhancement in evaportation, which would lead to

increased salinity (Mariotti et al. (2008)). Warmer SSTs and increased salinity have

competing effects on water density. Increased MedSea deep-water salinity over the

last 40 years (Roether et al. (1996)) contributed to higher density values in MOW

(Curry et al. (2003)). Future increases in the salinity of the MedSea would increase

MOW at the Gibraltar Strait, since transport is driven by the density difference be-

tween the MedSea and the Atlantic Ocean. While increased MedSea SSTs decrease

the density of water and reduce deep-water formation. Beyond changes in Med-

Sea circulation, our results suggest a drier MedSea region results in arid conditions

over Eastern Europe and the Middle East. We also find that MedSea warming and

reduced MedSea sea-level results in a hemispheric response that can bring about

signficiant changes in the storm tracks and North Pacific and North Atlantic SSTs.
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Decreased atmospheric stability may also lead to more extreme precipitation events

in the area. Increased population growth, greater irigation, exploited ground water

and drier conditions predicted for the future will all exacerbate the water crisis in

the peri-Mediterranean region. Future changes in the MedSea are not only impor-

tant regionally but may also impact climate conditions throughout the Northern

Hemisphere.
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