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The current thesis involves a computational study of drop dynamics in mi-

crofluidic junctions, at the moderate capillary number of Ca = 0.1. We utilize

a three-dimensional Spectral Boundary Element algorithm to determine the drop

motion in the presence of intersecting lateral flows in microfluidic T-junctions and

cross-junctions, and analyze the effect on drop deformation and motion with varying

shear rates in the channels leading to the junctions, and for two different viscosity

ratios (λ = 0.2, 20.0) between the drop and the surrounding fluid.

We find that the presence of intersecting flows, drastically affects the transient

behavior at the junctions, and the drop reaches steady state further away, both up-

stream and downstream of these junctions. The time taken to reach steady state in

the T-junctions was found to be significantly greater than that in the cross-junction,

under identical conditions. Drop velocities were found to be a linear function of the

effective shear rate in the channel, and length scale fluctuations as high as 30% were

observed in the junction region for the cases studied in the thesis.



We observed that the excess presure drop with respect to the flow of a single

phase fluid was strongly related to the length of the droplet at a given spatial

coordinate. The peak surface area of the drop in the junction was found to be a

slighly non-linear function of the flow rates in the lateral channels, and almost all

the surface area increase was occurring at the head of the drop, in the direction of

the flow. Velocity was found to be a weak, inverse function of the viscosity ratio, the

increase in drop surface area was found to be greater in drops with lower viscosity.

It was found that the junction bend radius/smoothness had a more significant effect

on the dynamics of the drop in a T-junction, compared to that in a cross-junction.
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Chapter 1

Introduction

The current thesis considers the problem of multiphase droplet dynamics in

microfluidic junctions. We study the physical problem of Stokes flow in microfluidic

T-junctions and cross-junctions and present a comparison with a straight square

micro-channel, highlighting the change in dynamics, including the droplet veloci-

ties, drop surface areas, pressure drop etc., that occur because of the presence of

intersecting flows.

1.1 Relevance of the Topic

It is not surprising that drops have been studied for more than a century now

given that they control a diverse majority of natural, biological and industrial pro-

cesses ranging from traditional usages like direct contact heat/mass exchangers [32],

controlled polymer microstructures [11], to novel blood oxygenation or drug deliv-

ery methods [6]. There have been extensive experimental, theoretical and computa-

tional studies on soft particles (droplets, bubbles, capsules, vesicles etc.), which can

be broadly classified into those involving droplet-deformation, bursting, coalescence,

formation or particle adherence to solid and flexible boundaries. Each of these stud-

ies, apart from providing increased understanding of the fundamental underlying

physics, are also merited for their specific real life engineering applications.
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The study of droplet dynamics and deformation in confined microfluidic junc-

tions is motivated by numerous applications in engineering and scientific applica-

tions, especially in microfluidic devices designed for in situ bio-assays, polymer

electrolyte membrane fuel cells [48], MEMS, drug delivery, enhanced oil recovery

and coating processes. Soft particles passing through intersecting flows, are also

widely found in animal physiology, where, for instance, the blood cells pass through

numerous constricted and intersecting flows. Understanding how the pressure drop

along a channel depends on the length of the drops that move through it is cru-

cial to designing valveless microfluidic networks, that route these bubbles from one

region of the device to the next [29]. Understanding how bubbles/drops affect the

flow resistance in microchannels is, a concern of determining the pumping or energy

requirement for portable microfluidic devices involving two-phase flows, such as in

a micro-direct methanol fuel cell [15].

The use of droplets as microreactors offers many advantages in comparison

with single-phase microfluidics, such as confinement of reactants or prevention of

longitudinal dispersion and cross contamination between subsequent samples. Ad-

ditional benefits include reduction of unwanted adhesion/adsorption of the material

confined in droplets at the channel walls and facilitated heat/mass transport due to

enhanced internal mixing [34]. Microdroplets also allow the possibility of varying, in

each droplet, the physicochemical conditions under which chemical or biochemical

processes develop, opening the way to screening, and the fast mixing that takes

place in each droplet [33].

Also, cells are biological units that can be viewed as droplet-like sensors and
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actuators that detect and react to small chemical changes [53], and microfluidics

can help develop in situ point of care medical devices, and other miniaturized bio-

assay devices, provide better control over formation of emulsions [45], design ef-

ficient mixing devices, model novel drug delivery systems [6], DNA multi-plexing

devices [42], and improve the efficiency of filtration devices for analyzing individual

biological cells [70], a technology, which can potentially help detect the presence of

diseases [70].

In conclusion, we can say that in order to realize all these prospects requires

the control of elementary operations and a better understanding of the dynamics of

the drops in complicated microchannels.

1.1.1 Fluid flow in Microchannels

Apart from requiring novel manufacturing methods, there are some fundamen-

tal differences between fluid flow in macro and micro geometries [50], and prominent

among the differences is the absence of turbulence. On the macro scale, Newtonian

fluids mix convectively, wherein inertia is often more important than viscosity. At

the micro scale however, when two Newtonian fluid streams come together, they

usually flow in parallel, without forming any eddies or turbulence, and the only

mixing that occurs is the result of diffusion of molecules occurring across the fluids

interface [49]. This is known as laminar flow, and if mixing is required in these micro-

devices, it requires the development of special components to achieve it. Janasek

et al. [31], describe in detail, the scaling relationships, that compare the macroscopic
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and microscopic fluidic systems.

The fundamental difference in the physics of fluids flowing in microchannels,

offers some significant advantages over their macro-level counterparts. One particu-

larly useful characteristic of fluid flow in microsystems is electro-osmotic flow (EOF),

which minimizes the broadening of plugs of sample that occurs with many pressure-

driven systems, and allows very high resolution separations of ionic species [3]. EOF

is a key contributor to electrophoretic separations of DNA in microchannels. Ma-

nipulation of multi-phase flows is another strength of microfluidic systems, which

enables generation and manipulation of mono-disperse bubbles or droplets of a dis-

persed gas or liquid phase, in continuous liquid streams. Drops can also serve as

compartments, which can allow the study of fast chemical reactions. Microfluidic

devices are fast emerging as useful tools for biologists and chemists, allowing precise

control of variables such as fluid shear rate, solute concentration [63] and inherent

high throughput way of operation [17]. Beebe et al. [63] have shown that microchan-

nels can be as much as 10 times more precise that the standard wells, used currently

in drug screening. Another potentially useful characteristic of flow at this scale is

their ability to manipulate fluids in channels with dimensions of the order of Debye

layer [3].

Microfluidic devices find uses in important areas including analytical chem-

istry, chemical synthesis, cell biology, molecular biology, drug discovery, genomics,

proteomics, diagnostics, environmental monitoring and national security [8]. As of

today, the most highly developed of microfluidic applications, is probably in screen-

ing conditions (such as pH, ionic strength and composition, cosolvents, and con-

4



centrations), for protein crystallization. Microfluidics offer the potential to screen

large number of conditions, to separate nucleation and growth of crystals, and to

minimize the damage to crystals by handling once they have formed [64] other ap-

plications include separations coupled to mass-spectroscopy [27], high throughput

screening in drug development, bio-analysis, single-cell examination [28]. Fluids

in microchannels form the basis of new optical systems, a range of systems from

waveguides comprising a liquid with a high index of refraction flowing laminarly

between two streams of low-index cladding, to applications of fluids in lenses and

Bragg mirrors [64].

1.1.2 Shape as a Critical Parameter

Drops are typically realized through intersecting, multi-phase fluid geome-

tries [13], where the shape of microparticles is a critical parameter, as it affects

the homogeneity of the resulting emulsions, and understanding drop dynamics in

multi-phase systems will help us design devices to generate a targeted shapes.

Transport of particles in the biological systems, are affected by their shape.

For instance, solid spherical particles must be less than 200 nm in diameter to

successfully clear the non-symmetrical filtering units in spleen, but disk-shaped,

flexible red blood cells with diameters of ∼8 µm routinely pass through the spleen [7].

In drug delivery, shape of particles, which directly affects the total surface area

available, and the local curvature influence the targeting, adsorption, internalization

capabilities of the drug [6]. A well known fact in pharmaceutical industry is that,
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when conventional therapeutic drugs are encapsulated in polymer particles, they

offer various advantages, including controlled release, protection from metabolism

and degradation, and better targeting capabilities. Recent studies have established

that shape induced inhibition of phagocytosis of drug delivery particles is possible,

by minimizing the size normalized curvature of particles [6, 7, 38, 47].

To conclude, we can say that, just as size affects particle velocity, shape will

affect diffusion and adhesion to walls in blood vessels, airways and intestines, albeit

in more complex ways. Shape depends on the flow properties of particles, especially

capillary number, viscosity ratio, orientation, symmetry, and proximity to vessel

walls and such dependencies must be better understood.

1.2 Literature Survey

The current thesis builds directly on the theory and algorithms developed by

Dimitrakopoulos et al. [61, 20, 21, 51], and the problems analyzed depend on, two

main dimensionless parameters: (a) the ratio of the viscosity of the fluid inside the

drop to that of the external fluid λ, and (b) the capillary number Ca = µU/γ, where

µ is the viscosity of the external fluid, U is the average fluid velocity in a straight

channel in the absence of a drop, and γ is the interfacial surface tension. In our

study, we start with an initially spherical droplet, with radius, a = 0.7.

The following section presents some of the key historical milestones and studies

that have lead to present day understanding of the topic of droplet dynamics.
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1.2.1 Droplet Deformation and Pressure Drop

Studies investigating the characteristics of immersed objects began with Archimedes,

when he determined the hydrostatic forces acting on an immersed object of any

shape and density and formulated the concept of integrals that make possible such

calculations [37]. But it was not until early 19th century, that researchers started

exploring the dynamics of immersed deformable/soft objects like drops, capsules etc.

and proved that drops of one fluid when placed in a second, shearing fluid, will de-

form [45]. Ever since then, one of the principal goals of experimental and numerical

studies in this field has been to quantize the relevant parameters like deformation,

shape, pressure-drop breakup etc. with respect to the available control parameters

like the applied external shear, capillary number and viscosity ratio.

Taylor [54, 55] developed a first-order theoretical model and perform exper-

imental analysis on the deformation and orientation of droplets in shearing flows,

and soon after, Kopac and Chambers [5] performed a study of multiphase liquid-

liquid droplets. Torza and Mason presented a thorough theoretical analysis of static

two-phase drop configurations in 1970. Barthes-Biesel and Acrivos [2] developed a

good theoretical model for predicting the droplet deformation and breakup.

Though Taylor’s model [55] found good agreement with experimental results

for small deformations, it failed at larger deformations, for which he later devel-

oped a slender-body theory [56]. Since then, numerous, more sophisticated numer-

ical methodologies have been developed and employed for the study of deforming

droplets. Youngren and Acrivos [69, 68] were the first to develop and apply the
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Boundary Integral method for interfacial problems in Stokes regime, and deter-

mined the equilibrium shape of a droplet for λ = 0 in an axis-symmetric extensional

flow. Rallison et al. [46, 44] calculated deformations for λ > 0, in extensional flows,

and λ = 1 for non-axissymmetric shear flows.

Two-dimensional droplet models included by Navot [39], were initially based

on an equi-distant partition of the interfacial curve, and the later models adopted

cubic splines to represent the interfacial curve. Buckmaster and Flaherty [4] studied

a deforming two-dimensional droplet for λ = 1. Dimitrakopoulos and Wang [58, 61]

numerically implemented the three-dimensional model of droplet deformation. They

studied the droplet dynamics in the case of straight square channels, and tubes,

establishing the effect of varying λ and Ca. They also implemented a novel high-

order/high-accuracy three-dimensional Spectral Boundary Element algorithm to the

interfacial problem of viscous flow over a protuberance on the inner wall of a solid

microtube. Dimitrakopoulos and Wang [61, 58, 59]. An additional numerical study

of droplet deformations includes that of Shirani and Masoomi [48], who numerically

simulated the deformation of a water droplet, adhering to a channel.

Fuerstman et al. [29] developed an experimental method to determine the ef-

fect of the bubbles, on the pressure drop between two points in a microchannel of

rectangular cross-section, for capillary number Ca of the order of 10−3, Reynolds

number Re between 0.1 to 1. They conclude that the pressure drop is determined

by the total number of bubbles present as well as the total length of the bubbles.

Gupta et al. [35] studied the motion of air bubbles, flowing in square micro-channels,

under the influence of gravity. The steady-state shapes and velocities of the bub-
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bles as a function of the bubble size are determined experimentally, for varying

bond, capillary, and Reynolds numbers. Cubaud and Mason [16] experimentally

analyze the formation and evolution of threads and containing more viscous liquids

surrounded by less viscous, immiscible liquids through hydrodynamic focusing in

square microchannels

Cubaud and Ho [15] produced a steady and homogeneous flows of monodis-

perse bubbles and examined the two-phase flow maps and transition lines between

flow regimes. They measure the bubble velocity, slip ratio between liquid and gas,

two-phase flow pressure drop is measured and compared with single liquid flow pres-

sure drop. Vanapalli et al. [57] experimentally study the effect of drop size, viscosity,

and capillary number on the hydrodynamic resistance, for drops flowing in rectangu-

lar channels, for capillary numbers ranging from 0.001 ≤ Ca ≤ 0.01. They conclude

that for small drops (drop length/channel width ∼< 4), pressure drop is indepen-

dent of the drop size and capillary number and weakly dependent on the viscosity

ratio. Mudawar et al. [43] performed experimental and computational studies on

adiabatic single phase flow of water in rectangular micro-channels.

Chung et al. [12] numerically predicted the pressure drop for a single drop

passing through a 5:1:5 contraction-straight narrow channel-expansion flow domain,

using a Finite Element - Front Tracking Method. They study the effect of drop size,

capillary numbers in the range of 0.001 ≤ Ca ≤ 0.01 and viscosity ratio’s in the

range of 0.01 ≤ λ ≤ 100. They found that the excess pressure drop ($P+), with re-

spect to single phase flow was directly proportional to λ, and inversely proportional

to Ca. Shirani and Masoomi [48] perform extensive numerical studies on the motion
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on drops on channels, for a Reynolds number Re, ranging from 24 ≤ Re ≤ 1800,

capillary numbers 0.014 ≤ Ca ≤ 0.219. They found that for small Ca, the deforma-

tion of the drop does not depend on the capillary numbers, but it is a large function

of Ca, when it is large.

1.2.2 Studies on drop dynamics in Microfluidic Junctions

Lehansky and Pismen [34] use a 2D model, and lubrication approximation, in

the range of small capillary numbers to propose a mechanism for droplet breakup

in a symmetric (daughter channels of equal length) microfluidic T-junction driven

by pressure decrement in a narrow gap between the droplet and the channel wall.

Their theory, though formally valid for Ca1/5 % 1, approximates very well with

numerical results, when extrapolated to moderate values of Ca. Jullien et al. [33]

have performed experimental studies of droplet breakup in microfluidic T-junctions

for capillary numbers in the range 4 × 10−4 ≤ Ca ≤ 2.5 × 10−1, and introduce

the concept of critical droplet extension, to describe drop breakup in small and

moderately small capillary numbers. Their results were consistent with the 2D-drop

breakup theory presented by Lehansky and Pismen [34].

Graaf et al. [18], created a model cross-flow membrane emulsification system,

to generate monodisperse hexane droplets, using a perpendicular T-shaped microflu-

idic junctions, with rectangular cross-section. They studied the drop formation,

detachment and proposed a simple model to describe the break-up process, incorpo-

rating the flow-rates of the external fluids, and various fluid properties. They then
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fit the experimental data with the developed model, to predict the necking time.

Christopher and Anna [9] characterize, experimentally the breaking-nonbreaking

behavior of droplets containing dilute polymer solution, based on their size and

speed, as they enter a T-shaped microfluidic junction, and conclude that visco-

elastic drops are less stable than Newtonian droplets of comparable shear viscosity.

Based on the drop aspect ratio and the capillary number, they show that there is a

distinct boundary between drops that break and those that do not break, and the

boundaries are different for Newtonian and visco-elastic liquids. They conclude that

drops with aspect ratio’s > 1, always break, while smaller droplets require larger

capillary numbers to break. Christopher et al. [10] systematically examined droplet

collisions at a simple microfluidic T-junction, as a function of drop size, speed and

characterized the response for a wide range of droplet sizes and speeds. They use

λ = 0.01, and observe four primary responses of a droplet pair approaching the

downstream T-junction: (1) no collision, (2) coalescence, (3) slipping, and (4) split-

ting. Their experiments concluded that low collision speed, not too small droplet

sizes, are favorable for coalescence, where local curvature of the colliding droplets

at the point of collision, and the viscosity ratios determine the critical capillary

numbers for coalescence.

Garstecki et al. [30] describe the process of formation of droplets and bubbles

in microfluidic T-junction geometries, and provide a scaling relationship to predict

the size of the resulting droplets. They conclude that at small capillary numbers,

the dynamics of break-up of immiscible threads in T-junctions is dominated by the

pressure drop across the droplet or bubble as it forms, and size of the droplets or
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bubbles is determined solely by the ratio of the volumetric rates of flow of the two

immiscible fluids. They observe a critical value of capillary number (Ca ∼ 10−2),

above which the shear stresses start to play an important role in the process of break-

up. De Menech et al. [36], in their numerical studies on the dynamics of breakup of

streams of immiscible fluids in confined microfluidic T-junction, they identify three

distinct regimes of droplet formation: squeezing, dripping, and jetting, which give

a deeper understanding of the emulsification process. They identify the squeezing

mechanism of breakup as being specific to microfluidic systems, and conclude that

breakup in the squeezing regime is driven chiefly by the buildup of pressure upstream

of an emerging droplet and that the dynamics of breakup are influenced only very

weakly by the value of the capillary number.

Tan, Cristini and Lee [53] designed microfluidic cross-junctions, and used the

junction geometries, in addition to the flowrates, to generate controlled droplet sizes.

They studied orifices connected to a long straight channel, orifice connected to a

short channel, with subsequent rectangular expansion, and an orifice connected to

a expansion nozzle. They generate monodispersed primary droplets and monodis-

persed submicron satellite droplets. Nisisako and Torii [40] used microfluidic large-

scale integration on a chip, with 128 cross-junctions, for the mass production of

monodisperse emulsion droplets and particles. Luo et al. [52] exploited the symmet-

rical flow route of perpendicular rupturing to generate monodisperse oil in water

and water in oil emulsions, using a cross-junction microfluidic device. They studied

the formation mechanism of plug flow, the influence of oil/water flow ratio on the

shape of the interface, and developed a quantitative equation to predict the plug
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length, which is consistent with the experimental results.

Cubaud [14] experimentally studied the dynamic response of a highly viscous

droplet to a sharp increase in the surrounding liquid velocity in a square microchan-

nel junction. He created a large velocity contrast between the front and the rear

of the droplets by locally injecting a continuous phase from symmetric side chan-

nels. Their study shows that microfluidic confinement introduces specific length

scales, and, the initial drop shape is shown to play a major role in droplet defor-

mation and breakup. In the asymptotic regime associated with large λ their results

suggest that confined relaxation is dominated by the viscosity of the droplet, µ1,

while confined stretching is relatively independent from µ1. Yeh and Lin [66] have

used a microfluidic chip containing a cross-junction channel for the manipulation of

UV-photopolymerized microparticles. By controlling the relative flow rates in the

central and lateral channels, they could control the size of the resulting hydrogel

droplets in the range of 75 to 300 µm. Their experimentally found that the size of

the drops increased with an increase in the average velocity of the dispersed phase

flow and decreased with the average velocity increase of the continuous phase flow.

Wu et al. [65] applied an improved lattice Boltzman method to study droplet

formation in an immiscible liquid-liquid multiphase flow in a cross-junction mi-

crochannel. Their numerical results compared well with experimental results for

various inlet velocities. They found capillary number to be an influencing factor in

determining the size of the resulting droplet.
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1.3 Summary and Layout of Present Thesis

The current thesis considers the dynamics of a droplet moving in confined

geometries in Stokes flow. More specifically we study the interfacial dynamics of

droplets in (a) a T-Junction and (b) a cross-Junction, using a three-dimensional

Spectral Boundary Element algorithm [61] and present our analysis on how the

presence of intersecting flows, affects the drop velocities and deformation. We ana-

lyze the pressure drop caused by the presence of a single droplet in our geometries,

and how the drop length variations affect the pressure gradient. The thesis builds in

large part on the studies done by Dimitrakopolous et al. [58, 51, 59, 60, 61, 62], and

presents the droplet shape fluctuations, the effect of the junctions on the droplet de-

formation, velocity, pressure-drop and compares the results with the drop motion in

a straight square channel, under similar external shear and other physical conditions.

These geometries, in modified form are commonly found both in the real-world en-

gineering applications of microfluidics and also in biological fluid/blood pathways

like the tortuous networks of blood-vessel in the animal body. Our studies can help

partly demystify the significant challenge of understanding the role of shape in var-

ious biological, and industrial processes, and help formulate specifications for these

systems. By modifying the boundary conditions suitably, these geometries can also

be used to study the self-sorting patterns [1]. Though at first glance, T-junctions

seem similar to that of cross-junctions, they represent an important difference in

lack of symmetry. Inherent symmetry makes it relatively easier to predict the move-

ment of spheres, but non-spherical particles may align or tumble in the presence of
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external flow. Non-symmetric conditions are common place in biological systems,

for example when particles flow through complex geometries like those in filtering

organs, liver, spleen, or when bifurcations in the blood vessels are encountered.

The present thesis is divided into three chapters. After discussing some ap-

plications of deformable soft particles and a brief history of the development of the

theoretical and computational tools for understanding the droplet dynamics in the

introductory chapter, the specific underlying mathematics, including the boundary

integral formulation, the spectral methods used, dimensional analysis, and integra-

tion methods are discussed in Chapter 2, and finally, we present the current research

problem, and discuss our results in Chapter 3.
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Chapter 2

Mathematical Formulation

2.1 From Stokes equations to Boundary Integral equations

When the Reynolds number is sufficiently small, the inertial terms in the

Navier-Stokes equations are neglected and the flow is governed by Stokes equations

∇ · σ ≡ −∇p + µ∇2u = 0 (2.1)

and the continuity equation

∇ · u = 0 (2.2)

where σ represents the stress tensor, p is the dynamic pressure, µ is the viscosity of

the fluid and u is the velocity vector.

By introducing the fundamental solutions Sij and Tijk for the three-dimensional

Stokes equation (2.1) and the continuity equation (2.2), and then integrating over a

volume of fluid bounded by a surface SB shown in figure 2.1a, the velocity at a point

x0 on the surface is expressed as the following Boundary Integral equation (BIE),

ui(x0) = −
1

4πµ

∫

SB

(Sij(x̂)fj(x) − µTijk(x̂)uj(x)nk(x)) dS (2.3)

This equation relates the velocity u at each point x0 along the boundary SB by the

surface integral of the stress and velocity over all the points x on the same boundary.

The normal vector n points into the domain surrounded by the boundary SB while
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Figure 2.1: Illustrations for the geometry of the BIEs (2.3) and (2.6).

the force vector f is defined by fj(x) = σjk(x)nk(x). The fundamental solution for

the velocity Sij and the corresponding stress Tijk are given by

Sij =
δij
r

+
x̂ix̂j

r3
(2.4)

Tijk = −6
x̂ix̂j x̂k

r5
(2.5)

A detailed derivation may be found in Pozrikidis [41].

Equation (2.3) can be named as the “inner” equation because it solves for the

fluid flow inside a specific boundary SB shown in figure 2.1a. An “outer” equation

can be derived to express the flow field outside a boundary SB shown in figure 2.1b.

It is given by

u(x0) − 2u∞(x0) = −
1

4πµ

∫

SB

(S · f − µT · u · n) dS (2.6)

where u∞ is the fluid velocity far from the surface boundary SB and the normal

vector n points into the flow (i.e., out of the boundary SB).
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2.2 BIE for a free suspended drop

Consider the case of a droplet with density ρ1 and viscosity µ1 = λµ suspended

in an infinite fluid with density ρ2 and viscosity µ2 = µ, as illustrated in figure 2.2.

The interfacial tension γ is assumed to be constant while u∞ is the undistubed flow

velocity. The magnitude of the gravity acceleration is g. The normal vector n points

into the fluid, i.e., outside the interface SB.

The interior fluid is driven to flow by the exterior flow. The “inner” and

“outer” equations ( 2.3) and ( 2.6) now apply to the interior and exterior domains,

respectively. The “inner” equation has to change sign due to the direction of the

normal vector. After subtracting equation (2.3) from equation (2.6), the velocity of

the point x0 on the interface SB is expressed as

(1 + λ)u(x0) − 2u∞(x0)

= −
1

4πµ

∫

SB

(S ·∆f − µ(1 − λ)T · u · n) dS (2.7)

where the velocity u and the jump of the interfacial stress ∆f come from the

interfacial boundary conditions:

u = u1 = u2 (2.8)

∆f ≡ f 2 − f1 = γ(∇ · n)n + (ρ2 − ρ1)(g · x)n (2.9)

where the subscripts “1” and “2” represent the internal and external flow, respec-

tively. If ∆f is known, equation (2.7) becomes a Fredholm integral equation of the

second kind in solving for the interfacial velocity u.
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Figure 2.2: Illustration of a droplet freely suspended in an infinite fluid.

2.3 BIE for a drop in a confined domain

Here, we consider the situation where a drop is suspended in an external fluid

enclosed by an outer solid boundary (figure 2.3), and discuss the construction of the

Boundary Integral Equations for it.

As shown in figure 2.3, a drop with viscosity λµ and density ρ1 is suspended

in a rectangular channel. The fluid external to the drop has viscosity µ and density

ρ2 while far from the droplet it shows undisturbed velocity u∞ and stress f∞. We

denote the interface between the drop and the external fluid as Γ, the boundary

surface as S2, which is composed by Sf
2 and Sw

2 . Sf
2 is a fluid boundary and it is

assumed to be far away from the drop. Sw
2 refers to the rest solid boundary.

The surface tension on the interface Γ is γ and the magnitude of the gravity

acceleration is g. We also denote u1 and u2 as the flow velocity inside and outside
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Figure 2.3: Illustration of drop suspended in the fluid inside a rectangular channel.

of the drop, respectively. The boundary conditions on surface S are

u2 = 0 on boundary Sw
2 (2.10)

u2 = u∞ or f 2 = f∞ on boundary Sf
2 (2.11)

The boundary conditions on Γ are given by equations (2.8) and ( 2.9).

By applying the governing equation (2.3) on the fluid flow both inside and

outside the drop, and then performing a subtraction between the two equations, a

general Boundary Integral equation for both flow regions can be derived as

Ωu(x0) = −

∫

S2

[S · f 2 − µT · u2 · n] dS

−

∫

Γ

[S ·∆f − (1 − λ)µT · u · n] dS (2.12)

where the subscripts “1” and “2” refer to fluids inside and outside of the drop,

respectively. In the second term on the right-hand side, the velocity is u = u1 = u2.

For points on Γ, Ω = 4π(1 +λ)µ; for points on S2, Ω = 4πµ. A system of Fredholm

integral equations of mixed kinds is formed due to the different boundary conditions.
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2.4 Spectral element formulation

The Boundary Integral equations are solved using the Spectral Boundary El-

ement method as described in Wang and Dimitrakopoulos [61, 21]. Its accuracy,

efficiency and convergence have been demonstrated in applications involving rigid

particles, deformable droplets and interacting particles. Dimitrakopoulos and Hig-

don employed both the 2D [22] and 3D [23, 24, 25, 26, 19] Boundary Element

methods in studies on the displacement of droplet from solid surfaces in Stokes

flows.

According to this method, the boundary is divided into a moderate number

NE of surface elements, each of which is mapped onto a two-dimensional domain

in terms of the parametric variables ξ and η. The variables are zeros of orthogonal

polynomials, such as Legendre, Chebyshev or Jacobi polynomials, on [−1, 1]. If NB

basis points are used, then the geometry x can be represented by

x(ξ, η) =
NB
∑

i=1

NB
∑

j=1

x(ξi, ηj)hj(η)hi(ξ) (2.13)

where hi(ξ) and hj(η) are the (NB − 1)-order Lagrangian interpolant polynomial.

The physical variables u and f are represented similarly.

The discretized expressions for the geometry and the physical variables are

substituted into the Boundary Integral equations, and it is required that the integral

equations be satisfied at the discrete set of basis points x0(ξi, ηj) (where i, j =

1, . . . , NB) on each spectral element. This yields a linear system of 3NE N2
B algebraic

equations

u = Af + Bu (2.14)
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The system matrices A and B are defined as integrals of the kernels S and T

(see equations (2.4) and (2.5)) and the basis functions over the set of the surface

elements. The numerical integration is performed by Gauss-Legendre quadrature

with the aid of variable transformations.

The BIEs, combined with the boundary data at the NE N2
B basis points, yield,

for a known interface, a consistent set of 3NE N2
B equations in 3NE N2

B unknowns

which is solved using Gaussian elimination.

2.5 Problem parameters and dimensionless analysis

The problem of interfacial dynamics in Stokes flow is mainly governed by two

dimensionless numbers: the viscosity ratio λ and the capillary number Ca given by

λ =
µ1

µ
(2.15)

Ca =
µU

γ
(2.16)

where µ1 is the viscosity of the fluid inside the drop, µ is the viscosity of the imposed

flow, and γ is the surface tension on the interface, and U is the average fluid channel

velocity in a straight channel, in the absence of drop.

The capillary number Ca measures two competing forces: the viscous force

and the surface tension force. The viscous stress imposed on the interface by the

exterior flow induces the flow inside the drop and causes the interfacial deformation,

while the surface tension force resists the deformation. Steady state is reached when

the surface tension forces balances the viscous forces so that the droplet deformation

ceases. The flow velocities, are given in terms of shear rate, and are depicted by
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Xsh in the channel along x-axis, and by Ysh in the channel along the y-axis.

Figure 2.4 illustrates a geometry used for a cross-junction with non-zero bend

radius (rb > 0), where, the bends can be visualized as the quarter cylinders, placed

appropriately. Figure 2.4 becomes a right angled cross-junction when, the bend

radius, rb = 0, and can be visualized as a T-junction, when the upper channel is

cut, and the left and right channels are joined by a straight top-plate. When we

have a cross-junction, the channels along the x-axis are the primary channels (drop

moves from left channel to the right channel), and those along y-axis are the lateral

channels (no drop in the lateral channels).

Figure 2.4: 2D illustration for the cross-junction geometry.
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In our study, we start with a spherical droplet at time t = 0, and fix its radius

as a = 0.7. As seen in figure 2.4, the flow velocities are given in terms of shear rate,

and are depicted by Xsh for the channel along x-axis, and by Ysh in the channel

along the y-axis. We control the smoothness of the junction by defining bend radius

rb, a right-angled junction corresponds to the case rb = 0. All smooth intersections

in this study use rb = 2. For all the geometries in this thesis, we use a square

cross-section with half-length b/2 = 1.

2.6 Boundary Conditions

We use velocity boundary conditions in the problems discussed in this thesis.

The steady flow profiles for straight rectangular channels are found by the method

of seperation of variables, and are applied as the initial velocity conditions at all the

fluid bounderies.

µ

(

∂2

∂y2
+

∂2

∂x2

)

u = −K − ρg sin(β) (2.17)

Yih [67] derives the boundary conditions for the case of flow along increasing

x. Figure 2.5 shows the cross section of a typical rectangular channel. The governing

equations for flow along incresing x can be represented by equation 2.17 where, β

represents the angle of inclination between the x-axis and the horizontal plate, K

is −∂p/∂x, a constant but ρ may be a function of z. The solution of equation 2.17

can be written as

u = uc + up (2.18)

24



Figure 2.5: Coordinates for a rectangular cross-section, flow symmetric with respect

to both y and z axis

When the flow is symmetric with respect to both y and z axis, the particular solution

up can be expressed by equation 2.19, and the complementary solution uc by equation

2.19

up(z) =
1

2µ
(K + ρg sin(β))

(

c2

4
− z2

)

, (2.19)

uc(z) =
∞

∑

n=1

An cosh
(2n − 1)πy

c
cos

(2n − 1)πz

c
, (2.20)

The A’s in equation 2.20 can be determined by equation 2.21 The velocity profile

for the case in this thesis, with b=c=2 is shown in figure 2.6

An cosh
(2n − 1)πb

2c
= (−1)n c2

2µαn
3
(K + ρg sin β), (2.21)

αn =
(2n − 1)

π
.
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Figure 2.6: Velocity boundary conditions for square cross-sections of length 2, as

applied at the fluid boundaries, for flow along increasing-x direction.
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Chapter 3

Results and Discussion

As discussed in Chapter 1, the study of drop dynamics in T-junctions and

cross-junctions, among other things can differ in the presence (or absence) of sym-

metry. We say can ‘differ’, because the symmetry in the cross-junctions too, depends

on the relative direction of flows and the position of the droplet. In our study, we

consider, microfluidic junctions with intersecting flows along x and y axis. It is

important to note that, we ignore gravity in our simulations. We determine drop

motion for the cases of varying shear rates in the channels along x and y-axis, that

lead to the cross-junction. For all the computations in this thesis, we fix the capil-

lary number to be Ca = 0.1. We initiate the computations with a spherical droplet

of radius a=0.70, total length of the geometry along x-axis is 18 units, and total

length of the geometry along y-axis is 10 units. We use square cross-sections of

side b = 2 units, for channels along both the x and y directions. All intersecting

geometries in this thesis, when smooth have a bend radius rb of 2 units. We note

that the channel half cross-sectional length b/2 is the length scale used throughout

our study.

We will divide the current chapter into two sections, based on the junction

geometry, one refers to the study of flow in T-junctions and the other towards the

study of drop dynamics in cross-junctions.
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3.1 Microfluidic Cross-Junctions

All the cross-junctions in this study have three incoming flows, one each along

the channels placed at increasing-x, decreasing-y and increasing-y directions. All

the three incoming lateral flows then merge into the channel placed along positive,

increasing x direction. The drop is always started from an inlet channel placed along

the −x direction.

3.1.1 Cross-Junctions with 90 ◦ bends (bend radius rb = 0)

In this section we discuss the case of a cross-junction with right-angled bends.

Figures 3.1 illustrates the actual geometry used along with the meshing and initial

position of the droplet. This geometry can be thought of as four straight, square

channels, placed along the x-axis and y-axis, and joined together. The actual junc-

tion length ranges from x = [−9, 9], y = [−5, 5], and the cross-section of the channels

along x-axis ranges from y = [−1, 1] and z = [−1, 1], and the cross-section of the

channels oriented along the y-axis ranges from y = [−1, 1] and z = [−1, 1].

Figure 3.2 gives the drop displacement along the x-axis as a function of time

for the case of a cross-junction with bend radius rb = 0, and rb = 2. Figure 3.3

gives the drop velocities for the cases of varying shear in channels along y-axis, and

a fixed shear Xsh = 1 in the x-channel.

Figures 3.3, 3.4 ellicit the effect of varying lateral shear rates on the drop

velocities, drop length and surface area. We analyze the cases where the lateral

shear rate is Ysh = 0, 0.1, and 0.5. Figures 3.5, 3.6, 3.7 show the effect of varying
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viscosity ratio’s, λ, between the drop and the surrounding liquid. We analyze two

cases, where λ = 0.2 and λ = 20.0.

Figure 3.2 shows that at given time, the drop in the cross-junction with bend

radius rb = 0 is ahead of the drop in the bend radius with rb = 2. This can be

attributed to the greater junction region in the latter junction. Also to be noted

from figure 3.2 is the change in the slopes of the curves, which corresponds to the

droplet crossing the junction region and entering the receiver channel, which has

a higher bulk velocity. In figure 3.3, the graphs with Ysh = 0 represents the case,

without any incoming flows in the y-channels. This reduces the problem to the case

of an extended external bump, but serves as an important reference to compare our

results. As we can see in this case, the drop velocity immediately reaches steady

state, and starts to drop as it approaches the junction, starting at x = −1, reaches

a minima at x = 0, starts increasing, and then quickly gains steady state velocity

beyond by the time it reaches x = +1.5. Points to note in this case is the plot is

perfectly symmetrical about the point x = 0, i.e., the steady state velocities are the

same in both the incoming and outgoing x-channels.

It is also important to note that the steady state velocity for the case of Ysh = 0

in figure 3.3, matches exactly with the steady state velocity for drop deformation

in a straight channel, under similar conditions. This validates the implementation

of boundary conditions in our study. Figure 3.3 says that the greater the lateral

shear rates, the greater is the localized velocity gradient in the junction (in this case

from x = −1 to x = +1). This gradient is an important factor as it induces high,
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(a) XY view (with front elements removed)

(b) XZ view (with top elements removed)

Figure 3.1: Representative geometry for a cross-junction with bend radius rb = 0.
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Figure 3.2: Drop displacement along x-axis as a function of time t, in a microfluidic

cross-junction, with bend radius rb = 0 and rb = 2, square cross-sectional length

b = 2, shear rate along x-axis Xsh = 1.0, shear rate Ysh = 0.5 along y-axis, capillary

number Ca = 0.1 and viscosity ratio λ = 0.2.

momentary forces on the droplet, which can cause the drop to break, or tumble,

or make elongated threads, depending on the capillary number Ca, viscosity ratio,

λ and relative shear rates. Also the time required to attain back the steady state

seems to be a weak function of the lateral shear rates for the test case of medium

capillary number, Ca = 0.1 used in the present thesis.

If we compare the x, y, z length of the droplet for a single case, shown in

figures 3.4(a-c), we find that the drop maintains Y Z-symmetry until it approaches,

the junction, at x = −2, after which the incoming lateral flows, induce forces in the y-

direction, thereby voiding the Y Z-symmetry throughout the junction. Interestingly,
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Figure 3.3: Drop velocity along x-axis Ux as a function of drop centroid xc, in

microfluidic cross-junctions with bend radius rb = 0, square cross-sectional length

b = 2, shear rate along x-axis Xsh = 1.0, varying shear rate Ysh along y-axis,

capillary number Ca = 0.1 and viscosity ratio λ = 0.2.

once the drop passes the junction, it strives to regain the lost symmetry. We observe

from figure 3.4(d), that for the test conditions, though the length of the droplet

changes considerably along the x, y or z-axes, the total surface area of the drop

changes by a maximum of 1% for the case of Ysh = 0.5.

Figure 3.5 gives the effects of viscosity on the drop velocities, and as we can see

here, at any given position, the drop with the lower viscosity maintains a relatively

higher velocity. It must be pointed out though that viscosity seems to affect the

velocities very weakly. Figure 3.6 shows the effect of viscosity on the drop length. We

32



1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

-3 -2 -1 0 1 2 3 4 5 6

L
x

xc

Ysh: 0.0
Ysh: 0.1
Ysh: 0.5

(a) Drop length along x-axis

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

-3 -2 -1 0 1 2 3 4 5 6

L
y

xc

Ysh: 0.0
Ysh: 0.1
Ysh: 0.5

(b) Drop length along y-axis

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

-3 -2 -1 0 1 2 3 4 5 6

L
z

xc

Ysh: 0.0
Ysh: 0.1
Ysh: 0.5

(c) Drop length along z-axis

6.15

6.2

6.25

6.3

6.35

6.4

-3 -2 -1 0 1 2 3 4 5 6

D
ro

p
S
u
rf

ac
e

A
re

a

xc

Ysh: 0.0
Ysh: 0.1
Ysh: 0.5

(d) Drop surface area

Figure 3.4: Maximum droplet length (Lx, Ly, Lz), along x, y, z-axes respectively,

and surface area as a function of drop centroid xc, in a microfluidic cross-junction,

with bend radius rb = 0, square cross-sectional length b = 2, shear rate along x-axis

Xsh = 1.0, varying shear rate Ysh along y-axis, capillary number Ca = 0.1 and

viscosity ratio λ = 0.2.
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observe that viscosity is an important factor in determining the drop deformations,

an observation also confirmed by figure 3.7(a), where the peak surface area seems

to be about 2% higher for the case with λ = 0.2, compared with the case λ = 20.0.

Comparing figure 3.7(b), and figure 3.6(a), we find that there seems to be a strong

correlation between excess pressure drop at a given spatial coordinate and the drop

length at the corresponding position. As we can see from figure 3.7(b), the excess

pressure drop increases with the increase in length of the droplet along x-axis, Lx,

peaks where the Lx peaks, in the junction, and reaches a steady state when Lx

reaches a steady state.

Figure 3.11(c), is a plot of the head and tail length of the droplet along the

x-axis. The head length is defined as the maximum of the distance between the

centroid of the droplet and the drop interface along the direction of the flow, and

similarly tail length is the maximum of the distance between the drop centroid

and drop interface against the direction of flow. An interesting fact appears from

figure 3.11(c), that the head is always longer than the tail, telling us that the droplet

is in the form of a bullet. Also, interesting to note is the observation that the

difference in the length of the head and tail is multiplied by a factor, proportional

to the increase in the flow-rates in the receiver channel, compared to the feeding

channel. This means that almost all the surface area increase in the drop that occurs

due to the junction is at its front tip. This could be an important repercussion in

areas where mass transport to/from the drop is an important design parameter.
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Figure 3.5: Drop velocity along x-axis Ux as a function of drop centroid xc, for

viscosity ratio’s λ = 0.2, 20.0, in a microfluidic cross-junction, with bend radius

rb = 0, square cross-sectional length b = 2, shear rate along x-axis Xsh = 1.0, shear

rate along y-axis Ysh = 0.5, capillary number Ca = 0.1.
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Figure 3.6: Maximum droplet length (Lx, Ly, Lz), along x, y, z-axes respectively,

as a function of drop centroid xc, for viscosity ratio λ = 0.2 and λ = 20.0, in a

microfluidic cross-junction, with bend radius rb = 0, square cross-sectional length

b = 2, shear rate along x-axis Xsh = 1.0, shear rate along y-axis Ysh = 0.5, capillary

number Ca = 0.1.
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Figure 3.7: (a) Drop surface area as a function of drop centroid xc, for viscosity ratio

λ = 0.2 and λ = 20.0 (b) Excess pressure drop as a function of drop centroid xc,

for viscosity ratios λ = 0.2 and λ = 20.0 and (c) Droplet head and tail length along

x-axis as a function of drop centroid xc for viscosity ratio λ = 20.0, in a microfluidic

cross-junction, with bend radius rb = 0, square cross-sectional length b = 2, shear

rate along x-axis Xsh = 1.0, shear rate along y-axis Ysh = 0.5, capillary number

Ca = 0.1.
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3.1.2 Cross-Junctions with non-zero bend radius (rb > 0)

The smooth bends in the geometry are implemented as quarter cylinders, and

we refer the radius of this imaginary cylinder as the bend radius rb. To maintain

the symmetry in the problem, we use the same rb = 2 over all the bends in the

geometry. The geometry of the smooth cross-junction used, along with the repre-

sentative meshing and the initial drop position is shown in figure 3.8. Figures 3.9,

3.10, 3.11 give the different measured properties like the drop velocity, drop length

along individual axis, surface area, pressure drop, head and tail length for two dif-

ferent shear rates in the y-direction. Note that because of a non-zero bend radius in

this geometry, the junction (region where the drop is directly exposed to the lateral

flows) now extends from x = −3 to x = +3.

Figure 3.9, presents the velocity profile for an initially spherical drop, starting

from x = −4.0. The graphs seem as expected, with an extended junction area

resulting in a more dramatic initial reduction of drop velocities as compared to the

right-angled cross-junction. Figure 3.10 shows the length of the maximum droplets

along x, y, and z-axis respectively, again for the case of two lateral shear rates of

Ysh = 0, and Ysh = 0.5. Figure 3.11(a) presents the drop surface area with drop

position xc, while figure 3.11(b-c) shows the droplet head and tail length for cases

Ysh = 0.5 and Ysh = 0 respectively. Our previous observation that the difference in

the length of the head and the tail are related to the lateral flow rates is corroborated

by observing figure 3.11(b-c) where the difference in the length remains the same

for the case of Ysh = 0.
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(a) XY-view (with front elements removed)

(b) XZ-view (with top elements removed)

Figure 3.8: Illustration of geometry for a cross-junction with bend radius rb = 2.
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Figure 3.9: Drop velocity, Ux along x-axis, as a function of position xc, in a microflu-

idic cross-junction, with bend radius rb = 2, square cross-sectional length b = 2,

shear rate along x-axis Xsh = 1.0, varying shear rate Ysh along y-axis, capillary

number Ca = 0.1 and viscosity ratio λ = 0.2.

Figures 3.12 and 3.13, compare the measured properties for the two kinds

of cross-junctions in this study (rb = 0, rb = 2). As seen from these figures, we

note that almost all the measured properties seem to be comparable in both the

geometries in the junction region and exactly same both far ahead and far beyond

the junction region. We observe that the drop velocities in the junction region for

the cross-junction with rb = 2 are always lower than the right-angled cross junction

under similar conditions. We can conclude that the junction geometry affects the

drop dynamics only in the junction region, albeit weakly.
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Figure 3.10: Maximum droplet length (Lx, Ly, Lz), along x, y, z-axes respectively,

as a function of drop centroid xc, in a microfluidic cross-junction, with bend radius

rb = 2, square cross-sectional length b = 2, shear rate along x-axis Xsh = 1.0,

varying shear rate Ysh along y-axis, capillary number Ca = 0.1 and viscosity ratio

λ = 0.2.
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Figure 3.11: (a) Drop surface area (b) Droplet head and tail length along x-axis (c)

Droplet head and tail length along x-axis as a function of drop centroid xc, for shear

rate along y, Ysh = 0, in a microfluidic cross-junction, with bend radius rb = 2,

square cross-sectional length b = 2, shear rate along x-axis Xsh = 1.0, capillary

number Ca = 0.1 and viscosity ratio λ = 0.2.
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Figure 3.12: Drop velocity Ux along x-axis, maximum drop length (Lx, Ly, Lz) as a

function of drop centroid xc, in microfluidic cross-junctions, with bend radius rb = 0,

and rb = 2, square cross-sectional length b = 2, shear rate along x-axis Xsh = 1.0,

shear rate along y-axis Ysh = 0.5, capillary number Ca = 0.1 and viscosity ratio

λ = 0.2.
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Figure 3.13: (a) Drop surface area as a function of drop centroid xc, and (b) Excess

pressure drop in microfluidic cross-junction, with bend radius rb = 0, and rb = 2,

square cross-sectional length b = 2, shear rate along x-axis Xsh = 1.0, shear rate

along y-axis Ysh = 0.5, capillary number Ca = 0.1 and viscosity ratio λ = 0.2.
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Based on the observation from figures 3.12, 3.13, that the measured properties

in both the cross-junction geometries used in this thesis are comparable, we plot

the droplet snapshots at different spatial positions in the figure 3.14. These figures

are plotted for the case of a cross-junction with a bend radius rb = 0, λ = 20.0

but the trend observed with respect to the shape evolution is applicable to both the

geometry configurations.

Figure 3.14(c), 3.14(d) is snapshot of the drop configuration at xc = −1.073

(drop has just entered the junction), which shows that the drop deformation along

the XZ and XY planes remains almost the same, i.e., we have the Y Z symmetry in

the system. But as the drop proceeds further into the junction, the lateral flows hit

the drop directly, and the symmetry along Y Z symmetry is compromised. Finally

once the drop crosses the junction, it once again tries to regain the lost Y Z symmetry

as can be seen from figures 3.14(i) and 3.14(j).

(a) XZ-view: xc = −3 sec (b) XY-view: xc = −3 sec
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(c) XZ-view: xc = −1.073 (d) XY-view: xc = −1.073

(e) XZ-view: xc = 0.855 (f) XY-view: xc = 0.855

(g) XZ-view: xc = 3.538 (h) XY-view: xc = 3.538

Figure 3.14: Shape evolution of droplet in a microfluidic cross-junction, with

bend radius rb = 2, square cross-sectional length b = 2, shear rate along x-axis

Xsh = 1.0, shear rate along y-axis Ysh = 0.5, capillary number Ca = 0.1 and

viscosity ratio λ = 20.0.
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3.2 Microfluidic T-junctions

The T-junction geometries can be viewed as a simplification of the cross-

junction, with one less intersecting, lateral channel. All the T-junction geometries

in this study have two intersecting flows, one each along increasing-x and increasing-

y-axis, both of which merge into a third channel, along increasing-x. As in the

case of the cross-junctions, we start our computations, with an initially spherical

droplet, of radius a = 0.7, and apply the velocity boundary conditions as discussed

in section 2.6. Also, as mentioned earlier in Chapter 1, this geometry setup breaks

the symmetry along the y-axis, leaving us with just one symmetry, along the z-axis.

3.2.1 T-junctions with 90 ◦ bends (bend radius rb = 0)

A T-junction, with rb = 0 as illustrated in figures 3.16a, 3.15b is used in out

study. To allow for comparisons between different geometries, we maintain the same

set of parameters for the computations. Figure 3.16 gives the drop displacement

along the x, and y-axis respectively. Note that in the case of the cross-junction the

drop displacement along the y-axis was zero, because of the symmetric forces along

the y-axis. We observe from figure 3.16 that the drop is displaced along the y only in

the junction region, and tries to regain axis-symmetry once it crosses the junction.

Figure 3.2.1, gives the droplet velocities along x, y-axis, and also the drop

displacement along the y-axis. Note that unlike the case for a cross-junction, we

have significant non-zero droplet velocities along the y-direction, which drives a

significant displacement along the y-axis. This conveys the fact that the flow in
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(a) XY-view (with front elements removed)

(b) XZ-view (with top elements removed)

Figure 3.15: Illustration of geometry for a T-junction with bend radius rb = 0.
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Figure 3.16: Drop displacement along x,y-axes as a function of time t, in a microflu-

idic T-junction, with bend radius rb = 0, square cross-sectional length b = 2, shear

rate along x-axis Xsh = 1.0, shear rate Ysh = 0.5 along y-axis, capillary number

Ca = 0.1 and viscosity ratio λ = 0.2.
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T-junction is not symmetric along the y-axis.

Figure 3.2.1(c) shows that, by the time the drop reaches xc = +1, the drop

displaces more than 50% of the initial gap, along the −y-axis. But, once the drop

passes the junction region (x = −1 to x = +1), the drop strives to gain axis

symmetry again, as seen from figures 3.2.1(b), and 3.2.1(c). It is interesting to note

that, unlike the cross-junction it takes a long time to attain steady-state past the

junction.

Figure 3.18(a) gives the maximum drop length along the x, y, z-axis respec-

tively, and the drop surface area is given by figure 3.18(b). The excess pressure

drop, with respect to single phase flow is plotted in figure 3.18(c). It should be

noted that the excess pressure drop for the T-Junction is plotted only considering

the inlet and outlet along the x-axis, ignoring the force on the end plate along the

y-axis. All these figures corroborate the fact that steady-state is not reached post

junction for the T-junction, within the length of our computations geometry.

Figure 3.21 gives the drop shape evolution in a rectangular microfluidic T-

junction, with square cross-sections of size 2. The general trends observed are

also true for T-junctions with non-zero bend radius. These figures correspond to

the case of Ysh = 0.5 and Xsh = 1.0. The key difference in the shape evolution

for a T-junction compared to that of a cross-junction is lack of symmetry, and

this is evident in the figures here. For example the XY views of the drop in fig-

ures 3.21(f), 3.21n, 3.2.1(i) show the drop deformation changing from being peaked

at its tip, to its tail. Once the drop crosses the junction, it tries to regain symmetry,

but, at the same time is coping with extreme non-symmetric forces, in the junction,
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Figure 3.17: (a) Drop velocity along x-axis Ux (b) Drop velocity along y-axis Uy

(c) Lateral drop displacement with respect to drop position xc, in a microfluidic

T-junction with bend radius rb = 0, square cross-section of length b = 2, shear rate

along x-axis Xsh = 1.0, shear rate along y-axis Ysh = 0.5 capillary number Ca = 0.1

and viscosity ratio λ = 0.2.
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Figure 3.18: (a) Maximum droplet length, along x, y and z-axes, (b) Droplet surface

area as a function of drop centroid xc, and (c) Excess pressure drop as a function

of drop centroid xc, in a microfluidic T-junction, with bend radius rb = 0, square

cross-section of length b = 2, shear rate along x-axis Xsh = 1.0, varying shear rate

along y-axis Ysh = 0, 0.001, 0.1, 0.5, capillary number Ca = 0.1 and viscosity ratio

λ = 0.2.
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which almost cause it to tumble. If the flow is strong enough, the drop would have

completely tumbled in the process of crossing the junction, while milder flows would

have caused a less dramatic translation, with minor non-symmetric deformations.

Figures 3.19, 3.20 compare the effect of junction smoothness on the drop dy-

namics. The first thing we observe is that, junction smoothness has a greater effect

in the T-junction compared to the cross-junction, this is particularly visible from

figure 3.19(c), where the drop displacement along y-axis is large enough to bring the

drop very close to the junction walls.
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Figure 3.19: (a) Drop velocity Ux along x-axis, (b) Drop velocity Uy along y-axis,

(c) Lateral drop displacement (along y-axis) as a function of drop centroid xc, in

microfluidic T-junction, with bend radius rb = 0, and rb = 2, square cross-sectional

length b = 2, shear rate along x-axis Xsh = 1.0, shear rate along y-axis Ysh = 0.5,

capillary number Ca = 0.1 and viscosity ratio λ = 0.2.
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Figure 3.20: Drop length Lx, Ly, Lz along x, y, z-axes respectively and drop surface

area as a function of drop centroid xc in a microfluidic T-junction, with bend radius

rb = 0, and rb = 2, square cross-sectional length b = 2, shear rate along x-axis

Xsh = 1.0, shear rate along y-axis Ysh = 0.5, capillary number Ca = 0.1 and

viscosity ratio λ = 0.2.

55



(a) XZ-view: t = 0 (b) XY-view: t = 0

(c) XZ-view: xc = -1.727 (d) XY-view: xc = -1.727

(e) XZ-view: xc = -1.016 (f) XY-view: xc = -1.016
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(g) XZ-view: xc = 0.124 (h) XY-view: xc = 0.124

(i) XZ-view: xc = 0.833 (j) XY-view: xc = 0.833
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(k) XZ-view: xc = 2.052 (l) XY-view: xc = 2.052

(m) XZ-view: xc = 3.211 (n) XY-view: xc = 3.211

Figure 3.21: Shape evolution of droplet in a microfluidic T-junction, with bend ra-

dius rb = 0, square cross-section of length b = 2, shear rate along x-axis Xsh = 1.0,

shear rate along y-axis Ysh = 0.5, capillary number Ca = 0.1 and viscosity ratio

λ = 0.2.

58



3.3 Conclusions

We have utilized a three-dimensional Spectral Boundary Element algorithm [61]

to perform computational studies and determine the drop dynamics in microfluidic

T-junctions and cross-junctions, with intersecting lateral flows, for the moderate

capillary number of Ca = 0.1, varying lateral shear rate Ysh, in the channels along

the y-axis, and for two viscosity ratios (λ = 0.2, 20.0) between the drop and sur-

rounding fluid.

The presence of intersecting flows, in these lateral junctions is found to dras-

tically affect the transient behavior of the drops over the span of the junctions.

For the cross-junction geometries, the drop was found to reach equilibrium, almost

immediately after crossing the junctions, and also just before entering the junc-

tions. However, for the T-junction geometry, the lack of symmetry of flow in the

lateral y-direction, prevents such quick attainment of steady state upon exiting the

junction.

Drop velocity was found to be a linear function of the effective shear rate in

the corresponding channel, with a sharp gradient in the junction region, whereas

parabolic fluctuations were observed in the drop length scales and surface areas.

While the individual length scale fluctuations, along the x, y, z-axes were as high as

30% in the junction region, they often acted in a complementary manner, thereby

causing the peak drop surface area to fluctuate by around 2%, for the conditions

and physical parameters used in our study.

Excess pressure drop at a given spatial coordinate in the junction, defined with
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respect to the flow of a single phase fluid in the given geometry, was found to be

a strong function of the droplet length, and the peak surface area of the drop in

the junction was found to be a non-linear function of the flow rates in the lateral

channels, and almost all the surface area increase occurred at the head of the drop,

in the direction of the flow. Velocity was found to be a weak, inverse function of

the viscosity ratio, the increase in the drop surface areas was found to be greater

in drops with lower viscosity. The junction smoothness (bend radius) was found to

have a more significant effect on the drop dynamics in a T-junction compared to

that in the cross-junction.
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