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The nursery and greenhouse industry requires precise methods to schedule irrigations, 

since current practices are subjective and contribute to water and nutrient runoff.  

Capacitance sensors were calibrated to precisely estimate substrate water content, matric 

potential, and pore water electrical conductivity (EC) in five soilless substrates.  

Regression coefficients (R2) ranged from 0.29 – 0.88 and 0.16 – 0.79 for water content in 

5-cm and 20-cm column heights; matric potential R2 ranged from 0.10 – 0.98 and 0.79 – 

0.98, respectively.  Pore water EC calibrations were investigated, contrasting two sensor 

types and two prediction models.  Results were applied to an empirical greenhouse 

dataset. Better precision and accuracy were achieved with ECH2O-TE sensor and 

Rhoades model. Capacitance sensors provide precise estimates of plant-available water in 

most soilless substrates, while pore water EC accuracy and precision depends on the 

sensor-model combination. These results will enable growers to precisely schedule 

irrigations based on water content and pore water EC. 
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Chapter 1: Literature Review 

 
Sensing Plant Available Water 

 The Green Revolution brought a high yield production of many different crops 

which was thought would ameliorate the hunger around the world. We are presently 

living through what we could consider the ‘Blue Revolution’ (Zhang and Zhang, 2007) 

i.e. the struggle to improve the availability of fresh water and increasing efficiency of 

water use throughout the world.  This is especially important as agriculture is still the 

predominant user of fresh water resources worldwide.  Agricultural activities account for 

70% of fresh water usage in the world (FAO, 2002).  Poor water distribution, world 

climate change, and varying water use policies and regulations have led to a very 

complicated water situation not only in the US, but around the world.  In the past few 

decades, potable water use has been scrutinized and is becoming more restricted, 

especially around high population areas (Beeson et al., 2004).  Furthermore, the over-

application of nutrients to cropped land for higher yield has had a significant 

environmental effect on lakes, rivers and groundwater).  To illustrate Fig. 1 indicates the 

location and risk of nitrogen and phosphorus loading to the Chesapeake Bay, by 

subwatershed (Smith et al., 1997). 

It is therefore obvious that agricultural water use efficiency (WUE) or the ability 

of plants to gain carbon (as total biomass or harvestable yield) per unit of water 

(transpired) is a key factor to conserve increasingly scarce water resources. Increasing the 

efficiency of water use depends mostly upon the type of irrigation system and the 

quantity of water actually delivered to the plant. Another critical efficiency factor is 
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Figure 1.1 Delivered yields estimates of total N and P from all sources in the Chesapeake 

Bay, Maryland (After Smith et al., 1997). 

scheduling irrigations at the correct time – which requires a considerable knowledge of 

the crop, and local conditions, on a daily basis. 

Irrigation Scheduling 

 The importance of “on-time” irrigation is well understood by most growers, but 

precisely scheduling irrigations (both in terms of quantity and timing) is still extremely 

difficult for most agricultural growers, due to a lack of immediate information.  

Historically, there have been two main approaches: a plant-based approach and a soil-

based approach. With plant-based scheduling, there are techniques that measure plant 

responses to water ‘stress’ such as leaf water status and physiological responses such as 
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stomatal conductance. Among these techniques are visual leaf wilting, pressure chamber, 

psychrometer, pressure probe, and xylem cavitation (Jones, 2004). Physiological 

response techniques include the use of porometers, thermal sensing, sap flow sensors, and 

measuring leaf growth rates (Jones, 2008).  Most plant-based techniques are almost 

impossible to practically implement on a large scale; hence the low adoption of these 

technologies by commercial growers. Furthermore, most of these measurement 

techniques require sophisticated equipment and/or high level of technical skill; many 

techniques also give very variable data, because of environmental variation during the 

measurement period.  Hence, there have been many questions about the unreliability of 

such data, over time.  

 One of the characteristics of living systems is the capability to adapt to changing 

environmental conditions, often very rapidly.  Figure 1.2 illustrates the conundrum of 

scheduling irrigations based upon leaf water potential measurements with a fixed set 

point of around -2 MPa.  By following the smoothed diurnal water potential 

measurements (Fig 1.2a) an irrigation scheduling decision appears easy, but when the 

actual measurements of leaf water potential are incorporated (Fig. 1.2b), we can see that 

the fluctuations in the data make the timing of this decision much more challenging.  This 

is particularly evident by looking at the mid-day data during Day 1, when leaf water 

potential can change drastically about the ideal set point of -2 MPa within a matter of 

minutes.  Those changes can be attributed to different environmental factors changes 

such as changing light levels, vapor pressure deficits (VPD), and leaf temperature.  For 

further discussion about plant-based irrigation techniques, refer to Jones (2004; 2008). 
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Because of the difficulties associated with measuring plant-based parameters, our 

approach has been to utilize soil-based approaches that can either measure soil water 

activity (potential measurement), and/or soil water quantity (volumetric or gravimetric 

measurement). Since more than 60% of ornamental plants are now grown in containers in 

the United States (USDA, 2007) whose production utilize soilless substrates rather  

 
Figure 1.2. A Schematic illustration of expected time-courses of leaf water potential 

(leaf) over a period of 3 days, following withholding of irrigation at time 0 

(dashed lines) and for corresponding irrigated controls (continuous lines). (a) 

Typical diurnal trends of leaf smoothed by taking 3 h running means. In (b), the 

expected magnitude of instantaneous variation in leaf, as measured with a pressure 

chamber, is shown (based on data presented by Jones, 1990) (After Jones, 2007). 

 

than soils, we will use soil and/or substrates as interchangeable terms when we discuss 

the measurement of  water in the root zone of plants.  The term substrate will be used to 

refer to the media that supplies a plant in a container with water, nutrients, and physical 
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anchoring (Raviv and Lieth, 2008).  Soil or substrate water potential is defined as the 

amount of work per unit of pure water (i.e. cm3mL or m3) that must be done by external 

forces (i.e. suction or pressure) to reversibly transfer a measurable amount of water from 

the standard state to the point under consideration, at constant temperature and pressure 

(Hopmans and Rottson, 2002). Total soil water potential can be described by the 

equation: 

t= p + z + s + a      [Eq. 1.1] 

where p , z , s , and a are the pressure, gravitational, solute (osmotic) and air 

pressure potentials, respectively. 

Since water in a substrate has various forces acting upon it, potential energy 

usually differs from point to point, and hence its potential energy is variable as well. It is 

important to note that two regions of substrates may hold different amounts of water at 

the same potential energy status and would not experience a flow of water between 

regions.  Substrate water quantity (equivalent to soil water content) is defined as either 

the ratio of the mass of water present in the sample before drying, divided by the mass of 

the sample after it has been dried (gravimetric; kg • kg-1), or alternatively, as the volume 

of water present in a unit volume of soil or substrate (volumetric; cm3 • cm-3).  

 

Which techniques are used to measure water in soil / soilless substrates?  

Soil water potential 

 The measurement of soil water has been studied by scientists and utilized by 

growers for many years.  Tensiometers are devices that measure soil water potential, used 
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as early as 1908 by Livingston; more robust designs were later made for field 

applications by Richards in the early 1920’s (Or, 2001).  A tensiometer is simply a pipe 

filled with distilled water with a porous ceramic cup at the bottom end, with the top end 

attached to a measuring device, which is typically a gauge, or more recently, a type of 

transducer, since these offer multiple advantages. When inserted in soil, the ceramic cup 

equilibrates with the surrounding soil water, with water moving in or out of the ceramic 

cup, depending on the water status of the soil.  If water moves from the tensiometer, a 

suction or negative potential is measured by the gauge or transducer that is connected to 

the water column.  This device has good precision in most soil types, since it is not 

influenced by temperature or soil osmotic potential.  However, the suction tension is 

often lost due to poor contact with the soil pore water, allowing air to enter the column, 

requiring frequent maintenance and loss of data.  

There are many other soil-based techniques that are less precise or unsuitable for 

real-time measurements of water in substrates for instance gypsum blocks, watermark 

blocks (Hanson, et al., 2000) and Time domain reflectometry (TDR) sensors (Noborio, et 

al., 1999).  De Boodt et al. (1972; 1974) proposed a method to measure water potential by 

utilizing pressure (or ‘tempe’) cells.  A more refined method was developed by Topp and 

Zebchuk (1979), where soil cores were sampled from field and then pressurized to create 

moisture desorption curves, which is usually put in practice to visualize the relation of 

amount of water held by the soil at specific water potentials. However, none of these 

techniques have been used commercially due to the lack of versatility and the high 

maintenance (labor costs) of the technique.  Most importantly, none of these water 

content measurement techniques have been utilized by the ornamental industry except for 
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analytic purposes, because of the high porosity of most soilless substrates.   Low-tension 

tensiometers (Raviv et al., 1993) have been adapted for use in peat-based substrates, but 

the accuracy of tensiometers is poor, usually  5 kPa.  Matric potentials in some 

substrates (e.g. rockwool) rarely exceed -3 kPa.  Plant water availability also drops 

significantly when matric potential increases from 0 to -3 kPa, as a result of a sharp 

decline in the substrate hydraulic conductivity (Wallach et al., 1992).  We therefore have 

issues with measuring precise amounts of water in many of these soilless substrates at 

very low tensions. 

Soil water content 

 Soil water content can be determined by direct or by indirect methods. Direct 

methods involve the removal or separation of the soil or substrate matrix, with a direct 

measurement of the amount of water removed.  This may be achieved by heating, 

extraction and replacement by a solvent or chemical reaction. The removal of water by 

heating is commonly referred to as the gravimetric method.  Indirect methods measure 

some physical or chemical property of a soil or substrate which is correlated to the 

substrate water content.   These techniques include time domain reflectometry (TDR), 

frequency domain reflectometry (FDR), time domain transmission (TDT), amplitude 

domain reflectometry (ADR), phase transmission and ground penetrating radar (GPR).  

They also include capacitance devices, radar scatterometry or active microwave, passive 

microwave, electromagnetic induction (EMI), neutron thermalization, nuclear magnetic 

resonance, and gamma ray attenuation (Dane and Topp, 2002).  The drawback of TDR 

and GPR is the cost of the equipment and the level of skill needed to operate the 

equipment;  most importantly, TDR, FDR, TDT sensors are typically not wireless, which 
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limits the range of deployment.  The other methodologies mentioned are really only 

applicable to large-scale environments because of the cost of the technology.  For this 

reason, we chose to focus our research on capacitance sensors, which are relatively 

cheap, rugged, portable and can be easily connected to newly develop dataloggers 

capable of transmitting data wirelessly from field sites, and solenoid actuation (Lea-Cox 

et al., 2008). Because of the range in size of these sensors, they are ideally suited to 

measuring substrate moisture in containers that are utilized by both nursery and 

greenhouse operations to grow ornamental plants.   

Capacitance Sensors 

 The introduction of capacitance techniques into agriculture was made by Smith-

Rose (1933; cited by Dane and Topp, 2002) and rapidly developed with the introduction 

of microelectronics.  Simply defined, a capacitor is a device that stores electrical energy. 

Capacitance sensors include a certain volume of soil or substrate surrounding the sensor 

prongs as part of this capacitor, and measure the dielectric permittivity (’) (i.e. how 

much energy is stored by the soil or substrate) of the surrounding medium as shown in 

Fig 1.3 (Bogena et al., 2007).  A graphic representation from a capacitance sensor reading 

is shown in Fig. 1.4, where it can be seen how the water content alters the time of the 

pulse length T with a fixed supply voltage Vt. Thus, with respect to a substrate, high 

water content will result in a longer pulse length time, because the sensor output is 

directly related to the average voltage over the period of change in pulse length time 

(Bogena et al., 2007).  
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Figure 1.3 Equivalent circuit diagram of a capacitance sensor where R is a resistor, C is 

the capacitance of the medium, Cs is the stray capacitance, G is the energy loss 

due to relaxation and ionic conductivity and Vinp and Vout are the supply and 

sensor reading voltage, respectively. (From Bogena et al., 2007) 

 

   

 
Figure 1.4 The charge and discharge curves of two capacitors with either high or low 

permittivity, using a repetitive square pulse with a pulse length t. (After Bogena 

et al., 2007) 

 

 Our interpretation of Fig. 1.4 is that a fixed voltage (Vf) is applied as an 

electromagnetic wave to the substrate (surrounding the sensor prongs); the time that it 
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takes for the applied voltage (Vf) to rises up to a threshold point (Vt) is short if there is 

low water content and it reaches Vt in a short period of time, correlating to low 

permittivity.  If there is a larger amount of water, then takes a longer time to rise up to the 

threshold point Vt, correlating with a higher permittivity value. 

 In an attempt to standardize the calibration methodology of electromagnetic water 

content sensors, Blomquist et al. (2005) set up an array of media mixtures or liquids of 

known properties, to compare among different sensor technologies.  One of the sensors 

utilized for the trial was the ECH2O EC-20, (see Fig. 1.5; Decagon Devices, Inc.; 

Pullman, WA).  It was determined that the sensor showed minimal definition when 

reading permittivity values ranging from ’40 to ’80, with the consequent imprecision 

for predicting volumetric water content in soilless substrates that hold water in this 

permittivity range. It was also found that when the sensor was immersed in a solution 

with ’ = 40 and the bulk electrical conductivity was increased from 0 to 2 dS • m-1, there 

was a drift of about -110 ’ units.  It is therefore clear that the EC-20 sensor is susceptible 

to moderate salt concentration.  Bandaranayake et al. (2007) also found a drift in output 

with the EC-20 under similar conditions (conductivity not specified) with an increase of 

about 200 mV in output.  Nemali et al. (2007) found similar situation with the EC2HO 

EC-10, where the sensor output increased by about 9% when the applied electrical 

conductivity of the solution was increased from 0 to 3 dS m-1.  With respect to 

temperature, the EC-20 had less drifting (about 3 ’ units), which was better than the 

higher frequency broadband sensors tested by Blomquist et al. (2005). The EC-10 tested 

by Nemali et al. (2007) also had an output increase with increasing temperature of about 

1.88 mV °C-1. 
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  The substrate sample volume has a profound effect on sensor performance; large 

sampling volumes are therefore desirable.  The distribution of the sampling substrate 

volume around the sensor is equally important, as uniform energy propagation through 

the substrate is the ideal. When energy is concentrated only at close proximity to the 

sensor (called a ‘skin effect’), this can cause a large variation in water content 

determination. In Blomquist et al. (2005) study, the EC-20 had the lowest sampling 

volume of about 1.99 cm3 and exhibited such a ‘skin effect’. On the other hand 

Bandaranayake et al. (2007) reported a sampling volume range for the same EC-20 

sensor of 128 to 256 cm3.  

 When analyzing sensor response to supply voltage, Bogena et al. (2007) 

established a preferred supply voltage that minimizes the variation associated with the 

volumetric water content calibration equation.  The two best fit voltages were 2.5 and 3.0 

V with root mean squared error of 0.721 and 0.924 respectively.  In contrast, the ECH2O 

EC-5 exhibited a strong reduction in sensitivity when measuring higher permittivity. The 

EC-5 operates with a supply voltage frequency of 70 MHz, whereas the ECH2O EC-10 

and EC-20 sensors operate at 6 MHz, with the higher frequency conferring better 

tolerance in saline conditions to the EC-5 (Fig. 1.5).  Bogena et al. (2007) concluded that 

the EC-5 has a maximum error of 6% with a bulk electrical conductivity equal to 1 dS • 

m-1 and a permittivity of 40 (equivalent to ). Parsons and Bandaranayake (2009) 

used the same methodology as Bandaranayake et al. (2007), but analyzed the 

performance of the EC-5. Overall, the EC-5 outperformed the EC-20 since volumetric 

water content readings were much more stable under saline conditions, although bulk 

density was found to have a large influence on the sensor readings. Kizito et al. (2008)  
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Figure 1.5. Decagon family sensors utilized in the present study. From top to bottom EC-

20, EC-5, ECH2O-TE, and 5TE. 

 

carried out experiments with the EC-5 and ECH2O-TE (subsequently replaced by the 5TE 

sensor in 2008), to examine interactions with sensor excitation frequency, temperature, 

and calibration. Their study on frequency showed how 66 MHz was high enough to 

minimize sensor volumetric water content variation, when utilized under increasing 

applied solution electrical conductivity. It is important to mention that this 

experimentation was done in rockwool substrate, which minimizes sensor interactions 

with the solid material because of a negligible interaction with the ions in solution. Some 

scatter was seen at higher volumetric water content which could be similar for some 

soilless substrates where total porosity is about 80%.  Kizito et al. (2008) concluded that 

there was no need for specific calibration equations for those soils tested during their 

experimentation; a universal equation was therefore fitted with linear parameterization. 
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The temperature effect on sensor readings was measured in air or water, being more 

variable in air and more consistent in water.  Soils with large surface areas (e.g. high clay 

content) show evidence of water bonding effects, so the sensor was not able to 

distinguish such water due to the water molecular interaction with the particle surface. 

 

Factors Affecting the Measurement of Volumetric Water Content when utilizing 

Electromagnetic Sensors.  

 Before we can discuss the measurement of soil moisture using electromagnetic 

(EM) sensors, it is necessary to understand a few key principles, specifically with regard 

to interferences with readings, and the potential for error in measurements.  Firstly, it is 

well documented how increasing salt concentration – more widely referred as electrical 

conductivity (EC) – affects the measurement of volumetric water content in soils (Topp 

et al., 1980; Bandaranayake et al., 2007; Nemali et al., 2007).  Thompson et al. (2007) 

reported a capacitance sensor (EnviroSCAN, Sentek sensor technologies, Stepney, SA, 

Australia) which works at > 100 MHz, as being sensitive to a soil solution EC > 1.8 dS 

m-1. Hook et al. (2004) conclude that for most rigorous determinations of volumetric 

water content, sensor pulse rise times should be less than 6 ns, otherwise this could lead 

to questionable determinations. Kelleners et al. (2004) found that the combination of high 

volumetric water content and bulk EC caused a rejection of data. This was due to 

dielectric losses, which means that increasing concentrations of ions in solution dissipates 

the energy pulse and cannot be read back by the sensor;  similar effects were reported by 

Plauborg et al. (2005), determined in drip irrigated sandy soils Due to the variability of  
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electromagnetic sensors to increasingly saline conditions, Jones and Or (2004) proposed a 

model to extend TDR measurement to saline soils, which was also highly correlated to 

sensor design, since short TDR probes (10 – 15 cm length) reduce signal attenuation. 

 Temperature is another factor that significantly influences the measurement of 

volumetric water content. Polyakov et al. (2005) found that temperature changed 

volumetric water content readings at the rate of 0.001 cm3 • cm-3 / °C and 0.0003 cm3 • 

cm-3 / °C for soil and sand, respectively. This data is contrary to the findings of Persson 

and Berndtsson (1998), and also Seyfried and Murdock (2001) who observed negative 

temperature correlations using a TDR sensors working at 45 MHz. This contrasting 

evidence suggests that temperature effects may be different depending on specific 

substrates. So, ideally temperature measurements should be integrated into the 

computation of volumetric water content at the time of measurement This is typically 

achieved by a small thermocouple in the sensor head, which provides a temperature 

correction.  Burying the sensor head in the substrate is typically recommended by most 

manufacturers, to protect against the sensor head overheating. Robinson et al. (2004) 

concluded that their observation of a drift in data values was due to the sensor 

‘overheating,’ due to sunlight exposure.  Typically the temperature threshold value 

should not exceed 40°C or spurious volumetric water content measurements would occur 

as temperature rises. 

 The excitation frequency of the sensor is the last major variable to consider in the 

measurement of volumetric water content. Most capacitance sensors use excitation 

frequencies of 150 MHz or below, where the frequency dependence of the real part of 

permittivity (’) cannot be ignored (Kelleners et al., 2005a). Seyfried and Murdock 
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(2004) also noticed that by supplying a voltage frequency of 50 MHz, temperature causes 

an overestimation of volumetric water content determinations and underestimation of 

volumetric water content in nearly saturated sand. 

 Some of the most cited research on electromagnetic (EM) water determination 

was done by Topp et al. (1980).   Based upon this work, soil properties were recognized 

as having a significant influence on water content determination. The impact of the soil 

constituents on the real (’) and imaginary (’’) relative permittivity were described by 

Topp et al. (2000).  Constituents such as dissolved salts and clay content play an 

important role in the measurement of volumetric water contentdue to their negative 

influence on real permittivity determination.  Thus it is not only water that has a unique 

effect on ’ values.  This was exemplified by the study carried out by Hanson and Peters 

(2000) where several different EM sensors were evaluated in different soil type locations 

with default calibrations.  From their regression coefficients, it was determined that all 

sensors had some degree of variation in readings, depending on the different soil types.  

Results varied from no correlation to highly correlated (r2= 0.96), with the lower 

correlations for silt type soils.  Chandler et al. (2004) demonstrated that even when soil-

specific calibrations were done, there were differences in  determinations; consequently 

it was concluded that the effectiveness of the calibration depended on specific soil 

properties.  Kelleners et al. (2005b) also found that calibration equations were dependant 

on soil type characteristics and their comparison between calculated ’ was good for 

sand, intermediate for sandy loam, and poor for two loam soils.  The discrepancies 

between the sandy loam and the loam soils were attributed to ionic conduction (high bulk 

EC) and more importantly, they showed that the Topp et al. (1980) relationship between 
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apparent permittivity and volumetric water content should be only used in non-dispersive 

soils, which are soils with low bulk EC.  Concurring with others, Kelleners et al. (2005a) 

suggested that by incrementing the excitation frequency to at least 175 MHz, the sensor 

will become insensitive to high bulk EC during volumetric water content determinations.  

Seyfried et al. (2005) concluded that signal attenuation may better explained by clay type 

and its characteristics such as surface area and cation exchange capacity (CEC). They 

also suggested that probe placement changes the accuracy of the calibration, especially 

when sensors are utilized at the surface of the soil or container.  Logsdon (2005) made 

volumetric water content observations in soils with high surface area and found a 

significant correlation between average dielectric permittivity and soil surface specific 

area; he suggested that temperature correction for such materials is indispensable. 

 

Physical Properties of Soilless Substrates 

 Introduction.  

Water deficits and the consequently lowered substrate water potential/content are 

usually considered as one of the most important underlying stressors in crops, even at 

relatively small water deficits.   Measuring the energy status and water content are 

therefore of greater value for providing a rigorous indication of water ‘availability’ to 

plants, with values that can allow for comparisons between any growing substrate (Jones, 

2007). 

 Ornamental plant production has changed significantly over the past four decades, 

and is continuously evolving toward more efficient production systems (Raviv and Lieth, 
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2008). Nursery and greenhouse producers are using different materials and techniques 

that allow for higher productivity and profitability, per unit area. One significant 

improvement has been the adoption of containers for growing plants; however disease 

became a significant production issue when soils were initially used in containers, due to 

poor drainage (Handreck and Black, 2002).  The success of using more porous soilless 

substrates of both organic and inorganic origin has driven the adoption of containers in 

the production of ornamental and vegetable transplants (Raviv and Lieth, 2008). 

Soilless substrates physical characteristics 

 As part of any new development, soilless substrates were extensively 

characterized and scrutinized, to better understand their physical characteristics before 

they were utilized in large production systems. During the 1950’s and 1960’s, most of 

this research focused on particle size distribution and the characterization of water release 

(desorption) curves;  this information was then related to additional variables such as 

bulk density and the amount of water that was readily-available to plants.  One of the 

earliest researchers, (Bunt, 1961) began looking at different materials as “soil 

conditioners”, focusing on total pore space, macro-pores and water distribution in 

containers. Bunt (1961) found that organic materials such as peat had a positive impact 

on soil mix physical properties, if the particle size distribution of that peat material had 

less than 10% of particle sizes of  0.5 mm, and about 40% of particles  3-5 mm.  

 De Boodt and Verdonck (1972) made a considerable contribution by establishing 

moisture release characteristics for several different soilless substrates, and by proposing 

specific plant available moisture parameters including easily available water (EAW; 0 to 
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-5 kPa), water buffering capacity (WBC; -5 to -10 kPa) and also by detailing 

instrumentation (De Boodt et al. 1974).  More recently, Handreck and Black (2002) 

defined readily available water (RAW) as a parameter, which sums EAW and WBC  (i.e. 

0 to -10 kPa), also known as plant-available water (PAW).  

 Many other researchers (Goh and Maas, 1980; Fonteno et al., 1981; Bilderback et 

al., 1982; Verdonck, 1983; Verdonck et al., 1983; Brown et al., 1987; Fonteno, 1989; 

Cattivello, 1991; Gabriëls et al., 1991; Milks et al., 1989a; b; c) have tested various 

soilless substrates and techniques, quantifying their moisture retention characteristics and 

their effects on plant development (Karlovich et al., 1986; Tilt et al., 1987; Kiehl et al., 

1992; Raviv et al. 2004).  The major outcome of all this research has been to demonstrate 

that most soilless substrates retain a larger proportion of plant available water at very low 

matric potentials (i.e. less than -20 kPa). 

 Optimal plant growth is dependent on providing a balance of air and available 

water in the root zone, to maximize root growth and reduce the prevalence of disease 

(Argo, 1998b).  Fonteno et al. (1995) stated that the four major factors which affect air 

and water dynamics in soilless substrates include not only substrate properties including 

particle size, component ratios and watering practices, but also the height and shape of 

the container (Bilderback and Fonteno, 1987; Tilt et al., 1987) and the substrate handling 

procedures when packing and transporting (Blom and Piott, 1992).   Typically, soilless 

substrates are composed of one or more materials to ensure adequate aeration and 

drainage, since organic particles tend to break down over time (Allaire-Leung et al., 

1999).  Inorganic soilless substrate components, such as perlite and polystyrene, add 

volume to these mixes and help reduce poor aeration.  The difference in results depends 
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largely on differences such as plant species, root/shoot ratio, root morphology, plant 

density, and container volume and geometry (Handreck and Black, 2002). 

 Of these factors, container height is important, as it affects not only the total air 

space in the substrate (as influenced by gravitational forces) but it also affects the total 

container volume, and hence the total water available to plant roots.  Changes in air : 

water ratios are exacerbated in small containers, as illustrated by Fonteno et al. (1995), 

who showed a 3 to 4 times increase in air space in a number of substrates, merely by 

increasing plug height from 2.5 cm (1”) to 5 cm (2”). 

 Research has focused also on key parameters such as air : water : solid ratios 

(Handreck and Black, 2002).  Frequently the air component is subdivided into total pore 

space (TPS); this refers to the total amount of pores filled either with air and/or water.   

The percentage of pores filled with air after irrigation and drainage is known as air filled 

porosity (AFP); the water-holding capacity (WHC) refers to the amount of water held by 

the substrate at container capacity (CC) (Waller and Harrison, 1991; Martinez et al., 

1991; Brückner, 1997).  All of these variables are affected by container height 

(gravitational potential) and the inherent physical properties of the substrate components 

in the mix.  Container capacity describes the amount of water retained by the substrate 

after an irrigation event and after drainage.  Easily available water (EAW) is the amount 

of water released by the substrate with a matric potential (pressure/suction) from 0 to -5 

kPa, water buffering capacity (WBC) which is the amount of water released by the 

substrate with a matric potential from -5 kPa to -10 kPa, and unavailable water (UW) 

which is the proportion of water held by the substrate greater than -25 kPa.  The point at 

which water becomes unavailable to the plant is probably dependent on the factors cited 
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by Handreck and Black (2002), and noted above.  There is however, no doubt that the -

1.5MPa value that is often quoted in the literature (Stevenson, 1982) as a “permanent 

wilting point” has little relevance to the measurement of incipient water stress in soilless 

substrates.  It is likely that some mild water stress is experienced at matric potentials of 

about -15 kPa (Kiehl et al., 1992).  

The solid component is generally analyzed by quantifying properties such as bulk 

density (BD = g • cm-3), particle size distribution and pore-size distribution. Bunt (1983) 

showed, by using different proportion combinations of peat and inorganic materials, that 

BD is inversely proportional to total pore space.  It is well known that as the proportion 

of small particles increases, the WHC also increases, but TPS and capillary pore space 

decreases (Bunt, 1983; Tilt et al., 1987; Orozco, et al., 1997; Nkongolo and Caron, 1999).  

Pore-size distribution directly influences the hydraulic conductivity, tortuosity (a 

parameter that describes diffusion in porous media), and WHC, which in turn determines 

the water transport capabilities of each individual substrate (Drzal et al., 1999). 

 From the late 1980’s until now, research has focused on additional variables, 

assessing new ways to understand soilless substrates dynamics. By taking advantage of 

new theoretical models and the development of electronic equipment, researchers have 

been able to analyze aspects of substrates to determine water desorption characteristics in 

situ, using time domain reflectometry (TDR; Paquet et al., 1993), measure saturated 

hydraulic conductivity in containers (Allaire et al.,1994), and quantify gas diffusion 

(Caron et al., 2005).  From these studies, it is apparent that we still have much to learn 

about the intrinsic physical properties of soilless substrates.  
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 Although desorption curves are generated by using either suction or applied 

pressure (pF; cm of water; cbar or kPa), most research has only been focused on the 

water release characteristics of substrates, without necessarily giving in depth attention to 

relating water desorption (volumetric water content) to substrate matric potential.  Matric 

potential (m) is more meaningful from a physiological point of view, and provides a 

variable that could normalize volumetric water content data from varying soilless 

substrates with very different physical properties, and hence water-holding capacities.  

For this reason, we chose to hybridize our research approach using various ECH2O 

sensors, to understand the relationships between the volumetric water content and plant 

available water, measured as matric potential (kPa).  We simultaneously measured both 

variables in a range of soilless substrates with contrasting particle size distributions and 

physical properties. Understanding these relationships in this fashion will expand our 

knowledge to determine when to or not irrigate, based on a physiologically meaningful 

parameter for plants. This would then provide a much more powerful tool for crop 

management purposes, where there is a need for repeatable control of irrigation 

scheduling. 

 

Chemical Properties of Soilless Substrates 

The chemical composition of substrates is highly influenced by particle size, 

surface physical characteristics and the inherent exchange capacity of the specific 

substrate. The total particle surface area and charge determines the ionic composition of 

the nutrient solution that equilibrates in the pore water (Rhoades et al., 1999).  Ideally 

chemical substrate characteristics are quantified before the substrate is used in 
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production, as this has a large influence on plant nutrient availability. Nevertheless, it 

should be noted that substrate chemical characteristics can and will change as plant and 

microorganisms interact with the substrate.  

 One of the mayor factors influencing nutrient solubility in substrates is pH (i.e., 

how acid or basic is the pore water) of the substrate solution. Thus, under acidic 

conditions, certain elements can become more soluble and indeed more available for 

plant uptake, and vice versa (Handreck and Black, 2002).  In most soilless substrates, 

phosphorus (P) does not precipitate at low pH, but does at high pH (Yeager and Barrett, 

1985).  Peterson (1981) concluded that the optimal pH for phosphate nutrition was 5.5 in 

media without soil, because above this pH, water-soluble phosphate concentrations began 

to decrease. In peat-based media, Stver and Koranski (1997) indicate a reduction in 

calcium (Ca) availability at low pH, contrary to Argo and Biernbaum (1996a) who 

concluded that low pH did not reduce Ca availability.  Instead, low pH was an indication 

of a lack of calcium sources applied to the substrate. A more neutral pH can also affect 

plant uptake because of changes in the form of the nutrient in the soil solution. For 

example, at pH 4.5, the H2PO4
- form of water-soluble phosphorus is ten times more 

available to the plant than the HPO4
2- form than at pH 7.2 (Bunt, 1988). Nitrogen uptake 

and pH dynamics are also influenced by the form of nitrogen, when ammonium (NH4
+) 

and nitrate (NO3
-) is supplied in varying amounts (Barker and Mills, 1980; Marschner, 

1986: Lea-Cox et al., 1996), and also by microbiological activity or nitrification (the 

chemical conversion of NH4
+ into nitrite (NO2

-) and NO3
- by microorganisms). The 

critical pH for the inhibition of nitrification in soilless media was found to be in a range 

from 5.4 to 5.7 (Argo and Biernbaum, 1997a; Lang and Elliott, 1991; Niemiera and 
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Wright, 1986). Argo and Biernbaum (1997a) and Niemiera and Wright (1986) found that 

above this critical pH range, minimal ammonium concentrations were measured in the 

medium, while below the critical pH range, ammonium began to accumulate in the 

medium. 

 The capacity of a substrate to exchange cations (positively charged ions) between 

the substrate surface (which is mostly negatively charged), and the soil solution is called 

cation exchange capacity (CEC; cmol • kg-1 or meq • 100g-1). This is a dynamic process 

where cations equilibrate with the pore water solution. Bunt (1988) reported that the CEC 

of peat moss substrate indicates the potential for divalent ion adsorption – primarily 

calcium (Ca) and magnesium(mg), with most monovalent cations, i.e., NH4
+, potassium 

(K+) and sodium (Na+) remaining in solution.  Rippy and Nelson (2007) found a variation 

of CEC from 108 to 162 cmol • kg-1 in Canadian peat moss and, that peat with high CEC 

had a greater buffering capacity than those with low CEC, resulting in less drastic pH 

changes. Materials such as perlite, polystyrene, or rockwool have minimal CEC and are 

typically included to increase aeration or water-holding capacity of other components of 

the substrate (Argo and Biernbaum, 1994; Nelson, 1991). Bark, calcined clay, coconut 

coir, and expanded vermiculite are added to soilless substrate for aeration and water-

holding capacity, but each also has significant CEC (Argo and Biernbaum, 1997b; Bunt, 

1988; Nelson, 1991). 

 For most organic materials utilized as soilless substrates, inherent acidity (low 

pH) is a common characteristic. Organic acids are released to the substrate matrix as 

natural decomposition occurs (Rippy and Nelson, 2007). Consequently, liming materials 

(materials with capacity of lowering the pH) are utilized by the industry to raise the pH to 
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a more tolerable range for roots. Some of the materials utilized are calcium carbonate, 

magnesium carbonate, calcium hydroxide, and magnesium hydroxide. The amount of 

liming material required to obtain an equilibrium pH of approximately pH 5.5 - 6.0 in the 

root environment depends not only on the components used to produce the medium, but 

also on the liming material's reactivity and particle size (Argo and Biernbaum, 1996b; 

Williams et al., 1988). 

 Organic substrates and more specifically peat-based substrates are not capable of 

supplying all the nutrients required to sustain optimal plant growth, so general 

recommendation and practices are to apply fertilizers to the substrate with both macro- 

(N, P, K, Ca, Mg and S) and micro-nutrients (B, Cu, Fe, Cl, Mn, Mo and Zn), before 

planting (Bunt, 1988; Nelson, 1991).  However, since most organic substrates have 

negligible anion exchange capacity, anions, such as NO3
-, PO4

2- and SO4
2- have to be 

supplied on a consistent basis (either through slow-release fertilizers or liquid feed), as 

the potential for anions leaching from containers is high, especially under irrigated 

conditions.  The persistence of PO4
2- incorporated in a peat-based root substrate before 

planting was tested by Yeager and Barrett (1985), who found that this substrate had a 

limited ability to retain PO4
2- against leaching.  Biernbaum et al. (1995) further 

demonstrated that all macronutrients supplied from one blended fertilizer leached very 

quickly from a peat-based substrate, under mist irrigation. 

 Several studies have been conducted to quantify the nutrient content of different 

sources of irrigation water in the United States. Based on 4300 samples, Argo et al. 

(1997a) found that the overall median water source in the United States had a mean pH of 

7. 1, a mean EC of 0.4 dS m-1 and a mean alkalinity of 130 mg CaCO3/L. The suggested 
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range for irrigation water pH and alkalinity is from pH 5 - 7 and an alkalinity of 40 - 100 

mg CaCO3/L, respectively.  Argo et al. (1997a) suggested that irrigation water having pH 

and alkalinity levels outside these ranges are not necessarily detrimental to plant growth, 

as long as the pH of the substrate is maintained within an acceptable range.  Argo and 

Biernbaum (1996a) demonstrated that irrigation water alkalinity, not pH, is the primary 

factor influencing substrate pH management, as this greatly influences buffering capacity.  

Irrigation water containing large amounts of alkalinity (>250 mg CaCO3/L) are 

commonly treated by adding acids into the irrigation water. 

 The type of water-soluble fertilizer applied to a root substrate affects pH and 

nutrient concentrations in two ways: directly, by nutrients applied to the root substrate, 

and indirectly, by acidification of the rhizosphere pH (i.e., the root / substrate interface) 

that is directly influenced by root secretions and associated soil microorganisms. 

Fertilization with NH4
+ causes the substrate pH to decrease, due to H+ secretion 

(maintenance of charge balance by the plant during root uptake) and also the nitrification 

of NH4
+ to NO3

-, which also releases H+.  In contrast, fertilization with NO3
- causes the 

substrate pH to increase because of OH- or HCO3
- secretion associated with counter-ion 

uptake for charge balance (Bunt, 1988; Nelson, 1991; Lea-Cox et al, 1996). 

 Understanding how these physical and chemical properties interact with nutrient 

supply and uptake, can help us better understand and optimize plant nutrient 

management. Changing one factor of a nutritional program typically requires a re-

evaluation of other factors.  For instance, a new water soluble N formulation may alter 

pH dynamics, affecting PO4
2- or micronutrient availability. Fertilizer concentrations 

should be monitored consistently. Typically this is done by measuring the electrical 
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conductivity (EC) of the solution as an indicator of the total salts in solution.  Ion-specific 

analyses of pore water (though substrate extraction) have to be performed by a 

laboratory, since reliable and precise ion-specific electrodes are still not available.  

Similarly, EC root-zone sensors for the in situ measurement of soil/substrate EC have not 

had the precision required for accurate and continuous monitoring in the root zone. This 

is because most EC sensors are designed to work in an aqueous environment, where the 

accurate measurement of EC is well characterized.  Ensuring the precision and accuracy 

of EC sensors for use in non-aqueous environments will therefore have profound 

consequences for real-time nutrient management for nursery and greenhouse crop 

production.  This capability will provide growers with an instantaneous indication of 

when fertilizer salts are either under the recommended value for a specific crop, or to 

know when salt concentrations are building up in the root zone, to levels that would 

compromising root function and nutrient uptake.  The ability to measure EC in real time 

using a sensor will also be much more cost-effective than current labor-intensive 

methods, and allow growers to increase the frequency of measurements. Having the 

ability to plot these measurements and keep a long-term record of changes in EC will 

allow growers to gain much more insight into their fertilization programs than is 

currently possible.  

Many soil/substrate EC sensors are available which are apparently capable of 

reading instantaneous EC in soilless substrates, but it should be noted that the 

measurement of non-aqueous EC in soil/substrate environments is not trivial.  This is 

because most sensors measure the bulk EC (b) of the substrate, which is the total 

electrical conductivity associated with the surface substrate ionic charge plus the 
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electrical conductivity of the ions in the pore water solution and air. As mentioned 

previously, soilless substrates are typically selected for a combination of good physical 

and chemical characteristics; as such, most soilless substrates have relative high CEC. 

This allows the equilibration of ions in the pore water with those on the exchange 

complex, within a period of time (Argo, 1998a). For that reason we are interested in 

solely predicting pore water EC (p), which is the same as the EC of the liquid fraction 

extracted from the soilless substrate matrix by pressing or centrifuging.  Obviously, the 

amount of water contained in the substrate at any one time has a profound effect on the 

concentration of salts in solution, and vice versa (Inoue et. al, 2008); however, 

temperature also has a profound effect on accurate bulk EC determination, requiring that 

sensors have a temperature compensation capability for precise measurement (Scoggins 

and van Iersel, 2006).  Electrical conductivity sensors therefore need to simultaneously 

measure three variables – water content, temperature and b – to provide a precise real-

time measurement of bulk EC;  however, to provide an accurate estimate of pore water 

EC, we need to go one step further and calculate a substrate-specific offset value, as such 

offsets eliminate the contribution of surface electrical conductivity (s) and the 

permittivity of dry substrate ’b=0 in the final estimation of pore water electrical 

conductivity.  This has been well-described by Rhoades (1976, 1989) and Hilhorst 

(2000), who have spent many years refining their two models, respectively. Such models 

estimate pore water electrical conductivity (p) by utilizing different physical parameters 

which are measured directly by the sensor, or estimated separately during laboratory 

experimentation.  This methodology and detail is fully described in Chapter 3. 
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Chapter 2: Determination of Water Desorption and Sensor 
Calibration  

 

Introduction 

 Ornamental plant production has changed significantly over the past four decades, 

and is continuously evolving toward more efficient production systems (Raviv and Lieth, 

2008). One of the biggest changes was the adoption of containers for growing plants 

since this offered many benefits in handling and transportation; however disease became 

a significant production issue when soils were used in containers, due to poor drainage 

(Handreck and Black, 2002).  The adoption and use of porous soilless substrates of both 

organic and inorganic origin has driven the widespread use of containers for the 

production of ornamental and vegetable transplants throughout the world (Raviv and 

Lieth, 2008). 

 Reductions in substrate water potential/content in the root zone beyond a certain 

level is one of the greatest plant growth limiting factors for normal plant development 

and yield.  The ability to precisely measure the soil/substrate water content, and to assess 

the ‘availability’ of water to plants is therefore essential to maintain optimum plant 

growth rates.  Since there are many techniques and units that can measure soil/substrate 

water content, we agree with Jones (2007), that a standardized metric should be used, that 

would allow for direct volumetric water content comparisons between various substrates 

with different physical and water-holding characteristics.  Soilless substrates have been 

extensively characterized and scrutinized over the years, to better understand their 

physical characteristics.  Bunt (1961) found that organic materials such as peat had a 
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positive impact on the physical properties of soil mixes.  De Boodt and Verdonck (1972) 

established moisture release characteristics for several different soilless substrates, and 

proposed specific plant available moisture parameters including easily available water 

(EAW; 0 to -5 kPa) and water buffering capacity (WBC; -5 to -10 kPa) and detailing 

techniques (De Boodt et al. 1974). More recently, research has focused on the 

contribution of key parameters such as air : water : solid ratios to the availability of water 

in substrates (Handreck and Black, 2002).   Additional research has focused on other 

variables, to assess and better understand substrate dynamics.  For example, by taking 

advantage of new theoretical models and modern electronics, researchers have been able 

to analyze aspects of substrates to determine water desorption characteristics in situ using 

time domain reflectometry (TDR; Paquet et al., 1993), measure saturated hydraulic 

conductivity in containers (Allaire et al.,1994), and to quantify gas diffusion (Caron et al., 

2005). 

 Although desorption curves can be generated by using either suction or applied 

pressure (pF, cm of water, cbar, kPa), most research has focused only on quantifying 

substrate water release characteristics, without relating water desorption (volumetric 

water content, VWC) to substrate matric potential (m).   The global objective of our 

research was to understand the relationships between measuring the volumetric water 

content (VWC) and plant available water (measured as matric potential; m in kPa), 

using two types of ECH2O sensors.  We wanted to simultaneously quantify both variables 

in a range of soilless substrates, with contrasting particle size distributions and physical 

properties.   By doing this, we wanted to better understand the relationships between 
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these variables and how they related to plant water availability, in order to make more 

objective decisions for scheduling irrigations in these substrates.  

 

Materials and Methods 

Soilless substrates 

 Five substrates were chosen for testing, based on their use in the greenhouse and 

container nursery industry, and their differing ability to hold and release water.  The 

substrates were 100% Perlite (horticultural grade A-20; Pennsylvania Perlite Corp., 

Bethlehem, PA.), 100% coir (coconut fiber; Superior Growers Supply, MI), Sunshine 

Professional LC1 (80% peat : 20% perlite; Sun Gro® Horticulture Inc., Bellevue, WA), 

and two Maryland container-nursery substrates 80% pine bark : 20% sphagnum peat 

moss (Coastal Bark & Supply, Pendleton, SC), 100% pine bark (Chesapeake Nurseries, 

Salisbury, MD). 

Moisture Sensors 

 Capacitance sensors were acquired from Decagon Devices Inc. (Decagon 

Devices, Pullman, WA). The sensors are manufactured with an electrode-printed circuit 

board that is extended into the sensor prongs, with the electronic circuitry covered by a 

plastic molding which protects it from moisture and elements in solution.  There is an 

explicit recommendation from the manufacturer to not expose the head molding to direct 

sunlight, to avoid overheating and potential malfunction. A capacitor by simple definition 

is a device that stores electrical energy. Capacitance sensors incorporate the substrate 

surrounding the sensor prongs as part of this capacitor, to measure the dielectric 
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permittivity (i.e. how much energy is stored by the substrate) of the surrounding medium. 

The permanent dipoles of water in the substrate-water-air dielectric become polarized in 

response to the frequency of an imposed electric field. The volume of water in the portion 

of the substrate scanned by the sensor heavily influences the dielectric permittivity, 

because the permittivity of water (80) is much greater than the other constituents of 

substrate (e.g. mineral soil  3; organic matter  4; air  1). Thus, when the amount of 

water changes in the substrate, the sensor measures a change in capacitance (from the 

change in permittivity) which can be directly correlated with the change in water content. 

Circuitry inside the sensor converts the capacitance measurement into a proportional 

millivolt (mV) output. 

 Each Decagon sensor has a standard 5 m cable with three wires as ground (bare), 

excitation (white), and sensor output (red).  This provides an analog output for EC-20 and 

EC-5 sensors. The sensors used in each experiment were connected to a CR10X 

Campbell Scientific Instruments (Logan, UT) datalogger, in conjunction with an 

AM16/32 multiplexer (CSI, Logan, UT) thus enabling the simultaneous use of multiple 

sensors.  Both the EC-20 and EC-5 (Fig. 1.5) were excited at 3V.  Note that the output 

voltage produced by the sensor depends on the relative permittivity of the substrate 

surrounding the sensor; this output voltage ranges from 10 to 50% of the excitation 

voltage. The moisture calibration is therefore dependent on the excitation voltage used, 

which varies for the different sensors manufactured by Decagon Devices. The dielectric 

measurement frequency used by factory settings for the EC-20 and EC-5 analog sensors 

is 6 and 70 MHz respectively.  
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Water Desorption Curve Generation 

 Desorption curves were generated for each substrate, to specifically measure and 

test sensor performance in each substrate.  We tested two ECH2O capacitance sensors, 

EC-5 and EC-20 (Decagon Devices, Pullman, WA). A custom-built desorption table was 

constructed at the Department of Environmental Science and Technology, Project 

Development Center, University of Maryland (Fig 2.1). The tension table consists of ten 

individual pressure (‘tempe’ cells) or columns; each column was constructed of schedule 

40 polyvinylchloride (PVC), with a fixed internal diameter of 12.7 cm and a column 

height of 5.2 cm for the EC-5 sensors, and a column height of 20.7 cm for the EC-20 

sensor, respectively. The 20.7 cm (EC-20) column was packed by filling ⅓ of the column 

with each specific substrate, saturating and draining the water; this procedure was 

repeated until the column was fully packed.  A similar protocol was used to pack the 

substrate for EC-5 probes, except ½ of the column was initially packed with substrate to 

ensure that a natural distribution of particles occurred.  

 The sensors were sealed into a (18 x 18 cm) polycarbonate lid using silicone seal 

(General Electric, Silicone I, Huntersville, NC). The sensor head molding was only 

slightly embedded (approximately 3mm) in the polycarbonate lid since all tests were 

conducted under laboratory conditions (no direct sunlight exposure and constant room 

temperature of approximately 24 °C ± 1).  This allowed the sensor prongs to be aligned 

with the base of the polycarbonate lid, and top of the substrate in the column (Fig. 2.1).  

When the columns were fully packed with a particular substrate, the polycarbonate lid 

with the embedded and sealed sensor was positioned centrally over the column and 

carefully inserted vertically down into the substrate, ensuring no air gaps were created  
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Figure 2.1. Custom desorption table with ten replicate pressure columns.  This view shows, a 5-

cm height column with a EC-5 sensor embedded in the top polycarbonate lid, inserted into 

the substrate and sealed by bolting the column and lid to the table. The columns were 

slowly pressurized utilizing compressed air, monitored with a digital pressure gauge and 

evenly distributed to all columns utilizing a manifold (center, front of table) and Teflon 

gas lines, attached with luer-lock fittings. Water desorbed was collected with graduated 

cylinders at each measured pressure increment. Sensors were attached to the multiplexer, 

CR10X datalogger and computer for logging and monitoring the column data, as noted in 

the text. 

 

between the sensor and the substrate.  The plate and sensor were then bolted down onto 

each column, to give a pressure-tight seal, using seated O-ring gaskets in a 1mm groove 

milled in the top and bottom of the PVC columns (Fig 2.2).   

The base of each column was in direct contact with a polycarbonate plate, 

perforated with about two hundred forty 2.5 mm diameter holes (Fig 2.2a).  The substrate  
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Figure 2.2a, b, c, and d. Base polycarbonate plate (a), perforated with two hundred forty 

1.0 mm diameter holes. Membrane (0.45 micron pore) (b), on top of each base 

plate. The red arrow on (c) is pointing out the seated O-ring gaskets in a 1mm 

groove milled at the top of the PVC columns. Base polycarbonate plate (d), 

holding in place the membrane and column. 

 

was separated from this plate by inserting a 0.45 micron membrane (Fig 2.2b) at the 

bottom of each column (GE Water & Process Technologies, Trevose, PA). New 

membranes were used for each substrate test.  Vacuum grease was used to ensure the air 

tight seal of the O-ring gaskets between the column and the perforated polycarbonate 

base (Fig. 2.2c; d). 

 The columns were then slowly re-hydrated from the base of the column, to 

gradually force all interstitial air out from between the substrate particles, completely 

saturating the column.  Air was allowed to escape from the sealed columns via a female 

luer thread (Cole-Parmer, Vernon Hills, IL) port in the top polycarbonate lid. This port 

was also used to pressurize each column. Substrate in each column was allowed to fully 
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saturate and establish equilibrium for at least 4 hours. Upon saturation, the ten replicate 

columns were allowed to drain freely overnight by gravity, thus reaching container 

capacity. Note that for 20-cm high columns, the gravitational pressure exerted by gravity 

at the top of the column is 2 kPa; for 5-cm columns this gravitational pressure is equal to 

0.5 kPa, or 0.1 kPa for every centimeter of height (Milks et al., 1989c). 

The volume of water expressed overnight was collected and measured for each 

column, providing the data for the later computation of total porosity (TP) and air filled 

porosity (AFP). During each run, positive gas pressure (compressed air) was applied and 

monitored with a digital pressure gauge (General Electric Druck Model DPI 104; TTI 

Instruments, Williston, VT; precision ± 0.001 kPa) and adjusted by a gas pressure 

regulator (Model E12 244D; Airgas East, Salem, NH ).  The following increments were 

applied to each substrate in the 20cm column: 2, 3, 5, 7, 9, 11, 21, 41, and 61 kPa. 

Pressure increments for 5 cm column were 1.25, 2.25, 4.25, 6.25, 8.25, 10.25, 15.25, 

20.25, 40.25 and 60.25 kPa. Note that these values included the average gravitational 

potential of the column (= 1kPa and 0.25 kPa for 20-cm and 5-cm columns, respectively).  

We collected the leachate volumes expressed from the columns at each pressure, 

using the following standardized protocol:   Leachate volume readings were taken every 

10 minutes throughout the run, using 100 ml graduated cylinders located under each 

column (directed by a funnel under each column under the table, see Fig. 2.1).  When 

more than five of the columns did not change in volume by more than 1 mL during a 10 

minute period, the subsequent pressure increment was applied.  Runs generally took 

between 8 and 18 hours, depending upon the substrate and column height.  At the end of 

each run, the volume of water leached during each pressure increment was totaled for 
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each replicate column. The sensor output (mV) data were continuously measured 

throughout each run using a AM16/32 multiplexer (Campbell Scientific, model) and 

CR10X datalogger (Campbell Scientific, Logan, UT) with scan ratio of 20 seconds and 

an average value logged every minute utilizing a modified datalogger program (pers. 

comm., Colin Campbell, Decagon Devices; Appendix A1 and A2, for the EC-5 and EC-

20 sensor, respectively). 

Sensor Calibration 

 Capacitance sensors use the prongs as electrodes. Thus, when inserted into 

substrate this later works as a capacitor storing some of the energy applied by the sensor. 

Then, utilizing the time that takes for the substrate to store a threshold voltage is then 

correlated with relative permittivity, which is influenced the most part by water content 

(Dane and Topp, 2002).  Capacitance sensors measure the average relative permittivity 

over the length of the sensor; hence also column volumes of equal height, as the sensor 

integrates the apparent dielectric constant gradient in the vertical plane when the sensor is 

placed vertically, as done in these experiments.  Relative permittivity (or sensor output) 

measurements were taken simultaneously with the expressed water volumes during the 

desorption curve determinations. The simultaneous calibration of each capacitance sensor 

was therefore performed for two different variables, i.e., volumetric water content () and 

matric potential (m).  Volumetric water content calibrations were made by measuring 

the leachate expressed at each pressure increment, and noting the time when equilibrium 

was reached; after each run, the sensor output at that specific time was retrieved from the 

datalogger file, to match water expressed over time.  Two or three repeated runs were 

performed for each substrate and sensor combination (see statistical analysis section).  
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After each run, the substrate was carefully removed from each column and weighted, 

then oven-dried at 70°C for at least 96 hours, to estimate the water remaining in each 

substrate beyond the final pressure applied.  By adding the expressed leachate volumes 

and the total remaining volume of water (1 g H2O = 1 mL H2O, at standard temperature 

and pressure) and dividing those volumes by the total volume of the column, it was 

therefore possible to calculate the actual volumetric water ( at each incremental 

(matric) pressure and the amount of water at container capacity (CC).  By regression 

analysis, we can therefore predict , based on the specific sensor output. The matric 

potential (m) can be used to characterize the water distribution that each substrate 

exhibits, which relates the specific volumetric water content of that substrate to a 

normalized ‘physiological’ value related to plant water availability (Jones, 2004, 2008).  

Statistical Analysis 

The volumetric water content calibration was made by analyzing the relationship 

between the matric potential (m) applied as positive air pressure (kPa) with the sensor 

output (mV) and volumetric water content at each pressure increment. Identical runs were 

repeated three times. Each run was a completely randomized experiment with nine and 

ten pressure treatments (reached with smaller volumes) and ten replicates (column) per 

pressure for each run.  Some column results were excluded from the analysis when 

membranes were occasionally pierced by the sensor prongs.  Data were analyzed using 

SAS (SAS Institute Inc., Cary, NC, USA, 2002-2003), using the PROC MIXED model 

and the RANDOM statement, to ascertain whether there were interactions between runs 

at each pressure (i.e. run and run*kPa interactions).  Since no significant interactions 
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were noted between runs (within substrates), all data were pooled to add strength to the 

regression analyses.  

 

Results and Discussion 

Volumetric Water Content vs. Matric potential 

 Moisture release curves were plotted for each substrate and sensor combination 

(Figs. 2.3a and 2.4a; Appendix Figs. B1 - B8).  We will specifically contrast the results 

from the 80 peat : 20 perlite (Sunshine LC-1; Figs 2.3a, b) and the 100% perlite substrate 

(Figs. 2.4a, b).   In general we can divide all tested substrates into two categories -mixes 

vs. non-mixes and high vs. low water holding capacity.  All substrates showed a sharp 

decrease in water content with increasing pressure from 1.25 to 10.25 kPa (all Figures). 

Beyond 10.25 kPa, all water release curves became nearly asymptotic, indicating that the 

remaining water was more tightly bound to the substrate matrix, and hence ‘progressively 

unavailable’ for root uptake.  This confirms data previously described by a number of 

authors, including  Goh and Maas (1980), Fonteno et al. (1981), Bilderback et al. (1982); 

Verdonck (1983); Verdonck et al. (1983); Brown et al. (1987); Fonteno (1989); Cattivello 

(1991);  Gabriëls et al. (1991) and Milks et al., (1989a; b and c).  In most commercial 

production environments, the primary objective is to maintain a favorable environment 

for optimal plant development, without applying luxurious amounts of water or nutrients. 

Thus, having a reliable measure of plant available water would be required to determine 

whether PAW was at a m 15 kPa, maximizing plant-available water, yet minimizing 

the amount of water that could potentially leach from the container. 
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Figure 2.3 a, and b. Standard (a) moisture release curve for 5 cm height columns testing 80 peat : 20 perlite mix, with pressure 

applied in kilopascals, left hand ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume 

desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. 

Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count (n). 

EC-5 sensor volumetric water content calibration (b) with sensor output as millivolt on the abscissa and VWC on the ordinate. 

Correlation coefficient (r2) is shown for VWC sensor calibration equation and data point count (n). 

 
 
 

 (a) (b) 



 

40 
 

 

 

Figure 2.4 a, and b. Standard (a) moisture release curve for 5 cm height columns testing 100% perlite, with pressure applied in 

kilopascals, left hand ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume desorbed 

from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. Correlation 

coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count (n). EC-5 

sensor volumetric water content calibration (b) with sensor output as millivolt on the abscissa and VWC on the ordinate. 

Correlation coefficient (r2) is shown for VWC sensor calibration equation and data point count (n). 

 

 (a) (b) 
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Figures. 2.3a and 2.3b show the moisture release curve and sensor volumetric water 

content (θ) calibrations respectively, for the 80 peat : 20 perlite mix in 5cm high columns.  

Similar data is shown for the 100% perlite substrate in Figs. 2.4a and Fig. 2.4b. 

 When comparing Fig. 2.3a and 2.4a, we can quantify exactly how much water is 

present in each substrate from 1.25 kPa to 10.25 kPa for the 80 peat : 20 perlite mix (i.e. θ 

= 0.69 to 0.33) which corresponds to a change of 36% volumetric water content. In 

contrast, there is a very small change in desorbed water in the 100% perlite (i.e. θ = 0.36 

to 0.31), from 1.25 to 10.25 kPa corresponding to only 5% change in volumetric water 

content, illustrating the very low water holding capacity of this substrate.  The desorbed 

water (right hand 'y’ axis, Figs. 2.3a and 2.4a) shows the actual volume of water desorbed 

from the columns at each pressure; the regression shows that desorbed water was closely 

related to sensor output (Figs. 2.3b and 2.4b; Table 2.1). Table 2.1 summarizes the 

descriptive statistics for volumetric water content (θ) vs. sensor output (mV) for all 

substrates and both column heights / sensor types.  From this data it can be seen that both 

mixes that contain peat moss had the highest correlation coefficient for both sensors and 

column heights.  It can be seen that substrates with larger pore diameters such as 100% 

pine bark, 100% coconut fiber, and 100% perlite had lower correlation coefficients.  

Notably, all r2 relationships were highly significant, based on the number of replicate 

measurements (n), as indicated by the P values.  This gives us confidence that these 

sensors can give reliable moisture readings in soilless substrates which have a wide range 

of air-filled porosity and water-holding capacities (Tables 2.2 and 2.3). 

In general, the variation in the sensor readings increased with higher θ in all 

substrates tested (Figs. 2.3b, 2.4b; Appendix Figs. B1 - B8).  The 80 peat : 20 perlite mix 
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Table 2.1. Relationship of Volumetric Water Content (θ) and sensor output (mV) with increasing pressure is shown by the linear 

calibration regression equation with the corresponding correlation coefficient r2 for each substrate in 5 cm and 20 cm columns. 

All regressions were highly significant (P < 0.0001). 

EC-5 Sensor (5 cm column Height) 

Substrate 
Linear regression 

equation 
Data points 

(n)* 
Value  

(r2) 

100% Pine Bark θ = -0.1165+(0.0010* mV) 168 0.43 

100% Coconut fiber θ = 0.2477+(0.0002*mV) 147 0.53 

80 Pine bark : 
20 Peat moss 

θ = -0.6216+(0.0019*mV) 208 0.83 

80 Peat moss : 
20 Perlite 

θ = -0.7159+(0.0019*mV) 360 0.88 

100% Perlite θ = 0.0571+(0.0005*mV) 187 0.29 

EC-20 Sensor (20 cm column Height) 

100% Pine Bark θ = 0.0432+(0.0006*mV) 198 0.76 

100% Coconut fiber θ = 0.2411+(0.0001*mV) 216 0.16 

80 Pine bark : 
20 Peat moss 

θ = 0.0018+(0.0007*mV) 206 0.72 

80 Peat moss : 
20 Perlite 

θ = -0.3110+(0.0012*mV) 180 0.79 

100% Perlite θ = 0.1031+(0.0019*mV) 240 0.47 

*  Varies depending on pressure treatments and valid replicates at the end of each desorption run. 



 

43 
 

had a higher r2 value (0.88; P < 0.0001) than the 100% perlite (r2 = 0.29, P <0.0001) for 

the 5 cm height columns (Table 2.1).  Typically, the more homogeneous and the smaller 

the particle size distribution of a substrate, the less variation would be expected in the 

sensor output (Kelleners et al., 2005a). Notably, although the perlite we used was a very 

homogeneous substrate, its micropore structure reveals some important details which 

explains some of the large variability observed in water-holding properties and 

volumetric water content sensor calibration. Perlite is a mined or volcanic silicate 

material (mainly SiO2 and Al2O3; App. C1) that is expanded at high temperatures. Also 

has a specific surface area from 6 - 13 m2 • g-1 and a very large internal surface area due 

to the expanded honeycomb shaped structure (App. C2).  Note that soil matric potential is 

the sum of capillary forces and adsorptive forces which govern the retention of water in a 

substrate, due to surface charge.  This dense honeycomb structure could therefore hold a 

large amount of water inside the micropores and ultramicropores (Drzal et al., 1999). 

This would explain the large amount of water held by perlite (Tables 2.2 and 2.3) beyond 

-10 kPa, with the practical consequences for most plants, since this water is likely to be 

progressively more unavailable at more negative (higher) matric potentials. 

 The low sensor correlation coefficients for substrates with high perlite contents 

could also possibly be explained by the fact that materials with a large surface area (in 

this case a large internal surface area) also exhibit strong dielectric relaxation (Logsdon, 

2005).  Dielectric relaxation is a direct reduction in the apparent energy storage 

(capacitance) of the substrate, which can be attributed to molecular rotation and ion 

migration (known as Maxwell-Wagner effect) (Jones et al., 2005).  This reduction is 

more dramatic at frequencies below 500 MHz (Kelleners et al., 2005b). 
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Estimation of Matric Potential 

 Table 2.2 illustrates the relationship between volumetric water content () and 

matric potential (m) with increasing pressure, for all substrates and the two column 

heights.  From these data, it can be seen that for most substrate and height combinations, 

the correlation coefficients are greater than 0.79, except for 100% pine bark and 100% 

perlite in the 5cm columns (r2 = 0.61 and 0.10, respectively).  These data therefore proves 

that is possible to equate  with m quite accurately by using these sensors in soilless 

substrates.  This knowledge will have a profound impact on our ability to control 

irrigation schedules, based on a normalized physiological variable (i.em, rather than 

 which obviously varies considerably with substrate physical properties.  This has 

important considerations for understanding the thresholds to avoid plant water stress, 

since most container produced crops are C3 plants with low water use efficiency (WUE).   

Even slight water stress can affect photosynthesis and consequently dry mass production 

(Flexas et al., 2004). Furthermore, there is evidence that leaf conductance (stomatal 

activity) responds at relatively moderate soil water contents (Jones, 1992), mediated by 

the plant regulator ABA which is released by dehydrating roots (Dodd, 2005).  Evidence 

points out that photosynthesis of crops like tomato can be significantly reduced at very 

low (m = -2 kPa) matric potentials (Caron et al., 2006; Pepin et al., 2008). 

 Figures 2.5a and 2.6a plot all moisture release regression lines, for all five 

different substrates for the EC-5 and EC-20 sensors (5cm and 20cm column heights).  

Similarly, Figs 2.5b and 2.6b plot calibration regression lines with sensor output (mV) 

for all five different substrates and column height.  Figures 2.5 and 2.6 clearly illustrate 

the differences between substrates, sensor type and column height, on an equivalent
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Table 2.2. Relationship of Volumetric Water Content () and matric potential (m) with increasing pressure is shown by the inverse 

second order equation with the corresponding correlation coefficient r2 and data count (n) for each substrate in 5 cm and 20 cm 

columns. (Figs. 2.5a and 2.6a) All regressions were highly significant (P < 0.0001). 

 

EC-5 Sensor (5 cm column Height) 

Substrate 
Inverse second order  

Equation 
Data points  

(n)* 
Value  

(r2) 

100% Pine Bark = 0.3819+(0.0841/kPa)+(0.0095/kPa^2) 168 0.61 

100% Coconut fiber = 0.3190+(0.0756/kPa)+(-0.0373/kPa^2) 147 0.83 

80 Pine bark : 
20 Peat moss = 0.3721+(0.3885/kPa)+(-0.0625/kPa^2) 208 0.97 

80 Peat moss : 
20 Perlite = 0.2487+(0.9380/kPa)+(-0.4775/kPa^2) 360 0.98 

100% Perlite = 0.3175+(0.0239/kPa)+(0.0213/kPa^2) 187 0.10 

EC-20 Sensor (20 cm column Height) 

100% Pine Bark = 0.3698+(0.4020/kPa)+(-0.0833/kPa^2) 198 0.79 

100% Coconut fiber   = 0.3074+(0.0318/kPa)+(-0.0055/kPa^2) 216 0.80 

80 Pine bark : 
20 Peat moss   = 0.4149+(0.1262/kPa)+(0.1457kPa^2) 206 0.90 

80 Peat moss : 
20 Perlite   = 0.3519+(0.6669/kPa)+(-0.3839/kPa^2) 180 0.98 

100% Perlite  = 0.3166+(0.0518/kPa)+(-0.0078/kPa^2) 240 0.79 

*  Varies depending on pressure treatments and valid replicates at the end of each desorption run. 
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Figure 2.5 a, and b. Moisture release regression lines (a) for all five different substrates tested using 5 cm height columns with 

pressure applied in kilopascals, ‘y’ axis as volumetric water content --  -- (VWC). EC-5 sensor volumetric water content 

calibration regression lines (b) with sensor output as millivolt on the abscissa and volumetric water content on the ordinate.  

 
 
 
 
 
 
 

 (a) (b) 



 

47 
 

 

 

Figure 2.6 a, and b. Moisture release regression lines (a) for all five different substrates tested using 20 cm height columns with 

pressure applied in kilopascals, ‘y’ axis as volumetric water content --  -- (VWC). EC-20 sensor volumetric water content 

calibration regression lines (b) with sensor output as millivolt on the abscissa and volumetric water content on the ordinate.  

 

 

 (a) (b) 
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basis.  It is evident that some water was still being expressed from the 20 cm columns at 

60 kPa (Fig. 2.6a), in contrast to the same substrates in the 5cm column (Fig. 2.5a).  

 However, it is also evident that most substrates released the majority of water 

between 1 to 10 kPa of applied pressure, irrespective of column height.  This has 

important ramifications on the total water available to plants, which is obviously more 

limited in smaller containers than in larger containers (both height and volume). It is 

interesting to note that both the 100% coconut fiber and 100% perlite desorption curves 

leveled off at a θ of about 0.3, independent of column height, illustrating the proportion 

of bound water.  The 80 peat : 20 perlite mix had the highest water holding capacity in 

both 5 cm and 20 cm columns. 

 From Figs 2.5b and 2.6b, it can be seen that the regressions (Table 2.1) are clearly 

different for the EC-5 and the EC-20 sensors.  Even though some regressions have 

equivalent slopes, it is important to recognize that the substrate water-holding capacity 

extends beyond range of other sensor output, e.g. comparing 80 pine bark : 20 peat and 

80 peat : 20 perlite data (Fig. 2.5b; Table 2.1).   For this reason, we conclude that sensors 

should be calibrated for individual substrates if the user requires higher precision.  

However, it is likely that the calibration equations given in Table 2.1 would be adequate 

for use in similar types of substrates and container heights, for most production uses (e.g. 

scheduling irrigation events).  

Integrating Volumetric Water Content and Matric Potential, for Precision 

Irrigation Scheduling 

 Tables 2.3 and 2.4 show the water distribution into readily available water (RAW, 

from 0 to -10 kPa) which in turn is typically subdivided into easy-available water (EAW, 
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0 to -5kPa) and water buffering capacity (WBC, -5 to -10 kPa).  The remainder of the 

water is progressively-unavailable water (PUW, greater than -10 kPa). It is important to 

note that water distribution (Tables 2.3 and 2.4) is computed by definition based on the 

amount of water released within these matric potential ranges, and then normalized 

dividing by container capacity (CC).  This is different from the volumetric water content 

() calculation, where the volume of water released is normalized dividing by the total 

volume of the column.  The VWC data in Figs. 2.4, 2.5, 2.6 and 2.7, was calculated in this 

manner, as per convention.  However, if we calculate  based on container capacity, this 

clearly changes the calibration constants.  We have illustrated this difference for 80% 

peat : 20% perlite and 100% perlite, respectively (Appendix Figs. B9; B10).  For the 80% 

peat : 20% perlite substrate (Appendix Fig. B9), the difference in volumes (684 vs. 517 

mL; 24% less) makes little difference, but for the 100% perlite substrate (Appendix Fig. 

B10), the difference in volume (684 vs. 349 mL; 49% less) was significant.  Note that the 

calculation using CC brings the data in line with the water retained by the perlite 

substrate as PUW (Tables 2.3 and 2.4).  It is therefore apparent that we should revisit 

how we calculate volumetric water content in substrates that either have very low water 

holding capacities, or unusual physical properties. 

 The percentage of progressively-unavailable water (PUW) was surprisingly high 

for all substrates and combinations tested. For perlite, this proportion equaled 62.8% and 

80.0% in the 5-cm and a 20-cm column, respectively. As discussed in Chapter 1, a 

proportion of this water at tensions greater than -10 kPa may in fact, be available for 

uptake by roots, although, Keihl et al. (1992) showed that the growth of Chrysanthemum 

[Dendranthema grandiflorum (Ramat.) ̀cv. Kitamurá], in soilless substrates was reduced
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Table 2.3. Physical properties and water distribution for different substrates in 5 cm tall columns with bulk density (BD), Container 

capacity (CC), total porosity (TP), air filled porosity (AFP), and water distribution as easily available water (EAW), water 

buffering capacity (WBC), and progressively unavailable water (PUW). 

 

  100% 
Perlite 

80 Pine Bark  
: 20 Peat 

100% 
Coir 

100% 
Pine Bark 

80 Peat:  
20 Perlite 

BD (g • cm-3) 0.114 0.204 0.086 0.218 0.106 

CC † (mL) 349 517 341 419 534 

TP (%) 62.2 77.6 88.5 71.5 80.0 

AFP (%) 11.7 2.1 38.6 10.2 2.6 

 Pressure (kPa) Water Distribution (%) 

EAW (1.25 to 5.25) 36.0 40.0 32.6 34.6 43.7 

WBC (5.25 to 10.25) 1.2 7.0 2.1 2.2 13.1 

PUW ( >10.25 ) 62.8 53.0 65.3 63.2 43.2 

† Total volume of the 5-cm column = 684.1 mL.  Note that CC (%) = TP - AFP.  Use CC values to interconvert data. 
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Table 2.4. Physical properties and water distribution for different substrates in 20 cm tall columns with bulk density (BD), Container 

capacity (CC), and water distribution as easily available water (EAW), water buffering capacity (WBC), and progressively 

unavailable water (PUW) 

 

  100% 
Perlite 

80 Pine Bark  
: 20 Peat 

100% 
Coir 

100% 
Pine Bark 

80 Peat:  
20 Perlite 

BD (g • cm-3) 0.103 0.151 0.072 0.166 0.100 

CC † (mL) 1014.7 1474.4 1099.8 1475.0 1605.9 

TP (%) 75.4 85.0 94.1 86.3 90.1 

AFP (%) 35.4 26.8 50.7 28.1 26.7 

 Pressure (kPa) Water Distribution (%) 

EAW (2 to 5) 18.3 23.2 27.6 20.1 27.8 

WBC (6 to 11) 1.7 3.4 1 10.1 11.0 

PUW ( >11 ) 80.0 73.4 71.4 69.8 61.2 

† Total volume of the 20-cm column =  2533.5 mL.  Note that CC (%) = TP - AFP.  Use CC values to interconvert data. 
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at water tensions as low as -16 kPa. For this reason, we think that set-points for 

scheduling irrigations using these sensors should ideally be between -1 and -10 kPa, to 

avoid plant water stress utilizing most substrates. This should of course be confirmed by 

empirical determinations once the sensors are in place in the container, and giving stable 

readings in the root zone.  

In summary, from these results, it is clear that container height and substrate 

water retention properties have significant effect on the precision and accuracy of 

Decagon capacitance sensors in these soilless substrates.   Cumulatively, these data give 

proves that is possible to equate  quite accurately with m.  Being able to precisely 

measure plant available water is essential to schedule irrigations in different substrates, 

maintain m in the range of plant-available water, and minimize the leaching of water 

and nutrients from the container. 
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Chapter 3:  Electrical Conductivity Calibration 
 

Introduction 

Electrical conductivity (EC) sensors have not had the precision required for 

accurate monitoring of salt concentrations in soilless substrates until now, since most EC 

sensors are designed to work in aqueous environments, where the accurate measurement 

of EC is well characterized.  Ensuring the precision and accuracy of EC sensors for use in 

a non-aqueous environments (e.g. in soilless substrates) will have profound consequences 

for real-time nutrient management for nursery and greenhouse crop production.  This 

capability will provide growers with an instantaneous indication of when fertilizer salts 

are either under the recommended value for specific crops or when salts are building up 

in the root zone, perhaps compromising plant growth.  The ability to measure EC in real 

time using a sensor will also be much more cost-effective than the current labor-intensive 

methods used to monitor EC, and will also allow growers to increase the frequency of 

measurements. Having the ability to plot these measurements and keep a long-term 

record of changes in EC will give us much more insight into managing fertilization 

programs than is currently possible.   

Brief Background 

Many sensors are available that are apparently capable of reading instantaneous 

EC in soilless substrates, but the measurement of electrical conductivity (EC) in non-

aqueous environments is not trivial.  This is because most sensors measure the bulk EC 

(b) of the substrate, which is the total electrical conductivity associated with the surface 
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substrate ionic charge plus the electrical conductivity of the ions in the pore water 

solution (p) and air.  Soilless substrates are typically selected for a combination of good 

physical and chemical characteristics; as such, most soilless media have relative high 

cation exchange capacity, associated with the negative charge on substrate particles.  This 

allows the equilibration of ions in the pore water with those on the exchange complex, 

within a period of time (Argo, 1998a). For that reason we are interested in predicting pore 

water EC (p), rather than bulk EC (b), equated to the liquid fraction extracted from the 

soilless substrate matrix, by direct extraction (pressing or centrifugation).  Obviously, the 

amount of water contained in the substrate at any one time has a profound effect on the 

concentration of salts in solution, and vice versa (Inoue et. al, 2008); temperature also has 

a significant effect on accurate bulk EC determination, requiring that sensors have a 

temperature compensation capability for precise measurement (Scoggins and van Iersel, 

2006).  Electrical conductivity sensors therefore need to simultaneously measure three 

variables – water content, temperature and b – to provide a precise real-time 

measurement of bulk EC.  However, to provide an accurate estimate of pore water EC, 

we need to go one step further and calculate a substrate specific offset value. This offset 

eliminates the contribution of surface electrical conductivity (s) and permittivity of dry 

substrate (’b=0) in the final estimation of pore water electrical conductivity, as 

described by the Rhoades (1976, 1989) and Hilhorst (2000) models, respectively. Such 

models estimate pore water electrical conductivity (p) by utilizing different physical 

parameters read directly by the sensor or estimated separately during laboratory 

experimentation (further details in the model section, below). 
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Study Objectives 

This study had three primary objectives: (1) to calibrate and compare the 

performance of two types of EC sensors in a commercial Sunshine Professional LC1 

substrate (80 peat: 20 perlite; Sun Gro® Horticulture Inc., Bellevue, WA) with a range of 

electrical conductivities from 0.22 to 8.0 dS m-1; (2) Since both sensors measure bulk EC 

(b), the second objective of this study was to derive an offset value that would ensure 

the accurate prediction of pore water EC (p) from the measurement of b; and (3) 

compare the precision of these offset values with two alternative models, namely from 

Rhoades (1976, 1989) and Hilhorst (2000).  It should be noted that Decagon Devices, 

Inc., who produce both sensors, currently uses the Hilhorst model to predict p using an 

offset value of 6.0 with both sensors. 

Materials and Methods 

We previously described a method to measure the desorption of water using a 

modified tension table (Chapter two).  In order to measure the model’s input variables 

required for the measurement of pore and bulk EC, we had to modify the desorption 

protocol that was previously described.  The soilless substrate used in these EC studies 

was a commercial Sunshine Professional LC1 (80 peat: 20 perlite; Sun Gro® Horticulture 

Inc., Bellevue, WA) media. Calibration runs were repeated twice for every salt 

concentration, testing the response of two types of EC sensors (ECH2O-TE and 5TE, 

Decagon Devices, Inc; n=5 each) at increasing salt concentrations of 0.22, 1.0, 2.0, 4.0, 

6.0, and 8.0 dS • m-1. Columns were repacked between each run with new substrate, 

saturated with a differing salt concentration. 
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The bulk density of this substrate was normalized for all runs at 0.12 g • cm-3 as a 

standard bulk density, according to nine different laboratories throughout Europe 

(Gabriëls et al., 1991).  This was a standard procedure for all columns and all repeated 

runs, using the desorption table (Fig. 2.1).  This refinement in methodology was made to 

reduce the variation due to different air-filled porosities, and allowed for a direct 

comparison to typical bulk densities found in commercial production.  Bulk density 

normalization was done by first determining the total weight of substrate needed to have 

the desired bulk density on a dry basis and adding the adjusted weight, based in the 

substrate moisture content.  This is because peat moss substrates are typically sold with 

added moisture, to reduce shrinkage and rewetting issues.  Half of the substrate for each 

individual column (n=10 in total; n=5 for each sensor type) was weighed and placed in 

individual 1 L beakers, for each column.  Initial salt residues in the substrate were 

leached by adding 600 mL of deionized water, vigorously stirring and pouring off the 

supernatant three times.  Potassium chloride (KCl) was used to make up the salt solution 

for each run (Rhoades, 1976) and independently measured with a Traceable® Bench 

(Conductivity Control Company, Friendswood, TX) Model 4163 EC meter.  The 

substrate for each column was equilibrated with the desired electrical conductivity 

solution for each run (i.e. 0.22, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1), by allowing the solution 

to stabilize for one day between flushes.  A new batch of substrate (from the same bag) 

was used for each successive run.  Five-centimeter deep columns were packed, as 

previously described in Chapter 2, except that columns were re-hydrated with the chosen 

salt solution.   Desorption runs were then done at incremental pressures of 1.25, 2.25, 

4.25, 6.25, 8.25, 10.25, 15.25, 20.25, 40.25 and 60.25 kPa, as previously described.  Two 
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repeated runs were made with each electrical conductivity solution, to ensure adequate 

replication for each sensor type and EC. 

Every repeated run using the desorption table had five replicate columns for each 

sensor type (ECH2O-TE and 5TE).  Both sensors are illustrated in Table 3.1 with their 

specific characteristics noted.  Sensors were randomly assigned to different columns for 

each run.  The expressed pore water from each column was collected at the end of every 

incremental pressure; the expressed leachate volume and leachate conductivity (w) was 

recorded for each fraction expressed at each pressure (Fig 2.1).  The EC of the expressed 

leachate at each pressure increment was independently measured using the Traceable® 

Bench Model 4163 EC meter. 

Substrates were removed from the columns after each EC run, and oven-dried at 

70°C for at least 96 hours, to estimate the water that remained in each substrate beyond 

the pressure applied end point to calculate ‘unavailable’ volumetric water content ws 

(previously described in Ch. 2 as progressively unavailable water, PUW).  By adding the 

expressed leachate and oven-dried volumes, it was therefore possible to calculate actual 

volumetric water content at each specific pressure increment (w) (Table 3.2).  

Experimental Analysis 

Identically designed runs were performed twice for each experiment. Each run 

was a completely randomized experiment with ten pressure treatments and five replicates 

(column) per pressure for each run.  Data were analyzed using SAS (SAS Institute Inc., 

Cary, NC, USA, 2002-2003), using the PROC MIXED model and the RANDOM 

statement, to ascertain whether there were interactions between runs at each pressure for  
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Table 3.1.  Picture of the two EC sensors types (ECH2O-TE and 5TE) illustrating their major physical design characteristics.  Note 

that the 5TE version is the only version that is currently commercially available from Decagon Devices, Inc. (Pullman, WA). 

 

 Sensor 

 ECH2O-TE 5TE 

Variable 

Sensing area (cm2) 2.162 0.062 

Sensing area  
made of 

gold 
stainless 

steel 
Sensing area  

toughness 
regular better 

Calibration 
two  

point 
five  
point 
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every variable measured (i.e. ’p, ’b, b, ).  No significant interactions were found 

between runs; consequently all data were pooled to add strength of representing evidence 

from independent replicates of the two runs made. 

Data Collection 

 The ECH2O-TE and 5TE (digital) sensors were excited at 12V; a single resistor of 

220 ohm was used between the datalogger and multiplexer to minimize noise from the 

output signal.  Both the ECH2O-TE and 5TE sensors utilize a 70 MHz oscillating 

frequency. 

 A data-stream of three numbers was stored and retrieved from a Campbell 

Scientific CR10X datalogger for each sensor, at 1-minute intervals.  Sensors were 

attached to the datalogger using a Campbell Scientific AM16/32 model multiplexer.  Fig. 

3.1 illustrates the raw data outputs in an Excel spreadsheet, with the conversions to 

known outputs.  The first output number is the raw dielectric output for the 5TE sensor, 

or raw counts for the ECH2O-TE. The equations used to transform this raw data to bulk 

dielectric permittivity (’b) differs for each sensor, as noted in Fig. 3.1.  For the 5TE 

sensor, ε’b is calculated by dividing the raw dielectric output by 50.  For the TE sensor, 

we applied the equation to the raw counts provided by the manufacturer (Decagon 

Devices, 2008). 

 The raw EC data (second column, labeled EC; Fig. 3.1) and raw temperature data 

(third column) were similar for each type of sensor, and the conversion procedures for 

bulk electrical conductivity (b) and dielectric permittivity of soil’s pore water (p) from 

the raw data are equivalent for both sensors, as shown in Fig. 3.1.  The raw electrical 
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conductivity data was divided by 100 to obtain b in dS m-1.  Temperature is converted 

from the raw data by subtracting four hundred and dividing by ten, to obtain degrees 

Celsius (°C). This measurement of temperature is utilized to obtain the dielectric 

permittivity of the pore water (p) by the sensor, i.e., 

  εp  = 80.3 – [0.37 * (Tsoil – 20)]     [Eq. 3.1] 

 

 

 
Figure 3.1. Raw data output values from the datalogger (in a MS Excel table), showing 

the values and the conversions to known outputs. 
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Models utilized 

Rhoades (1976, 1989) states the necessity for an offset value or estimation of 

surface electrical conductivity (s), in order to estimate pore water electrical conductivity  

Table 3.2. Rhoades (1989) model variables descriptions and the equivalent determination 

of the variable in this experiment. 

 

Variable 
Variable as explained by the 
model 

Variable as measured in this 
experiment 

p
Pore water electrical 
conductivity 

__ 

w Volumetric water content 
 w = [expressed leachate (mL) at every 
incremental pressure + oven-dried (mL)] / 
total column volume (mL) {1mL=1cm-3} 

s 
is equal to the ratio of substrate 
bulk density (b) and substrate 
particle density (s), 

s = b / s 

b = Dry mass (g) / Total column Volume 
(cm3) 
s = b / (1-Total porosity)  
Total porosity = Total water / Cylinder 
volume 

ws 
volumetric water content in the 
series-coupled pathway (small 
pores) or “immobile water” 

ws =oven-dried (mL);  As previously 
described, as progressively unavailable 
water (PUW) 

wc 
volumetric water content in the 
continuous liquid pathway  
(large pores ) or “mobile water” 

Expressed water after each pressure 
increment with the tension table 

ws 

Specific electrical conductivity 
of the soil water that are in 
series-coupled with the solid 
particles 

__ 

wc

Specific electrical conductivity 
of the soil water in the 
continuous conductance 
element 

__ 

s 
Substrate  specific surface 
electrical conductivity  

Normalization of b as (b / w, ) and 
plotted as (b , w) with resulting ‘y0’ 
intercepts as s 

b
Substrate  specific bulk 
electrical conductivity 

Measured directly by the sensor 
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(p). This offset is likely to be substrate-specific. The exact value of this offset for 

soilless substrates needs to be determined since all the research published to date has 

been done using inorganic soils, not soilless substrates.  This offset value (s) is 

calculated by plotting the bulk conductivity (b) vs. the solution electrical conductivity 

(w).  However, before that can be done, the b data must be normalized using 

volumetric water contents (). Symbol descriptions can be found in Table 3.2. 

By using the  data generated with the tension table and values of b and w 

measured at the various measured water contents, it is possible to plot b/w vs. as 

seen in the results section (Figs. 3.2a and 3.3a).  Utilizing the regression equations 

derived from (b/w , ) (Experimental results section; Tables 3.3 and 3.4), it is then 

possible to accurately estimate the ratio b/w at specific combinations of volumetric 

water content (i.e. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 cm3 cm-3) for every solution applied (i.e. 

0.22, 1, 2, 4, 6, 8 dS m-1) guided by the intersections of the vertical broken lines and 

regression curves (Figs. 3.2a and 3.3a). It is therefore possible to estimate b since we 

have known values of ‘ratio’ and fixed values of w, and we can solve for b in equation 

3.2, using equation 3.3. 

b/w = Ratio        [Eq. 3.2] 

b = Ratio * w        [Eq. 3.3] 

When this procedure is repeated for every  selected (every intersection of the 

broken lines with the solution applied regression lines in Figs. 3.2a and 3.3a) the process 
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yields a new (estimated) b, data essentially independent of volumetric water content. 

This is plotted again as (w , b), as seen in Figs. 3.2b and 3.3b. The offset value is the 

resulting average of the intersections from the regression lines on the y-axis at zero w 

(Tables 3.3 and 3.4). 

The model proposed by Rhoades et al (1989) was intended to assess soil salinity 

as bulk electrical conductivity (b) as seen in equation [3.4]. 

௕ ൌ   ൤
ሺೞା ೢೞሻమ ೢೞ ೞ
ೞሻ ೢೞାೢೞሻ ೞ

൨ ൅  ሺ௪ െ ௪௦ሻ ௪௖    [Eq. 3.4] 

 Equation [3.4] can be solved for p with the assumption that ws  wc. 

Although, ws might not be the same in composition as wc the diffusion processes will 

cause ws and wc to reach equilibrium at some point.  Note that inputs (irrigation, rain) 

and outputs (drainage, evapotranspiration) of water will disturb this equilibrium until 

equilibrium is once again reached (See Table 3.2).  

Equation [3.4] can be re-arranged as a quadratic equation, and solved for its 

positive root as: 

௣ߪ ൌ  
ି஻ା√஻మିସ஺஼

ଶ஺
       [Eq. 3.5] 

 

Where:  A = [(s) (w - ws)] 

  B = [(s + ws)
2 (s) + (w - ws) * (ws s) – (s b)] 

  C = -[ws s b] 
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Hilhorst (2000) also recognized the necessity of an offset value (’b=0) or 

permittivity for nearly dry substrates ( ≥ 0.10), due the fact that dry materials are still 

polarizable; therefore, ’b=0 ≠ 0 is used to estimate pore water electrical conductivity 

(p), by utilizing this model.  There are very few published references that measure this 

offset value for soilless substrates; there are only two references that we are aware of – 

Balendonck et al. (2005), who mention the determination of such a substrate offset value 

(equal to 6.2) and follow-up research by Incrocci et al. (2009) that utilized the same 

offset value determined by Balendonck et al., (2005). The results from Balendonck et al., 

(2005) were reached only after performing multiple mathematical iterations aimed at 

achieving a higher correlation coefficient. This offset value (’b=0) is calculated by 

plotting the real part of the permittivity (’b) vs. the bulk electrical conductivity (b), 

with the resulting y=0 as the offset, and with no further intermediate steps needed.  

Again, this is explained in more detail in the experimental results section (see below; Fig. 

3.4).  Hilhorst (2000) calculated several offset values ranging from 1.9 to 7.6 and 

suggested using an average value of 4.1 with, and only when   On the other 

hand, Decagon Devices Inc. indicates that according to their research with various 

agricultural soils, organic and inorganic growth substrates, ’b=0 = 6 yielded better 

estimations of pore water EC (Decagon Devices, 2008).  Note that ’b=0 is a unitless 

number since permittivity has no units. The Hilhorst (2000) model is therefore: 
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௣ߪ  ൌ  
ఌᇲ೛כ ఙ್

ఌᇲ್ି ఌᇲ഑್సబ
       [Eq. 3.6] 

Where: 

 ’p is the dielectric permittivity of substrate pore water (unitless),  

 b is the bulk electrical conductivity (dS m-1),  

 ’b is the real portion of the bulk dielectric permittivity (unitless), and  

 ’b=0 is an offset value for ’b. 

Three of these four variables are simultaneously read by both the ECH2O-TE or 5TE 

sensors, as shown in Fig. 3.1. 

Greenhouse Study 

 A greenhouse study was conducted to provide an empirical dataset, to apply each 

model and test the derived offset values from the laboratory determinations. Actual bulk 

EC, bulk permittivity, and pore water permittivity values were recorded by each sensor 

type (n=4) during a gradual water content dry-down within the root zone of an Impatiens 

‘New Guinea’ greenhouse crop. This 41-day greenhouse study was performed during fall 

2008 at the University of Maryland (College Park, MD) greenhouse complex. Thirty-two 

plants were transplanted into 15cm diameter x 10.5cm high containers, using the same 80 

peat: 20 perlite greenhouse substrate (Sunshine LC-1).  Plants were sub-irrigated daily 

with a solution made from Peters Professional 20-10-20 (Scotts Company, Columbus, 

OH) at 1.0 dS m-1 for the first three weeks of the study. There were two dry-down periods 

(to wilt) with no watering given between days 16-27 and days 32-40 (the two dry-down 

periods).  Plants were completely rehydrated between these two periods by daily sub-
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irrigations using 20-10-20 at 1.0 dS m-1, as before.  The plant material was organized in a 

single block with offset rows of 4 x 3 plants, with guard row plants surrounding the 

block.  Only inner plants had EC sensors embedded in the root zone, inserted half-way 

down the container, through the sidewall of the container (Fig. 3.5). Four replicate 

containers with one sensor (ECH2O-TE or 5TE) per container (n=8) were randomly 

assigned to different containers. Data were continuously logged at 1-minute intervals 

using two EM50 dataloggers (Decagon Devices Inc). 

 

Results and Discussion 

Rhoades Model 

Applying the Rhoades (1976, 1989) model, values of b/w at the various 

measured water contents were plotted for the ECH2O-TE (Fig. 3.2a) and the 5TE sensors 

(Fig. 3.3a).  A greater variation in b/w at higher volumetric water contents can be seen, 

especially with the 5TE sensor (Fig 3.3a), although the goodness of fit of the regression 

lines (r2) are equal or greater than 0.945 (P>0.0001) for both sensors (Tables 3.3 and 3.4). 

The procedure utilized to normalize the bulk electrical conductivity (b) that was 

described on page 62 (Fig. 3.2b; Fig. 3.3b), was initially described by Rhoades et al., 

(1976) and followed by Nadler (1982) and Amente et al., (2000), among others.  In this 

instance, offset values are equated to the particle surface electrical conductivity (s) the 

average of which was found to be -0.00205 and -0.00288 for the ECH2O-TE and 5TE 

sensors, respectively with standard error of the mean equal to 0.00531 and 0.00464 

respectively (Tables 3.3 and 3.4 ).  
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Figure 3.2 a, and b. Normalization of bulk electrical conductivity by volumetric water content (a) with the ECH2O-TE sensor. 

Bulk substrate electrical conductivity divided by leachate electrical conductivity, (b /w) vs. volumetric water content ( 

for 80 peat: 20 perlite mix substrate.  Error bars indicated as standard error about the mean (SEM). (b) Bulk substrate 

electrical conductivity after normalization (b) vs. leachate electrical conductivity (w) for various fixed volumetric water 

content ().  The average of intercepts with bulk substrate EC (b) axis becomes the offset value (s) according to Rhoades 

(1976) methodology. 
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Figure 3.3 a, and b. Normalization of bulk electrical conductivity by volumetric water content (a) with the 5TE sensor.  Bulk 

substrate electrical conductivity divided by leachate electrical conductivity (b /w) vs. volumetric water content ( for 80 

peat: 20 perlite mix substrate.  Error bars indicated as standard error about the mean (SEM). (b) Bulk substrate electrical 

conductivity after normalization (b) vs. leachate electrical conductivity (w) for various fixed volumetric water content 

().  The average of intercepts with bulk substrate EC (b) axis becomes the offset value (s) according to Rhoades (1976) 

methodology. 
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Table 3.3. Regression equations for the ECH2O-TE sensor depending on the different 

electrical conductivity solution utilized at each run (Fig. 3.2a) and regression 

equations for the actual bulk soilless electrical conductivity normalization (Fig. 

3.2b), following Rhoades (1976) methodology. 

 

 

ECH2O-TE Sensor 

Figure 3.2a 

Solution applied 

w (dS/m-1) 
Regression equation r2 

0.22 b/w=0.0486+(-0.3745*)+[1.0191*(2)] 0.99 

1 b/w =0.0907+(-0.4566*)+[1.0388*(2)] 0.98 

2 b/w =0.0563+(-0.3287*)+[0.7058*(2)] 0.98 

4 b/w =0.0146+(-0.1121*)+[0.5144*(2)] 0.98 

6 b/w =0.0266+(-0.1860*)+[0.7261*(2)] 0.99 

8 b/w =0.0728+(-0.3833*)+[0.8065*(2)] 0.97 

Figure 3.2b 

Volumetric water 

content 

Regression equation 

(ȳ 0 = offset value) 
r2 

0.3 b =(-0.0013)+(0.0306*w) 0.98 

0.4 b =( 0.0041)+(0.0528*w) 0.95 

0.5 b =( 0.0076)+(0.0903*w) 0.94 

0.6 b =( 0.0091)+(0.1430*w) 0.95 

0.7 b =( 0.0087)+(0.2108*w) 0.96 

0.8 b =(-0.0405)+(0.3010*w) 0.97 
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Table 3.4.  Regression equations for the 5TE sensor depending on the different EC 

solution utilized in each run (Fig. 3.3a) and regression equations for the actual bulk 

soilless electrical conductivity normalization (Fig. 3.3b), following Rhoades 

(1976) methodology. 

 

 

5TE Sensor 

Figure 3.3a 

Solution applied  

w (dS/m-1) 
Regression equation r2 

0.22 b/w =0.0489+(-0.433*)+[1.626*(2)] 0.99 

1 b/w =0.1436+(-0.637*)+[1.254*(2)] 0.97 

2 b/w =0.0532+(-0.324*)+[0.794*(2)] 0.99 

4 b/w =0.0775+(-0.421*)+[0.846*(2)] 0.95 

6 b/w =-0.0351+( 0.118*)+[0.570*(2)] 0.99 

8 b/w =0.0285+(-0.167*)+[0.675*(2)] 0.99 

Figure 3.3b 

Volumetric water  

content 

Regression equation 

(ȳ 0 = offset value) 
r2 

0.3 b =(-0.0025)+(0.0415*w)   0.90 

0.4 b =(-0.0152)+(0.0785*w) 0.86 

0.5 b =(-0.0184)+(0.1274*w) 0.87 

0.6 b =(-0.0123)+(0.1881*w) 0.90 

0.7 b =( 0.0031)+(0.2606*w) 0.92 

0.8 b =( 0.0280)+(0.3450*w) 0.94 
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 Substrate moisture contents ( are shown at the right of Figs. 3.2b and 3.3b.  

From these data, it can be seen that the relationship (b , w) changes as  changes, so it 

is important that the model can integrate this variable into the estimation of p. This has 

an important practical implication as noted by Scoggins and van Iersel (2006).  

Theyfound that with other EC sensors, an increased inaccuracy when water content 

measurements fell below a volumetric water content of approximately 35% (.   

However, we should note that this volumetric water content equates to a matric potential 

of -10kPa in this specific substrate (Figs. 3.6, 3.7 and 3.8), which is approximately the 

upper matric potential threshold for readily-available water in most soilless substrates.  It 

will be necessary to conduct more studies with different soilless substrates to further 

determine whether these offset values are applicable to other commercial soilless 

substrates for the real-time measurement of electrical conductivity (Lea-Cox et al., 2008). 

Hilhorst (2000) model 

Values of ’b at the various measured bulk electrical conductivities are shown for 

the ECH2O-TE (Fig. 3.4a) and the 5TE sensors (Fig. 3.4b).  A greater variation in b at 4 

dS m-1 can be seen, especially with the 5TE sensor; this may be related to the much 

smaller sensing area (= 0.062cm2) of the 5TE sensor screws compared to the surface area 

of the ECHO-TE sensor (= 2.162 cm2; see Table 3.1).  It could also be related to a 

deficient rinsing of the substrate during preparation of the 4 dS m-1 run.  There is an 

interesting difference between regression lines as shown in Fig. 3.4b where the lower 

electrical conductivities of the solution applied 0.22, 1, 2, and 4 dS m-1 (w) exhibit an 
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exponential regression line, in contrast to the linear regression exhibited at 6 and 8 dS m-

1. (Nadler, 1981; Nadler and Frenkel, 1980).  

 Furthermore, it should be noted that the differences in the intercepts (Table 3.5) 

are considerable, with a range of about 7 ’b units for the 5TE sensor.  In contrast, the 

ECH2O-TE sensor exhibits all linear regressions (Fig. 3.4a), with less variation about the 

mean with much closer intercepts (Table 3.5) and a difference in range of about 1.7 ’b 

units.  The average offset values for ’b=0 are 4.614 for the ECH2O-TE sensor, and 

3.959 for 5TE sensor with standard error of the mean equal to 0.288 and 1.230, 

respectively.  These two offsets values deviate slightly from each other, which could be 

explained in part by the differences between the sensors, with regard to the differences in 

sensing area and how the two sensors are calibrated (Table 3.1). 
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Figure 3.4 a, and b. Offset value determination as outlined by Hilhorst (2000) for (a) ECH2O-TE sensor and (b) 5TE sensor. Bulk 

soilless substrate electrical conductivity (b) vs. bulk soilless substrate dielectric permittivity (’b) for 80 peat: 20 perlite 

mix substrate.  Error bars indicated as standard error about the mean (SEM).  Intercepts ( ȳ 0 ) as ’b=0 or offset values. 

 
 
 
 

(a) (b) 
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Table 3.5. Regression equations for the ECH2O-TE (Fig. 3.4a) and 5TE (Fig. 3.4b) 

sensors, depending on the different electrical conductivity solution utilized in each 

run, following Hilhorst (2000) methodology. 

 

 

ECH2O-TE Sensor 

Figure 3.4a 

Solution applied 

w (dS/m-1) 

Regression equation 

(ȳ 0 = offset value) 
r2 

0.22 ’b=4.1166+[123.174*(b)] 0.99 

1 ’b =3.4916+[56.776*(b)] 0.98 

2 ’b =5.3048+[26.341*(b)] 0.99 

4 ’b =5.0764+[16.394*(b)] 0.99 

6 ’b =4.5459+[12.359*(b)] 0.99 

8 ’b =5.1507+[10.196*(b)] 0.99 

 

5TE Sensor 

Figure 3.4b 

Solution applied 

w (dS/m-1) 

Regression equation 

(ȳ 0 = offset value) 
r2 

0.22 ’b=0.114+[23.130*(b^0.362)] 0.99 

1 ’b=5.662+[23.716*(b^0.828)] 0.99 

2 ’b=0.865+[15.760*(b^0.303)] 0.99 

4 ’b=3.257+[13.013*(b^0.444)] 0.99 

6 ’b=6.775+[5.685*(b)] 0.99 

8 ’b=7.080+[5.789*(b)] 0.99 
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Greenhouse Study 

The estimated pore water electrical conductivities were plotted using the average 

raw data values recorded by each sensor (ECH20-TE and 5TE; n=4) over the dry down 

period experienced by the Impatiens plants.  The two models were applied to the raw 

data, applying the previously calculated offset values for each sensor type (Tables 3.3, 

3.4, and 3.5). An offset value of 6 was also plotted for comparison, since this is the offset 

value recommended by Decagon Devices.  Readers should note that the plotted lines in 

Figs. 3.6, 3.7, and 3.8 are data points taken every minute, which create a solid line. Time 

is shown on the x-axis as the date when data was recorded. Two y-axes are displayed 

with the left hand y-axis showing the estimated pore water EC (p) in dS • m-1 and the 

right y-axis showing the volumetric water content () in cm3 • cm-3.  Plots show two 

sequential dry-down events. The water depletion in the first period from 9/21/08 to 

9/25/08 was faster than during the second dry-down period (9/25/08 to 10/02/08).  This is 

explained by higher light and vapor pressure deficits during the first period (data not 

shown). 

 From Fig. 3.6, it can be seen how the Hilhorst model greatly overestimates p 

(using both offset values 4.614 and 6) from saturation (where volumetric water content = 

1.00; right hand axis).  This pore water electrical conductivity overestimation is even 

more evident with the 5TE sensor data (Fig. 3.7; offset = 3.959 and Fig. 3.8; offset = 6). 

The overestimation at saturation was as much as one unit during the first period and 

somewhat less during the second period. It can also be seen from Figure 3.6 how the 

Hilhorst model, with either offset value, rises faster than the Rhoades model as the 

substrate loses moisture. This is explained in part by the differences between the models 
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and how each model relies on different physical parameters to estimate p. The Hilhorst 

model relies heavily only on bulk permittivity, bulk electrical conductivity, and 

permittivity of nearly dry soil (offset, ’b=0).  

 On the other hand, the Rhoades model takes into account variables such as 

particle density, bulk density, mobile water, immobile water, surface electrical 

conductivity (offset, s), and finally bulk electrical conductivity (b), which both models 

share as a common factor.  

 

 

Figure 3.5. Greenhouse experimental setup with 32 ‘New Guinea’ impatiens planted in 

15cm diameter x 10.5cm high containers. Four repetitions of each sensor (ECH20-

TE and 5TE) were randomly assigned to different containers inside the 

experimental area with the remaining plants as guard rows 
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Figure 3.6. Pore water electrical conductivity estimation (p) using ECH2O-TE sensor with two different offset values (4.614 and 6) 

when fitting the Hilhorst (2000) model, and an offset value of -0.00205 when fitting Rhoades’ (1989) model. Measurements 

made in Sunshine LC-1 substrate (80 peat : 20 perlite) over 11 days period of drying down and rehydration. Blue line in center 

of black (SEM) area is actual volumetric water content (). Matric potentials (m) indicated with red arrows as kPa. Horizontal 

straight black line indicates the electrical conductivity of the solution applied (1 dS m-1). Light blue line in center of black 

(SEM) area is Rhoades’ p estimate; similarly, the grey and light green colored areas surrounding each Hilhorst model estimate 

is the standard error about the mean (SEM; n=4 for each line). 
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Figure 3.7. Pore water electrical conductivity estimation (p) using 5TE probe with offset value of 3.959 when fitting the Hilhorst 

(2000) model and an offset value of -0.00288 when fitting the Rhoades’ (1989) model. Measurements made in Sunshine LC-1 

substrate (80 peat : 20 perlite) over 11 days period of drying down and rehydration. Blue line in center of black (SEM) area is 

actual volumetric water content (). Matric potentials (m) indicated with red arrows as kPa. Horizontal straight red line 

indicates the electrical conductivity of the solution applied (1 dS m-1). Light blue line in center of black (SEM) area is Rhoades’ 

p estimate; similarly, the grey colored area surrounding the Hilhorst model estimate is the standard error about the mean 

(SEM; n=4 for each line). 
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Figure 3.8. Pore water electrical conductivity estimation (p) using 5TE probe with offset value of 6 when fitting the Hilhorst (2000) 

model and an offset value of -0.00288 when fitting the Rhoades’ (1989) model. Measurements made in Sunshine LC-1 

substrate (80 peat : 20 perlite) over 11 days period of drying down and rehydration. Blue line in center of black (SEM) area is 

actual volumetric water content (). Matric potentials (m) indicated with red arrows as kPa. Horizontal straight red line 

indicates the electrical conductivity of the solution applied (1 dS m-1). Light blue line in center of black (SEM) area is Rhoades’ 

p estimate; similarly, light green colored area surrounding the Hilhorst model estimate is the standard error about the mean 

(SEM; n=4 for each line). 
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  Examining the Rhoades’ model fitted to the ECH2O-TE data more closely (light 

blue line surrounded by the black area; Fig.3.6) we can see that this model better 

approximates the actual value of the w of the applied salt solution (1 dS • m-1) over the 

first 3-4 days of the drawdown period, where the m went from 0 to 4.25 kPa (from 0 

to 0.5  Both models rose very fast after a certain point, as approximated by the data.  

With the Rhoades model, when w approaches the value of ws, the estimated p rises; in 

the case of the Hilhorst model, when ’b approaches the value of ’b=0, the estimated 

p again rises rapidly.  

It is clear after comparing both Hilhorst predicted p values with the ECHO-TE 

sensor (Fig. 3.6), depending on the offset value used, the predicted p value does not rise 

as rapidly with the lower offset (4.614) as it does with the higher offset (6). This is 

explained by examining the model. Since the denominator is essentially the bulk 

permittivity minus the offset, the larger the offset the smaller the denominator (Eq. 5). 

This has the result of inflating the data beyond a certain point.  

This effect can also be explained by the decreasing change in substrate water 

content. As the substrate moisture decreases, the bulk permittivity also decreases, 

becoming smaller and closer to the offset value.  We therefore decided to filter the bulk 

permittivity data, and only use data which was larger than the sum of the calculated 

offset, plus the standard error about the mean (Cobos, D. 2009; pers. comm.).  With the 

ECHO-TE sensor (Fig. 3.6) the offset value of 4.614 determined by this experimentation 

seemed to yield an estimate that does not go out of scale as fast as the factory 

recommended value of 6.  Finally if we compare standard error values (colored areas 
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surrounding both model lines), we can see that the Rhoades model has much less 

variation, i.e., higher precision. 

For the 5-TE sensor data, we plotted the Hilhorst p data from the two offset 

values separately, since the data overlapped on the same scale (Fig. 3.7; offset = 3.959 

and Fig 3.8; offset = 6). In Fig. 3.7, the predicted p values remained relatively stable 

even after  values had decreased below 0.3.  However, we know that the volume of 

water was reduced by 70% due evapotranspiration, so it is reasonable to assume that the 

salts in solution were now more concentrated in the remaining pore water, which makes 

the predicted p values nonsensical. In contrast, using the 6 offset value (Fig. 3.8) caused 

an increase of p at low values of  as expected.  However, this increase was only 

noticeable after reaching  values equivalent or greater than -10.25 kPa, in contrast to the 

expected gradual increase in p as water is depleted.  When we compare both Hilhorst 

plots in Figures 3.7 and 3.8, it is evident that the predicted p stays very stable around 3.5 

dS m-1, overestimating the expected initial value of 1 dS • m-1  by over 2.5 times, at least 

initially.  

With the Rhoades data (Fig. 3.6), the predicted p values show much lower 

variation, in comparison the high variability of the Hilhorst data (represented by the grey 

and green colored areas surrounding the estimated p lines). Comparing the ECH2O-TE 

data (Fig. 3.6 to the 5-TE data (Figs. 3.7 and 3.8), we can see how this error is reduced, 

indicating better precision.  We hypothesize that this precision is by and large due to the 

larger sensing surface area of the ECH2O-TE sensor, compared to the much smaller 



 

82 
 

sensing surface area of the 5TE sensor, as previously discussed. Consequently, when the 

5TE sensor is used in more porous soilless substrates, the small screws might be in or 

close to an air-filled space in the substrate, which could increasing the variability of the 

data even more than in this dense, peat-based substrate.  Note also that this variation 

might also be offset, in part, by the better (5-point) calibration of the 5-TE sensor, in 

contrast to the two-point calibration of the ECH2O-TE sensor (Table 3.1).  

Both sensors are subject to the same limitation when bulk EC is close to or lower 

than 0.01 dS • m-1, due to the low accuracy at the low end of measurements (both sensors 

have bulk EC resolution equal to 0.01 dS • m-1 from 0 to 7 dS • m-1), thus negatively 

affecting an accurate estimation of p.  A low bulk EC in this range could be affected by 

low substrate water contents, and/or large substrate particles that would increase the 

tortuosity of the electrical path. i.e., the conductivity of electricity is reduced by the 

increasing path-length. 

In summary, it appears from these results that the Rhoades model provides a 

much better estimation of pore water EC (p) with both sensor types.   The Hilhorst 

model did not provide a good estimate of p with either sensor.  We believe that the 

larges surface area of the ECH2O-TE contributes to better precision, although we 

speculate that the 5-point calibration of the 5-TE sensor may have contributed to the 

precision of those results in this study.  It will be necessary to conduct further studies for 

different soilless substrates to determine whether these models and offset values are 

applicable to other soilless substrates, for the real-time measurement of non-aqueous EC 

using wireless sensor networks (Lea-Cox et al., 2008).  It is evident from this study that 
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an ideal sensor should combine positive attributes from both tested sensors, which should 

increase the accuracy and precision of the sensor. 

 

Chapter 4: Summary and Final Remarks 

Volumetric Water content /Water matric potential 

Although determining desorption (moisture release) curves was originally a soil-

based technique, it is also a useful technique to determine the availability of water in 

soilless substrates.  This is because desorption curves provide us with fundamental 

information about the water-holding characteristics of different substrates.  In these 

studies, we have also established the relationship between substrate volumetric water 

content ( and substrate water potential (m). Illustrating the relationship between these 

two variables gives us insight into plant-available water using an easily related 

physiological measurement (i.e., m), than just a purely physical measurement (i.e., of 

substrate water content.  Furthermore, by utilizing m, we can normalize substrate-

specific water availability that cannot be achieved by substrate water content, since this 

availability is due to inherent substrate properties. This has been well illustrated by the 

calibration results that we have shown for the five substrates that we test.  The 

availability of water at say is not the same for 100% pine bark as it is for peat-

based substrates. However, a m = 5 kPa directly relates the amount of water at that 

tension, between substrates. In addition, we have shown how these two measurements are 

clearly different in various substrates, since the majority of water in many substrates is 

beyond what is accepted by many researchers as “easily-available water.” In doing so, we 
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have calibrated two types of capacitance sensors in the range of substrates with differing 

physical properties, and have clearly illustrated how these sensors operate in significantly 

different ranges than in most soils.  

 The results from Chapter 2 also demonstrate the differences in water holding 

capacity (WHC) among substrates and container height. In this particular study, substrate 

mixes containing some amount of peat moss showed the highest WHC, although, with 

very low levels of air filled porosity (AFP).  On the other hand, substrates with low WHC 

typically had a good AFP. These characteristics can’t be assumed as being negative. 

Different horticultural applications may call for substrates having completely opposite 

characteristics of WHC and AFP. For example, orchid production requires substrates 

with higher AFP’s, whereas most plug and cutting production requires a substrate mix 

with high WHC to keep the young roots from desiccating. 

 We have demonstrated that WHC does not necessarily reflect an exact measure of 

water availability in these diverse substrates, and clearly illustrated the differences 

between water distribution (EAW, WBC and PUW).  These fractions delineate plant-

available water into significant subdivisions, depending on how tightly that water is 

bound to the substrate matrix, expressed as matric potential (m). We found that much of 

the water can be tightly bound to the substrate as in the case of 100% perlite. This 

substrate has a low container capacity, but also the highest percentage PUW in containers 

of 20-cm height. In practice, if we don’t have tools to accurately measure plant-available 

water, then we cannot hope to achieve more precise irrigation scheduling.  The 

consequence of this is that growers can easily over- or under-irrigate crops when merely 

estimating the water content of a container by more subjective methods.  Our studies 



 

85 
 

have calibrated the response of these sensors to these very small changes in available 

water for five specific substrates. From our results, we are confident that capacitance 

sensors provide accurate and precise data that can be utilized to schedule irrigations at 

these very low tensions (i.e. EAW = 0 to -5 kPa), where water is most freely available to 

the plant. 

 It is important to note that with the methodology applied in this experiment, we 

were able to determine water content differently from the standard computational 

method.  The conventional method for estimating water quantity is to use volumetric 

water content (; VWC), which is done by dividing the volume of water present in the 

sample by the total volume of the container holding the sample. This standard procedure 

yields a volumetric unit of measurement (i.e. cm3 • cm-3 or m3 • m-3). In contrast, since 

we measured the container capacity (CC) of each substrate, we calculated VWC using 

this variable. We directly compared the differences between these two measurements in 

one substrate, and considered the implications of using CC values to normalize the data 

as an alternative to total container volume (App. Figs. B9a and B10a).  With substrates 

with high WHC (e.g. 80% peat : 20% perlite; App. B9), the calibration constants changed 

slightly , but not significantly.  In contrast, substrates with very low WHC (such as 100% 

perlite; App. Fig. B10), the calibration constants were significantly different, resulting in 

better precision of the fitted data (r2 = 0.29 vs. 0.38).  We feel this issue needs further 

scrutiny and analysis, since this could well explain some off the known anomalies in 

VWC with substrates such as perlite. 

 Soil moisture sensors are not a recent invention, but few perform well enough to 

give accurate real-time estimates of plant-available water and electrical conductivity. The 
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nursery and greenhouse industry utilize many different substrates to grow plants, and 

component materials are chosen based on particular chemical and physical parameters. 

One of those physical parameters that has previously limited the effectiveness of soil 

moisture sensors such as tensiometers is substrate particle size and pore size. Since 

excessive water can be retained when utilizing small particle-size substrates, the addition 

of components with larger particle sizes create larger–sized macropores; consequently 

these substrates are well drained and better adapted for use in container production.  

Substrate porosity is the main reason why most soil moisture sensors have failed when 

used in soilless substrates.   

 We have demonstrated that Decagon capacitance high frequency root-zone 

sensors have good precision in a range of soilless substrates, which will enable us to 

make significant progress in accurately scheduling irrigation events, in comparison to the 

more subjective methods that are typically used by most growers.  Precision irrigation 

scheduling is the most effective way to reduce excessive irrigation applications, and 

nutrient leaching and runoff. Scheduling precise irrigation applications may sound very 

simple, but due to the lack of a reliable measure of plant-available water, that simple goal 

has not been possible in container production, until now. 

 Our work has also confirmed some of the limitations of these capacitance sensors. 

The interaction of substrate sampling volume, sensor length and sensor operational 

frequency has an interesting effect on performance. The larger sensor EC-20 (20 cm) 

tested gave good performance in laboratory measurements of volumetric water content 

despite its small sampling volume on either side of the blade, due to its low frequency.  

This small lateral sampling volume was compensated by a much larger integrated area 
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along the sensor blade, which increased the precision of substrate water measurements. 

However, since it has a low operational frequency (6 MHz), the sensor readings are 

known to be less reliable even in low salinity (> 1 dS • m-1).  This makes the EC-20 less 

suitable for most container-production situations, since slow-release fertilizers are often 

used.  This is why we are now testing the new Decagon 10-HS sensor, which operates at 

a higher frequency.   The short EC-5 (5cm) sensors we tested also have a higher 

operational frequency (70MHz), which makes them less sensitive to increasing EC, 

apparently up to 8 • dS m-1. This makes it better suited to container-production 

environments, with the added advantage that they can be used in relatively small 

containers (e.g. in greenhouse production), where larger sensors may not fit. 

 One subject that needs to be addressed by further experimentation is sensor 

placement. It is highly likely that sensor placement could greatly increase sensor data 

repeatability and accuracy under field conditions. There are many variables to consider, 

including sensor placement inside the container (i.e. sensing the top, middle or bottom 

sections of the container) for best repeatability over time.  A related issue at a larger 

scale, is sensor placement within a production block or in very large containers (e.g. 

directly under an overhead sprinkler, spray emitter, or dripper or where known dry-edge 

effects occur). Thus, laboratory sensor calibration is an essential step towards fine tuning 

a sensor, but placement of that sensor will depend on individual characteristics of 

production systems, which need to be better defined.  

Another possible interaction which could bias sensor readings is the proximity of 

the sensor to roots and the root density in the container. Capacitance sensors likely sense 

the water contained within roots, as well as external to roots. The water of interest is the 
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available water outside the root, so the presence or absence of roots may have a 

significant effect over time on how sensor readings accurately measure available water in 

the substrate. Since the sensor does not discriminate between water inside or outside the 

root, which could lead to crops being under-irrigated. We also know that substrate bulk 

density is also a factor, which interacts with water determinations (data not shown). 

Briefly, this interaction can be described as a shift of the data to the right or left had on 

the x-axis of (mV , ) calibration plots (Figs. 2.3b, 2.4b; App. Figs. B1b to B8b).  In 

summary, the shape or distribution of the curve is not changed, but merely moves to 

either the right (sample with higher bulk density) or left (sample with lower bulk 

density). This has a practical effect on sensor calibrations. During calibration, 

homogeneously packed substrates between columns would increase the repeatability of 

water content determination, as we showed.  Thus, the more similar the substrate bulk 

density is between laboratory calibration conditions and those within the containers in the 

nursery, the more accurate the calibrations, and vice versa. So, further experimentation 

should perform a sensitivity analysis of the calibration equations under varying bulk 

density conditions. To better understand all these interactions, further research should 

focus on analyzing placement inside a container, which can be combined with modeling 

the water movement through the container depending on irrigation method, substrate 

porosity and bulk density, container size and/or shape and increasing plant root density, 

over time. 
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Pore water electrical conductivity  

 After irrigation, fertilization is the major cultural practice that maximizes plant 

growth rates. Irrigation water and nutrients are supplied by several methods by nursery 

and greenhouse operations.  Providing enough water to plants without leaching nutrients 

is a challenge.  Accurately measuring nutrient availability is time-consuming and high 

cost operation for many growers. One of the first recommended “best management 

practice” (BMP) techniques was the Virginia Tech pour-through technique (Wright, 1983 

and 1986). This technique provides a measure of total salt concentration in the substrate 

pore water solution, by measuring EC. This is done by saturating the substrate (i.e. by 

irrigation) and then collecting a leachate sample after the contained nutrient salts 

equilibrate for an hour or two. In practice, this technique is time consuming and very 

laborious which is why it is no often practiced by growers. Also, not all the elements 

equilibrate uniformly with the pore water.  This means that the EC inside the substrate 

could be different from what is leached. For this reason it would be more preferable to 

estimate pore water EC using an in situ measurement (p), rather than using a leachate 

fraction EC (w).   

 Our interest is in using non aqueous (substrate) EC sensors, since these tools offer 

a more versatile and very efficient way to measure EC concentrations in the root-zone. 

We calibrated two different sensors ECH2O-TE (no longer in commercial production) 

and the 5TE, again using the desorption table, and saturating the substrate with increasing 

EC solutions between test runs. This process was used to obtain the data needed for two 
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different models to predict pore water electrical conductivity (p). It is important to keep 

in mind that both models were originally developed for use in soils. 

 We found that the Rhoades’ model (1989) provided a more accurate measure of 

EC over a large range of substrate moisture availability when fitted to an empirical 

greenhouse dataset, in contrast to the Hilhorst model, which effectively gave inaccurate 

results with both sensors.  We showed that the Rhoades model estimated p very well. 

The offset used with this model was determined by this experimentation, with good 

results. The Rhoades model takes into account a wider range of variables that influence 

p.  It should be said that from the six parameters (b, s, w, ws, s, b) needed to apply 

the Rhoades’ model, two are measured (b) or estimated (w) through calibration, making 

them readily available. Another two (b, s) are easily determined in the field or in the 

laboratory, and the last two (ws, s) can be determined by estimations described and 

summarized by Rhoades et al. (1999). Most importantly, all of this information could be 

easily integrated into the sensor firmware and/or the data management software, similar 

to what Decagon Devices currently allows, with specific calibration inputs in their 

DataTrac software.  Specific offsets could be inputted by the user, and the software 

output would automatically integrate the two variables read by the EC sensor, to give the 

estimated pore water EC as an output, based on the set parameters. 

 We observed a large variation in the Hilhorst model data with both sensors, 

(expressed by the standard error about the mean; Figs. 3.7 and 3.8). The ECH2O-TE 

sensor response showed that the predicted pore water EC was initially close to the EC of 

the supplied solution, but then rose very quickly after a specific point.  In contrast, the 
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response of the 5TE sensor showed a more stable predicted pore water EC value using 

the Hilhorst model, paralleling the EC of the supplied solution until the bulk permittivity 

was much reduced. At this point, the predicted pore water EC rose quickly, as bulk 

permittivity decreased due to low water content.  The positive aspect of the Hilhorst 

model is that it does not require many variables.  The only substrate-specific variable is 

the offset value; the other inputs are all measured by the sensor. For this reason, the 

Hilhorst model is more easily applied, in practice. 

 Our work on calibrating the substrate EC root-zone sensors illustrates good 

progress towards providing a solution to the dilemma of trying to monitor real-time EC in 

non-aqueous environments. However, further work needs to be done, both on improving 

the performance of the sensor, and perhaps by applying the Rhoades model.   Once a 

sensor is available that can reliably measure EC within a wider range of substrate 

moisture contents, our ability to measure this important production metric will enable the 

industry to better understand daily and seasonal nutrient dynamics. Multiple sensors can 

cover a large area when combined with datalogger and wireless communication devices, 

which would greatly enhance our daily nutrient management decisions. This capability 

will enhance production efficiency, by increasing the efficiency of irrigation and fertilizer 

applications, which in turn would increase profitability, by reducing our use of resources 

and the impact of nursery and greenhouse on the environment. 
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Appendices 
 

Appendix A. 1 

 
CR10X Campbell Scientific Datalogger Program used with the EC-5 sensor 

 

* This is an example of program used for the calibration EC-5 sensor. It is not intended to 

be an absolute guide. Note the excitation voltage was adjusted to 3 volts with multiplier 

equal to one, and an offset adjusted to zero in order to obtain raw output values. 

 
};CR10X 
;EC-5_Program.DLD 
;Created by Short Cut (2.6) 
;$ 
;:BattV    :ProgSig  :VW_1     
:VW_2     :VW_3      
;:VW_4     :VW_5     :VW_6     
:VW_7     :VW_8      
;:VW_9     :VW_10     
;$ 
 
;% 
;Final Storage Label File 
for:  EC-5_Program.SCW 
;Date:  10/7/2009 
;Time:  21:10:46 
; 
;101 Output_Table   1.00 Min 
;1 101 L 
;2 Year_RTM  L 
;3 Day_RTM  L 
;4 Hour_Minute_RTM  L 
;5 BattV_AVG  L 
; 
;102 Output_Table 1440.00 Min 
;1 102 L 
;2 Year_RTM  L 
;3 Day_RTM  L 
;4 Hour_Minute_RTM  L 
;5 BattV_MIN  L 
;6 ProgSig  L 
; 
;Estimated final storage 
locations used per day:    
7206 
;% 
 

MODE 1 
SCAN RATE 10.0000 
 
1:P10 
1:1 
 
2:P92 
1:0 
2:1440 
3:30 
 
3:P19 
1:2 
 
4:P95 
 
5:P86 
1:42 
 
6:P22 
1:1 
2:0 
3:15 
4:0 
 
7:P87 
1:0 
2:3 
 
8:P90 
1:3 
 
9:P86 
1:71 
 
10:P22 
1:1 
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2:0 
3:1 
4:0 
 
11:P4 
1:3 
2:5 
3:1 
4:1 
5:1 
6:3000 
7:3-- 
8:1 
9:0 
 
12:P95 
 
13:P86 
1:71 
 
14:P22 
1:1 
2:0 
3:1 
4:0 
 
15:P4 
1:1 
2:5 
3:1 
4:1 
5:1 
6:3000 
7:12 
8:1 
9:0 
 
16:P86 
1:52 
 
17:P22 
1:1 
2:0 
3:15 
4:0 
 
18:P92 
1:0 
2:1 
3:10 

 
19:P80 
1:1 
2:101 
 
20:P77 
1:1220 
 
21:P71 
1:1 
2:1 
 
22:P92 
1:0 
2:1440 
3:10 
 
23:P80 
1:1 
2:102 
 
24:P77 
1:1220 
 
25:P74 
1:1 
2:0 
3:1 
 
26:P70 
1:1 
2:2 
 
MODE 2 
SCAN RATE 10.0000 
1:P96 
1:71 
 
 
MODE 3 
 
MODE 10 
1:28 
2:107 
3:0 
 
MODE 12 
1:0000 
2:0000 
3:0000
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Appendix A. 2 

 
CR10X Campbell Scientific Datalogger Program used with the EC-20 sensor 

 

* This is an example of program used for the calibration EC-20 sensor. It is not intended 

to be an absolute guide. Note the excitation voltage was adjusted to 3 volts with 

multiplier equal to one, and an offset adjusted to zero in order to obtain raw output 

values. 

 
};CR10X 
;EC-20_Program.DLD 
;Created by Short Cut (2.6) 
;$ 
;:BattV    :ProgSig  :VW_1     
:VW_2     :VW_3      
;:VW_4     :VW_5     :VW_6     
:VW_7     :VW_8      
;:VW_9     :VW_10     
;$ 
 
;% 
;Final Storage Label File 
for:  EC-20_Program.SCW 
;Date:  10/7/2009 
;Time:  21:26:13 
; 
;101 Output_Table   1.00 Min 
;1 101 L 
;2 Year_RTM  L 
;3 Day_RTM  L 
;4 Hour_Minute_RTM  L 
;5 BattV_AVG  L 
; 
;102 Output_Table 1440.00 Min 
;1 102 L 
;2 Year_RTM  L 
;3 Day_RTM  L 
;4 Hour_Minute_RTM  L 
;5 BattV_MIN  L 
;6 ProgSig  L 
; 
;Estimated final storage 
locations used per day:    
7206 
;% 
 
MODE 1 
SCAN RATE 10.0000 
 
1:P10 
1:1 

 
2:P92 
1:0 
2:1440 
3:30 
 
3:P19 
1:2 
 
4:P95 
 
5:P86 
1:42 
 
6:P22 
1:1 
2:0 
3:15 
4:0 
 
7:P87 
1:0 
2:3 
 
8:P90 
1:3 
 
9:P86 
1:71 
 
10:P22 
1:1 
2:0 
3:1 
4:0 
 
11:P4 
1:3 
2:5 
3:1 
4:1 
5:1 
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6:3000 
7:3-- 
8:1 
9:0 
 
12:P95 
 
13:P86 
1:71 
 
14:P22 
1:1 
2:0 
3:1 
4:0 
 
15:P4 
1:1 
2:5 
3:1 
4:1 
5:1 
6:3000 
7:12 
8:1 
9:0 
 
16:P86 
1:52 
 
17:P22 
1:1 
2:0 
3:15 
4:0 
 
18:P92 
1:0 
2:1 
3:10 
 
19:P80 
1:1 
2:101 
 

20:P77 
1:1220 
 
21:P71 
1:1 
2:1 
 
22:P92 
1:0 
2:1440 
3:10 
 
23:P80 
1:1 
2:102 
 
24:P77 
1:1220 
 
25:P74 
1:1 
2:0 
3:1 
 
26:P70 
1:1 
2:2 
 
MODE 2 
SCAN RATE 10.0000 
1:P96 
1:71 
 
 
MODE 3 
 
MODE 10 
1:28 
2:107 
3:0 
 
MODE 12 
1:0000 
2:0000 
3:0000 
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Appendix A. 3 

 
CR10X Campbell Scientific Datalogger Program used with the ECH2O-TE and 5TE 

sensors 

 

* This is an example of program used for the calibration ECH2O-TE and 5TE sensors. It 

is not intended to be an absolute guide. Note the excitation voltage was adjusted to 12 

volts with multiplier equal to one, and an offset adjusted to zero in order to obtain raw 

output values. 

 
};CR10X 
MODE 1 
SCAN RATE 20 
1:P10 
1:1 
 
2:P92 
1:0 
2:1440 
3:30 
 
3:P19 
1:2 
 
4:P95 
 
5:P86 
1:41 
 
6:P87 
1:0 
2:10 
 
7:P86 
1:72 
 
8:P90 
1:3 
 
9:P86 
1:43 
 
10:P15 
1:1 
2:0 
3:0 
4:40 
5:3 
6:0 
7:13 

8:50 
9:50 
10:3-- 
11:1 
12:0 
 
11:P86 
1:53 
 
12:P95 
 
13:P86 
1:51 
 
14:P92 
1:0 
2:1 
3:10 
 
15:P80 
1:1 
2:101 
 
16:P77 
1:1220 
 
17:P71 
1:1 
2:1 
 
18:P70 
1:32 
2:3 
 
19:P86 
1:20 
 
20:P92 
1:0 
2:1440 
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3:10 
 
21:P80 
1:1 
2:102 
 
22:P77 
1:1220 
 
23:P74 
1:1 
2:0 
3:1 
 
24:P86 
1:20 
 
25:P0 
 
MODE 2 
SCAN RATE 10 
1:P96 
1:71 
 
2:P0 
 
MODE 3 
1:P0 
 
MODE 10 
1:32 
2:64 
3:0 
4:62272 

5:2048 
 
MODE 12 
1:0 
1:0 
1:0 
 
MODE 13 
13:8 
8:0 
 
MODE 13 
13:9 
9:0 
 
MODE 13 
13:10 
10:0 
 
MODE 13 
13:13 
13:0 
 
MODE 11 
1:59082 
2:9893 
3:256 
4:0 
5:0 
6:9801 
7:21 
8:3.0726 
9:99 
10:0 

11:0 
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Appendix B 

 

 

Appendix Fig. B1 a, b. Standard (a) moisture release curve for 5 cm height columns testing 100% pine bark with pressure applied in 

kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume desorbed 

from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. 

Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count 

(n). EC-5 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and VWC on the 

ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 

 (a) (b) 
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Appendix Fig. B2 a, b. Standard (a) moisture release curve for 5 cm height columns testing 100% coconut fiber (Coir) with pressure 

applied in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume 

desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. 

Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count 

(n). EC-5 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and VWC on the 

ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 

 (a) (b) 



 

100 
 

 
 

 

Appendix Fig. B3 a, b. Standard (a) moisture release curve for 5 cm height columns testing 80 pine bark : 20 peat moss mix, with 

pressure applied in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual 

water volume desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend 

for both axes. Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and 

data point count (n). EC-5 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and 

VWC on the ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 

 (a) (b) 
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Appendix Fig. B4 a, b. Standard (a) moisture release curve for 20 cm height columns testing 100% pine bark, with pressure applied 

in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume 

desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. 

Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count 

(n). EC-20 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and VWC on the 

ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 

 (a) (b) 
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Appendix Fig. B5 a, b. Standard (a) moisture release curve for 20 cm height columns testing 100% coconut fiber (coir) with 

pressure applied in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual 

water volume desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend 

for both axes. Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and 

data point count (n). EC-20 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and 

VWC on the ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 

 (a) (b) 



 

103 
 

 
 

 

Appendix Fig. B6 a, b. Standard (a) moisture release curve for 20 cm height columns testing 80 pine bark : 20 peat moss mix, with 

pressure applied in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual 

water volume desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend 

for both axes. Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and 

data point count (n). EC-20 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and 

VWC on the ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 
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Appendix Fig. B7 a, b. Standard (a) moisture release curve for 20 cm height columns testing 80 peat moss : 20 perlite mix, with 

pressure applied in kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual 

water volume desorbed from the columns throughout the desorption run. Both regression lines are plotted to follow the trend 

for both axes. Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and 

data point count (n). EC-20 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and 

VWC on the ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 

 (a) (b) 



 

105 
 

 
 

 

Appendix Fig. B8 a, b. Standard (a) moisture release curve for 20 cm height columns testing 100% perlite, with pressure applied in 

kilopascals, left had ‘y’ axis as volumetric water content --  -- (VWC), right hand ‘y’ axis as actual water volume desorbed 

from the columns throughout the desorption run. Both regression lines are plotted to follow the trend for both axes. 

Correlation coefficient (r2) is shown for VWC regression equation depending on matric potential (m) and data point count 

(n). EC-20 probe volumetric water content calibration (b) with probe output as millivolt on the abscissa and VWC on the 

ordinate. Correlation coefficient (r2) is shown for VWC probe calibration equation and data point count (n). 

 
 
 

 (a) (b) 
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Appendix Fig.  B9 a, b. Comparison of calibration constants for 80% peat : 20% perlite substrate when (a) calculated  on a container 

capacity basis (517 mL) vs. (b) calculated on a total column volume basis (684.1 mL).  

 
 
 
 
 
 

 (a) (b) 
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Appendix Fig.  B10 a, b. Comparison of calibration constants for 100% perlite when (a) calculated on a container capacity basis (349 

mL) vs. (b) calculated  on a total column volume basis (684.1 mL).  

 
 
 

 (a) (b) 
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Appendix C. 1 

 
Representative chemical analyses of Milos (Provatas and Trachilas), Kimolos and Kos 
perlites, %  (After Koukouzas et al., 2000) 
 

 
 

Appendix C. 2 

 

 
SEM images of plain perlite b1 and b2.  (After Hosseini et al., 2007) 
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Glossary 
 

BD: bulk density is the mass in grams of a dried cubic centimeter of substrate. (g • cm3) 

CC: container capacity describes the amount of water retained by the substrate against the 

gravitational forces after an irrigation event and after drainage. (% or mL) 

TP: Total porosity is the volume of pore space filled either by water or air. (%) Also 

known as total pore space (TPS) 

AFP: air filled-porosity is the percentage of pores filled with air after irrigation and 

drainage. 

EAW: easily-available water is the amount of water released by the substrate with a 

matric potential (pressure/suction) from 0 to -5 kPa. (%) 

WBC: water-buffering capacity is the amount of water released by the substrate with a 

matric potential from -5 to -10 kPa. (%) 

PUW: progressively-unavailable water is the amount of water released by the substrate 

after 10 kPa. (%) 

WUE: water use efficiency is the ability of plants to gain carbon (as total biomass or 

harvestable yield) per unit of water transpired. (mol • mol) 
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