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The standard QFN package consists of a leadless perimeter array and a bottom solderable 

thermal paddle. The thermal performance of the package can be improved by moving the 

paddle to the topside. The soldered surface area of the package reduces by about 80% 

with a top-side paddle. The soldered-joint life will also reduce due to the significant 

thermal coefficient of expansion mismatch between the QFN package and the circuit 

board.  

The solder-joint reliability of a large QFN package with top-side paddle is not well 

understood. This thesis evaluates the solder-joint reliability of a 10mm square leadless 



 

 

QFN package with top-side paddle. The analysis includes several classical models for a 

leadless package and compares modeling results to accelerated reliability testing. The 

accelerated tests include the influence mold compound and lead finish play on solder-

joint life and ways to improve solder-joint reliability.  
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Preface 

The Quad Flat No lead (QFN) package with bottom-side paddle has been used in the 

commercial industry for years. The standard package consists of a perimeter array of 

leadless pads on the bottom-side around the package. For mechanical reliability and 

improved thermal performance there is a large solderable bottom center thermal pad, 

called a paddle that is soldered to the circuit board. The paddle is thermally bonded to the 

die, which provides a low thermal resistance path for heat removal. The primary source 

for heat removal is through the circuit board. The center paddle accounts for about 80% 

of the package soldered surface area. Moving the paddle to the top-side of the package 

improves thermal performance and reduces the soldered surface area that is used for 

mechanical attachment reliability. The QFN is a flat leadless package which provides 

little compliance for mechanical stress. The QFN package has a low coefficient of 

thermal expansion (CTE) and is often soldered to a circuit board substrate with a 

significantly higher CTE. The CTE mismatch between the package and circuit board is 

often greater than two to one. Because the QFN with top-side paddle package is new, 

there is little to no information regarding the mechanical solder-joint reliability due to 

CTE mismatch.   

 

The purpose of this thesis is to evaluate the solder-joint reliability of a 10mm leadless 

QFN package with top-side paddle. The analysis will include modeling using classical 

models for a leadless package and accelerated life testing. In addition, guidance is 
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provided on the potential solder-joint reliability improvement by changing either package 

design or circuit board assembly. The QFN package under study consists of 68 leads 

around the perimeter of the device at a 0.5mm lead pitch. Four physical factors are 

analyzed to improve package reliability. The four factors are: mold compound, lead 

finish, adding solder bumps to the leadless pads, and solder mask removal underneath 

component. The research indicates the relative importance of each factor to package 

reliability. 
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Chapter 1: Introduction 

The semiconductor industry’s drive for component miniaturization results in new 

package innovation that can significantly impact package reliability and requires 

modeling and testing before implementation. Such is the case for the Quad Flat No-lead 

(QFN) package with a bottom-side thermal paddle. In recent years, this package has 

gained wide acceptance in the electronic industry. The QFN package gained wide 

acceptance and is being used in mobile communication, automotive, consumer products 

and personal computers. Amkor has shipped over one billion of these packages for 

electronic products1. The QFN package has become very popular due to its small size and 

package thinness. The QFN package has been classified as the fastest growing package in 

the semiconductor industry2.  

 

The QFN package is offered by several package manufacturers in different package 

versions and under different names.  Amkor developed a MicroLeadFrame™ (MLF), 

United Test and Assembly (UTAC) offers a High Power Quad Flat No lead (HQFN) 

package, there is a Very Thin Quad Flat No lead (VQFN) and a Smart Metal Chip Scale 

Package (SMCSP) package.  The advantage offered by all these packages is an 

improvement in performance for high speed performance and high thermal applications.  
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Heat generated inside the QFN package is dissipated through the bottom thermal paddle. 

The primary source of heat transfer is from the bottom-side paddle which is thermally 

bonded to the circuit die. The bottom-side paddle is soldered to the printed circuit board 

which provides the path for heat removal. The heat generated from the QFN package is 

dissipated through the circuit board and limited by the amount of heat that can be safely 

removed through the circuit board. To remove more heat from the QFN package, a 

different method for heat removal is needed.  

 

To improve the thermal performance of the QFN package, the bottom-side paddle can be 

moved to the top-side of the device. With this package configuration, the topside paddle 

can be directly cooled through a heat sink, cold plate or similar higher efficiency thermal 

transfer mechanism. The top-side paddle is still thermally bonded to the circuit die, but 

the die has been flipped around. Flipping the circuit die around will result in pin location 

incompatibility with the old configuration.  

 

The top-side thermal paddle can improve electrical performance because the thermal 

resistance is lowered resulting in a lower die junction temperature. The lower junction 

temperature allows the device to provide an increase in power output and can improve 

reliability. The QFN package with bottom-side paddle has been studied for package 

reliability and is well understood. The QFN package with top-side paddle is relatively 

new; there is little package reliability data available. The majority of the reliability 

research on QFN packages with topside paddle has been for small devices, 5 mm or less. 
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There is a concern that moving the paddle to the top-side will increase the strain at the 

solder connection due to a change in temperature.  The strain increases at the solder-joint 

due to two primary factors. First, there is a reduction in soldered surface area that results 

from moving the paddle to the top side. The second factor is the effect the thermal paddle 

plays in increasing the effective CTE of the package.   

 

1.1 Project Background 

My interest in QFN packages started when thermal modeling for a new ASIC design 

showed the die running close to its upper operational temperature limit for a 10 year 

useful life. Package thermal modeling showed that moving the thermal paddle from the 

bottom to the top-side and cooling the device with a liquid coldplate reduced the junction 

temperature by over 10 degrees C. Finite-element analysis for the new package design 

showed that stress to the corner solder joints would increase due to CTE mismatch but 

solder-joint attachment would not be an issue over the 10-year useful life of the product. 

Unfortunately, no testing was planned to validate the assumptions made in the finite 

element model for solder-joint reliability. The QFN with top-side paddle was then 

designed into the new instrument for the automated test industry (ATE). During 

production validation testing, a Highly Accelerated Stress Screen (HASS) was defined 

based on the hard and soft failure limits under environmental stress. The purpose of the 

HASS screen is to identify manufacturing and component defects plus reliability design 

escapes before the product ramps to volume production. The upper and lower 
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environmental stress limits were determined during Highly Accelerated Stress Test 

(HALT). The environmental stresses that are imposed in HALT and HASS are composed 

of temperature, vibration and a combination of temperature and vibration while the 

product is under normal operation. Both the HALT and HASS test are performed while 

the instrument is actively running with diagnostics software that monitors for proper 

operation.  

 

Before the HASS profile can be released to production, a Proof of Screen (POS) is 

performed to verify the usefulness of the HASS profile. The POS applies a repetitive 

HASS profile composed of temperature cycling, random vibration and combinational 

temperature and vibration stress to the product in development. The POS test repeats the 

HASS profile a minimum of 20 times to verify it does not take significant life out of the 

product or damage good product.  It was discovered during the POS test that the QFN 

package suffered from an intermittent electrical connection that was then traced back to a 

fractured solder joint. After four HASS cycles, cracks in the corners of the solder joints 

of the QFN package were discovered (Figure 1).  The solder fractures appeared to go 

completely across the solder connection.  A cross section of the failed solder-joint 

showed an unusually large separation in the Z-plane (Figure 2). It was unclear if the 

stress causing failure was shear or tensile. If the failure is due to thermal stress from 

coefficient of thermal expansion (CTE) mismatch, then the stresses are expected to be 

shear and have little z-plane contribution.  
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This project analyzes the solder-joint reliability of a 68 pin QFN package with top-side 

paddle. 

 

 

Figure 1 Solder cracks found during HASS/POS testing 

 

   

Figure 2 Solder fracture showing cohesive separation in the solder 

 

 

During design validation, a similar solder-joint failure was discovered in a Highly 

Accelerated Life Test (HALT). The HALT protocol consisted of temperature step stress 

from -40oC to +120oC and vibration step stress from 0 Grms to 60 Grms. Each stress is 

applied individually and then jointly to discover the soft and hard failures in the design 
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and identify manufacturing and component defects. The HALT failure was attributed to a 

problem with the manufacturing process. The manufacturer had problems with the vision 

system used to place the component on the circuit board with solder paste. The parts that 

were placed incorrectly went through reflow and all had to be reworked. The manual 

rework process was faulty and resulted in solder opens. The problem was traced to a 

vision system which confused corner pin with the reference orientation feature on the 

device. Unfortunately, the manufacturing issues masked the solder-joint reliability 

problem. 

 

1.2 The QFN Package and Mechanical Properties 

The QFN package has gained wide acceptance in the electronics industry. Newer 

versions are emerging that are extending the package size limits making larger and 

smaller QFN packages. On the miniaturization side, there are Micro Ultra-thin QFNs that 

are 1 mm x 1mm in size with the package height dropping from 1.0 mm to 0.5 mm. On 

the large end, QFN packages are approaching 10 mm x 10 mm in size. As the package 

size increases, reliability concerns arise regarding the CTE mismatch between the low 

CTE package and the higher CTE of the circuit board.  

 

The standard commercial QFN package incorporates a center thermal paddle on the 

bottom-side of the package (Figure 3).  The paddle is directly attached to the die through 

a thermally conductive adhesive. Power, ground and signal I/Os are transferred from the 
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silicon die to the board through a lead frame. Gold wires are bonded from the die to the 

paddle and lead frame.  The lead frame, die and wire bonds are then encased in plastic 

mold compound with a relatively low CTE. The bottom of the thermal paddle is exposed 

and tin plated for solderability. During assembly, the paddle is soldered to a printed 

circuit board and provides an avenue for heat removal generated in the device through the 

circuit board. The bottom paddle provides mechanical attachment support to the circuit 

board.  Moving the thermal paddle from the bottom to the top of the package reduces the 

surface area for solder attachment by 88%.  The advantage of the thermal paddle on the 

top-side of the package is that it provides improved thermal efficiency.   

 

Figure 3 Standard QFN with bottom-side paddle 
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Figure 4 QFN package with top-side paddle 
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The QFN package with topside paddle is relatively new to the electronics industry and 

there is little research regarding its solder-joint reliability. There is not a significant 

amount of  published data regarding the long term reliability of this package.  One of the 

major concerns is the role the center paddle plays in the long term reliability of the solder 

joint. The center paddle provides the largest solderable surface area for the package 

(Figure 5). Approximately 80 percent of the soldered surface area is under the thermal 

paddle. The solder paste pattern for this device is shown in Figure 6. 

Figure 5 Circuit board land pattern for QFN with bottoms side paddle 

 

 

Figure 6 Solder paste pattern for QFN with bottoms side paddle 
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In contrast, when the paddle is moved from the bottom-side to the top, lead attachment is 

only around the perimeter of the package (Figure 7). With so much of the soldered 

surface area removed and the inherent CTE mismatch between the package and circuit 

board, the larger package size becomes a reliability concern. 

Figure 7 Circuit board land pattern for QFN with top-side paddle 

 

   

The reliability requirement for the QFN package is 10 years in a customer use 

environment. The customer use environment is defined as 20oC ambient in the “off state” 

and 38oC worst case operating condition in a power cycled “On State”. The system is 

power cycled three times per week. This project evaluates the reliability of the solder-

joint attachment of a QFN paddle up based on accelerated life testing and stress strain 

modeling. The accelerated life cycling test data is used to form an acceleration model to 

estimate the solder-joint reliability based on a 10-year user model.  

 

The QFN package under study is comprised of a metal lead frame that is wire bonded to 

the silicon die and thermal paddle. The QFN package is 10 mm square in size and 

manufactured by Maxim, Inc. (Figure 8). The lead pitch is 0.5mm and there are 68 leads 
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around the perimeter of the device. A 7mm square silicon die is attached to the bottom-

side of the paddle and bonded using Ablebond 8200T thermal die attach compound.  The 

lead frame and component leads are tin plated over a C194 copper frame. Gold wires are 

bonded from the die to the thermal paddle and perimeter leads. The lead frame with 

bonded die and wire bonds goes through a plastic injection molded process using a 

Sumitomo low CTE material called G770HCD. The lead frame provides centering 

alignment during the molding process and is done in a wafer tray. After injection 

molding, the devices are singulated from the tray into single pieces. The coefficient of 

thermal expansion for the various materials comprising the QFN package is listed in 

Table 1 and Figure 9. 
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Figure 8 Maxim outline drawing for 10mm QFN package (supplier drawing) 

 

AT23/MAX9979 68L 10x10 QFN Packaging material CTE

COEFFICIENT OF THERMAL EXPANSION
MATERIAL (CTE, um/m/°C, or ppm/°C;)

Lead frame (C194) 16.7
Die attach (Ablebond 8200T) 61 (below Tg), 195 (above Tg), Tg: 83 'C
Mold compound (Sumitomo G770HCD) 7 (below Tg), 34 (above Tg), Tg: 135'C
Silicon die 3
Gold wire 14
Tin (Sn) 20.0
Silver (Ag) 19.0
BCB (Benzocyclobutene, spin on Die Coating) 40-50  

Table 1 Coefficient of thermal expansion for maxim 10 mm QFN package 
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Figure 9 Sumitomo plastic injection mold compound (supplier data sheet) 
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Chapter 2: Manufacturing process for attaching QFNs to PCB  

2.1 Assembly Process for Attachment of QFN to a Printed Circuit Board 

The circuit board with QFN is assembled at a contract manufacturer using an automated 

process. The circuit board has components on both sides, so the assembly process goes 

through the assembly process twice. The first assembly process places parts on the 

bottom-side which tend to be smaller and lower profile. The second side assembly (top 

side) places the larger parts onto the circuit board. The QFN with top-side paddle are all 

placed on the top-side of the circuit board.  A simplified assembly process is shown in 

Figure 10 and starts with screen printing solder paste onto the circuit board. 

 

 
Figure 10 Assembly process flow for side 1 

  

 

The screen printing process is fully automated and starts with a squeegee that moves 

solder paste over a stencil with openings in areas where solder paste is desired on the 

circuit board. The stencil thickness is 5 mils and the aperture openings in the stencil are 

made with a laser etcher. The solder mask aperture is approximately the same size and 
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shape as the component lead pads on the circuit board.  After solder paste screening, an 

optical scanner inspects the solder paste to ensure the correct of volume amount of solder 

paste is dispensed on critical components. The optical scanner also ensures that there is 

no bridging of solder pastes between circuit pads. A QFN with a 5 mil thick solder paste 

pad will have between 2.0 and 2.5 mils of solder height after reflow soldering. The solder 

used is a eutectic Sn63/Pb37. After screening solder paste, the circuit board goes through 

an automated pick and place process. During this process, parts are automatically selected 

with a spring loaded vacuum pick up tool. Larger parts are optically inspected and 

aligned on the pickup tool before being placed onto the circuit board. For the QFN with 

top-side paddle up, an optical scanner determines pin one orientation for the part before 

placing it on the circuit board. After the parts are placed on the circuit board, it goes 

through a 4-stage convection reflow oven where the peak circuit temperature reaches 

205oC (Figure 11). The melting temperature for eutectic Sn63/Pb37 solder paste is 183C. 

The final step is a cleaning process where the boards goes through an aqueous cleaner to 

remove solder-flux residue. 
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Figure 11 Solder reflow temperature profile through convection oven 

 

After the board is assembled, it goes through a series of inspection and tests processes to 
ensure reliability (Figure 12). The Manufacturing inspection and test process starts with 
automated optical inspection (AOI) and  automated x-ray inspection (AXI) followed by 
in-circuit test (ICT) to look for open and short solder connections along with missing and 
improperly placed components. After the circuit board passes inspection and in-circuit 
test, it is sent to functional test to verify that the components placed are operating within 
specification. After the board passes functional test it is sent to final assembly where a 
coldplate is mounted to the top-side of the circuit board. At this point, it is a complete 
assembly ready for final test.  The circuit board at this stage meets product specifications 
but has not been screened for latent defects. Two test are performed to precipitate and 
attack latent defects. The first test is called HASS (highly accelerated stress screening).  
HASS is environmental stress screening that has two parts.  The first part is an 
accelerated precipitation stress that applies temperature and vibration stress to the board 
under power and operation.  The second phase applies a temperature stress at the upper 
spec limit along with a low-level tickle vibration.  HASS is followed by burn-in at 50oC.  
During burning the circuit board is tested at the upper and lower voltage margins along 
with power cycling.  The burn in test runs for 48 hours and requires error free operation 
in order to pass.  Before the product is considered complete, a final test to the customer 
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configuration is performed. The complete manufacturing assembly and test process is 
illustrated in Figure 12. 

 

 

Figure 12 - Manufacturing inspection and test process 

 

Figure 13 Complete assembly and test process 
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2.2 Circuit Board Design Information 

The QFN package is attached to a 0.125” printed circuit with 28 layers of signal, power 

and ground planes. The power and ground planes are made up of one and two ounce 

copper planes. The signal planes are constructed of half-ounce copper. The parts are 

mounted on a printed circuit board with an outline dimension of 16 inches by 20 inches. 

The printed circuit board is large and has a significant amount of thermal mass. An 

illustration of a mounted QFN package is shown in Figure 14.  The yellow arrow points 

to the QFN package with top-side thermal slug. The silver reflective square is the top-

side thermal paddle.  The QFN’s lead pitch is 0.5mm, which prevents making the width 

of the solder pads wider than the device. It also prevents solder paste over print to 

increase solder height because the risk of a solder bridge is significant.  The printed 

circuit board is Nelco 4000-13-EP, a fiberglass material with a CTE of 7x10-6/oC. 
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Figure 14 Yellow arrow shows QFN with top-side paddle 

 

The QFN package component land patterned datasheet for the printed circuit board is 

illustrated in Figure 15.  The land patterned data sheet illustrates what the pad pattern 

looks like on the circuit board.  The datasheet includes the size and location for the 

thermal vias, the lead pad size and location, silk screen pattern and pin one reference 

location along with package to keep out zones to allow for rework.  The component land 

patterned datasheet is also provided to the contract manufacturer for assembly purposes.  

The contract manufacturer uses the data sheet to determine package height and pin 

references to determine component placement. 
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Figure 15 Teradyne data sheet for PCB layout 
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The part’s fine pitch, 0.5mm, prevents making the width of the solder pads wider than the 

device leads width. It also prevents using solder paste over print to increase the solder 

height because the risk of a solder short is significant.  The printed circuit board is Nelco 

4000-13-EP a fiberglass material with a CTE of 7x10-6/oC. The second page of the land 

patterned datasheet includes the solder mask and solder paste aperture (Figure 16).  The 

component's fine lead pitch does not allow for solder mask between the component leads.  

This increases the risk of solder bridging between adjacent leads.  The solder paste 

aperture is used by the contract manufacturer to design a stencil for dispensing solder 

paste. 
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Figure 16  Teradyne data sheet for solder mask and solder paste aperture 
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Chapter 3: QFN Solder-Joint Life Models 

3.1 Introduction 

Temperature, vibration and the shock are three most common environmental stresses to 

impact solder-joint reliability.  The solder-joint reliability model is different for each of 

these stresses. Before an analysis can be performed it is necessary to determine the stress 

or stresses that are involved in the failure of a solder joint. For my application, shock is 

not a likely failure because of the limited amount of handling it sees. The greatest level of 

vibration the product experiences occurs in shipping. A significantly lower source of 

vibration comes from forced convection fans and liquid cooling running through a 

coldplate. The vibration level from both of these stresses has been measured and found to 

be small.  

 

Therefore, the environmental stress the product is most susceptible to under normal 

operating conditions is temperature change. There are two sources of thermal stress. The 

first is from power cycling, which results in a worst-case package-temperature increase 

from 20oC ambient to 38oC. The second thermal cycling stress is from the instrument 

running test programs that result in a worst case thermal swing of 2oC.  An analysis of the 

local and global strains for the two different thermal stresses will provide an estimate of 

the amount of damage that can be expected due to thermal mismatch. 
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The mechanical reason why a solder-joint fails is varied and is influenced by 

environmental stress factors like temperature, humidity and vibration. How these 

environmental stresses are imposed on the product plays a significant role in the physics 

of failure. Stresses that are monotonic have a different influence than cyclical stresses. 

The time under stress influences factors like solder creep. For solder creep to take place, 

there needs to be sufficient time for stress relaxation to take place. If the stress is 

constantly changing, the stress fatigue is less likely to be creep fatigue. Physical factors 

like intermetallic formations, grain structure and size, solder-joint height, lead 

compliance and material glass transition and expansion, thermal expansion rates play a 

significant role.   

 

3.2 Thermal Mismatch Evaluation 

There have been numerous published papers describing solder-joint failure mechanism 

due to thermal cycling materials that expand and contract at significantly different rates. 

The problem of CTE mismatch is greater when there is little lead compliance to share the 

load. The combination of significant CTE mismatch, large package size and low lead 

compliance typically leads to low-cycle fatigue. 3, 4, 5, 6 A cross sectional view of the QFN 

soldered to the circuit board is shown in Figure 17.  
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Figure 17  Cross sectional view of a QFN mounted to a printed circuit board 

 

 

The QFN mold compound, solder and circuit board have significantly different thermal 

expansion rates. A change in temperature will cause each to expand at different rates and 

since they are mechanically bonded together stress is induced in the assembly. The 

weakest link in this bonded assembly is the solder joint, which is the most likely source 

of failure.  

 

3.3 Stress Strain Effects due to CTE Mismatch 

The global strain is due to the mismatch between the QFN and the circuit board. There 

are two local strains to consider. The first local strain is between the QFN and solder and 

the second local strain is between the solder and circuit board. A simplified cross section 

of a soldered QFN package with the expansion rates for the QFN, eutectic solder and 

PCB is shown in Figure 18.  
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Figure 18 QFN cross sectional view with thermal CTE’s 

 

From a simplified perspective, there are three materials involved in the attachment of the 

QFN package to the printed circuit board. The three materials are:  the QFN mold 

compound, the eutectic solder and the circuit board substrate. These three materials that 

hold the structure together expand at different rates. The coefficient for thermal 

expansion for these three materials is shown in Table 2. There are other factors that 

influence the expansion rate that are better suited for a finite element model. For 

example, the top copper paddle, silicon die, epoxy adhesive for die attach and copper lead 

frame all influence the effective CTE of the QFN package. However, it is not possible to 

account for these factors without using finite element analysis.  

 

COEFFICIENT OF THERMAL EXPANSION
MATERIAL (CTE, um/m/°C, or ppm/°C;)

Nelco 4000-13-EP, fiberglass material 7x10-6/oC
Eutectic Sn63/Pb37 23.9x10-6/oC
Mold compound (Sumitomo G770HCD) 7x10-6/oC (below Tg)

34x10-6/oC (above Tg), Tg=135'C  

Table 2 Coefficient of Thermal Expansion for QFN attachment materials 

Neutral 
Axis PCB

SN63 Solder
CTE = 23.9 PPM at 100C

QFN

QFN Mold Compound CTE = 7 PPM

PWB CTE = 15 PPM

Neutral 
Axis PCB

SN63 Solder
CTE = 23.9 PPM at 100C

QFN

QFN Mold Compound CTE = 7 PPM

PWB CTE = 15 PPM
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To calculate the stress and strain values due to the different thermal expansion rates for 

the soldered QFN package, the physical size and cross sectional area for each element 

needs to be defined. The physical size of the package and soldered surface area has a 

strong influence on the amount of stress that is developed due to thermal expansion. 

Structures that are large will experience greater stress from thermal expansion than 

smaller structures. This is because the amount of expansion due to temperature is the 

product of the thermal expansion rate of the material described in PPM/oC, multiplied by 

the diagonal distance from the neutral point to furthest corner. The two structures whose 

size needs to be defined are the QFN package and solder-joint land pad.   

  

To determine the change in size to the QFN package due to a change in temperature, the 

distance from the neutral point to the package end is needed. For a square package, the 

neutral point is the center of the package. The distance from the center of the package to 

the corner of the device can be determined using Pythagorean’s theorem equation as 

follows: 

 

22

22
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

yxZ  (1) 
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The diagonal distance from the neutral point to furthest corner for the solder-pad and 

QFN are shown in Figure 19 and Figure 20. 

 

 

Figure 19  QFN cross sectional view 

 

 

Figure 20 PCB land pad geometry 

 

The equation for global strain G due to temperature expansion is: 
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( )   Stress Global GGG ×= γτ  (3) 

 

Where: 

 

L is diagonal distance from the neutral point to furthest corner 

ΔCTE is the thermal expansion rate PPM/oC 

ΔT is the change in temperature (oC) 

hs is the height of the solder-joint (inches) 

elasticity of modulusshear   =G  

  

Two thermal cycling stresses are proposed to develop a model for the failure distribution 

and acceleration factor. The two tests are: 

 

Accelerated thermal cycling stress test #1 method #1:  

High temperature:  70oC 

Low temperature:  -25oC 

Dwell time at set point: 20 minutes 

Temperature ramp rate: 60oC/minute 

 

The global strain induced from thermal cycle test #1 is:   
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The equation for global strain G due to temperature expansion is: 
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The local strain from accelerated thermal cycling test #1 is:   
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Accelerated thermal cycling stress test #1 method #2:  

High temperature:  100oC 

Low temperature:  0oC 

Dwell time at set point: 20 minutes 

Temperature ramp rate: 60oC/minute 

 

The global strain induced from thermal cycle test #1 is:   
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The equation for global strain G due to temperature expansion is: 
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The local strain is:   
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Accelerated thermal cycling stress test #2:  

High temperature:  70oC 

Low temperature:     0oC 

Dwell time at set point: 20 minutes 

Temperature ramp rate: 60oC/minute 

 

The global strain from accelerated thermal cycling test #2 is:   
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The local strain from accelerated thermal cycling test #2 is:   
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Test # Thermal Cycling Range Global Strain Local Strain 

1 -35 oC to 65 oC 8.9% 3.2%

2 -25 oC to 70 oC 8.4% 3.0%

3 0 oC to 100 oC 8.9% 3.2%

4 0 oC to 70 oC 6.2% 2.2%

5 20 oC to 31.5 oC 1.0%

Table 3  Summary Table for global and local strain  

 

The total strain energy is the sum of the elastic and inelastic strain energy. The inelastic 

strain has two possible components; they are a plastic strain and creep strain energy. The 

total strain equation is: 
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creepplasticelastictotal γγγγ ++=
 (5) 

The elastic strain is the least damaging and is dominant when the strains are 1% or less7. 

Above 1% strain, inelastic deformation begins to contribute. The strains from thermal 

cycling test #1 and test #2 both results in local and global strains that exceed 1%. 

Therefore, the thermal cycling tests will result in solder-joint failure from inelastic not 

elastic strain energy. The failures will also be low-cycle fatigue due to the high strain 

induced from thermal cycling.   

 

There are two inelastic components possible that result in plastic fatigue and creep 

fatigue. The plastic strains are less damaging that the creep strains.  The creep strains 

become a contributor when there is cyclical stress, dwell time and the temperature 

exceeds half the absolute melting temperature, Tm, of the material in degrees Kelvin8. 

The melting point for Sn63Pb37 is 456oK. Therefore, creep becomes a contributor to 

inelastic strain at half its melting point, 228 oK (-45.15 oC). The creep fatigue increases 

with increasing temperature, the higher the temperature the greater the creep fatigue. 

Both thermal cycling tests are significantly above 0.5Tm
, so creep is considered to be a 

significant contributor to fatigue. Solder creep also promotes micro-grain structure 

weakening as the tin and lead regions begin to coalesce, forming larger tin and lead 

regions. Lead is ductile and provides compliance in the solder-joint structure. The tin is a 

brittle material. As the grain structure coarsens from thermal cycling, the tin regions 
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become bigger and make the solder connection more brittle and susceptible to stress 

fracture.  

 

Based on the strain energy calculation for global and local strains from thermal cycling, 

previous stress test in HALT and POS, and published articles on solder-joint reliability of 

leadless devices; the failure model that best applies is a Coffin-Manson Inverse Power 

Law (IPL) model for low-cycle fatigue. The stress induced due to thermal cycling has 

three components. There is an elastic strain, a plastic strain and a metal-creep strain. The 

strains are too high to be elastic, so the primary mechanism is a combination of creep and 

plastic fatigue.  

 

3.4 Reliability Modeling 

There are many different models that incorporate time and temperature dependent 

behavior to estimate the solder fatigue life for a structure. The models are mostly 

analytical, but some combine modeling and experimental results, the models are9: 

 

Damage Integral Method (Subrahmanyan et al, CHMT 1989) 

Energy Partitioning Approach (Dasgupta et al, ASME, EEP, 1993) 

Fracture Mechanics Based (Pao, CHMT 1992) 

Matrix Creep Model (Shine & Fox, ASTM STP 942) 

CSMR Model (Clech et al, 43rd ECTC) 
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Energy Density Based (Darveaux et al) 

 

Four different models for solder-joint fatigue of a QFN leadless package mounted on 

epoxy fiberglass circuit board and exposed to thermal cycling are studied here. The first 

approach uses an Engelmaier’s for strain energy model. The Engelmaier model uses an 

estimate of the strain energy due to temperature to determine the mean useful life of the 

structure. The second approach uses a Steinberg model that balances the forces present 

due to a change in temperature. The third approach combines published Amkor reliability 

data with published Weibull failure distribution plots for a QFN package paddle down to 

estimate the reliability of a QFN package paddle up. The last approach uses SRS version 

1.1 software by Jean-Paul Clech for a leadless package. 

 

The four 1st order modeling methods are: 

Engelmaier Model for a leadless surface-mount  device 

Steinberg Model for a leadless surface-mount  device 

Published industry data for unsoldered bottom-side paddle  

SRS 1.1 software by Jean-Paul Clech 

 

3.4.1 Reliability Model #1: Accelerated Life Analysis Using Engelmaier Model 

One of the simplest models for predicating solder-joint life for a leadless ceramic device 

can be found in IPC-SM785 and IPC-9701A10, it uses the Engelmaier model for leadless 
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attachment11. The model provides a strain-rate calculation based on the maximum strain 

at the solder-joint due to a change in temperature and applies for SnPb solders.  The 

model assumes the dwell time is sufficient for complete stress relaxation to take place12. 

This also requires that the dwell times used for accelerated life testing need to be 

sufficient for relaxation to take place.  The Engelmaier model is derived from the 

generalized form for cumulative fatigue damage for metals by Morrow13 and the Coffin-

Manson plastic strain-fatigue life relationship for low-cycle fatigue 14: 

 

[ ] [ ] C
P

Cf CWCN
11

γΔ=Δ=  

 (6) 

 

Where: 

 

Nf = Shear fatigue life in thermal cycles 

C is a material constant 

c is a value between -0.5 and -0.7 for most metals 

ΔW is the visco-plastic strain energy density per cycle  

Δ p is the applied cyclic strain range 

 

The Engelmaier model for a stiff leadless surface-mount  device modified to include a 

Weibull statistical distribution is: 



 

Page 38  

 

 

 

( ) ( )( )( )
( )

β

ε
γ

1
1

max

5.0ln
0.01-1ln  

22
1% ⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ
=

xFxN
c

f
f  (7) 

Where: 

 3601ln1074.1T106--0.442c 2
sj

4-
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×+×= −

Dt  (8) 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
2

minmax TTTSJ  (9) 

The Engelmaier strain range equation is: 

 max
sh

TL ΔΔ
=Δ

αγ
 (10) 

The shear strain range in the solder is proportional to the product of the cyclic 

temperature swing, the thermal mismatch between the component and circuit board, the 

diagonal distance from the neutral point to the device corner divided by the height of the 

solder joint. The strain energy represents the maximum strain that is developed in the 

solder-joint foe very long times. The solder-joint provides the compliance due to global 

shear strain and increasing solder height improves attachment reliability.  A model of a 

quarter slice of the QFN attached to the printed circuit board is shown in Figure 21. 
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Figure 21 Simplified cross section of QFN attachment to circuit board 

 

The Engelmaier model contains two parts; the first part is the Engelmaier equation for the 

mean life, which is: 
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22

1%50

1

max
c

f
f

FN
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ
=

ε
γ  

 

Unfortunately, the Engelmaier model provides a single point measure for the mean life. 

To use the model to predict a failure time that is different than the mean, a distribution 

modifier is needed. Since the failure mechanism is wearout, the two most appropriate 

distributions are a lognormal and a Weibull distribution with a shape factor, β that is 4.0 

or greater. The  

 

Weibull distribution model is: 
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Combining the two equations results in a Engelmaier model with a Weibull distribution. 
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β is the Weibull shape parameter. If unknown, then 4.0 provides a good estimate for a 

leadless attachment.  

hS is the height of the solder-joint = 0.0025” 

Nf(x%) is the number of thermal cycles to “x%” failure probability 

x is the cumulative failure probability after N thermal cycles and is expressed in percent. 
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Based on the Engelmaier model, the number of thermal cycles to failure is: 

Test # Thermal Cycling Range Nf(1%) Nf(50%) Nf(63.2%) 

1 0oC to 100 oC 20 56 62

2 -25 oC to 70 oC 29.2 78 84.4

3 0 oC to 70 oC 51.5 149 161.7

Table 4 Cycles to mean failure for Engelmaier model 
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3.4.2 Reliability Model #2: Accelerated Life Analysis Using Steinberg Model: 

The second approach uses a Steinberg model for solder-joint fatigue life for a small 

surface-mounted Leadless Ceramic Chip Carrier (LCCC) exposed to rapid thermal 

cycling Figure 22. The Steinberg model 15sets up an equilibrium equation for evaluation 

of thermal expansion forces and stresses that are induced in the solder-joint of a LCCC.  

Although the model was developed for a ceramic package, it applies equally well for a 

plastic package. Steinberg recommends keeping the CTE mismatch between the 

component and circuit board to less than 9 ppm/oC to avoid solder-cracking problems. 

Obviously, the size of the component package plays a significant role in the amount of 

stress that is induced on the solder joint. In our application, the delta CTE between the 

circuit board and package is 8 ppm/oC. When the circuit board expands at a greater rate 

than the package, stress is induced first on the solder-joint and then on the component 

which is bonded to the circuit board. In this case, the stress is transferred from the solder-

joint to the component (Figure 23). The balanced displacement model requires the 

expansion forces for the circuit board (Xp) must equal the sum of the expansion forces for 

the solder-joint (Xs) and component (Xc).    

 

PSC XXX =+  (12) 
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Figure 22 Dimensional Reference for a LCCC 
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Figure 23 Stress induced from CTE mismatch between circuit board and package 

 

The solder-joint displacement is defined as the product of the shear force (PS) multiplied 

by the solder-joint height (hS) divided by the product of the cross sectional area of the 

solder-joint (AS) multiplied by the solder shear modulus (GS). 

 

( )( )
( )( )SS

SS
s GA

hPX =   (13) 

 

The second displacement is due to the change in component package size. The maximum 

displacement occurs along the diagonal dimension of the QFN package. There are two 

forces acting to change the size of the package due to a change in temperature. The first is 

the unrestrained change due to thermal expansion of the package. The change due to 

thermal expansion (XC1) is the product of the CTE of the component package (αC), the 

distance from the component center to a solder-pad (LC) on half the component and the 

change in temperature (Δt). There is a correction factor not included here that accounts 

for the neutral point of the package being the center. For a square device, the correction 

LCCC

PCB

LCCC

PCB

XC  

XS  XP  
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factor is the square root of 2. The distance from the component center to the solder pad, 

LC, includes all pads on half of the component package starting from the center to the 

corner. There are two pads at the center along the neutral point; they are not counted 

because they do not change with temperature. The most critical pad and most likely to 

fail first is the furthest diagonal pad.  

 

( )( )( )tLX CCC Δ= α1   (14) 

 

The second force influencing expansion is due to the axial force (PC) exerted on the 

component due to its thermal expansion (XC2). This force is the product of the axial force 

(PC) times the effective length (LC) divided by the product of the solder-joint area (AC) 

times the modulus of elasticity for the component package (EC). 

( )( )
( )( )CC

CC
C EA

LPX =2   (15) 

 

The total component package displacement is: 

( )( )( ) ( )( )
( )( )CC

CC
CCCCC EA

LPtLXXX +Δ=+= α21   (16) 

 

The final displacement is due the circuit board and it has two opposing components. The 

first component is the unrestrained change due to thermal expansion of the circuit board. 

The change in the circuit board size due to thermal expansion (XP1) is the product of the 
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CTE of the component package (αP), the length of the circuit board under the component 

package (LP) and the change in temperature (Δt). The displacement is negative since it is 

being restrained by the force of the solder-joint and component package which is bonded 

to it. 

( )( )( )tLX PPP Δ= α1   (17) 

 

The second force influencing expansion is due to the axial board force (PP) exerted on the 

board due to its thermal expansion (XP2). This force is the product of the axial board force 

(PP) times the length of the circuit board under the component package (LP) divided by 

the product of the circuit board area (AP) times the modulus of elasticity for the circuit 

board (EP). 

( )( )
( )( )PP

PP
P EA

LPX =2   (18) 

The total circuit board displacement is: 

( )( )( ) ( )( )
( )( )PP

PP
PPPPP EA

LPtLXXX −Δ=−= α21  (19) 

( )( )( )

 thicknessPCB  theis 

 factor width effective 25.1

2

2

h

hLAP =
 

Inserting the three displacement forces into equation 11, we get the equilibrium equation 

for the forces due to thermal expansion. 

 
PP

PP
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SS
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LPtL
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LPtL −Δ=++Δ αα           (20) 



 

Page 49  

 

 

 

 sideadjacent on  padssolder   theofcenter   thetocomponent   theof centroid  thefromlength  

L 

packagecomponent   thehalfon  padssolder   theall  tocentroid QFN from Distance 

9

9

=

=

=

L

L

L

P

C

 

 

 

( )

( )

modulusshear solder  

areacomponent  effective 

factor width effective 1.25 area board effective 

1-solder  ofnumber   thehalf of areaShear  

heightjoint solder   

elasticity of modulus PCB 

elasticity of modulus QFN 

2
t-t  change raturemean tempe 

PCB of CTE 

QFN of CTE 

minmax

=

=

×=

=

=

=

=

==Δ

=

=

S

c

p

s

s

p

c

p

c

G

A

A

A

h

E

E

t

α

α

 

 



 

Page 50  

 

 

Table 5 Component pad distances to the neutral point 

 

 

Pad
#

Distance
(in)

Number 
of Pads Total

L1 0.01965 2 0.0393
L2 0.0393 2 0.0786
L3 0.05895 2 0.1179
L4 0.0786 2 0.1572
L5 0.09825 2 0.1965
L6 0.1179 2 0.2358
L7 0.13755 2 0.2751
L8 0.1572 2 0.3144
L9 0.187 17 3.179

33 4.5938
Lc 0.139206  

Table 6 Solder pads on half of the QFN carrier 

Pad #
Length

(in)
L1 0.01965
L2 0.0393
L3 0.05895
L4 0.0786
L5 0.09825
L6 0.1179
L7 0.13755
L8 0.1572
L9 0.187
L 0.3937
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Steinberg Model for thermal cycling from -25oC to +70oC: 
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PSC PPPP ===∑     ,0  (21) 
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PS is the average force on the 33 solder joints for the half-slice model.  
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The maximum solder-joint stress will occur at the solder-pad location that is the furthest 

along the diagonal of the package. The average solder stress per solder-pad can be scaled 

to account for the maximum sheer stress. There are two scaling factors involved. The first 

factor scales the centroid to the diagonal dimension by multiplying the location of the 

centroid by the square root of two. In essence, it rotates the reference point 45 degrees. 

The second scale factor is the ratio of the distance from the solder-pad at the edge of the 

QFN to the corner solder pads (L9/LC). The resultant maximum shear stress becomes: 

 

( ) ( )

( )( ) 2
Smax

9
s

lb/in 92.2211
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2S Stress Average Stress Maximum
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With the maximum cyclic stress identified, it can be applied to the eutectic fatigue 

properties of solder. The fatigue properties for eutectic Sn60/Pb40 solder have been 

studied for decades and are well understood. The mean failure data describing the stress 

vs. cycles to failure can be plotted on a Log-log curve and form a straight line (Figure 

24). The equation describing the failure rate is:  

 

( )( ) ( )( )  2211
bb SNSN =  (23) 
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Figure 24  Typical log-log S-N fatigue Curve 
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The Steinberg model estimates the mean failure probability, Nf (50%). To describe the 

failure distribution model, we can use the same probability as the Engelmaier model for 
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leadless device. The β value equals four for a stiff leadless device; this is the same value 

as the Engelmaier model. The failure distribution probability is; 
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The resultant modified Steinberg model for a leadless device is: 
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Steinberg Model for thermal cycling from 0oC to +100oC: 
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PS is the average force on the 33 solder joints for the half-slice model.  
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Steinberg Model for thermal cycling from 0oC to +70oC: 
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PS is the average force on the 33 solder joints for the half-slice model.  
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Test # Thermal Cycling Range Nf(1%) Nf(50%) Nf(63.2%) 

1 0 oC to 100 oC 60 173 190

2 -25 oC to 70 oC 68 197 216

3 0 oC to 70 oC 146 422 462

Table 7  Mean cycles to failure for Steinberg model 

 

3.4.3 Reliability Model #3: Accelerated Life Analysis Based on Industry Data   

The third approach combines published Amkor reliability data for a QFN package paddle 

down17 with published Weibull failure distribution plots18. The Amkor data provided 

scaling information for various use applications and use conditions, i.e. different mold 

compound, lead structure and paddle not soldered to circuit board. This approach makes 
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the assumption that a QFN with an unsoldered paddle to the circuit board provides a good 

approximation for a QFN top-side paddle. This is similar from a mechanical attachment 

perspective to moving the paddle from bottom-side to top because the mechanical solder 

connection from the paddle no longer exists. The center paddle accounts for 88% of the 

soldered surface area when it is mechanically attached.  Moving the paddle to the top-

side should have a significant impact on solder-joint life due to thermal cycling.  

 

The Amkor data provided was used to estimate the mean time to failure for the QFN 

experiment based on the following model factors that can be scaled: 

 

Epoxy mold compound (from Sumitomo G700 to G770) 

Circuit board thickness (from .062” to .094”) 

Lead type (from full to half etched) 

 

Amkor’s data provided acceleration scale multipliers for each of the above factors. 

Missing from the Amkor model is a scale factor for a 0.125” thick circuit board and an 

estimate of the failure distribution model. 

 

Amkor’s baseline time to failure data is shown in Figure 25. For a QFN paddle down 

with a body style “10” (highlighted in yellow) the mean life and time to first failure are 

defined. The Amkor data is generated from accelerated life testing. The body style 10 is 

for a 10mm square QFN package. The package style is the same as the QFN paddle up 
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which is being evaluated. The main differences between the two packages are mold 

compound used (G700 vs. G770), fewer leads (68 vs. 72 leads) and smaller die size (7.0 

mm vs. 8.0 mm). The time to 1st failure is 498 cycles and the mean life is 830 cycles 

which is the baseline data that will be scaled for our application and use conditions. 

 

 

Figure 25 Baseline data from Amkor 

 

Table 8 shows the scale factors for mold compound, lead type and paddle not soldered. 

To scale for a lower CTE mold compound (G770) the time to failure is multiplied by 0.4. 

The half etched lead reduces solder-joint life by an additional 25% and not soldering the 

bottom-side paddle further reduces solder-joint reliability by 40%. Taking these three 

factors into account, the acceleration factor due to differences in the package and how it 

is mounted to the circuit board is: 

 

Mold compound: AF1 = 0.4 

Lead type: AF2 = 0.75 

Exposed pad not soldered: AF3 = 0.6 
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The total package multiplier is = (AF1)(AF2)(AF3) = (0.4) (0.75)(0.6) = 0.18 

 

Table 8 Amkor scale factor for package differences 

 

 

The Amkor scale factor for circuit board thickness was limited to board thicknesses 

ranging from 0.8mm to 2.4mm, with 1.6mm being the reference thickness (Table 9). 

However, the circuit board thickness that the QFN is soldered to is 3.17mm. Board 

thickness can play a significant role in solder-joint life. Based on the scale factors in table 

5, going from a 2.4mm to a 0.8mm thick board improves the solder-joint life by a factor 

of 5.8. As the board thickness increases, the board becomes stiffer. Stiff boards are less 

compliant. If the board has compliance, the stress generated at the solder-joint due to a 

change in temperature can be shared by the circuit board. When the board becomes stiff, 

the stress is entirely absorbed by the solder connection. To correct for board thickness, 

test results from a solder reliability life test for a leadless ceramic resistor network 

(RNET) was used. An RNET is a leadless device with same lead terminations as a QFN. 
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The RNET package CTE is slightly less than the QFN CTE.  Based on the RNET test, the 

acceleration factor for board with 3.17mm thickness is AF4 = 0.5. Using the scale factor 

for board thickness, an estimated mean time and time to first failure can be calculated and 

shown in Figure 26.     

 

 

Variable Reference Change Multiplier
Board Thichness 1.6mm 0.8mm 3.75
Board Thichness 1.6mm 1.2mm 1.75
Board Thichness 1.6mm 2.4mm 0.65  

Table 9 Amkor scale factor for board thickness 

 

 

Figure 26 Amkor reliability data scaled for a QFN paddle up configuration 
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Variable Reference Change Multiplier
Board Thichness 1.6mm 3.2mm 0.5
Mold Compound G700 G770 0.4
Exposed Paddle Soldered Not Soldered 0.6
Lead Type Full Half Etched Lead 0.75

AF = 0.090

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G700 72 8.1 8 865 498

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G770 72 8.1 8 78 45
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Mold Compound G700 G770 0.4
Exposed Paddle Soldered Not Soldered 0.6
Lead Type Full Half Etched Lead 0.75

AF = 0.090

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G700 72 8.1 8 865 498

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G700 72 8.1 8 865 498

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G770 72 8.1 8 78 45

Body CB EMC Lead count Die Pad Die Size Char. life 1st failure 
10 Full G770 72 8.1 8 78 45
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Scaling for board thickness, mold compound, exposed paddle and lead type; the time to 

first failure is 45 cycles and the characteristic time to failure is 78 cycles. This is based on 

a thermal cycling profile from -40oC to +125oC. To scale for a different thermal cycling 

condition, a model for the acceleration rate is required. The inverse power law model 

provides the best fit for thermal cycling. The inverse power law model is: 
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To use the IPL model, values for A and n need to be determined. To define values for A 

and n, Amkor reliability data for a QFN paddle down package with multiplication scaling 

factors for thermal cycling ranges is used (Table 10). The Amkor data is based on the 

reference thermal cycling profile of -40oC to +125oC, which is the baseline data. Using 
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the scaling factor for the three temperature cycling tests, the time to first failure and the 

mean time to failure is calculated.  As an example, for test #1 which thermal cycles 

between 0oC and 100oC, the scale factor is 2. The time to first failure is 90 cycles (45 

cycle’s baseline times the scale factor 2 = 90) and the characteristic life time is 156 cycles 

(78 x 2 = 156).  

Test # Variable Reference Change Multiplier
1 Temp. Cylce -40<>125c -55<>125C, 2 cycles/hr 0.85
2 Temp. Cylce -40<>125c 0<>100C, 2 cycles/hr 2.00
3 Temp. Cylce -40<>125c -40<>100C, 2 cycles/hr 1.35  

Table 10 Amkor scale factor for thermal cycling protocols 

 

Using the Amkor data for the three test protocols above, the mean time and time to first 

failure is estimated.  The failure distribution model has not been defined. The model 

could be Weibull, normal or lognormal.  To select the right distribution model, two 

published reliability papers for a QFN paddle down were considered4,5. Based on these 

papers, the Weibull distribution provides a good fit since the failure is due to wearout (A 

lognormal distribution also fits).  To use a Weibull model, the shape factor “β” is needed. 

The failure shape for the Weibull model is estimated based on published Weibull 

reliability plots for a QFN paddle down. This is a reasonable estimate because the failure 

mechanism is the same for the QFN. The first reference is for a QFN paddle not soldered 

to the board, had a Weibull failure distribution with a β=9.55. The second reference had a 

Weibull failure model with a β=9.42 for a soldered paddle and a board thickness of 

1.6mm. Based on these two data points, a Weibull distribution with a β=9.5 was assumed. 
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The resultant mean life and 1% failure for the three different stress tests is shown in 

Table 11.  

Variable Reference Change Multiplier
1%

Failure
Mean life

(μ)
Char. life

( )
Beta
(

Temp. Cylce -40<>125c -55<>125C, 2 cycles/hr 0.85 38 64 66 8.5
Temp. Cylce -40<>125c -40<>100C, 2 cycles/hr 1.35 61 101 105 8.5
Temp. Cylce -40<>125c 0<>100C, 2 cycles/hr 2.00 90 150 156 8.5  

Table 11 Amkor Weibull model for different thermal cycling protocols 

 

The characteristic life can be calculated from mean life if beta is known. The equation for 

mean life based on the characteristic life and beta is: Accelerated life model for NiPdAu 

plated lead and new EME-7730LF mold compound: 
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Figure 27 Reliasoft Alta 6.0 parameters IPL-Weibull model 
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For a Weibull model with a high β value, there is little difference between the mean life 

and the characteristic life. Using table 15 and scaling the mean life by 1.059, the Weibull 

parameters η and β for different thermal stresses is developed (Table 12). Using a Monte 

Carlo simulation in Reliasoft’s Weibull++ 6.0 software, Weibull plots for each of the 

three thermal cycling tests are created. The three Weibull plots can be used to estimate 

the IPL parameters A and n.  This was accomplished using Reliasoft’s Alta 6.0 software. 

The Weibull plots and accelerated life model is shown in Figure 28. The IPL values for 

the QFN model are: 
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Variable Change
1%

Failure
Mean life

(μ)
Char. life

( )
Beta
(

Temp. Cylce -55< >125C, 2 cycles/hr 31 64 71 9.5
Temp. Cylce    0< >100C, 2 cycles/hr 74 150 166 9.5
Temp. Cylce -40< >100C, 2 cycles/hr 50 101 112 9.5  

Table 12 Simulated Model for Various Thermal Cycling 

 

 

Figure 28  Simulated Weibull data for various thermal cycling 
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With the values of A and n determined, the reliability model for thermal cycling test #1 

and #2 can be evaluated. The acceleration model for the characteristic time to failure is: 
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Where V = the temperature swing ΔT 

 

The failure rate function is: 
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Using the Weibull model with IPL the time to failure values for thermal cycling stresses 

#1 and #2 are listed in Table 13. 
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Variable Temperature Cycling
1%

Failure
Mean life

(μ)
Char. life

( )
Temp. Cylce    0< >70C, 1.5 cycles/hr 172 267 285
Temp. Cylce   -25< >70C, 1.5 cycles/hr 111 179 186  

Table 13 Simulation results for accelerated test #1 and test #2 

 

 

3.4.4 Reliability Model #4: Accelerated Life Analysis Using SRS 1.1 Software:  

The last modeling prediction method uses SRS (Solder Reliability Solutions) 1.1 software 

by Jean-Paul Clech to model the time to failure19. The software uses a model for a 

Leadless Ceramic Chip Carrier (LCCC) with the material characteristics changed for a 

QFN. The SRS 1.1 software is based on a “Comprehensive Surface-mount  Reliability 

(CSMR) methodology20,21.  The SRS software model for a LCCC uses fatigue life 

predictions based on strain energy that was validated using accelerated test data to 

develop a better representative model. The model can account for bending and stretching 

of the PCB and QFN. The software is limited to package styles that have test data to 

validate and fine tune the model, so its use is limited to package styles that have been 

well studied. The package styles that can be evaluated are: LCCC, plastic quad flat pack 

(QFP), thin small outline plastic package TSOP, ceramic leaded chip carriers (CLCC) 

and small outline transistors (SOTs).  
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The model is developed by selecting a component package type from the list of available 

packages, i.e. LCCC and then editing the package parameters to make it behave like the 

QFN package. The “Number of Susceptible I/O’s” is the total number of pins that are 

likely to fail first.  For a QFN package, the most likely to fail pins are at the corner since 

this is the greatest distance from the neutral point. For each corner there are two pins, one 

on each side of the corner, that are equally likely to fail. Therefore, if you include all four 

corners there are 8 susceptible I/Os. The remaining inputs are straight forward and come 

from the manufactures datasheet (Figure 29). 

 

 

Figure 29  SRS1.1 Component model for QFN 
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The next required input for the model is the “substrate” parameters for the printed circuit 

board which are pulled from the manufacturer’s data sheet (Figure 30 and Figure 31).   

Next, the parallel spring constants for each element in the assembly need to be defined. 

The spring constants are: K1 (board stretching), K2 (component stretching) and K3 

(board/component bending). Based on these three spring constants, the assembly stiffness 

is calculated. The stiffness results and assembly stiffness is calculated by the model based 

on the component and substrate inputs (Figure 32 and Figure 33). The final input required 

is the thermal conditions to be used in the analysis. The model allows for multiple fixed 

and variable stresses. For this analysis, only a cyclic stress is applied (Figure 35).  

 

 

Figure 30 SRS1.1 Substrate model for QFN 
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Figure 31  SRS1.1 Substrate model for QFN 

 

Figure 32  SRS1.1 parallel spring constants 

 

Figure 33 SRS1.1 Assembly stiffness 
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Figure 34  SRS1.1 Model Distribution Selection 

 

After the model inputs have been entered, the software runs a validity check. If the data is 

valid, it will run the analysis. The output is a list of the inelastic strain energy for the 

global and local strains defined earlier. It also provides the inelastic cyclic creep strain 

and stress strain loop chart.  

 

Parameters for the thermal cycling profile for test #1 are shown in Figure 35 below. The 

dwells were set at 20 minutes at each set point and the cycle type set to variable. The 

“daily frequency” input is ignored when the “Cycle Type” is set to variable.  



 

Page 78  

 

 

 

Figure 35 Thermal conditions for test #1 

The resultant output from the model for thermal cycling test #1 0oC to 100oC   

          Inelastic strain energy 

 Global Strain Energy Local Strain Energy Total 

PSI % PSI % PSI 

164.2 99.40 .989 0.60 165.14 

                           

  Inelastic Strain Creep Strains 

 (width of loop) Hot Cold 

Global strain 4.817E-02 3.845E-02 2.629E-02 

Local strain 7.117E-04 2.823E-04 1.258E-04 

Table 14 Output inelastic and cyclic strain for thermal cycling test #1 

The modeling analysis for thermal stress test #1 is shown in Table 14 and Figure 36 

through Figure 38). 
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Figure 36 Test #1 global strain 

 

Figure 37 Test #1 local strain 

      

1% failure = 47.5 cycles         50% failure = 78.1 cycles        63.2% failure = 81.6 cycles 
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Figure 38 Cycles to failure report for thermal cycling test #1, 2-parameter Weibull & 

β=8.5 
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The resultant output from the model for thermal cycling test #2 0oC to 70oC 

 

 

Figure 39 Thermal conditions for test #2 
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STRESS/STRAIN/ENERGY RESULTS

 5/4/

2008 10:53:45 AM 

          Inelastic strain energy 

 Global Strain Energy Local Strain Energy Total 

PSI % PSI % PSI 

73.574 99.09 .677 0.91 74.25 

 

  Cyclic strain 

  Inelastic Strain Creep Strains 

 (width of loop) Hot Cold 

Global strain 2.624E-02 2.376E-02 1.812E-02 

Local strain 4.775E-04 2.476E-04 1.345E-04 

Table 15  Output inelastic and cyclic strain for thermal cycling test #2 

 

Figure 40 Test #2 Global strain 
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Figure 41 Test #2 Local strain 

    

1%failure=117.3 cycles 50% 

failure = 193.0 cycles     63.2% failure = 201. cycles 

Figure 42 Cycles to failure “thermal cycling test #2” and 2-parameter Weibull with β=8.5 

 

CDF   

(cycles to failure) 

Comparison of experiment and modeling results  

 (Delta T = 100 oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 29 78 84

Steinberg 66 166 206

Amkor published Data 111 179 186

Clech SRS software model 56 87 93
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CDF   

(cycles to failure) 

Comparison of experiment and modeling results  

(Delta T = 70oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 52 149 162

Steinberg 141 405 441

Apply industry published papers (Amkor Data) 172 267 285

SRS software model 117 193 202

Figure 43  Summary table for 1st order models to estimate failure probability
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Chapter 4:  QFN Accelerated Reliability Stress Tests  

4.1 Introduction 

Accelerated reliability testing was performed in two stages using two different methods 

to analyze second level solder-joint attachment reliability. The first test method consisted 

of an accelerated thermal cycling stress test on production instrument boards used in the 

ATE industry that is functionally good and operational. The circuit board is designed 

with diagnostic test software that loops continuously on the ASICs to monitor 

functionality. The diagnostic software records shifts in performance that can be used to 

identify degradation in device performance. The accelerated thermal cycling stress test is 

performed on an instrument board under bias power conditions and functionally operated. 

This solution offers the quickest reliability test results if a reliability qualification board 

was not designed to evaluate second level attachment reliability. A failure can be due to 

either a device degradation/failure or due to second level solder-joint attachment 

degradation. Care was taken to ensure that only failures related to a cracked or degraded 

solder-joint were used in the reliability analysis. Traditionally, this test is performed 

using daisy-chained dummy components and the change in resistance monitored to 

determine second level attachment reliability. A comparison of the two methods is 

presented at the conculsion to determine the acceptability of this approach.  
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There are advantages to using product material to qualify second level solder-joint 

attachment reliability for a package over a custom-made daisy-chained package. The 

daisy-chained component may not have all the physical features associated with the 

actual component package. For example, it may not include the silicon die or the die size 

is different than the actual product. The daisy chain dummy component may be 

physically the same but manufactured at a different facility designed to accommodate low 

volume, proto types or custom builds. Not all suppliers will offer daisy-chained 

components for evaluation, this forces using a third party with a daisy-chained package 

that closely resembles the one under evaluation. Finally, daisy chain tests require 

designing custom test boards and the physical properties of the test board may be 

different in construction than the actual production design. 

 

One compelling reasons to use production material over a prototype test board to evaluate 

solder-joint attachment reliability is when a lead attachment issue surfaces in product 

development that was not planned for in risk mitigation. An accelerated thermal cycling 

life test using a daisy-chained test strategy can take four to six months to design and fab 

test boards, procure daisy-chained components and assemble test boards. The Thermal 

cycling test takes another 2 months to complete. Thus, it could be six to eight months 

before a lead attachment CTE issue is understood. Using production material to run the 

accelerated life test is more expensive, but it can quickly provide an answer regarding the 

useful life of the solder connection. 
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The second test method was to run an accelerated stress test used daisy-chained parts 

mounted onto a printed circuit board. The daisy-chained parts are very similar in 

construction to the QFN ASICs used in the previous test method. The daisy chain 

component has the same mold compound, silicon die size and lead frame as the actual 

product. The only differences are that the silicon die are rejects from production due to 

functionality reasons and the silicon die is not wire bonded to the lead frame and topside 

paddle. These differences are considered to be insignificant in their influence to second-

level solder-joint reliability. The daisy chain components were manufactured at the same 

facility using the same manufacturing process as the ASIC QFN used in test method 

number one. 

 

4.2 Accelerated Reliability Stress Test Plan  

The thermal cycling test protocols for the two accelerated stress methods are different 

because there is an upper limit for the maximum temperature stress that can be applied to 

the functional product. Accelerated stress test method number one used functional QFN 

devices for thermal life cycling. Accelerated stress test method number two used daisy-

chained QFN dummy parts. The objective for the two accelerated life tests is the same. 

Namely, to determine the failure rate, failure distribution and the acceleration factor 

thermal cycling has on the useful life of the solder joint. To determine the acceleration 

factor that thermal cycling has on solder-joint life requires two different temperature 

swings.  
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Accelerated life tests were performed at two different stress levels.  Two test boards were 

used, one for each accelerated stress test. The accelerated stress test consisted of thermal 

cycling at two different temperature ranges. The testing consisted of 64 QFN (paddle up) 

Application Specific Integrated Circuit (ASIC’s) soldered onto a printed circuit board 

that is powered on and continuously looping using a diagnostics program called checkers.  

The custom ASIC is an integrated, high performance, pin electronics driver, comparator 

and load (DCL) with Parametric Measurement Unit (PMU) and Level Setters chip for the 

Memory and SOC ATE market.  

 

Test method number one, used production ASICs packaged in a QFN device with top-

side paddle that was biased and operational during the thermal cycling test. Before 

beginning the accelerated life test, the temperature cycling profile needed to be defined 

based on the upper and lower operational limits for the product. The upper and lower 

operational limits were identified using HALT (Highly Accelerated Life test). In HALT, 

three production boards with ASICs in a QFN packages were temperature step stress to 

determine its hard and soft failure limits. The soft limit is the upper and lower 

temperature where the device stops functioning. Once the soft failure point is reached, the 

thermal stress is reduced to verify that device recovery. If the device does not recover, 

power is cycled without temperature stress to determine if the device is still functional. If 

the device does not recover, the failure is defined to be a hard failure. Hard failures 

require the device to be replaced before the product can be functional again. 
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After HALT testing, the upper operational limit was determined to be 80°C; this is the 

upper environmental temperature stress that can be applied to the QFN device and still 

continue to perform functionally. The lower operational temperature stress limit is -35°C. 

To account for the fact that the data is based on a small sample size of three instruments, 

a 10 degree C guard band was added to the upper and lower operational limits to ensure 

continuous operation during thermal cycling test without having soft failures occur. 

Although only three instruments were used for HALT, each instrument has 32 QFN’s on 

it. Therefore, the sample size for the stress test is 96 devices. With adequate guard band 

for thermal cycling, the only failures expected during thermal cycling should be due to 

second level solder attachment of the QFN device, this component is the weakest link for 

CTE mismatch. Based on the operational limits identified during HALT, the first test 

thermal cycling protocol for thermal cycling test number 1 is between -25°C and +70°C.  

This will provide a 95°C temperature swing. The temperature ramp rate is set to the 

maximum the chamber can deliver which is 60 °C per minute. The dwell time at the 

upper and lower temperature set point is 20 minutes; this will ensure there is adequate 

time for temperature stabilization and creep.  The board was thermal profiled to ensure 

that the dwell time once the board reaches the temperature set point is reached is 10 

minutes. The QFNs have a liquid coldplate attached and that is liquid-cooled by design. 

The temperature in the liquid coldplate is controlled both by the thermal chamber through 

two large liquid-cooled radiators attached to the top of the temperature chamber. HFE is 

used to provide heating and cooling through the coldplate and heat exchanger which is 
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regulated by the same thermal chamber. The coolant that is running through the liquid 

coldplate is 3M HFE7500, which boils at 130C. The two large radiators are installed in 

the temperature chamber about 4 inches underneath the chamber outlet air vents to ensure 

the liquid HFE circulating through the cold plate is the same temperature as chamber 

ambient. A thermocouple is installed in the radiator outlet that monitors the HFE 

temperature going into the device under test. Thus, the air and liquid temperature track 

each other very closely and are controlled by same central source. A pump external to the 

thermal chamber circulates the HFE through a CDU that maintains constant pressure and 

has its temperature regulation bypassed.  The thermal chamber uses liquid nitrogen to 

regulate the air temperature. The liquid nitrogen provides fast temperature transitions 

when going from hot to cold.  The thermal chamber has large resistive coils that provide 

heating that are mounted in the top of the temperature chamber. The chamber is 

manufactured by Chart Industries. 

 

The temperature protocol for the second test method is from 0 oC to 100 oC and for the 

second thermal cycling test it is from 0 oC to 70oC. The two test yield time to failure 

distributions at two different stress levels. The test results are then used to estimate the 

acceleration factor, failure rate and distribution model for a solder crack. The failure rate 

distribution model and acceleration rate model can then be applied to a different set of 

thermal cycling conditions to estimate solder-joint life.  
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The second thermal cycling test went between the temperature range of 0°C and 70°C. 

The temperature ramp rate was 60 °C per minute and the dwell time at each temperature 

was 20 minutes. The two tests differed by 25°C and the test results are used to develop an 

acceleration model. The customer use environment cycles between 20°C in the off state 

and 38°C in a powered on “operational” state (Figure 44).                                                                            

 

The maximum product upper and lower operating temperature limits were identified 

during HALT testing. The operating limit is defined as the point where the product 

continuously functions and passes system checkers. A buffer of 10°C was subtracted 

from the upper operational limit and added to the lower temperature limit to minimize the 

risk of other failure mechanisms occurring. Based on the results from HALT, the 

maximum temperature swing with a 10°C buffer is -25C to 70C. This was the limit that 

the system would run continuously without failure. 
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Accelerated Thermal Cycling Profile
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Figure 44 Thermal cycling profiles method #1; test #1 and test #2 

 

 

A second round of accelerated reliability tests using manufacturer supplied daisy chain 

parts is described in the follow section. This next round of testing used the same thermal 

cycling profiles except it was performed in a thermal chamber that used a compressor 

instead of a HALT chamber that uses liquid nitrogen for cooling. What was unclear was 

the role oxidation plays in resistance measurements after crack initiation and crack 

propagation. Does the liquid nitrogen significantly slow the oxidation that takes place at 

the cracked interface?     
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The daisy-chained test board consists of five continuity loops per part (Figure 45).  There 

is one continuity loop for each of the four corners of the package and a fifth continuity 

loop that ties all the middle pins together.  This continuity scheme was chosen to allow 

for an evaluation of where the initial failure site occurs.  Having a continuity loop for the 

middle pins provides an indication of how crack propagation continues towards the center 

of the package. 

 

The continuity measurements were made using a four-wire resistance measurement set-

up with the sense and force lines tied together at the QFN.  Custom-built MUXs boards 

along with custom software were used to measure solder-joint continuity at each 

temperature set point.  The continuity measurements were made 5 minutes after the 

product reaches the temperature set point. 

 

Figure 45 Daisy-chain test pattern 
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The two stress profiles for the second round of testing with daisy-chained parts are shown 

in Figure 46 below.  

Second Round Accelerated Thermal Cycling Profile
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Figure 46 Thermal cycling profiles for method #2; test #1 and test #2 

 

 

4.3 Reliability Stress Test Method 1 

The first accelerated life test started on February 5, 2008 and ended on February 12th after 

139 thermal cycles and 81% of the parts failing. The second accelerated life test started 

on February 14th, 2008 and ended on February 22, 2008 when 73% of the parts had 

failed. 

 

The testing was performed on actual product and not with daisy-chained “non functional” 

components to determine the presence of soldered-joint failure. This approach was taken 
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over daisy-chained parts so testing could start right away. A second round of accelerated 

life tests will repeat these experiments using daisy-chained parts. The results from the 

daisy chain test will be compared with these results. The second advantage to using 

active components and looping diagnostic software over daisy-chained parts monitored 

by a four-wire Kelvin measurement is that there is no uncertainty about the failure mode. 

When doing a four-wire measurement, the definition of failure needs to be defined. Is it a 

2X increase in resistance, exceeds minimum value (i.e. 300 mΩ) or an increase by a 

certain amount. The disadvantage to this test method is that a failure could be due to a 

cracked solder-joint or a faulty ASIC. Unless failure analysis in performed for every 

failure, there will be risk that other failure mechanisms influenced the test results. A 

visual inspection was performed on all failed QFN packages to verify that the failure was 

due to a cracked solder joint. However, visual inspection is not very effective because the 

device is leadless. Also, FA was performed only on a few devices to confirm failure 

mechanism. 

 

4.3.1 Reliability Stress Test Method 1: Test #1 Results  

Testing was performed on February 5th, 2008 and ended on February 12th, 2008. The test 

was terminated with 81% of the parts failing. The cycles to failure were entered into 

Reliasoft’s Weibull++ version 6 and a 2-parameter Weibull distribution was assumed. 

The times to failure are shown in table 12.The table provides the thermal cycle number 

when it failed, a time and date stamp, number of failures occurring at cycle number. In 
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addition, the “Part Temp” column provides the internal die temperature at the time of 

failure and the color shading, red or green, denote the part of the thermal cycle the failure 

occurred. If the failure occurred at the high temperature set point, the shade is red. If the 

failure occurred during a cold temperature, the shading is green. 

 

Part Temp
Thermal
Cycle # Date & Time Failing Channels Fail Cnt

Part 
Temp

Thermal
Cycle # Date & Time Failing Channels Fail Cnt

-19.1 76 2/8/08 1:26 AM Channel 5 1 52.5 131 2/12/08 12:26 PM Channel 32 1
62.9 85 2/8/08 8:18 AM Channel 71 1 75.5 131 2/12/08 12:42 PM Channel 50 1
40.8 90 2/8/08 11:49 AM Channel 102 1 -19.3 132 2/12/08 12:53 PM Channel 94 1
-13.6 91 2/8/08 12:30 PM Channel 64 1 -18.4 132 2/12/08 12:54 PM Channel 24 1
40.5 94 2/11/08 9:48 AM Channel 30 1 -7.7 132 2/12/08 1:06 PM Channel 26,28 2
12.0 98 2/11/08 12:18 PM Channel 126 1 21.4 132 2/12/08 1:07 PM Channel 72,74,76,118 4
69.5 102 2/11/08 3:42 PM Channel 122 1 -3.4 133 2/12/08 1:29 PM Channel 46,57 2
73.0 102 2/11/08 3:52 PM Channel 112 1 16.6 133 2/12/08 1:50 PM Channel 67 1
72.5 106 2/11/08 6:37 PM channel 88 1 32.0 135 2/12/08 3:17 PM Channel 101 1
15.8 108 2/11/08 7:51 PM Channel 91 1 54.8 136 2/12/08 3:37 PM Channel 14 1
53.8 111 2/11/08 9:38 PM Channel 12 1 29.2 136 2/12/08 4:00 PM Channel 44, 81 2
-5.6 112 2/11/08 10:23 PM Channel 111 1 29.5 138 2/12/08 5:04 PM Channel 40 1

-18.6 112 2/11/08 10:27 PM Channel 68 1 -21.7 138 2/12/08 5:19 PM Channel 114 1
-14.1 113 2/11/08 11:07 PM Channel 48 1
52.3 114 2/12/08 12:13 AM Channel 96 1
55.6 114 2/12/08 12:14 AM Channel 108 1
-19.6 115 2/12/08 12:35 AM Channel 54 1
66.3 116 2/12/08 1:44 AM Channel 58 1
-8.2 117 2/12/08 1:59 AM Channel 104 1

-20.3 117 2/12/08 2:08 AM Channel 4 1
66.5 120 2/12/08 4:06 AM Channel 6 1
-11.9 121 2/12/08 5:11 AM Channel 92 1
16.7 121 2/12/08 5:12 AM Channel 18 1
-17.1 125 2/12/08 7:48 AM Channel 42 1
56.5 125 2/12/08 8:08 AM Channel 52 1
65.6 125 2/12/08 8:12 AM Channel 120,124 2
-14.8 126 2/12/08 8:28 AM Channel 36 1
18.7 127 2/12/08 9:31 AM Channel 116 1
58.9 128 2/12/08 10:18 AM Channel 38 1
-19.9 130 2/12/08 11:30 AM Channel 21 1
-19.5 131 2/12/08 12:05 PM Channel 0,2, 2

Total Failing Channels 52
Total Channels 64

Suspensions 12
% Surviving 19%

% failing 81%  

Table 16  Cycles to failure for accelerated test #1 

 

The cycle time to failure data was entered into Reliasoft’s Weibull++ 6.0. The Reliasoft 

distribution wizard evaluates the failure and suspension data to determine how well it fits 

different distribution models like Weibull, normal, lognormal . . . etc. Based on the 

results from the distribution wizard, the data are best fit by a 2-parameter Weibull plot 

(Figure 47). The decision to use a two parameter Weibull is consistent with earlier 
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assumptions and allows easy comparison between results. The two parameter Weibull 

model is shown in Figure 48. The key values for the Weibull model are the shape factor 

β=8.11, the characteristic life η=133.7 and the correlation coefficient ρ=0.992 which 

means the data fits well to the model. The failure rate data is summarized in Table 17. 

 

 

Figure 47 Failure distribution model ranking 
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Figure 48 Weibull unreliability distribution for thermal cycling test #1 

 

The resultant Weibull distribution is: 
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The mean time to failure is: 
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Test # Thermal Cycling Range Nf(1%) Nf(50%) Nf(63.2%) β 

1 -25 oC to 70 oC 76 128 134 8.11 

Table 17 Failure rate summary using developed Weibull: Method 1 test #1  
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4.3.2 Reliability Stress Test Method 1: Test #2 Results  

Testing was performed on February 14th, 2008 and ended on February 21st, 2008. The test 

was terminated with 73% of the parts failing. The cycles to failure were entered into 

Reliasoft’s Weibull++ version 6 and a 2-parameter Weibull distribution was assumed. 

Based on the results from the distribution wizard, the data was best fit by a 2-parameter 

Weibull plot (Figure 49). The times to failure are shown in Table 13 and the two 

parameter Weibull model is shown in Figure 50. The key values for the Weibull model 

are the shape factor β=10.22, the characteristic life η=225.56 and the correlation 

coefficient ρ=0.9918 which means the data fits well to the model. 

 

 

Figure 49 Failure distribution model ranking 
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Part Temp
Thermal
Cycle # Date & Time Failing Channels Fail Cnt

Part 
Temp

Thermal
Cycle # Date & Time Failing Channels Fail Cnt

70.4 149 2/19/08 12:42 AM Ch 126 1 9.2 218 2/21/08 12:50 AM Ch 46 1
64.9 153 2/19/08 3:28 AM Ch 124 1 -0.3 218 2/21/08 12:51 AM Ch 16 1
57.4 162 2/19/08 9:45 AM Ch 76 1 63.4 219 2/21/08 1:58 AM Ch 66 1
5.5 174 2/19/08 5:48 PM Ch 4 1 16.6 222 2/21/08 3:39 AM Ch 71 1

66.6 175 2/19/08 7:02 PM Ch 120 1 1.1 224 2/21/08 5:05 AM Ch 18 1
44.7 181 2/19/08 11:05 PM Ch 56 1 68.6 228 2/21/08 8:29 AM Ch 110 1
0.5 187 2/20/08 2:58 AM Ch 103 1 -1.7 230 2/21/08 9:20 AM Ch 97 1
3.3 188 2/20/08 3:40 AM Ch 54 1 -1.6 230 2/21/08 9:28 AM Ch 101 1
6.7 189 2/20/08 4:22 AM Ch 123 1 -1.6 231 2/21/08 10:02 AM Ch 78 1
0.7 189 2/20/08 4:24 AM Ch 113 1 54.5 231 2/21/08 10:23 AM Ch 50 1

49.8 190 2/20/08 5:26 AM Ch 82 1 51.7 238 2/21/08 2:59 PM Ch 40 1
14.5 194 2/20/08 7:53 AM Ch 85 1 65.1 238 2/21/08 3:30 PM Ch 53 1
54.0 195 2/20/08 8:58 AM Ch 86 1 64.0 239 2/21/08 3:41 PM Ch 28 1
0.8 196 2/20/08 9:19 AM Ch 108 1
-1.3 197 2/20/08 10:05 AM Ch 62 1
50.9 199 2/20/08 11:47 AM Ch 116 1
-1.9 200 2/20/08 12:15 PM Ch 81 1
11.4 202 2/20/08 1:32 PM Ch 44 1
28.4 203 2/20/08 2:35 PM Ch 11 1
23.3 204 2/20/08 3:17 PM Ch 119, Ch 115 2
48.6 205 2/20/08 4:01 PM Ch 99 1
19.8 206 2/20/08 4:21 PM Ch 33 1
6.3 207 2/20/08 5:04 PM Ch 48 1
0.6 207 2/20/08 5:13 PM Ch 35 Ch 34 1
-1.2 207 2/20/08 5:19 PM Ch 37 1
59.5 208 2/20/08 6:10 PM Ch 39 1
33.5 210 2/20/08 7:10 PM Ch 59 1
-2.8 210 2/20/08 7:29 PM Ch 2 1
10.7 211 2/20/08 8:13 PM Ch 61 1
39.9 213 2/20/08 9:39 PM Ch 69 1
20.1 214 2/20/08 10:00 PM Ch 15 1
29.5 215 2/20/08 10:42 PM Ch 104 1
4.5 215 2/20/08 11:02 PM Ch 93 1

Total Failing Channels 47
Total Channels 64

Suspensions 17
% Surviving 27%

% failing 73%
Total Cycles 239  

Table 18  Cycles to failure for accelerated test #2 
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The failure data was evaluated using Reliasoft’s Weibull++ version 6.  

 

 

 

Figure 50 Weibull unreliability distribution for thermal cycling test #2 

 

 

The unreliability Function is: 
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The mean time to failure is: 
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Test # Thermal Cycling Range Nf(1%) Nf(50%) Nf(63.2%) β 

1 0 oC to 70 oC 144 218 226 10.22 

Table 19 Failure-rate summary using developed Weibull: Method 1 test #2 
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4.3.3 Solder-Joint Failure Analysis Investigation 

Upon completion of the thermal cycling test, cross sections were made into the lead 

attachment to determine if solder-joint fracture was the root cause of the failure.  Two 

cross sections were made of the failed QFN ASIC (Figure 51).  

 

 

Figure 51 Location of Cross section 

 

As a baseline, a good unstressed QFN solder-joint was cross sectioned (Figure 52). The 

cross section was made along slice 1, which is a transverse section along all of the solder 

joints on one edge of the QFN. The cross section showed no evidence of cracking on any 

of the solder joints.  Some voiding can be seen in the solder, the voiding is located at the 

interface between the QFN and eutectic solder. The intermetallic compounds at the 

interface all appear normal.    

 

Slice 1

Slice 2

Slice 1

Slice 2
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Figure 52 Cross section of an Unstressed QFN Solder connection 

 

Two cross sections of the failed QFN package were performed after completion of 

thermal cycling using method one test number one. The first cross section clearly shows 

the presence of a complete solder fracture between the QFN and solder  

Figure 53).   The intermetallic formation at both the circuit board pad to solder and the 

QFN lead surface to solder appear normal (Figure 54).  The fracture runs completely 

through the solder just below the QFN lead surface.  There is also a large vertical 

displacement in the crack between the solder surface and the QFN lead.  The large 

separation is unusual for a shear solder fracture and suggests that there is a vertical force 

component contributing to the failure.  The vertical force could be due to a preloaded 

stress in the QFN package, package warping or a dynamic warpage that is temperature 

dependent and seen cyclically during thermal cycling.   



 

Page 106  

 

 

 

 

Figure 53 Cross section after completion of thermal cycling (Method 1 test 1) 

 

 

Figure 54 Magnified view of cross section 

 

Cross sectioning a second QFN solder connection occurred along slice number two of 

Figure 51 above. The cross section exhibits more voiding than was observed in the first 
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cross section. However, the solder crack is completely through the solder connection and 

there is a gap indicating a force tending to lift the lead from the circuit bard surface. The 

intermetallic interface at the mating surfaces appears normal for a eutectic connection.  

The fracture is primarily through the solder, indicating a mostly cohesive separation.  

 

 

Figure 55 Cross section along the length of the solder connection (slice #2) 

 

 

Figure 56 Magnified view of slice #2 
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4.3.4 Acceleration Model Analysis 

Having completed accelerated life testing and Weibull distributions defined, an 

accelerated life model is developed. The acceleration rate is defined by an inverse power 

law model. The accelerated life model is constructed by nesting the inverse power law 

model for different thermal cycling ranges into the Weibull reliability model. The 

Weibull reliability model is: 
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The inverse power law model is: 
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The Weibull probability distribution function for an inverse power law acceleration rate 

is: 
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The Weibull failure rate for an inverse power law acceleration rate is: 
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There are four unknowns. They are β, η, A and η. The variables can be solved used Alta 

6.0 reliability software from Reliasoft’s or using hand equations and graphic plotting. 

Both methods were pursued. The first variable, β, should not significantly vary for 

different thermal cycling stress tests. If it does, it is an indication that there could be 

multiple failure modes involved and that the different failure modes may have different 

acceleration models. If there are two failure modes, they need to be treated separately. 

The failure test data would need to be separated into two groups and each failure group 

modeled separately. The system failure is the summation of the two failure models. If you 

are describing the failure in terms of the reliability function R(t), then it would be the 

product of the two reliability equations.  

  

There are several ways to estimate β. One method is average β from the two test results. 

Since there is only two data points and no prior information regarding the failure shape is 
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assumed, the averaging method is considered to be the best. For the two stress test, β = 

8.1099 and 10.2176. The values are close in value, so it is reasonable to assume that there 

is only one failure mechanism involved. The average β based on this method is: 

 

2.9
2

2176.101099.8
2

21 =⎟
⎠
⎞

⎜
⎝
⎛ +

=⎟
⎠
⎞

⎜
⎝
⎛ +

=
βββ  

  

The slope n, can be determined graphically by plotting the characteristic life on a life vs. 

stress chart. The two data points for the characteristic life determined for test one and test 

two are plotted. For test #1, η=132 with the thermal cycling stress ΔT=70-(-25) =95oC. 

For test 2, η=226 with the thermal cycling stress ΔT=70-(0) =70oC (Figure 57). 
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Figure 57 Life stress plot for characteristic life 
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Finally, the value of “A” is estimated for the inverse power law model. To calculate the 

value of A this manually requires knowing the two characteristic failures at the two 

thermal cycling levels. For test #1, η=132 and ΔT=70-(-25) =95oC, for test 2, η=226 and 

ΔT=70-(0) =70oC. For each thermal stress the value for η and ΔT are entered into the 

inverse power law model and the equation is solved for the value of “A”. Upon 

completion, there are two close but different values for “A”. Using the same averaging 

technique used to estimate β, the average value of “A” was determined.  
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Using a hand calculation and graphical plotting the constants for the model are: 

  

β= 9.1637 

A=3.12003x10-6 

n=1.71The final model based on hand calculations is: 
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The alternative method to estimate the values for the constants β, A and n is to use 

Reliasoft’s, Alta 6.0 software. Using Alta 6.0, the values for β, A and n are estimated 

(Figure 58 and Figure 59): 

 

Figure 58 Reliasoft Alta 6.0 plot of accelerated life 
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Figure 59 Reliasoft Alta 6.0 parameters IPL-Weibull model 
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Reliasoft model for the confidence bounds are: 
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Applying Reliasoft’s IPL – Weibull model to the customer use environmental condition, 

we get:  
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The reliability simulation using Monte Carlo provides the following graph (Figure 60): 

 

 

Figure 60 Monte Carlo simulated plot of customer use condition 
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4.4 Reliability Stress Test Method 2 (Daisy-chained Test Board) 

One concern regarding the previous testing is that real parts were used in an operational 

state to determine when a solder-joint failed. The industry standard for this type of testing 

is to develop a test board replicating the use conditions and made of similar parts in a 

Daisy chain pattern. The daisy chain test method measures the change in contact 

resistance as a function of thermal cycling. This was not performed because an answer 

regarding the solder-joint reliability of the QFN slug up package was needed right away. 

Using real QFN ASICs in production material meant no lead time, and testing could start 

right away. Implementing a daisy chain test takes about three months to develop. Daisy 

chain parts need to be manufactured by the supplier using real product package and die. 

Test boards then need to be designed and fabricated. The final step is to have a 

manufacturer assemble the QFN parts onto the test boards.  

 

In addition to repeating the accelerated life test using daisy-chained parts, an 

investigation into ways to improve the solder-joint reliability was conducted. Several 

experiments were conducted. The experiments are: 

 

1) Evaluate the improvement in lead compliance due to the addition of a solder bump on 

top of the QFN, the solder bump add lead compliance. 

2) Evaluate the improvement resulting from increasing the CTE of mold compound to 

reduce global strain between package and circuit board. 
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3) Evaluate the influence Sn versus NiPdAu lead finish plating has on solder-joint 

reliability. 

4) Evaluate the improvement from removal of the solder mask clearance underneath the 

package. 

5) Evaluate the improvement resulting from adding epoxy around the perimeter of the 

package to reduce the stress due to CTE mismatch. 

  

To add a solder bump to each pad, the QFN was flipped around so it was laying flat on 

the top-side paddle. With the leads exposed, a 5 mil solder paste stencil was used to 

dispense solder paste onto each pad. After solder paste inspection, the part went through a 

solder reflow process where the paste would coalesce into a solder bump. The solder 

bump height is estimated to be 2.5 mils after reflow soldering. A 2.5 mil solder bump 

increases the solder-joint height by a factor of 2.  

 

The other solution to be evaluated was a higher CTE mold compound to better match 

thermally with the circuit board. The proposed mold compound is a Sumitomo EME-

7730LF compound with a CTE of 9x10-6/oC. Increasing the CTE of the mold compound 

better matches it thermally to the circuit board. If the two are perfectly matched, then no 

stress would be created at the solder-joint from a change in ambient temperature.   
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4.4.1 Daisy-Chained Circuit Board Design 

The daisy chain test boards were designed to be very similar to the production design 

concept. The daisy chain test board has the same outline drawing as the production 

design. The test board has the same length, width and thickness as the production design. 

The test board used the same lamination spec as the production design. Thus, the design 

has the same number of circuit board layers, layer thicknesses and copper weight as the 

production design. To achieve this equivalency the product circuit board was used with 

the top layer modified to incorporate the daisy chain pattern (Figure 61). This ensured 

equivalency between the two methods used for solder-joint reliability testing. The test 

board has two rows of QFN devices. Each row contains 16 daisy-chained QFN packages. 

The reference designators for the 32 to QFN’s under test are shown in (Figure 62) 
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Figure 61 Product circuit board showing QFN's  
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Figure 62 Test board with reference designation for 32 daisy chain QFN’s 
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The daisy chain test pattern consisted of five continuity loops (Figure 63). Four 

continuity loops were used to monitor the corners of the package. These loops are 

referenced Loop 1, Loop 2, Loop 3 and Loop 4. Loop 5 measures the middle leads 

around the four sides of the package. The five test loops will be used to determine the 

location of the initial failure due to an increase in resistance. This test strategy will show 

if a particular corner is more likely to fail or if failure is occurring first in the center of the 

package.. 

 

Figure 63 Daisy chain QFN package with five continuity loops 
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The daisy chain QFN package is based on the same physical package as the production 

QFN package. The daisy chain package has the same outline drawing, package thickness, 

pad pattern and material stack up as the production package. The major difference 

between the two packages is that the die used for the daisy chain QFN package is 

physically the same but is an electrical reject from wafer fabrication. Every other pad of 

the daisy chain part is connected internally at the carrier through a one mil gold wire 

bond (Figure 64). 

 

 

Figure 64 Daisy chain pattern 
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Resistance measurements were made using a four-wire measurement test set up. The 

force and sense lines are tied together at the circuit board; this removes the resistance of 

the cables going to the circuit board and the connector at the circuit board. The resistance 

path going from the edge of the circuit board through the daisy chain path and back 

varied between 0.200 and 0.300 ohms. Two base line resistance measurements were 

made during the first thermal cycle. Base line resistance measurements were made at both 

the upper and lower temperature limit. The product temperature was determined by 

placing a thermal couple on the circuit board under test. The base line measurements 

were recorded five minutes after the product temperature set point was reached. The five 

minute dwell ensured temperature stability before taking resistance measurements. A 

failure in the connection was recorded when the change in resistance increased 0.300 

ohms.   

4.4.2 Reliability Stress Test Method 2: Test #1 (0oC to 100 oC) 

Test number one consisted of thermal cycling four test boards between 0oC and 100oC. 

The four test boards contain the following six experiments: 

Experiment #1: Sn lead (tin) plating & solder mask removed in middle area 

Experiment #2: Sn lead plating 

Experiment #3: NiPdAu (nickel-palladium gold) lead plating 

Experiment #4: NiPdAu lead plating & solder mask removed in middle area 

Experiment #5: NiPdAu lead plating & new mold compound  

Experiment #6: NiPdAu lead plating & perimeter epoxy  
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Experiment number one evaluated the influence solder mask underneath the middle of the 

package has on reliability (Figure 65). Removing the solder mask provides an additional 

couple mils of clearance between the bottom of the QFN package and the top of the 

circuit board. The removal of the solder mask will provide additional clearance should 

the package bow during thermal expansion. 

 

 

Figure 65 Modified solder mask showing removal solder mask removed in middle 

 

Experiment number two is the baseline for the standard QFN package with tin lead 

plating. Experiment number three evaluates the improvement in reliability due to nickel-

palladium-gold lead plating. Experiment number four will evaluate the improvement in 

reliability due to nickel-palladium-gold lead plating and solder mask removal underneath 

the middle of the package. Experiment number five evaluates the reliability improvement 
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due to nickel-palladium-gold lead plating and a new mold compound with a higher CTE. 

The new mold compound has a CTE of 9.0x10-6 which better matches the CTE of the 

printed circuit board. The final experiment evaluates the improvement in reliability due to 

nickel-palladium-gold lead plating any perimeter bead of epoxy (Figure 66).  

 

 

Figure 66 Perimeter bead epoxy 

 

Temperature cycling test was performed on March 26th, 2008 and ended on April 29th, 

2008 Testing was terminated after 988 thermal cycles. After 988 thermal cycles, 

experiments #1 through #5 had 100% of the QFN packages failed for solder-joint 

reliability. Experiment #6, which had the perimeter epoxy, had zero failures. The cycles 

to failure data was entered into Reliasoft’s Weibull++ version 6 and a 2-parameter 

Weibull distribution model was used to fit the data. The times to failure are shown in 

Table 20 and Table 21. The tables show the number of thermal cycles to failure, the 

increase in resistance and the temperature at which failure occurred. The increase in 

resistance is noted in the column titled “Delta Value”.  The column titled “Chain #” 

references the chain loop where failure occurred. Only the first failure in the part was 
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recorded. A loop failure is defined as an increase in loop resistance of 0.300 Ohms or 

greater. The Weibull charts for experiments 1 through 5 are shown in Figure 67 through 

Figure 71. 
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Accelerated Reliability Stress Test Method #2: Test #1 (0oC to 100oC) 

Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain #

100 46 0.540389 U29_00 Chain 1 100 32 0.641348 U30_16 Chain 4 100 107 0.876938 U34_56 Chain 4

100 50 1.790511 U31_00 Chain 3 100 34 211000000 U31_24 Chain 1 0 121 0.520811 U31_40 Chain 1

100 61 0.60968 U30_00 Chain 4 100 35 0.301062 U30_24 Chain 3 100 122 0.536913 U29_40 Chain 1

0 70 0.532012 U29_00 Chain 4 0 37 0.502 U29_08 Chain 4 100 123 0.302619 U31_56 Chain 4

0 72 2.890838 U31_00 Chain 1 0 39 10.734418 U34_08 Chain 4 0 126 0.353928 U29_48 Chain 2

100 72 0.307148 U34_00 Chain 4 0 42 0.517546 U29_08 Chain 4 100 126 0.569566 U30_48 Chain 4

100 79 0.526871 U34_00 Chain 3 100 45 14.518699 U31_24 Chain 4 100 130 0.580926 U31_56 Chain 4

100 94 0.652798 U30_00 Chain 3 0 46 0.57865 U29_24 Chain 4 0 138 0.519793 U30_48 Chain 1

100 47 0.774022 U30_08 Chain 3 100 138 0.470947 U34_40 Chain 2

0 47 211000000 U29_24 Chain 4 100 138 0.681592 U31_40 Chain 4

100 48 0.630163 U31_16 Chain 5 0 139 0.421633 U34_48 Chain 4

100 50 0.477427 U34_16 Chain 5 100 141 0.555188 U34_56 Chain 2

0 53 0.442077 U34_24 Chain 3 100 142 0.348435 U29_56 Chain 3

100 53 0.441528 U31_16 Chain 4 100 142 0.451763 U30_56 Chain 4

100 58 0.950425 U31_08 Chain 4 0 146 0.382737 U29_48 Chain 1

100 59 1.535227 U30_08 Chain 3 0 153 0.571381 U29_40 Chain 2

100 59 0.725861 U30_24 Chain 4 0 153 0.939705 U34_48 Chain 2

100 62 0.637081 U31_08 Chain 3 0 158 0.637537 U34_40 Chain 2

100 62 0.530844 U34_08 Chain 5 100 162 0.323779 U29_56 Chain 3

0 63 0.415596 U29_16 Chain 1 100 163 1.854419 U30_40 Chain 2

100 63 0.401749 U34_24 Chain 4 0 165 0.692816 U30_40 Chain 4

100 67 0.739843 U29_16 Chain 4 100 172 0.599806 U31_48 Chain 2

0 72 0.347053 U30_16 Chain 4 100 175 0.430904 U31_48 Chain 4

100 89 0.43485 U34_16 Chain 4 100 183 0.547935 U30_56 Chain 1

8 24 24

8 24 24

0 0 0

0% 0% 0%

100% 100% 100%
346      346      346      

% Surviving

Total Cycles

Total Failing Devices

Total Devices

Suspensions

% Surviving

Total Cycles

Suspensions

Total Failing Devices

Total Devices

Total Failing Devices

Total Devices

Suspensions

% Surviving

Total Cycles

Exp # 3
NiPdAu

% failing % failing % failing

Exp # 1
Sn & Cleared Solder Mask

Exp # 2
Sn

 

Table 20  Experiments #1, #2 and #3 failure data 
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Accelerated Reliability Stress Test Method #2: Test #1 (0oC to 100oC) 

Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain #

100 105 0.750417 U30_32 Chain 4 100 261 0.329356 U34_08 Chain 4

0 108 0.43331 U31_32 Chain 4 0 264 0.634581 U34_24 Chain 2

0 118 0.534386 U30_32 Chain 2 100 269 0.380182 U30_00 Chain 4

0 129 0.499747 U34_32 Chain 4 100 271 0.606381 U30_32 Chain 2

100 131 0.453654 U34_32 Chain 4 100 295 0.446916 U30_40 Chain 4

0 132 0.498648 U31_32 Chain 1 100 298 0.306546 U31_32 Chain 4

0 153 0.40872 U29_32 Chain 3 100 298 0.331352 U34_32 Chain 4

0 161 0.437293 U29_32 Chain 1 100 299 0.463599 U29_40 Chain 4

100 300 0.329141 U30_48 Chain 4

100 302 0.702595 U31_48 Chain 1

100 310 0.451779 U30_16 Chain 4

100 317 0.573773 U29_56 Chain 2

100 326 0.329192 U34_48 Chain 1

100 332 0.539214 U31_40 Chain 4

0 335 0.700119 U29_48 Chain 1

100 337 1.539405 U31_00 Chain 3

100 343 1.665067 U34_56 Chain 4

0 344 0.747522 U30_08 Chain 4

0 350 0.555317 U34_16 Chain 3

100 361 0.625414 U29_00 Chain 1

0 378 0.386767 U29_24 Chain 4

100 394 0.466009 U29_08 Chain 4

0 395 1.012432 U29_16 Chain 4

0 411 0.325181 U31_16 Chain 3

100 412 0.625498 U30_56 Chain 4

0 419 0.355383 U31_08 Chain 3

100 420 0.386636 U34_00 Chain 4

100 429 0.557799 U31_56 Chain 3

0 430 0.623764 U29_32 Chain 4

100 431 0.3221 U34_40 Chain 4

100 445 0.444918 U31_24 Chain 3

100 445 0.439272 U30_24 Chain 3

8 32 0

8 32 32

0 0 32

0% 0% 100%

100% 100% 0%
346      530      988        

Total Failing Devices

Total Devices

Suspensions

Exp # 6
NiPdAu & EP1325 Epoxy

% Surviving

Total Cycles

Total Failing Devices

Total Devices

Suspensions

% Surviving

% failing

Exp # 4
NiPdAu & Cleared Solder Mask

Exp # 5
NiPdAu & 7730 Mold Compound

% failing % failing
Total Cycles

Total Failing Devices

Total Devices

Suspensions

% Surviving

Total Cycles  

Table 21 Experiments #4, #5 and #6 failure data   

No failures 
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Experiment #1: Sn lead (tin) plating & solder mask removed in middle area 

 

Figure 67 Tin plated lead with solder mask removed underneath part (0 oC to 100 oC) 

The reliability function is: 
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Experiment #2: Sn lead plating 

 

 

Figure 68 Tin plated lead (0 oC to 100 oC) 

The reliability function is: 
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Experiment #3: NiPdAu (nickel-palladium gold) lead plating 

 

 

Figure 69 NiPdAu plated lead (0 oC to 100 oC) 

 

The reliability function is: 
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Experiment #4: NiPdAu lead plating & solder mask removed in middle area 

 

 

Figure 70 NiPdAu plated lead with solder mask removed underneath part (0 to 100 oC) 

 

The reliability function is: 
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Experiment #5: NiPdAu lead plating & new mold compound 

 

 

Figure 71 NiPdAu plated lead with EME-7730LF mold compound (0 to 100 oC) 

The reliability function is: 
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Experiment #6: NiPdAu lead plating & perimeter epoxy 

 

 

 

 

 

 

 

 

There is no Weibull graph for experiment number six, because there were no failures 

after 988 thermal cycles. 
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Thermal cycling test results summary, thermal cycling from 0oC to 100oC. 

Test # Experiment description Nf(1%) Nf(50%) Nf(63.2%) β 

1 Sn lead plating & no 
solder mask 

28 69 74 4.76 

2 Sn lead plating 22 53 57 4.77 

3 NiPdAu lead plating 92 146 152 9.08 

4 NiPdAu lead plating & 
no solder mask 

75 131 138 7.54 

5 NiPdAu lead plating & 
new mold compound 

202 355 372 7.49 

6 NiPdAu lead plating & 
perimeter epoxy 

No failures 

Table 22 Failure rate summary using developed Weibull model: Method 2 test #1 
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4.4.3 Accelerate Reliability Stress Test Method #2: Test #2 (0 oC to 70 oC) 

Test number two consisted of thermal cycling two test boards between 0 oC and 70 oC. 

The two test boards contain the following three experiments: 

Experiment #7: Sn lead plating 

Experiment #8: Sn lead plating with solder bump on each pad 

Experiment #9: NiPdAu lead plating & new mold compound   

 

Experiments number seven and nine are the same test run previously (Method 2: test#1) 

that went from 0 to 100 C. Only difference is that the test was run at a lower thermal 

cycling stress. Experiment number eight evaluated the reliability improvement due to a 

.003” to .0035” solder bump on each pad. 

 

The thermal cycling test number two started on May 1st, 2008 and ended on May 30th, 

2008 after 1002 thermal cycles. After 1002 thermal cycles experiments #7 through #8 had 

100% failure of the solder joints from the QFN packages. Experiment #9 had 72% of the 

QFN packages with a failed solder joint. The cycles to failure were entered into 

Reliasoft’s Weibull++ version 6 and a 2-parameter Weibull distribution was assumed. 

The times to failure are shown in Table 23. The table provides the thermal cycle number 

when it failed, the measured resistance, temperature when the failure occurred and the 

chain loop that failed. Only the first failure in the part was recorded. A loop failure is 

defined as an increase in loop resistance of 0.300 Ohms or more. The Weibull charts for 

experiments 7 through 9 are shown in Figure 72 through Figure 74. 
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Accelerate Reliability Stress Test Method #2: Test #2 (0 oC to 70 oC) 

Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain # Temp Cycle # Delta Value U # Chain #

0 111 0.532572 U31_08 Chain 4 0 79 0.445455 U34_40 Chain 2 0 508 0.397191 U34_Chain 5

70 112 0.426588 U34_24 Chain 1 70 288 0.437516 U29_32 Chain 1 0 634 0.378006 U34_Chain 4

70 112 0.314468 U30_08 Chain 4 0 329 0.847315 U29_40 Chain 1 70 635 0.323702 U31_Chain 4

70 127 1.76775 U31_16 Chain 4 70 338 0.422952 U31_48 Chain 5 70 665 0.544949 U29_Chain 4

70 143 0.573138 U29_16 Chain 3 70 372 0.567772 U34_48 Chain 2 70 710 0.414854 U29_Chain 4

70 144 0.689407 U34_08 Chain 4 0 378 0.321565 U31_56 Chain 5 70 730 0.581352 U29_Chain 1

0 160 0.501608 U30_24 Chain 5 0 379 0.603408 U34_32 Chain 2 0 741 0.513831 U34_Chain 4

70 163 0.824113 U31_24 Chain 3 70 387 0.643272 U30_56 Chain 1 0 752 0.949579 U29_Chain 4

70 175 0.692118 U29_00 Chain 4 0 389 0.479155 U29_56 Chain 5 70 754 0.412594 U34_Chain 2

70 182 0.3231 U29_24 Chain 4 0 394 0.372253 U30_40 Chain 5 70 757 0.405724 U34_Chain 4

70 183 0.485916 U30_00 Chain 3 70 414 2.177864 U31_40 Chain 2 70 761 0.469538 U30_Chain 4

0 196 0.487097 U29_08 Chain 4 70 439 0.485766 U30_48 Chain 1 70 771 0.344396 U34_Chain 4

70 209 0.342893 U34_16 Chain 3 70 441 0.362536 U29_48 Chain 1 0 782 0.520193 U31_Chain 3

70 218 0.614476 U31_00 Chain 3 70 465 0.407379 U34_56 Chain 2 70 796 0.340176 U34_Chain 4

70 228 0.37707 U30_16 Chain 4 0 493 0.503772 U31_32 Chain 4 0 798 0.481464 U30_Chain 2

70 259 0.488843 U34_00 Chain 4 0 495 0.543957 U30_32 Chain 5 70 818 0.427184 U30_Chain 4

70 823 0.50981 U29_Chain 1

0 824 0.712695 U31_Chain 4

70 833 0.334075 U29_Chain 1

0 834 0.470256 U31_Chain 4

0 910 0.760083 U29_Chain 4

0 914 0.552494 U30_Chain 4

0 988 0.318933 U34_Chain 4

16 16 23

16 16 32

0 0 9

0% 0% 28%

100% 100% 72%
1,002    1,002    1,002    

Exp # 9
NiPdAu & 7730 Mold Compound

Exp # 7
Sn 

Exp # 8
Sn & Solder Bump

Suspensions

Total Devices Total Devices

Total Failing Devices

% Surviving

Suspensions

% Surviving% Surviving

Total Cycles Total Cycles

Total Failing Devices

% failing % failing % failing

Suspensions

Total Devices

Total Cycles

Total Failing Devices

 

Table 23  Failure data from thermal cycling 
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Experiment #7: Sn lead plating 

 

Figure 72 Tin plated lead (0 oC to 70 oC) 

 

The reliability function is: 
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Experiment #8: Sn lead plating with solder bump on each pad 

 

Figure 73 Tin plated lead with solder bump (0 oC to 70 oC) 

 

The reliability function is: 
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Experiment #9: NiPdAu lead plating & new mold compound 

 

Figure 74 NiPdAu plated lead with EME-7730LF Mold Compound (0 oC to 70 oC) 

 

The reliability function is: 
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Thermal cycling test results summary, thermal cycling from 0oC to 70oC. 

Test # Experiment description Nf(1%) Nf(50%) Nf(63.2%) β 

7 Sn lead plating & no 
solder mask 

28 69 74 4.76 

8 Sn lead plating 22 53 57 4.77 

9 NiPdAu lead plating 92 146 152 9.08 

Table 24 Failure rate summary using developed Weibull model: Method 2 test #2 
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4.4.4 Accelerated Reliability life model for Daisy-chained QFN’s 

 

 

 

 

Figure 75 Reliasoft Alta 6.0 parameters IPL-Weibull model 
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Chapter 5:  Sources of Errors 

5.1 Contributing Sources of Uncertainty 

There are several factors that contribute to the uncertainty in the accelerated life testing 

analysis and modeling. Method one life test has three relevant sources of uncertainty, 

they are: 

 

1) A single point failure is due to a different mechanism (i.e. not a solder fracture).  

2) Internal self heating of the QFN causes the temperature at the body to be different than 

the HALT chamber set point.  

3) Coldplate attachment normal force 

 

Three assumptions made to the reliability model also contribute to uncertainty, they are: 

4) QFN package body treated as a single element with the CTE assumed to be entirely 

made up of the mold compound. The effective package CTE should include the influence 

the die, lead frame and paddle have on the CTE for the package. 

5) Solder-joint lead attach is assumed to be ideal and does not take into account 

variability due to manufacturing. 
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6) Any intrinsic preloaded stress the package has after soldering to the circuit board. Any 

package warpage would result in additional normal force that will accelerate crack 

initiation and propagation. 

 

Each of the contributing sources of error is considered below: 

 

1) A failure occurs that is associated with a different failure mode other than solder-joint 

fatigue at the solder connection. The dominat failure mode is low-cycle fatigue failure 

due to thermal cycling and high strain from CTE mismatch and solder creep. Cross 

sections of failed components confirmed this as the dominant failure mode. However, 

there could be other failure mechanisms that arise and are assumed to be due to a solder-

joint fatigue failure. This source of error in failure recording is more likely to occur in 

test method number one. One reason for this is that test method number one uses working 

production material. In this case, it is a QFN package for a complex ASIC fully tested as 

good prior to stress testing. Thermal cycling the ASIC while powered on and operational 

can cause failures internal to the package. It is possible for the QFN to have an internal 

package failure which is not the result of a cracked solder joint. The most likely internal 

package failures are a broken or cracked wire bond, delamination between the die and 

paddle causing overstress, and a wafer level defect failure.  

 

To minimize this uncertainty, diagnostic software (checkers) was developed to 

continuously test the ASIC functionally. The checkers does not test every cell in the chip 
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but it can fully test its functionality. The failure data from thermal cycling was reviewed 

to verify that the failure signatures were consistent with a degrading or completely 

cracked solder joint. If other failures mechanism did occur, those failures would be 

removed from the data set by changing it to a censored data point. However, each failure 

was not cross sectioned to verify that the presence of a fractured solder joint. The cost to 

cross section every failure would have made the test too costly. There are also 32 QFN 

packages on each test board, cross sectioning a device once it fails would destroy the test 

board and prevent continuing with the thermal cycling test. Upon completion of the 

thermal cycling test, the solder connections on the QFN package were inspected for a 

solder fracture signature.  

 

Several other non-destructive inspection methods were explored to see if they could 

detect the presence of a solder fractures. The inspection methods were X-ray and acoustic 

scanning microscope. Both methods were determined to be ineffective at identifying the 

existence of a solder crack. The sonic scan was unable to adequately penetrate through 

the board (thickness is 0.125”) and the components on the bottom side. The x-ray could 

not get the right angle to view cracking because of it large size, the board is 16 inches by 

20 inches. 

 

2) A second source of error is due to internal heating of the powered on and operational 

QFN ASIC. The QFN ASIC generates 5 watts of internal power at the die level. This 

raises the top-side paddle temperature to 38oC from ambient (20oC). The junction 
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temperature of the die is at 77oC (bulk die temperature is between 52oC and 57oC). The 

internal heat generated by the die causes the package temperature to increase and this 

temperature adds to the chamber temperature. For example, setting the thermal chamber 

temperature to cycle between 0oC and 70oC will result in top-side of the paddle to swing 

between 35oC and 105oC. The error due to internal heating is less than this because the 

package temperature of interest that is relevant to causing a solder crack is the 

temperature at the bottom of the package. To determine the temperature at the bottom of 

the device, the ratio of the heat dissipation between the top and the bottom of the device 

is needed. Based on input from the thermal design engineer, 90% to 95% of the power 

dissipates through the top of the device leaving only 5% to 10% dissipating through the 

bottom and sides. The high thermal efficiency is the result of silicon die thermally 

bonded with silver epoxy to the back side of the thermal paddle. This creates a very 

efficient thermal path from the die to the thermal slug on the top side. The top-side of the 

paddle is connected to a cold plate through a thermal interface material (TIM). Therefore, 

there is very good thermal efficiency between the regulating Coldplate and the silicon 

die. In contrast, the epoxy mold compound has very poor thermal conducting properties. 

An estimate of the heat at the bottom of the package can be determined by considering 

the die to be a uniform thermal radiator and determining the heat increase on the bottom-

side of the package due to internal heating (figure 37). The increase in body temperature 

at the bottom of the package due to internal heating is 2.46oC.   
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Figure 76 Cross section of QFN assembly 
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3) Test method number used a liquid coldplate that is attached to the printed circuit 

board. The QFN package is sandwiched between the colplate and the printed circuit 

board. The coldplate has a lower thermal resistance and provides a faster thermal transfer 

of energy from the thermal chamber to the component. The coldplate also provides a 

compressive normal force on the component. The compressive force will increase the 

time it takes for crack initiation to occur and slow down the crack propagation rate.  

 

4) The QFN model for the package assumed it to be composed entirely of the epoxy mold 

compound.  However, the QFN package structure is more complex than that. There is a 

lead frame (CTE =16.7PPM), silicon die (CTE =3PPM), internal gold wire bonds (CTE 

=14PPM), silver epoxy (CTE =19PPM) that bonds the die to the lead frame and tin 

plating over the C194 lead frame (Table 25). All these factors influence the effective 

CTE of the package and require finite element modeling to evaluate. However, the 

models presented in this paper do not take these factors into account. 



 

Page 152  

 

 

 

AT23/MAX9979 68L 10x10TQFN Packaging material CTE 

  

  

COEFFICIENT OF THERMAL 

EXPANSION 

MATERIAL (CTE, um/m/°C, or ppm/°C;) 

Lead frame (C194) 16.7 

Die attach (Ablebond 8200T) 61 (below Tg), 195 (above Tg), Tg: 83 'C 

Mold compound (Sumitomo G770HCD) 7 (below Tg), 34 (above Tg), Tg: 135'C 

Silicon die 3 

Gold wire 14 

Tin (Sn) 20.0 

Silver (Ag) 19.0 

BCB (Benzocyclobutene, spin on Die Coating) 40-50 

Table 25  CTE values for the components making up the QFN 

 

 

5) Another source of error is from the circuit board manufacturing process which 

introduces variability in the quality of the solder joints (solder height and wetted surface 

area). There are two reasons for this uncertainty.  First, the QFN device has a lead frame 

with nickel-palladium-gold finish.  However, after QFN manufacturing, mold flash was 

discovered on the leads. To fix the problem, the manufacturer applied a buffing process 
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to remove the flash mold material from the lead. The process also removed the nickel-

palladium-gold finish. To correct for the removal of the lead plating finish, the 

manufacturer added a tin plating process making the lead tin plated and not nickel-

palladium gold. It is believed that the buffing and re-plating process may have left a 

residue on the lead that could reduce the solder wetting surface area or create an 

undesired interface surface. No EDS testing was performed to determine the presence of 

contamination and X-rays of the soldered surface did not show significant voiding. 

 

A second variable for solder-joint quality is the circuit board manufacturing assembly 

process. The percent of the wetted surface area between the lead and the pad plays a 

critical role in solder-joint life. Poor wetting reduces the surface area under the lead that 

shares the shear load. Reducing the soldered cross sectional area reduces the strength of 

the termination and reduces the cycle time for crack propagation to become a failure. 

With a leadless connection, the solder-joint is not visually inspectable. Therefore, 

techniques like x-ray and acoustic scan are required. Unfortunately, both of these have 

limitations22. Acoustic scan which can detect air gaps did not to penetrate well from the 

bottom-side to provide an adequate picture. Automated x-ray can show areas of voiding 

but is susceptible to false failures. The parts were all x-rayed, looking for gross defect 

like solder bridging and opens. However, a small amount of voiding can influence solder-

joint life.  
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6) Cross-sections of the failed solder connections after thermal cycling showed a large 

separation in height between the QFN lead and the circuit board. Normally, the 

separation in height of a failed solder connection due CTE mismatch is small; this is 

because the force causing failure is sheer. The presence of a large separation in height 

suggests that there is a normal force contributing to failure. A normal force, if present, 

will accelerate crack propagation. The contribution of a normal force to fatigue failure is 

not part of the classical reliability models presented earlier. The source of the normal 

force, if present, could come from either the QFN package or the circuit board not being 

flat. The warpage spec for the circuit board is 0.1%. Using the circuit board warpage 

spec, the worst case warpage under the QFN package can be estimated. For a 10 mm 

(0.393”) square QFN package, the diagonal distance across the package is 0.556”. 

 

( ) "5558.020.393"  package  theof diagonal  theacross Distance ==  

 

The worst case warpage is a single node concave or a convex structure. The maximum 

warpage is measured from neutral point which is the center of package to the farthest 

corner. Therefore, the maximum distance from the neutral point is 0.2279 inches. If the 

worst case warpage is 0.1%, then the maximum height due to warpage is 2.78 x 10-4 

inches. This maximum height separation due to board warpage is small and not 

considered a significant factor. Typically, board warpage becomes a factor when the 

separation in height is 0.001 inch or greater.  
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The other potential contributor to a normal force at the solder connection is from the 

QFN package. The thermal model for the QFN package body assumed it to be uniformly 

made up of a mold compound. However, there is a paddle, die and lead frame that 

influence the effective CTE of the package and cause residual stress. Stress is created 

when the components that make up the package body cool at different rates and there is 

significant CTE mismatch (Figure 77). 

 

Figure 77 QFN package with topside paddle 

 

The lead frame goes around the perimeter of the package and has four cross beam 

structures that connect to the top and bottom of the package. The lead frame attaches the 

leads at  the bottom perimeter to the top of thermal paddle. The lead frame is a stamped 

metal part that has four diagonal bars in the corners that support the paddle and die during 

molding and keeps the lead frame to the package centered. The copper lead frame has a 

CTE of 16.7 PPM which matches close to the PCB but is over twice the CTE of the mold 

compound. A significant CTE mismatch can result in a preloaded stress in the package. A 

preloaded stress can form from the molding process, which introduces heat to the QFN 

package during forming. As the package cools, the internal elements cool at different 

Die
Paddle
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Lead Frame

Gold Wire Die
Paddle

Die Attach Material

Lead Frame

Gold Wire



 

Page 156  

 

 

rates than the mold compound. This is possible because the thermal capacity of the 

paddle and lead frame is significantly greater than thermal capacity of the plastic mold 

the compound. The CTE and thermal capacity differences in the package create residual 

stress in the package after it has cooled. The residual stress affects the flatness of the 

QFN package which can be measured using a shadow moiré test.  

 

To evaluate QFN package warpage with top-side paddle, three parts were sent to 

AkroMetrix TherMoiré for a shadow moiré test.  A baseline measurement was made on 

each part to determine component flatness.  The modules measured for baseline were not 

subjected to any preconditioning or pre-baked. The measurements were made on 

unmounted QFN packages placed on their back with the paddle facing down.  This is 

analogous to placing the QFN with its leads facing up. The baseline measurements will 

show if there is any warpage in the QFN package indicating the presence of a preloaded 

stress. The baseline measurements were made at an ambient temperature of 23°C.  

 

After the baseline measurements were made, each part went through a slow temperature 

ramp up to the peak reflow temperature for eutectic solder (Figure 78).  The temperature 

profile started at 23°C and slowly ramped to 220°C and then back to ambient. A shadow 

moiré measurement was made every 10°C during the temperature ramp to 220°C and 

back to ambient.  The shadow moiré measurements will show if there are internal strains 

taking place during solder reflow and provides a graphic three dimensional image of the 

package flatness. The pictorial view shows the QFN looking from the bottom-side up. It 
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is like flipping the part on its back and viewing it looking down into the bottom-side of 

the QFN.  The shadow moiré test will also provide an indication if these forces are 

present in the controlled thermal cycling tests.   

 

 

Figure 78 Solder reflow profile for shadow moiré test 

 

The results of the baseline shadow moiré test at room temperature indicated there is an 

internal residual stress causing the package to warp in the corners. The amount the 

package is warped is shown in Figure 79. Examination of the raw QFN package before 

soldering showed there is residual stress built in the package. The view looking up from 

the bottom of the package (paddle side) showed the center paddle to be low and the 

corner leads curved up (away from the board) about 2.8 mils above center paddle. 
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Figure 79 Expanded view of Shadow Moire of QFN package at room temperature 

 

The package warpage may be the result of an internal residual stress created during the 

transfer molding and singulation process. During transfer molding, heat is generated in 

the package from the temperature of the injection mold compound. During the cooling 

process, the internal metal structures cool at a different rate than the mold compound. If 

the mold compound cools quickly and the lead frame continues slowly, then residual 

stress develops due to the significant differences in thermal shrinkage rates23,24. This 

could explain why the package is warped at room temperature.  

 

The results from the shadow moiré temperature cycle test for the three QFN packages 

exposed to a solder reflow profile is illustrated in figure's Figure 80.  The dark red areas 
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are high points and the dark blue areas are low point. A blue dark color represents a flat 

plane. All three QFN packages had some degree of internal residual stress at the 

beginning of the test.  The residual stress decreased with increasing temperature and 

almost completely relaxed above 160°C.  However, the residual stress returned when the 

device cooled back to ambient temperature.  There was a reduction in the amount of 

residual stress after going through a solder reflow profile and returning to ambient 

temperature.  As the device cooled from reflow temperature back to ambient, there are 

two temperature ranges where the device experiences an increase in residual stress.  The 

first increase in internal stress is between 160°C and 150°C.  The peak being about 150oC 

where there are 2.1 mils of warp at the corners. All three devices tested had an increase in 

residual stress within this temperature range. As you approach the glass transition of the 

epoxy mold (138oC) the internal stress relaxes.  The second increase in residual stress is 

around 120°C. At 120°C, the QFN wants to curl up at the corners and how the middle 

body section wants to push into the circuit board. The two factors work together to cause 

a normal “pulling” force on the leads. This force acts to pull the corner leads up and away 

from the circuit board. 

 The increase in residual stress was more significant in two of the three devices tested.  

The third QFN showed a modest increase in residual stress within in this temperature 

range. 

 

The shadow moiré tests showed there was a significant difference in the amount of 

residual stress between the three parts before and after.  QFN number two showed the 
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greatest amount of residual stress.  This QFN had significantly greater residual stress 

variation during cool down and was the only device of the three to have significant 

residual stress in the temperature range of 40°C to 30°C. 

 

After the thermal cycling test, the built in residual stress still existed in all three QFN’s 

but at a lower level. The residual stress is at the corners of the package that wants to pull 

the corner leads up from the board. The residual tensile stress in the package likely 

accounts for the large separation gap in the fractured solder connection. The residual 

force will also accelerate crack initiation and crack propagation if the package is thermal 

cycled.  
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Figure 80 Shadow Moire of QFN package as it goes from solder reflow to room 

temperature  
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Chapter 6:  Conclusions 

6.1 Summary Conclusions 

A reliability study was performed on a 10mm QFN package that has a top-side paddle. 

The standard QFN package has a bottom-side paddle, which is soldered to the printed 

circuit board. The paddle removes heat from the device through the circuit board via the 

soldered connection. The soldered paddle connection shares the stress load that results 

from a change in temperature due to the CTE mismatch between the QFN package and 

the printed circuit board. Moving the paddle to the top side, allows greater heat removal 

from the device but 80% of the soldered surface area for the QFN package is removed. 

For a large 10mm QFN package the shear stress load induced in the solder-joint is 

significant. A global strain greater than 1% results from an 11.5oC increase in ambient 

temperature. This research investigated the effect the reduced solder surface area has on 

solder-joint reliability due to the CTE mismatch and thermal cycling. 

 

Four methods for modeling solder-joint reliability of a leadless 10mm QFN package 

soldered to an epoxy fiberglass circuit board were used. The reliability models provided 

estimates for solder-joint reliability due to thermal cycling. The solder used to attach the 

QFN package to the circuit board was eutectic Sn63/Pb37. The four methods for 

modeling solder-joint reliability are: 
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Engelmaier Model for a leadless surface-mount  device 

Steinberg Model for a leadless surface-mount  device 

Published industry data for unsoldered bottom-side paddle  

SRS 1.1 software by Jean-Paul Clech 

 

The Engelmaier model for a leadless device calculated the maximum strain energy 

induced on the solder-joint due to a change in temperature. The maximum strain energy 

was entered into a plastic strain-fatigue life relationship model to determine the mean 

useful life of the solder joint. The second prediction method used a Steinberg model for a 

leadless perimeter array package. The Steinberg model balances the forces that result due 

to a change in temperature. The force balance model determines the maximum stress that 

results in the solder-joint due to a change in temperature. The maximum force was then 

applied to a log-log S-N fatigue curve to determine the mean life. The third analysis 

method used published reliability data for a QFN package with bottom-side paddle to 

estimate the reliability of a QFN package paddle up. Using published reliability data, 

scaling factors for mold compound, circuit board thickness and lead type were made.  

The model also assumed that the bottom-side paddle was not soldered to the circuit 

board. The last analysis used an SRS software program by Jean-Paul Clech for a leadless 

package. The SRS software program is based on published reliably tests for a leadless 

device. The software model uses details about the QFN package, circuit board and solder 

type to determine the global and local strain energy due to temperature cycling. The 
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maximum strain energy is then used to determine solder-joint reliability in a method 

similar to the Engelmaier model. The main difference is that the Clech model uses it own 

derived constants for strain fatigue relationship model. The results from the four 

modeling methods are shown in tables below: 

 

CDF   

(cycles to failure) 

Comparison of experiment and modeling results  

 (Thermal cycling = 0oC to 100 oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 29 78 84 

Steinberg 68 197 216 

Amkor published Data 111 179 186 

Clech SRS software model 56 87 93 

CDF   

(cycles to failure) 

 

(Thermal Cycling = 0oC to70oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 52 149 162 

Steinberg 141 422 462 

Apply industry published papers (Amkor Data) 172 267 285 

SRS software model 117 193 202 

Table 26 Summary of reliability models for solder-joint reliability 
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The results from reliability prediction modeling showed that all four methods for 

predicting solder-joint fatigue life of a LCCC package provided results within a factor of 

less than 3X. The Engelmaier model and Clech software program provided results that 

were similar, both approaches used a similar model with different constant values. All 

four prediction methods indicated that failures would occur early in the accelerated stress 

test. The models also show the two strongest factors affecting solder-joint life are lead 

compliance in the form of solder-joint height and CTE mismatch between the package 

and circuit board.  

 

Two methods for accelerated stress testing were performed to determine solder-joint 

reliability of a 68 pin leadless QFN package with top-side paddle. The two tests methods 

were: 

 

Method #1: Used a functional instrument with 10mm QFN packages attached. The 

functional instrument had a liquid-cooled coldplate that mated to the QFN ASIC through 

a thermal interface material. The QFN packaged ASIC was biased and operational during 

the thermal cycling tests. The functional instrument used developed software checkers 

that continuously looped on the QFN ASIC device to monitor functionality.   

Method #2: The second method used a more traditional of approach of designing a daisy-

chained test board with daisy-chained dummy QFN packages and no coldplate. The QFN 

dummy package was manufactured by the same supplier as the QFN ASIC package. The 
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dummy parts had non functional die attached that came from wafer level rejects of the 

QFN ASIC.  

 

The test boards for method #1 and method #2 were the same in respect to circuit board 

size, layer stack up and copper density. Each accelerated test consisted of thermal cycling 

between two different stress levels. The higher temperature delta stress test was done at 

either -25oC to 70oC or 0oC to 100oC. The thermal cycling test for method #1 was 

performed at -25oC to 70oC which is the maximum stress range the instrument will run 

reliably with diagnostic checkers looping.  The daisy-chained test was thermal cycled 

from 0oC to 100oC. The temperature delta stress test was done at 0oC to 70oC for both test 

methods.  

 

Results from accelerated reliability testing method number one which had Sn-plated leads 

performed fractionally better than the QFN dummy packages with similar lead plating. 

The improvement is likely due to the coldplate attachment. The coldplate provided a 

small normal force on the package that worked to slow both crack initiation and crack 

propagation. The normal force from the coldplate countered the package warpage due to 

internal residual stress. QFN package had a (instrument level with functional ASICs) 

performed somewhere between the performance of the Sn-plated and NiPdAu-plated 

daisy-chained parts. The colplate improved solder-joint reliability of the QFN package 

about 2.3X.   
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The results from thermal cycling tests showed good correlation to the models developed 

to predict solder-joint reliability. The QFN with tin (Sn) plated leads failed significantly 

earlier than any of the other tests. It was learned from the manufacturer that that there is a 

buffing process that takes place before Sn plating. After buffing, there is a cleaning 

process to remove debris and contamination on the leads. It is possible that the cleaning 

process left residue that resulted in a reduced solder-joint life. No testing was performed 

to verify the presence of residue. The nickel-palladium-gold (NiPdAu) leads provided 

2.1X improvement in solder-joint reliability.  Adding a .0025” solder bump to the bottom 

of the lead provided 2.3X reliability improvement. The higher CTE mold compound with 

a NiPdAu lead part provided 5X improvement. Thus, a higher CTE mold compound with 

solder bumps should provide about 11.5X improvement in reliability. Removing the 

solder mask underneath the QFN had a small and inconclusive effect on solder-joint 

reliability. Finally, the value assumed for beta that was used in the Engelmaier and 

Steinberg model was 4.0. This turned out to be low by a factor of about 2X. A summary 

of the test results acceleration factors is shown in Table 27.  

 

Variable Reference Change Multiplier
Temp. Cylce 0<>100C 20<>40C, 2 cycles/hr 62.4
Temp. Cylce 0<>70C 20<>40C, 2 cycles/hr 24.9
Lead Plating Sn NiPdAu 2.1
Mold Compound* G770 EME-7730LF (New) 5.0
Solder Bump None Add .0025" solder bump 2.3  

Table 27 Scale factors based on thermal cycling test results 
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CDF   

(cycles to failure) 

Comparison of experiment and modeling results  

 (Thermal cycling = 0 oC  to 100 oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 29 78 84 

Steinberg 66 166 206 

Amkor published Data 111 179 186 

Clech SRS software model 56 87 93 

Accelerated Life testing results    

Method #1 Instrument level life test with functional QFNs 72 116 120 

Tin plated lead 28 69 74 

Tin plated lead with solder mask removal underneath QFN 22 53 57 

NiPdAu lead 92 146 152 

NiPdAu lead with solder mask removal underneath QFN 75 131 137 

NiPdAu lead with new mold compound 202 355 371 
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CDF   

(cycles to failure) 

Comparison of experiment and modeling results  

(Thermal cycling = 0oC to 70oC) 

1% 50% 63.2% 

Modeling Results    

Engelmaier model for LCCC 52 149 162 

Steinberg 141 405 441 

Apply industry published papers (Amkor Data) 172 267 285 

SRS software model 117 193 202 

Accelerated Life testing results    

Method #1 Instrument level life test with functional QFNs 137 221 229 

Tin plated lead 67 171 185 

Tin plated lead with solder bump 234 405 423 

NiPdAu lead with new mold compound 482 836 876 
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CDF  

(cycles to failure) 

Estimated solder-joint reliability for use condition 

(Thermal cycling = 20 oC to 40 oC) 

1% 50% 63.2% AF* 

Engelmaier model for LCCC  3,317   

Steinberg  9,278   

   SRS software model 7,420 11,590 12,040  

M th d #1 I t t l l lif t t ith f ti lMethod #1 Instrument level life test with functional 

QFNs 

1,339 2,152 2,242 9.7 

Tin plated lead 1,747 1,932 2,072 60.8 

NiPdAu lead 5,741 9,110 9,485  

NiPdAu lead with new mold compound 12,605 22,152 23,150 24.9 

NiPdAu lead with new mold compound and solder 

bump 

25,222 50,455 53,572  

Table 28 Summary of results from accelerated testing and modeling 

* Acceleration factor (AF) is based on ΔT=70C stress and ΔT=20C use condition. 
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