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Clouds strongly affect the energy balance and water cycle, two dominant 

processes in the climate system. Low-level liquid clouds have the most significant 

influence on cloud radiative forcing due to their areal extent and frequency. 

Estimation of atmospheric liquid water contained in low-level clouds and the 

precipitation underneath them is very important in meteorology, hydrology, and 

climatology. Space-borne remote sensing data are widely used for global estimation 

of atmospheric liquid water, given that they have a wider spatial coverage than other 

data sources and are spanning many years. However, previous space-borne remote 

sensing techniques have some limitations for estimation of atmospheric liquid water 

in low-level liquid clouds, namely, the vertical variation of droplet effective radius 

(DER) is neglected in the calculation of cloud liquid water path (LWP) and the rain 

underneath low-level liquid clouds can be overlooked. Comprising many state-of-art 

passive and active instruments, the recently launched NASA A-Train series of 

satellites provides comprehensive simultaneous information about cloud and 

precipitation processes. Utilizing A-Train satellite data and ship-borne data from the 

East Pacific Investigation of Climate (EPIC) campaign, in this study investigated is 

  



the estimation of liquid water in low-level liquid clouds, and assessed is the potential 

of cloud microphysical parameters in the estimation of rain from low-level liquid 

clouds. This study demonstrates that assuming a constant cloud DER can cause biases 

in the calculation of LWP. It is also shown that accounting for the vertical variation of 

DER can reduce the mean biases. This study shows that DER generally increases with 

height in non-drizzling clouds, consistent with aircraft observations. It is found that in 

drizzling clouds, the vertical gradient of DER is significantly smaller than that in non-

drizzling clouds, and it can become negative when the drizzle is heavier than 

approximately 0.1 mm hr-1. It is shown that the warm rain underneath low-level liquid 

clouds accounts for 45.0% of occurrences of rain and 27.5% of the rainfall amount 

over the global ocean areas. Passive microwave techniques underestimate the warm 

rain over oceans by nearly 48%. Among the cloud microphysical parameters, LWP 

calculated with DER profile shows the best potential for estimating warm rain, which 

is neglected by traditional techniques of precipitation estimation.  
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Chapter 1: Introduction 

1.1 Rationale 

It has long been recognized that clouds play a dominant role in the Earth’s 

climate and its changes. Clouds strongly affect the energy balance and water cycle, 

two dominant processes in the climate system. Low-level boundary layer clouds have 

the most significant influence on cloud radiative forcing due to their areal extent and 

frequency (Harrison et al. 1990; Hartman et al. 1992). Radiation absorbed by 

boundary layer clouds also plays an important role in the evolution of cloud systems 

and affects water redistribution (Stephens 1999). The effect of boundary layer clouds 

is so strong that even small changes in their optical and microphysical properties are 

likely to have major consequences for climate change. The liquid water path (LWP) is 

an important cloud microphysical property that determines the climatic effects of 

boundary layer clouds. For example, Greenwald et al. (1995) found that a 0.05 

increase in LWP (for LWP < 0.2 ) results in a -25  change in the 

net cloud forcing at a solar zenith angle of 75o.  

2kgm 2kgm 2Wm

Precipitation is one result of cloud development. Cloud droplets grow by 

condensation and coalescence in the rising air. When droplets in a cloud become too 

heavy to remain suspended in the air, they fall to the earth as precipitation. A cloud 

decays as the result of precipitation. Estimation of atmospheric liquid water contained 

in clouds and of precipitation are very important in meteorology, hydrology, and 

climatology. Precipitation estimates are valuable for flood forecasting, numerical 

weather prediction, and climate modeling.  



 

Satellites provide the only means of acquiring global, long-term cloud and 

precipitation measurements. Satellite data has been used in many previous studies to 

estimate cloud liquid water and precipitation, but these studies generally rely on 

single channels or single instruments. The recently launched NASA A-Train satellites 

carry both active instruments and passive instruments with many different channels, 

provides a more comprehensive simultaneous information about cloud and 

precipitation processes than ever before. Utilizing A-Train satellite data and ship 

based data from the East Pacific Investigation of Climate (EPIC) campaign, this study 

investigates the estimation of column-integrated liquid water content for low-level 

clouds and the potential of using cloud microphysical parameters for estimating rain 

from low-level liquid clouds. The instruments on board the A-Train satellites used in 

this study include the Advanced Microwave Scanning Radiometer (AMSR-E) and  

the Moderate Resolution Imaging Spectroradiometer (MODIS) carried on the Aqua 

satellite, as well as the cloud profiling radar (CPR) instrument aboard the CloudSat 

satellite.  

 

1.2 Previous Studies  

1.2.1 Satellite estimation of cloud liquid water 

Cloud liquid water is estimated from satellite measurements using either 

microwave radiation emitted by the cloud or visible/near infrared (NIR) solar 

reflectance from the cloud.  
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Beginning in the 1980s, several efforts have been made to determine the global 

distribution of cloud LWP from satellite microwave measurements, such as those 

made by the Special Sensor Microwave/Imager (SSM/I) on the Defense 

Meteorological Satellites (Wentz 1997), the Advanced Microwave Sounding Unit 

(AMSU) on the NOAA -15, -16, and -17 platforms (Grody et al. 2001; Ferraro et al. 

2005), and the Advanced Microwave Scanning Radiometer (AMSR-E) (Ashcroft and 

Wentz 2000) on the Aqua satellite. These algorithms utilize the microwave signature 

emitted by cloud droplets. Microwave retrievals of cloud LWP are not applicable 

over land because of the strong and highly variable microwave emission of the land 

surface. The emission from ocean surfaces is less variable, so cloud LWP can be 

estimated from satellite-observed microwave radiances. However, LWP retrieval 

accuracy is affected by the sea surface temperature, surface wind speed, atmospheric 

precipitable water vapor, and radiometric calibration. Uncertainties in the absorption 

coefficients used in the microwave radiative transfer model also affect the accuracy of 

LWP estimation from microwave observations (Lin and Rossow 1994; Marchand et 

al. 2003). Since microwave LWP estimation is based on the radiances emitted by 

cloud water droplets, it is applicable for observations at all times of day.  

Cloud LWP can also be estimated from solar reflectance measurements made 

during the daytime. In the visible/NIR method (Nakajima and King 1990; Han et al. 

1998), cloud LWP is derived based on the cloud optical depth and droplet effective 

radius (DER or re). The retrieval of cloud optical depth utilizes reflectance 

measurements from a visible channel while retrieval of DER utilizes reflectance 

based on NIR channel measurements. Some earlier studies estimated cloud LWP 
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using a cloud optical depth retrieval while assuming a constant DER equal to 10 m 

because of a lack of reliable DER retrievals (e.g., Rossow 1989; Lin and Rossow 

1994). After the advent of Advanced Very High Resolution Radiometer (AVHRR), 

instruments, the 3.7-m channel has been widely used to retrieve DER information 

(Kaufman and Nakajima 1993; Han et al. 1994; Platnick and Valero 1995). However, 

because the 3.7-m measurements are most sensitive to droplet absorption occurring 

near the cloud top, DER retrievals mainly represent the cloud-top portion and may not 

represent the entire DER profile for the whole cloud column. Since LWP is defined as 

a column-integrated quantity, use of the 3.7 m DER retrieval can cause biases in the 

LWP estimation when the DER varies vertically within a cloud.  

Relative to the use of AVHRR, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Terra and Aqua platforms represents 

numerous advances that considerably improve the retrieval of cloud properties. These 

include onboard calibration and 36-channel high spectral and spatial resolution. Three 

channels are used for cloud DER retrievals, namely 1.6 µm, 2.1 µm, and 3.7 µm 

(King et al. 2003). Because cloud absorption is different at the three wavelengths, the 

NIR channels have different reflectance weighting functions from cloud top to cloud 

base. Platnick (2000) found the weighting function for =3.7 µm is mainly confined 

to the cloud-top layer (i.e., within optical depth 2) and sharply decreases toward cloud 

base, whereas the weighting function at =1.6 µm is spread more evenly, extending 

into the lower cloud layer (i.e., for a cloud with optical depth equal to 8, the 

weighting function value at the cloud base is around half of its maximum value). 

Consequently, the =3.7 µm retrieval corresponds to the re close to the top of the 
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cloud layer, whereas the =2.1 µm and =1.6 µm retrievals are sensitive to re values 

deeper inside the cloud.  

Assuming that the DER has a linear variation in the vertical, Chang and Li 

(2002) presented a method to determine an optimal linear DER profile by using a 

combination of multiple NIR-channel measurements. Their simulations with in situ 

observed DER profiles and sensitivity studies show that the method is most effective 

for clouds with near-linear DER profiles, which are exhibited by the majority of in 

situ measurements (Miles et al. 2000). When the clouds are very thick and the cloud 

DER profiles are very nonlinear, the estimation of DER at the cloud base involves 

large uncertainties because the signal from the cloud base is weak and the assumption 

of a linear DER profile is invalid. In a later paper of case-studies, Chang and Li 

(2003) also examined some modified assumptions for the linear DER profile and 

found that the retrieval of the DER profile shows improvements for LWP calculations 

by taking advantage of the existence of three NIR channels instead as compared to 

situations for which a constant DER must be assumed when there is only one NIR 

channel.  

This study applies the modified algorithm of Chang and Li (2003) to the 

MODIS observations over oceans and examines the MODIS LWP estimation. The 

impact of cloud DER vertical variation on the MODIS LWP is evaluated by 

comparisons between MODIS-derived and AMSR-E -derived LWPs. 
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1.2.2 Satellite precipitation estimation 

Satellite data have been widely used to estimate global precipitation because 

of itheir better spatial coverage than achieved by any other method and their long-

term coverage. The instruments on board satellites for precipitation estimation 

include passive microwave radiometers, infrared imagers, and precipitation radar.  

Among the methods to measure rainfall, satellite passive microwave rainfall 

retrieval is widely used because of its direct interaction with hydrometeors. There 

have been several spacecraft with microwave radiometers designed for rainfall 

measurement. These include the Nimbus 5 launched in 1972 and Nimbus 6 launched 

in 1975 with the Electrically Scanned Microwave Radiometers (ESMR), Nimbus 7 

launched in 1978 with the Scanning Multi-channel Microwave Radiometer (SMMR), 

the Defense meteorological Satellite Program (DMSP) satellite series beginning in 

1987 and carrying the Special Sensor Microwave/Imager (SSM/I), and the Tropical 

Rainfall Measuring Mission (TRMM) satellite launched in 1997 with the TRMM 

Microwave Imager (TMI). To process the data from these rainfall measurement 

missions, a number of algorithms for retrieval of rainfall from passive microwave 

measurements have been developed. Wilheit et al. (1977) developed a typical 

radiative transfer model to relate the rainfall over a field of view (FOV) from the 

satellite observed brightness temperature. Some algorithms based on this model have 

been successfully used in several microwave rainfall retrieval studies (Wilheit et al. 

1991, 2003). In the Wilheit model, the rainfall is assumed to be vertically uniformly 

distributed. To consider the vertical inhomegeneity of the rainfall distribution, the 

Goddard profiling algorithm (GPROF) algorithm uses a cloud resolving model to 
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generate hydrometer profiles and estimates the rain by matching the brightness 

temperature observations at multiple microwave channels with the pre-calculated 

bightness temperature values for these hydrometer profiles (Kummerow et al. 1996, 

2001). However, these algorithms that use microwave emission of hydrometers are 

not applicable over land because the microwave emission of land surfaces is highly 

variable.  Over land, the attenuation of surface emission by cloud ice particles at high 

frequency channels (i.e., 85 GHz) is used to estimate the precipitation amount.  

These passive microwave instruments are generally on board low-altitude polar-

orbiting satellites because their instantaneous FOVs are very large. Polar-orbiting 

satellites observe a given mid-latitude location two times per day at most and there 

are even observation gaps in daily coverage over the tropics. The infrared and near-IR 

instruments on geostationary satellites provide continuous high resolution cloud 

observations, which are used in many studies for continuous monitoring of rain over 

specific regions. The IR-based techniques generally rely on cloud top temperature and 

sometimes are calibrated with available coincident rain estimation data from satellite 

passive microwave observations. Using 10.7 µm brightness temperatures, Arkin and 

Meisner (1987) computed a precipitation index (GPI) for the Geostationary 

Operational Environmental Satellite (GOES). A number of efforts have been made to 

adjust the GPI with microwave precipitation estimates (Adler et al. 1993; Kummerow 

and Giglio 1995). Vicente and Anderson (1994) used a multiple linear regression to 

find the relationship between GOES 10.7 µm brightness temperatures and SSM/I rain 

rate estimates. Kuligowski (2001) developed a self-calibrating multivariate 
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precipitation retrieval (SCaMPR) algorithm, which selects optimal predictors 

consisting of infrared (IR) observations at multiple channels to estimate rain. 

Most previous studies on precipitation estimation with satellite data focus on 

rain involving ice processes. Warm rain is derived from low-level liquid clouds and 

does not involve ice-phase processes. Warm rain is generally light, but occurs 

frequently. IR techniques generally miss the presence of rain with warm cloud tops 

because they depend on the cloud-top temperature. Microwave techniques can not 

detect warm rain over land since they rely on ice scattering. Over oceans, microwave 

techniques may underestimate warm rain because warm rain is derived from low-

level clouds and contributes less emission than deep systems. To investigate the rain 

contribution by a cloud with a warm top and the relationship between warm rain and 

cloud microphysical parameters, this study utilizes the warm rain estimates by the 

CPR on the CloudSat satellite and the ship-borne radars from the EPIC campaign. 

The cloud microphysical parameters are obtained from Aqua MODIS observations.

  

1.3 Overview of Research 

This study utilizes A-Train satellite data and data from EPIC to investigate the 

estimation of liquid water in low-level liquid clouds and the potential use of cloud 

parameters for estimation of rain from low-level liquid clouds. In Chapter 2, the 

modified algorithm of Chang and Li (2003, CL hereafter) is applied to the Aqua 

MODIS observations over oceans and examines the MODIS LWP estimation. The 

impact of cloud DER vertical variation on the MODIS LWP is evaluated through 

comparisons between MODIS-derived and AMSR-E-derived LWPs. The potential 
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impact of the DER profile on warm rain detection is preliminarily discussed by 

utilizing the rain flag in the AMSR-E dataset. Chapter 3 uses measurements from the 

EPIC Stratocumulus Study to investigate the relationship between the cloud DER 

profile and warm rain. Radiance measurements from MODIS on the Terra satellite 

are used to estimate the DER profile with the CL algorithm. Through a synergistic 

analysis of radar reflectivity profile measured by a millimeter cloud radar (MMCR), 

drizzle measurements from a scanning C-band radar, and satellite estimation of the 

(assumed linear) DER profile, the vertical variation of cloud DER is estimated for 

both drizzling and non-drizzling clouds and the interactions between the DER profile 

and drizzle processes are discussed. Chapter 4 investigates the rain contribution by 

clouds with warm tops and the potential use of cloud microphysical parameters to 

enhance warm rain estimation. The rain estimates from the Advanced Microwave 

Scanning Radiometer (AMSR-E) are compared with rain estimates from the CPR to 

show the performance of passive microwave estimations on warm rain estimation. By 

analyzing the cloud microphysical parameters estimated with the MODIS data and 

the CPR warm rain estimates, we will show the potential of cloud microphysical 

parameters to enhance warm rain estimation.  

 

1.4 Statement of Originality 

In this study I performed the following: 

 Demonstrated that assuming a constant cloud DER can cause biases in the 

calculation of LWP. This was achieved by analyzing one day of coincident 

MODIS and AMSR-E observations over the tropical oceans for overcast warm 
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clouds (> 273K) having optical depths between 3.6 and 23. It is shown that 

accounting for the vertical variation of DER can reduce the mean biases of 

MODIS LWP estimation against AMSR-E LWP estimation. The work was 

published in Journal of the Atmospheric Sciences in 2007 (Chen et al. 2007). 

 Investigated the relationship between cloud DER profile and warm rain by 

analyzing satellite data and ship-borne data from the East Pacific Investigation of 

Climate (EPIC) campaign. This study shows that DER generally increases with 

height in non-drizzling clouds, consistent with aircraft observations. It is found 

that in drizzling clouds, the vertical gradient of DER is significantly less than that 

in non-drizzling clouds, and can become negative when the drizzle is heavier than 

approximately 0.1 mm hr-1. The work was published in the Journal of 

Geophysical Research-Atmospheres in 2008 (Chen et al. 2008). 

 By analyzing 20 days of coincident MODIS, CPR, and AMSR-E observations 

over global oceans, rain contribution by clouds with warm tops was estimated. 

Investigated was also the potential use of cloud microphysical parameters to 

enhance warm rain estimation. It is shown that the warm rain underneath low-

level liquid clouds accounts for 45.0% of occurrences of rain and 27.5% of the 

rainfall amount over the global ocean areas. Passive microwave techniques 

underestimate the warm rain over oceans by nearly 48%. Among the cloud 

microphysical parameters, LWP calculated with the DER profile shows the best 

potential for estimating warm rain.  
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Chapter 2: Impact of the Vertical Variation of Cloud Droplet 

Size on the Estimation of Cloud Liquid Water Path 

 

Cloud droplet effective radius (DER) and liquid water path (LWP) are two key 

parameters for the quantitative assessment of cloud effects on the exchange of energy 

and water. Chang and Li (2002, 2003) presented an algorithm using multi-channel 

measurements made at 3.7 m, 2.1 m and 1.6 m to retrieve a cloud DER vertical 

profile to improve cloud LWP estimation. This study applies the multi-channel 

algorithm to the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 

data on the Aqua satellite, which also carries the Advanced Microwave Scanning 

Radiometer (AMSR-E) for measuring cloud LWP and precipitation. Using one day of 

coincident MODIS and AMSR-E observations over the tropical and sub-tropical 

oceans between 40S-40N for overcast warm clouds (> 273K) having optical depths 

between 3.6 and 23, this study investigates the effects of DER vertical variation on 

the MODIS-derived LWP. The potential impact of the DER profile on warm rain 

detection is preliminarily discussed by utilizing the rain flag of AMSR-E  

 

2.1 Data and Methodology  

Data collected on January 1, 2003, from MODIS and AMSR-E instruments on 

the Aqua satellite, which was launched on May 4, 2002, are used in this investigation. 

The investigation is limited to warm clouds over tropical oceans (40oN-40oS). To 

eliminate ice contamination, only warm liquid water clouds (cloud-top temperatures > 
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273 K) are selected. To minimize the impact of cloud 3-dimensional (3-D) effects, we 

utilize MODIS measurements with satellite viewing angles less than 30o and solar 

zenith angles less than 50o. 

2.1.1 MODIS retrieval 

Traditionally, cloud LWP is derived using retrievals of cloud optical depth  , 

and droplet effective radius,  ,given as: er

e
e

w r
Q

LWP 


3

4


,          (2.1) 

where   and  are defined by (Hansen and Travis 1974) as: er

  drdzrrnQe
2  

                                                (2.2) 

 

 




drrnr

drrnr

2

3





re

,                                                         (2.3) 

Here w  is the density of liquid water,  is the extinction efficiency and is 

equal to the constant 2, is the altitude, 

eQ

z r is the droplet radius, and n is the droplet 

number distribution between r and dr. The LWP as calculated using Equation (2.1) 

assumes that re is vertically constant. 

 r

In this study, MODIS 1km L1B data (version 4) are utilized to retrieve cloud 

properties. The cloud optical depth , is retrieved from the MODIS 0.86-m 

reflectance measurement for the clouds over ocean. The selection of the 0.86-m 

channel reduces uncertainties of the cloud optical depth retrieval because ocean 
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surface reflectance is small and less variable at the 0.86-m channel (King et al. 

2003). Three different cloud DER values, namely, re3.7, re2.1, and re1.6, are retrieved 

using a single NIR channel from each of the MODIS measurements at 3.7-m, 2.1 -

m, and 1.6-m. Following the method of Chang and Li (2003), a linear DER vertical 

profile (DVP) defined by a cloud-top DER and a cloud-bottom DER is also retrieved 

using a combination of all three NIR channels. The cloud top temperature is retrieved 

from the 11-m brightness temperature measurement. Atmospheric effects are 

corrected using the temperature and humidity profiles obtained from the MOD07 

(version 4) atmospheric products (Menzel and Gumley 1998), which are mainly 

obtained from the National Centers for Environmental Prediction (NCEP) Global 

Data Assimilation System (Derber et al. 1991). The effects of thin cirrus 

contamination are eliminated using the cirrus detection reported in the MOD06 cirrus 

product (King et al. 2003).  

The single NIR retrieval of re3.7 follows the iterative method of Chang et al. 

(2000) applied earlier to the AVHRR data, which is similar to the methods of Han et 

al. (1994) and Platnick and Valero (1995). In this method, the retrievals of cloud 

optical depth, DER, and cloud top temperature are applied through an iterative 

procedure to determine the optimal retrievals. The retrievals of re2.1 and re1.6 in this 

study essentially follow the same method as the retrieval of re3.7, except that the 3.7-

m measurement contains both emission and reflection. The contribution of the 3.7-

m emission is calculated using radiative transfer modeling with cloud top 

temperature retrieved from the 11-m channel. Platnick and Valero (1995) provided a 

detailed discussion on the uncertainties of the retrieved cloud optical depth and DER. 
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They showed that the accuracy of the optical depth retrieval is primarily affected by 

the visible-channel reflectance uncertainties and the accuracy of the DER retrieval is 

primarily affected by the NIR-channel reflectance uncertainties. A visible reflectance 

error of 5% causes a 10% error for typical cloud optical depths ~5-20, but large 

changes in cloud optical depth can occur for small changes in the reflectance for thick 

clouds. An NIR reflectance error of 5% causes a similar magnitude of error in DER. 

However, large errors in both DER and optical depth can occur for thin clouds. The 

calibration errors for MODIS data are expected to be less than 2% (King et al. 1997). 

Some modeling errors may also result in uncertainties for the retrieval of DER and  

cloud optical depth estimated to be on the order of 10% and 15% respectively (King 

et al. 1997; Rossow et al. 1989).  
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Figure 2.1 Probability density function of cloud optical depths estimated from 

MODIS measurements for warm clouds over tropical oceans at 01/01/2003.  
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Figure 2.1 shows the frequency distribution of the overcast cloud optical depth 

retrieved from the 1-km MODIS 0.86-m reflectance and Figure 2.2 compares the 

frequency distributions of the three DERs (re3.7, re2.1 and re1.6) retrieved from each of 

the MODIS 3.7-m, 2.1-m, and 1.6-m channels. The overcast clouds are defined 

over an AMSR-E footprint (~13 km × 7 km) and only successful DER retrievals from 

all three NIR channels are included in Figs. 1 and 2. The mean cloud optical depth is 

13.9 (13.2) with a maximum occurrence at ~8. The mean DER increases from re3.7 = 

13.0 m to re2.1 = 13.4 m and to re1.6 = 13.8 m. The spread (standard deviations) of 

the distribution also increases from re3.7 to re2.1 and to re1.6. The RMS differences in 

the DER are 1.1 m between re3.7 and re2.1, 1.2 m between re2.1 and re1.6, and 2.2 m 

between re3.7 and re1.6. 
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Figure 2.2 Probability density function of DER retrieved from one of the MODIS 

NIR channels for warm clouds over tropical oceans at 01/01/2003. 
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To account for the vertical variation of re following the method of Chang and 

Li (2003), a linear re profile is estimated using combined information from the multi-

NIR channels at 3.7, 2.1 and 1.6 m. Here, the linear re profile is defined as a 

function of height, z, by 

zrrrzr eeee  )()( 121 ,    (2.4) 

where = (z  ztop)/(zbase  ztop) denotes the fractional cloud height with = 0 

for the cloud top and = 1 for the cloud base.  Thus, the linear re profile is 

parameterized by re1 at = 0 and re2 at = 1 representing the cloud top and cloud 

base re, respectively.  For retrievals of re1 and re2, an optimal solution set is 

determined by matching the MODIS measurements with radiative transfer 

calculations at all three NIR channels, i.e., 3.7, 2.1 and 1.6 m.  In their theoretical 

study, Chang and Li (2002) analyzed the potential biases associated with the 

assumption of a linear re profile and reflectance error. They showed that the linear 

DER retrieval works best for clouds with optical depths of ~1028 and the retrieved 

mean biases are on the order of 1 µm for cloud top and slightly larger for cloud base 

if the DER profile has a linear variation. Non-linearity of DER variation contributes 

bias to the estimation of DER profile, in particular for cloud base DER. Also when 

clouds have large optical depth (> 28), the quality of DER profile estimation does not 

change much for cloud top, but gets much worse for cloud base because the signal 

from cloud base is weak for such thick clouds. In these cases, the retrieved re2 

probably represents the middle portion of a thick cloud and does not represent for the 

cloud base. Over all, the uncertainties in re2 can be larger by factor of 2-3 than the 

uncertainties in re1. 

'z 'z

'z

'z 'z
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Figure 2.3 Probability density function of the DER retrieved from a combination of 

three MODIS NIR channels for warm clouds over tropical oceans at 01/01/2003.  

 

Figure 2.3 shows the frequency distributions of the retrieved re1 and re2 for the 

data shown in Figure 2.2. While the mean and standard deviation of the re1 

distribution are similar to those of the re3.7 distribution shown in Figure 2.2, the mean 

and standard deviation of the re2 distribution are much larger than those of the re2.1, 

re1.6, and re1 distributions.  Due to droplet absorption, the DER retrieved from a single 

NIR channel like re3.7 is more sensitive to the layer near the cloud top, which can 

cause biases in LWP calculations if re varies vertically. For a cloud with a decreasing 

DER profile (DDP) with height, that is, a smaller re towards the cloud top, the 

calculated LWP would be underestimated.  On the contrary, for a cloud with an 
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increasing DER profile (IDP), that is, a larger re towards the cloud top, the calculated 

LWP would be overestimated.   

To show the effects of the different re on LWP estimations, different LWPs 

are calculated using re3.7, re2.1 and re1.6 with assumptions of a vertically constant re 

(hereafter referred to as LWP3.7, LWP2.1, and LWP1.6) and using the linear re profile 

(hereafter referred to as LWPrep).  Table 2.1 shows the comparisons of these LWPs. 

The RMS difference between LWPrep and LWP3.7 is 0.031mm, which is about 25% 

of the mean value. LWP1.6 is the closest to LWPrep, but there is still a RMS 

difference of 0.017 mm. Therefore, the vertical variation of cloud DER has a 

considerable impact on the LWP estimation for the overcast warm cloud. As the 

above LWPs are derived from cloud optical depths and DER, the uncertainties in 

these LWP estimates are on the order of ~20%.  Han et al. (1995) found a similar 

magnitude of uncertainties of 20% in their cloud LWPs derived using AVHRR cloud 

optical depths and DERs when they are compared with LWP estimation from in situ 

microwave radiometer.    

 

  LWP3.7 LWP2.1 LWP1.6 LWPrep

Mean(mm) 0.115 0.117 0.120 0.124 

Standard deviation 
(mm) 

0.110 0.111 0.114 0.122 

RMS with 
LWPrep (mm) 

0.031 0.025 0.017 N/A 

 

Table 2.1. Statistics from MODIS LWP estimations. 
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Note that four pixels out of every 10 pixels in the along-track direction do not 

have correct radiance measurements at 1.6µm for MODIS 1km L1B data because 

some detectors are not functional at 1.6µm. The interpolation of measurements made 

by the nearest pixels is used here. This should not affect the results much because 

only overcast clouds are considered in this study, as explained in later sections.  

 

2.1.2 AMSR-E retrieval 

Cloud LWP has also been retrieved using satellite microwave remote sensing.  

In comparison with the visible/NIR retrievals, the microwave LWP estimation has a 

different physical basis, spatial resolution of field of view, and scanner viewing 

geometry. Several important algorithms, based on physical models, were developed 

for a variety of sensors, including the SSM/I (Lin and Rossow, 1994; Weng and 

Grody, 1994; Greenwald et al., 1995; Wentz, 1997), the AMSU (Grody et al., 2001; 

Ferraro et al., 2005) and the AMSR-E (Ashcroft and Wentz, 2000). Although a direct 

validation of such estimates has proven challenging (i.e., matching fine time/space 

upward looking radiometer calculated LWP from small islands and ships with the 

large areal average LWP from the radiometer), most of these studies have concluded 

that the uncertainty of the passive microwave estimates are on the order of 0.02 mm 

under rain free conditions.  Further physical validation studies (Marchand et al. 2003; 

Ashcroft and Wentz, 2000) indicate similar values.  Wentz (1997) has analyzed the 

uncertainty of SSMI LWP product. Atmospheric modeling error incurs uncertainty on 

order of 0.019mm, radiometer noise incurs uncertainty on order of 0.007mm, wind 

direction incurs uncertainty on order of 0.004mm, and other sources incur uncertainty 
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on order of 0.014mm. The comparison with in-situ measurements has shown that the 

total observed root-mean-square error of SSMI LWP estimation is 0.025mm. 

Lin and Rossow (1994) compared the visible/NIR LWP derived from the 

International Satellite Cloud Climatology Project (ISCCP) cloud product with the 

SSM/I microwave LWP estimation.  They found that the ISCCP LWP estimation is 

often larger than the SSM/I LWP estimation for tropical non-precipitating clouds, but 

the difference is generally less than 10%.  Greenwald and Christopher (2003) 

compared the LWP products derived from the Tropical Rainfall Measuring Mission 

(TRMM) Visible and Infrared Scanner (VIRS) with those derived from the TRMM 

Microwave Imager (TMI).  They showed a clear-sky background bias in the TMI 

LWP estimation.  After removal of the TMI background bias, a good agreement was 

found between the monthly mean LWPs from the two instruments.  Ferraro et al. 

(2005) found that the LWP estimates from AMSU on NOAA satellites were smaller 

than ground-based in situ retrievals by a few thousandths mm.  

The AMSR-E microwave measurements have 12 channels and 6 frequencies 

ranging from 6.9 GHz to 89.0 GHz. Horizontally and vertically polarized radiation is 

measured separately at each frequency. The AMSR-E ocean product (version 4) from 

Wentz’s algorithm is utilized in this study. The AMSR-E standard ocean algorithm 

(Ashcroft and Wentz 2000; Wentz 1997) retrieves sea surface temperature, surface 

wind speed, column water vapor, and LWP from the signals emitted by surface and 

atmospheric components at 6.9 GHz, 10.7 GHz, 18.7 GHz and 36.5 GHz. The 

algorithm can retrieve LWP when there is no rainfall or if the rain rate is less than 2 

mm/hr. Although no direct validation results of the AMSR-E algorithm have been 
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published in the open literature, the performance is generally accepted to be as good, 

if not better, than those documented by Wentz (1997) since it utilizes the same 

physical model and retrieval algorithm. However, the AMSR-E spatial resolution is 

better than SSM/I, thus, the AMSR-E uncertainty may be slightly less that 0.025 mm.  

The AMSR-E LWP product is compared with the LWPs derived from 

coincident MODIS measurements. Due to the highly variable emission of land 

surfaces, LWP estimations from passive satellite microwave observations are only 

applicable over oceans. The AMSR-E ocean product also provides rain flags, which 

are used to determine whether a cloud is raining or not. The rain flag is defined by a 

LWP threshold of 0.18 mm. This threshold is based on the comparison of SSMI LWP 

retrievals with in-situ rain observations (Wentz, 1990; Wentz and Spencer, 1998). 

 

2.2 Results 

In this study, the MODIS LWP estimates are compared with AMSR-E LWP 

estimates (LWPMW). The AMSR-E and MODIS are on the Aqua satellite platform. 

MODIS has a cross-track scan while AMSR-E has a conical scan with a 53o viewing 

angle (Kawanishi et al. 2003). Temporal gaps of a few minutes exist between the two 

retrievals and the sensor viewing geometry is different for the two instruments. 

AMSR-E has a field of view (FOV) of approximately 13 km × 7 km at 37 GHz and 

the MODIS cloud product has a spatial resolution of 1 km at nadir. The MODIS 

measurements are matched to the larger AMSR-E footprint according to the 

navigation data. The statistical relationships between the MODIS and AMSR-E 
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measurements are discussed to show the effect of the DER vertical variation on the 

MODIS LWP estimation and its potential for rain detection.  

 

 
 

Figure 2.4 Comparison between AMSR-E LWP and MODIS LWP2.1 for all clouds, R 

is correlation and   is the linear regression coefficient. 

 

Since the primary concern of this study is with the impact of the vertical 

variation of DER on the estimation of MODIS LWP, the AMSR-E derived LWPMW is 

used as a reference. However, there are many factors that may contribute to the 

differences between the two LWP estimations (Lin and Rossow 1994). The 

comparisons are first illustrated by comparing the MODIS LWP2.1 with the AMSR-E 

LWPMW. Figure 2.4 shows the comparisons between MODIS LWP2.1 and AMSR-E 
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LWPMW on the basis of the AMSR-E footprint. The correlation coefficient is 0.75 and 

the mean AMSR-E LWPMW is about two times larger than the MODIS LWP2.1.  The 

LWP comparisons from microwave and visible/NIR measurements can be 

significantly affected by the variability in cloud fraction, cloud optical depth, and 

cloud DER.  These effects are demonstrated in the following subsections. 

 

2.2.1 Effect of broken clouds 
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Figure 2.5 Effect of cloud fraction on the comparison between AMSR-E LWPMW and 

MODIS LWP2.1.  R is the correlation coefficient and   is the slope of the 

linear regression.   

 
For each matched AMSR-E footprint, the cloud fraction is determined based 

on the 1-km MODIS cloud mask by calculating the ratio of cloudy pixel number to 
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total pixel number within the footprint.  Figure 2.5 shows the impact of cloud fraction 

on the comparison between AMSR-E LWPMW and MODIS LWP2.1.  In the figure, the 

correlation coefficients, R, and associated slopes,, from a linear regression are 

derived and plotted against the different partitioning of AMSR-E cloud fraction.  It is 

seen that cloud fraction has a large impact on the correlation between AMSR-E 

LWPMW and MODIS LWP2.1.  The two LWPs correlate well when the cloud fraction 

of AMSR-E footprint approaches 100%, but poorly when the cloud fraction is small. 
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Figure 2.6 Probability density function of AMSR-E LWP estimation for clear sky. 

 

It is a complex problem when broken clouds occur because the microwave 

LWP estimation may be significantly affected by the column water vapor amount, sea 

surface temperature, and surface wind speed. There is a background bias in 

microwave LWP estimations under clear-sky conditions. (Lin and Rossow 1994; 

 24 
 



 

Greenwald and Christopher 2003).  The background bias affects the accuracy of the 

AMSR-E LWP estimations for thin or broken clouds because the microwave signal 

from the cloud LWP is weak. To illustrate the clear-sky bias, Figure 2.6 shows the 

frequency of occurrence of the AMSR-E LWP estimates when the MODIS indicates 

clear-sky conditions.  As shown in the figure, the mean background bias is about 

0.007 mm and the standard deviation of the bias is 0.017 mm for the single day’s 

worth of data obtained between 40oN and 40oS over oceans. 

To alleviate the impact of broken clouds, we discard cloud samples that are 

not fully overcast within AMSR-E footprint by insisting that all MOIDS pixels within 

the 13 × 7 km2 AMSR-E footprint must contain cloud. This requirement also 

alleviates the impact of the small temporal gap and the view geometry difference 

between MODIS and AMSR-E. After removing all non-uniform broken clouds 

(AMSR-E footprint cloud fraction < 100%), the agreement between AMSR-E and 

MODIS overcast LWP retrievals improves substantially with a correlation coefficient 

R ~ 0.90 and  ~ 1.01.  Note that in the following sections (2.2.2-2.2.4), we focus on 

overcast clouds (AMSR-E footprint cloud fraction = 100%), for which the potential 

of using the DER vertical variation for warm rain detection and the effects on the 

cloud LWP estimation due to variability in cloud optical depth and DER are further 

examined.  

 

2.2.2 Effect of cloud optical depth 

Since derived cloud LWP depends strongly on cloud optical depth, variability 

of cloud optical depth within the AMSR-E footprint also affects the outcome of the 
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comparison between the AMSR-E and MODIS LWPs.  The microwave signal from 

optically thin clouds can be affected by the clear-sky background bias.  The bias is 

due to uncertainties in column water vapor and surface emission that dominate the 

microwave measurements. In analyzing all overcast AMSR-E footprints, the data are 

divided into four groups based on the ISCCP cloud-type classification:  <3.6,   = 

3.6-9.4,   = 9.4-23, and   > 23. Table 2.2 shows the comparison of LWP2.1 with 

LWPMW for clouds with various optical depths. The LWPs derived from the two 

instruments show poor agreement for clouds with optical depths less than 3.6.  The 

comparisons show better agreement with increasing cloud optical depth. Optically 

thick clouds ( > 23) are excluded in the following studies because MODIS retrievals 

of DER at cloud base have large uncertainties for these clouds (Chang and Li, 2002).   

 

  <3.6 3.6<= <9.4 9.4<= <23  >=23 

R 0.517 0.709 0.762 0.687 

  0.621 0.856 0.979 1.111 

RMS (mm) 0.018 0.021 0.035 0.072 

 

Table 2.2. Comparison of LWP2.1 with LWPMW for clouds with various optical 

depths. 

2.2.3 Effect of cloud DER vertical variation 

Because of the effects of broken cloud and optical depth, overcast clouds with 

optical depths ranging between 3.6 and 23 are selected to investigate the impact of the 

DER vertical variation on LWP estimations and warm rain detection. Figure 2.7 
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shows the global distribution of selected cloud samples. The overcast cloud samples 

are mostly obtained in the eastern Pacific ocean covered by extensive single-layer 

low-level clouds.  

 

Figure 2.7 Normalized frequency of occurrence within a 1x1 degree box for overcast 

warm clouds with optical depths ranging from 3.4~23 over the tropical ocean. 

Note that the satellite view angle is less than 30 o and the solar zenith angle is 

less than 50 o.  

 

Figure 2.8 is a scatter plot of MODIS LWP2.1 as a function of AMSR-E 

LWPMW, which includes all overcast AMSR-E footprints and cloud optical depths 

ranging between 3.6 and 23. Table 2.3 shows the comparisons of LWPMW with 

LWP3.7, LWP2.1, LWP1.6 and LWPrep.  The different values of LWP3.7, LWP2.1, and 

LWP1.6 show the effects of different retrievals of DER at the three NIR channels.  As 

previously stated, the DER retrieved from a single NIR channel is biased toward the 

cloud top.  Using a vertically constant DER, the LWP is overestimated for clouds 

with an IDP, and is underestimated for clouds with a DDP. Because the microwave 

LWP estimation measures the entire cloud layer, it is utilized to evaluate whether the 

DER profile improves the LWP estimation or not. From Table 2.3, LWPrep is better 
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correlated with LWPMW than with LWP3.7, LWP2.1, and LWP1.6. The regression 

coefficients do not change much because the vertical variation of DER has an 

opposite impact on LWP estimates for IDP clouds and DDP clouds.   
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Figure 2.8  Comparison between AMSR-E LWP and MODIS LWP2.1 for overcast 

clouds with cloud optical depth between 3.6-23, R is correlation and   

is the linear regression coefficient 

 

 LWP3.7 LWP2.1 LWP1.6 LWPrep 

R 0.837 0.848 0.854 0.859 

  0.945 0.956 0.988 1.012 

RMS (mm) 0.030 0.028 0.028 0.027 

 

Table 2.3. Comparison parameters of LWPMW with LWP3.7, LWP2.1, and LWP1.6 for 

overcast warm clouds with optical depths ranging between 3.4 and 23. 
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To show the impact of vertical DER variation on LWP estimates in detail, 

clouds over AMSR-E footprints are separated into three categories: clouds with a 

neutral DER profile (NDP), IDP clouds and DDP clouds based on re1 and re2.  re2 is 

10% larger than re1 for DDP clouds and 10% less than re1 for IDP clouds.  For neutral 

clouds, the vertical variation of DER is within 10%.  Table 2.4 shows the comparison 

between MODIS LWP and AMSR-E LWP for IDP, DDP, and NDP clouds. Because 

the vertical variation of DER causes the largest bias in LWP3.7, LWP3.7 is used to 

illustrate how the DER profile improves LWP estimations. LWP2.1 and LWP1.6 show 

similar biases of smaller magnitude.  

  

        LWP3.7      LWP2.1      LWP1.6      LWPrep 

R 0.827 0.829 0.827 0.829 

  1.026 1.017 1.030 1.029      NDP 

RMS 0.026 0.026 0.026 0.026 

R 0.817 0.818 0.816 0.820 

  1.126 1.092 1.086 1.052 

 

     IDP 
RMS 0.032 0.028 0.028 0.026 

R 0.858 0.863 0.867 0.870 

  0.888 0.914 0.959 1.001 

 

    DDP 

RMS 0.030 0.029 0.028 0.028 

 

Table 2.4.  Comparison between MODIS LWP and AMSR-E LWP for IDP 

(Increasing DER profile with height), DDP(Decreasing DER profile with 

height) , and NDP (Neutral DER profile with height)  clouds. 
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LWP3.7 is 12.6% larger than LWPMW for IDP clouds, 2.6% larger than 

LWPMW for NDP clouds and 11.2% less than LWPMW for DDP clouds. Since the 

DER profile is the only criterion separating the data, it must be the primary cause for 

the differences. LWPrep, LWP3.7, LWP2.1, and LWP1.6 are almost identical for NDP 

clouds because there are no vertical variations in the DER. The approximate 2.6% 

difference between MODIS LWP estimations and AMSR-E LWP estimations for 

NDP clouds is due to other uncertainty factors. So over the AMSR-E footprint, the 

bias caused by the vertical variation of DER in visible/NIR LWP estimations is about 

+10% (12.6%-2.6%) for IDP clouds and -13.8% (-11.2%-2.6%) for DDP clouds. 

LWPrep is 5.2% larger than LWPMW for IDP clouds and 0.1% larger than LWPMW for 

DDP clouds. Both differences are close to the 3% difference for NDP clouds. This 

means that the DER profile improves the LWP estimations and corrects the bias 

caused by the vertical variation of the DER. Previous studies found the biases of 

LWP estimations are generally less than 10% for satellite microwave methods 

(Ferraro et al. 2005; Greenwald and Christopher 2003; Wentz 1997; Lin and Rossow 

1994). The improvements made by DER profile are systematic and physically sound. 

A magnitude of 10% improvements in LWP estimation can be of significance in 

cloud water and radiation budget studies.  

 

2.2.4 Implication for warm rain clouds 

IR rain detection algorithms (Adler and Negri 1988; Arkin 1979) generally 

miss the presence of precipitation in warm clouds because these algorithms depend on 

the cloud-top temperature. Microwave techniques cannot detect warm rain over land 
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since the techniques rely on ice scattering (McCollum and Ferraro 2003). Over 

oceans, warm rain can be estimated from satellite microwave brightness temperatures 

because the surface emission is low and less variable (Wilheit et al. 2003).  Recently, 

Ba and Gruber (2001) utilized the DER retrieved from the 3.9-µm channels on GOES 

satellites to detect warm rain clouds. As previously discussed, the DER retrieved from 

a single NIR channel is more sensitive to the cloud top than to cloud base values.  In 

Figure 2.3, the DER at the cloud base shows a wider spectrum than the DER at the 

cloud top, which may be explained by the cloud development phase: growing or 

decaying. Cloud droplet size increases with height during the developing stage due to 

condensation growth. Once the collision process starts, larger droplets tend to fall to 

the lower levels of the cloud. Therefore, the DER at cloud base is small for 

developing clouds and large for drizzling clouds. So the DER at the cloud base is 

more correlated with rainfall than DER at the cloud top. There were some previous 

studies that utilized the vertical DER variation to differentiate precipitating/non-

precipitating clouds (Shao and Liu, 2004; Matsui et al., 2004). These studies 

combined microwave observation and shortwave observation to infer the vertical 

variation of DER. Chang and Li’s algorithm captures the trend of the vertical DER 

variation from observations of multi-NIR channels. A preliminary investigation was 

done using the rain flag defined in the AMSR-E ocean product to show the potential 

of the linear DER profile retrieval for warm rain detection.  
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b) DER at cloud base 

Figure 2. 9 Probability density functions of DER at cloud top and cloud base  

for raining and non-raining cloud over AMSR-E footprints 
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Figure 2.9 shows the distribution of DER at cloud base and cloud top for 

raining and non-raining clouds, respectively, which are defined by the AMSR-E rain 

flag (Wentz, 1990; Wentz and Spencer, 1998). Raining causes a DER increase of 3.5 

µm at the cloud top (Figure 2.9a) and a DER increase of 7 µm at the cloud base 

(Figure 2.9b). So DER at cloud base is more effective for rain detection. For example, 

if we define a threshold of 14 µm for raining clouds (Rosenfeld and Gutman 1994), 

the DER at the cloud base correctly classifies 87.0% of AMSR-E detected rains, 

while the DER at the cloud top classifies only 64.4% of AMSR-E detected rains. For 

some AMSR-E detected raining clouds, the DER at the cloud base can be as small as 

10 µm. These clouds could be partially raining, while overall small DER is evident 

because of the effect of the non-raining part of the clouds. However, based on the 

same 14 µm raining threshold, the false raining detection rate is 22.7% using the DER 

at the cloud top and 30.6% using the cloud bottom DER. If the DER threshold is 

increased to 20 µm, the false detection rate is considerably reduced, at the expense of 

missing some raining clouds. The false detection may be due to the AMSR-E 

sensitivity problem. Many of these AMSR-E defined non-raining clouds could have 

very light rain or drizzle which evaporates before reaching the ground.  

Figure 2.10 shows the distribution of the DER differences between the cloud 

top and the cloud base. Raining clouds generally have larger DER at the cloud base 

than at the cloud top. This result is consistent with in-situ observation (Martin et al. 

1994). Use of –2 µm in the DER difference appears effective in separating the 

majority of raining and non-raining clouds although there are some uncertainties. The 

uncertainties could be caused by partially raining clouds, as well as AMSR-E 
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sensitivity problems. Development of a rain detection algorithm is beyond the scope 

of this study. 
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Figure 2.10 Probability density function of DER difference between cloud top and 

cloud base for raining and non-raining cloud over AMSR-E footprints 

 

2.3 Summary and Discussions 

Traditionally, satellite retrievals of DER are based on satellite reflectance 

measurements from a single NIR channel, plus visible and thermal infrared data. 

They cannot describe the vertical variation of DER from the cloud top to the cloud 

base. When computing cloud LWP from cloud optical depth and DER, the latter is 
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effectively assumed to be a constant.  By analyzing a single day’s worth of MODIS 

and AMSR-E products over the tropical ocean for warm and overcast clouds with 

optical depths ranging between 3.6 and 23, this investigation demonstrates that 

assuming a constant cloud DER can incur biases in the calculations of LWP.  It is 

also shown that accounting for the vertical variation of DER profiles can reduce the 

mean biases, though the DER vertical variation is not the only source of uncertainties 

in cloud LWP estimation. These findings are based on comparisons between LWP 

retrieved from the AMSR-E microwave measurements and LWP computed from the 

MODIS visible/NIR cloud optical depth and DER retrievals. AMSR-E LWP products 

are utilized for comparisons because microwave radiometer observes whole cloud 

column from top to bottom. However, uncertainties in microwave retrievals like the 

AMSR-E can also be incurred from error sources like ocean surface emissions, cloud 

properties, radiometric calibrations, and beam filling problems. Also the data sample 

utilized in this investigation is very limited. Further study is required when more 

accurate LWP products become available in the future.   

The result shows that improvements on the MODIS LWP calculations with 

DER vertical variation are on the order of 10% for the utilized data samples, the 

improvements are systematic and physically sound. The retrieved DER vertical 

variations from multiple NIR channels show potential for detecting warm rain. 

However, over land, quantitative assessment of the impact made by the retrieved 

DER vertical variations is needed in the future when appropriate products are 

available.   
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Chapter 3: Studying the Vertical Variation of Cloud Droplet 
Effective Radius Using Ship and Space-borne 
Remote Sensing Data 

 

The albedo of marine stratocumuli depends upon cloud liquid water content, 

droplet effective radius (re), and how these parameters vary with height. The vertical 

variation of cloud re reflects both condensation and coalescence growth. The aircraft 

measurements in low clouds show that re generally increases with height for non-

drizzling clouds (Martin et al. 1994; Miles et al. 2000; Wood 2000), but that drizzle 

drops start to increase the effective radius significantly if the liquid water content of 

drizzle drops is above 5-10% of the liquid water content of small cloud droplets 

(Wood 2000). These drizzle droplets thus reduce the vertical gradient and even lead 

to an re decreasing with height because drizzle drops tend to increase in size toward 

the base of the cloud (Wood 2005a). However, only limited work has been carried out 

to examine the vertical profile of effective radius in drizzling low clouds.  Drizzle 

commonly occurs in marine low clouds and its effects upon cloud optical properties 

are very poorly understood (Albrecht 1989; Wood 2005a; Comstock et al. 2004; 

VanZanten et al. 2005).  

Using satellite data and ship-borne data from the East Pacific Investigation 

of Climate (EPIC) Stratocumulus Study, this chapter investigates the cloud re vertical 

variation for drizzling and non-drizzling clouds. Coincident radiance measurements 

from MODIS on the Terra satellite are used to estimate the re profile with the 

algorithm developed by Chang and Li (2002, 2003; referred as CL algorithm 

hereafter). Through a synergistic analysis of radar reflectivity measured by a ship-
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borne millimeter cloud radar (MMCR), drizzle measurements from a scanning C-

band radar, and satellite estimation of the (assumed linear) re profile, the vertical 

variation of cloud re is estimated for both drizzling and non-drizzling clouds and the 

interaction between the re profile and drizzle process are discussed. 

 

3.1 Data and Methods 

The EPIC Stratocumulus Study (Bretherton et al., 2004) was conducted in 

October 2001 within the southeastern Pacific stratocumulus region. From 16 to 22 

Oct., the NOAA research vessel (R/V) Ronald Brown (RHB) was stationary at 20°S, 

85°W, and observed a relatively well-mixed boundary layer with predominantly 

overcast skies and few upper-level clouds. Comprehensive cloud and precipitation 

measurements were taken by vertically pointing remote sensing instruments on the 

RHB. This investigation uses cloud profile and drizzle estimations at 20°S, 85°W 

from EPIC instruments, as well as re profile estimation from spatiotemporally 

matched data from MODIS on Terra. 

3.1.1 Cloud measurements from millimeter radar, ceilometer, and microwave 

radiometer 

Cloud reflectivity profiles are provided by vertically pointing 8.6mm 

wavelength radar (MMCR), which has a vertical resolution of 45 m [Moran et al. 

1998]. The beam width is 0.5° and the minimum detectable reflectivity is around -60 

dBZ. The radar obtains a reflectivity profile every 10s, but the reflectivity profile 

measurements are averaged to a 5 minute temporal resolution for this study 

(equivalent to approximately 5 km horizontal spatial resolution). The calibration error 
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of MMCR data are less than 1 dBZ. Comstock et al. (2004) showed that the 

uncertainty of the MMCR radar measurements caused by Mie scattering is less than 

10% for stratocumulus clouds given the mean radii of cloud and drizzle drops 

encountered in EPIC. Cloud top height is determined using a reflectivity threshold of 

-40 dBZ to define cloud, a value that leads to cloud top heights very close to the 

height of the inversion base as determined using radiosondes (not shown). The cloud 

base height is measured using a ceilometer with 15 m vertical resolution.  The LWP is 

estimated from brightness temperature measurements of a microwave radiometer at 

22 GHz and 31 GHz (Zuidema et al, 2005). The uncertainty of the LWP estimation is 

around 10-25 gm-2. Figure 3.1 shows an example of MMCR reflectivity 

measurements for a 24 hour period (Oct 18, 2001) in which significant drizzle was 

observed to fall (see Comstock et al. 2004). In this study, estimates of the partitioning 

of liquid water content between drizzle drops and small cloud droplets is carried out 

using MMCR data in stratocumulus by incorporating simultaneous LWP estimates 

from a passive microwave radiometer. 

 

Figure 3.1 Millimeter cloud radar reflectivity measurements on Oct. 18 2001 
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3.1.2 Estimates of drizzle from scanning C-band radar 

The C-band radar on the RHB has a 5 cm wavelength and 0.95° beam width. 

During EPIC, the C-band completed an 11-elevation angle volumetric scan out to 30 

km radius every 5 minutes (Comstock et al. 2004). Reflectivity between 0.5 km and 2 

km altitude is averaged to produce two-dimensional maps with an estimated 

calibration error of ±2.5 dBZ. The minimum detectable reflectivity is approximately -

12 dBZ at 30 km distance. Because of its sensitivity, C-band measurements in low 

water clouds are only sensitive to drizzle, as cloud liquid water content cannot 

produce the reflectivity at sufficient magnitude to be detected. In this study, the cloud 

base precipitation rate is estimated using Z = 25R1.3, where Z is the radar reflectivity 

in mm6m-3, and R is the rain rate in mm hr-1. This Z-R relationship was derived using 

vertically pointing MMCR data in drizzling stratocumulus during EPIC (Comstock et 

al, 2004) and consistent with aircraft in-situ measurements in drizzling stratocumulus 

(Wood, 2005b). The C-band measurements are compared with the re profile retrieval 

from MODIS on Terra described below.  

 

3.1.3 Cloud profile retrieval using MODIS 

MODIS L1B reflectance measurements at =0.86 µm, 1.6 µm, 2.1 µm, and 

3.7 µm from Terra satellite are used to estimate cloud optical depth, the re profile, and 

the LWP using the CL algorithm at a nadir resolution of 11 km2. Only daytime 

MODIS measurements are used in this study because solar reflectance measurements 

are needed for retrieving cloud parameters. The Terra overpass time is close to 16:00 
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UTC at 20°S, 85°W, when the solar zenith angle is between 20° and 30° during 

October. The satellite zenith angle of MODIS ranges between -55° and 55°. 

The re profile estimated with CL algorithm is defined by Equation (2.4). The 

linear re profile is parameterized by re1 and re2 representing the cloud top and cloud 

base re, respectively.  In the CL algorithm, the retrievals of re1 and re2 are determined 

by matching the MODIS measurements with radiative transfer calculations at 3.7, 2.1 

and 1.6 m. Chang and Li (2002) analyzed the potential biases associated with the 

assumption of a linear re profile and those arising from reflectance error. They 

showed that the linear re profile retrieval works best for cloud optical depths ranging 

between 10 and 28. The retrieval mean biases are on the order of 1 µm for cloud top 

and slightly larger for cloud base if the re profile has a close-to-linear variation.  

However, if the re variation is very non-linear, large biases may be incurred, in 

particular for cloud base re. Also when clouds have large optical depth (> 28), the 

quality of re profile estimation does not change much for cloud top, but gets much 

worse for cloud base because the signal from cloud base is weak for thick clouds. 

Over all, the uncertainties in re2 are typically 2-3 times larger than the uncertainties in 

re1.  

Previously, re retrieved with reflectance measurements using a single NIR 

channel have been used to calculate LWP with Equation (2.1). As discussed earlier, 

the re retrieved from a single NIR channel like 3.7 m is more sensitive to the layer 

near the cloud top, which can cause biases in LWP calculations for cloud with 

vertical re variation. In the CL algorithm, cloud optical depth is retrieved from 

MODIS 0.86-m reflectance measurement for clouds over ocean and LWP is 
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calculated with the linear re profile estimation. Chen et al. (2007) showed that 

MODIS LWP estimation using CL algorithm is consistent with LWP retrieved from 

AMSR-E microwave observations (i.e. correlation coefficient is around 0.9 for 

overcast clouds with warm top) and LWP calculation with re profile corrects the 

biases caused by the assumption of vertically constant re.  

 

3.1.4 Spatial and temporal matching of MODIS and C-band data 

For each RHB location covered by a MODIS scan (a total of five MODIS 

overpasses during the six days during EPIC), the re profile retrievals are compared 

with coincident RHB scanning C-band radar measurements. MODIS provides 

instantaneous measurements, while the temporal resolution of the C-band radar is 5 

minutes. To alleviate the influence of the small, but non-negligible, temporal gap 

between the two instruments, both MODIS data and C-band data are aggregated and 

averaged within 55 km boxes. We discard aggregated samples that are not fully 

overcast by insisting that all 25 pixels must contain cloud. There are large 

uncertainties and ambiguities in retrieval of effective radius if the clouds are very thin 

(i.e. optical thickness is less than 4) (Nakajima and King, 1990). In this study, to 

ensure reliable retrieval of cloud parameters, the optical depth for all cloudy pixels is 

required to be larger than 4. These constraints have been applied to ensure that as 

many broken, thin, and highly heterogeneous MODIS pixels (i.e. those most likely to 

violate the plane-parallel retrieval assumption) are not included in the analysis. 
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Figure 3.2 Coincident images of C-band radar reflectivity and MODIS cloud profile 

at UTC 15:55, Oct. 18, 2001.  a) RHB C-band radar reflectivity image. b) 

MODIS estimation of droplet effective radius at cloud top (re1) c) MODIS 

estimation of droplet effective radius at cloud base (re2). d) MODIS LWP 

estimation. 
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The C-band radar measurements are compared with the re profile retrieval 

from MODIS on board of Terra satellite. As an example of these data, Figure 3.2 

shows coincident images of C-band radar reflectivity, MODIS re profile retrieval (i.e. 

re1 and re2) and MODIS LWP estimates at 15:55 UTC of Oct. 18, 2001, a period of 

strong drizzle also shown in the MMCR data (Figure 3.1). Data for which clouds are 

not present or broken, as detailed above, are blanked out. There is considerable 

heterogeneity in the precipitation field but it is clear that regions of strong drizzle 

(large Z) are generally associated with higher LWP and large drops at cloud base (i.e. 

large re2). There is also a correlation of Z with the cloud top effective radius re1 but it 

is not as clear as with re2. This is consistent with the idea that, for heavy drizzle, the 

drizzle drops themselves may be directly impacting the drop effective radius close to 

the cloud base. We return to this issue in Section 3.2.2.  

 

3.2 Results 

3.2.1 MMCR reflectivity profile and implications for the vertical variation of effective 

radius 

Figure 3.3 shows the scatter plot of mean radar reflectivity Z over the upper 

third (0< <1/3) and lower third (2/3<z z <1) of the cloud layer, with determined 

using the cloud top and base heights from the MMCR and ceilometer respectively. 

The column maximum reflectivity is shown by the color of the data samples. Radar 

reflectivity Z depends the 6th moment of the cloud and drizzle size distribution. Radar 

reflectivity thresholds for drizzle detection generally range between -20 dBZ and -15 

z
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dBZ in previous studies (Sauvageot and Omar 1987; Wang and Geerts 2003; Kogan 

et al. 2005). For drizzling clouds, the reflectivity due to precipitation drops starts to 

overwhelm that due to cloud droplets, and corresponds to precipitation rates of only a 

few thousandths of a mm hr-1. Thus even modest amounts of precipitation will 

overwhelm the radar signal due to cloud droplets (Fox and Illingworth, 1997) even 

when the drizzle has limited effect on the overall liquid water content and effective 

radius of the cloud. Figure 3.3 show that cloud top Z is greater than cloud base Z for 

non-drizzling clouds (i.e. column maximum reflectivity is -30dBZ), while the 

opposite is true for drizzling clouds (i.e. column maximum reflectivity is -10dBZ) (a 

result consistent with Figure 4 in Comstock et al. 2004). For non-drizzling clouds, 

cloud droplet size and number concentration determines Z, and its increase with 

height is caused primarily by condensational growth of cloud droplets. Drizzle drops 

dominate radar reflectivity in drizzling clouds. Aircraft observations (Wood 2005a) 

show that in drizzling stratocumulus the precipitation rate tends to be roughly 

constant in the lowest two thirds of the cloud layer before decreasing rapidly above 

this. For drizzling clouds in Figure 3.3, the large reflectivity in the lower portion of 

the cloud layer is caused by drizzle at cloud base, while the small radar reflectivity at 

upper portion of cloud layer is consistent with there being much less drizzle near 

cloud top.   
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Figure 3.3 Scatter plot of reflectivities over upper 1/3 portion of cloud layer (Zupper-third) 

and reflectivities over lower 1/3 portion of cloud layer (Zlower-third). Color of 

the scatter plots represents the column maximum radar reflectivity.   

 

Wood (2000) found that drizzle drops start to increase effective radius 

significantly if  = qL,l/qL,s is above 0.1, where qL,l is the liquid water content of large 

drops (r > 20 µm) and qL,s is the liquid water content of small (r < 20 µm) cloud 

droplets. He found that it is possible to parameterize the impact of drizzle drops on 

effective radius as 
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where re  is the effective radius for all droplets, re,s is the effective radius for small 

cloud droplets, kl  is the ratio between the cubes of  the volume and effective radius 

for large drops, ks  is the ratio between the cubes of  the volume and effective radius 

for small droplets. In his study, kl is parameterized as 2/9 (the exact value for an 

exponential distribution to which populations of drizzle drops adhere quite closely, 

Wood 2005b) and ks ranges between approximately 0.6 and 0.9 (e.g. Martin et al. 

1994). Based on Eqn. 3.1, with the assumption of ks equal to 0.75, the drizzle drops 

would increase re by 40% for  = 1 and 10% for  = 0.2. With the MMCR reflectivity 

profile and the LWP estimation from RHB microwave radiometer, liquid water 

content of drizzle drops and liquid water content of small cloud droplets can be 

roughly estimated. The liquid water content of drizzle drops at cloud base is estimated 

with TlL wRq , , where R is cloud base precipitation rate,   is the density of 

water, and  is the mass-weighted fall speed of drizzle drops. Using a typical fall 

speed of 0.4m s-1 for drizzle drops (consistent with the aircraft data of Wood (2005a) 

for which is in the range 0.2-0.6 m s-1), the drizzle liquid water content would be 

qL,l  0.69R in g m-3. The rain rate profile can be estimated from the MMCR 

reflectivity profile with Z = 25 R1.3 (Comstock et al, 2004). Thus, the LWP 

contributed by drizzle drops ( ) is the vertical integral of 0.69R over the depth of 

the precipitating layer, and LWP contributed by small cloud droplets ( ) is 

estimated by subtracting  from total LWP estimated with RHB microwave 

Tw

Tw

lLWP

lLWP

sLWP
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radiometer measurements. The mean liquid water content of small droplets (qL,s,mean) 

can be estimated as the mean  over the cloud depth. Figure 3.4 shows estimated 

qL,l,base/qL,s,mean and qL,l,top/qL,s,mean against Rcb, where qL,l,base is the liquid water content 

of drizzle drops at cloud base, qL,l,top is the liquid water content of drizzle drops at 

cloud top, and Rcb is the rain rate at cloud base. It is shown that the qL,l,base/qL,s,mean 

grows from < 0.1 at Rcb < 0.01 mm hr-1 to > 1 as Rcb reaches a few tenths of a mm hr-

1, while qL,l,top is always much smaller than  qL,s,mean. Because the radius of small 

cloud droplets generally increases with height, qL,s at cloud base is expected to be less 

than qL,s,mean and  qL,l/qL,s at cloud base is expected to be larger than qL,l,base/qL,s,mean 

and so the ratios of drizzle to cloud liquid water presented in Figure 3.4 are 

representative of the cloud as a whole and most likely underestimate the impact of 

drizzle close to cloud base. In any case, taken together with Eqn. 4, such ratios are 

consistent with drizzle having an impact on the effective radius when the precipitation 

rate exceeds a few hundredths of a mm hr-1. It is remarkable that for even relatively 

modest precipitation rates, a significant fraction of the liquid water content in 

stratocumulus clouds can reside in drizzle-sized drops. The impacts of drizzle upon re 

at cloud base could significantly change the trend of vertical re variation because 

there are not many drizzle drops at cloud top. Using the re profile estimated from 

satellite reflectance measurements, the following section assesses in detail the impact 

of drizzle drops on vertical re variation.  

sLWP
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Figure 3.4 Scatter plot of the ratio between the liquid water content of drizzle drops 

at cloud base (qL,l,) and the column mean liquid water content of small 

droplets (qL,s,mean) vs. rain rate at cloud base. Circles represent cloud top 

samples and pluses represent cloud base samples. 

 

3.2.2 Satellite estimates of the re profile for drizzling and non-drizzling clouds 

Figure 3.5 shows the C-band precipitation rate against the MODIS-derived 

droplet effective radius at cloud top re1 and cloud base re2 for the spatially-matched 

dataset from EPIC. A threshold of -12dBZ (minimum detectable reflectivity of the C-

band radar) is used to classify the 5x5 km regions into either drizzling or non-

drizzling. Statistics of re1 and re2 are shown in Table 2.1. Both re1 and re2 are larger 
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for drizzling clouds than for non-drizzling clouds, with a threshold for drizzle of 

approximately 15 m in re1 consistent with earlier in-situ studies (e.g. Gerber 1996). 

However, re2 shows a greater contrast between drizzling clouds and non-drizzling 

clouds. The mean value of re1 is 9.6 µm for non-drizzling cloud and 17.1 µm for 

drizzling clouds, while the mean value of re2 is 6.3 µm for non-drizzling cloud and 

20.8 µm for drizzling clouds. The correlation coefficient with rain rate is 0.45 for re1 

and is 0.60 for re2. The reason that re2 is better correlated with rain rate is that the 

drizzle drops at cloud base increase the effective radius. On the other hand, drizzle 

decreases markedly towards the cloud top. The correlation between precipitation rate 

and cloud top effective radius is therefore expected not because the precipitation itself 

contributes to re but because clouds with large drops near their tops will be more 

prone to collision-coalescence which ultimately manifests itself as greater 

precipitations rates lower down in the cloud. 

 

 re1(μm) re2(μm) re1/ re2 
Cloud 
LWP 
(mm) 

Rain 
Rate 
(mmhr-1)

Correlation coefficient 
with rain rate 

0.45 0.60 -0.44 0.76 N/A 

Mean for non-raining 
clouds 

9.6 6.3 1.61 0.034 0 

Mean for raining 
clouds 

17.1 20.8 0.92 0.155 0.149 

 
 
Table 3.1 Comparison of cloud parameters for raining clouds and non-raining clouds 

 

 49 
 



 

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

Rain Rate(mm/hr)

D
ro

p
le

t E
ffe

ct
iv

e
 R

a
d
iu

s(
m

)

 

 

r
e2

 Correlation 0.60 

r
e1

 Correlation 0.45

 
 

Figure 3.5 Scatter plot between rain rates and cloud droplet effective radius. re1 is 

droplet effective radius at cloud top and re2  is droplet effective radius at cloud base 

 
 

Figure 3.6 shows the scatter plot between re1/re2 and coincident rain rate. 

Values of re1 are generally larger than re2 for non-drizzling clouds and the mean value 

of re1/re2 is 1.61 for non-drizzling clouds. The ratio decreases as the clouds start to 

drizzle and can become less than unity if drizzle is heavy (i.e. larger than 0.1mm hr-1). 

The mean rain rate is 0.04 mmhr-1for drizzling clouds with re1/re2 > 1 and 0.18 mm hr-

1 for drizzling clouds with re1/re2 < 1. The mean value of re1/re2 is 0.92 for drizzling 

cloud. The correlation coefficient between re1/re2 and rain rate is -0.43.     
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Figure 3.6 Scatter plot between rain rates and ratio between droplet effective radius at 

cloud top (re1) and droplet effective radius at cloud base (r2) 

 
 

Using rain rate estimation from the C-band radar and LWP from MODIS, we 

can make a rough estimate of qL,l/qL,s using the same method as in the previous 

section. Figure 3.7 shows a plot of the precipitation rate against LWP. For drizzling 

cloud, the mean rain rate is 0.15 mm hr-1 and the mean cloud LWP is 0.16 mm. As 

discussed in previous section, the drizzle liquid water content would be 0.69R in  

gm-3. The 0.15 mmhr-1 mean rain rate in Figure 3.7 means a drizzle liquid water 

content of qL,l of 0.10 g m-3. The average thickness of a drizzling cloud is around 

0.6 km for the data used in this study (estimated with MMCR and ceilometer). For an 

average cloud LWP of 0.16 mm in Figure 3.7, the average cloud liquid water content 
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(qL,l+qL,s) is around 0.25 g m-3 and qL,s would be around 0.15 g m-3 after the 0.10 g m-

3 qL,l is subtracted. Considering that qL,s at cloud base is less than qL,s at cloud top 

because re1/re2 is larger than 1 without contribution from drizzle drops,  qL,s would be 

in the same order of magnitude as qL,l at cloud base for the average rain rate of 0.15 

mmhr-1. Certainly, qL,l would be smaller than qL,s when the drizzle is light (i.e. 0.01 

mm hr-1) and would be larger than qL,s when the drizzle is high (i.e. 0.5 mm hr-1).  

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Cloud Liquid Water Path(mm)

R
a
in

 R
a
te

(m
m

)

Correlation 0.76

 
 

Figure 3.7 Scatter plot between rain rates estimated with C-band radar and liquid 

water paths estimated from MODIS measurements 

 
The above comparison of qL,l with qL,s indicates that, for the drizzling clouds 

in Figure 3.6, we expect a significant amount of drizzle liquid water content close to 

cloud base, especially when the precipitation rate exceeds about 0.1 mm hr-1. Given 
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that the drizzle drops start to increase effective radius significantly if qL,l/qL,s is above 

0.1, the neutralization and conversion of the trends of re vertical variation by drizzle 

drops in Figure 3.6 is consistent with theoretical calculations by Wood [2000] and 

with in-situ observations (Martin et al. 1994).   

Chen et al. (2007) also suggested similar impact of drizzle on vertical re 

variation, but in that preliminary study the re decreases with height for most 

precipitating clouds, and could be either increasing or decreasing for non-

precipitating clouds. As previously stated, this investigation found that most non-

drizzling clouds have a re profile that increases with height and drizzling clouds have 

re profiles that either increase or decrease with height. The differences between the 

results of the two studies result from different drizzle detection techniques. As stated 

in section 1, AMSR-E rain flag used in Chen et al. (2007) misses light drizzle, and 

possibly some heavy drizzle if the cloud LWP is low. As a result, the drizzle defined 

by AMSR-E is necessarily heavy drizzle, while the non-drizzling clouds defined by 

AMSR-E contain both drizzling and non-drizzling clouds. 

 

3.3 Summary 

Using data from the EPIC 2001 Stratocumulus Study, this study investigates 

the cloud re vertical variation for drizzling and non-drizzling clouds. Estimates of the 

partitioning of liquid water content between drizzle drops and small cloud droplets is 

carried out using MMCR data in drizzling stratocumulus by incorporating 

simultaneous LWP estimates from a passive microwave radiometer. Satellite 

reflectance measurements from MODIS on the Terra satellite are used to estimate the 
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trend of vertical re variation. Using drizzle rates estimated with a scanning C-band 

radar we show that the cloud re can decrease with height in clouds with sufficiently 

strong drizzle. For non-drizzling clouds, the re generally increases with height in 

accordance with the growth of cloud droplets by condensation. For drizzling clouds, 

at cloud base, liquid water content of drizzle drops is found to be of comparable 

magnitude to liquid water content of small cloud droplets when rain rate at cloud base 

is above a few hundredths of a mm hr-1. Both previous theoretical analyses (Wood, 

2000) and the synergetic observations in this study suggest that drizzle drops can 

increase re significantly at drizzle rates found in low liquid water clouds. Because 

drizzle is typically found towards the bottom of these clouds, the re increase by 

drizzle drops at cloud base can change the trend of vertical re variation and re can 

decrease with height if drizzle is heavy. By analyzing the radar precipitation 

observations and satellite cloud re profile estimation, it is shown that re generally 

decreases with height when rain rate is above 0.1 mm hr-1. Both re at cloud base and 

re at cloud top are shown to have certain distinction between drizzling and non-

drizzling clouds: larger for drizzling clouds than for non-drizzling clouds. The 

distinction is more striking for re at cloud base than re at cloud top. The re at cloud 

base is also found to be better correlated with rain rate.  
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 Chapter 4: Potential for use of Cloud Microphysical Parameters 

in Satellite Warm Rain Estimation 

 

Warm rain is derived from low-level liquid clouds and does not involve ice-

phase processes.  Warm rain is generally light, but occurs frequently. Liu et al. (1995) 

utilized a microwave emission technique that can detect warm-cloud liquid 

precipitation and found that clouds with Tc > 273 K contributed to 14% of the total 

rainfall in the western equatorial Pacific. They suggested that this percentage might 

be underestimated due to certain inabilities of microwave instruments. Traditional 

precipitation estimation techniques have problems for detection of warm rain. IR rain 

detection algorithms (Adler and Negri 1988; Arkin 1979; Kuligowski 2001) generally 

fail to detect the presence of precipitation in warm clouds because they depend on the 

cloud-top temperature and assume only clouds with cold and ice top can produce rain. 

Further, microwave techniques can not detect warm rain over land since they rely on 

ice scattering (McCollum and Ferraro 2003). Over oceans, microwave techniques 

may underestimate warm rain because such processes are very shallow and contribute 

less to emissions than deep systems. 

Using NASA A-train satellite data, this study investigates the rain 

contribution by clouds with warm tops and the relationship between warm rain and 

cloud microphysical parameters. By analyzing the Aqua AMSR-E rain estimates and 

the CloudSat CPR rain estimates, we will determine the percentage rain that is warm 

rain and the performance of space-borne passive microwave observations on warm 
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rain estimation over ocean. The potential impact of cloud microphysical parameters 

on warm rain estimation is studied with the MODIS estimates of cloud microphysical 

parameters and the coincident CloudSat CPR warm rain estimates. 

 

4.1 Data and Methods 

 

 
 
Figure 4.1 Locations of low-level liquid clouds detected over ocean during the first 20 

days of 2008. Color represents optical depth. Note that the cloud samples are 

required to be at the nadir position of the A-Train track. 

 
Data collected during the first 20 days of 2008 from MODIS/AMSR-E and  

CPR are used in this study. Because the CPR is a nadir-view instrument, only cloud 

samples along the nadir position of the A-Train satellites’ track are used. To eliminate 

ice contamination, only warm liquid water clouds (cloud-top temperatures > 273 K) 

are selected. The study is also limited to cases over ocean. Figure 4.1 shows the 

locations of the cloud samples used by this study.  
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4.1.1 MODIS retrieval of cloud parameters 
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Figure 4.2 Probability density function of the MODIS cloud top temperature estimates for 

clouds with tops having temperatures higher than 0°C. 

 

MODIS measurements from the Aqua satellite are used to estimate cloud 

parameters with the CL algorithms described in Chapter 2. The estimated cloud 

microphysical parameters include cloud top temperature, cloud optical depth, DER at 

cloud top (re1), DER at cloud base (re2), DER at 2.1μm (re2.1), LWP calculated with 

re2.1 (LWP2.1), and LWP calculated with re profile (LWPrep). These parameters have a 

nadir resolution of 11 km2. Only daytime MODIS measurements are used in this 

study because solar reflectance measurements are needed for retrieval of cloud 

parameters. The solar zenith angle is required to be less than 65° to minimize the 
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impacts of cloud 3D effects. Only clouds with tops having temperatures higher than 

0°C are selected. Figure 4.2 shows the distribution of cloud top temperature for the 

selected cloud samples. The cloud tops with temperatures around 8°C have the 

highest occurrence frequency and the cloud top temperature can be as high as 20°C.  

 

4.1.2 AMSR-E rain rate estimation 

The Goddard profiling (GPROF) algorithm is the operational rainfall 

algorithm for AMSR-E, which provides microwave brightness temperature 

observations over 12 channels and 6 frequencies ranging from 6.9 GHz to 89.0 GHz. 

Horizontally and vertically polarized radiation is measured separately at each 

frequency. The GPROF algorithm estimates the instantaneous rain rate by matching 

the multi-frequency microwave observations with pre-calculated brightness 

temperature values, which are calculated for the hydrometer profiles simulated by a 

cloud resolving model (Kummerow et al. 1996, 2001). For rain rate estimation over 

oceans, the GPROF algorithm utilizes the microwave emission of rain droplets at 

10.7, 18.7, and 36.5 GHz. For rain rate estimation over land, GPROF utilizes the 

attenuation of surface emission by cloud ice particles at 85 GHz. The horizontal 

resolutions are different for different AMSR-E channels. The operational AMSR-E 

precipitation product uses re-sampled level-1 brightness temperature data and has a 

resolution as 5x5 km2. By comparing the GPROF estimates from the TRMM 

microwave imager with ground-based rain gauge measurements and the radar rain 

estimates within the TRMM mission, Kummerow et al. (2001) showed that the bias 

of GPROF monthly mean rain estimation is generally within 30%.   
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4.1.3 CloudSat CPR rain rate estimation 

CloudSat was launched in June 2005 and joined the constellation of NASA A-

Train satellites. CloudSat carries the first millimeter wavelength radar in space to 

observe atmospheric hydrometer profiles (Stephens et al. 2002). The 94 GHz cloud 

profiling radar (CPR) is a W-band, nadir-pointing radar system. The vertical 

resolution of the CPR is 480m and over-sampled at 240m. The horizontal FOV size 

of the CPR is 1.7x1.3 km2. The CPR’s sensitivity is -28 dBZ and the dynamic range 

of measurements is 80 dB. Figure 4.3a shows the CPR reflectivity profiles during the 

period 20:55-21:35 UTC Jan 06 2008 in the eastern pacific. The surface-

contamination height for CPR is around 700m over the ocean. In Figure 4.3a, the 

CPR shows a good ability to capture the warm rain events, which are occurring 

underneath the low level clouds distributed between 600S and the equator. For deep 

convective systems near the tropics, the reflectivity measurements near the ocean 

surface are significantly attenuated by hydrometers.   

The reflectivity near the surface and the path integrated attenuation (PIA) are 

utilized to estimate rain rate in the CPR L2C column precipitation product (Haynes et. 

al. 2009). For millimeter wavelength radar, the back-scattered signal could be 

significantly attenuated if there are large hydrometer droplets along the path. Haynes 

et. al. (2009) estimates the PIA by comparing the measured surface reflectivity with 

the pre-calculated clear-sky surface reflectivity. If the PIA is not significant (i.e., the 

rain rate is less than 0.5mm hr-1), the near surface reflectivity is directly used to 

estimate the rain rate. Otherwise, the estimated PIA values are matched with pre-

calculated PIA data to estimate the rain rate. 
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Figure 4.3 A-Train satellite observations during 20:55-21:35 UTC Jan 06. 

 a) CloudSat CPR reflectivity profiles; b) CloudSat CPR rain rate estimates;  

c) Aqua AMSR-E rain rate estimates; d) Aqua MODIS cloud optical depth estimates 
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4.1.4 A quick look at simultaneous observations from CloudSat CPR, Aqua AMSR-E, 

and Aqua MODIS 

The AMSR-E and the MODIS instruments are onboard Aqua. MODIS has a 

cross-track scan pattern, while AMSR-E has a conical scan pattern with a 53o viewing 

angle (Kawanishi et al. 2003). The CPR is a nadir view profiling radar flown on 

CloudSat, which is in the same orbit as Aqua, but lags Aqua by 1 to 2 minutes. Figure 

4.3 shows the CPR reflectivity profiles, the CPR rain rate estimates, the AMSR-E rain 

rate estimates, and the MODIS cloud optical depth estimates during the period 20:55-

23:35 UTC Jan 06 over the eastern pacific. The CPR reflectivity profiles show two 

types of rain, which are the areas of shallow warm rain underneath stratocumulus 

clouds over the southern hemisphere and the deep convective system at 60N. The 

cloud top heights for the warm rain areas range between 2 km and 5 km, while the 

deep convective system reaches a height around 14 km. In Figure 4.3b, the maximum 

rain rate estimated by the CPR is around 2 mm hr-1 for the warm rain and 9 mm hr-1 

for the deep convective system. In Figure 4.3c, the AMSR-E rain rate estimates 

overlook most warm rain detected by the CPR. For the deep convective system at 

60N, the AMSR-E rain rate estimates are higher than the CPR rain rate estimates. 

Haynes et. al. (2009) found that the CPR underestimates the rain rate for deep 

convective systems. Figure 4.3d shows that the MODIS cloud optical depth estimates 

are well correlated with the CPR warm rain estimates, but are saturated for the deep 

convective system.  

The cloud/rain observations in Figure 4.3 indicate that the satellite passive 

microwave technique has a problem for estimating warm rain and the cloud 

microphysical parameters estimated by visible/near-IR instruments could have some 
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potential to estimate warm rain. To investigate these topics in detail, the AMSR-E 

rain rate estimates, the CPR rain rate estimates, and the MODIS cloud microphysical 

parameter estimates for the low-level liquid cloud samples during the first 20 days of 

2008 are analyzed in the following sections.  

 

4.2 Results 

4.2.1 Rain contribution by clouds with top temperatures higher than 0 °C  

Warm rain is important for both synoptic and climate scale precipitation 

analyses. As stated in the previous sections, traditional techniques with satellite IR or 

passive microwave observations have problems with detection of warm rain. 

CloudSat CPR is the first space-borne active instrument sensitive to warm rain, and 

the CPR rain rate product is the first dataset that provides warm rain estimates 

globally. Because the CPR rain rate estimates are not reliable for deep convective 

systems (Haynes et. al. 2009) and AMSR-E has difficulty in capturing warm rain, this 

study combines the rain rate estimates from these two instruments to obtain rain rate 

estimates globally. The CPR estimated cloud top heights are used to identify deep 

convection. The resolution of AMSR-E rain rate estimates is 5x5 km2 and the 

resolution of CloudSat CPR rain rate estimates is 1.7x1.3 km2. The CPR rain rate 

estimates are matched to the larger AMSR-E pixels according to the navigation data. 

For the matched samples, AMSR-E rain rate estimates are selected if the CPR 

estimated cloud top is higher than 10 km; otherwise the CPR rain rate estimates are 

selected.  

 62 
 



 

−80 −60 −40 −20 0
0

2

4

6

8

Cloud Top Temperature(0C)

R
a

in
 O

cc
u

rr
e

n
ce

 P
e

rc
e

n
ta

g
e

T > 00C, 28.8%

 

a) Rain occurrence 
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b) Rain amount 

Figure 4.4 Rain contributions by clouds with tops having temperatures higher than 

00C. 

 

Figure 4.4 a shows the percentage of rain occurrences for different cloud top 

temperatures. The rain rate threshold for the definition of rain occurrence is 0.05 mm 

hr-1 in this study. The cloud top temperature for raining clouds could be as high as 
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200C. The warm rain underneath clouds with tops  warmer than 00C encompass 

28.8% of rain occurrences over the global ocean. Figure 4.4b shows the percentage of 

the rain amount accounted for by clouds with different cloud top temperatures. 

Though warm rain showers generally have smaller accumulation than rain events 

involving ice processes, the rain underneath clouds warmer than 00C contributes 

17.6% of the total rain amount over the global ocean. In this study, the 00C threshold 

of cloud top temperature removes the low-level clouds underneath of high-level 

clouds. Chang and Li (2005) found that, over the ocean, 36% of low-level clouds are 

underneath of high cirrus clouds. Therefore, when the low-level clouds within a 

multi-layer structure are included, the low-level liquid clouds with tops warmer than 

00C account for 45.0% of rain occurrences and 27.5% of the rain amount over the 

global ocean. 

4.2.2 Comparisons between the AMSR-E warm rain estimates and the CPR warm 

rain estimates 

Over oceans, traditional passive microwave techniques use observed 

brightness temperatures to estimate the rain rate because the emission of hydrometers 

along the view path contributes to the observed brightness temperatures. However, 

the rain rate is determined by the liquid water reaching the ground surface. Because 

warm rains are produced by low-level clouds and their satellite view path is generally 

short, the observed brightness temperature for warm rainfall could be much less than 

that for deep rain systems. The previous algorithms for rain rate estimation with 

satellite passive microwave observations mainly focus on deep rain systems. 

Therefore, warm rain could be missed or underestimated by these algorithms because 
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of its relatively low contribution to the observed brightness temperatures. The big 

FOV size of satellite passive microwave observations (i.e., 13x7 km2 for the AMSR-

E 37 GHz channel) could be another problem faced by warm rain estimation 

algorithms because many warm rains are produced by stratocumulus clouds with 

small spatial scales, and furthermore such clouds are frequently broken. In this study, 

the CPR rain rate estimations are matched to the larger AMSR-E pixels. Note CPR’s 

footprints only partially cover AMSR-E pixels because the AMSR-E pixel size is 

wider than CPR’s instantaneous FOV in the cross-track direction (5 km vs. 1.3 km). 

By comparing the AMSR-E rain rate estimates with the CPR rain rate estimates for 

clouds with tops warmer than 00C, this study shows the performance of satellite 

passive microwave observations for warm rain estimation.   
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Figure 4.5 Probability density functions of the AMSR-E rain rate estimates and the 

CPR rain rate estimates for clouds with tops warmer than 0°C. 

 65 
 



 

Figure 4.5 shows the distributions of the CPR and AMSR-E rain rate 

estimates for clouds with tops warmer than 0°C. The CPR rain estimates show that 

nearly 38 percent of the selected clouds produce rain rates higher than 0.1 mm hr-1, 

while only 16 percent of the AMSR-E rain estimates are that high. The average rain 

rate for all selected clouds is 0.162 mm hr-1 from CPR, but is only 0.085 mm hr-1 

from the AMSR-E rain estimations. Compared with the CPR rain estimation values, 

the AMSR-E rain estimations underestimate warm rain by nearly 48%.  

Figure 4.6 shows the mean rain rates estimated by AMSR-E and CPR for 

different cloud top heights. For warm rains underneath clouds with top heights less 

than 3.5 km, AMSR-E significantly underestimates the rain rate. For higher clouds, 

the two rain rates estimates are comparable.  
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Figure 4.6 Mean rain rates estimated by AMSR-E and CPR for different cloud top 

heights. 
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4.2.3 The potential of cloud microphysical parameters to be used in warm rain 

estimation 

As shown in the previous sections, traditional microwave and IR techniques 

have difficulty estimating warm rain. Furthermore, cloud microphysical parameters 

estimated by visible/near-IR instruments have the potential to estimate warm rain. Ba 

and Gruber (2000) use visible reflectance and cloud droplet effective radius as 

retrieved from GOES 3.9 µm observations to detect rain. They found that the 

detection of warm rain is improved by utilizing cloud observations from the visible 

and near-IR channels. However, because of the lack of reliable global warm rain 

observations, the relationships between cloud microphysical parameters and warm 

rain have not been investigated in detail previously. The CloudSat CPR rain rate 

product is the first dataset that globally provides warm rain estimations. To find the 

relationships between warm rain and its associated cloud microphysical parameters, 

this study analyzes MODIS estimates of cloud microphysical parameters and 

coincident CPR rain estimates for low-level liquid clouds, from data collected during 

the first 20 days of 2008. The nadir resolution of MODIS cloud microphysical 

parameter estimates is 1x1 km2, while CPR has a horizontal resolution of 1.7x1.3 

km2. The nearest MODIS pixels to the CPR pixels are found by using their navigation 

information. The two instruments have comparable resolutions in the cross-track 

direction. In the along track direction, both MODIS and CPR estimates are averaged 

to 5 km resolution to minimize the impact of the temporal lag between the Aqua and 

CloudSat satellites. The selected cloud samples are required to be flagged as overcast 

to reduce the 3D effects of broken clouds. The cloud microphysical parameters used 

in this study include cloud optical depth, DER at cloud top (re1), DER at cloud base 
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(re2), DER at 2.1μm (re2.1), LWP calculated with re2.1 (LWP2.1), and LWP calculated 

with re profile (LWPrep). A 0.05 mm hr-1 threshold of the CPR rain rate estimation is 

used to separate rain from no-rain situations. The cloud top temperatures of selected 

cloud samples are required to be higher than 00C.  
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Figure 4.7 Occurrence probabilities of the cloud microphysical parameters for raining 

clouds and non-raining clouds. Solid lines represent non-raining clouds; 

dashed lines represent raining clouds. 
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Figure 4.7 shows occurrence probabilities of the cloud microphysical 

parameters for raining clouds and non-raining clouds. The Heidke Skill Score (HSS) 

of the rain/no-rain screen are calculated for different thresholds of the microphysical 

parameters. The optimal threshold which gives the highest HSS is shown for each 

microphysical parameter in Figure 4.7. HSS is a measure of the optimal fit between 

two binary variables. As shown in equation 4.1, HSS is computed by comparing the 

rain/no-rain screen using the MODIS cloud microphysical parameters with the 

rain/no-rain condition found by the CPR observations:  

 
     31434221

32412

cccccccc

cccc
HSS




               ,                      (4.1) 

where c1 is the number of correct no-rain detections (i.e., the screen indicates no rain, 

and the CPR rain rate estimate is lower than 0.05 mm hr-1), c2 is the number of 

incorrect rain detections (i.e., the screen indicates rain, but the CPR rain rate estimate 

is lower than 0.05 mm hr-1), c3 is the number of incorrect no-rain detections (i.e., the 

screen indicates no rain, but the CPR rain rate estimate is higher than 0.05 mm hr-1), 

and c4 is the number of correct rain detections (i.e., the screen indicates rain, and the 

CPR rain rate estimate is higher than 0.05 mm hr-1). HSS=1 would indicate a perfect 

rain/no-rain screen (i.e., c2 = c3 = 0). A zero value for HSS indicates the screen is no 

better than random guessing, with the number of correct detections being the same as 

the number of incorrect detections (i.e., c1c4= c2c3). The skill score will be negative if 

the detection skill is worse than random guessing (i.e., c1c4< c2c3). Among the 

microphysical parameters in Figure 4.7, the best predictor for the rain/no-rain screen 

is LWPrep, which gives a HSS value of 0.565 when the optimal threshold of 0.162 

mm is used. Among the three type of effective radii tested, re at cloud base gives the 
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best rain/no-rain screen with a HSS value of 0.250, while the HSS for re at cloud top 

is only 0.139. The HSS value for re2.1 is 0.201. With a HSS value of 0.469, cloud 

optical depth shows much better ability in the rain/no-rain screen than effective 

radius. LWPrep shows the highest HSS because it combines cloud optical depth and 

the re profile. The HSS value of AMSR-E warm rain estimation is 0.312.  
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Figure 4.8 Scatterplots between the MODIS estimates of cloud microphysical 

parameters and the CPR rain rate estimates. 
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Note the rain/no-rain ‘truth’ used in this study is obtained from the CPR rain 

rate estimates near the surface, which are significantly affected by factors other than 

clouds (i.e., evaporation and wind speed). The movements of hydrometers during the 

lag time between Aqua MODIS and CloudSat CPR observations may also degrade 

the correlations between these two observations because the CPR observation is only 

1.3 km wide in the cross-track direction. Figure 4.8 shows the scatterplots between 

the MODIS estimates of cloud microphysical parameters and the CPR rain rate 

estimates for raining clouds with top temperatures higher than 00C. Among the 

effective radii tested, the re at cloud base is best correlated with the near surface rain 

rate, but the correlation coefficient is only 0.119. The correlations between cloud 

droplet effective radii and surface rain rate are all very weak because the cloud 

droplet effective radii are probably saturated for raining clouds. With a 0.332 

correlation coefficient, cloud optical depth is much more correlated with the near-

surface rain rate than any of the effective radiui. Because LWP2.1 combines optical 

depth and re2.1, it is more correlated with the near-surface rain rate than optical depth 

alone. The correlation coefficient for LWP2.1 is 0.409, which is only slightly lower 

than the value for LWPrep. Among all microphysical parameters, LWPrep is most 

correlated with the near-surface rain rate because it combines cloud optical depth and 

the re profile.  

In summary, the value of LWPrep (estimated with observations from  available 

visible and near-IR channels) has a correlation coefficient with the CPR rain rate 

estimates of 0.419 for MODIS LWPrep estimates, while the correlation is 0.226 for 

AMSR-E rain rate estimates. Therefore, for rain underneath clouds with tops warmer  
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than 00C, both MODIS estimates of cloud LWP and MODIS estimates of cloud 

optical depth show better potential to detect rain occurrence and to estimate rain 

amount than AMSR-E passive microwave observations. The linear relationship 

between the LWPrep and CPR estimates of near-surface rain rate is RRsurface = 0.062 + 

1.504LWPrep, where RRsurface is the rain rate in units of mm hr-1 and LWPrep is in units 

of mm.  

 

4.3 Summary and Discussion 

Warm rain is very important for both synoptic and climate scale precipitation 

analyses. To investigate the rain contribution by low-level liquid clouds and the 

potential for using cloud microphysical parameters in warm rain estimation, this study 

analyzed the AMSR-E rain rate estimates, the CPR rain rate estimates, and the 

MODIS estimates of cloud microphysical parameter for the low-level liquid cloud 

samples collected during the first 20 days of 2008. The warm rain underneath single-

layer clouds with tops warmer than 00C comprises 28.8% of rain occurrences and 

17.6% of total rain amounts over the global oceans during the observation period. 

When the low-level clouds within a multi-layer structure are included, the low-level 

liquid clouds with tops warmer than 00C account for 45.0% of rain occurrences and 

27.5% of the total rain amount over the global oceans. To avoid ice contamination, 

the cloud top samples used in this study are required to be warmer than 00C, but in 

reality, the tops for liquid water clouds could be much colder than 00C. Therefore, the 

actual rain contribution by low-level liquid clouds may be even larger than what is 

shown in this study.  
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Though warm rain underneath low-level liquid clouds significantly 

contributes to global precipitation, it has been overlooked or underestimated by 

previous satellite techniques for global precipitation estimation. IR techniques miss 

all warm rain because that rely on cloud top temperature. Over land, passive 

microwave techniques miss all occurrences of warm rain because the methods rely on 

ice scattering being observed in the high frequency channel. Over oceans, this study 

shows passive microwave techniques underestimate warm rain by nearly 48%, and 

most of the underestimation happens for clouds with tops lower than 3.5 km.  

The potential of cloud microphysical parameters to be used directly in warm 

rain estimation has been investigated in this study. The liquid water path calculated 

using DER profiles (LWPrep) is found to have the best potential for warm rain 

detection and warm rain amount estimation. For the cloud samples used by this study, 

the optimal threshold of LWPrep for a rain/no-rain screen is 0.162 mm, which gives a 

HSS value as 0.565. The correlation between LWPrep and the CPR warm rain 

estimates is 0.419. The linear relationship between LWPrep and the CPR warm rain 

estimates is RRsurface = 0.062 + 1.504LWPrep, where RRsurface is the rain rate in units 

of mm hr-1 and LWPrep has units of mm. For the warm cloud samples used in this 

study, both the MODIS estimates of cloud LWP and cloud optical depth show better 

potential to detect rain occurrence and to estimate rain amount than the AMSR-E 

passive microwave observations. 

A formal algorithm for warm rain estimation using cloud microphysical 

parameters is beyond the scope of this study. Warm rain is a complicated process that 

involves factors other than clouds such as evaporation and wind speed. Future work 
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needs to be done to include these processes in warm rain estimation. The low-level 

liquid cloud samples assessed in this study are single layer clouds. Chang and Li 

(2005) found 36% of low-level clouds over the ocean are underneath high clouds. To 

obtain cloud microphysical parameters for estimating warm rain produced by these 

clouds, an algorithm to estimate optical properties for multi-layer clouds (Chang and 

Li 2005) should be used in future studies.  
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Chapter 5: Conclusions and Future Works 
 

5.1 Conclusions 

The recently launched NASA A-Train satellites carry both active and passive 

instruments with many different channels, which provide comprehensive 

simultaneous information about clouds and precipitation processes. Utilizing A-Train 

satellite data and data from the EPIC campaign, this study investigates the estimation 

of liquid water for low-level liquid clouds, the relationship between DER vertical 

variation and rain processes, as well as the potential for using cloud microphysical 

parameters in estimation of rain from low-level liquid clouds. 

Traditionally, when computing cloud LWP, the DER is effectively assumed to 

be a constant. By analyzing a single day’s worth of MODIS and AMSR-E products 

over the tropical ocean for warm and overcast clouds with optical depths ranging 

between 3.6 and 23, this investigation demonstrates that assuming a vertically 

constant cloud DER can result in biases in the calculations of LWP. It is also shown 

that accounting for the vertical variation of DER profiles can reduce the mean biases, 

though the DER vertical variation is not the only source of uncertainty in cloud LWP 

estimation. The result shows that improvements to the MODIS LWP calculations 

based on DER vertical variations are on the order of 10% for the utilized data 

samples. These improvements are systematic and physically sound.  

The vertical variations of retrieved DER (re) from multiple NIR channels are 

correlated with warm rain processes. For non-drizzling clouds, the re generally 

increases with height in accordance with the growth of cloud droplets by 
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condensation. Using data from the EPIC 2001 Stratocumulus Study, we show that the 

cloud re can decrease with height in clouds with sufficiently strong drizzle. Based on 

the radar precipitation observations and satellite cloud re profile estimation, re 

generally decreases with height when the rain rate is above 0.1 mm hr-1. Both re at 

cloud base and re at cloud top are shown to be larger for drizzling clouds than for 

non-drizzling clouds. This feature is more striking for re at cloud base than re at cloud 

top. 

To investigate the rain contribution by low-level liquid clouds and the 

potential of using cloud microphysical parameters in warm rain estimation, this study 

analyzed the AMSR-E rain rate estimates, the CPR rain rate estimates, and the 

MODIS cloud microphysical parameter estimates for the low-level liquid cloud 

samples during the first 20 days of 2008. The warm rain underneath single-layer 

clouds with top temperatures higher than 00C accounts for 28.8% of rain occurrences 

and 17.6% of the rain amount over the global ocean. When the low-level clouds 

within a multi-layer structure are included (Chang and Li 2005), the low-level liquid 

clouds with top temperatures higher than 00C contribute to 45.0% of rain occurrences 

and 27.5% of the rain amount over the global oceans. Previously, satellite passive 

microwave observations over ocean areas have been the only means for global warm 

rain estimation. This study shows that the existing passive microwave techniques 

underestimate warm rain over the ocean by nearly 48%, and most of the 

underestimation happens for rain underneath clouds with tops lower than 3.5 km. 

Among the cloud microphysical parameters, the liquid water path calculated using the 

DER profile (LWPrep) is found to have the best potential for warm rain detection and 
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warm rain amount estimation. For the cloud samples used by this study, the optimal 

threshold of LWPrep for a rain/no-rain screen is 0.168 mm, which gives a Heidke Skill 

Score (HSS) of 0.565. The correlation between LWPrep and the CPR warm rain 

estimates is 0.419. The linear relationship between LWPrep and the CPR warm rain 

estimates is RRsurface = 0.062 + 1.504LWPrep, where the rain rate RRsurface has units of 

mm hr-1 and LWPrep has units of mm. For the warm cloud samples used in this study, 

both the MODIS estimates of cloud LWP and cloud optical depth show better 

potential to detect rain occurrences and estimate rain amount than the AMSR-E 

passive microwave observations. 

 

5.2 Future Work 

The impact of vertical DER variation on cloud liquid water estimation found 

in this study is based on comparisons between LWP retrieved from the AMSR-E 

microwave measurements and LWP computed from the MODIS visible/NIR cloud 

optical depth and DER retrievals. AMSR-E LWP products are utilized for 

comparisons because the microwave radiometer observes the whole cloud column. 

However, there are uncertainties in microwave retrievals such as AMSR-E that can 

also be incurred from error sources like ocean surface emissions, cloud properties, 

radiometric calibrations, and beam filling problems. Also, the data samples utilized in 

this investigation are very limited. Further study is required when more accurate LWP 

products become available in the future.   

This study shows that cloud microphysical parameters have the potential for 

use in global warm rain estimation. Developing a formal algorithm for warm rain 
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estimation from cloud microphysical parameters is beyond the scope of this study 

since warm rain is a very complicated process that involves factors other than clouds 

(i.e., evaporation and wind speed).  More future study needs to be done to include 

these processes for warm rain estimation.  

This investigation is a pre-launch study for the GOES-R satellite, which is 

currently scheduled for launch in 2012. The Advanced Baseline Imager (ABI) on 

GOES-R has similar channels to MODIS (e.g., 0.64 m, 1.61 m, 2.26 m, and 3.90 

m). The operational precipitation algorithm for GOES-R is the self-calibrating 

multivariate precipitation retrieval (SCaMPR) algorithm, which uses the optimal 

predictors that are calibrated with passive microwave rain estimates. The findings of 

this study (i.e., the use of thresholds for rain detection and the relationships between 

cloud microphysical parameters and warm rain rate) could be incorporated into 

SCaMPR for enhancement of GOES-R rain estimation capabilities.   
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Table of Abbreviations 
  

AMSR-E           Advanced Microwave Scanning Radiometer 

AOSC               Department of Atmospheric and Oceanic Sciences 

AVHRR            Advanced Very High Resolution Radiometer 

CICS                 Cooperative Institute of Climate Studies  

CPR                  Cloud Profiling Radar 

DDP                 Decreasing DER Profile 

DER                  Droplet Effective Radius 

EPIC                 Eastern Pacific Investigation of Climate 

ESSIC               Earth Systems Science Interdisciplinary Center 

GOES               Geostationary Operational Environmental Satellites 

HSS                  Heidke Skill Score 

IDP                   Increasing DER Profile 

ISCCP              International Satellite Cloud Climatology Project 

MMCR             Millimeter Cloud Radar 

MODIS            Moderate Resolution Imaging Spectroradiometer 

NASA              National Aeronautics and Space Administration 

NDP                 Neutral DER Profile  

NIR                  Near Infrared 

NOAA             National Oceanic and Atmospheric Administration 

PIA                  Path Integrated Attenuation 
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