
The landscape of exosomal
non-coding RNAs in breast cancer
drug resistance, focusing on
underlying molecular
mechanisms

Malihe Rezaee1,2, Fatemeh Mohammadi3,
Atoosa Keshavarzmotamed4, Sheida Yahyazadeh5, Omid Vakili6,7,
Yaser Eshaghi Milasi7, Vida Veisi8, Rohollah Mousavi Dehmordi7,9,
Sepideh Asadi10, Seyedeh Sara Ghorbanhosseini7,
Mehdi Rostami11, Mina Alimohammadi12*, Abbas Azadi13*,
Nushin Moussavi14, Zatollah Asemi15, Azadeh Aminianfar15,
Hamed Mirzaei15* and Alireza Mafi7,16*
1Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences,
Tehran, Iran, 2Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of
Medical Sciences, Tehran, Iran, 3Afzalipour Faculty of Medicine, Kerman University of Medical Sciences,
Kerman, Iran, 4Student Research Committee, Guilan University of Medical Sciences, Rasht, Iran,
5Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,
6Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran, 7Department of Clinical Biochemistry, School of Pharmacy and
Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran, 8School of Medicine,
Shahrekord University of Medical Sciences, Shahrekord, Iran, 9Department of Clinical Biochemistry,
Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 10Department of Life
Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran,
11Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran, 12Student
Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of
Medical Sciences, Tehran, Iran, 13Department of Internal Medicine, Lorestan University of Medical
Sciences, Khorramabad, Iran, 14Department of Surgery, Kashan University of Medical Sciences, Kashan,
Iran, 15Research Center for Biochemistry and Nutrition inMetabolic Diseases, Kashan University of Medical
Sciences, Kashan, Iran, 16Nutrition and Food Security Research Center, Isfahan University of Medical
Sciences, Isfahan, Iran

Breast cancer (BC) is the most common malignancy among women worldwide.
Like many other cancers, BC therapy is challenging and sometimes frustrating. In
spite of the various therapeutic modalities applied to treat the cancer, drug
resistance, also known as, chemoresistance, is very common in almost all BCs.
Undesirably, a breast tumor might be resistant to different curative approaches
(e.g., chemo- and immunotherapy) at the same period of time. Exosomes, as
double membrane-bound extracellular vesicles 1) secreted from different cell
species, can considerably transfer cell products and components through the
bloodstream. In this context, non-coding RNAs (ncRNAs), including miRNAs, long
ncRNAs (lncRNAs), and circular RNAs (circRNAs), are a chief group of exosomal
constituents with amazing abilities to regulate the underlying pathogenic
mechanisms of BC, such as cell proliferation, angiogenesis, invasion,
metastasis, migration, and particularly drug resistance. Thereby, exosomal
ncRNAs can be considered potential mediators of BC progression and drug
resistance. Moreover, as the corresponding exosomal ncRNAs circulate in the
bloodstream and are found in different body fluids, they can serve as foremost
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prognostic/diagnostic biomarkers. The current study aims to comprehensively
review the most recent findings on BC-related molecular mechanisms and
signaling pathways affected by exosomal miRNAs, lncRNAs, and circRNAs, with
a focus on drug resistance. Also, the potential of the same exosomal ncRNAs in the
diagnosis and prognosis of BC will be discussed in detail.

KEYWORDS

breast neoplasms, drug resistance, exosomes, microRNAs, circular RNA, long non-
coding RNA

1 Introduction

Breast cancer (BC), the most common malignancy among
women, is the second leading cause of cancer death for women
worldwide (DeSantis et al., 2017). The National Breast Cancer
Coalition (NBCC) has estimated the incidence of BC to be 12.9%
in 2022, and unfortunately, a woman dies from BC every 13 min
(Oza et al., 2021). BC survival rates are considerably different among
the nations, as high-income countries have reported a 5-year
survival of 80%, while low-income nations have reported a 5-year
survival of less than 40% (Coleman et al., 2008). Age, family history
of BC, reproductive and environmental parameters, and genetic
predisposition are considered substantial risk factors for BC onset
and progression (Shah et al., 2014). Almost 40% of recurrent BCs are
detected in patients without particular symptoms in regular
examinations, highlighting the significance of BC management
and follow-up. Clinical assessments, such as physical
examination, should be carried out every 4–6 months for at least
5 years, and afterward, for every 12 months, along with annual
mammography evaluation (Shah et al., 2014; Rautalin et al., 2022).

Based upon immunohistochemical staining for key proteins’
expression, breast tumors are considered to contain at least 1% of the
following genes: human epidermal growth factor receptor 2 (HER2,
Erbb2 gene), estrogen receptor (ER), and progesterone receptor (PR,
Pgr gene) (Hammond et al., 2010). Tumors that do not express the
three mentioned proteins are referred to as “basal-like” or “triple-
negative” breast cancer (TNBC) (Klinge, 2018). Primary breast
tumors have predominantly been reported to be ER+/PR+/
HER2-, which determine the basis of applying therapeutics,
including radiation therapy, surgery, and endocrine therapies
(e.g., anti-estrogen therapy) (Klinge, 2018). Nevertheless, 30%–
40% of BC cases have been found to be resistant to endocrine
therapies and develop metastatic conditions (Ring and Dowsett,
2004; Piggott et al., 2018). According to the PAM50 test that
analyzes 50 genes expressed in primary breast tumors, more
individualized therapeutics are planned to be used in clinical
settings (Cejalvo et al., 2018).

Non-coding RNAs (ncRNAs), which comprise 99% of the total
cellular RNAs in human cells (Consortium, 2012; Romano et al.,
2017), have recently attracted much attention in relation to BC
pathogenesis and development (Sobhani et al., 2022). In brief,
ncRNAs are a large family of RNA molecules, classified into two
subclasses based on their size: minor or short ncRNAs with less than
200 nucleotides in size (Krichevsky et al., 2003) and major or long
ncRNAs with more than 200 nucleotides in size. Multiple ncRNAs
are categorized in the aforementioned groups, in which miRNAs,
lncRNAs, and circRNAs have been reported to be more essential in

cancer pathophysiology (Cech and Steitz, 2014; Beermann et al.,
2016). NcRNA molecules are involved in several biological
processes, as well as protein coding/decoding, transcription
regulation, and gene expression modulation, in both physiological
and pathological conditions (Krichevsky et al., 2003; Gregory and
Shiekhattar, 2005; Esquela-Kerscher and Slack, 2006; Huarte and
Rinn, 2010; Kasinski and Slack, 2011; Rinn and Huarte, 2011; Tay
et al., 2014; Anastasiadou et al., 2018). More interestingly, ncRNAs
can be packaged into EVs, especially exosomes (Meldolesi, 2018), to
be locally or systemically transmitted among the cells (Palazzo and
Lee, 2015; Sun et al., 2018a); a characteristic that enables ncRNA
transfer from tumor cells to normal cells, and vice versa. The specific
structure of EVs (i.e., their bilayer membranes) supports the process
of ncRNA transmission and protects them against circulatory
nucleases and other possible threat factors (Teixeira et al., 2015;
Mateescu et al., 2017).

Exosomal ncRNAs have previously been reported to be prominent
in BC-related pathogenic mechanisms, such as cell proliferation,
invasion, metastasis, migration, and especially drug resistance
(Bullock et al., 2015; Xie et al., 2019). In drug resistance, exosomal
ncRNAs interfere with variousmechanisms, from drug absorption to its
efflux. In addition, they can link resistant cells to sensitive ones through
their exosome-dependent transmission (Ashekyan et al., 2022). In the
current review, the crosstalk between exosomal ncRNAs, including
exosomal miRNAs, lncRNAs, and circRNAs, and BC drug resistance is
discussed in detail, and the possible roles of the corresponding RNAs in
the deceleration or exacerbation of chemoresistance are
comprehensively highlighted. Since exosomal ncRNAs are
considered circulating agents with diagnostic and therapeutic
potential, and regarding the limitations and disadvantages of the
current diagnostic/therapeutic strategies, prognostic/diagnostic
potentials of the aforestated RNA molecules will also be reviewed in
brief.

2 BC drug resistance in brief:
Underlying mechanisms

During the relapse abundance among BC patients, it seems
necessary to elucidate the resistance-related mechanisms in detail
(Harbeck and Gnant, 2017; Ji et al., 2019). There are two types of
drug resistance; intrinsic resistance and acquired resistance. In intrinsic
drug resistance, cancer cannot naturally be targeted by a specific agent,
which can be the result of genetic mutations, tumor heterogeneity, or
the absence of drug target expression. In the acquired type, therapeutic
effectiveness is attenuated over time (Cosentino et al., 2021).
Modifications of HER receptor signaling have been reported to have
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TABLE 1 Exosomal ncRNAs (miRNAs, lncRNAs, and circRNAs) involved in BC drug resistance.

NcRNA Type
of EVs

EV source Chemotherapy
drug

Expression
pattern

Corresponding
targets/signaling
pathway

Clinical
application

Reference

MiRNAs

miR-221/222 Exosome TAM-resistant
MCF-7 cells

Tamoxifen Up Direct inhibition of the
expression of
P27 and ERα

Therapeutic target Wei et al.
(2014)

Several miRNAs,
including miR-
1246, miR-23a-
miR-1469, miR-
638, miR-1915,
miR-2861, let-7a,
let-7b, miR-27a,
and miR-16

Exosome DOC-resistant
MCF-7 cells

Docetaxel Up Axon guidance, MAPK
signaling pathway, Wnt
signaling pathway, cell
cycle, and TGF-β
signaling pathway

Therapeutic target
Monitoring biomarker

Chen et al.
(2014a)

miR-222 Exosome DOC-resistant
MCF-7 cells

Docetaxel Up Underexpression of
PTEN

Therapeutic target
Monitoring biomarker

Chen et al.
(2014b)

miR-134 EV TNBC aggressive
clonal variant
(Hs578 Ts(i)8) cells

Anti-Hsp90 drugs Down Underexpression of
STAT5B, Hsp90, and
Bcl-2

Therapeutic target
Monitoring biomarker
Prognostic biomarker

O’Brien et al.
(2015)

miR-222/223 Exosome MSCs Carboplatin Up Cell cycle Therapeutic target Bliss et al.
(2016)

miR-222 Exosome ADM-resistant
MCF-7 cells

Adriamycin Up N/A Therapeutic target Yu et al.
(2016)

miR-1246 Exosome Metastatic breast
cancer MDA-MB-
231 cell

Docetaxel Epirubicin
Gemcitabine

Up Underexpression of
CCNG2

Therapeutic target Li et al.
(2017a)

miR-770 Exosome TNBC cells Doxorubicin Down Underexpression of
STMN1

Prognostic biomarker
Therapeutic target

Li et al.
(2018b)

miR-155 Exosome CSCs Doxorubicin Paclitaxel Up EMT molecular changes:
1) upregulation of BMI1,
SLUG, SNAIL, SOX9,
and EZH2

Therapeutic target Santos et al.
(2018)

DOX-resistant cells 2) repression of
E-cadherin

PTX-resistant cells
(both MCF-7 and
MDA-MB-231)

3) downregulation of C/
EBP-β, TGF-β, and
FOXO-3a

miR-567 Exosome MCF-10A (drug-
sensitive cells)

Trastuzumab Down Atg5 inhibition Prognostic biomarker
Therapeutic target

Han et al.
(2020)

miR-1246 and
miR-155

Exosome TZB-resistant BC
patients

Trastuzumab Up N/A Monitoring biomarker
Prognostic biomarker

Zhang et al.
(2020)

miR-1236 Exosome Adipose MSC Cisplatin Down Suppression of
SLC9A1 and the Wnt/β-
catenin signaling
pathway

Therapeutic target Jia et al.
(2020)

miR-22 Exosome Cancer-associated
fibroblast (CAF)

Tamoxifen Up Underexpression of ERα
and PTEN

Therapeutic target Gao et al.
(2020)

Activation of the PI3K/
AKT pathway

miR-9-5p Exosome TAM-resistant
MCF-7 cells

Tamoxifen Up Underexpression of
ADIPOQ

Therapeutic target Liu et al.
(2021)

miR-342-3p Exosome MSCs Doxorubicin Down Underexpression of
ID4 that regulates the
EMT process

Therapeutic target Yu et al.
(2022)

Fluorouracil

Cisplatin

(Continued on following page)
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a substantial role in developing BC drug resistance. Lee et al. discovered
that concentrations of heat shock protein 90 (HSP90) were highly
elevated in drug-resistant BC cells, and a mixture of lapatinib and
HSP90 inhibitors represented an advantageous therapeutic strategy for
HER2+ patients (Lee et al., 2020). As a xenobiotic transporter, the BC-
resistant protein (BCRP, also known as, ATP-binding cassette G2
(ABCG2)) contributes to multidrug resistance (MDR) and is
responsible for the efflux of anticancer drugs (Szczygieł et al., 2022).
In parenthesis, MDR1 is one of the most well-known ABC transporters
that induces chemoresistance (Robey et al., 2018). Furthermore, BC
heterogeneity in the tumor microenvironment can impact the response
to the therapeutic approach, and thus tumor progression (Kim and
Zhang, 2016). The increased glucose uptake and disrupted oxidative
phosphorylation and glycolysis are linked to cancer progression toward
advanced stages, as well as the development of drug resistance against
approved chemotherapy drugs, such as paclitaxel, cisplatin,
doxorubicin, and tamoxifen (Varghese et al., 2020). Intercellular
communications between tumor cells and the surrounding cells,

including immune cells, adipocytes, and fibroblasts, significantly
affect the increase in resistance against anticancer drugs (Fontana
et al., 2022). On the other hand, the enhanced levels of mitogen-
activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K),
EGFR, and phospho-ribosomal protein S6 kinase beta-1 (p-S6K1) are
linked to BC radioresistance (Gray et al., 2019). Multiple evaluations
have shown that a large number of miRNAs, as well as lncRNAs and
circRNAs, contribute to the progression of BC drug resistance.
However, tumor suppressor ncRNAs, which are silenced in
chemoresistant BC, can suppress drug resistance if upregulated (Zhu
et al., 2011; Gao et al., 2016).

3 Exosomes: Biogenesis and biological
features

Exosomes, as small EVs (30–150 nm), are produced during
endosomal maturation (Chahar and Casola, 2015). Typically,

TABLE 1 (Continued) Exosomal ncRNAs (miRNAs, lncRNAs, and circRNAs) involved in BC drug resistance.

NcRNA Type
of EVs

EV source Chemotherapy
drug

Expression
pattern

Corresponding
targets/signaling
pathway

Clinical
application

Reference

miR-887-3p EV Resistant MDA-
MB-231 BC cells

Doxorubicin Up Underexpression of
BTBD7 and activation of
the Notch1/
Hes1 signaling pathway

Therapeutic target Wang et al.
(2022a)

Cisplatin

Fulvestrant

miR-423-5p Exosome Cisplatin-resistant
MDA-MB-231 BC
cells

Cisplatin Up Overexpression of P-gp
and migration and
invasion capabilities
Inhibition of apoptosis

Therapeutic target Wang et al.
(2019a)

LncRNAs

LncRNA UCA1 Exosome TAM-resistant
LCC2 cells

Tamoxifen Up Inhibition of caspase-3
and apoptosis

Therapeutic target Xu et al.
(2016)

LncRNA
APAP2-AS1

Exosome TZB-resistant BC
cells

Trastuzumab Up Inhibition of TZB-
induced apoptosis

Therapeutic target Zheng et al.
(2019)

HIF-1α-stabilizing
long non-coding
RNA (HISLA)

EV Tumor-associated
macrophages
(TAMs)

Chemotherapy Up Stabilization of HIF-1α
via blocking the
interaction between
PHD2 and HIF-1α
Promotion of aerobic
glycolysis and apoptotic
resistance

Therapeutic target
Chemotherapeutic
resistance biomarker
Prognostic biomarker

Chen et al.
(2019c)

LncRNA H19 Exosome Doxorubicin-
resistant MCF-7 BC
cells

Doxorubicin Up Decreasing cell viability Therapeutic target Wang et al.
(2020)

Lowering colony-
forming ability

Chemotherapeutic
resistance biomarker

Inducing apoptosis

LncRNA
AGAP2-AS1

Exosome TZB-resistant
SKBR-3 BC cells

Trastuzumab Up Overexpression of
Atg10 and autophagy

Therapeutic target
Prognostic value

Qian et al.
(2021)

CircRNAs

Circ_UBE2D2 Exosome TAM-resistant
MCF-7 cell line

Tamoxifen Up Sponging the miR-
200a-3p

Therapeutic target
Chemotherapeutic
resistance biomarker

Hu et al.
(2020b)

Circ-MMP11 Exosome LAP-resistant BC
cells

Lapatinib Up Sponging the miR-153-
3p to activate ANLN

Therapeutic target Wu et al.
(2021)

Abbreviations: ERα, estrogen receptor alpha; Hsp90, heat shock protein 90; Atg, autophagy-related gene; N/A, not available.
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exosomes range from 1.13 g/mL (derived from B cells) to 1.19 g/m
(derived from epithelial cells) in density (Zakharova and Fomina,
2007; Bobrie et al., 2011). Exosomal characteristics, as well as the
type of cargos transferred by these EVs, closely depend on the cell of
origin and the state involved in exosome generation. Exosomes can
carry multiple cargoes, including different RNA molecules, DNA,
peptides, and several proteins such as oncoproteins, transcriptional
regulators, tumor suppressors, and splicing factors (Valadi and
BossiosSjostrandLeeLotvall, 2007). The corresponding EVs
facilitate intercellular communications by transferring the
aforementioned biologically active molecules (Chahar and Casola,
2015). Structurally, exosomes are produced by endosomes through
inward budding from the limited multivesicular body (MVB)
membrane (Minciacchi and Di Vizio, 2015). Throughout the
process, invagination of the endosomal membrane results in the
formation of intraluminal vesicles (ILVs) in large MVBs (Huotari
and Helenius, 2011). Through fusion, most ILVs will be released into
the extracellular space in the form of exosomes (Yellon and
Davidson, 2014). The biogenesis of exosomes involves a set of
consecutive molecular machinery, of which the endosomal
sorting complex, required for the ESCRT transport machinery, is
the most substantial system, playing a crucial role in ILV formation
(JH, 2008). ESCRT has four complexes, namely, ESCRT-0, ESCRT-I,
ESCRT-II, and ESCRT-III, and the associated proteins, i.e., vacuolar
protein sorting-associated protein 4A (VPS4A), tumor susceptibility
gene 101 protein (TSG101), and ALG-2-interacting protein X
(ALIX), which increase the generation rate of MVBs, vesicle
budding (Henne and Emr, 2011), sorting, binding, and clustering
of ubiquitinylated proteins and receptors in the late endosomes
(Kalra and Mathivanan, 2016). The ESCRT-0 ubiquitin-binding
subunits induce the sequestration and recognition of
ubiquitinated cargo proteins into the endosomal membrane
domains (Henne and Emr, 2011). Facilitating ILV budding,
where cargo is transferred into the lumen, can be induced by
ESCRT-I and ESCRT-II. ALIX recruits ESCRT-III for the
acceleration of pulling, spiral generation, and full budding (Kalra
and Mathivanan, 2016). Moreover, VPS4A and TSG101 have
regulatory roles in exosome biogenesis through the ESCRT-
dependent pathway (Baietti et al., 2012). Eventually, following
ILV formation, the ESCRT-III complex is separated from the
MVB membrane, while the sorting protein VPS4A supplies its
energy (Henne and Emr, 2011). Despite the modulatory roles of
ESCRT-associated mechanisms being controversial in exosome
release, various ESCRT components, as well as the ubiquitinated
proteins, are found in exosomes that are separated from multiple
cells (Zhang et al., 2019). Recent studies have also clarified the
possible role of the ESCRT-independent pathway in sorting
exosomal cargos into MVBs and subsequent biogenesis of
exosomes containing lipids and associated proteins, like
tetraspanin (Babst, 2011; Stuffers et al., 2019). Unlike ESCRT-
mediated protein sorting, it has been shown that RNA loading
into exosomes is correlated with cargo domains and self-organizing
lipids (Janas et al., 2015). Tetraspanins, as transmembrane proteins
(e.g., CD9, CD63, and CD81) found in exosomes, are significantly
involved in the ESCRT-independent pathway (Chairoungdua et al.,
2010; van Niel and Raposo, 2018). Mechanistically, tetraspanins
trigger the organization of membranous microdomains, called
tetraspanin-enriched microdomains (TEMs), using several

cytosolic and transmembrane signaling proteins (ME, 2003).
Recently, both ESCRT-dependent and -independent mechanisms
have been reported to cooperate to regulate exosome biogenesis
(Maas andWeaver, 2017), which shows the corresponding pathways
can work synergistically. The presence of different subpopulations of
exosomes may be explained by the presence of different biogenic
machineries, as well as different cell species and cellular homeostasis
(Zhang et al., 2019). The small size and unified appearance of
exosomes help them escape from mononuclear clearance,
resulting in their prolonged circulation time to affect cell-to-cell
interactions, more efficiently (Zhang et al., 2019). Regarding the role
of exosomes as essential mediators of intercellular communications,
they have been demonstrated to impact the pathogenesis of several
disorders, such as cancers (Colombo and Thery, 2014). Meanwhile,
the possible clinical applications of exosomes, especially as
diagnostic biomarkers and therapeutic delivery vehicles, have
attracted much attention recently (Jiang et al., 2019).

4 Non-coding RNAs: A summary of
their structure and subclassifications

Coding RNAs (i.e., mRNAs) are known for their ability to
encode proteins that can serve as enzymes, signal transductors,
transcription factors, etc., while ncRNAs predominantly have
regulatory effects (Li and Liu, 2019). However, about 98% of all
transcriptional output is ncRNA, and only 2% is responsible for the
formation of coding RNAs (Legnini et al., 2017). Although the term
ncRNA refers to an RNA molecule without coding capacity, recent
evaluations have demonstrated that a number of ncRNAs can
surprisingly be translated into proteins (Legnini et al., 2017).
NcRNAs are categorized into two major subclasses, according to
the nucleotide length, long ncRNAs and small ncRNAs, which are
classified into further subgroups (Costa, 2005). Small ncRNAs
mostly contribute to post-transcriptional gene regulation, whereas
long ncRNAs have roles in epigenetic modifications (Sana et al.,
2012). MiRNAs, small nuclear RNAs (snoRNAs); small interfering
RNAs (siRNAs); rRNAs; tRNAs; and Piwi-interacting RNAs
(piRNAs) are key RNA molecules belonging to the small ncRNA
subclass; on the other hand, pseudogenes; antisense RNAs
(asRNAs); long intergenic ncRNAs (lincRNAs); and circRNAs
belong to the long ncRNA subclass (Chan, 2018). Several
investigations have shown that ncRNAs are essential molecules
with the ability to affect a wide spectrum of cellular processes,
including inflammation, oxidative stress, autophagy, fibrosis, and
pathophysiological processes associated with malignancies such as
cell proliferation, migration, angiogenesis, and especially drug
resistance (Chan, 2018; Li et al., 2019). Moreover, ncRNAs have
been found to serve as hallmarks of cancer cells, suggesting their
possible role as prognostic and diagnostic biomarkers (Sana et al.,
2012). Among multiple ncRNA molecules, miRNAs, lncRNAs, and
circRNAs have been identified to be central to the regulation of
cancer-related processes, such as drug resistance.

MiRNAs are small single-stranded RNA molecules
(20–24 nucleotides) primarily contributing to post-transcriptional
gene modulation through binding to the target gene’s 3′-
untranslated region (3′UTR) to suppress the translation (Ruan
and Ouyang, 2009; Sana et al., 2012; Bahmyari et al., 2021; Mafi
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et al., 2022). Subcellular localization of miRNAs, the affinity of
miRNA-related interconnections, and the number of target mRNAs
and miRNAs influence the miRNA–target gene interactions
(O’Brien et al., 2018). Extracellular miRNAs, which can be
transferred to target cells by vesicles (e.g., exosomes) or through
binding to proteins, are key messengers in modulating cell-to-cell
communications (Wang and Sen, 2016). Since miRNAs can affect
multiple aspects of tumorigenesis such as angiogenesis, immune
deregulation, metastasis, and drug resistance, research studies have
recently introduced miRNAs as significant biologically active
components of exosomes, affecting neoplastic conditions (Hayes
and Lawler, 2014; Kozomara and Griffiths-Jones, 2018). Being inside
the exosomes protects miRNAs, as well as the other ncRNAs, from
RNase-dependent degradation (Lima et al., 2009).

LncRNAs, which are more than 200 nucleotides in length, are
not translated into functional proteins but rarely encode small
functional peptides. LncRNAs, first observed in eukaryotic cells,
are located in the cytoplasm or nucleus (Dempsey and Cui, 2017).
According to the chromosomal position, lncRNAs are categorized
into aslncRNAs, divergent lncRNAs, enhancer RNAs (eRNAs),
intronic lncRNAs, promoter-associated lncRNAs, intergenic
lncRNAs, and transcription start site-associated lncRNAs
(Hombach and Kretz, 2016). Abnormal expression of lncRNAs
has been reported to accelerate cancer progression by interfering
with tumorigenesis, cell survival and proliferation, metastasis and
invasion, and drug resistance (Hung et al., 2014; Prensner et al.,
2014). By being packaged inside the exosomes, lncRNAs can release
into the tumor microenvironment and transferred to recipient cells,
moderating the process of cancer metastasis and progression (Fan
et al., 2018). Exosomal lncRNAs are also considered potential tumor
markers based on their specificity and sensitivity (Yousefi et al.,
2020).

Eventually, circRNAs are single-stranded covalently closed
molecules originating from pre-mRNA back-splicing (Sanger
et al., 1976; Jeck et al., 2013; Salami et al., 2022). CircRNAs
lack 5’ to 3’ polarity or poly A tail, and thus are less sensitive to
RNA exonuclease- or RNase R-related degradation (Jeck and
Sharpless, 2014; Chen and Yang, 2015; Najafi et al., 2022); a
prominent characteristic making circRNAs potential prognostic
and diagnostic biomarkers and therapeutic agents (Zhou et al.,
2020). CircRNAs can interfere with pathogenic processes of
multiple diseases, including cancer (Li et al., 2020a),
neurological disorders (Mehta and Vemuganti, 2020),
cardiovascular diseases (ufiero et al., 2019), and autoimmune
defects (Zhou et al., 2019). Nevertheless, the underlying
mechanisms by which circRNAs affect physiological/
pathological circumstances are not fully understood (Zhou
et al., 2020). Some circRNAs can act as protein decoys,
recruiters, and scaffolds (Xiao and Wilusz, 2020). In addition,
circRNAs exert biological functions, like serving as miRNA
sponges, transcriptional regulators, and protein templates
(Kristensen et al., 2019; Yu and Kuo, 2019; Huang et al.,
2020). Beyond the significance of circRNAs, alone, exosomal
circRNAs are considerably involved in cancer-associated
mechanisms, including cell proliferation, migration, invasion,
metastasis, and drug resistance (Wang et al., 2018a).

5 Functional roles of exosomal ncRNAs
in multiple diseases

As mentioned previously, exosomal ncRNAs can potentially
upregulate or downregulate the processes that impact tumor
expansion, like cell proliferation, tumor metastasis, invasion,
immunomodulation, angiogenesis, and specifically drug resistance
(Fan et al., 2018). Also, tumor-suppressed ncRNAs can be
transferred by exosomes to other tumor or non-tumor cells (Li
and Xu, 2019). In this context, exosomal ncRNAs have been shown
to be correlated with various human cancers, such as BC, lung
cancer, hepatocellular carcinoma (HCC), glioblastomas, and
prostate cancer. (Li et al., 2018a; He et al., 2018; Hu et al., 2020a;
Movahedpour et al., 2021; Movahedpour et al., 2022a; Taghvimi
et al., 2022). For instance, in the case of HCC, exosomal ncRNAs
interfere with the process of liver fibrosis and subsequent cirrhosis
and consequently provoke tumorigenesis and HCC development
(Quail and Joyce, 2013; Bukong et al., 2014). In addition to being
involved in cancer progression, exosomal ncRNAs have been
demonstrated to contribute to the onset of metabolic disorders,
including osteoporosis, type 2 diabetes mellitus (T2DM) and
diabetic nephropathy, and obesity (Li et al., 2021a; Mafi et al.,
2021). NcRNAs are also involved in the pathogenesis and
progression of neurodegenerative diseases, such as Parkinson’s
and Alzheimer’s diseases (Jea et al., 2019; Dorostgou et al., 2022;
Vakili et al., 2023). NcRNAs encapsulated in exosomes are even
associated with infectious diseases (e.g., viral hepatitis) and
autoimmune disorders, such as rheumatoid arthritis (RA) (Wang
et al., 2018b; Jiao et al., 2021). The aforementioned pathological roles
of exosomal ncRNAs can help researchers find the ambiguous
aspects of disease pathophysiology and develop novel diagnostic
and therapeutic targets to improve disease management (Dea et al.,
2014; Lv et al., 2020a; Li et al., 2021a). Especially, in the case of
cancer and related pathological mechanisms, drug resistance is of
great significance, as it results in conditions where chemotherapy
does not work. Regarding the global incidence of BC and the role of
chemoresistance in its ineffective treatment, potential interactions
between exosomal ncRNAs and BC drug resistance will be
comprehensively discussed as follows.

6 Molecular mechanisms by which
exosomal ncRNAs interfere with BC
drug resistance

Exosomes transport biologically active molecules between
various cell types to mediate the initiation and progression of
BC. In this regard, exosomal ncRNAs have a remarkable impact
on a variety of tumor biology-related processes, including tumor
growth, metastasis, migration, and drug resistance. Recently, it has
been discovered that exosomal ncRNAs, particularly exosomal
miRNAs, lncRNAs, and circRNAs, are involved in BC regulatory
mechanisms (Chen et al., 2021; Singh et al., 2022). Exclusively, the
latest findings on the crosstalk between exosomal ncRNAs
(miRNAs, lncRNAs, and circRNAs) and BC drug resistance will
be reviewed in the upcoming sections (Figures 1, 2).
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6.1 Exosomal miRNAs and BC
chemoresistance

MiRNAs are considered to be central to the regulation of genes
linked to BC drug resistance (Fu and Tong, 2020; Purwanto et al.,
2021; Liu et al., 2022). Several mechanisms modulated by miRNAs
have been recognized in relation to BC chemoresistance; targeting
genes involved in drug efflux and metabolism; cellular responses to
chemotherapeutics (e.g., apoptosis, cell cycle arrest, and DNA
repair); epigenetic alterations (e.g., DNA methylation and histone
modifications); and deregulation of drug targets and receptors,
which are the best examples in the field (Kutanzi et al., 2011).
On the other hand, the miRNA-containing exosomes secreted by
tumor cells can possibly be internalized by other cells to deliver gene
modulatory characteristics to the recipient cells (Bach et al., 2017;
Schwarzenbach, 2017; Salehi et al., 2022). As an example, it has been
demonstrated that endothelial cell-derived exosomal miR-503,
which is increased after neoadjuvant chemotherapy, can impair
tumor growth, invasion, and proliferation in BC by inhibiting the
expression of cyclin D2- and D3-encoding genes (CCND2 and
CCND3) (Bovy et al., 2015). MiRNA expression profiles in BC
cells were also reported to be either upregulated or downregulated in
response to three chemotherapy drugs: docetaxel, epirubicin, and
vinorelbine. In the same study, 12 of 22 upregulated miRNAs
showed a significant upregulation, following pre-neoadjuvant
chemotherapy, and thus play key roles in several pathways
related to BC drug resistance, such as p53, Wnt, MAPK, and
ErbB signaling pathways (Zhong et al., 2016). Here, the exosomal
miRNA–drug resistance network in BC is highlighted with a focus
on the chemotherapy drug subtypes.

6.1.1 Tamoxifen
Tamoxifen (TAM) is an effective FDA-approved

chemotherapeutic agent to combat ERα-positive breast tumors,
particularly those in premenopausal patients. However, it has
many adverse effects attributed to its estrogenic activities in other
tissues (Cuzick and Baum, 1985; Freedman et al., 2003; Lumachi
et al., 2013; Cuzick et al., 2015). TAM efficacy is attenuated by the
development of drug resistance through a wide range of underlying
mechanisms orchestrated by exosomal miRNAs (Ali et al., 2016; Yao
et al., 2020). Liu et al. declared that exosomes derived from TAM-
resistant MCF-7 (ER-positive) cells could transfer miR-9-5p to
TAM-sensitive MCF-7 cells, resulting in the inhibition of cell
apoptosis and promotion of MCF-7 resistance to TAM through
downregulating the expression of the adiponectin gene (ADIPOQ)
(Liu et al., 2021). Furthermore, the expression of miR-9-5p was up-
modulated in BC tissue more than in normal breast tissue, and the
increased miR-9-5p was also found to be associated with reduced ER
expression in BC (Barbano et al., 2017). ADIPOQ, located on
chromosome 3q27 and encoding adiponectin, can be linked to
BC-related cell invasion (Mantzoros et al., 2004; Falk Libby et al.,
2016). In addition, it has been elucidated that ADIPOQ
overexpression induces autophagy and apoptosis in BC cells by
activating the serine/threonine protein kinase 1/liver kinase B1
(STK11/LKB1)-associated AMP-activated protein kinase-Unc-51-
like kinase 1 (AMPK–ULK1) pathway to decrease BC growth and
progression (Chung et al., 2017; Zhang et al., 2017).

TAM-resistant MCF-7 cells can also induce TAM resistance in
sensitive cells by propagating the exosomes containing miR-221/
222 in ER-positive BC. In the presence of TAM, TAM-resistant
MCF-7 cell-derived exosomes suppressed apoptosis and stimulated

FIGURE 1
MiRNAs involved in BC drug resistance. For detailed information about signaling pathways targeted bymiRNAs, see Table 1. ↑ and ↓ indicate up- and
down-regulation, respectively.
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the colony-forming ability in TAM-sensitive MCF-7 cells. Exosomal
miR-221/222 significantly inhibited the expression of P27 and ERα,
promoting TAM resistance in recipient cells (Wei et al., 2014).
Consistently, previous studies also demonstrated that miR-221/
222 was notably upregulated in TAM-resistant MCF-7 cells and
possibly involved in TAM resistance by regulating the expression of
p27/Kip1 (Miller et al., 2008). In contrast, a recent evaluation
indicated that miR-221/222 suppression could abolish TAM
resistance, mediated by restoring the expression of ERα and
PTEN (Ouyang et al., 2021).

According to the study conducted by Gao et al., CD63+ cancer-
associated fibroblasts (CAFs) secreted miR-22-enriched exosomes
that could mitigate ERα expression and activate the PI3K/AKT
pathway via PTEN downregulation to promote TAM resistance in
BC cells (Gao et al., 2020). In addition, loss of ERα expression and
CAFs is linked to a poor response of BC cells to TAM, with the
suppression of the activity of CD63+ CAFs to enhance TAM
sensitivity in BC cells, in vivo (Gao et al., 2020). CAFs originally
constitute the major stromal components of the breast tumor
microenvironment, indicating their effect on promoting cancer
progression and mediating chemoresistance (Su et al., 2018;
Ershaid et al., 2019). Activation of the PI3K/AKT signaling
pathway can induce TAM resistance in BC cells, which may
result in a decrease in ERα expression (Toska et al., 2017; Mills
et al., 2018).

6.1.2 Docetaxel
Although docetaxel (DOC)-based chemotherapy is an effective

neoadjuvant approach to improve survival outcomes in BC patients
(Heys et al., 2002), chemoresistance mediated by ncRNAs is almost
unavoidable (Brown et al., 2004; Huang et al., 2018). According to
the evaluations of Chen et al., exosomes fromDOC-resistant MCF-7
cells play substantial roles in transmitting DOC resistance to
recipient DOC-sensitive cells through the delivery of responsible
miRNAs. This study reported the top 20 most common miRNAs in
DOC-resistant BC cell-derived exosomes involved in axon guidance,
MAPK signaling pathway, cell cycle regulation, Wnt signaling, and
TGF-β signaling cascade, which result in treatment failure when
upregulated (Chen et al., 2014a). There are several exosomal
miRNAs, being up- and down-modulated, secreted from
adriamycin- and DOC-resistant BC cells. These BC cells can
transfer miR-100, miR-30a, and miR-222 to drug-sensitive cells
to modulate cell cycle distribution and drug-induced apoptosis.
Exosomal miR-222 derived from DOC-resistant cells could also
induce chemoresistance by decreasing PTEN expression in recipient
cells (Chen et al., 2014b). In parenthesis, PTEN is an essential tumor
suppressor and a pivotal component of the PI3K/PTEN/Akt
signaling pathway associated with cellular processes (McCubrey
et al., 2006; Steelman et al., 2008; Xia et al., 2020). PTEN
underexpression was reported to serve as a predictive marker for
poor outcomes in BC patients (Xu et al., 2017).

Further bioinformatics analyses found several overexpressed
miRNAs, such as let-7a, let-7c, miR-103a, let-7b, miR-16, miR-
23a, miR-27a, miR-23b, and miR-30a, as well as underexpressed
miRNAs, such as miR-25, miR-130a, miR-20b, miR-425, miR-4725-
5p, miR-455-3p, miR-551, andmiR-92, in exosomes originated from
DOC-resistant MCF-7 cells (Chen et al., 2019a). The overexpressed
miRNAs mostly target the signaling pathways involved in the

regulation of stem cell pluripotency and the TGF-β, FOXO,
MAPK, and Wnt signaling pathways. However, the MAPK, TGF-
β, FOXO, mTOR, and PI3K/Akt signaling pathways were found to
be major targets for underexpressed miRNAs (Sebolt-Leopold and
Herrera, 2004; Wang et al., 2008; Loh et al., 2013; Coomans de
Brachène and Demoulin, 2016; Dey et al., 2017; Chen et al., 2019a;
Movahedpour et al., 2022b). CCND1 and PTEN are considered the
most common exosomal miRNA targets with high and low
expression levels, respectively (Chen et al., 2019a).
Overexpression of CCND1, the pivotal factor for cell transition
from the G1 to the S phase, was reported in 50% of human BCs
(Elsheikh et al., 2008). Another investigation also demonstrated that
CCND1 organized the miRNA signature that induced the Wnt/β-
catenin signaling pathway, serving as downstream and/or upstream
targets of the Wnt/β-catenin axis (Wang et al., 2018c).

Ccng2was found to be downregulated in BC and served as a gene
directly targeted by miR-1246. MiR-1246 has been reported to be
overexpressed in human BC cells, particularly metastatic BC MDA-
MB-231 cells (ER-negative). Exosomes derived from drug-resistant
MDA-MB-231 cells can reduce apoptosis and promote the
migration, invasion, and resistance to DOC, epirubicin (Liu et al.,
2022), and gemcitabine (GEM) in non-malignant cells through
transferring the aforementioned miRNA, i.e., miR-1246, leading
to suppression of Ccng2 gene expression (Sakha et al., 2016; Zhong
et al., 2016; Li et al., 2017a). Ccng2, as a tumor suppressor gene, has a
close relationship with cell cycle, DNA damage, and p53-related
pathways (Bates et al., 1996; Montagner et al., 2012; Chang et al.,
2015; Zimmermann et al., 2016). MiR-1246-mediated targeting of
Ccng2 also promotes cancer progression and chemoresistance in
other cancers (Hasegawa et al., 2014; Lin et al., 2018).

6.1.3 Doxorubicin
TNBCs are usually reported with a poorer prognosis, rapid

progression, early metastasis, and containing no effective
molecular targets for chemotherapy (Haffty et al., 2006).
Doxorubicin, sold under the brand name adriamycin (ADM),
is an anthracycline agent, which is considered an effective
chemotherapeutic to treat BC (Jones et al., 1987; Wang et al.,
2015). Nevertheless, doxorubicin resistance results in
unsuccessful BC chemotherapy through different mechanisms,
and overcoming the resistance can be a promising achievement in
BC management (Nabholtz et al., 2003; Koike Folgueira et al.,
2005; Lovitt et al., 2018). In this context, miR-770 was
demonstrated to be overexpressed in chemo-sensitive TNBC
cells, while it was downmodulated in chemoresistant cells.
Moreover, overexpression of miR-770 inhibited tumor
metastasis and doxorubicin resistance by induction of
apoptosis in vivo and in vitro. MiR-770 is transferred by
exosomes and causes chemosensitivity in cancer cells via the
downregulation of stathmin 1 (STMN1) and suppressed cell
invasion and migration by modification of the
epithelial–mesenchymal transition (EMT) pathway (Li et al.,
2018b). STMN1 or oncoprotein 18 is an essential cytoplasmic
phosphoprotein responsible for cellular microtubule dynamics
and depolymerization, involving cell cycle progression
(Marklund et al., 1996; Rubin and Atweh, 2004).
STMN1 participates in metastasis and chemoresistance of BC
(Kuang et al., 2015; Kuang et al., 2016; Obayashi et al., 2017).
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Santos et al. (2018) declared that exosomes separated from
breast cancer stem cells (CSCs) and doxorubicin- and paclitaxel-
resistant cells (i.e., MDA-MB-231 and MCF-7) could be transferred
to recipient-sensitive cells, resulting in stimulation of migration and
drug resistance through miR-155 delivery. Functionally, miR-155
upregulation was linked to the increased levels of B cell-specific
Moloney murine leukemia virus integration site 1 (BMI1), snail
family transcriptional repressor 1 (SNAI1 or SNAIL), SNAI2
(SLUG), enhancer of zeste homolog 2 (EZH2), and SRY-box
transcription factor 9 (SOX9) and repression of E-cadherin in
resistant cells, demonstrating molecular changes in EMT. MiR-
155 also decreased the C/EBP-β, TGF-β, and FOXO-3a
expression in sensitive cells co-cultured with exosomes from
CSCs and chemoresistant cells (Santos et al., 2018). CSCs have a
self-renewal ability, which is in line with tumor recurrence,
resistance, and metastasis against chemotherapeutic agents (Lee
et al., 2016). These cells can arise from epithelial cells subjected
to EMT, determined by E-cadherin loss of expression accompanied
by the upregulation of transcription factors such as BMI1 and EZH2.
Therefore, the epithelial cell transformation into a mesenchymal
state was triggered, resulting in the development of aggressive
cancerous cells (Hiscox et al., 2006; Kajiyama et al., 2007; Dave
et al., 2012; Proctor et al., 2013). Consistently, accumulating
evidence has revealed the effects of overexpressed miR-155, as an
oncomiR, on the development of chemoresistance in BC (Johansson
et al., 2013; Ouyang et al., 2014; Shen et al., 2015; Yu et al., 2015;
Chiu et al., 2016; Li et al., 2017b).

Sprouty2 was found to be deregulated in BC through
involvement in metastasis- and invasion-related pathways
targeted by miRNAs (Li et al., 2013). On the other hand, cyclin-
dependent kinase (CDK) inhibitor p27, an essential factor in cancer
cell cycle arrest, autophagy, and angiogenesis, as well as the PTEN, is
targeted by miRNAs in regulating BC drug resistance (Li et al., 2013;
Zhong et al., 2013). Further investigations have detected that
exosomes secreted by ADM-resistant MCF-7 BC cells could
transfer drug-resistance characteristics to recipient-sensitive cells
through miR-222 delivery (Yu et al., 2016). Activation of the PTEN/
Akt/FOXO1 signaling pathway is believed to be responsible for the
underlying mechanisms through which miR-222 affects ADM
resistance in BC cells. MiR-222 causes PTEN to be suppressed
and also results in Akt overexpression and
FOXO1 downmodulation. The suppression of the PTEN/Akt/
FOXO1 axis is linked to increased ADM sensitivity in BC cells
(Shen et al., 2017). The upregulation of FOXO, following PTEN
activation and Akt suppression, has represented tumor-suppressive
effects such as the induction of cell cycle arrest and/or cancer cell
apoptosis (Greer and Brunet, 2005). More recently, a study exhibited
that lncRNA-GAS5 could alleviate ABCB1-mediated ADM
resistance of BC cells by repressing miR-221-3p, which directly
targeted Dickopf Wnt signaling pathway inhibitor 2 (DKK2).
Subsequently, the Wnt/β-catenin signaling axis was activated,
leading to the inhibition of ABCB1 expression and further
alleviation of ADM resistance (Chen et al., 2020a).

6.1.4 Anti-Hsp90 drugs
Anti-Hsp90 drugs, such as 17-AAG or PU-H71, have shown

promising anticancer effects in TNBC therapy during pre-clinical
investigations (Eiseman et al., 2005; Caldas-Lopes et al., 2009; Proia

et al., 2014). O’Brien et al. observed that EV-derived miR-134 was
downmodulated in Hs578T TNBC cells compared to normal breast
cells, in which it was shown to be underexpressed in TNBC
aggressive clonal variant (Hs578 Ts(i)8) cells. Indeed, miR-134
loss is linked to elevated cellular aggressiveness. Also, miR-134
could act as a potential tumor suppressor by inhibiting STAT5B,
which, in turn, reduced the Hsp90 and Bcl-2 expression levels. It has
previously been revealed that STAT5B is involved in BC
tumorigenesis and increases the transcription of Hsp90 (Perotti
et al., 2008), which enhances the survival and apoptotic resistance of
BC cells (Workman et al., 2007; Gallerne et al., 2013). Direct delivery
of miR-134 caused suppression of TNBC cell proliferation and
promotion of cisplatin-induced apoptosis, whereas delivery of
exosomal miR-134 inhibited cell proliferation, migration, and
invasion, as well as the enhancement of sensitivity to anti-Hsp90
drugs (O’Brien et al., 2015). MiR-134 originates from the
14q32 locus, a region usually deleted in tumor progression
(O’Brien et al., 2015; Takayama et al., 1992; Kerangueven et al.,
1997; Bando et al., 1999; Haller et al., 2010; Gattolliat et al., 2011). In
line with this finding, other observations have reported that miR-134
has a tumor-suppressive role and its levels are inversely associated
with tumor progression (Li et al., 2012; Sarver et al., 2013; Yin et al.,
2013).

6.1.5 Cisplatin
Cisplatin (DDP) is another effective chemotherapeutic agent for

BC therapy, especially for TNBCs that show an ineffective response
to anti-HER-2 therapies (Silver et al., 2010). Although patients
initially exhibit positive responses against DDP, drug resistance
remains a major challenge that causes failure in treatment (Smith
et al., 2007). Jia et al. have revealed that adipose mesenchymal stem
cell (ADMSC)-derived exosomes, containing miR-1236, can
decrease BC cell resistance against DDP by inhibiting the solute
carrier family 9 member A1 (SLC9A1) Na+/H+ anti-porter and
inactivating the Wnt/β-catenin signaling pathway (Jia et al.,
2020). Indeed, miR-1236 directly binds to SLC9A1 and
suppresses its expression, which is notably overexpressed in
DDP-resistant BC cells. In addition, ADMSC-derived exosomes
induce a further increase in caspase-3, promoting cell apoptosis
in DDP-resistant BC cells (Jia et al., 2020; Asadi et al., 2022).
Effective functions of ADMSC-derived exosomes in cancer
control and treatment have been reported to be exerted by
regulating various cellular behaviors, like proliferation, migration,
and apoptosis, by means of miRNA cargos (Reza et al., 2016; Hong
et al., 2019). It has been noted that SCL9A1 acts as an oncogene and
is involved in the development of drug-resistant BC cells (Chen
et al., 2019b). SLC9A1 was also discovered to be a Wnt/β-catenin
signaling activator, participating in BC carcinogenesis, metastasis,
and tumor progression (Prosperi and Goss, 2010; Sun et al., 2018b).
Recently, it has been revealed that about 60 miRNAs, particularly
miR-423-5p, miR-370-3p, and miR-373, are significantly
upregulated in exosomes from DDP-resistant TNBC cells
compared to DDP-sensitive ones. DDP-resistant cell-derived
exosomes could induce DDP resistance in recipient cells by miR-
423-5p delivery, which leads to P-gp overexpression, invasion, and
migration, as well as apoptosis suppression (Wang et al., 2019a).

Yu et al. indicated the underexpression of miR-342-3p in
samples collected from patients with metastatic and refractory
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BC types. Their investigations further revealed that theMSC-derived
exosomes consisting of miR-342-3p could inhibit invasion,
metastasis, and chemoresistance of BC cells to doxorubicin,
fluorouracil, and cisplatin by suppressing the inhibitor of
differentiation 4 (ID4). Also, ID4 silencing significantly reduced
tumor growth and drug resistance and influenced the EMT by
upregulating the E-cadherin and downregulating the N-cadherin
and SNAIL (Yu et al., 2022). A similar investigation on TNBC
patients declared that miR-342-3p loss of function contributed to
metabolic carcinogenic pathways in TNBC by overexpression of
MCT1 (Romero-Cordoba et al., 2018).

Recent in vivo and in vitro findings have shown that exosomes
derived from MDA-MB-231 cells developed resistance-related
mechanisms in BC cells by transferring miR-887-3p, which was
overexpressed in BC cells. MiR-887-3p induced drug resistance
through negative BTBD7 regulation, resulting in the activation of
the Notch1/Hes1 signaling pathway (Wang et al., 2022a). In
contrast, when miR-887-3p is inhibited in exosomes, drug
resistance and tumor development are reduced, while BC cell
apoptosis is increased (Wang et al., 2022a). Upregulation of
miR-887-3p was observed in BC cell lines, and the suppressed
miR-887-3p improved BC cell sensitivity to 5-fluorouracil
therapy (Lv et al., 2020b). BTBD7 plays an important role in
tumorigenesis, in which its expression can be declined in BC
cells and tissues. BTBD7 expression is associated with low
recurrence and repressed BC progression through inactivating
Notch1 signaling (Chen et al., 2020b). Notch1 participates in cell
growth, differentiation, and apoptosis. Notch1 activation was also
proven in TNBC, as a facilitator of TNBC formation (Miao et al.,
2020).

6.1.6 Trastuzumab
Currently, trastuzumab (TZB), an anti-HER2 monoclonal

antibody, has been introduced as an effective agent to cure
human HER-2-positive BC (Daniels et al., 2018), while its
effectiveness can mostly be restricted by chemoresistance-
associated mechanisms (Adamczyk et al., 2018). In this
context, Han et al. showed significant downregulation of miR-
567 in TZB-resistant BC cells compared to the sensitive ones.
Overexpression of miR-567 reversed TZB resistance, but miR-
567 downregulation could induce TZB resistance, in vivo and
in vitro. Functionally, miR-567 can be transferred to recipient BC
cells by packaging into exosomes and reverses the
chemoresistance by suppressing the autophagic flux, which is
mediated by inhibiting the expression of Atg5, post-
transcriptionally (Han et al., 2020). Autophagy-related gene 5
(Atg5) has a key function in the early stages of autophagy,
i.e., autophagosome formation, and is associated with cell
differentiation and carcinogenesis (Le Bars et al., 2014; Rai
et al., 2019). Growing evidence has demonstrated the essential
role of autophagy in preserving the survival of tumor cells in
adverse conditions (Degenhardt et al., 2006). Additionally, the
inhibitory functions of miR-567 in the oncogenesis of BC have
been proven (Bertoli et al., 2017). Another investigation
elucidated that exosomal miR-155 and miR-1246 were the
principal overexpressed miRNAs in HER2-positive BC with
TZB resistance, suggesting a remarkable prognostic value for
these miRNAs (Zhang et al., 2020).

6.2 Exosomal lncRNAs and BC
chemoresistance

6.2.1 Tamoxifen
The overexpression of exosomal lncRNA urothelial carcinoma-

associated 1 (UCA1), isolated from TAM-resistant LCC2 cells
compared to TAM-sensitive MCF-7 cells, was an interesting
finding in the field of exosomal lncRNA–BC drug resistance
relationships. Exosome-transmitted lncRNA UCA1 was linked to
TAM resistance in ER-positive BC cells, which might act by
suppressing cleaved caspase-3 expression and cell apoptosis (Xu
et al., 2016). The oncogenic function of UCA1 in BCs was identified
through recruiting various mechanisms, such as inhibition of p27
(Huang et al., 2014) and acting as a miR-143 sponge (Tuo et al.,
2015).

Chen et al. reported an association between the expression of
myeloid-specific lncRNA and hypoxia-inducible factor 1α (HIF-
1α)-stabilizing lncRNA (HISLA) in tumor-associated macrophages
(TAMs) with poor chemotherapeutic responses and survival rates in
BC patients (Chen et al., 2019c). The findings revealed that EV-
mediated transmission of HISLA promoted apoptotic resistance and
aerobic glycolysis in BC cells. Functionally, HISLA suppressed the
hydroxylation and degradation of HIF-1α by blocking the
interaction between HIF-1α and prolyl hydroxylase domain
protein 2 (PHD2) (Chen et al., 2019c). Metabolic reprogramming
is an indicator for developing cancer cells (Hay, 2016), with
frequently reported deterioration of glucose metabolism in BC
(Lloyd et al., 2016; Ibrahim-Hashim et al., 2017). HIF-1α, an
oxygen-sensing transcription factor, is known to determine
glucose metabolism by oxidation or glycolysis in cancer cells,
which could be considered adaptive changes to TAM
circumstances (Hsu and Sabatini, 2008; DeBerardinis and
Chandel, 2016). Under physiological conditions, HIF-1α can be
quickly hydroxylated and degraded by PHD2; however, multiple
factors involved in TAM may modulate PHD2 activity to inhibit
HIF-1α degradation, leading to the maintenance of HIF-1α protein,
and promote aerobic glycolysis in cancer cells (Hsu and Sabatini,
2008; Semenza, 2012; Semenza, 2013).

6.2.2 Trastuzumab
LncRNA SNHG14 is a well-studied lncRNA promoted in TZB-

resistant BC cells through overexpression of the poly (a)-binding
protein cytoplasmic 1 (PABPC1) gene, leading to Nrf2 signaling
activation (Dong et al., 2018). PABPs can participate in sequence-
specific interactions with single-stranded poly (A) via an RNA
recognition motif (RRM). In the cytoplasm, PABPs are
categorized as PABPC, and inside the nucleus, they are known as
PABPN1 (Burgess et al., 2011).

The lncRNA AGAP2 antisense RNA 1 (AGAP2-AS1) is another
lncRNA having high expression levels in TZB-resistant BC cells and
promotes resistance by reducing TZB-induced apoptosis. Thus,
silencing of AGAP2-AS1 could re-sensitize BC cells to TZB-
induced cytotoxicity. AGAP2-AS1 could also disseminate TZB
resistance through packaging into exosomes (Zheng et al., 2019).
According to the study conducted by Qian et al., exosomal AGAP2-
AS1 caused TZB resistance by inducing autophagy in HER2-positive
BC cells. In detail, the corresponding exosomal lncRNA exerts its
effects by promoting Atg10 expression. Mechanistically, the
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embryonic lethal abnormal visual system (ELAV)-like RNA-binding
protein 1 (ELAVL1) interacted with and stabilized the AGAP2-AS1,
and subsequently, the AGAP2-AS1–ELAVL1 complex directly
attached to and promoted H3K4 trimethylation, as well as
H3K27 acetylation at the Atg10’s promoter region, thus resulting
in activation ofAtg10 transcription (Qian et al., 2021). AGAP2-AS1-
targeting antisense oligonucleotides (ASOs) promoted TZB-related
cytotoxicity. The elevated serum levels of exosomal AGAP2-AS1
were linked to poor response against TZB treatment (Luo et al.,
2020; Qian et al., 2021).

6.2.3 Doxorubicin
It has been found that lncRNA H19 is upregulated in

doxorubicin-resistant BC cells, while its suppression significantly
decreases doxorubicin resistance by reducing cell viability, colony-
forming ability, and inducing apoptosis. H19 can disseminate
doxorubicin resistance among sensitive cells by being packaged
into exosomes (Wang et al., 2020). H19 levels have been reported
to be elevated in serum samples from patients unresponsive to
doxorubicin (Wang et al., 2020). H19 also participates in the onset
and development of BC through multiple mechanisms (Collette
et al., 2017). For instance, H19 results in the overexpression of
transcriptional factor LIN28, which has a critical role in BC stem cell
maintenance, by sponging miRNA let-7 (Peng et al., 2017).
Moreover, a previous study has demonstrated that
H19 suppresses apoptosis in ERα-positive BCs, thereby
promoting paclitaxel (PTX) resistance by repressing transcription
of the Bik pro-apoptotic gene (Si et al., 2016). H19 was also reported
to mediate doxorubicin resistance in BC cells by regulating the
cullin4A–MDR1 signaling pathway (Zhu et al., 2017).

6.3 Exosomal circRNAs and BC drug
resistance

6.3.1 Tamoxifen
The upregulation of circRNA UBE2D2 (circ-UBE2D2) was

elucidated by Hu et al. in TAM-resistant ERα-positive BC cells.
TAM-resistant cells could release exosomes containing circ-
UBE2D2, thus inducing TAM resistance in drug-sensitive BC
cells. Mechanistically, circ-UBE2D2 interacts with miR-200a-3p,
and subsequently decreases its function, thereby promoting
metastasis, cancer cell viability, and TAM resistance (Hu et al.,
2020b). It has been shown that miR-200a-3p is a target for
LINC00894-002 to contribute to TAM resistance in MCF-7 BC
cells (Zhang et al., 2018). Previously, circ-UBE2D2 was displayed to
be overexpressed in BC; therefore, blocking the circ-UBE2D2 could
lead to the inhibition of BC tumorigenesis through targeting miR-
1236 or miR-1287 (Wang et al., 2019b).

6.3.2 Lapatinib
Despite lapatinib (LAP) being a small-molecule tyrosine kinase

inhibitor with high levels of effectiveness and limited side effects for
treating HER2-positive BC (Rusnak et al., 2001; Chan, 2006), innate
or acquired LAP resistance has led to an obstacle for BC therapy (Liu
et al., 2009; Wang et al., 2011). A recent assessment conducted by
Wu et al. demonstrated the circ-MMP11 overexpression in LAP-
resistant cells, which could be transported to sensitive cells through

exosomes to induce cell viability, invasion, migration, and repressing
apoptosis in LAP-sensitive cells. Regarding the underlying
mechanism, circ-MMP11 serves as a potential sponge for miR-
153-3p, increasing the expression of anillin (ANLN) (Wu et al.,
2021). ANLN is upregulated in BC, whose up-regulation contributes
to drug resistance in BC cells against doxorubicin (Zhou et al., 2015).
Additionally, circ-MMP11 (hsa_circ_0062558) has been reported
with carcinogenic effects by serving as a miR-1204 competitive
endogenous RNA (ceRNA) (Li et al., 2020b). MiR-153-3p is
another circRNA with critical inhibitory roles in BC progression
and LAP resistance (Yu et al., 2018).

6.3.3 Non-exosomal circRNAs
Although limited evidence is available with respect to the effects

of exosomal circRNAs on the development of BC drug resistance, a
large number of investigations have reported the crucial functions of
non-exosomal circRNAs in chemotherapy resistance during BC
progression. For instance, Wang et al. demonstrated that
circATXN7 could act as a miR-149-5p sponge to upregulate
homeobox A11 (HOXA11), resulting in increased doxorubicin
resistance in BC cells (Wang et al., 2022b). Moreover, Hsa_circ_
0092276 promoted resistance to doxorubicin in BC cells by
modulating the ATG7 via sponging miR-384, leading to activated
autophagy (Wang et al., 2021a).

CircWAC is another cirRNA that can induce PTX resistance in
TNBC cells by suppressing the miR-142, a tumor suppressor
miRNA, inducing the overexpression of WWP1 and activation of
the PI3K/Akt pathway (Wang et al., 2021b). Consistently, circ_
0006528 was found to partially participate in PTX resistance in BC
cells by stimulating the expression of CDK8 by sponging miR-1299
(Liu et al., 2020). Further studies showed that the upmodulated circ-
RNF111 was associated with PTX resistance, as well as cancer cell
viability, cell invasion, and glycolysis. Indeed, circ-RNF111 is
negatively correlated with miR-140-5p expression, hence
triggering E2F3 in BC tissues (Zang et al., 2020).

Recently, it has been shown that circ_0085495 causes ADM
resistance in BC cells by triggering the inhibition of miR-873-5p, and
consequently the overexpression of integrin ß1 (Xie and Zheng,
2022). Similarly, the role of circ_0001667 in developing ADM
resistance in BC cells was observed in another study, in which
circ_0001667 knockdown attenuated ADM resistance, decreased
cancer cell proliferation, and enhanced apoptosis by depleting
nuclear receptor co-activator 3 (NCOA3) via releasing miR-4453
(Cui et al., 2022). Zhu et al. revealed that circFBXL5 might enhance
5-FU resistance in BC cells by promoting cell migration and
invasion and inhibiting apoptosis by regulating the miR-216b/
HMGA2 axis (Zhu et al., 2021). Another investigation identified
that circ_0001598 promoted TZB resistance bymodulating the miR-
1184/programmed death-ligand 1 (PD-L1) signaling pathway in
HER2-positive BC (Huang et al., 2021). CircFAT1 also promoted
oxaliplatin resistance in BC through the activation of Notch and
Wnt signaling pathways, principally through regulation of the miR-
525-5p/SKA1 axis (Yao et al., 2021). CircUBAP2, another circRNA
involved in drug resistance, could increase DDP resistance in TNBC
cells by serving as a ceRNA for miR-300 to overexpress the anti-
silencing function 1B histone chaperone (ASF1B), resulting in
activation of the PI3K/Akt/mTOR signaling pathway (Wang
et al., 2022c).
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FIGURE 2
A schematic view of the effects of different lncRNAs and circRNAs on BC drug resistance. For more information about the relevant molecular
mechanisms, visit Table 1.

FIGURE 3
Exosomal delivery of ncRNAs between cancer and non-cancer cells. Exosomes derived from drug-resistant BC cells encapsulate and then deliver
miRNAs, lncRNAs, and circRNAs to drug-sensitive cells, thus promoting multiple signaling pathways in recipient cells. This characteristic can be
considered the basis for designing more effective chemotherapeutic approaches by attenuating drug resistance.
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On the other hand, several circRNAs have shown a tumor-
suppressive function; in this regard, hsa_circ_0025202 could reduce
cancer cell proliferation, hinder tumor growth, promote apoptosis,
and enhance TAM sensitivity in BC cells. Also, it has been shown
that hsa_circ_0025202 exerts its functions through binding to miR-
197-3p, thereby increasing HIPK3 expression (Li et al., 2021b).
Furthermore, circ_0025202 was found to improve TAM sensitivity
in BC cells by targeting miR-182-5p, leading to the regulation of
FOXO-3a expression and activity (Sang et al., 2019).

7 Conclusion and perspectives

Chemoresistance, whether inherent or acquired, contributes to
poor prognosis and treatment failure in cancer patients.
Elucidating the underlying mechanisms of drug resistance
development might help researchers to suggest a more effective
approach for treating patients. Considering drug resistance, BC
therapy has proven to be complicated. Recently, exosomal ncRNAs
have been surprisingly found to regulate drug resistance in BC cells
and TAM. Beyond drug resistance, exosomal ncRNAs play a
substantial role in the development of cancer-related behaviors,
such as cell proliferation, angiogenesis, and migration, by
regulating several molecular mechanisms (Figure 3). As
exosomal ncRNAs can be transferred through the bloodstream,
they seem to have tremendous potential as diagnostic markers in
clinical settings. Moreover, loading ncRNAs, as well as ncRNA
agonists or inhibitors, into particular exosomes, and then
delivering the exosomes into the bloodstream to be distributed
among cancer cells can provide an exosome-based approach to
treat malignancies. However, a wide variety of molecular
mechanisms directing exosomal ncRNAs to a certain human
cell or organ have remained unclear. In the current study, the
contribution of exosomal ncRNAs and their target mechanisms/

signaling pathways to BC drug resistance was highlighted in detail.
The majority of findings reviewed here were the outcomes of
in vitro evaluations, as there are limited human studies in this
field. Notwithstanding, new insights were provided here that might
help cancer researchers overcome drug resistance by designing
exosomal ncRNAs-based therapeutics. Further assessments are
definitely needed to elucidate the unclear aspects of BC
chemoresistance in association with exosomal ncRNAs.
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