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Coastal erosion is one of the most significant environmental threats to coastal
communities globally. In Bangladesh, coastal erosion is a regularly occurring and
major destructive process, impacting both human and ecological systems at sea
level. The Lower Meghna estuary, located in southern Bangladesh, is among the
most vulnerable landscapes in the world to the impacts of coastal erosion. Erosion
causes population displacement, loss of productive land area, loss of
infrastructure and communication systems, and, most importantly, household
livelihoods. With an aim to assess the impacts of historical and predicted shoreline
change on different land use and land cover, this study estimated historical
shoreline movement, predicted shoreline positions based on historical data,
and quantified and assessed past land use and land cover change. Multi-
temporal Landsat images from 1988–2021 were used to quantify historical
shoreline movement and past land use and land cover. A time-series
classification of historical land use and land cover (LULC) were produced to
both quantify LULC change and to evaluate the utility of the future shoreline
predictions for calculating amounts of lost or newly added land resources by LULC
type. Our results suggest that the agricultural land is the most dominant land
cover/use (76.04% of the total land loss) lost over the studied period. Our results
concluded that the best performedmodel for predicting land loss was the 10-year
time depth and 20-year time horizon model. The 10-year time depth and 20-year
time horizon model was also most accurate for agricultural, forested, and inland
waterbody land use/covers loss prediction.We strongly believe that our results will
build a foundation for future research studying the dynamics of coastal and deltaic
environments.

KEYWORDS

coastal erosion, land loss, land use and land cover, Lower Meghna river, Bangladesh

1 Introduction

Coastal erosion is one of the most prominent problems in coastal areas globally and the
world’s mega-deltas are heavily impacted (Woodroffe et al., 2006). Human life and natural
environements are threatened by coastal erosion. Due to erosion, coastal lands are being
swallowed by the seawater and people are forced to move inland. A recent global study found
that the earth surface lost about 28,000 km2 land during 1984–2015, which is twice the
surface land area gained (Mentaschi et al., 2018). Coastal erosion is caused by many different
physical (e.g., strong wave action, upstream discharge, river bathymetry) and anthropogenic
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factors (e.g., global warming, sea level rise). Soil properties such as
texture and structure govern pore size distribution have an influence
on soil’s erodibility. Studies suggest that soil moisture has substantial
influence on water runoff and soil erosion (Wei et al., 2007; Lal et al.,
2023). Due to coastal erosion, people living in the coast lose their
valuable lands and properties. Climate change driven coastal erosion
is posing extra risk for the coastal ecosystems. Increased frequency
and severity of the events including storm, rainfall and flood,
increased freshwater input to the marine systems and
lengthening open water periods are influencing coastal erosion
process in addition to the rising sea level (Sanò et al., 2011;
Radosavljevic et al., 2016). Mean sea level rose 11–16 cm during
20th century (Hay et al., 2015; Dangendorf et al., 2017), possibly
exacerbating coastal erosion globally. Land subsidence is another
factor that is influencing coastal erosion risk. For instance, a
study on land subsidence and its effects on coastal erosion in the
Nam Dinh Coast of Vietnum found that the combined effects
of land subsidence and relative sea level rise (SLR) were
responsible for 66% of the observed rate of erosion (Nguyen and
Takewaka, 2020). Resulting inundation from rising seas will heavily
impact low-lying areas, impacting at least 100 million persons
globally who live within 1 m of mean sea level (Zhang et al.,
2004). This is a tremendous threat for the people living in the
coastal communites.

Coastal communities in Bangladesh are vulnerable to different
natural hazards and disasters due to close proximity to the sea and
sea level. Most parts of coastal areas in Bangladesh are within few
meters of the sea level. Extreme erosion is one of the biggest
problems threatening the livelihoods of coastal populations,
especially the poor. Coastal Bangladesh is highly vulnerable to
coastal erosion; land erosion and accretion rates are among the
highest in the world (Brammer, 2014; Ahmed et al., 2018; Crawford
et al., 2021). It is a recurring driver of homelessness impacting
thousands of people annually. The coastal poor are the most
susceptible to these impacts. A study by Kumar et al. (2022)
suggested that a proper afforestation measures in the upper
cathments of Brahmaputra basin might reduce soil erosion and
subsequent impacts on the riverbank communities.

Bangladesh is considered as one of the most vulnerable
countries to the impacts of climate change in the world,
particularly sea-level rise (Nicholls et al., 2007; Sarwar and
Khan, 2007; Davis et al., 2018). Moreover, future global
warming and subsequent rising sea levels seriously threaten
coastal populations in this part of the world. Additionally, as
economically marginalized populations live in coastal
Bangladesh, the magnitudes and severity of the affected people
may affect the total economic growth of the country (Hossain et al.,
2016). As a lower middle-class country like Bangladesh, with
limited internal resources, it is hard to cope with catastrophic
natural hazards like erosion and its related consequences (Poncelet
et al., 2010). Additionally, disasters like coastal erosion create the
acute problems of unemployment in coastal rural areas and
thereby worsen the socio-economic condition of displaced
people. Most of these displaced people become landless, which
pushes them further into poverty and forces migration. Future
climate change is more likely to impact the migration decisions of
the people living in coastal Bangladesh in search of prosperous
livelihoods (Call et al., 2017).

Due to coastal erosion, people living on the coast not only lose
their valuable lands and houses but also infrastructure,
communication systems, and most importantly their livelihood
(Monirul Alam et al., 2017). A proper estimation of different
types of land loss is crucial for better understanding of the
impacts of shoreline movement. It is particularly important for
proper planning and implementation of appropriate environmental
practices. Land use and land cover analysis using satellite imagery is
a cost-effective way to monitor long-term changes. Many different
methods are used to classify land use and land cover. The maximum
likelihood, random forest, support vector machine, and artificial
neural network methods were found to be most applied method for
LULC analysis (Otukei and Blaschke, 2010; Rodriguez-Galiano et al.,
2012; Balha and Singh, 2022). It is well evident that in the recent
decades, human activity has significantly influenced land use and
land cover globally (Lambin and Geist, 2008). A significant portion
of the global population lives near the coast. As a result, it is expected
that the coastal ecosystem will change globally due to a large number
of human footprints in the coastal region. For regions experiencing
the loss or gain of land resources due to erosion/accretion processes,
it is important to map existing land use and land cover (LULC) and
to integrate resulting data products with information on future
shoreline change.

Coastal landscapes are changing rapidly due to both natural and
anthropogenic activities in Bangladesh and elsewhere (Muttitanon
and Tripathi, 2005; Olaniyi et al., 2012; Abdullah et al., 2019;
Ekumah et al., 2020). In Bangladesh, coastal landscape is
changing over time due to many reasons. A recent study by
Abdullah et al. (2019) found that the vegetation coverage in the
coastal Bangladesh is declining day by day due to natural (e.g.,
flooding, cyclones, etc.) as well as human influenced alterations (e.g.,
shrimp farming). They also found that river areas have increased by
4.52 percent within 27 years (1990–2017). This indicates that, as this
part of the country is the heart of the Ganges-Brahmaputra Meghna
(GBM) delta, coastal areas of Bangladesh are experiencing erosion at
alarming rates over the last few decades. Global warming and sea
level rise is putting extra fuel on ever changing coastal landscape in
Bangladesh. A similar study by (Rahman et al., 2017) found
26 percent increase in shrimp farm area from 1989–2015. During
this 26 year of period, about 21% of bare lands declined. This is an
indication that this highly dynamic coastal region of Bangladesh is
changing rapidly.

With an aim to assess the impacts of historical and predicted
shoreline change on different land use and land cover, this study
estimated historical shoreline movement, predicted shoreline
positions based on historical data, and quantified and assessed
land loss due to historical and predicted shoreline movement. In
our previous study, we assessed the predicted performance of
shoreline movement (Islam and Crawford, 2022). We analyzed
how prediction performance varies depending on the time depths
of input historical shoreline data and the time horizons of predicted
shorelines. Our results suggested that the higher the number of
shorelines used in calculating and predicting shoreline change rates
the better predictive performance was yielded. Though the
prediction performance varied spatially, we found that prediction
accuracies were substantially higher for the immediate future years
compared to the more distant future. In this study, we assess how
different LULC classes changed due to historical and predicted
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shoreline movement. The specific goals of this study were to 1) assess
historical land loss in the Lower Meghna river region of Bangladesh,
2) measure the amount of different LULC has been lost to erosion
over defined time intervals, and 3) estimate how well predicted
shorelines predict amounts of succeeding LULC resources lost to
erosion.

2 Materials and methods

2.1 Study area

The area covered in this study consists of Ramgati and
Kamalnagar upazilla of Lakshmipur district in Bangladesh. The
upazillas are the second lowest elevation administrative units in
Bangladesh. The study area covers approximately 885 km2 with an
estimated population of 490,000 (BBS, 2011). This area is located in
coastal Bangladesh along the Lower Meghna river (Figure 1), which
is highly prone to different natural hazards and disasters including
coastal erosion, flooding, cyclones, etc. This area is a major hotspot
of coastal erosion in the country (Crawford et al., 2021). Peoples
living in this part of the coastal Bangladesh are mostly dependent on
agriculture and fishing for their livelihood (Paul et al., 2021; Rahman
et al., 2021, 2022).

2.2 Data

Multitemporal Landsat satellite imagery from 1988–2021 was
used in this study. Landsat satellite data were obtained from the
USGS Earth Explorer website (https://earthexplorer.usgs.gov/).
Landsat imagery (30 m resolution) were used for both shoreline
mapping and LULC classification. To avoid cloud issues, we
obtained imagery only from the dry season. This allowed us to
acquire cloud free scenes. Landsat imagery is widely used for
quantification of coastal erosion and land use and land cover
change (Ghoneim et al., 2015; Ahmed et al., 2018; Crawford
et al., 2021). Additionally, this research used high resolution
satellite imagery from Google Earth Pro for post classification
accuracy assessment.

2.3 Shoreline extraction

After getting the imagery, multiple steps were followed to extract
shorelines. First, the Modified Normalized Difference Water Index
(MNDWI) was used to create an index that enhances the ability to
distinguish between open water and non-open water sources (Xu,
2006). MNDWI makes use of the middle infrared and green bands.
Values ranges from −1 to 1, where water pixels approach 1 and are

FIGURE 1
The location of study area in coastal Bangladesh. In themap, natural color band combinations (4, 3, 2) were used to show the actual landscape in this
part of the coast.
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easily distinguishable from other pixels. It is a widely used method to
separate water and non-water pixels (Singh et al., 2015; Crawford
et al., 2021). Second, MNDWI images were used as an inputs
with other Landsat bands to classify images into different classes.
The ISO cluster unsupervised classification was used to classify
the image into 10 classes. After getting the classification output,
it was reclassified into two classes, water and non-water via
visual interpretation. A similar approach was used to generate
annual vector shorelines from 1988–2021. Shoreline uncertainty
was assessed by considering different uncertainty terms, including
georeferencing uncertainty, pixel uncertainty, digitizing uncertainty,
and uncertainty due to tidal variation. Shoreline total uncertainty
was assessed using the following equation provided by (Hapke et al.,
2011).

Utotal �
��������������������
Ug2 + Up2 + Ud2 + Ut2

√
(1)

Where, Utotal = total uncertainty, Ug = georeferencing uncertainty,
Up = pixel uncertainty, Ud = digitizing uncertainty, and Ut =
uncertainty associated with tide.

To assess shoreline uncertainty, we adopted a similar approach
used in our previous research (Crawford et al., 2020; Islam and
Crawford, 2022). The shoreline uncertainty analysis suggest that the
mean uncertainty related to georeferencing (Ug), pixel (Up),

digitizing (Ud), and tidal variation (Ut) were 4.72, 30, 0, and
7.32 m respectively. The mean total uncertainty (Utotal) was
found to be 32.27 m.

2.4 Shoreline change rates calculation

Shoreline change rate was calculated using the DSAS (Digital
Shoreline Analysis System), a software package for quantification
of shoreline movement developed by United States Geological
Survey (Thieler et al., 2009). There are several widely accepted
methods for estimating coastal erosion rates including End Point
Rate (EPR), Linear Regression Rate (LRR), Net Shoreline
Movement (NSM), and Weighted Linear Regression (WLR)
(Ciritci and Türk, 2020; Crawford et al., 2020, 2021). In this
study, the LRR rates were used to estimate shoreline change
rates. This method is the most used method for coastline
change analysis (Kanwal et al., 2022). The LRR rate is
calculated by fitting a least-squares regression line to all
shoreline points for along digital transects that are cast
orthogonal from an offshore or onshore baseline to the mapped
shorelines. This method is applied to the set of transects such that
each transect obtains a position-specific shoreline change rate and
uncertainty value.

FIGURE 2
Land use and land cover (LULC) of the coastal Lakshmipur region.
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2.5 Shoreline prediction

We used LRR rates to predict future shoreline position.
Prediction involves a general two-step process. First, we
generated shoreline change rates using the LRR method.
Second, we used these rates as inputs for future shoreline
prediction. Future shoreline prediction is implemented by
simple extrapolation of historical rates deployed in ArcGIS via
relevant geoprocessing tools and/or original scripts to automate
processing. One of the essential aspects of this research was
establishing a temporal strategy to predict future shorelines.
Our strategy included two different variables: time depth and
time horizon. Here, time depth means the number of years of
shoreline data used in DSAS (e.g., 5 years means 5 years of annual
shorelines as input to DSAS for estimates of transect-specific
shoreline rates). Time horizon can be defined as the year of
prediction in the future. For time depth, we used three different
time depths of 5, 10, and 15 years; for time horizon we used four
different time horizons of 1, 5, 10, and 20 years into the future.
Using 5, 10, and 15-year time depths of shoreline rates, future
shoreline positions were predicted for different time horizons
(e.g., 1, 5, 10, and 20 years). After deriving the predicted shoreline
movement rates for each transect (e.g., LRR), we created the
predicted shoreline positions along the transect using the
following equation.

xt, yt( ) � 1 − t( )x0 + tx1( ), 1 − t( )y0 + ty1( )( ) (2)
Where, Start point = (x0, y0)

End point = (x1, y1)
Predicted Point = (xt , yt)
The distance between Start and End

point, d �
�������������������
(x1 − x0)2 + (y1 − y0)2

√
Distance ratio, t � (dt/d)

Predicted distance = dt

Finally, we used the geoprocessing functionality of ArcGIS Pro
to create the predicted linear shorelines by connecting predicted
shoreline points of sequentially adjacent transects created by the
above equation.

2.6 Land use and land cover (LULC)
classification and accuracy assessment

Based on the satellite images’ spectral characteristics and
familiarity with the study area’s land use, we identified and

classified six LULC categories for the years 1995, 1999, 2000,
2004, 2005, 2009, 2010, 2014, 2015, and 2019 (Figure 2). A
detailed description of the LULC categories can be found in
Table 1. We used the Random Forest (RF) and Support Vector
Machine (SVM) algorithms to classify land use/cover. Random
Forest is a robust machine learning classifier that balances ease of
implementation and generalization ability (Rodriguez-Galiano et al.,
2012). It is one of the most widely used land use land cover change
classifiers (Rodriguez-Galiano et al., 2012; Zhou et al., 2020). The
Support Vector Machine (SVM) algorithm is also found to be one of
the most widely used algorithms in land use and land cover
classification (Huang et al., 2002; Otukei and Blaschke, 2010).
For a given land cover mapping task, it is often a good practice
to examine multiple machine learning algorithms to compare and
select a better performer (Ren et al., 2021).

Post-classification accuracy is an essential part of LULC analysis.
After getting the classified image, an accuracy assessment was
conducted using high-resolution imagery in Google Earth Pro.
Our initial assessment found that the accuracy of the SVM
classifier was slightly better. As a result, we used SVM-classified
LULC products for all the subsequent analyses. After getting
the classified data, we found that the urban pixels are overly
estimated for most of the years and underestimated for several
years. To make the urban pixels consistent, we fused the
Urban Settlement Footprint (WSF) data product of the German
Aerospace Center (Marconcini et al., 2020). The World Settlement
Footprint (WSF) evolution is a 30 m resolution dataset of the
global settlement extent. First, we mask out urban/built-up class
using WSF results. Second, we classify the remaining study area
based on our classification scheme. Finally, our classified image was
fused with the WSF products using the raster calculator tool in
ArcGIS Pro.

We assessed classification accuracy for the year 2015, first using
the Create Accuracy Assessment Points tool in ArcGIS Pro to create
300 random points. Each land cover/use covers 60 random points.
Accuracy was assessed using standard methods, including user’s
accuracy, producer’s accuracy, overall classification accuracy, and
the kappa coefficient. Our accuracy assessment result suggested that
the 2015 LULC map had an overall accuracy of 86.67% and the
Kappa statistic was 0.83 (Table 2). A high Kappa statistic value
indicates that the relation between the predicted and actual land use
is very strong. The user accuracy analysis suggested that all classes
except built-up (75%) had greater than 80% accuracy. For producer
accuracy, the barren and forest class had highest (96%) and lowest
(75.68%) accuracy, respectively.

TABLE 1 Description of the LULC categories used for the classification.

LULC category Description

River Water Meghna river

Inland Water Permanent and seasonal wetlands (e.g. ponds or lakes), river tributaries, canals, and other active hydrological features

Urban/Built-up Commercial, residential, industrial, transportation and other areas with artificial structures

Barren land Recently developed islands, dry canals or ponds, exposed soils

Forest area Natural or Homestead forest, mixed forest lands

Agricultural land Cultivated land, croplands, fallow lands, and vegetable fields
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2.7 Impacts of shoreline change on land use
and land cover calculation

Historical and predicted shorelines were overlaid with classified
LULC to assess the impacts of coastal erosion on different land use
and land cover. This provided historical estimation of LULC that has
been impacted by coastal erosion, as well as the estimation of the
future impacts. Using the actual and predicted shoreline, we created
polygon to estimate the area lost. We used clip raster tool to extract
area that is lost by overlaying the LULC and polygon layer. This
allowed us to estimate both the total land loss and the land loss by
LULC type. We used similar approach to estimate both the actual
and predicted land loss for all the shoreline prediction scenarios.
One goal of this overlay analysis was to quantify how well previously
generated shoreline predictions perform in predicting lost or gained
LULC in terms of lost area by LULC type. For example, for 2010 and
2015, we had the actual 2010 and 2015 shorelines and LULC for both
years. Additionally, we produced predicted shorelines for 2015 based
on the actual 2010 shoreline and using selected time depths of
historical shorelines leading up to 2010 (e.g., 5 years, 10 years, and
15 years time depths). These results allowed for a comparison of the
actual vs. predicted lost LULC due to erosion after the 2010 to
2015 study period. A similar approach was used for other years of

assessment. A detailed description of the methodology followed for
predicting future shorelines using different time depths and time
horizons can be found in our previously published research (Islam
and Crawford, 2022). Finally, the zonal statistics tool in ArcGIS Pro
was used to extract the actual and predicted land use and land
cover lost.

2.8 Land loss accuracy assessment

We used recall, precision, and F1 Score metrics to evaluate the
predicted land use/cover lost accuracy. The recall, precision and
F1 score are confusion matrix-based metrics. The F1 score metric is
a more balanced metric than recall and precision (Chicco and
Jurman, 2020). All these metrics are broadly used for assessing
prediction accuracy (Tseng et al., 2022). The values of the metrics
mentioned above range from 0 to 1. A higher value of a metric
indicates higher prediction accuracy. The metrics were calculated
using the following equations. In this case, true positive (TP) means
overlapping areas of actual and predicted land loss. False positive
(FP) and false negative (FN) means over-predicted and under-
predicted land loss areas. Figure 3. Depicts a schematic diagram
of land loss accuracy assessment.

FIGURE 3
Schematic diagram of land loss accuracy assessment.

TABLE 2 Result of LULC accuracy assessment for the year 2015.

LULC category Water Urban Barren Forest Agriculture Total UA (%)

Water 58 0 1 0 1 60 96.67

Urban 1 45 1 12 1 60 75.00

Barren 8 0 48 1 3 60 80.00

Forest 0 1 0 56 3 60 93.33

Agriculture 0 2 0 5 53 60 88.33

Total 67 48 50 74 61 300

PA (%) 86.57 93.75 96.00 75.68 86.89

OA (%) 86.67

K 0.83

Note: UA, User’s Accuracy; PA, Producer’s Accuracy; OA, Overall Accuracy; K, Kappa Coefficient
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Recall � Ture Positive TP( )
True Positive TP( ) + False Negative FN( ) (3)

Precision � True Positive TP( )
True Positive TP( ) + False Positive FP( ) (4)

F1 score � 2*
Precision *Recall
Precision + Recall

(5)

2.9 Statistical analysis

We used two non-parametric statistical Friedman test and
Wilcoxon signed-rank test to assess the difference among models.
The Friedman test is widely used for multiple comparisons of
different models (Khosravi et al., 2018). We used a p-value less
than 0.05 (α = 0.05) to be statistically significant. In addition to the
Friedman test, we used the Wilcoxon signed-rank test since
Friedman does not provide a pairwise comparison of the models.
The Wilcoxon signed-rank tests are typically used to check the
statistical significance of pairwise comparisons of the models (Nhu
et al., 2020). The probability of the hypothesis is assessed here:
whether to accept or reject a null hypothesis. The null hypothesis is
rejected if there is a significant difference between different models
(Nickerson, 2000).

3 Results

3.1 Spatio-temporal patterns of land loss

The land loss due to erosion between 1995–2020 is shown in
Figure 4. During the study period, agricultural land represented the
LULC incurring the most loss (76.04%). This was expected, as
agricultural land is the region’s dominant land use/cover
(Figure 2). Forest land accounted for approximately 12.93% of the
total land loss. Other land cover types included barren, inland

waterbodies, and settlements that were estimated to be lost at
levels of 9.57%, 1.27%, and 0.19%, respectively. Previous studies
suggest that most people living on this part of the coast depend
on farming/agriculture and fishing for their livelihood (Paul et al.,
2020; Rahman et al., 2021). As such, agricultural land loss
forces people to migrate and threatens their livelihood. Among
the different studied periods, the highest (3,137 ha) and lowest
(1,367 ha) land losses were during 2010–2015 and 2000–2005.
During 1995–2000, approximately 2,285.64 ha of land were
lost. Land loss decreased in the following half-decade period
(2000–2005). After that, it increased until the mid of the last
decade. The latter half of the last decade experienced a decreased
amount of land loss compared to the first half. Factors like upstream
water discharge, wave energy, storm events, and heavy rainfall are
possible drivers of these trends.

3.2 Model comparison—total land loss

Land loss prediction performance was evaluated by averaging
the ranking of each metric. We followed a similar ranking approach
to Moayedi et al. (2020) who evaluated the performance of different
image classification algorithms. First, we ranked individual metrics
(e.g., recall, precision, F1) based on the prediction performance.
Second, we averaged the ranking of all metrics to get the final rank.
The results of individual metric ranking indicate that the best-
performing model for recall was 5 year time depth and 1 year time
horizon; for precision it was 15 year time depth and 10 year time
horizon, and for F1, 10 year time depth and 20 year time horizon
(Table 3). Our final ranking system suggests that the best model was
the 10 year time depth and 20 year time horizon, followed by the
5 year time depth and 20 year time horizon model. Our lowest-
ranked model was the 15 year time depth and 1 year time horizon
model. This indicates the performance was best while 10 years of
shoreline data were used to predict shoreline positions 20 years in
the future. This result also aligns with our previous research (Islam

FIGURE 4
Historical land/LULC loss from 1995 to 2020.
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and Crawford, 2022), where we assessed the prediction performance
of shoreline movement.

In addition to the ranking system, the model performance
was also evaluated by the non-parametric Friedman test and
Wilcoxon signed-rank test. As mentioned earlier, the null
hypothesis is rejected if the p-value is less than 0.05 (α = 0.05). If
the p-value is less than 0.05, there is a statistically significant
difference in model performance. The Friedman test results
suggested a statistically significant difference in model
performance for multiple models used. The lowest p-value of
Friedman test was found to be 0.042, while difference in model
performance was assessed using precision values for 10-year time
depth and 1-year time horizon, 10-year time depth 5-year time
horizon, and 10-year time depth and 10-year time horizon. The
results of the Friedman’s test are shown in Table 4.

The Friedman test does not provide any information on pairwise
comparison. As a result, we used Wilcoxon signed rank test to
discover the statistically significant performance difference between
two models. The Wilcoxon test results suggest that multiple pairs of
models exhibit statistically significant differences in prediction
performance (α = 0.05). Among different model pairs, 5-year
time depth and 1-year time horizon versus 5-year time depth and
5-year time horizon exhibit a p-value less than 0.05 for precision and
F1 score. Other significant pairs of models are 10-year time depth
and 1-year time horizon versus 10-year time depth and 10-year time
horizon with a p-value less than 0.05 (α = 0.05) for both precision
and F1 score. These statistically significant results of different pairs
illustrate that there are multiple models where the results are
significantly different from one another. Detailed results of
Wilcoxon signed-rank tests can be found in Table 5.

TABLE 3 Ranks of different combinations of time depth and time horizon evaluation for total land loss.

Time Depth Time Horizon Count Recall Precision F1 Total Rank Final Rank

Mean Rank Mean Rank Mean Rank

5 1 10 0.688 1 0.643 8 0.654 5 14 4

5 5 9 0.617 5 0.627 9 0.591 9 23 8

5 10 7 0.594 8 0.690 5 0.617 7 20 7

5 20 3 0.654 3 0.713 4 0.663 4 11 2

10 1 9 0.617 5 0.597 10 0.586 10 25 9

10 5 8 0.645 4 0.658 7 0.624 6 17 6

10 10 6 0.604 7 0.766 3 0.669 2 12 3

10 20 2 0.680 2 0.812 2 0.740 1 5 1

15 1 7 0.592 9 0.594 11 0.575 11 31 11

15 5 6 0.558 11 0.679 6 0.597 8 25 9

15 10 4 0.565 10 0.817 1 0.668 3 14 4

TABLE 4 Performance evaluations of different models using Friedman’s test.

Models Recall Precision F1

Mean Rank p-Value Mean Rank p-Value Mean Rank p-Value

5TD_1TH 2.29 0.180 1.43 0.156 2.43 0.276

5TD_5TH 1.43 2.14 1.57

5TD_10TH 2.29 2.43 2.00

10TD_1TH 1.67 0.607 1.17 0.042* 1.33 0.069

10TD_5TH 2.17 2.33 2.00

10TD_10TH 2.17 2.50 2.67

15TD_1TH 2.00 0.779 1.00 0.039* 1.50 0.050*

15TD_5TH 1.75 2.25 1.50

15TD_10TH 2.25 2.75 3.00

TD, Time Depth; TH, Time Horizon; *indicates p < 0.05
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3.3Model comparison–land loss by different
LULC

Our results suggest that the model with 10 years time depth and
20 years time horizon performed the best for agricultural land,
forest, and water body. The 15 years time depth and 5 years time
horizon model performed the best for the urban class. In case of
barren land loss prediction, the 10 years time depth and 10 years
time horizonmodel performed the best. The 15 years time depth and
1 year time horizon model perfomed the worst for land cover classes
of agricultural land and urban. For forest, waterbody and barren
land, the worst performing models were found to be 15 years time
depth and 5 years time horizon, 10 years time depth and 1 year time
horizon, and 5 years time depth and 1 year time horizon model,
respectively. Table 6 shows the ranking of land loss prediction
performance by different LULC.

While evaluating results for individual metrics used for assessing
prediction performance, we found that the F1 rank had the
most influence on the final ranking. It is expected because
among the metrics used the F1-score was found to be most
balanced metric for accuracy assessment. Due to the nature of
variables used in the accuracy metric equation, the ranking result
varied. For instance, in case of agricultural land, the 5 years
time depth and 1 year time horizon performed best for recall.
On the other hand, the best performing models based on
precision and F1 score are: 15-year time depth and 10-year
time horizon and 10-year time depth and 20-year time horizon
models, respectively. In case of forest land, we found that 5 years
time depth and 1 year time horizon model performed best based on
recall value, 15-year time depth and 10-year time horizon performed
best for precision and 10-year time depth and 20-year time horizon
model performed best based on F1 score ranking. A detailed ranking

TABLE 5 Performance of different models by Wilcoxon signed-rank test.

No. Pairwise Comparison Recall Precision F1

z-Value p-Value z-Value p-Value z-Value p-Value

1 5TD1TH vs 5TD5TH −1.836 0.066 −0.178 0.859 −2.310 0.021*

2 10TD1TH vs 10TD5TH −0.280 0.779 −0.980 0.327 −0.280 0.779

3 15TD1TH vs 15TD5TH −0.405 0.686 −1.483 0.138 −0.405 0.686

4 5TD5TH vs 5TD10TH −1.014 0.310 −0.676 0.499 −0.845 0.398

5 10TD5TH vs 10TD10TH −0.314 0.753 −1.153 0.249 −1.153 0.249

6 15TD5TH vs 15TD10TH −1.461 0.144 −1.826 0.273 −1.826 0.068

7 5TD1TH vs 5TD10TH −0.507 0.612 −0.676 0.499 −0.676 0.499

8 10TD1TH vs 10TD10TH −0.524 0.600 −1.992 0.046* −2.201 0.028*

9 15TD1TH vs 15TD10TH −0.365 0.715 −1.826 0.068 −1.826 0.068

TD, Time Depth; TH, Time Horizon; *indicates p < 0.05

TABLE 6 Rank of different combinations of time depths and time horizons evaluation for land loss by LULC type.

Time Depth Time Horizon Final Rank

Agricultural Land Forested Land Urban /Settlement Waterbody Barren Land

5 1 5 3 5 10 11

5 5 8 9 3 8 7

5 10 7 7 4 5 5

5 20 4 2 10 3 9

10 1 8 7 7 11 10

10 5 6 5 2 7 5

10 10 3 4 6 2 1

10 20 1 1 9 1 3

15 1 11 10 11 9 7

15 5 8 11 1 6 4

15 10 2 6 7 3 2
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for different metrics used can be found in Supplementary Tables
S1–S5.

4 Discussion

In this study, land loss due to historical and predicted
shoreline movement was quantified and assessed using
Landsat satellite imagery from 1988–2021. This study used
34 years of data, enabling us to assess the land loss prediction
performance for a rich time series of data. The study area is
located in coastal Bangladesh along the eastern bank of Meghna
river. Our previous studies found that this area is highly prone to
erosion (Crawford et al., 2021; Islam and Crawford, 2022). This
side of the riverbank is eroding at an alarming rate; thousands of
economically marginalized inhabitants of the delta are
continually displaced.

The study demonstrated that overall land loss decreased from
the last half of the 1990 s to the mid of 2000 s (Figure 5). After
2005, the land loss increased until 2015, and afterward, it
decreased again. The performance of 10-year time depth and
20-year time horizon model was found to be the best (Rank 1) for
predicting future land loss. Among the different land use/cover
predictions, the 10-year time depth and 20-year time horizon
model was found to be the best model for predicting agricultural,
forest, and inland waterbodies loss. In the urban and barren land
loss prediction, the 15-year time depth and 5-year time horizon
and 10-year time depth and 10-year time horizon models were
found to be best performing models, respectively. Our analysis of
Friedman and Wilcoxon signed-rank tests results suggests a
statistically significant difference among the different model
performances.

Compared to much of the coastal erosion literature, this
work draws from a 34 years time series of satellite-derived
shorelines at annual temporal resolution. This time depth
enables us to employ a temporal design strategy expected to
yield a robust characterization of space-time erosion patterns. It
also enables us to empirically assess the performance of future
land use/cover loss predictions by predicting future shoreline
positions depending on the time depths of input historical
shoreline data. This is a methodological innovation with the
potential for prediction of future land use/cover loss, and is

applicable to other deltas and vulnerable coastal areas
globally. With the increasing availability of high spatial/
temporal remote sensing data, our methods can be generalized
to derive a robust database of shorelines. We advocate
developing and calibrating shoreline predictions using longer
time-series data. While empirical results are specific to the
project’s study area, results can inform the region’s future
land use/cover loss and associated mitigation and adaptation
strategies.

4.1 Limitations of the study

Our analysis provides one of the first assessments of how well
predicted shoreline movement predicts amounts of LULC
resources lost to erosion. Nevertheless, this study has
limitations that point to future research opportunities. First,
we predicted future shoreline positions solely based on the
extrapolation of historical erosion rates. We know that coastal
erosion rates might differ over time due to factors including
flooding, cyclones, sea level rise, sediment transportation,
extreme rainfall events, wave intensity, height, etc. (Sanuy and
Jiménez, 2019; Bamunawala et al., 2021). Since this study didn’t
consider these factors while predicting future shoreline
positions, our prediction might get under or over-estimated
for some years. Second, our analysis of LULC suggests that
several classes were under or overestimated for some years.
For example, urban classes were underestimated, primarily
due to the built structure of these areas. Most of the houses in
this part of the coast are located near/under homestead forest. As
a result, we believe certain residential areas were classified as
forest cover. Similar to the urban areas, water bodies like small
ponds or narrow canals were classified as forest cover, and
sometime even as barren land. On the other hand, we believe
that the barren lands were overestimated for some years due to
the depths of some wetlands or ponds being very shallow. Third,
our study site is located in coastal Bangladesh where the rates of
erosion are among the highest in the world. The prediction
accuracy of future shoreline locations might vary based on the
type, rates or location of the coast. Finally, we used Landsat
imagery for both LULC and coastal erosion analysis. The pixel
size of Landsat imagery is 30 m. High-resolution imagery might
better and accurately detect shoreline movement and LULC.
Where possible, future studies might be prioritized to
investigate different types of coastal landscapes with differing
erosion rates.

5 Conclusion

Coastal areas are impacted by erosion globally. The severity
and magnitude of coastal erosion is often high in the deltaic
environments. Due to erosion, people lose their households,
agricultural lands, and livelihoods. In this study, we assess the
impacts of historical and predicted shoreline change on different
land use and land covers in Bangladesh’s Lower Meghna estuary
region. This area is highly susceptible to the damaging coastal
erosion. Long-term time series data at an annual scale during

FIGURE 5
Total land loss in the studied area during 1995–2020.
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1988–2021 were used to assess the prediction performance of
different land use/cover losses. We employed a temporal design
strategy of three different time depths and four different time
horizons to predict future land loss for different scenarios.
Agricultural lands were the top most lost land use class
(76.04% of total land loss). Our results suggest that the best-
performing model for land loss prediction was 10-year time
depth and 20-year time horizon (rank 1) followed by the 5-year
time depth and 20-year time horizon model. Among the
individual land cover loss prediction, 10-year time depth and
20-year time horizon model were best performing model for the
agricultural, forested and inland waterbodies loss prediction.
Though the results are specific to our study area located in
coastal Bangladesh, they can inform and help refine other
models to predict land loss due to erosion in other parts of
the coastal and deltaic environment worldwide. The results of
this study provide spatiotemporally specific evidence useful for
targeted coastal land management by planners, policymakers,
and other relevant stakeholders.
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