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Vaccines are known to function as themost effective interventional therapeutics for

controlling infectious diseases, including polio, smallpox, rabies, tuberculosis,

influenza and SARS-CoV-2. Smallpox has been eliminated completely and polio

is almost extinct because of vaccines. Rabies vaccines and Bacille Calmette-Guérin

(BCG) vaccines could effectively protect humans against respective infections.

However, both influenza vaccines and COVID-19 vaccines are unable to

eliminate these two infectious diseases of their highly variable antigenic sites in

viral proteins. Vaccine effectiveness (VE) could be negatively influenced (i.e.,

interfered with) by immune imprinting of previous infections or vaccinations, and

repeated vaccinations could interfere with VE against infections due to mismatch

between vaccine strains and endemic viral strains. Moreover, VE could also be

interfered with whenmore than one kind of vaccine is administrated concomitantly

(i.e., co-administrated), suggesting that the VE could be modulated by the vaccine-

induced immunity. In this review, we revisit the evidence that support the interfered

VE result from immune imprinting or repeated vaccinations in influenza and

COVID-19 vaccine, and the interference in co-administration of these two types

of vaccines is also discussed. Regarding the development of next-generation

COVID-19 vaccines, the researchers should focus on the induction of cross-

reactive T-cell responses and naive B-cell responses to overcome negative

effects from the immune system itself. The strategy of co-administrating

influenza and COVID-19 vaccine needs to be considered more carefully and

more clinical data is needed to verify this strategy to be safe and immunogenic.

KEYWORDS

immune interference, immune imprinting, antigenic distance hypothesis, influenza
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1 Introduction

As we head towards the third anniversary of COVID-19, more than 761 million people

have been infected with COVID-19 and 6.8 million people died worldwide from the SARS-

CoV-2 infection (1). The emergence of highly adaptive and more virulent variants of SARS-

CoV-2 has significantly increased the COVID-19 mortality rate (2–4). To tackle this alarming
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situation, multiple vaccines have been developed and approved for

emergency use using diverse platforms, for example, mRNA-1273

(Moderna), BNT162b2 (Pfizer/BioNTech), AZD1222 (Oxford/

AstraZeneca), and CoronaVac (Sinovac), NVX-CoV2373 (Novavax),

Ad5-nCoV (CanSino Biologics/Beijing Institute of Biotechnology) etc.

All these vaccines have reportedly exhibited high effectiveness in Phase

III clinical trials (5–10). As the ever-evolving seasonal influenza A virus

(IAV), antigenic drift caused by mutations of hemagglutinin allows

influenza virus to escape the surveillance of immune system, and more

importantly, vaccine effectiveness (VE) against IAV has been illustrated

to be influenced not only by immune imprinting induced by prior

infection or vaccination, but also repeated vaccinations. Highly virulent

novel variants of SARS-CoV-2 like Alpha (B.1.1.7), Beta (B.1.351),

Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have kept

evolving due to continuous genetic mutations in the spike

glycoprotein-encoding viral gene (11–13), the VE against SARS-

CoV-2 would definitely be influenced like IAV vaccines.

Importantly, co-infection of SARS-CoV-2 with IAV would

significantly increase the hospitalization rate, severity rate, and

even the mortality rate (14–16). This may result from the unique

ability of IAV to raise the expression of ACE2 thus increase the

pathogenicity of SARS-CoV-2 (17). Since autumn 2021, the World

Health Organization (WHO) has promoted concomitant

administration (i.e., co-administration) of inactivated seasonal

influenza vaccines along with any kind of COVID-19 vaccines in

distinct anatomic sites for the 2021–2022 flu season (18). Following

the WHO guidelines, several countries, including Finland, France,

Germany, Italy, Spain, Switzerland, and the UK, have also adopted

the co-administration strategy for vaccinating their people against

SARS-CoV-2 (19–24).
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The effectiveness of a vaccine can be regulated by multiple

physiological and environmental factors, including sex, age,

ethnicity, immunocompromised conditions, and most

importantly, the immune system itself. Importantly, previous

studies have demonstrated that the effectiveness of the influenza

vaccine can be interfered with either by prior vaccination against

IAV or by repeat vaccinations (25), and a similar trend has also

been observed in the case of COVID-19 vaccination (26). The

present literature review is aiming to discuss the negative influence

(i.e., interference) on vaccine effectiveness caused by immune

imprinting or repeated vaccinations in influenza vaccines and

COVID-19 vaccines, and the interference in the co-

administration of these two vaccines is also discussed (Table 1).

Discussions on other non-vaccine-induced factors, such as sex, age,

and immunocompromised conditions, are beyond the scope of

this review.
2 Immune imprinting of IAV interferes
with VE against infections

In the late 1950s, Thomas Francis et al. first illustrated that an

individual who was first exposed to a specific variant of a virus

during his childhood would generate relatively high levels of

antibodies against that viral strain, even when exposed to other

antigenically distinct IAVs, and was named the original antigenic

sin (OAS) theory (43). Plenty of clinical clinical investigations have

been conducted in humans (44, 45) and animals (46, 47), finally

proving the physiological basis of this theory. During the H1N1

influenza pandemic in 2009, people older than 65 years were better
TABLE 1 Summary of immune interference in influenza and COVID-19 vaccines.

Mechanisms Type of vaccine Impact on immunity or
protection reference

Immune imprinting interferes with immune response against
subsequent infections

NM
Increased mortality to subsequent IAV

strain
(27, 28)

NM
Decreased IgG and IgM against SARS-
CoV-2 spike and nucleocapsid protein

(29)

mRNA-1273, mRNA-1273.529/
BNT162b2

A sustained hierarchical Spike-binding
antibody response to the SARS-CoV-2

variants
(30, 31)

Repeated vaccinations lead to a refractory state of CD4+ T-cells
and impair antibody production

Fluzone, Flucelvax, Flublok/Vaxigrip
Tetra, Influsplit Tetra, Influvac Tetra

Diminished CD4+ T-cell responses and
attenuated antibody responses

(32, 33)

Pre-existing anti-vector immunity interferes with response to
booster dose

ChAdOx1 nCoV-19 vaccine
Impaired VE against SARS-CoV-2

infections
(34, 35)

Short dose interval interferes with maturation of CD4+ T-cells BNT162b2
Improved VE after extending dosing

interval
(36–38)

The sticky mucous of respiratory tract interferes with the
production of mucosal immunity

AZD1222
Neither mucosal antibodies nor systemic

immune response are induced
(39)

Co-administration of influenza and COVID-19 vaccines interferes
with immune responses but the underlining mechanism is

unknown

NVX-CoV2373+ Flucelvax
Quadrivalent/Cominarty +

Flucelvax

Impaired immunogenicity of NVX-
CoV2373

(40, 41)

CoronaVac+IIV4 (Sinovac Biotech)
Impaired immunogenicity of CoronaVac
and enhanced immunogenicity of IIV4

(42)
fr
NM, not mentioned in original article; IIV4, inactivated quadrivalent inflfluenza vaccine.
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protected and showed a surprisingly lower disease severities

compared with younger adults (48). Follow-up examinations then

detected that a subset of older individuals (age ≥65 years) already

had high levels of preexisting haemagglutination inhibiting (HAI)

antibodies cross-reactive to the pandemic H1N1/pdm09 viral strain

(49–51), which circulated continually from 1918 to 1957. Hence,

most older people born before 1957 had been infected primarily

with antigenically similar subtype H1N1 during their childhood,

and that might have protected them in the 2009 H1N1 pandemic.

Likewise, a Japanese study has reported that individuals previously

infected with IAV in the 1918 pandemic or an antigenically similar

strain had very high titers of neutralizing antibodies. Importantly,

the authors found that the pre-existing immunity could still provide

powerful protection even the 2009 H1N1 strain exhibited enhanced

pathogenicity in mice- and ferrets-models than other seasonal

H1N1 strains (52). Conversely, if the pandemic viral strain

encountered during early life is antigenically distinct from the

subsequent strains, susceptibility to subsequent strains might

increase by several folds. Such phenomena eventually occurred

during the 1918 Spanish flu pandemic, where the mortality

peaked in individuals of ages around 28 years (27). Using data

from Canada and the U.S., the authors speculated that the increased

mortality might be attributed to the earlier infection of the Russian

flu pandemic strain in 1889–90, as opposed to dominant H1N1 in

1918 (27). A similar incident occurred in the 2009 H1N1 pandemic,

where individuals born during the 1957 H2N2 Asian flu pandemic

showed enhanced susceptibility to infection and even death (28).

The initial investigation on OAS did not find any interference in

immune responses to subsequent vaccinations but rather a strong

memory response to the original infecting strain. While emerging

studies have shown contradictory findings. In a ferret-model study,

seronegative ferrets were sequentially infected with different

subtypes of H3N2 viruses showing extended cross-reactivity to all

tested influenza clades at the expense of hemagglutination

inhibitory (HAI) titers against the current endemic strain (53).

Furthermore, a recent study has found that the pre-existing

immunity induced by prior infections or vaccinations could

modulate distinct immune responses, causing a bias in the

antibody-mediated immunity towards conserved yet non-

protective IAV epitopes, resulting in minimal immune protection.

On the other hand, prior vaccinations can boost the cross-reactivity

of neutralizing antibodies against the HA head of IAV, thereby

facilitating the body’s immune defense (54). Besides, in a

population-based study, the authors combined age and levels of

neutralization antibody against the H3N2 strains circulating from

1968 to 2008 into a statistical model. The results showed that HAI

titers were the highest against strains infected in the age range of 5–

10 years, while antibody titers from subsequent infections gradually

dropped with age (55), suggesting a previously unexplored role of

OAS in inducing the antibody production against infections and

particularly during the vaccination.

Notably, the mechanism underlying the OAS theory remains to

be elucidated. There is an opinion regarding the competency of

memory versus naive B cells that the memory B cells are higher in

proportion and require a lower threshold to be activated compared

to those of naïve B cells (56, 57). By tracing the fate of antigen-
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specific precursors, memory B cells expressing isotype-switched

immunoglobulins (swIg) could be activated more promptly than

their naive counterparts with the coordination of high-affinity

neutralizing serum Ig (58). High-resolution proteomic analysis of

Ig and high-throughput transcriptomic analysis of B-cell receptor

genes found pre-vaccination antibody titers are positively correlated

with the post-vaccination serum B-cell repertoires, as opposed to

inducing de novo antibody responses (59). Furthermore, a mouse-

model study has tried to figure out the extent to which antigen

stimulation could induce OAS. Interestingly, OAS was observed in

mice that were sequentially immunized with HA-encoding DNA

vaccines as well as those sequentially infected with live influenza

virus, on the contrary, there was no OAS in mice sequentially

vaccinated with formalin-inactivated viruses (60). This finding is

consistent with another study where there was no OAS when

human subjects were immunized with inactivated IAV vaccine. It

is shown that most of the monoclonal antibodies (mAbs) isolated

from single antibody-secreting plasma cells had the highest affinity

for the current vaccine strain (61). As IAVs are capable of evolving

to escape host defensive immunity, this long-lived humoral

immunity generated by the first exposure is limited to a given

IAV strain and its closely related strains, indicating that OAS may

facilitate the immune escape mechanism of IAV variants.

Since the IAV vaccine has been recommended annually for

children aged ≥6 months, children are likely to encounter

concomitantly multiple IAV strains, as opposed to a single IAV

strain infection. It remains to be determined how the influenza

vaccine injected during an individual’s childhood can impact the

immune system and whether OAS theory applies to the influenza

vaccine encountered during an individual’s childhood. It would be

crucial to explore whether priming children with influenza vaccines

instead of infection with a single viral strain would induce better

antibody-mediated immunity against subsequent IAV infections. A

comprehensive understanding of the immune mechanisms of OAS

can improve the design and vaccination strategy against life-

threatening viral infections.
3 Repeated influenza vaccinations can
interfere with VE against infections

Interestingly, distinct patterns of B-cell activation and priming

are observed between the IAV infection and inactivated influenza

vaccination. The repeated inactivated influenza vaccinations

resulted in significantly reduced titers of vaccine-specific and

cross-reactive antibodies induced from subsequent vaccines,

whereas previous exposure to a natural influenza A(H1N1)pdm09

strain did not affect the plasma-blast response to the subsequent

vaccines (62). In the 1970s, Hoskins et al. first observed potentially

negative effects of repeated vaccinations on pediatric subjects, where

repeatedly (2-3 doses) vaccinated children failed to exhibit any

superior protection against IAVs compared with the unvaccinated

subjects (63–65). Moreover, repeatedly vaccinated children

presented approximately 50% higher rate of infections than the

immunologically naive children due to an antigenic mismatch

between the A/Victoria viral strain circulating during the 1970s
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and the vaccinated strain (65). Later in 1999, a computer model was

used to simulate the immune responses to IAV and predict the

vaccine effectiveness. The authors further proposed the antigenic

distance hypothesis (ADH) theory, stating that the vaccine efficacy

in repeatedly vaccinated individuals can widely vary depending on

the antigenic distance among previous vaccine strain (v1), current

vaccine strain (v2) and endemic strain (e) based on the

corresponding hemagglutination inhibition (HAI) assay (66)

(summarized in Figure 1).

Since the 2004–2005 season, the Canadian Sentinel Practitioner

Surveillance Network (SPSN) has proposed the annual test-negative

design (TND), which involves the collection of specimens from

patients with influenza-like symptoms and assessment of vaccine

effectiveness into a framework (67–76) (shown in Table 1), that is

conceivable by randomized controlled trials (RCTs) (77, 78). Based

on this network, during the 2012-2013 episode, in which the vaccine

strain was similar but not homologous to a prior antigenically

distinct endemic strain (i.e., v1≈ v2 ≠ e), the VE against the H3N2

strain was found to reduce in repeatedly vaccinated subjects

compared with that of the first-time vaccinees (69). Subsequently,

during the 2014–2015 influenza season, due to the newly mutated

glycosylation site in the circulating H3N2 strain, the endemic strain

A(H3N2) subtype presents antigenically distinct variants than v1

and v2 in Canada. Even though v1 and v2 are homologous strains

(i.e., v1 = v2 ≠ e), the VE against the H3N2 in repeat vaccinees was

historically low (71). Moreover, consistent with the ADH,

Canadians who were both vaccinated in 2015-2016 and 2016-

2017 seasons were observed to have a preserved VE against
Frontiers in Immunology 04
infection, as the vaccine strains in these two seasons were

antigenically distinct (i.e., v1 ≠ v2) (73). Apart from Canada, a

US study also monitored the relative effectiveness of influenza

vaccines between the 2004–2005 and 2012–2013 influenza

seasons, revealing that the VE against the H3N2 and influenza B

strains were both significantly lower among the individuals with a

history of repeated vaccinations compared with that in vaccine

naïve subjects (79). Despite this, a great negative dose-response

pattern for A(H3N2) has been observed in those who were

vaccinated in 3 consecutive seasons since the 2012-2013 season.

The study showed that the risk of repeated vaccinees to get infected

with IAV was 54% higher than those who were not vaccinated in

any season (71). Interestingly, an inverse exposure-response

association has been noticed between the number of prior

influenza vaccinations (up to four) and the HAI response to A

(H3N2) in a cohort of 816 healthcare workers. The geometric mean

fold-change ratio (GMR) was reportedly increased from 2.3 in those

with prior vaccination of up to 4 doses to 6.2 among the healthcare

workers without any prior vaccinations (80).

However, the ADH is not amenable to all conditions. The

reduced VE observed during the 2015-2016 season in Canada might

also have resulted from other incidences since the v1 and v2 strains

were identical and antigenically similar to that of the endemic viral

strain on antigenic characterization by the HAI assay. Notably, the

genetic evolution of a novel S162N mutated strain in the clade 6B.1

was observed during the 2015–2016 season, and this mutation can

change the glycosylation status and shield the K163 epitope of clade

6B viruses which circulated during the 2013–2014 season from
A B C

FIGURE 1

Schematic overview of the antigenic distance hypothesis (ADH). (A) Negative interference may occur if the antigenic distance between v1 and v2 is
smaller, and that between v1 and endemic strain (e) strains is larger (i.e., v1≈ v2 ≠ e). (B) There should be no interference when v2 is antigenically
distinct from v1 (i.e., v1 ≠ v2). (C) Positive interference may occur when the antigenic distances among v1, v2, and e are relatively small, as these
antibodies could react to all three strains (i.e., v1≈ v2 ≈ e).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1167214
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2023.1167214
vaccine-induced antibodies (72). Also, pre-existing low avidity

antibodies may constitute the immune complex and activate the

receptors of Fcg, which may inhibit B-cell response to the later

immunization (81). Moreover, the immune complex can mediate

the complement activation, resulting in the severe disease following

influenza infection (82). As mentioned earlier, ADH alone is not

enough to explain the lower VE in repeatedly vaccinated subjects,

however, it could function as a useful framework. Undoubtedly,

further mechanistic investigations are essential to validate this

framework. Of note, the ADH framework can only make relative

but not absolute predictions about the effectiveness of a vaccine

against viral infection.

In this context, a recent study has revealed that high-affinity

HAI antibodies in repeated vaccinees are comparatively short-lived

in subsequent years, especially after the first-year vaccination (83),

although the total antibodies induced by the first vaccination could

be maintained over 600 days (84). Combined with a relatively

limited capacity of the immune system to sustain plasma cells (85,

86), high-affinity antibodies generated after the first-year

vaccination are thought to be derived from terminally plasma

cells and most of which would undergo exhaustion and apoptosis.

Interestingly, a longitudinal cohort study has found that the number

of vaccine-specific plasma-blasts and the binding reactivities of

antibodies are reduced after the second dose of the influenza vaccine

and remain substantially low over the next doses (87). Disturbances

in the antibody affinity maturation, or even diminished B-cell

response to annual vaccination, may account for a decreased VE.

The production and maturation of antibodies by plasma-blasts

involve a T-cell dependent maturation process, and the T follicular

helper (Tfh) cells have been proven to be an indispensable part of

this process (88–90). The Tfh cells have been validated to function

as an important regulator of vaccine-induced humoral immunity as

the magnitude of IgG antibodies is positively correlated with a

subset of circulatory antigen-specific Tfh cells, named ICOS1+IL-

21+CD4+ T-cell subset, after the vaccination (91). Strikingly, a study

conducted on bulk population suggests that the activation of Tfh

cells after vaccination is lower in repeat vaccinees compared to the

vaccine naïve subjects (32), arguing that deficient Tfh cell responses

in repeatedly vaccinated individuals may account for an attenuated

antibody response in repeatedly vaccinated individuals.

Interestingly, the expression of CD127 at baseline is positively

correlated with strong activation of the Tfh cells (33), and

promoting the survival and maintenance of memory T cells (92).

Following vaccination, CD127 expression is downregulated on

activated CD4+ T cells and returns to the baseline level at 28 days

when the antigen is eliminated (33). The expression of CD127 on

circulatory CD4+ T cells may lead to a refractory state, thus

impairing the activation of Tfh cells and subsequent antibody

production in repeated vaccinees, suggesting that the Tfh cells

may play critical roles in the post-vaccination antibody response,

and the avidity and the quantity of Tfh cells may also be influenced

by repeat vaccinations. However, the underlying mechanism

impeding activation of the Tfh cells in repeatedly vaccinated

individuals remains to be il lustrated. We stil l lack a

comprehensive understanding of how both arms of the immune

system respond to repeated vaccinations and interactions between
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the B and T cells. The incorporation of modern genomic,

bioinformatic mapping, and antibody landscape approaches has

provided insights into the impact of repeated annual vaccinations

on the effectiveness of the vaccine against IAV infection to help

guide future vaccine policy recommendations.

As for now, an effective influenza vaccine that exhibit enough

effectiveness and provide long-lasting protection against antigen-

drift influenza virus, and more importantly, raise no safety

concerns, is urgently in need. Some promising influenza vaccines

like live attenuated influenza vaccines administrated intranasally

(FluMist) (93, 94), M2e-based universal influenza vaccines (95, 96)

have shown admirable immunogenic and safe profiles, and more

efforts is needed for next-generation influenza vaccines to come

through the influenza pandemic.
4 Immune imprinting predetermines
the VE against the SARS-CoV-2

Since the outbreak of COVID-19, vaccines have exhibited their

extraordinary abilities in controlling the pandemic. However, the

VE against the SARS-CoV-2 infections could be influenced by

multiple factors. Notably, the immune response to subsequent

booster doses of COVID-19 vaccines could inevitably be

influenced by the immune imprinting derived from prior

coronavirus infections or COVID-19 vaccination.

In a longitudinal cohort study, antibodies against seasonal

coronaviruses were back-boosted when subjects were infected

with SARS-CoV-2. These antibodies are more likely to target the

conserved epitopes than variable regions of seasonal coronaviruses.

Besides, these pre-existing antibodies are found to negatively

interfere with subsequent immune responses against the SARS-

CoV-2 infections (29). Interestingly, in a macaque-model study,

researchers primed macaques with the mRNA-1273 vaccine

(encoding the ancestral virus strain) at weeks 0 and 4, and they

found a hierarchical Spike-binding antibody response to the SARS-

CoV-2 variants at week 6 (ancestral virus strain>Delta > Beta >

Omicron). Then 34 weeks after the second dose of the mRNA-1273

vaccine, macaques were homologously boosted with the mRNA-

1273 vaccines or heterologously boosted with the mRNA-1273.529

vaccines (encoding the Omicron strain), and exhibited the same

hierarchical Spike-binding antibody responses (30). Furthermore,

by profiling polyclonal antibody responses following the COVID-19

mRNA (BNT162b2) vaccination, it was found that individuals first

encountered either the Alpha or Delta variant would preferentially

generate antibodies towards the receptor-binding domain (RBD) of

the Alpha and Delta variant, respectively (31). In contrast,

individuals who had been previously immunized with vaccines

containing ancestral strains of SARS-CoV-2 were expected to

generate antibody responses toward the ancestral viral strains and

decreased antibody responses to the Alpha or Delta variant (31).

Recent studies have illustrated the mechanism of activating the pre-

existing immune response to the Omicron infection (97–99). One

study performed a detailed analysis of the specificity, function, and

genetic features of memory B-cells (MBCs) following the Omicron

infection. The authors found that pre-existing MBCs induced by
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1167214
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2023.1167214
vaccines were primarily reactivated in the acute phase, exhibiting a

broader cross-reactivity to the SARS-CoV-2 variants. However, the

Omicron-specific antibodies could not be detected, indicating that

the booster dose-induced immune responses mainly recalled the

MBCs rather than producing Omicron-specific antibodies (98).

Detailed analysis of how the immune system responded to the

Omicron infection in healthcare workers who received three doses

of COVID-19 vaccines with various conditions of immune

imprinting revealed that the B and T-cell responses to the

Omicron infection were weakened in individuals who were

previously infected and then were vaccinated (hybrid immunity),

suggesting that the immune imprinting of previous infections with

different SARS-CoV-2 variants could interfere with subsequent

immune responses and block the recognition of variable regions

of the spike protein of SARS-CoV-2 by the immune system (100).

In contrast to the antibody response, activation of the T-cell

response has shown substantial cross-reactivity to the SARS-CoV-2

variants (101–104). A population-based study has demonstrated

that the majority of T-cell responses to various SARS-CoV-2

variants (including Omicron) could be maintained 6–7 months

after vaccination, even if the vaccine strain is based on the ancestral

viral strain (101). In another study evaluating the cross-reactivity of

vaccine-induced T-cell responses against the Omicron, both CD8+

and CD4+ T cells exhibited persistent cross-reactivity to Omicron in

9 months post-vaccination (102). Similarly, individuals who

previously immunized the Ad26.COV2.S or BNT162b2 vaccines

would generate CD8+ and CD4+ T cells that broadly cross-react

with the Omicron variant despite the substantially reduced

neutralizing antibody responses (102). Furthermore, a study

testing on the hypothesis that whether T-cell responses induced

by various platforms of COVID-19 vaccines could still cross-

recognize SARS-CoV-2 variants, it was found that activated T

cells presented conserved recognition to the SARS-CoV-2 variants

regardless of the vaccine-producing platforms, as opposed to

attenuated MBC activation and neutralizing antibody

production (101).

The capacity of T cells in exhibiting prolonged cross-reactivity

has attracted much attention in recent years (105, 106). It is verified

that the T cells can target multiple regions in the spike protein of

SARS-CoV-2, thus covering a wide spectrum of mutant variants

(105). Accordingly, a review summarizing 25 studies concerning the

SARS-CoV-2-derived T-cell epitopes has identified certain T-cell

receptors that can recognize over 1,400 different SARS-CoV-2

epitopes (382 for CD4+ cells and 1,052 for CD8+ cells) (106).

Another study has also revealed that the CD4+ and CD8+ T-cell

responses against the SARS-CoV-2 are not merely dominated by

the spike protein epitopes. The authors have shown that the CD4+

T-cell response can also be directed against epitopes of other

virulent factors, including nsp3, nsp4, ORF3s, ORF7a, nsp12, and

ORF8, while the CD8+ T-cells aim at M, nsp6, ORF3a, and N factors

of the SARS-CoV-2 (105). Together, these results may partially

explain why vaccine-induced T-cell responses could even cross-

react with newly emerging variants, despite their reduced

neutralizing antibody response capacities.

It is well recognized that next-generation COVID-19 vaccines

should stimulate the production of cross-reactive neutralizing
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antibodies and robustly induce T-cell responses at the same time.

Of note, the naive B cells also need to be engaged for their potential

to produce antibodies to tackle various SARS-CoV-2 variants. Since

the antibody responses may be impaired by immune imprinting of

prior exposure to viral pathogens, more experimental data are

urgently needed for a better understanding of the immune

imprinting mechanism of COVID-19 vaccines to develop more

efficient COVID-19 vaccines in the future.
5 Immune interference in VE among
varied COVID-19 vaccine platforms

5.1 Adenoviral vector vaccine

A clinical trial of the ChAdOx1 nCoV-19 vaccine conducted in

Brazil, South Africa, and the UK have reported a negative

interference in individuals who have been immunized with two

doses of the ChAdOx1 nCoV-19 vaccine. The authors found the

effectiveness of the vaccine against symptomatic infections in the

LD/SD cohort (individuals who received half of the standard dose

(LD) as their first dose and a standard dose (SD) as their second

dose) was 90.0% (95% CI: 67.4–97.0), higher than that in the SD/SD

cohort (individuals who received SD as their first and second dose).

Moreover, the vaccine effectiveness against asymptomatic diseases

in the LD/SD cohort was also higher than that in the SD/SD cohort

[58.9% (95% CI: 1.0–82.9) vs. 3.8% (95% CI: -72.4 - 46.3)] (34).

Subsequently, the same group confirmed in another study

containing three clinical trials that the vaccine effectiveness was

higher in those who received booster doses more than 12 weeks

after the first dose [81.3% (95% CI: 60.3–91.2)] than in those who

received booster doses less than 6 weeks after the first dose [55.1%

(95% CI: 33.0–69.9)] (35). These findings suggest there may be anti-

vector antibodies-induced interference in individuals who are

homologously boosted, both primed with a high and short dose.

The vector-induced interference has already been observed in

polysaccharide–protein conjugated vaccines (CV) where the

immune response to the polysaccharide antigen can be interfered

with by the pre-existing anti-vector antibodies (107). For example,

when human chorionic gonadotrophin (hCG) is conjugated with

the tetanus toxoid (TT), a pre-existing TT-induced immunity can

suppress the antibody response to the hCG antigen. The scientific

community has proposed the carrier-induced-epitopic suppression

(CIES) theory to explain such phenomena. The CIES suggests that

pre-existing anti-carrier protein immunity may suppress the

immune responses against the hapten or polysaccharide-linked

antigens (107).
5.2 m-RNA vaccines

Similar to adenoviral vector vaccine, relatively longer interval

between doses could also enhance immune response to mRNA

vaccines. A comparative study of “short”(2- to 5- week) and

“long”(6- to 14- week) interval between doses of BNT162b2

vaccines found long interval was followed by more striking
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neutralizing antibody and B-cell responses. Of note, the authors

observed that long-interval recipients could generate stronger IL-2-

secreting CD4+ T-cell responses with unchanged or even weaker

total T-cell responses (36). More importantly, VE of mRNA

vaccines has also been reported to be improved by extended

dosing interval (37, 38). Currently, little do we know the exact

mechanism leading to such interference, there is an opinion that

longer dose interval could provide more time for T cells to maturate,

which potentially contributes to stronger immune responses

following boost doses.
5.3 Intranasal vaccine

As SARS-COV-2 invades host via respiratory tract by binding

to ACE2 receptors (108), intranasal COVID-19 vaccines have

attracted increasing attention and interest for their extraordinary

capacity in inducing mucosal immunity against SARS-COV-2. An

adenoviral-vector based intranasal vaccine containing spike

protein 1, full-length nucleocapsid protein, and truncated

polymerase (AZD1222) has compared the immunogenicity of

intranasal and intramuscular injection. Intranasal injection

induced stronger circulating antibody responses, tissue-resident

memory T-cell responses, trained airway macrophages, and more

importantly, intranasal injection exhibited adequate protection

against variants of SARS-COV-2 in mouse models (109).

Interestingly, a live attenuated influenza virus-based intranasal

COVID-19 vaccine encoding the RBD of SARS-COV-2 (dNS1-

RBD) not only produced rapid, prolonged local immune

responses against SARS-COV-2infect ion, but also an

encouraging role in anti-influenza infection. Such cross-reactive

protection may come from the innate response in the nasal and

tissue resident T cells in the lung (110). Some other types of

intranasal COVID-19 vaccines have also shown promising aspects

in fighting against the variants of SARS-COV-2, such as subunit

vaccines (111), bacterium-vectored (112) and DNA vaccines

(113). However, a failure of AZD1222 in inducing neither

mucosal antibodies nor systemic immune response happened

(39), it is postulated that the sticky mucous of respiratory tract

may halt antigen access and immune activation, thus contributing

to the poor immunogenicity of intranasal vaccines (114).

As for now, we have to realize that the only vaccination strategy

is not enough to prevent the emergence of new SARS-COV-2

variants and to end the global pandemic, although these vaccines

have shown pretty satisfactory abilities in reducing the disease

severity and limiting the spread out. It is noteworthy that caution

should be taken in making up the vaccine strategies in case of the

occurrence of more aggressive variants and to prevent undesired

adverse events related to the vaccination. To date, heterologous

vaccination regimens (e.g., primed with adenoviral vector vaccines

and boosted with mRNA vaccines) have been shown non-inferior

or even better effective than the homologous vaccination regimens

(115–118). There is still the need to keep the focus on such

vaccination strategies and figure out whether other kinds of

immune imterference would exist or even get amplified by these

heterologous prime-boosting strategies.
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6 Immune interference in the co-
administration of COVID-19 and
influenza vaccines

Since SARS-CoV-2 and IAVs are both respiratory viruses and

share the same mode of transmission, it is inevitable for someone to

be co-infected with both viruses and the co-infection would increase

the risk of serious illnesses and death (119, 120). Co-administration

of an inactivated seasonal influenza vaccine and any dose of a

COVID-19 vaccine has been adopted by multiple regions in the

world for easing the burden of healthcare workers. A meta-analysis

of mass vaccination has confirmed it as a safe and more effective

strategy to control the COVID-19 pandemic (121). However, a

version of the immune interference opinion still exists and argues

that it might be deleterious to human health in the future.

Co-administration of COVID-19 and influenza vaccines has

been verified to be non-inferior in terms of immunogenicity and

reactogenicity by three independent RCTs (40, 122, 123), which has

validated that the co-administration of both vaccines is safe and

minimally toxic. Besides, there was no significant negative impact

on the immunogenicity of influenza or COVID-19 vaccination on

these three RCTs, except a decrease in the efficacy was observed in

an RCT conducted in the UK by Toback et al. (40). In which the

participants were randomly assigned to receive two doses of the

NVX-CoV2373 (Novavax; Gaithersburg, MD, USA) or placebo

(normal saline) 21 days apart, and a dose of influenza vaccine

was injected concomitantly with the first dose of NVX-CoV2373 or

placebo in the opposite deltoid. A decrease in the geometric mean of

enzyme-linked immunosorbent assay (ELISA) value was observed

in the co-administration cohort compared with the NVX-CoV2373

alone cohort (40) (Shown in Table 2). Furthermore, in seropositive

participants presented of this trial, co-administration group also

showed immune interference of all ages (40), indicating that the

impaired immune response to co-administration could be common

regardless of the status of the pre-existing immunity. Similarly, two

other studies conducted in China and Italy have also reported

interference in individuals co-administrated with COVID-19 and

influenza vaccines (41, 42) (Shown in Table 3). Interestingly, the

Chinese study found the interference was more significant when the

influenza vaccine is co-administrated with a booster dose of the

COVID-19 vaccine (42).

Notably, the decreased immune response of co-administration in

all relative studies could still protect participants against infections

from the SARS-CoV-2 and IAV variants, and we still lack

experimental studies to confirm this interference. Interestingly, the

Toback study immunized participants with influenza vaccine

concomitantly with the first dose of the COVID-19 vaccine and

found a decrease in immune responses against the NVX-CoV2373

vaccine. While the Chinese study reported decreased vaccine

effectiveness in participants receiving seasonal influenza vaccine

with the booster dose of the COVID-19 vaccine instead of the first

dose. This indicates that it is not the immunological memory that

modulates such decrease but some other underlying mechanisms

waiting to be unraveled. The immunogenicity of the influenza vaccine

has reportedly been preserved with concomitant administration in all
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relative studies (40, 42, 122–124). Surprisingly, the immune response

to specific influenza antigen was even stronger in participants co-

administrated COVID-19 vaccine and influenza vaccine (42, 122).

Compared with influenza vaccine alone group, GMTs against A/

H1N1, B/Victoria, and B/Yamagata were higher when BNT162b2

and recombinant quadrivalent influenza vaccine were immunized at

the same time (122). Similarly, Stronger immune response against A/

H1N1 was also observed in co-administration group when

CoronaVac and inactivated quadrivalent influenza vaccine were

injected concomitantly (42). These findings suggest something in
Frontiers in Immunology 08
COVID-19 vaccines may function as an adjuvant to enhance the

immunogenicity of influenza vaccine. Of note, it was found the

SARS-CoV-2 and most IAVs circulated around the world presently

share the same small NGVEGF/NGVKGF peptide. More

importantly, this peptide is located in N481-F486 of the RBD of

the SARS-CoV-2 and the immunodominant region of the

neuraminidase of IAVs, and the pre-existing influenza antibodies

could cross-react with the SARS-CoV-2 (125). Whether the small

peptide has contributed to immune interference in the co-

administration of influenza and COVID-19 vaccine needs further
TABLE 2 VE against influenza infection based on Canada’s sentinel surveillance system from 2010 to 2022 (2020-2021 season is not included in this
table for its historically low incidence of influenza infection).

Season
(reference) Vaccine strains of TIV Circulating

strain

VE (95% CI)

Overall
VE

VE
against A
(H1N1)
pdm09

VE
against
A/H3N2

VE against
B/Yama-
gata

VE against
B/Victoria

2010-2011
(67)

A/(H1N1)pdm09/California/7, A/(H3N2)
Victoria/210/2009 (NYMC X-187), B/Brisbane/

60/2008(Victoria)-like strains

A(H1N1)pdm09,
A/H3N2,
influenza B

37 (17-
52)

59 (14-80) 39 (14-57) 25 (-18-52) against influenza B

2011-2012
(68)

A/(H1N1)pdm09/California/7, A/(H3N2)
Victoria/210/2009 (NYMC X-187), B/Victoria-

Brisbane/60/2008

A(H1N1)pdm09,
A/H3N2,

B/Victoria, B/
Yamagata

59 (43-
70)

80 (52-92) 51 (10-73) 71 (40-86) 27 (-21-56)

2012-2013
(69)

A/(H3N2)Victoria/361/2011-IVR-165, A/(H1N1)
pdm09/California/7/NYMC-X- 179A/X-181, B/
Hubei-Wujiagang/158/2009-NYMC-BX-39

A/H3N2, A
(H1N1)pdm09,
B/Yamagata, B/

Victoria

50 (33-
63)

50 (16-80) 41 (17-59) 67 (30-85) 75 (29-91)

2013-2014
(70)

A/(H1N1)pdm09(X-179A/X-181A), A/H3N2-X-
223A, B/Yamagata-BX-51B

A(H1N1)pdm09,
A/H3N2,

B/Yamagata (B/
Wisconsin, B/
Massachusetts)

68 (58-
76)

71 (58-80)
-34 (-280-

53)

73 (57-84) (72
(53-83)

against B/
Massachusetts)

NE

2014-2015
(71)

A/(H1N1)pdm09(X-179A/X-181A), A/H3N2-X-
223A, B/Yamagata-BX-51B

A/H3N2,
B/Yamagata (B/
Wisconsin)

9 (-14-27) NE
-17 (-50-

9)

42 (10-62) (42
(8-63) against
B/Wisconsin)

NE

2015-2016
(72)

A/(H1N1)pdm09(X-179A/X-181A), A/H3N2-
NIB-88, B/Yamagata-Phuket/3073/2013

A(H1N1)pdm09,
A/H3N2,

B/Yamagata, B/
Victoria

46 (32-
57)

43 (25-57) NE NE 54 (32-68)

2016-2017
(73)

A/(H1N1)pdm09- California/7, A/H3N2-Hong
Kong/4801/2014, B/Victoria- Brisbane/60/2008

A/H3N2, A
(H1N1)pdm09,
B/Yamagata, B/

Victoria

43 (28-
55)

NE 36 (18-50) 72 (47-85) NE

2017-2018
(73)

A/(H1N1)pdm09- Michigan/45/2015, A/H3N2-
Hong Kong/4801/2014, B/Victoria- Brisbane/60/

2008

A/H3N2, A
(H1N1)pdm09,
B/Yamagata, B/

Victoria

34 (22-
45)

52 (18-72) 14 (-8-31) 44 (30-55) NE

2018-2019
(74)

A/(H1N1)pdm09- Michigan/45/2015, A/H3N2-
Hong Kong/4801/2014, B/Victoria- Brisbane/60/

2008

A(H1N1)pdm09,
A/H3N2,
B/Victoria

68 (55-
77)

72 (60-81) NE NE NE

2019-2020
(75)

A(H1N1)pdm09 - Brisbane/02/2018, A(H3N2) -
Kansas/14/2017, B/Victoria- Brisbane/60/2008

A(H1N1)pdm09,
A/H3N2,
B/Victoria

58 (47-
66)

44 (26-58) 62 (37-77) 69 (57-77) against influenza B

2021-2022
(76)

A(H1N1)pdm09 - Brisbane/02/2018, A(H3N2) -
Kansas/14/2017, B/Victoria- Brisbane/60/2008

A/H3N2
36 (-38-
71)

NE NE NE NE
TIV, trivalent influenza vaccine; CI, confidence interval; VE, vaccine effectiveness; NE, not estimated owing to insufficient sample size.
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investigation, as the cross-reactive antibodies are non-

neutralizing (126).

An alarm has been sounded for us, and we need to bear in mind

that there may be an existing immune interference when more

doses and a variety of COVID-19 and influenza vaccines are

administered concomitantly. Since the heterologous boosting

strategy of COVID-19 vaccines has been adopted by several

countries, more efforts should be focused on delineating whether

a heterologous booster strategy of COVID-19 vaccines with co-

administration of influenza vaccines would amplify the interference

in the vaccine effectiveness against the infection of both viruses. A

better understanding of the impaired immune responses against the

SARS-CoV-2 requires advanced genomic tools, proteomics,

bioinformatics, and high-throughput immunological assays to

reveal the immune interactions between the COVID-19 and

influenza vaccines.
7 Conclusion

This review aimed to summarize the immune interference in

influenza and the COVID-19 vaccines’ effectiveness and how the

co-administration of these two types of vaccines would interfere

with the activation of the immune system against respiratory virus

infections. Distinct from the vaccine failure when Haemophilus

influenzae type b (Hib) conjugate vaccine co-administrated with

other vaccines (127), most relevant studies have reported an

adequate antibody level to protect individuals from infection with

the existence of immune interference (40, 42). Of note, we still need

to investigate if the antigenic drift of both viruses would cause harm

to humans when yearly vaccination schedules of both vaccines

are adopted.

Co-administration of influenza and COVID-19 vaccines has

already been promoted to ease the burden of public health and even

improve compliance with vaccination programs. However, the

interactions between these two vaccines have not been unraveled

and joint efforts of the scientific community are urgently needed.

Interestingly, a combined mRNA vaccine containing both the HA

antigen of IAV and the RBD of the SARS-CoV-2 S protein has
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shown pretty good immunogenicity and safety (128), which

provides us with a new approach to develop vaccines against life-

threatening infections. Notably, the policymakers need to consider

carefully whether or not to adopt the co-administration of these two

vaccines nationwide for its uncertainty, and more detailed real-

world data plus animal studies are urgently required to facilitate

more scientific and effective decision-making.
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TABLE 3 Immune interference in the co-administration of COVID-19 and influenza vaccines.

Reference Vaccination strategy Immunogenicity
assessment

Immunogenicity of COVID-19 vaccine

Co-administration
group

COVID-19 vaccine
alone group

Toback et al.
(40)

C+I on day 0, C on day 21 vs. P +I on day 0, P on day 21 ELISA units/ml of anti-S
IgG

31236.1 (95% CI:
26295.5-37104.9)

44678.3 (95% CI: 40352.2
-49468.2)

Wang et al.
(42)

I + C1 or C1 on day 0, C2 or I + C2 on day 28 vs. C1 on day 0,
I on day 14 and C2 on day 28

GMT of neutralizing
antibody

27.5 (95% CI: 24.4-
31.1)

38.1 (95% CI: 33.6-43.2)

Stefanizzi
et al. (41)

I + C3 vs. C3 GMT of anti-S IgG
12343.2 (95% CI:
7,137.7 -26,736.6)

15787.7 (95% CI: 5,829.7 –

42,755.8)
P, placebo; C, COVID-19 vaccine; C1, first dose of COVID-19 vaccine; C2, second dose of COVID-19 vaccine; C3, third dose of COVID-19 vaccine I, influenza vaccine; ELISA, enzyme linked
immunosorbent assay; GMT, geometric mean titer.
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