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The fiber geometry is one of the important parameters in the effective conversion
performance and local strength of thermoelectric composites. In this study, the
plane problem of a hollow fiber embedded within a non-linear thermoelectric
medium in the presence of a uniform remote in-plane electric current and a
uniform remote energy flux is investigated based on the complex variablemethod.
Closed-form expressions for all the potential functions characterizing the
thermoelectric field and the associated thermal stress field in both the matrix
and fiber are obtained by solving the corresponding boundary value problem.
Numerical examples are presented to illustrate the effect of hollowness ratio of
the fiber on the local energy conversion efficiency and interfacial thermal stress
concentration. It is found that a higher conversion efficiency and a lower amount
of thermal stress concentration around a hollow fiber than that around a solid fiber
could be achieved simultaneously by appropriate selection of the hollowness ratio
of the fiber. The results can be directly used for performance optimization and
reliability evaluation in design of thermoelectric composites in engineering.
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1 Introduction

Thermoelectric material is a novel kind of functional material, which can directly convert
heat into electricity and vice versa (Bell, 2008). A thermoelectric device is free of moving parts,
noises, and environmentally harmful emissions, making it extremely attractive in renewable
energy fields, such as waste heat recovery, solar power generation, carbon reduction, and Freon-
free refrigeration (Zhang et al., 2016; He and Tritt, 2017; Mahmoudinezhad et al., 2018). The
electric transport and thermal conduction in a thermoelectric material are intrinsically coupled,
making it highly challenging to improve the conversion efficiency in a single-phase
thermoelectric material (Yang et al., 2013). Therefore, a lot of effort in developing high-
performance thermoelectric material is devoted to engineering hybrid composites by
introducing inclusions/fibers into single-phase thermoelectric material to enhance the overall
conversion efficiency (Wan et al., 2015; Guo et al., 2016; Srivastava et al., 2018).

From the point of view of solid mechanics, the existence of the inclusions/fibers may cause
severe concentration of the temperature field and the associated thermal stress field in
thermoelectric materials under in-service conditions. Most thermoelectric materials are
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semiconductors with poormechanical properties, and excessive thermal
stress may lead to the premature failure of the thermoelectric devices (Li
et al., 2015; Song et al., 2019). The analysis of thermoelectric materials
with the inclusions/fibers can further improve our understanding of the
mechanical behavior of such new materials and thus is essential for
optimal design and improved reliability of thermoelectric composites.
Using complex variable methods, rigorous thermo-electro-mechanical
analyses of thermoelectric materials containing elastic inhomogeneities
have been carried out by several authors (Zhang et al., 2017;Wang et al.,
2018; Yang et al., 2020). In the corresponding discussions of the
inhomogeneity problem in thermoelectric materials, it has been
assumed that the inclusion or fiber is assumed to have a solid cross-
section. In engineering practice, hollow fibers or particles are often
introduced into thermoelectric materials due to their distinct
microstructures. To the best of our knowledge, the effect of a hollow
particle/fiber on the thermoelectric and thermoelastic responses of a
thermoelectric composite has never been thoroughly investigated. This
motivates our current work.

The paper is organized as follows: basic equations of a non-linear
thermoelectric material are presented in Section 2, followed by the
detailed analysis of the plane problem of an infinite thermoelectric
matrix containing a hollow fiber subjected to a uniform remote
thermoelectric loading by using the complex variable technique in
Section 3. In Section 4, we use the explicit results from Section 3 and
present numerical examples to illustrate the influence of the hollowness
ratio on the local energy conversion efficiency and thermal stress
concentration around a hollow fiber in a thermoelectric composite.
Finally, we summarize our conclusion in Section 5.

2 Basic equations for thermoelectric
materials

In a homogenous thermoelectric medium wherein both electric
charges and energy are conserved, the governing equations and
transport equations for the non-linearly coupled electric and heat
conduction are given as follows (Yang et al., 2013):

∇ · I � 0, ∇ · J � 0 (1)
together with

I � −δ∇ϕ − δε∇T (2)
J � q + ϕI � ϕ + εT( )I − κ∇T (3)

where ∇ is the Nabla operator, I � [Ix, Iy]T is the electric current
vector, J � [Jx, Jy]T denotes the energy flux vector, and q � [qx, qy]T
represents the heat flux vector. In addition, ϕ is the electric potential, T
is the temperature, δ is the electric conductivity, κ is the thermal
conductivity, and ε is the Seebeck coefficient. Inserting Eqs 2, 3 into the
governing equations in Eq. 1 results in

∇2 ϕ + εT( ) � 0 (4)
∇2T + δ

κ
∇ ϕ + εT( ) · ∇ ϕ + εT( ) � 0 (5)

According to Eqs 4, 5, the electric potential ϕ and temperature T
can be expressed in terms of two potential functions, namely, h(z)
and g(z), of the complex variable z � x + iy (i � ���−1√

is the
imaginary unit) as follows (Yu et al., 2018):

ϕ � Re h z( )[ ] − εRe g z( )[ ] + δε

4κ
h z( )h z( ) (6)

T � Re g z( )[ ] − δ

4κ
h z( )h z( ) (7)

where “Re” denotes the real part of a complex number and the
overbar denotes the complex conjugate. It follows from Eqs 2, 3, 6, 7
that the electric current components (Ix, Iy), the energy flux
components (Jx, Jy), and the heat flux components (qx, qy) are
expressed in terms of the two complex functions as follows (Yu et al.,
2018):

Ix − iIy � −δh′ z( ) (8)
Jx − iIy � −κg′ z( ) − δ

2
h′ z( )h z( ) (9)

qx − iqy � −κg′ z( ) + δ

2
h′ z( )h z( )

+ εδh′ z( ) δ

4κ
h z( )h z( ) − Re g z( )[ ]{ } (10)

where the prime (′) denotes the derivative of the complex variable z.
In addition, the resultant electric current and energy flux on a certain
directed curve s can be expressed as follows (Yu et al., 2018):

∫In s( )ds � −δIm h z( )[ ] (11)

∫Jn s( )ds � −κIm g z( ) + δ

4κ
h2 z( )[ ] (12)

which can be used as the boundary conditions of the electric current
and energy flux in the integral form. Here, “Im” denotes the
imaginary part of a complex number.

For a steady thermal stress problem where the elastic constants
are assumed to be temperature-independent, the three in-plane
stresses (σx, σy,τxy) and the two in-plane displacements (ux, uy)
caused by the uneven temperature distribution T(x, y) given in Eq.
7 can be expressed in terms of two elastic potential functions,
namely, φ(z) and ψ(z), together with the aforementioned
thermoelectric potential functions h(z) and g(z) as follows (Yu
et al., 2018):

σy + σx � 2 φ′ z( ) + φ′ z( )[ ] + 2ξh z( )h z( ) (13a)
σy − σx + 2iτxy � 2 �zφ″ z( ) + ψ′ z( )[ ] + 2ξh′ z( )H z( ) (13b)

2μ ux + iuy( ) � βφ z( ) − zφ′ z( ) − ψ z( ) − ξh z( )H z( ) + 2μλG z( )
(14a)

Here, H(z) and G(z) are two complex functions satisfying
H′(z) � h(z) and G′(z) � g(z), μ is the shear modulus, ξ �
μλvδ/4κ is a real constant, β � 3 − 4v*, λ � (1 + v*)λ*, and λv � (1 +
v*)λ*/(1 − v*) for plane strain, β � (3 − v*)/(1 + v*), λ � λ*, and
λv � (1 + v*)λ* for plane stress with λ* representing the thermal
expansion coefficient and v* being the Poisson’s ratio. Additionally,
the resultant forces (fx, fy) on a certain directed curve s can be
calculated as

i∫ fx + ify( )ds � φ z( ) + zφ′ z( ) + ψ z( ) + ξh z( )H z( ) (14b)

which will be used as the stress boundary condition in the integral
form. To summarize, the mathematical formulation of the non-
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linearly coupled thermo-electro-mechanical problem is completed
using the complex function theory with each unknown function
determined by the corresponding boundary conditions.

3 Solutions of thermoelectric material
with a hollow fiber

As illustrated in Figure 1, we consider the plane strain
deformation of an infinite thermoelectric matrix enclosing a
hollow fiber subjected to a uniform remote electric current I∞y
and a uniform remote energy flux J∞y . Let S1 and S2 denote the
regions occupied by the surrounding matrix (|z|≥R1) and the
hollow fiber (R2 ≤ |z|≤R1), respectively. The fiber and matrix are
assumed to be perfectly bonded, and both the electric and heat
conduction can penetrate the interface L1. The continuity conditions
of the thermoelectric field across L1 can be expressed as follows
(Wang et al., 2018):

h1 z1( ) + h1 z1( ) � h2 z1( ) + h2 z1( ) (15a)
h1 z1( ) − h1 z1( ) � δ2

δ1
h2 z1( ) − h2 z1( )[ ] (15b)

g1 z1( ) + g1 z1( ) − δ1
2κ1

h1 z1( )h1 z1( )

� g2 z1( ) + g2 z1( ) − δ2
2κ2

h2 z1( )h2 z1( ) (16a)

g1 z1( ) − g1 z1( ) + δ1
4κ1

h1 z1( )2 − h1 z1( )2( )
� κ2
κ1

g2 z1( ) − g2 z1( ) + δ2
4κ2

h2 z1( )2 − h2 z1( )2( )[ ] (16b)

where z1 � R1eiθ represents those points on the interface L1 with θ

denoting the angle between the outer normal vector and the positive
x-axis in the z-plane as shown in Figure 1; the index 1 or 2 indicates
the corresponding quantity defined in either the matrix (region S1)

or the hollow fiber (region S2), respectively. Furthermore, the inner
surface of the hollow fiber is assumed to be electrically impermeable
and thermally insulated

h2 z2( ) − h2 z2( ) � 0 (17a)
g2 z2( ) − g2 z2( ) + δ2

4κ2
h2 z2( )2 − h2 z2( )2( ) � 0 (17b)

where z2 � R2eiθ represents those points on the inner surface L2. In
ensuing analysis, we first solve the thermoelectric potentials h1(z)
and h2(z) from the electric boundary conditions in Eqs 15a, 15b, 17a
and then substitute them into the thermal boundary conditions in
Eqs 16a, 16b, 17b to determine g1(z) and g2(z). Considering Eq. 8
and the far-field condition of the electric current, the potential
function h1(z) takes the following form:

h1 z( ) � iI∞y
δ1

z + U0 + h1
* z( ) (18)

where U0 is a real constant related to the equilibrium
thermoelectric potential and is set as zero (i.e., U0 � 0)
without loss of generality in this paper. The analytical
function h1*(z) satisfying h1*(z → ∞) � 0 represents the
disturbance on the electric field caused by the fiber. The
region occupied by the matrix is the exterior of contour L1;
thus, h1*(z) can be expanded into Fourier series as
h1*(z) � ∑+∞

n�1anz
n, where an is the complex coefficient to be

determined. The region occupied by the fiber can be regarded
as the intersection of the exterior of contour L2 and the interior of
contour L1, and the potential function h2(z) then can be
expanded as h2(z) � ∑+∞

−∞bnzn with bn being the unknown
coefficients to be determined from the continuity conditions
in Eqs 15a, 15b, 17a. Omitting details, the thermoelectric
potential functions are finally determined as follows:

h1 z( ) � A1
z

R1
( ) + A−1

z

R1
( )

−1
(19a)

h2 z( ) � C1
z

R1
( ) + αC1

z

R1
( )

−1
(19b)

where A1 � iI∞y R1/δ1 and α is the hollowness ratio defined by the
hollow area over the total area of the cross-section as α � (R2/R1)2.
In addition, A−1 and C1 are two complex constants calculated by

A−1 �
α 1 + δ2

δ1
( ) + 1 − δ2

δ1
( )

1 + δ2
δ1

( ) + α 1 − δ2
δ1

( )A1, C1 � 2

1 + δ2
δ1

( ) + α 1 − δ2
δ1

( )A1

Considering that the energy flux at infinity is uniform, according
to Eqs 9, 18, the potential function g1(z) takes the form of

g1 z( ) � I∞y 2

4κ1δ1
z2 + iJ∞y

κ1
z + T0 + g1

* z( ) (20)

where the real constant T0 denotes the uniform temperature field in
the matrix and the analytical function g1

*(z) satisfying
g1
*(z → ∞) � 0 represents the disturbance on the thermal field

caused by the fiber. The same argument applies to Eqs 16a, 16b,
17b, we obtain

g1 z( ) � B2
z

R1
( )

2

+ B1
z

R1
( ) + T0 + B−1

z

R1
( )

−1
+ B−2

z

R1
( )

−2

(21a)

FIGURE 1
Hollow fiber embedded in a thermoelectricmatrix under uniform
remote in-plane thermoelectric loading.
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g2 z( ) � D2
z

R1
( )

2

+D1
z

R1
( ) +D0 + αD1

z

R1
( )

−1
+ α2D2

z

R1
( )

−2

(21b)
where

B−2 � D2

2
1 + κ2

κ1
( )α2 + 1 − κ2

κ1
( )[ ]

+ Δ−2
2
, B−1�

D1

2
1 + κ2

κ1
( )α + 1 − κ2

κ1
( )[ ]

D2 � 2B2 − Δ2

1 + κ2
κ1

( ) + 1 − κ2
κ1

( )α2, D1 � 2B1

1 + κ2
κ1

( ) + 1 − κ2
κ1

( )α
D0 � T0 − δ1

4κ1
A1| |2 + A−1| |2( ) + δ2

4κ2
1 + α2( ) C1| |2

Here, the two complex constants, namely, Δ2 and Δ−2, are
defined as

Δ2 � δ1
4κ1

2A1A−1 − A2
1 + A−1

2( ) − δ2
4κ2

2α − κ2
κ1

1 − α2( )[ ]C2
1

Δ−2 � δ1
4κ1

2A−1A1 − A2
−1 + A1

2( ) − δ2
4κ2

2α + κ2
κ1

1 − α2( )[ ]C1
2

So far, the quantities related to the electric current and
temperature fields in both the matrix and fiber can be
determined from Eqs 6 to 10 together with Eqs 19, 21a. The
following studies will deal with the analysis of the associated
thermal stress problem. Considering the single-valued conditions
of elastic displacement (Eq. 14) and the resultant force (Eq. 15), the
elastic potential functions in both the matrix and fiber take the
following form:

φ1 z( ) � P0 ln
z

R1
( ) + φ1

* z( ) (22a)

ψ1 z( ) � Q0 z( ) ln z

R1
( ) + ψ1

* z( ) (22b)

φ2 z( ) � Y0 ln
z

R1
( ) + φ2

* z( ) (23a)

ψ2 z( ) � W0 z( ) ln z

R1
( ) + ψ2

* z( ) (23b)

where φ*
j(z) and ψ*

j(z) (j = 1, 2) are holomorphic functions in the
respective regions. Taking Eqs 22, 23 into Eqs. 14, 15 and
eliminating the multi-valued terms, we can obtain

P0 � − 2μ1λ1
β1 + 1

B−1R1, Q0 z( ) � P0 + ξ1A−1R1h
1( ) z( )

Y0 � −2μ2λ2
β2 + 1

αD1R1, W0 z( ) � Y0 + ξ2αC1R1h
2( ) z( )

The analytical functions φ*
j(z) and ψ*

j(z) (j = 1, 2) in Eqs 22, 23
will be determined by the following elastic boundary conditions:

φ1 z1( ) + z1φ1′ z1( ) + ψ1 z1( ) + ξ1h1 z1( )H1 z1( )
� φ2 z1( ) + z1φ2′ z1( ) + ψ2 z1( ) + ξ2h2 z1( )H2 z1( ) (24a)

1
μ1

β1φ1 z1( ) − z1φ1′ z1( ) − ψ1 z1( ) − ξ1h1 z1( )H1 z1( ) + 2μ1λ1G1 z1( )[ ]
� 1
μ2

β2φ2 z1( ) − z1φ2′ z1( ) − ψ2 z1( ) − ξ2h2 z1( )H2 z1( ) + 2μ2λ2G2 z1( )[ ]
(24b)

φ2 z2( ) + z2φ2′ z2( ) + ψ2 z2( ) + ξ2h2 z2( )H2 z2( ) � 0 (25)
Equations 24a, 24b describe the continuity of elastic stresses and

displacements across the perfectly bonded interface L1, and Eq. 25
indicates that the inner surface of the fiber L2 is mechanically free.
By enforcing the boundary conditions in Eqs 24, 25 with the aid of
Eqs 19, 21b, we arrive at

φ 1( ) z( ) � P0 ln
z

R1
( ) + ω2Y−1 + Ω−1( ) z

R1
( )

−1
(26a)

ψ 1( ) z( ) � Q0 z( ) ln z

R1
( ) + ω1Y1 + Ω1( ) z

R1
( )

−1

+ ω1Y2 + Ω2( ) z

R1
( )

−2

+ ω2Y−1 + Ω−1 + ω1Y3 + Ω3( ) z

R1
( )

−3
(26b)

φ 2( ) z( ) � Y0 ln
z

R1
( ) + Y−1

z

R1
( )

−1
+ Y1

z

R1
( )

1

+ Y2
z

R1
( )

2

+ Y3
z

R1
( )

3

(27a)

ψ 2( ) z( ) � W0 z( ) ln z

R1
( ) + Σ3 + Y−1 − ω3Y3( ) z

R1
( )

−3

+ Σ2 − ω3Y2( ) z

R1
( )

−2
+ Σ1 − Y1 − ω3Y1( ) z

R1
( )

−1

+ ω2ω4 − ω3( )Y−1 + Σ−1 − 3Y3 + ω4Ω−1[ ] z

R1
( )

(27b)
where the four real dimensionless constants ω1, ω2, ω3, and ω4 are
given as

ω1 � β2 + 1
1 − μ2

μ1

ω2 � β2 + 1
1 + β1

μ2
μ1

ω3 �
β2 + μ2

μ1
μ2
μ1
− 1

ω4 � μ2
μ1

β1 + 1
μ2
μ1
− 1

and the four complex constants Y1, Y2, Y3 and Y−1 are identified as

Y1 � Σ1 − Λ1

ω3 − α( ) + 1 − α( ) Y2 � Σ2 + αY0

ω3 − α2

Y3 � αω4Ω−1 + αΣ−1 − Λ2 + 1 − α ω3 − ω2ω4( )[ ]Y−1
3α 1 − α( )

Y−1 � α3 − ω3( ) Λ2 − α ω4Ω−1 + Σ−1( )[ ] + 3α 1 − α( ) Λ3 − Σ3( )
α3 − ω3( ) 1 − α ω3 − ω2ω4( )[ ] + 3α 1 − α( )2

together with

Λ3 � −1
2
α3ξ2R1C1

2

Λ2 � −α2ξ2R1 C1

∣∣∣∣ ∣∣∣∣2
Λ1 � − 1

2
+ ln α( )( )α2ξ2R1 C1| |2
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Ω3 � 2μ2R1

3 1 − μ2
μ1

( ) λ2D2 − λ1B2( ) − ξ1R1

2
A1A−1

Ω2 � μ2R1

1 − μ2
μ1

( ) λ2D1 − λ1B1( ) − P0

Ω1 � 2μ2R1

1 − μ2
μ1

( ) λ2D0 − λ1B0( ) − ξ1R1

2
A1| |2

Ω−1 � 2μ2R1

1 + β1
μ2
μ1

( ) λ1B−2 − λ2α
2D2( )

FIGURE 2
Effect of the hollowness ratio and conductivity properties of the fiber on the local energy conversion efficiency.

FIGURE 3
(A) Local energy conversion efficiency; (B) relative energy conversion efficiency around a desirable fiber with different hollowness ratios.
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Σ3 � 2μ2R1

3 1 − μ2
μ1

( ) λ2D2 − λ1B2( ) − ξ2R1

2
αC2

1

Σ2 � μ2R1

1 − μ2
μ1

( ) λ2D1 − λ1B1( ) − Y0

Σ1 � 2μ2R1

1 − μ2
μ1

( ) λ2D0 − λ1B0( ) − ξ2R1

2
C1| |2

Σ−1 � 2μ2R1

1 − μ2
μ1

( ) λ1B−2 − λ2α
2D2( )

Up to here, the elastic stress components σx, σy, and τxy in both the
matrix and fiber are determined from Eq. 13 with the aid of the two
thermoelectric potential functions and two elastic potential functions,
and the stress components in polar coordinates can be determined
according to Eq. 13 and the following stress transformation formula:

σtt + σnn � σx + σy (28a)
σtt − σnn + 2iτnt � e2iθ σy − σx + 2iτxy( ) (28b)

where σnn, σtt, and τnt are the normal stress, hoop stress, and shear
stress, respectively.

4 Numerical examples

To illustrate the application of the analysis model, some
numerical examples are presented. In the following examples, the
matrix is set as a bismuth tellurium semiconductor, and the material
constants are given as δ1 � 1.67 × 105Sm−1, κ1 � 2Wm−1K−1,
ε1 � 2 × 10−4VK−1, μ1 � 60GPa, v1 � 0.3, and λ1 � 4.2 × 10−6K−1

(Huang et al., 2008). The imposed far-field loadings are I∞y �
−2 × 104Am−2 and J∞y � 8 × 103Wm−2, and the average
temperature on the matrix is set as T0 � 350K. In addition, the
Seebeck coefficient and Poisson’s ratio of the fiber are taken as the
same with those of the matrix material.

In engineering practice, the thermoelectric conversion
efficiency is a crucial parameter for the design of
thermoelectric composites. Figure 2 shows the effect of the
hollowness ratio α on the local energy conversion efficiency η
around a hollow fiber with different electric and thermal
conductivity properties. A finite region (10mm × 10mm)
bounded by ABCD around the hollow fiber is selected to
calculate the local thermoelectric conversion efficiency, as
shown in Figure 1. The thermoelectric conversion efficiency in
the area ABCD is given as follows (Liu, 2012):

FIGURE 4
(A) Distribution of normal stress; (B) relative concentration factor of normal stress around a soft fiber with different hollowness ratios.

FIGURE 5
(A) Distribution of normal stress; (B) relative concentration factor of normal stress around a hard fiber with different hollowness ratios.
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η � qinput − qoutput
qinput

� qCD − qAB
∣∣∣∣ ∣∣∣∣

max qCD
∣∣∣∣ ∣∣∣∣, qAB∣∣∣∣ ∣∣∣∣( )

where qAB � ∫B

A
qy(x)dx and qCD � ∫D

C
qy(x)dx denote the total

heat flux on border AB and CD, respectively.
As shown in Figure 2, with specific fiber radius R1 � 4mm,

when the conductivity properties and hollowness ratio of the
fiber are changed, different values of the local energy conversion
efficiency are obtained. It can be found that the local
energy conversion efficiency increased when the electric
conductivity of the fiber increased and reduced when the
thermal conductivity of the fiber increases. Thus, we can
conclude that fibers with higher electric conductivity and
lower thermal conductivity are desirable for the design of
thermoelectric composites. By comparing Figure 2D with
Figure 2A, we found that the thermal conductivity of the fiber
has a more dominant effect on the local thermoelectric
conversion efficiency than the electric conductivity when the
hollowness ratio α is relative small.

Figure 3 illustrates the variation of local energy conversion
efficiency around a hollow fiber with desirable conductivity
properties with respect to the hollowness ratio α. For all values
of the fiber hollowness ratio, α � 0.45 leads to the highest energy
conversion efficiency, as shown in Figure 3A. We further compared
the conversion efficiency around the hollow fiber with different α
values to that around a solid fiber (namely, α � 0) under the same
service conditions as shown in Figure 3B. As shown in this figure,
compared with a solid fiber with radius of 4.5 mm, the highest
conversion efficiency around a hollow fiber with α � 0.45 is
increased by 22.3%, showing the tremendous value of hollow
fibers in improving the conversion performance of a
thermoelectric composite material.

In addition to the conversion performance, the mechanical
reliability also deserved further consideration when designing a
thermoelectric composite. Figure 4 presents the variation of the
interfacial normal stress distribution around a softer hollow fiber
with desirable conductivity properties. Here, the soft fiber has a
lower elastic modulus but a larger linear expansion coefficient than
the matrix material. Since the thermal expansion of a softer fiber is
greater than that of the matrix material, the matrix will prevent the
fiber from expanding outward, and the interface is under
compression, as shown in Figure 4A. In addition, the maximum
compressive normal stress is achieved when θ � 1.5π in this case,
which may cause extrusion damage at this point and must be
avoided in design. For given fiber–matrix system, as the fiber
hollowness ratio α increases, the maximum normal stress at the
interface is reduced. The maximum normal stress in the vicinity of
a hollow fiber is then compared to that of a solid fiber and the
results are illustrated in Figure 4B. The relative concentration
factor reaches 0.6 for a soft fiber of radius R1 � 3mm, which means
that the normal stress concentration around the hollow fiber is
40% lower than that around a solid fiber under the same service
condition. In contrast to the soft fiber, the interfacial normal stress
becomes tensile around a hollow fiber with harder elastic property,
as shown in Figure 5A, which implies that the interface failure
mode is more likely to be interface de-bonding in this case.
Moreover, as shown in Figure 5B, we found that the
concentration of interfacial normal stress can still be suppressed

by increasing the fiber hollowness ratio in thermoelectric
composites reinforced by hard fibers.

5 Concluding remarks

In this paper, the problem of a hollow fiber embedded in an
infinite thermoelectric matrix under the remote uniform electric
current and energy flux is investigated. The closed-form solutions of
the electric field, temperature field, and associated thermal stress
field in the entire composite are derived via the use of a complex
variable technique. The following conclusions are summarized for
designing and optimizing thermoelectric composites reinforced by
hollow fibers/particles:

1. Fibers with lower thermal conductivity are helpful to improve the
energy conversion efficiency of thermoelectric composites, but it
may aggravate the interfacial thermal stress concentration.

2. A higher thermoelectric conversion efficiency and a lower
amount of the normal stress concentration than that around a
solid fiber could be achieved simultaneously by appropriate
selection of the hollowness ratio of the fiber.
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