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Objective: To develop an accurate and automatic segmentation model based on

convolution neural network to segment the prostate and its lesion regions.

Methods: Of all 180 subjects, 122 healthy individuals and 58 patients with

prostate cancer were included. For each subject, all slices of the prostate were

comprised in the DWIs. A novel DCNN is proposed to automatically segment the

prostate and its lesion regions. This model is inspired by the U-Net model with

the encoding-decoding path as the backbone, importing dense block, attention

mechanism techniques, and group norm-Atrous Spatial Pyramidal Pooling. Data

augmentation was used to avoid overfitting in training. In the experimental phase,

the data set was randomly divided into a training (70%), testing set (30%). four-

fold cross-validation methods were used to obtain results for each metric.

Results: The proposed model achieved in terms of Iou, Dice score, accuracy,

sensitivity, 95% Hausdorff Distance, 86.82%,93.90%, 94.11%, 93.8%,7.84 for the

prostate, 79.2%, 89.51%, 88.43%,89.31%,8.39 for lesion region in segmentation.

Compared to the state-of-the-art models, FCN, U-Net, U-Net++, and ResU-

Net, the segmentation model achieved more promising results.

Conclusion: The proposedmodel yielded excellent performance in accurate and

automatic segmentation of the prostate and lesion regions, revealing that the

novel deep convolutional neural network could be used in clinical disease

treatment and diagnosis.
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Introduction

Prostate cancer (PCa) is a significantly prevalent cancer among

men, accounting for a half about of cancer diagnoses and the fifth

highest cause of mortality (1). The age at which prostate cancer

typically appears is relatively late, with most cases occurring after

the age of 55, and the incidence gradually increases thereafter,

peaking between the ages of 70 and 80. However, in cases of familial

hereditary prostate cancer, the age of onset tends to be slightly

earlier, with 43% of affected individuals developing the disease

before the age of 55 (2). Prostate cancer can be diagnosed, treated,

and monitored using several imaging modalities, including

transrectal ultrasound (TRUS), magnetic resonance imaging

(MRI), and computed tomography (CT). These imaging

techniques are commonly used in clinical practice to aid in the

diagnosis and management of prostate cancer.

In recent years, MRI technology has advanced significantly,

providing high-level spatial resolution and soft tissue conspicuity,

which makes MRI a suitable imaging technique for prostate

segmentaion, staging and volum calculation of prostate cancer.

The high-level spatial resolution and soft tissue conspicuity of

MRI make it appropriate for prostate segmentation, staging and

volume calculation of prostate cancer (3). In the same way, dynamic

contrast-enhanced MRI (DCE-MRI) can be used to recognize

malignant structures according to the spread rate of contrast

agents (4–6), and magnetic resonance spectroscopy can

discriminate malignant tissues in terms of the relative intensities

of different metabolites (e.g., citric acid, choline, and creatine).

Traditional segmentation approaches of prostate or lesion area

include contour and shape-based approaches and region-based

techniques, and some hybrid methods. The prostate edge or

boundary is applied to prostate segmentation. For example,

Zwiggelaar et al. (7) employed a system of first and second-order

Lindeberg directional derivatives (8) coordinates in polar

coordinates to discern edges. To obtain the prostate boundary,

the inverse shift of the longest curve was chosen after non-extreme

on the disconnected curve in the vertical dimension. Flores-Tapia

et al. (9) traced the boundary using a priori form information of the

prostate by shifting a little filter mask over a feature space that was

constructed from the Haar wavelet in the multiresolution structure.

Klein et al. (10) adopted a multi-atlas method to segment the

prostate. The training data was aligned to with the test data by affine

alignment and subsequent non-rigid alignment with three b-spline

bars in the framework. Gao et al. (11) developed the training set

shape as a point cloud. The shape prior and local image statistics

were integrated into the energy function to minimize the energy

function for prostate segmentation in a level-set format. Manual

segmentation remains the most widely utilized method for

achieving accurate segmentation of the prostate and lesion region.

it is not only a very time-consuming task and is subject to tissue

variations. Additionally, it also heavily depends on the level of

manual expertise and experience, which can lead to low

reproducibility and higher observer variation.

In order to overcome those issues, there is an urgent need for

reliable automatic segmentation of the prostate and lesion region in

daily clinical practice. In 2012, Hilton’s team participated in the
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ImageNet image recognition competition for the first time. AlexNet

(12) was awarded the championship and crushed the second

classification performance of support vector machine. As a result,

the development of deep learning technology was advancing by

leaps and bounds, and it was applied in many directions. CNN

continuously extracts features from all layers, from local to overall

features. CNNs are obtaining a concern in the medical image field

due to the state-of-the-art scores on plentiful image identification

and segmentation tasks. One of the outstanding representative

works is that Ronneberger et al. (13) proposed the U-Net model

and made full use of the limited and valuable training set to boost

segmentation performance. The U-shaped structure makes the

localization accurate for medical images instead of simple binary

classification. The overall process of U-Net includes encoding and

decoding, with only a convolutional layer and no fully connected

layer. Currently, U-Net is arguably an even hotter segmentation

network. Lai et al. (14) proposed a network for automatic

segmentation for prostate zone and cancer RoI by Segnet. They

considered different sequences into three channels of an image and

used PROSTATEx dataset to train the network. At last, the T2W +

DWI + ADC scheme obtained the best grade with a Dice similarity

coefficient of 90.45%. Wang et al. (15) presented a 3D CNN model

and used the attention mechanism to fully mining more useful

features encoded in the network for prostate segmentation. To

enhance local prostate cancer control, Chen et al. (16) proposed

three-branch U-Net to distinguish different targets for

segmentation in MRI. Deep monitoring policies were combined

into the network to accelerate convergence and boost network

capabilities. To reduce the loss of structural and spatial

information, Orlando et al. (17) designed a 3D segmentation

model based on 2D U-Net for the prostate. The novel model

can offer a quick and effective segmentation compared to

other methods.

It is very challenging to get an automatic segmentation model

with high performance for the prostate and its lesion region. The

ambiguity of each tissue boundary inside the image makes it

difficult to distinguish it from the heterogeneous tissue within the

surrounding prostate, further resulting in under-segmentation or

over-segmentation. Additionally, the varying sizes and shapes of

prostate glands among individuals pose challenges in modeling

pervasive learning. The above reasons make regional resection of

prostate cancer difficult and challenging. To address these

challenges, we propose a new network for the automatic

segmentation of prostate and prostate cancer regions. Our

network is inspired by U-Net and utilizes a simple but effective

attention module, which could be broadly used to improve the

capability of CNN. In short, the attention network is in charge of

focusing attention on certain important features of an image which

improves the segmentation quality. Dense block also is employed to

mitigate gradient disappearance and enhance the propagation of

features in the model. Additionally, the dense block is employed to

mitigate gradient disappearance and enhance the propagation of

features, resulting in more abstracted interested features. In the data

preparation phase, data augmentation is utilized to solve the

problem of overfitting the model due to limited amount of date.

The main contributions of this work are as follows.
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Firstly, to fulfill the pixel-wise segmentation, a novel CNN

model is proposed in this study. The model uses lengthy skip

connections between the relative stages of the encoder and decoder

and facilitates end-to-end training. To expand the perceptual field

of the convolution kernel without loss of resolution (no down-

sampling), group norm- Atrous Spatial Pyramidal Pooling is

introduced in our model.

Secondly, to stabilize parameter updating and keep a more

effective image feature, the dense block is incorporated to utilize

short skip connections between different convolutional layers.

Thirdly, the introduction of CBAM is used to make the network

more seneitive to the characteristics of both channel and space

dimensions. In this study, CBAM allows the model to focus more

features on the prostate and its lesion areas from space and

channels. Thus, the model helps the flow of information within

the network by learning which information should be emphasized

and suppressed.

Finally, we evaluate the proposed model on a real dataset and

show its effectiveness by outperforming state-of-the-art

segmentation models on multiple evaluation indices.
Materials and methods

Datasets

The data were conducted with MRI from 180 patients (122

healthy individuals and 58 patients with prostate cancer from

pathology report). Data were acquired using the GE3.0T 750 MR

between January 2018 and May 2021. Informed consent was

obtained from all patients. The input sequence was the DWI

format. DWI: TE82ms, TR 6000ms, Thickness 3.5 mm, Scan

Matrix 128 ×128, b value 0, 500, 1000, 1500mm2/s. To ensure that

the ground truth segmentation was as correct as possible, six

experienced prostate clinicians participated in analyzing and

annotating the prostate MR images. Three clinicians spent 3

months demarcating all masks with the monitoring interface

(Labelme). To compensate for inaccurate label borders that

may be caused by subjective physician judgment. The other three

experts reviewed and revised the annotating masks. The overlapping

part of the two outlined areas was finally considered as the

labeled target.
Data pre-processing

The primary pre-processing stages used in this approach are

data enhancement and image normalization. Data augmentation is

used to address overfitting issues in the raw data. It involves

following operations: image rotation by a variable number of

degrees (-10, 0, 45,60); shifting the image up, down, left, and

right; and resizing the image 0.9 and 1.1 times. Finally, the

number of prostate and lesion region samples is 1936 and 514.

Deep learning models are required to normalize their input data to

ensure an adequate convergence point. Normalization can be

achieved using different strategies, such as min-max norm and
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the linear function which converts the input data to the range [0, 1].

This operation achieves equal scaling of the original images.

Another approach is 0-mean normalization, which normalizes the

raw data set to have a mean of 0 and a variance of 1. In this study,

we use a mini–maxi norm to apply the linear transformation to the

raw data range. The formula is Xnorm=(X- Xmin)/(Xmax- Xmin),

where Xnorm is the normalized data, X is the raw data, and Xmax

and Xmin are the maximum and minimum values of the raw data

set, respectively. This unique technique is suitable for the image at a

predefined mask. The data normalization procedure is performed

on the test data to obtain homogeneity, as necessary for the model

to provide robust results.
The proposed model

The model is encouraged by the classical U-Net network (13)

and considered the decoding-encoding idea. Meantime, the model

introduces dense blocks, convolution block attention module

(CBAM) and group norm-Atrous Spatial Pyramidal Pooling

(GN-ASPP) (18) to capture more feature representation in

segmentation. To effectively utilize shallow information, the

proposed model fuses features from the contraction path into

the expansion path at both symmetrical and asymmetrical levels.

Figure 1 presents the details of the proposed model. DWI image is

considered for model input. The convolution operations inside the

model are all performed using 3×3 marked in red. The model

consists of a contraction path (left side) and an expansion path

(right side). The contraction path is designed to produce

contextual information and the extension path is for precise

positioning, and the two paths are mutually synchronous. The

whole architecture utilizes short skip connections between various

convolution layers at each step, which assists in steady parameter

optimization. The union of long and short skips boosts the general

efficiency of the network (19). The contraction path is responsible

for downsampling and the number of channels increases from 64

to 1024. In the expansive path, each step involves an up-

convolution of the prostate feature map, followed by a 2×2

convolution operation that reduces the number of feature

channels by half. Another component is a concatenation with

the tailoring prostate feature from the contracting path of the same

layer. Apart from that, two 3×3 convolutions, each postulated with

a ReLU and a CBAM, are included in the expansive path. The last

layer employs three convolutions and a spatial pyramidal

pooling with rates (6, 12, 18) to determine the number of

classes. As boundary pixels are lost on each convolution,

trimming is necessary.

A dense block (20) is a dense concatenation of numerous

composite functions which makes up batch normalization, ReLU

layer, convolutional layer, and dropout layer. It serves to mitigate

the gradient disappearance and enhance the propagation of the

prostate and its lesion features and reuse them in the subsequent

network layer. The CBAM module (21) uses the attention

mechanism to optionally optimize the multi-dimension image

features and extract the interest features at each layer, inhibiting

more non-relative noise. The network can generate the channel and
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spatial attention map by separately mining the inter-channel and

inter-spatial relationship of features, which explains ‘what’ and

‘where’ issues. CBAM structure is made up of channel attention

and spatial attention. The input DWI map is F (2-channel). It is also

an intermediate feature map. CBAM defines a 1D channel attention

map MC and 1D spatial attention map MS (18).

MC(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s(W1(W0(F
C
avg)) +W1(W0(F

C
max)))

Where s is the sigmoid function, W0∈R(c/r×c), and W1∈R(c/r×c).

r denotes the reduction ratio. The hidden activation size is set to R
C/r×1×1. Note that multi-layer (MLP) weights, W0 and W1, are

shared for both inputs and the ReLU is followed by W0. F
C
avg and

FC
max denote two spatial context descriptors.

Where f(7*7) represents a convolution operation with a filter size

of 7*7.

The attention principle can be explained as follows:
Fron
F’=MC (F)⊗F

F’’=MS (F’) ⊗F’
⊗ representatives element-wise multiplication. F^’’ denotes the

final output.

The multi-scale feature maps obtained are then not directly

used to predict the condition of object regions. To achieve more

precise performance of the prostate and its lesion regions, we

employ the spatial pyramidal pooling module to rescale attention

features at various scales. As shown in Figure 2, features from up-

sampling and dense block connections are fused to form a feature

map of interest. The feature map is then processed by applying four

parallel convolutions with different rates to collect various

information. Our ASPP includes a 1×1 convolution and a triple

3×3 dilated convolution with rates of (6, 12, 18). Each convolution is

followed by a normalization. We selected group norm (GN) over

batch normalization because GN’s accuracy is fairly stable over a

wide range of batch sizes.
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Evaluation of the proposed model

We evaluated the developed network in comparison with other

state-of-the-art segmentation networks, including FCN (22), U-Net

(13), U-Net++ (23), ResU-Net (24). To ensure a fair comparison,

these models were retrained to produce the best separation results.

During the training period, the training cross-entropy loss is

exploited. The optimized method employed is Adam as it

converges faster. The model was trained 150 times for almost all

architectures. Checkpoint and stopping methods were utilized to

reduce computation time.

To quantitatively assess the segmentation, we utilized several

indicators, including Dice Similarity Coefficient (Dice), IoU,

sensitivity, accuracy, and Hausdorff Distance (HD). Dice was

utilized to assess the likelihood of similarity between the

segmented volume and the ground truth. Dice are utilized to

assess the likelihood of similarity between the segmented volume

and the ground truth. Accuracy and Iou were appraised from the

perspective of voxel classification for segmentation. Hausdorff
FIGURE 1

Structure of the proposed method. Yellow for CBMA module, dark blue for dense unit, with ASSP added to the end of the model.
FIGURE 2

Schematic representation of the spatial pyramid set (ASPP) for
dilated convolution and group norm (GN).
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distance is a measure that describes the degree of similarity between

two sets of points. The dataset was divided into training (70%), and

testing set (30%) when each experiment was conducted in a

randomized manner. Four-fold cross-validation method was used

to obtain experimental results. All training data was randomly

divided into 4 sets, 3 of which were used for training and the

remaining one for validation. When this round was completed, 3

parts were randomly selected again to train the data. Finally, the

optimal parameters was selected from loss evaluation.
Results

Comparison of the state-of-the-art
algorithms

Loss vs Epoch
The training process was recorded, as shown in Figures 3 and 4.

These two figures represent the effect of prostate area and lesion area

vs epoch, respectively. Each epoch is one round of data re-iterations.

The two figures show similar loss trends in the prostate and its lesion

segmentation. The loss decreases from epoch 0 to 60. The model

starts convergence from epoch 60. Although the ResUnet model

exhibits a higher loss value compared to other models, all models

exhibit similar convergence trends, and the model slowly converges

as the number of training sessions increases.

Iou vs epoch
Iou is the intersection of the predicted and true results. It is

often used as a metric to assess how well a model is learning. The

curve chart of Iou vs epoch for the proposed algorithm is given in

Figures 5 and 6, respectively. From 0 to 60 epochs, Iou of our

method is unstable and fluctuates. But, the proposed approach is

capable of producing better Iou than the state-of-the-art

segmentation methods when the model converges to fit. In

particular, it can be seen that the Iou of our algorithm is

significantly greater than the other algorithms in Figure 5, which

demonstrates that our model has better segmentation performance.
FIGURE 3

Loss vs epoch of prostate area on training data.
Frontiers in Oncology 05
FIGURE 4

Loss vs epoch of prostate lesion area on training data.
FIGURE 5

Iou vs epoch of the prostate area on testing data.
FIGURE 6

Iou vs epoch of prostate lesion area on testing data.
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The segmentation performance was computed for the prostate

and its lesion area with four cross-validations. In Table 1, the

proposed network achieved an average dice sorce, Iou, accuracy,

sensitivity for the prostate of 93.90%, 86.82%, 94.11%, and 93.80%.

Our algorithm outperformed U-Net, U-Net++, FCN, and ResU-Net

in Dice metrics by 1.7, 1.4, 2.6, and 7.19 percentage points and in

terms of sensitivity metrics by 1.55, 2.68, 1.9, 10.5 percentage points

for the prostate segmentation. In Table 2, for the segmentation

performance of the prostate lesion, the proposed network yielded

better results in terms of Dice score of 89.51%, Iou of 79.20%,

accuracy of 88.43%, sensitivity of 89.31%, and 95%HD of 8.39

compared with the other 4 models. These findings suggest that this

algorithm has superior performance compared to other models.

We did ablation experiments to verify the effect of each module

on our model in Table 3. The dense block, CBMA, GN-ASPP were

gradually increased on the backbone. In our dataset, the ablation

experiment was implemented with identical model parameters, e.g.

Adam, learning rate, model initialization, and loss function. This

result shows that the guidance technology is reinforcing to each

other. Our approach achieved the best performance and could learn

more robust representation from dense block, CBMA, and

GN-ASPP.
Frontiers in Oncology 06
Visualization of segmentation effect

Figure 7 presents schematic images of the segmentation results

obtained from our model. From the test results, we randomly

selected 4 samples for the presentation of the results. Our model

accurately distinguished between the prostate areas and lesion areas,

with the segmentation of the prostate region being more accurate

compared to the lesion area. These findings are consistent with the

results presented in Table 1 and 2. To show the effect of CBAM in

our model, the visualization attention results of the final layer of the

model for the prostate lesion region are given in Figure 8. The rose

mask denotes the area of interest which is the prostate lesion region.
Discussion

In this study, we propose a novel DL-based architecture that

utilizes the dense block and CBAM, as well as the GN-ASPP

module, to fully leverage the complementary information encoded

in different layers of the model. Our proposed method is designed to

improve the segmentation performance of the prostate and its

lesion regions and aid clinical diagnosis. The segmentation output
TABLE 1 Segmentation performance of prostate area for five models.

Model Dice Iou Accuracy Sensitivity 95%HD(mm)

U-Net 92.20% 85.81% 93.0% 92.35% 8.94

U-Net++ 92.50% 84.90% 93.6% 91.12% 8.89

FCN 91.30% 84.62% 92.4% 91.90% 8.71

ResU-Net 86.71% 76.01% 89.51% 83.30% 8.51

Proposed 93.90% 86.82% 94.11% 93.80% 7.84
TABLE 2 Segmentation performance of prostate lesion area for five models.

Model Dice Iou Accuracy Sensitivity 95%HD(mm)

U-Net 87.50% 77.91% 87.40% 88.53% 9.01

U-Net++ 88.20% 77.45% 86.21% 87.56% 8.82

FCN 85.31% 75.06% 86.11% 85.03% 8.73

ResU-Net 81.21% 69.14% 86.30% 81.19% 8.66

Proposed 89.51% 79.20% 88.43% 89.31% 8.39
TABLE 3 Ablation experiments for the segmentation of the prostate and its lesion regions (√notes to introduce this technology in the model).

Backbone (U-Net with feature fusion)

Dense Block √ √ √ √

CBMA √ √ √ √

GN-ASPP √ √ √

Dice of Prostate/Prostate lesion regions 93.90%/89.55% 93.00%/88.34% 91.24%/88.67% 89.71%/87.94% 88.86%/
87.81%

88.67%/
86.31%
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is obtained through an end-to-end approach. The model

performance was evaluated on a real dataset. The experimental

setup consisted of several aspects: observing the loss value and Iou

change of each algorithm during training, quantitative comparison

of the performance of each model, and visualization of model

results. Finally, it was demonstrated that the proposed

segmentation method outperformed the results of the state-of-

the-art methods for segmentation of the prostate and lesion

region. Specifically, the proposed method exhibited excellent

results, especially for the lesion region, which is of great

significance for clinical diagnosis and treatment.
Frontiers in Oncology 07
Several studies demonstrates artifical intelligence is valid in urology

works (25–27), especially using DCNN to segment the prostate or

determine prostate cancer. Zhu et al. (28) designed a DCNN model to

segment the prostate zone and outer contour. The model was derived

from a cascade of two models. One model was responsible for

segmenting the prostate region and one for segmenting the prostate

zone. However, an end-to-end model, like the one proposed in our

study, is more efficient in reducing training time and facilitating clinical

diagnosis. Duran et al. (29) also developed a novel CNNmodel for PCa

segmentation with an attention mechanism. This strategy is similar to

our approach. Moreover, we used CBAM in the model which focused
FIGURE 7

Segmentation performance of the proposed method in 4 different patients (row), and columns from left to right show input image, ground truth,
and segmentation results of the proposed model. In the experiments, non-target regions were masked black to provide greater clarity. The lesion
region is marked in yellow, while the prostate region in rose.
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on both the spatial dimension and the channel dimension. It is essential

to design a model that extracts as many effective features as possible to

automatically and accurately segment the prostate and its lesion region.

Firstly, we adopt a symmetrical architecture inspired by the

classical U-Net, with a contraction path and an expansion path,

copy and concatenate connections in the same layer, as well as a

fusion of features in different layers. There is also a fusion of features

in different layers. The main idea of the architecture is to

continuously perform deeper feature extraction of prostate image

features using the systolic network and to supplement the images

lost by the systolic network using the expansion network. At the

same time, in order to make more efficient use of the underlying

feature information, we fuse the lower-down sampling features into

the up-sampling features of the upper layer.

Secondly, the dense block is added to the left side of the model

to allow for effective retention and propagation of the prostate and

its lesion features. Then, the introduction of the attention

mechanism allows the model to focus on areas of the prostate

and its lesion in both spatial and channel dimensions, as shown in

Figure 8. The huge number of parameters of the DCNN model

affects the prediction results. Dense block and CBAM are integrated

into the model to enhance the performance of the segmentation

model without increasing the burden on the backbone (20, 21). To
Frontiers in Oncology 08
expand the perceptual field of the convolution kernel without loss of

resolution (no down-sampling), GN-ASPP is introduced in

our model.

Thirdly, some deep models for prostate cancer discrimination

take the combination of image sequences as input (14, 30, 31) or the

models take multi-branch outputs (16, 28). The more complex the

model, the more training examples it requires, leading to a higher

risk of overfitting. In contrast, our model takes a single image

input and produces one branch output while still achieving

excellent results.

Moreover, our method has the same convergence effect as the

classical U-Net because of the backbone of the model, as shown in

Figures 3 and 4. Meantime, our model has also similar convergence

rates and effects in both the prostate and lesion regions, which

demonstrates that the model has generalization properties.

Some restrictions of our study are worth mentioning (1), In

deep learning, the more the amount of data, the better the final

result will be. But in this study, data for model training is scarce

(2), The operation efficiency of this network could be improved.

For each neighborhood, the network has to run once, and for the

overlapping part of the neighborhood, the network performs

repeated operations (3), Initialization of parameters has a great

impact on model training. Compared to the random initialization
FIGURE 8

Visualization of the final layer of our model for prostate lesion region.
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of the model parameters we studied, an effective initialization is

more beneficial for the convergence of the model. To ensure the

success of clinical application, it is essential to devep a robust and

generalizable model. In the future, we will continue to collect

more images of the prostate and increase the size of training set.

Additionally, the combined use of data from different formats of

MRI can compensate for the deficiencies of single data and

improve the segmentation performance of the prostate and

lesion regions.

In conclusion, we have proposed a DCNN model with dense

block, convolution block attention module, and group norm-Atrous

Spatial Pyramid Pooling for the segmentation of the prostate and its

lesion regions. Experiments showed that this automatic segmentation

model had excellent scores, which supports its potential to assist

prostate disease diagnosis and treatment in clinical medicine.
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