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Proteome changes in a human
retinal pigment epithelial cell line
during oxidative stress and
following antioxidant treatment

R. Scott Duncan1, Andrew Keightley1, Adam A. Lopez1,
Conner W. Hall1 and Peter Koulen1,2*

1Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School
of Medicine, Kansas City, MO, United States, 2Department of Biomedical Sciences, University of
Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
Age relatedmacular degeneration (AMD) is themost common cause of blindness

in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE)

dysfunction and cell death thereby leading to AMD. Using improved RPE cell

model systems, such as human telomerase transcriptase-overexpressing

(hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during

oxidative stress can be better understood. Using this model system, we

identified changes in the expression of proteins involved in the cellular

antioxidant responses after induction of oxidative stress. Some antioxidants

such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that

can reduce oxidative damage in cells. Alpha-tocopherol (a-Toc or aT) and

gamma-tocopherol (g-Toc or gT) are well-studied tocopherols, but signaling

mechanisms underlying their respective cytoprotective properties may be

distinct. Here, we determined what effect oxidative stress, induced by

extracellularly applied tBHP in the presence and absence of aT and/or gT, has
on the expression of antioxidant proteins and related signaling networks. Using

proteomics approaches, we identified differential protein expression in cellular

antioxidant response pathways during oxidative stress and after tocopherol

treatment. We identified three groups of proteins based on biochemical

function: glutathione metabolism/transfer, peroxidases and redox-sensitive

proteins involved in cytoprotective signaling. We found that oxidative stress

and tocopherol treatment resulted in unique changes in these three groups of

antioxidant proteins indicate that aT and gT independently and by themselves

can induce the expression of antioxidant proteins in RPE cells. These results

provide novel rationales for potential therapeutic strategies to protect RPE cells

from oxidative stress.

KEYWORDS

gene ontology, retinal pigment epithelium (RPE) cells, oxidative stress, tocopherol, tert-
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1 Introduction

Age related macular degeneration (AMD) is the most common

cause of blindness in people over the age of 65 (1, 2). Oxidative

stress is one of the major pathophysiological contributors to AMD

and it causes retinal pigment epithelium (RPE) dysfunction and cell

death prompting a need for antioxidant therapy and the clinical use

of vitamin E for AMD treatment and prevention (3–6).

Physiological adaptation of RPE cells to oxidative stress initiated

by reactive oxygen species, prompted us to systematically determine

what effect oxidative stress has on global protein expression in

human telomerase transcriptase-overexpressing (hTERT) RPE cells

(hTERT-RPE).

Antioxidants have been tested for their ability to prevent

oxidative stress in multiple cell types, including RPE (7). Some

components of vitamin E, such as tocopherols, are powerful

antioxidants that can reduce oxidative damage in cells (8, 9).

Alpha-tocopherol (a-Toc or aT) is the prototypical tocopherol

found in vitamin E and is the most abundant diet-supplied

tocopherol in serum and tissues (9). Gamma-tocopherol (g-Toc
or gT) is highly abundant in vitamin E containing foods but is not

present at high levels in the blood and tissues due to first pass

metabolism. gT is a more effective antioxidant than aT and

therefore may be a superior antioxidant for therapeutic purposes

(10). Tocopherols have been shown to activate signaling pathways

that promote cytoprotection (6). This prompted us to identify

proteins involved in the cellular antioxidant response elicited by

exposure to conditions of oxidative stress, exposure to tocopherols

and exposure to both.

We carried out a proteomic screen of proteins involved in the

cellular antioxidant response in hTERT-RPE cells exposed to

sublethal tBHP concentrations versus those exposed to vehicle

(control). We also determined whether exposure to aT or gT, in
the presence or absence of tBHP, altered the expression of antioxidant

proteins. We identified 33 differentially expressed proteins involved

in cellular antioxidant response between control and tBHP exposure

conditions. We subdivided the proteins into three groups based on

biochemical function: glutathione metabolism/transfer, peroxidases

and redox-sensitive proteins involved in cytoprotective signaling. In

addition, we determined the effect of both aT and gT alone, and in

combination with tBHP, on expression of proteins involved in the

cellular antioxidant response.

We found that tBHP, aT, gT and combinations of aT or gT
with tBHP led to unique changes in antioxidant proteins in hTERT-

RPE cells that provide drug targets for the development of novel

therapeutic strategies against oxidative stress in RPE cells.
2 Materials and methods

2.1 Cell culture and treatments

Human telomerase reverse transcriptase-overexpressing RPE

(hTERT-RPE) cells (ATCC, # CRL-4000) were cultured in DMEM:

F12 (1:1) + 10% FBS + 10mg/ml gentamicin to full confluence for

experiments. A 1 x 105 cells/ml cell concentration was used as a starting
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plating density followed by growth for 5 – 7 days until full confluence

was reached. Cellular morphology was observed before treatments and

cells exhibited a polygonal (pentagonal and hexagonal) shape with a

monolayer. Tocopherols, a-tocopherol and g-tocopherol (Millipore-

Sigma, Burlington, MA), were solubilized in DMSO at 100mM and

diluted in media to 100mM final concentration. Cells were exposed to

tocopherols for 24 hours prior to treatment with the 100mM tert-butyl

hydroperoxide (tBHP), the oxidant, or water as a vehicle control for 24

hours. The six paired treatment groups (24h treatment 1 - 24h

treatment 2) were vehicle-control, vehicle-tBHP, aT-control, gT-
control, aT-tBHP and gT-tBHP, the same as in a previous study

(10) (see Supplemental Figure 1). A tocopherol concentration of

100mM was selected based on previous reports (~25 – 32 mM
vitamin E in serum) and calculations based on the daily

recommendation dose of vitamin E at 400IU. Experiments were

carried out in duplicate for biological replicates.
2.2 Sample preparation for
Mass Spectrometry

The hTERT RPE cells from two experiments (biological

replicates) were collected, pelleted, frozen and lysed in RIPA

buffer containing DNase. Cell lysates were cleared by centrifuging

at 10,000 x g for 5 minutes. Cell lysates were alkylated and processed

with denaturing rinses and buffer exchange for trypsin digestion

using Microcon® Centrifugal filter units (#MRCF0R030) essentially

as described previously (11). Approximately 100ug protein from

each growth condition was reduced (10mM TCEP, ~100uL

volume), then diluted with 8M urea, 100mM Tris-HCl pH~8.5 to

~700uL, then transferred in steps into the Microcon® filter

cartridges. After two 200uL washes (8M urea), the samples were

alkylated (100mM chloracetamide), then washed two additional

times (8M urea). After a buffer exchange to 100mM Ammonium

Bicarbonate, 100uL of the same buffer containing 1.5ug Trypsin

plus ArgC (Promega #V5073) and incubated overnight at 37C. The

peptides were harvested by centrifugation, labeled with Tandem

Mass Tags (TMT, Thermo Fisher Scientific), and multidimensional

LC (mudpit) was conducted on both TMT mixtures (two

experiments). Fractionation was conducted under Basic (pH 10)

Reversed Phase conditions (BRP) on a 0.4mm (ID) column 10cm

length, with BEH130-C18 (Waters Corporation) 3-micron particle

size matrix. Fractions were collected during a 140-minute gradient,

Buffer A: 10mM Ammonium Formate, pH 10.0, Buffer B: 95%

Acetonitrile, 10% Buffer A, 10uL per minute flow rate. Gradient was

started with 1% B initial conditions, to 20% B at 90 minutes, 34%B

at 120 minutes. Resulting fractions were concatenated (12) to

generate 12, or 18 fractions, which were dried in preparation

for LCMS.
2.3 LCMS data acquisition and database
searches/TMT quantitation

Mudpit fractions were analyzed on a Fusion Lumos Orbitrap

MS with SPS MS3 quantitation of TMT reporter ions, and on a
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QExactive MS with MS2 quantitation of TMT reporter ions. LCMS

data was collected for each fraction with a 90-minute standard

acidic reversed phase gradient for SPS-MS3, or 110 minutes for MS2

data acquisition. Parameters for the SPS MS3 approach were MS1

FTMS @120k resolution, MS2 ITMS CID 35.0, MS3 (HCD 55.0)

FTMS at @50k using multinotch. Parameters for MS2 data acquired

on the QExactive included 35k resolution for MS scans, and 17.5k

resolution for MS2 scans (HCD 30.0) with 120mz fixed first mass.

Data files from all TMTmudpit fraction sets from both experiments

were searched with Proteome Discoverer 2.5. Technical replicates:

Experiment 1 was analyzed twice by 12 fraction mudpit, collecting

SPS MS3 data for TMT quantitation. Experiment 2 was analyzed by

mudpit 3 times, with one 12 fraction mudpit collecting SPS MS3

data, and two additional times by MS2 TMT quantitation

(including one 12 fraction dataset, and one 18 fraction dataset).

Database searches were conducted with Proteome Discoverer 2.5

with mostly default settings after selecting instrument/quantitation

mode, allowing N-terminal modifications (Acetyl, Met-loss, or

both), deamidation of Gln/Asn, with static modifications N-

terminus and Lysine residues modified with TMT 6plex, and

carbamidomethylation of Cysteine residues. Human proteome

database Uniprot UP000005640, with 77895 protein sequences,

(6/28/2021) and a contaminants database were included as target

databases. The reversed sequence databases were searched

(percolator node) for FDR calculations within Proteome

Discoverer. The mass spectrometry proteomics data have been

deposited to the ProteomeXchange Consortium via the PRIDE

(13) partner repository with the dataset identifier PXD039513 and

10.6019/PXD039513.
2.4 Data collection, reconciling
and organization

Raw data from Proteome Discoverer was exported as a csv file

for use in other programs or csv file converted to a Microsoft Excel

file for sorting and manual analyses. Contaminant proteins were

removed from the data and missing ID data was added. Entries with

multiple IDs or proteins with different names but the same IDs

(Entrez) were also included and reconciled later in the analysis. The

data were filed using the R mapping code, which maps the gene

names, Entrez IDs and uniport IDs. The average protein abundance

was calculated for each paired treatment group (vehicle-control,

vehicle-tBHP, aT-control, gT-control, ag) was used as the value for

imputation of missing abundance values. The standard deviation

was calculated for each entry and used to find proteins that were

least changed between the treatment groups.

Using literature (PubMed) and database (GeneCards®, Entrez,

Uniprot) searches, we determine whether proteins were known to

be expressed in RPE cells and whether they could be suitable

housekeeping proteins for normalization. The mean and

geometric mean of selected housekeeping genes (b-actin (ACTB),
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glyceraldehyde phosphate dehydrogenase (GAPDH), Proteasome

26S Subunit Ubiquitin Receptor, Non-ATPase 4 (PSMD4), and

Adaptor Related Protein Complex 2 Subunit Beta 1 (AP2B1)) was

calculated and was compared to the average of all abundances to

identify the optimal normalizing factor. The mean normalized

abundance, variance and standard deviation was calculated for

each entry in each treatment condition. We perform two tailed

students t-test for samples with possible unequal variance. We

calculate the p-value and t-test value. We do this for the

treatment group ratio comparisons. A significance cutoff of 0.05,

which is 0.025 per tail, was used. We calculated the percent

difference of fold change and log2 fold change for use in the

EnrichR and pathway analysis programs. This is done for each

file before they are integrated by joining them in R.

The concise list was processed in R and EnrichR. The EnrichR

program uses the fold change values and the official gene names to

perform a Genome Wide Enrichment analysis on statistically

significant values. Use the key pathway, “KEGG_2021_Human”,

“GO_Molecular_Function_2021”, “GO_Biological_Process_2021”,

“GO_Cellular_ Component_2021” databases.

Pathway analysis and mapping to the KEGG pathway maps was

carried out utilizing the R script we have written. The script takes

the Entrez IDs and percent fold change difference, log2 fold changes,

difference, or fold changes and filters the entries for significance and

maps the entries to a designated KEGG pathway; this is often

guided by the information from the enrichment test. The result is a

colorized pathway map showing the genes identified in our data set

and whether they are up or down regulated in our data. Figures 1–5

were created with BioRender.com.
2.5 Gene ontology and functional
category analyses

We used software-based analysis (R, EnrichR and KEGG) for

gene ontology and pathway characterization and we manually

group proteins based on broad function, such as glutathione

function, peroxidase function and response to oxidative stress,

that may not be identical to GO domain annotations. These

manually groups were determined from curated gene/protein

databases (GeneCards, Entrez, Uniprot) and literature.

We first sorted the data based on fold-change in expression and

identified significantly up- and down-regulated proteins in the tBHP-

exposed (oxidative stress) versus control (non-treated) group. From

this list of 1,043 proteins, we manually screened and identified

proteins known to be directly involved in antioxidant function in

cells. To better determine whether a particular GO annotation was

relevant to the proteins of interest, we selected the top 10 - 15 highest

ranked GO categories (ranked by adjusted P value, odds ratio or by

combined score) in each GO domain. We also prioritized GO

categories in the ranked list with the narrowest (highly specific and

descriptive) class (i.e., microsomal glutathione synthesis instead of
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2023.1138519
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duncan et al. 10.3389/fimmu.2023.1138519
glutathione metabolism). These narrow classes always have fewer

proteins than broad classes, but they are associated with much better-

defined function (or process or location).

We identified 33 significant differentially expressed proteins in

response to oxidative stress and we subdivided the proteins into 3

groups based on the general protein functional class: proteins

involved in glutathione metabolism/transfer, peroxidases/

superoxide dismutases, and proteins that respond to oxidative

stress (redox-sensitive proteins) or are involved in downstream

functions such as cytoprotective signaling. We verified the relevance

of each protein to antioxidant function by referencing gene/protein

databases including GeneCards®, Entrez and Uniprot.
2.6 Statistical analysis

Relative protein abundance data for an experimental treatment

group was normalized by dividing by the abundance of a control

condition. Differences in the expression level of individual proteins

between treatment groups were determined using a Student’s T-test

in Microsoft Excel®. For the DCFDA assay on treated hTERT-RPE

cells, differences were determine suing a one-way ANOVA using

Graph Pad Prism®. Results were considered significant if the P-value

was ≤0.05 (*) and highly significant is the P-value was ≤0.01 (**).
3 Results

3.1 Differentially Expressed proteins
involved in the antioxidant response based
on biological process gene ontology

We selected three broad molecular function categories for

glutathione-related proteins:
Fron
1. glutathione binding/transfer

2. peroxidases and superoxide dismutases

3. proteins that respond to oxidative stress
We also uploaded the raw data into EnrichR for gene ontology

(GO) analysis to identify biological process, molecular function and

cellular component domains containing categories related to

glutathione, peroxidase/superoxide dismutases and other proteins

responsive to oxidative stress.
3.2 The effect of oxidative stress on the
expression of proteins involved in
glutathione metabolism and transfer

The treatment paradigm used for this study is summarized in

Supplemental Figure 1. To induce oxidative stress in hTERT RPE

cells, a sublethal concentration of tBHP was used to recapitulate a

cellular antioxidant adaptive response where apoptosis and necrosis is

negligible. The glutathione related GO biological process annotations
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enriched in the tBHP (oxidative stress) condition include, in order of

highest to lowest score, ‘glutathione transport’, ‘glutathione derivative

biosynthetic process’, ‘glutathione biosynthetic process’, ‘glutathione

metabolic process’ and ‘glutathione transport’.

Of the 33 antioxidant proteins differentially expressed by tBHP-

induced oxidative stress, six (6) were involved in glutathione

metabolism or transfer. These include, in order from highest to

lowest fold change in expression, gamma-glutamylcyclotransferase

(GGCT), glutathione S-transferase omega 1 (GSTO1), microsomal

glutathione S-transferase 3 (MGST3), microsomal glutathione S-

transferase 2 (MGST2), glutathione peroxidase 8 (GPX8) and

microsomal glutathione S-transferase 1 (MGST1) (Table 1). Five

glutathione-related proteins were detected in the proteome but were

not significantly altered, although two, glutathione S-transferase mu

3 (GSTM3) and glutathione peroxidase 1 (GPX1), showed a trend

toward a decrease in expression (Table 1).

Three proteins involved in glutathione metabolism were

upregulated in response to oxidative stress: glutathione synthetase

(GSS), glutathione reductase (GSR) and g-glutamylcyclotransferase

(GGCT). Exposure to tBHP led to the upregulation of GSR (+17.7-

fold) and GGCT (26.1-fold), while GSS expression was not affected

(Table 1). GSS is an ATPase that catalyzes the production of

glutathione from g-glutamylcysteine and glycine, while GSR is a

flavoprotein responsible for reducing oxidized glutathione and

therefore maintaining glutathione in a reduced state (14, 15). As

such, the up-or down-regulation of GSS and GSR are critical for

cellular detoxification and antioxidant activity. GGCT catalyzes the

formation of pyroglutamic acid (also known as 5-oxoproline) from

gamma-glutamyl dipeptides thereby playing a role in glutathione

homeostasis (16). The upregulation of GSR and GGCT in response

to oxidative stress suggests that oxidative stress may lead to

improved glutathione homeostasis.

There were four (4) glutathione transferases that were

differentially expressed in response to oxidative stress – 2 were
TABLE 1 Effect of tBHP on the expression of proteins involved in
glutathione metabolism and transfer.

Protein Fold-change P value Sig.

GSR +17.7 0.0003 **

GGCT +26.1 0.0003 **

GSTO1 +19.1 0.0013 *

GSS +6.9 0.1672 n.s.

GSTM1 +3.0 0.8511 n.s.

GSTM2 +10.1 0.3216 n.s.

GSTM3 -14.1 0.0656 n.s.

MGST1 -35.3 0.0004 **

MGST2 -5.2 0.0008 **

MGST3 +15.1 0.0042 *

GPX1 -32.8 0.0653 n.s.

GPX8 -9.1 0.0073 *
* p≤ 0.05; **p ≤ 0.01; n.s., not significant.
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up-regulated and 2 were down-regulated (Table 1; Figure 1). The

remaining GST proteins were unaffected by oxidative stress. GSTO1

was upregulated by oxidative stress by 19.1-fold. GSTO1 is a

homodimer found in the cytoplasm that exhibits thiol transferase

activity and is also involved in the reduction of dehydroascorbate

(vitamin C) (17, 18). The expression of other GST proteins such as

the mu class GSTs (GSTM1 – GSTM3) were not significantly

affected by oxidative stress, although there was a trend toward a

decrease for GSTM3 (p = 0.066) (Table 1).

The last class of GST proteins that are differentially expressed in

hTERT-RPE in response to oxidative stress are the membrane

associated proteins in eicosanoid and glutathione metabolism

(MAPEG) family (19). These include MGST1 – 6, but only

MGST1 – 3 were detected in hTERT-RPE cells in this study.

MGST3 was upregulated by oxidative stress by 15.1-fold while

MGST1 and MGST2 were down regulated by 35.3- and 5.2-fold,

respectively (Table 1; Figure 1). MGST3 is predominantly located in

the endoplasmic reticulum and nuclear envelope. Like some mu

class GST, some MGSTs like MGST2 and MGST3 are involved in

prostaglandin and leukotriene formation (glutathione-

conjugated forms).

The last differentially expressed protein related to glutathione

function is glutathione peroxidase 8 (GPX8), which was down-

regulated by 9.1-fold under conditions of oxidative stress. Glutathione

peroxidase 1 (GPX1) was not affected by oxidative stress, although a

trend toward a reduction in expression existed (p = 0.066) (Table 1).

GPX1 has been detected in RPE cells (20), but to our knowledge, GPX8

expression in RPE has not been reported until now.
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3.3 The effect of oxidative stress
on peroxidases and superoxide
dismutase function

SOD1 and SOD2 are two major antioxidant proteins present in

most if not all cell types (21). Exposure of hTERT-RPE cells to tBHP

led to an increase in SOD1 and SOD2 expression (+34.1- and 33.6-

fold, respectively) (Table 2; Figure 2). SOD1 is a homodimeric

cytoplasmic and nuclear protein involved in neutralizing free

radicals, and mutations in SOD1 are associated with amyotrophic

lateral sclerosis (ALS) type I (22). SOD2 is a homotetrameric

protein expressed in mitochondria and is critical for neutralizing

reactive oxygen species generated from the electron transport chain

(23). Mutations in SOD2 are associated with premature aging and

cardiomyopathies (24, 25). Catalase was upregulated 16.1-fold and

PRDX4 was upregulated 8.4-fold by tBHP.

Exposure of hTERT-RPE to tBHP led to a 26.9-fold and 21.9-fold

upregulation in peroxiredoxin 1 (PRDX1) and peroxiredoxin 2

(PRDX2), respectively (Table 2; Figure 1). Peroxiredoxins thiol

specific peroxidase enzymes that reduce peroxides including

hydrogen peroxide and alkyl hydroperoxides and protect cells from

oxidative stress (26–28). PRDX1 is expressed most highly in nucleus

and extracellular space (little in endosomes/Golgi) while PRDX2 is

expressed predominantly in the cytosol andmay stabilize hemoglobin

during oxidative stress 29, 30). PRDX3 and PRDX6 were unaffected

by tBHP exposure (Table 2; Figure 1). PRDX4 is localized to the

cytoplasm (extracellular > cytoplasm = nucleus) where it may play a

role in NF-kappaB regulation (31, 32).
FIGURE 1

Diagramatic summary of the effect of tBHP exposure on antioxidant protein expression in hTERT-RPE cells. The antioxidant proteins focused on in
this study are either upregulated (green), downreuglated (red) or unaffected (no change in expression) (grey) by oxidative stress. The arrows indicate
the direction of a chemical reaction. Exposure of hTERT RPE cells to oxidant led to an increase in several proteins involved in glutathione
homeostasis and transfer including GSR, GGCT, GSTO1 and MGST3. Conditions of oxidative stress also incerased the expression of PRDX1, PRDX2,
PRADX4, SOD1, SOD2, CAT, TXN and PARK7. Figure created with BioRender.com.
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3.4 The effect of oxidative stress
on other proteins involved in the
cellular antioxidant response

Oxidative stress in hTERT-RPE cells led to changes in the

expression of nine proteins involved in redox-sensitive signaling –

two were involved in protein chaperone function (PARK7 and

HYOU1), two were involved in heme/iron-sulfur transport (FXN

and ABCB7), and the remaining five have various other roles.

PARK7 is upregulated 28.6-fold in hTERT-RPE exposed to

tBHP. Park7 is a multi-functional redox-sensitive chaperone that

has been shown to protect neurons from oxidative stress (33–37).

Park7 can regulate NRF2, PINK1, the androgen receptor and NFkB
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pathways (34, 38). Mutations in PARK7 result in an early-onset

form of Parkinson’s disease (39).

Park7 is a nucleotide and protein deglycase that can repair

glycated proteins preventing the formation of advanced glycation

end products (AGEs) (35, 37, 40). Can localize to the nucleus where

it can deglycate histones (41). It is required for normal

mitochondrial morphology and function and is involved in

mitophagy (34, 39). Oxidative stress upregulated hypoxia

upregulated protein 1 (HYOU1) 8.3-fold (Table 3; Figure 1).

Hypoxia regulated protein 1 (HYOU1) is involved in ER

chaperone and secretion functions. Although HYOU1 doesn’t

appear to be involved in oxidative stress perse, it is a negative

regulator of apoptosis and cellular protection during hypoxia

(42, 43).

Exposure to oxidative stress led to a 36.6-fold increase in

thioredoxin (TXN) and a 12.5-fold decrease in thioredoxin

interacting protein (TXNIP). TXN is involved in nitric oxide-

mediated protein nitrosylation at cysteine residues and can

regulate caspase-3 activation (44–46). It can increase DNA

binding of the redox-sensitive transcription factor AP-1 (47).

TXNIP is a negative regulator of TXN.

Exposure of cells to tBHP led to a 4.7-fold reduction in frataxin

(FXN) (Table 3). FXN is a protein located in mitochondria that is

involved in the synthesis of heme and can transport Fe2+ into

mitochondria and regulate the function of iron binding proteins

involved in respiration (48). It can also generate Fe3+ via oxidation

of Fe2+ (49). Trinucleotide expansions in the FXN gene can lead to

Friedrich ataxia (50). Exposure of cells to tBHP led to a 14.8-fold

decrease in ATP Binding Cassette Subfamily B Member 7 (ABCB7)

expression (Table 3; Figure 1). ABCB7 is a transporter for heme
FIGURE 2

Diagramatic summary of the effect of aT exposure on antioxidant protein expression in hTERT-RPE cells. The antioxidant proteins focused on in this
study are either upregulated (green), downregulated (red) or unaffected (no change in expression) (grey) by exposure to aT. The arrows indicate the
direction of a chemical reaction. Exposure of hTERT RPE cells to aT led to an increase in several proteins involved in glutathione homeostasis and
transfer including GSR, GGCT and MGST3. Exposure to aT also incerased the expression of PRDX1, PRDX2, PRADX4, SOD1, SOD2, CAT and PARK7.
Figure created with BioRender.com.
TABLE 2 Effect of tBHP on Peroxidase and SOD Expression.

Protein Fold-change P value Sig.

SOD1 +34.1 2.8E-06 **

SOD2 +33.6 0.002 **

PRDX1 +26.9 0.009 **

PRDX2 +21.9 0.030 *

CAT +16.1 0.005 **

PRDX4 +8.4 0.042 *

PRDX6 -0.05 0.269 n.s.

PRDX3 -3.9 0.578 n.s.

PRDX5 -15.2 0.139 n.s.
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
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(iron-sulfur clusters) from the mitochondria to the cytosol thereby

maintaining metal homeostasis (51–53).

Oxidative stress downregulated oxidation resistance protein 1

(OXR1) 16.3-fold in hTERT-RPE cells. OXR1 is found in the

nucleus and in mitochondria and is involved in neuronal

protection against oxidative stress and subsequent apoptosis (54,

55). Exposure of hTERT-RPE to tBHP led to a 5.6-fold decrease in

OXSR1 expression. Oxidative stress-responsive kinase 1 (OXSR1) is

a serine-threonine kinase that is involved in regulating the

phosphorylation of RELL proteins and MAPK14/P38a signaling

(56, 57). To our knowledge, neither OXR1 nor OXSR1 presence/

expression have been reported in RPE cells.

Exposure to tBHP led to an 11.8-fold decrease in sigma receptor

1 (SIGMAR1) expression (Table 3; Figure 1). SIGMAR1 protein is
Frontiers in Immunology 07
involved in ER lipid transport and regulation of plasma membrane

lipid microdomains (58) 56. Involved in the regulation of different

receptors it plays a role in BDNF signaling and EGF signaling. Also

regulates ion channels like the potassium channel and could

modulate neurotransmitter release. SIGMAR1 also appears to

regulate some growth factor receptors and ion channels (59). It is

also involved in several other cellular functions including cellular

proliferation, cyto-protection against oxidative stress,

mitochondrial transport, learning and memory (60).
3.5 The Effect of a-Tocopherol (aT) or
g-Tocopherol (gT) alone on antioxidant
protein expression

Like cells exposed to tBHP, cells exposed to aT or gT exhibited

an increase in GGCT (+12.3-fold for aT and +17.1-fold for gT),
GSR (+14.5-fold for aT and +20.1-fold for gT) and MGST3 (+11.6

for aT and +11.5-fold for gT) (Table 4; Figures 2, 3). Exposure to
aT led to a 12.4-fold increase in GSS and a 19.3-fold decrease in

GSTM1, while tBHP or gT had no effect (Table 4; Figures 2, 3).

Similar to tBHP exposure, aT or gT exposure increased the

expression of SOD1 (+21.9- and +20.1-fold, respectively), PRDX1

(+23.9- and +35.0-fold, respectively), PRDX2 (+31.8- and +34.5-

fold, respectively; Table 4) and PARK7 (+20.6- and +26.1-fold,

respectively; Table 5).

PRDX4 was uniquely upregulated by aT alone but was

unaffected by tBHP or gT (Table 5). GSTM3, PRDX6, SIGMAR1

and ABCB7 were uniquely downregulated by gT alone but were

unaffected by tBHP or aT (Tables 4–6).

Like cells exposed to tBHP, cells exposed to aT or gT exhibited a

decrease in MGST1 (-23.9-fold for aT and -21.1-fold for gT).
Exposure to aT did not reduce the expression in any of the AO

proteins, but gT itself, reduced the expression of GSTM3 (-19.3-
TABLE 3 Effect of tBHP on proteins involved in response to oxidative
stress.

Protein Fold-change P value Sig.

PARK7 +28.6 0.0007 **

TXN +36.6 0.0002 **

HYOU1 +8.3 0.0029 **

FXN -4.7 0.00003 **

HAGH -5.6 0.0023 **

OXSR1 -5.6 0.0361 *

SIGMAR1 -11.8 0.1086 n.s.

TXNIP -12.5 0.00001 **

ABCB7 -14.8 0.1166 n.s.

OXR1 -16.3 0.0214 *
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
TABLE 4 The effect of aT and gT on the expression of proteins involved in glutathione metabolism and transfer.

a-T g-T

Protein Fold change P value Sig. Fold change P value Sig.

GSR +14.5 0.001 ** +20.1 0.001 **

GGCT +12.3 0.021 * +17.1 0.004 **

GSTO1 +8.9 0.095 n.s. +11.0 0.038 *

GSS +12.4 0.015 * +3.5 0.516 n.s.

GSTM1 +13.9 0.006 ** -2.9 0.201 n.s.

GSTM2 +1.0 0.641 n.s. +2.3 0.837 n.s.

GSTM3 -11.4 0.124 n.s. -19.3 0.016 *

MGST1 -23.9 0.006 ** -21.1 0.012 *

MGST2 +2.5 0.514 n.s. -10.7 0.007 **

MGST3 +11.6 0.006 ** +11.5 0.016 *

GPX8 +0.3 0.876 n.s. -6.2 0.042 *
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
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fold), PRDX6 (-4.3-fold), SIGMAR1 (-28.6-fold) and ABCB7

(-20.9-fold). These findings suggest that aT and gT share some,

but not all mechanisms for AO protein upregulation.

Some proteins were similarly up- or down-regulated by tBHP

and aT or tBHP and gT. For example, SOD2 and CAT were

upregulated by tBHP (+33.6-fold for SOD2 and +16.1-fold for

CAT) and gT (+18.9-fold for SOD2 and +16.8-fold for CAT) but

were unaffected by aT. GSTO1 and TXN were upregulated by tBHP

(+19.1-fold for GSTO1 and +36.6-fold for TXN) and gT (+11.0 for

GSTO1 and +44.2-fold for TXN) but were unaffected by aT.
Likewise, MGST2, GPX8, TXNIP, OXR1 and OXSR1 were
Frontiers in Immunology 08
downregulated by tBHP and gT but were unaffected by aT
(Tables 1, 3).
3.6 The effect of a-Tocopherol (aT) or g-
Tocopherol (gT) in combination with tBHP
on antioxidant protein expression

We determined what effect aT or gT pre-exposure had on the

ability of tBHP to induce AO protein expression. Several AO

proteins that were upregulated by tBHP exposure were reduced
FIGURE 3

Diagramatic summary of the effect of gT exposure on antioxidant protein expression in hTERT-RPE cells. The antioxidant proteins focused on in this
study are either upregulated (green), downreuglated (red) or unaffected (no change in expression) (grey) by exposure to gT. The arrows indicate athe
direction of a chemical reaction. Exposure of hTERT RPE cells to gT led to an increase in several proteins involved in glutathione homeostasis and
transfer including GSR, GGCT, GSTO1 and MGST3. Exposure to gT also incerased the expression of PRDX1, PRDX2, SOD1, TXN and PARK7. Figure
created with BioRender.com.
TABLE 5 The effect of aT and gT on the expression of Per-oxidases, SOD and CAT.

a-T g-T

Protein Fold Change P Value Sig. Fold Change P Value Sig.

PRDX1 +23.9 0.017 * +35.0 0.002 **

PRDX2 +31.8 0.005 ** +34.5 0.003 **

PRDX3 +18.8 0.460 n.s. +16.7 0.551 n.s.

PRDX4 +18.5 0.010 ** +8.6 0.159 n.s.

PRDX5 +17.7 0.103 n.s. +18.2 0.108 n.s.

PRDX6 -1.3 0.082 n.s. -4.3 0.040 *

SOD1 +21.9 0.000 ** +29.1 0.000 **

SOD2 +18.9 0.044 * +10.1 0.218 n.s.

CAT +16.8 0.016 * +9.6 0.123 n.s.
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
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by aT or gT pre-exposure, including SOD1, TXN, PRDX1 and

PRDX2 (Tables 7–9; Figures 4, 5). Some proteins that were

upregulated by tBHP were significantly downregulated below

baseline by aT, but not gT, pre-exposure, including SOD2 and

CAT (Table 8). Like aT, pre-exposure to gT downregulated the

tBHP mediated increase in CAT expression.

We also determined what effect tBHP exposure had on the

ability of aT or gT to induce AO protein expression. Two AO

proteins that were upregulated by aT or gT pre-exposure but were
Frontiers in Immunology 09
reduced by subsequent tBHP exposure were SOD1 and PRDX1

(Table 8). Similarly, exposure to tBHP was able to inhibit the

induction of PRDX4 mediated by aT. Exposure to tBHP was able

to prevent the upregulation of PRDX2 mediated by gT and it even

caused a significant downregulation of PRDX2 below baseline.

Exposure to tBHP was able to prevent the downregulation of

PRDX3 and PRDX6 mediated by gT (Table 8).

We previously reported that aT, but not tBHP, exposure of

hTERT-RPE cells induced the expression of Nrf2 but did not lead to
TABLE 6 The effect of aT and gT on the expression of proteins involved in the antioxidant response.

a-T g-T

Protein Fold Change P Value Sig. Fold Change P Value Sig.

PARK7 20.6 0.006 ** 26.1 0.002 **

TXN 6.5 0.500 n.s. 44.2 0.000 **

TXNIP -6.7 0.013 * -5.0 0.033 *

FXN -0.9 0.045 * -4.6 0.000 **

SIGMAR1 -12.0 0.111 n.s. -28.6 0.002 **

ABCB7 -9.6 0.365 n.s. -20.9 0.021 *

OXR1 1.7 0.533 n.s. -9.4 0.230 n.s.

OXSR1 -1.6 0.386 n.s. -13.9 0.001 **

HYOU1 7.1 0.005 ** 0.2 0.954 n.s.

HAGH 10.5 0.005 ** -1.1 0.577 n.s.
*p ≤ 0.05; **p ≤ 0.01; n.s., not significant.
TABLE 7 The effect of aT or gT with tBHP on the expression of proteins involved in glutathione metabolism and transfer.

GGCT GSR GSS GSTO1 GSTM1 GSTM3 MGST1 MGST2 MGST3 GPX8

veh-tBHP/veh-NT +26.1 +17.7 +19.1 -35.3 -5.2 +15.1 -9.1

aT-NT/veh-NT +12.3 +14.5 +12.4 +13.9 -23.9 +11.6

gT-NT/veh-NT +17.1 +20.1 +11.0 -19.3 -21.1 -10.7 +11.5 -6.2

aT-tBHP/aT-NT -5.9 -10.75 -24.4 +23.9 -6.0

gT-tBHP/gT-NT +16.4 -7.1

aT-tBHP/veh-tBHP -18.28 +45.8

gT-tBHP/veh-tBHP +9.5
fro
TABLE 8 The effect of tBHP, aT or gT, or aT or gT and tBHP on the expression of Peroxidases, SOD and CAT.

PRDX1 PRDX2 PRDX3 PRDX4 PRDX5 PRDX6 SOD1 SOD2 CAT

veh-tBHP/veh-NT +26.9 +21.9 +34.1 +33.6 +16.1

aT-NT/veh-NT +23.9 +31.8 +18.5 +21.9 +18.9 +16.8

gT-NT/veh-NT +35 +34.5 -4.3 +29.1

aT-tBHP/aT-NT +8.4 -35.3 -24.3 -15.2

gT-tBHP/gT-NT -8.5 -29.9 -23.3 +13.3

aT-tBHP/veh-tBHP +5.9 +11.0 -15.63

gT-tBHP/veh-tBHP
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1138519
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duncan et al. 10.3389/fimmu.2023.1138519
the nuclear translocation of Nrf2 (10). Exposure to tBHP, on the

other hand, had no effect on Nrf2 expression but it led to an increase

in Nrf2 nuclear translocation, suggesting it had become activated.

We determined what effect aT or gT pre-exposure had on the

ability of tBHP to induce AO protein expression. Some AO proteins

that were upregulated by tBHP exposure were reduced by aT or gT
pre-exposure include TXN and HYOU1. Some proteins that were

upregulated by tBHP were significantly downregulated below

baseline by aT, but not gT, pre-exposure, including PARK7.

We also determined what effect tBHP exposure had on the ability

of aT or gT to induce AO protein expression. Several AO proteins

that were upregulated by aT or gT pre-exposure were reduced by

tBHP, including PARK7 and HYOU1 Table 9). Exposure to tBHP

was able to inhibit the induction of TXN mediated by gT. Exposure
to tBHP was even able to upregulate the expression of SIGMAR1

after the downregulation its by gT (Table 9). Since a-tocopherol and
g-tocopherol, themselves, could upregulate some AO proteins, we

verified that this activity of tocopherols was not mediated by an
Frontiers in Immunology 10
unexpected increase in oxidative stress. We loaded cells with the

redox-sensitive dye, DCFDA, and then treated cells with 100mM
tBHP, 100mM a-tocopherol or 100mM g-tocopherol for 2 hours.

Exposure to tBHP led to an increase in DCFDA fluorescence by 4.7-

fold, while neither aT nor gT had an effect on DCFDA fluorescence

(Supplemental Figure 2). This suggests, as expected, that tBHP

generates reactive oxygen species while tocopherol do not.
4 Discussion

In this study, we pretreated hTERT-RPE cells with aT or gT (or

vehicle) followed by treatment with tBHP to induce oxidative stress

(or treated with vehicle as a control). The treatment paradigm

carried out in this study was a preventative or prophylactic

approach rather than a post-injury intervention strategy. After

tocopherol (or vehicle) treatment, we carried out a proteomics

study on treated cells to determine the effect of tBHP and/or
FIGURE 4

Diagramatic summary of the effect of aT pretreatment- tBHP post-treatmnet versus tBHP treatment alone on antioxidant protein expression. The
antioxidant proteins focused on in this study are either upregulated (green), downreuglated (red) or unaffected (no change in expression) (grey) by
exposure to aT. The arrows indicate athe direction of a chemical reaction. Exposure of hTERT RPE cells to aT followed by tBHP led to fewer upregulated
antioxidant proteins compare to tBHP or aT alone, but there was an increase in MGST1, PRDX1, PRDX2 and FXN. Figure created with BioRender.com.
TABLE 9 The effect of aT or gT and tBHP on the expression of proteins involved in the antioxidant response.

PARK7 TXN TXNIP FXN SIGMAR1 ABCB7 OXR1 OXSR1

veh-tBHP/veh-NT +28.6 +36.6 -12.5 -4.7 -16.3 -5.6

aT-NT/veh-NT +20.6 -0.9

gT-NT/veh-NT +26.1 +44.2 -5.0 -4.6 -28.6 -20.9 -9.4 -13.9

aT-tBHP/aT-NT -11.7 +22.7 -2.1 -15.1 -16.4

gT-tBHP/gT-NT -10.0 +23.0 +17.4 +13.8

aT-tBHP/veh-tBHP +1.9 -15.3 +21.2

gT-tBHP/veh-tBHP +1.5
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tocopherols on the expression of proteins involved in redox

homeostasis and antioxidant function. Exposure of cells to tBHP

to induce oxidative stress resulted in the upregulation and

downregulation of several proteins involved in the cellular

antioxidant response. Similarly, treatment of cells with aT or gT,
in the presence or absence of tBHP, led to changes in antioxidant

protein expression. In fact, some proteins upregulated under

conditions of oxidative stress were also upregulated by exposure

to tocopherols alone, suggesting that cells may be ‘primed’ to

upregulate some antioxidant proteins in the absence of oxidant.

This is the first study carried out where hTERT-RPE were exposed

to sublethal oxidative stress to detect differential expression of

antioxidant-related proteins. It is also the first study in hTERT-

RPE cells detecting differential changes in antioxidant-related

proteins in response to exposure to tocopherols.

At present is not clear how tocopherols exhibit similar effects as

tBHP on the expression and/or activity of certain antioxidant

response proteins as tocopherols and tBHP are chemically

distinct. One possibility is that they may activate similar signaling

pathways as tBHP, thereby leading to similar changes in AO protein

expression. This may occur even though tocopherols and tBHP are

structurally and chemically different. It is possible that tocopherols,

despite having no pro-oxidant activity, act as agents that ‘pre-

condition’ cells tor oxidative stress.

Previous studies describe proteomic analysis done on RPE,

although several were carried out using the human ARPE-19 cell

line, which does not recapitulate some of the properties of primary

RPE cells (61, 62). In this study, we utilized hTERT RPE cells as a

model system as they are easy to maintain in culture and they retain

many of the phenotypic hallmarks of native RPE cells. Cellular

morphology hTERT-RPE cells exhibited a polygonal (pentagonal
Frontiers in Immunology 11
and hexagonal) shape cells formed a monolayer. hTERT-RPE

morphology was also observed after tBHP and tocopherol

treatments to ensure no noticeable cellular changes occurred.

None of the treatments caused a noticeable change in the

hTERT-RPE cell morphology compared to vehicle-treated

controls. Use of hTERT RPE cells also circumvent some of the

challenges with growing primary RPE cells to densities sufficient for

proteomic analysis. A previous proteomics study was carried out

revealing that there was differential protein expression between

hTERT-RPE and human primary RPE (63). While hTERT-RPE

may not provide identical genotypic and phenotypic characteristics

as native primary RPE, this cell line does provide many of the same

key cell-specific protein markers and cellular processes as

primary RPE.

Oxidative stress generated by tBHP upregulated several proteins

involved in glutathione synthesis and transfer (i.e., GST family

members). GGCT is involved in glutathione homeostasis and tBHP,

aT and gT upregulated its expression. GST proteins are involved in

the metabolism of xenobiotic compounds, drugs, and toxins, such

as carcinogens. Some GSTM members are Involved in the

generation of glutathione conjugates of prostaglandins A2 and J2

and prostaglandin J2 (PGA2 and PGJ2) (64). hTERT RPE cells

expressed GSTO1, GSTM1 and MGST members. As expected,

tBHP upregulated the expression of GSTO1 but, surprisingly, gT
did as well.

Exposure of cells to tBHP reduced the expression of FXN, whereas

neither aT nor gT had an effect. Since FXN is involved in heme

assembly, maintenance of iron-sulfur cluster proteins and oxidation of

Fe2+, its downregulation may be detrimental to combating oxidative

stress. Likewise, tBHP exposure downregulates GPX8 expression

which may make cells more susceptible to oxidative stress.
FIGURE 5

Diagramatic summary of the effect of gT pretreatment-tBHP post-treatement versus tBHP treatment alone on antioxidant protein expression. The
antioxidant proteins focused on in this study are either upregulated (green), downreuglated (red) or unaffected (no change in expression) (grey) by
exposure to aT. The arrows indicate athe direction of a chemical reaction. Exposure of hTERT RPE cells to gT followed by tBHP led to much fewer
upregulated antioxidant proteins compare to tBHP or gT alone, but there was an increase in GSTM3 and FXN. Figure created with BioRender.com.
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GSTM1 is expressed in RPE and RPE-derived cells such as ARPE-

19 cells and GSTM1 gene copy number variations have been associated

with AMD (65–67). Exposure of cells to aT, but not tBHP nor gT, led
to the upregulation of GSTM1. MGST1 has been detected in RPE cells

(68) and we detected it in our cell model system. Exposure of cells to

tBHP, aT or gT led to the downregulation of MGST1.

Data on the molecular function of a protein can be determined

experimentally or can be inferred based on amino acid sequence,

secondary structure, presence of functional domains and similarity

(in sequence and structure) to well-studied proteins. These

parameters have high and accurate predictive value. The GO

annotation ‘phospholipid-hydroperoxide glutathione peroxidase

activity’ is very specific (narrow). ‘Peroxidase activity’ is broad as

but isn’t specific for glutathione. Glutamate transport annotations,

‘ABC-type glutathione S-conjugate transporter activity’ and

‘transmembrane transporter activity – transports or maintains

localization of S-(2,4-dinitrophenyl)glutathione’, are also present

in the list and represent more specific functions.

The determination of a protein’s relevance to a biological

process can be determined experimentally by use of inhibitors,

genetic knock down or knock out of the protein. The relevance to a

biological process can be inferred from the known molecular

function of the protein and coevolutionary relationship between

the emergence of the protein and emergence of the process.

The last domain, cellular component, is assigned the lowest

priority because experimental methods that determine location/

localization can be sensitive to methodological pitfalls. For example,

it is often difficult to prevent fraction contamination during subcellular

fractionation. Colocalization studies using microscopy are accurate

only if the antibody used is highly specific for the proteins of interest

(that is it has a very low level of cross reactivity). Lastly, co-

immunoprecipitation experiments may provide a false positive

result as proteins shown to interact within a cell lysate may not

interact in an intact cell. Regardless of these methodological issues, the

mere presence of a protein with a particular cell compartment or

structure itself does not provide enough information about its function

and relevance to a particular biological process.

Because gT itself reduced the expression of PRDX3, PRDX5,

PRDX6 and GSTM3, it appears as if gT directly reduces the expression

of these proteins. Although this might be the case, it is also conceivable

that gT may be neutralizing ‘background’ or basal level of free radical

formation that maintains the tonic expression of these proteins.

There are two possible explanations for how these proteins were

upregulated or downregulated: an increase or decreases in basal gene

expression or an increase or decrease in protein turnover mediated by

proteasomal degradation. As such, we determined whether there were

redox-sensitive transcription factor binding sites in the promoters for

the upregulated gene products and if there were upregulated E3

ubiquitin ligases known to target the downregulated glutathione

metabolic proteins. All detected E3 ubiquitin ligases were down

regulated suggesting that proteasomal degradation may not be the

main way the glutathione proteins were downregulated.

This study has identified several proteins involved in

antioxidant function that are up- or down-regulated by oxidative

stress and/or tocopherols. Furthermore, we determined the effect of

tocopherol pretreatment on the effect of tBHP to alter antioxidant
Frontiers in Immunology 12
proteins expression as well as the effect of tBHP post-treatment on

the effects tocopherols on antioxidant protein expression. This

study provides useful information about what proteins may elicit

a protective antioxidant response in RPE cells and which proteins

may be therapeutic targets in AMD.
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SUPPLEMENTARY FIGURE 1

Tocopherol-tBHP Treatment Paradigm for hTERT RPE Cells. hTERT RPE cells
were exposed for to either 100mM aT, 100mM gT or equivalent volume of

DMSO control for 24 hours. After the 24-hour exposure, cells were rinsed and
Frontiers in Immunology 13
media containing either tBHP or vehicle control was added. Cells remained
exposed to tBHP (or vehicle) for 24 hours.

SUPPLEMENTARY FIGURE 2

Comparison of reactive oxygen species (ROS) measurement between tBHP

and tocopherols in hTERT-RPE cells. hTERT-RPE cells were loaded with
DCFDA, a redox-sensitive fluorescent dye, for 1 hour, rinsed 3 times with

PBS and exposed to either 100mM tBHP or 100mM aT or gT for 4 hours. Cells
were read in a plate reader to detect fluorescence intensity. Exposure to tBHP

led to a 5.8-fold increase in DCFDA fluorescence indicating an elevated

presence of ROS while exposure to tocopherols had no effect on
DCFDA fluorescence.
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