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A B S T R A C T   

Economic policy uncertainty (EPU) and geopolitical uncertainty (GPU) can fuel speculation, flood the carbon 
trading market with excess allowances, and undermine the scheme’s efficacy in tackling climate change. While 
the existing literature documents the adverse effects of uncertainty on macroeconomic and financial variables, 
the impact on the carbon trading risk remains unclear. This paper analyses the effects of EPU and GPU on the 
volatility and other risk levels in the carbon market using daily European Union Emissions Trading Scheme data 
(February 2, 2009 to 8/31/2022) and monthly data on the uncertainty indicators (2009M2–2022M8). The 
findings reveal that unstable policies and geopolitical tensions heighten carbon market risk since global un-
certainty increases information asymmetry and risk premium and causes a delay in investment decisions. Future 
deliberation among the Cooperation of Parties under the United Nations Framework Convention on Climate 
Change should incorporate measures to mitigate global uncertainty while pushing for decarbonization and 
transition to clean technology.   

1. Introduction 

Carbon emission trading is a market-based approach that emanates 
from the Kyoto Protocol of the United Nations Framework Convention 
on Climate Change (UNFCCC) to combat climate change and greenhouse 
gas (GHG) emissions (Bekun et al., 2021a).1 The carbon trading market 
exists as an arrangement for trading carbon emission allowances and 
offers a cost-effective, market-based solution to mitigate the existential 
threat posed by GHG emissions to the environment (Kabir et al., 2021). 
Among several carbon pricing mechanisms, the European Union Emis-
sions Trading Scheme (EU-ETS) is the most developed and largest in-
ternational carbon allowance market for trading in carbon allowances 
(Feng, 2015; Tian et al., 2016; Limei et al., 2020); therefore, it offers a 
suitable framework for analyzing the effectiveness of carbon trading for 
climate action. The motivation to focus on carbon emission trading more 
than other GHGs is because carbon emissions account for more than 70% 
of GHGs, and approximately three-quarters of carbon emissions are 

attributed to the unabated use of non-renewable energies and fossil 
fuels, such as crude oil, natural gas, and coal (Balcılar et al., 2015; Bekun 
et al., 2021b). This reality creates an avenue for carbon to be traded as 
an investment asset and enables investors to benefit from opportunities 
for portfolio diversification (Narayan and Sharma, 2015). 

Given the financial nature of the market, this study models trading 
risks associated with the international carbon allowance market. Our 
analysis examines the carbon market’s response to two classes of un-
certainties that affect financial markets and highlights the practical 
implications of the research: economic policy uncertainty (EPU) and 
geopolitical uncertainty (GPU). This study provides two important 
contributions. First, it explores the response of the carbon market to the 
twin uncertainty of macroeconomic policy and security threats; see 
Wang et al. (2022) for a similar oil market analysis. Research on the 
effects of uncertainty stems from related evidence associating high 
policy uncertainty with stock market volatility (Dogah, 2021) and, as 
such, contributes to a similar analysis of the carbon trading market. Dou 
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et al. (2022) describe the carbon market as a complex volatility model in 
which market fundamentals (carbon allowance price and volatility) can 
be influenced by factors that shape the global macroeconomic envi-
ronment, such as the price of oil and macroeconomic uncertainty. Thus, 
this study considers twin uncertainty (EPU and GPU) through a 
comprehensive analysis of the role of uncertainty. The two types are 
interlinked so that economic uncertainty increases during political 
tensions and upheavals, such as 9/11, the two Gulf Wars, and the war in 
Ukraine, among others (Wang et al., 2022). 

Second, we provide empirical contributions involving extracting 
carbon trading risks using two approaches and different variants of EPU 
and GPU indices. We also adopt alternative approaches to examine the 
predictive content of the uncertainty indicators as predictors of carbon 
trading risk. The first is a model-based approach with which we 
extracted the realized volatility series as a measure of carbon trading 
risk using the generalized autoregressive conditional heteroscedasticity 
mixed data sampling (GARCH-MIDAS) approach (Ghysels et al., 2006; 
Engle et al., 2013). The second is the value at risk (VaR) approach (Best, 
1998; Lian et al., 2020; Li et al., 2021), which uses the tail distribution of 
carbon price returns (as a measure of the potential loss of investors due 
to downside risk) to gage the systemic risk of the carbon allowance 
market. We use the conditional autoregressive value at risk (CAViaR) 
approach (Engle and Manganelli, 2004) to compute the carbon trading 
risk following Feng et al. (2012), who argued that exceptional circum-
stances, such as energy price crashes and macroeconomic uncertainty, 
could cause extreme tail movements in the carbon market. For robust-
ness, we compare the effects of EPU and GPU on carbon price risk using 
global, European Union (EU), and American (US) uncertainty indicators. 

This research is motivated by important policy and investment 
considerations. First, volatile carbon allowance prices could encourage 
speculation, lead to excess carbon allowances, and reduce the incentive 
for parties to participate in climate change agreements requiring a 
switch to clean technology. An unstable carbon price could also weaken 
the carbon trading market’s ability to promote decarbonization (Dou 
et al., 2022) effectively. Second, increased and frequent uncertainty 
could exacerbate carbon price volatility and heighten speculation in the 
carbon market, possibly leading to the failure of the carbon allowance 
market to act as an effective decarbonization strategy. With higher 
market risks, investors may overreact by employing risk-hedging tech-
niques to hold more commodity assets rather than carbon allowances to 
hedge the risk resulting from uncertainty, leaving the market with an 
excess supply of carbon allowances, which is detrimental to the drive to 
switch to cleaner technologies. 

Based on extensive data analysis, this study’s findings provide robust 
evidence of a strong and positive relationship between uncertainty and 
carbon trading risk. The results support the theory that macroeconomic 
uncertainty exacerbates volatility and risk in the carbon trading market. 
The findings of this research can be of interest to policy-
makers—particularly those involved in global discussions on climate 
change—that must be informed on the uncertainty that affects macro-
economic performance. Policymakers should realize that uncertainty 
could jeopardize the success of carbon trading as a market-based envi-
ronmental sustainability strategy if left unchecked. The forecasting 
analysis in this study can also interest researchers and investors who 
should be aware that uncertainty indicators, especially EPU, provide 
valuable information about forecasting carbon market fundamentals. 

The remaining sections of the paper are structured as follows. Section 
2 discusses several underlying theoretical and empirical issues related to 
the macroeconomic impacts of uncertainty; more specifically, this sec-
tion introduces and explains the nexus between carbon trading risk and 
uncertainty. Section 3 outlines the methodology for estimation and 
forecasting evaluation used in the study. Section 4 presents the results, 
and Section 5 is the conclusion. 

2. Motivation 

2.1. Macroeconomic effects of uncertainty 

The extant theoretical and empirical literature appears to unani-
mously agree that macroeconomic uncertainty is linked to lower eco-
nomic performance in many countries as uncertainty increases 
information asymmetry and credit risk and reduces investment (Bloom, 
2009; Kang and Ratti, 2013; Phan et al., 2020; Demir and Danisman, 
2021). Because increased information asymmetry is attributable to un-
certainty, lenders find it difficult to distinguish between good and bad 
credit risk and hesitate to lend money, reducing investment and eco-
nomic activity. An increase in uncertainty leads investors to adopt more 
conservative approaches while making investment decisions; they either 
retain their cash holdings as a precautionary measure or demand higher 
expected rates of returns, thereby slowing investment, production, and 
employment. Firms also tend to freeze hiring under these conditions 
(Handley and Limão, 2015; Al-Thaqeb and Algharabali, 2019; Phan 
et al., 2019; Dogah, 2021; Kim et al., 2021; Kisswani and Elian, 2021). 
Additionally, as businesses delay investment decisions due to uncer-
tainty, consumers purchase fewer durable goods, such as automobiles, 
houses, and home appliances, waiting until the macroeconomic outlook 
improves (Yilanci and Kilci, 2021). 

Shafiullah et al. (2021) presented a strong and comprehensive 
argument from the investor angle, suggesting that investors need policy 
stability to make long-term investment decisions that often involve 
significant capital outlays. Investors only commit vast resources if they 
see the prospect of positive net present value. The net current value of 
investment outlays depends on the discounting rate and future cash 
flow; however, uncertainty can influence both factors. For instance, EPU 
can affect the discount rate, so investment fund providers require higher 
discounting rates for projects in high-EPU environments. Moreover, EPU 
makes evaluating risks associated with an investment project chal-
lenging and complicates the estimation of expected future cash flows, 
explaining why investment decisions are usually put on hold due to 
heightened uncertainty. 

For investors, EPU also constitutes a high-investment risk in equities 
because the uncertainty affects investor behavior and response, making 
it difficult for regulators to anticipate effective monetary policy (Tsai, 
2017; Dash and Maitra, 2021). Higher uncertainty prompts investors to 
switch from riskier to hedge/diversifier assets and transfer investments 
from markets/regions with more significant uncertainty risks to mar-
kets/regions perceived as more stable (Yilanci and Kilci, 2021). A 
literature review by Al-Thaqeb and Algharabali (2019) proposes that 
EPU affects developing and developed economies worldwide. The 
overall expected impact of EPU is low economic growth, deterioration of 
capital investment, and reduced global spending by households, which 
decreases stock performance. Similarly, GPU in the geopolitical index is 
usually priced according to the equity options market structure. GPU can 
also lead firms to postpone or cancel investments as investor confidence 
diminishes; correspondingly, consumers decrease or delay the purchase 
of durable goods. 

The literature has provided empirical evidence on the macroeco-
nomic effect of uncertainty on key economic and corporate fundamen-
tals. For instance, Gulen and Ion (2015) establish that macroeconomic 
uncertainty negatively impacts corporate decisions on capital invest-
ment, finding that a higher EPU index reduced corporate capital in-
vestment by about one-third during the global financial crisis. This 
reduction was especially true for firms that relied too much on gov-
ernment contracts and were dependent on irreversible investments. 
Bordo et al. (2016) show that uncertainty regarding future policies has 
adverse effects on bank credit and that this is a significant way in which 
uncertainty hampers investment (Demir and Danisman, 2021). Phan 
et al. (2020) conducted an empirical analysis in 23 countries, attributing 
the 7% rise in financial instability to a standard deviation increase in 
uncertainty. The results of Manrique-de-Lara-Penate et al. (2022) show 
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that EPU and GPU limit the growth effect of the global tourism sector by 
roughly 14.3%. 

Empirical evidence on the financial markets, such as that from Das 
et al. (2019), indicates that uncertainty increases volatility in conven-
tional stock markets by raising the risk premium in the market. Kan-
nadhasan and Das (2019) show that EPU and GPU pose threats to 
conventional stock markets, indicating that both consistently negatively 
affect emerging market stocks. Al Mamun et al. (2020) show that 
geopolitical and economic uncertainty raises the Bitcoin market’s risk 
premium and that investors cannot hedge portfolio risks with conven-
tional financial assets during high EPU. The extant literature has 
extensively studied the impact of macroeconomic uncertainty on mac-
roeconomic fundamentals and conventional financial markets, 
including stock markets, the crude oil market, and the cryptocurrency 
market; however, similar consideration of the carbon allowance market 
has only recently been investigated. Based on quantile regression anal-
ysis, Dou et al.‘s study (2022) showed that EPU negatively affects carbon 
futures price returns and cannot predict the volatility series. With the 
existing result of no predictability, this present study contributes to the 
literature by formulating a better approach than quantile regression 
(which has proven unproductive) to distinguish between high and low 
uncertainty. Additional contributions include analyzing several in-
dicators of twin uncertainty and an extensive analysis of ETS market risk 
measures. 

2.2. Carbon market–uncertainty nexus 

The trading market for carbon emission allowance has roots in the 
Kyoto Protocol, in which the international community decided on in-
ternational emissions trading as a market-based strategy to tackle 
climate change and reduce GHG emissions. The Kyoto Protocol is a le-
gally binding agreement on emission targets ratified by numerous 
countries in the UNFCCC in 1997 and effective as of 2005. The Protocol 
placed the bulk of the responsibility on advanced, industrialized, and 
transition economies as the primary sources of GHG emissions. Between 
2008 and 2012, the first period of commitment, participating countries 
were required to aim to reduce emission levels by 5% against 1990 
levels. 

In the second commitment period (2013–2020), countries were 
required to reduce emissions by 18% against 1990 levels. Furthermore, 
the Paris Agreement (COP-21), effective in November 2016, targeted a 
reduction in global warming of 1.5 ◦C (34.7 ◦F) and the attainment of a 
climate-neutral global economy by 2050. COP-21 adopts a more inclu-
sive approach; all of the countries presented their plans concerning 
reduced GHG emissions through what is known as nationally deter-
mined contributions. Overall, the Kyoto Protocol specifies the primary 
strategies for GHG emission reduction to specified targets through na-
tionally developed measures, proposing three emission-reduction 
implementation strategies: two project-based approaches (clean devel-
opment mechanism and joint implementation) and a market-based 
mechanism (international emissions trading). 

The EU-ETS is a carbon emission allowance market that emerged as 
the EU’s cost-effective, market-based response to the Kyoto Protocol’s 
mandate. Feng (2015) provided a detailed description of the carbon 
trading market, suggesting that the market is a mechanism in which 
players buy and sell carbon emission allowances as a strategy to mitigate 
climate change; thus, the price of emission allowances indicates the 
actual cost of climate change. Market players (usually firms or in-
dustries) have a defined emission goal consistent with their country’s 
national allocation plan. The market players are expected to work to-
ward achieving the emission goal and must buy carbon emission al-
lowances in the carbon market if they fail to achieve the emission target 
within the required timeframe (i.e., the marginal cost of emission 
reduction exceeds the price of emission allowances). In contrast, by 
meeting their targets for the period, players with superfluous emission 
allowances can sell the excess allowances on the carbon market. This 

process is the general idea behind carbon trading. 
This study explores the connection between uncertainty and market 

risk levels in the carbon trading market. The motivation for adopting 
uncertainty as a predictor in the carbon trading risk predictive model 
suggests that the carbon market faces significant uncertainty; it is sub-
ject to intense international politicking and multilateral negotiations 
and regulations among advanced and emerging economies (Feng et al., 
2012; Balcılar et al., 2015; Feng, 2015). Therefore, higher uncertainty 
should precede higher (risk) volatility in the financial market, and, as 
such, macroeconomic uncertainty should predict future volatility (Liu 
et al., 2017). Empirical evidence suggests that EPU matters in the 
volatility forecasting of stock returns, economic activity, and energy 
markets (Liu et al., 2017; Junttila and Vataja, 2018; Yu and Song, 2018; 
Rakpho and Yamaka, 2021; Yu and Huang, 2021). 

Dai et al., 2021 also showed that global EPU could be a good pre-
dictor of carbon market-realized volatility; however, they only analyzed 
realized volatility as a measure of carbon market risk. In contrast, the 
present study explores various measures, including the market-based 
measure of carbon price risk. Therefore, it considers the role of twin 
uncertainty—including uncertainties stemming from unstable policies 
and geopolitical risk—which cuts across global indices and uncertainty 
emanating from the EU and the US. Regarding methodology, in addition 
to using carbon market risk as the realized long-run volatility of the 
international carbon market from the GARCH-MIDAS framework, this 
study also improves on Dai et al., 2021. We use a different measure of 
carbon trading risk obtained from the VaR models and Westerlund and 
Narayan’s (2012, 2015) approach, which is estimated with a feasible 
quasi-generalized least squares estimator (FQGLS)2 to explore the 
impact of uncertainty on carbon trading risk. 

In addition, this study improves on extant research on the carbon 
market with a forecasting analysis of alternative measures of carbon 
trading risk. Previously, Hammoudeh et al. (2015) used the nonlinear 
(asymmetric) autoregressive distributed lag technique, indicating that 
energy prices (crude oil, coal, natural gas, and electricity prices) are key 
predictors of carbon allowance prices. A similar study (in terms of 
methodology) by Wen et al. (2020) shows the hedging potential between 
the carbon market and the Chinese stock market, given the evidence of a 
negative relationship between the two. The forecast analysis by Narayan 
and Sharma (2015) indicated that the carbon futures market could 
predict carbon spot market returns, demonstrating that the preferred 
model’s forecasts allow investors to profit. In sum, the 
previously-mentioned studies necessitate further analysis of the uncer-
tainty–carbon risk nexus that encompasses impact and predictability 
analyses, given the topic’s theoretical, empirical, and policy appeal. 

2.3. Twin uncertainty indicators 

This study contributes to the literature that effectively quantifies 
different economic, political, and geopolitical forms of uncertainty. 
Complex and significant events in the 21st century, such as the global 
financial crisis, the Arab Spring, Russia’s annexation of Crimea, Russia’s 
war on Ukraine, and various refugee crises, have affected global political 
and economic uncertainty, heightening political and economic insta-
bility and global macroeconomic uncertainty (Al-Thaqeb and Alghar-
abali, 2019).3 Baker et al.’s (2016) descriptions of monetary and fiscal 
policy uncertainty and Caldara and Iacoviello’s (2018) index of geopo-
litical risks were helpful for our study. Demir and Danisman (2021) 
show that macroeconomic uncertainty has been a significant concern 

2 The model is advantageous due to its capability to deal simultaneously with 
multiple econometric problems (endogeneity bias, persistency, and conditional 
heteroscedasticity) (Sharma, 2021).  

3 A recent source of uncertainty beyond this study’s scope is the COVID-19 
pandemic, which has increased the international spill of uncertainty shocks 
(Kumar et al., 2021). 

I.A. Adediran and R. Swaray                                                                                                                                                                                                                



Economic Modelling 123 (2023) 106279

4

since the global financial crisis; therefore, many monetary and fiscal 
regulatory authorities now more closely monitor the aspects of risk, such 
as EPU and GPU-related factors, as they develop policy approaches. 

The EPU measures the economic risk associated with the indeter-
minate monetary and fiscal policy actions of governments and regula-
tory frameworks. Regarding measurement, the EPU index is a news- 
based index obtained through the text mining of related keywords 
from digital archives of 11 US-based and international newspapers; it 
was created by Baker et al. (2016) and has been subsequently updated 
(http://www.policyuncertainty.com/). The resulting global EPU index 
comprises 20 emerging and advanced economies: Brazil, Chile, China, 
Greece, India, Ireland, Mexico, Russia, South Korea, Australia, Canada, 
France, Germany, Italy, Japan, the Netherlands, Spain, Sweden, the UK, 
and the US. The EPU index covers issues relating to economic policies, 
covering a combination of keywords, including “uncertainty,” “uncer-
tain,” “economy,” “economic,” “deficit,” “regulation,” “Federal Reserve, 
” “Congress,” “legislation,” and “White House.” 

The GPU captures the actual occurrences and threats related to po-
litical instability, outbreaks or escalation of wars, terror-related activ-
ities, and other such incidents. The geopolitical risk index devised by 
Caldara and Iacoviello (2018) is similar to the EPU index in methodol-
ogy, as both are based on a text-search algorithm. The geopolitical risk 
index is also text-based, and keywords related to conflicts can be used to 
search for information from several American and international media 
outlets, such as the Washington Post, the New York Times, the Chicago 
Tribune, the Los Angeles Times, the Guardian, the Daily Telegraph, the 
Financial Times, the Boston Globe, the Wall Street Journal, the Times, 
and the Globe and Mail. The geopolitical risk index captures war, 
war-related, and political tension risk components, such as military 
threats, political tensions, acts and threats of war, conflicts, nuclear 
threats, and similar tensions that could affect the normal course of in-
ternational relations (Gupta et al., 2019). Data on geopolitical risk are 
obtained from newspaper articles using keywords such as “war,” 
“terrorism,” “military,” and “geopolitics” (https://www.matteoiaco 
viello.com/gpr.htm). 

High uncertainty events were recorded during the global financial 
crisis, the 9/11 attacks, the two Gulf Wars, the Ukraine–Russia conflict, 
the chaos in the Middle East, and, most recently, the coronavirus 
pandemic. Theoretically, as uncertainty increases the risk of premia in 
financial markets, the discount rate rises; hence, the net present value of 
future profitability falls, and stock prices decrease (Bijsterbosch and 
Guérin, 2013). These economic realities capture the need to separate 
high levels of EPU and GPU from low levels of uncertainty. Previously, 
Bijsterbosch and Guérin (2013) identified high uncertainty events via a 
regime-switching model of macroeconomic and financial variables, 
finding that high uncertainty events are associated with a decline in 
inflation, weakened economic activities, weaker growth performance, 
and sharp declines in stock prices.4 A similar attempt by Dou et al. 
(2022) concerning the carbon market did not prove worthwhile, as the 
quantile method to distinguish between high and low uncertainty failed 
to predict the carbon price return. Our study uses Shin et al.’s (2014) 
approach to the partial sum decomposition, where the positive partial 
sums of uncertainty indices represent high uncertainty, and negative 
partial sums represent low uncertainty. 

3. Methodology 

3.1. Carbon trading risk: the GARCH-MIDAS approach 

We adopted two approaches to measure carbon trading risk. The first 
is the mixed data sampling variant of the GARCH-MIDAS approach 

(Ghysels et al., 2006; Engle et al., 2013) to model the volatility of the 
EU-ETS return series as a measure of carbon trading risk. The MIDAS 
regression is useful in deploying data in their natural frequencies of 
occurrence, such that carbon price returns (which occur at a daily fre-
quency) and uncertainty indicators (occurring at a monthly frequency) 
can be used. The MIDAS approach allows the two frequencies to be 
combined within the same modeling framework. Furthermore, the 
GARCH-MIDAS approach helps extract realized volatility as a measure 
of carbon allowance market risk, which helps circumvent using a special 
technique to distill market risk. Therefore, use the GARCH-MIDAS 
approach to determine and estimate the volatility of carbon returns.5 

Furthermore, we obtained the predictability and forecasting results from 
the GARCH-MIDAS model for EU-ETS for various variants of EPU and 
GPU, namely, EU, US, and global EPUs and GPUs, which were obtained 
at a monthly frequency. 

We specified the conditional mean equation for the carbon allowance 
returns based on the carbon price observed on day i for each period t as 
follows: 

cri,t =Ei− 1,t
(
cri,t

)
+

̅̅̅̅̅̅

σ2
i,t

√

∗ vi,t;∀i= 1, 2, ...,Nt (1)  

Here, cri,t denotes daily carbon returns computed as cri,t =

log(cpi,t /cpi− 1,t), and cpi,t are the daily carbon prices at period t, in-
novations are distributed as vi,t

⃒
⃒φi− 1,t ∼ N(0, 1). φi,t represents the in-

formation set available on day i − 1 at period t. 
The total conditional variance (volatility), σ2

i,t can be decomposed 
into short-run (hi,t) and long-run (gt) volatility components as follows: 

σ2
i,t = gt ∗ hi,t (2)  

hi,t =(1 − a − b)+ a
(
cri− 1,t − μ

)2

gt
+ bhi− 1,t (3)  

gt =α + θ
∑K

k=1
δk(ϖ)RVt− k (4)  

Here, μ = Ei− 1,t(cri,t), a and b are the ARCH and GARCH terms, respec-
tively. These are defined by a > 0, b ≥ 0, and a+ b < 1, such that the 
higher the “b” parameter, the greater the volatility clustering in the 
carbon market. RVt is the realized volatility defined as RVt =

∑Nt
1=1cr2

i,t, 
gt is the smoothed realized volatility (hence, it results in monthly ob-
servations), K is the period when the RVt is smoothed, and Nt represents 
the number of trading days in the carbon market for each month. 

We defined the two-parameter beta polynomials employed as the 
weighting scheme for the GARCH-MIDAS, δk(ϖ), as follows (Engle et al., 
2013; Conrad et al., 2018): 

δk(ϖ)= δk(ϖ1,ϖ2)=
[k/(K + 1)]ϖ1 − 1

[1 − k/(K + 1)]ϖ2 − 1

∑K

j=1
[j/(K + 1)]ϖ1 − 1

[1 − j/(K + 1)]ϖ2 − 1
(5) 

The combination of equations (1) and (5) describes the GARCH- 
MIDAS model for obtaining the realized volatility required for this 
study; however, we documented the predictability results from the 
model with uncertainty (UNC), which can be subdivided into EPU and 
GPU as the low (monthly) frequency predictors. We augmented the 
equation for the long-run volatility as follows: 

4 Dogan et al. (2021) compared the impacts of geopolitical risk and economic 
policy uncertainty on natural resource rents of developing countries, finding 
that economic uncertainty decreases natural resource rents at higher quantiles. 

5 The GARCH-MIDAS technique has been applied to forecast the volatility of 
various financial markets, including stock markets (Asgharian et al., 2013; Fang 
et al., 2020; Wang et al., 2020; Salisu and Gupta, 2021), oil markets (Salisu 
et al., 2021), and foreign exchange rate markets (You and Liu, 2020; Zhou et al., 
2020; Salisu et al., 2022a,b,c). 
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gt =α + θ
∑K

k=1
δk(ϖ)UNCt− k (6)  

Here, the other equations, including the weighting scheme, remain 
defined, and UNCt represents any of the EU, US, and global EPUs and 
GPUs obtained monthly. The θ in equations (4) and (6) signifies the 
impact (or predictability) of realized volatility or uncertainty on the 
measure of carbon trading risk (long-run volatility of carbon return). 

3.2. Carbon trading risk: conditional autoregressive value at risk 
(CAViaR) approach 

Alternatively, we measured the carbon trading risk with CAViaR 
(Engle and Manganelli, 2004) due to its suitability in measuring port-
folio risk in various financial markets. The approach is appropriate for 
measuring the downside market risk of financial series as it is computed 
from the tail distribution of the market return series. For a method to 
measure stock market risk, see Salisu et al. (2022a,b,c); to measure oil 
price risk, see Salisu et al. (2022a,b,c); to measure exchange rate risk, 
see Adediran (2021). Unlike standard VaR models, CAViaR incorporates 
time variation in estimating the conditional quantile distribution rather 
than the entire distribution of portfolio values. The baseline model 
proceeds as follows: 

ft(β) = β0 +
∑p

j=1
βjft− j(β) +

∑q

i=1
βil (zt− i) (7)  

Here, ft(β) ≡ ft(zt− 1, βϑ) is the ϑ th quantile (either 1% or 5%) distribu-
tion of carbon returns at time “t” but formed at time “t–1.” βjft− j(β); j =
1, 2, ...p are autoregressive terms/parameters included to ensure 
smoothness in the time variation, (p+q+1) represents the dimension of 
β, l is a function of lagged observables (zt), and l (zt− i) helps link the 
quantile distribution to the observables in the available information set. 

Four alternative specifications of the CAViaR from which we selected 
the optimal one across the 1% or 5% quantile distributions are presented 
as follows: 

Adaptive model: 

ft(β1)= ft− 1(β1) + β1
{
[1 + exp(G[xt− 1 − ft− 1(β1)])]

− 1
− ϑ

}
(8) 

Symmetric absolute value model: 

ft(β)= β1 + β2ft− 1(β) + β3|xt− 1| (9) 

Asymmetric slope model: 

ft(β)= β1 + β2ft− 1(β)+ β3(xt− 1)
+
+ β4(xt− 1)

− (10) 

Indirect GARCH model: 

ft(β)=
(
β1 + β2f 2

t− 1(β) + β3x2
t− 1

)1/2 (11) 

The symmetric, asymmetric, and indirect GARCH are mean revert-
ing, whereas the adaptive model is not, since the coefficient of the 
autoregressive term is not restricted to 1 in the previous models. The 
asymmetric model also differs from the others as it distinguishes be-
tween positive and negative portfolio returns. For further robustness, we 
computed the 1% and 5% conditional VaRs from the carbon return series 
for the four CAViaR alternative specifications. We determined the 

optimal model for each quantile distribution using a combination of 
diagnostic tests: the Dynamic Quantile (DQ) test, the %Hits test, and the 
Regression Quantile test. 

3.3. Predictability models and forecast evaluation measures 

To explore the research objective centered on the role of two classes 
of uncertainty indicators as predictors of carbon trading risk, we used 
the two carbon risks computed from CAViaR specifications. These risks 
are used to model the predictability of the international carbon trading 
risk in the econometric model structured according to Westerlund and 
Narayan’s (2012, 2015) estimation approach. The technique has been 
widely applied to various financial market series, given its ability to 
simultaneously incorporate suspected endogeneity bias, conditional 
heteroscedasticity, and persistency in the series (Bannigidadmath and 
Narayan, 2015; Salisu and Isah, 2018; Salisu et al., 2019; Sharma, 2021; 
Adediran et al., 2021). 

The Westerlund and Narayan (2012, 2015) model is estimated with 
the FQGLS estimator. It can be specified so that the carbon trading risk 
(CTRt) (measured with CAViaR at 1% and 5%, respectively) is modeled 
with uncertainty (UNCt), EPU (EPUt), and GPU (GPUt) as alternative 
regressors:  

Here, α is the constant term, β is the bias-adjusted slope coefficient that 
shows the impact of the respective uncertainty indicator series on the 
carbon trading risk. The superscripts CAViaR1% and CAViaR5% help 
differentiate between either of the VaR measures of carbon risks, and εt 
denotes the iid error term.6 

For the out-of-sample forecast evaluation, we compared the predic-
tive accuracies of our preferred models, containing EPU and GPU as the 
predictors of alternative carbon trading risk, against the benchmark 
model. The benchmark model for comparison incorporates the inter-
national crude oil price (West Texas Intermediate or the UK Brent crude 
oil benchmarks) as the predictor series. 

CTRCAVaiR1%
t =αCAVaiR1% + βCAVaiR1%OILt− 1 +φCAVaiR1%( OILt − ρCAVaiR1%OILt− 1

)

+ εCAVaiR1%
t

(14a)  

CTRCAVaiR1%
t = αCAVaiR1% + βCAVaiR1%UNCt− 1 +φCAVaiR1%( UNCt − ρCAVaiR1%UNCt− 1

)
+ εCAVaiR1%

t (12)  

CTRCAVaiR5%
t = αCAVaiR5% + βCAVaiR5%UNCt− 1 +φCAVaiR5%( UNCt − ρCAVaiR5%UNCt− 1

)
+ εCAVaiR5%

t (13)   

6 We included the φCAVaiR1%(UNCt − ρCAVaiR1%UNCt− 1) and 
φCAVaiR5%(UNCt − ρCAVaiR5%UNCt− 1) terms in each model to resolve potential 
endogeneity bias, and ρ addresses the persistence effect. The endogeneity test is 
conducted with the following null hypothesis (φ = 0 i.e., no endogeneity bias) 
against the alternative (φ ∕= 0 i.e., presence of endogeneity bias). If the models 
exhibited endogeneity and persistence effects, we estimated the bias-adjusted 
coefficient, β as follows: β = b − φ(ρ − 1), where b is the coefficient of the 
original specification CTRt = α+ bUNCt− 1 + et . The in-sample predictability 
test evaluates the null, β = 0, against the alternative, β ∕= 0. Furthermore, the 
bias-adjusted generalized least squares estimator is suitable if conditional het-
eroscedasticity is present in the model, where the error follows the ARCH 
process, σ2

ε,t = ϖt +
∑k

i=1ϖiε2
t− 1. This is done by pre-weighting the series with 

the quantity. 
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CTRCAVaiR5%
t = αCAVaiR5% + βCAVaiR5%OILt− 1 +φCAVaiR5%( OILt − ρCAVaiR5%OILt− 1

)

+ εCAVaiR5%
t

(14b) 

We use the oil price because crude oil accounts for approximately 
45% of GHG emissions and is a significant contributor to the adverse 
effects of carbon emissions, such as the increase in heat waves and rising 
sea levels (Shafiullah et al., 2021). In addition, Hammoudeh et al. 
(2015) suggest that oil (and other energy) prices could contain some 
predictive content for carbon allowance prices. Therefore, we selected a 
benchmark model in which crude oil prices are the predictor. 

The preferred and benchmark models are non-nested (that is, the oil- 
based model is not a subset of uncertainty-based models). Therefore, we 
employed the modified Diebold and Mariano (DM) pairwise test (Die-
bold and Mariano, 1995; Harvey et al., 1997) to evaluate the 
out-of-sample forecast performance of EPU and GPU in the predict-
ability of carbon trading risks by comparing the forecast errors of the 
competing models. We subsequently compare the two uncertainty in-
dicators. The traditional and modified DM test equations are specified as 
follows in equations (15) and (16), respectively: 

DM =
diff ∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(diff )/T

√ ∼ N(0, 1) (15)  

MDM =

⎛

⎝
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T + 1 − 2h + T − 1h(h − 1)/T

√
⎞

⎠DM (16)  

Here, diff = l(εCTR) − l(εAR), l(εCTR) is the loss function of the alternative 
carbon risk models. l(εAR) is the loss function of the autoregressive 
(baseline) model, diff∗ and V(diff) are the mean and variance of the loss 
differentials, respectively, and h is the forecast horizon. 

We tested the null E(diff) = 0 against the alternative E(diff) < 0 
(negative DM statistics), which suggests that the carbon risk-based 
models with either EPU or GPU are preferred to the oil-based baseline 
models if the former results in a lower error and proves more accurate 
than the latter. Other possibilities exist, such as E(diff) > 0, where the 
reverse holds, and E(diff) = 0, which shows no difference in forecast 
accuracies. 

3.4. Data issues 

This study obtained data on the daily price of emissions allowances 
EU-ETS spot carbon allowance trading prices from February 2, 2009 to 
8/31/2022 from the DataStream database. We ignored data before 2009 
due to breaks in EU-ETS during the pilot period before 2008. For the 
predictor series in our model, we used the most robust monthly EPU 
series available from http://www.policyuncertainty.com. The EPU in-
dicator is a GDP-PPP-weighted composite index of individual countries’ 
EPU for 21 advanced and emerging countries: the US, Canada, Italy, 
Australia, France, Germany, Ireland, the UK, Sweden, the Netherlands, 
Japan, Spain, South Korea, India, Colombia, China, Greece, Chile, 
Mexico, Brazil, and Russia. Implementing the EPU index as a predictor of 
carbon trading risk is further underscored because of its global appeal 
emanating from text-mined EPU of all the countries mentioned above, 
comprising over 70% of the global PPP-adjusted GDP and representing 
the world’s major financial markets. The monthly EPU data cover 
2009M2–2022M8 (163 months) for global EPU, EU EPU, and US EPU. As 
extensively argued and for comprehensive analysis, we use similar in-
dicators of GPU (https://www.matteoiacoviello.com/gpr.htm) that 
include global GPU, EU GPU, and US GPU. The oil price proxies were 
also obtained monthly across the same period. They were sourced from 
the US Energy Information Administration (https://www.eia.gov/ 
dnav/pet/pet_pri_spt_s1_d.htm) to estimate the baseline model for 
forecasting evaluation. 

4. Results 

4.1. Preliminaries 

This section presents relevant descriptive statistics, including the 
mean and standard deviation values in rows 2 and 3 of the upper and 
lower panels in Table 1, exploratory analyses using graphs in Figs. 1–4, 
and pre-tests in rows 3 to 7 of the two panels in Table 1. The statistics 
reveal some salient features of the data (skewness, kurtosis, persistence, 
and conditional heteroscedasticity) useful for commenting on the anal-
ysis of carbon trading risks. We further analyzed carbon trading risks 
using the four alternative market risk (CAViaR) models provided by 
Engle and Manganelli (2004): the adaptive model (Model 1), symmetric 
absolute value model (Model 2), asymmetric slope model (Model 3), and 
the indirect GARCH model (Model 4). We chose the optimal model 
among the competing models for each of the 1% and 5% tail risks based 
on the Hits% statistics and the DQ probability values. Hits% should be 
close to 1 for CAViaR 1% and 5 for CAViaR 5%, and the DQ statistic 
should be statistically insignificant (Table 2). Therefore, the closer to 1 
or 5 the Hits% and the more insignificant the DQ statistic, the better the 
selected CAViaR model. 

The average price of emissions allowances (carbon price) in the EU- 
ETS is about EUR 18.30 per ton, with the average returns over the daily 
data frequency at approximately 0.06. Compared with the mean, the 
standard deviation values are high, suggesting that market volatility 
(and risk) could be high. Additionally, the average market return is 
negatively skewed and exhibits heavy-tailed (leptokurtic) distribution 
based on excess kurtosis, suggesting the possibility of the market being 
susceptible to risk. This could explain the position of Dou et al. (2022), 
describing the carbon market as a complex volatility model predisposed 
to factors that shape macroeconomic outlook and fundamentals, such as 
macroeconomic uncertainty. The preceding information could also 
suggest that the carbon market is prone to extreme events. Therefore, 
the market informs the choice of the VaR (tail risk) measures to obtain 
the carbon trading risk and the predictive role of EPU and GPU as 
contributors to extreme market events in the international financial 
space. 

Fig. 1 shows that the carbon price was unstable from mid-2018 until 
2022, unlike earlier periods of relative stability. Intuitively, unstable 
prices may give room for market speculation and excessive carbon al-
lowances. Fig. 2 renders the carbon price return, and the carbon trading 
risk constructed from the same data via the VaR is presented together in 
Fig. 3. CAViaR 1% and CAViaR 5% track each other well and should 
produce robust results. Fig. 3 also graphs the two carbon trading risk 
data points against the three EPU indices in Fig. 3 and the three GPU 
indices in Fig. 4. The graphs show visible co-movements between the 
carbon risk proxies and the uncertainty indicators. This suggests that we 
expect a positive nexus between the two and that EPU could better 
predict carbon trading risk than GPU because the former commoves 
more with the carbon risk measures than the latter. 

This study uses two techniques to analyze the predictability of car-
bon market risk with uncertainty. The first is the GARCH-MIDAS, which 
is informed by the difference in the frequency of the carbon market risk 
(predictand) and predictors (EPU and GPU indicators). This technique 
enables us to use the volatility of the carbon return series to measure 
carbon trading risk. The second technique is the Westerlund and Nar-
ayan (2012, 2015) model, estimated using the FQGLS estimator. This is 
justified by the evidence of persistence in the dependent variable (1% 
and 5% carbon risk measures) and the predictor series (global, EU, and 
US EPU and global, EU, and US GPU at a monthly frequency). 

Furthermore, all of the variables exhibit the problem of conditional 
heteroscedasticity, as shown by the ARCH-LM test conducted with 5 and 
10 lags (Table 1). Before estimating the Westerlund and Narayan (2012, 
2015) model, we determined the optimal carbon trading risks among 
competing CAViaR models and the choice of Model 1 (adaptive model) 
for CAViaR 1% and Model 2 (symmetric absolute value model) for 
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Table 1 
Descriptive statistics & pre-tests.  

Statistics EU-ETS (price) EU-ETS (returns) Carbon risk (1%) Carbon risk (5%) Oil price (WTI) Oil price (Brent) 

Mean 18.3010 0.0579 7.6198 4.4499 70.4522 76.3595 
Std. Dev. 19.6956 3.1716 3.3501 1.8848 22.5124 26.2290 
Skewness 2.2460 − 0.9797 2.0217 1.8413 0.0441 0.1730 
Kurtosis 7.4902 18.9176 10.3631 8.8286 2.0604 1.8863 
Persistence 1.0004*** − 0.0005 0.9361*** 0.9698*** 0.9959*** 0.9980*** 

(0.0008) (0.0171) (0.0060) (0.0041) (0.0015) (0.0010) 
ARCH(5) 74,568.1*** 19.2658*** 1789.54*** 3907.24*** 4252.96*** 29,174.6*** 
ARCH(10) 39,148.1*** 9.9875*** 908.46*** 1958.51*** 2126.93*** 14,728.3*** 
NOBS 3390 3390 3390 3390 3390 3390 
Data freq. Daily Daily Daily Daily Daily Daily 

Statistics EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Mean 179.6385 206.0070 122.3608 95.3714 4.3021 2.1567 
Std. Dev. 74.2151 65.9820 84.3769 29.3417 3.5599 0.6902 
Skewness 0.9860 1.0387 2.3891 3.9241 4.8526 2.9352 
Kurtosis 3.2775 4.3366 11.6714 27.548 33.4953 18.2804 
Persistence 0.8928*** 0.7356*** 0.7598*** 0.6706*** 0.8072*** 0.6375*** 

(0.0362) (0.0555) (0.0111) (0.0588) (0.0469) (0.0613) 
ARCH(5) 30.2067*** 10.7298*** 1152.07*** 6.8578*** 14.652*** 6.1863*** 
ARCH(10) 16.4319*** 5.9781*** 589.583*** 3.8597*** 7.0645*** 3.4389*** 
NOBS 163 163 163 163 163 163 
Data freq. Monthly Monthly Monthly Monthly Monthly Monthly 

Note: EU-ETS implies European Union Emissions Trading Scheme, the largest carbon trading market in the world. Prices & returns are the EU-ETS market prices and 
returns. Carbon risks 1% & 5% are measures of carbon allowance trading risks obtained as the optimal 1% and 5% Value at Risks from the Conditional Autoregressive 
Value at Risk approach. WTI & Brent are global crude oil price proxies considered in this study as baseline predictors of carbon trading risk. The economic policy 
uncertainty (EPU) and geopolitical uncertainty (GPU) are the global, EU, & US uncertainty indices. ARCH is the test for conditional heteroscedasticity with 5 & 10 lags. 
NOBS is the number of observations. “***” indicates statistical significance at 1% significance level. 

Fig. 1. EU-ETS carbon trading [Prices & returns].  

Fig. 2. Carbon trading risk and oil proxies.  

I.A. Adediran and R. Swaray                                                                                                                                                                                                                



Economic Modelling 123 (2023) 106279

8

CAViaR 5% (Table 2). This decision is based on the out-of-sample Hits% 
values and the out-of-sample DQ p-values. The chosen models, in the 
family of three other competitors, have the closest Hits% values to 1 and 
5 and the most statistically insignificant DQ p-values. 

4.2. Main results 

We begin the results section with the predictability and out-of- 
sample forecast evaluation of the GARCH-MIDAS model for the EU- 
ETS carbon trading risk based on EPU and GPU. We considered three 
variants of the two uncertainty indicators: global EPU and GPU (which 
comprise the GDP-PPP-weighted composite index of 21 advanced and 
emerging countries), EU EPU and GPU, and US EPU and GPU for robust 

analysis. We expected a priori the coefficient of interest—i.e., theta (θ)— 
to be positively signed to indicate a positive impact of EPU on the carbon 
trading risk. This study’s theoretical framework suggests that higher 
EPU and GPU could precede higher risk levels and volatility in the 
carbon trading market because complex negotiations and regulations 
among global players across many economies influence the market. 
Additionally, unstable carbon allowance prices and returns could in-
crease speculation in the market and flood it with excess allowances, 
resulting in potential implications related to discouraging substituting 
dirty technologies for clean alternatives due to surplus allowances. 

Table 3 presents the results of the GARCH-MIDAS regressions 
(GARCH-MIDAS-Global-EPU, GARCH-MIDAS-EU-EPU, and GARCH- 
MIDAS-US-EPU) compared with (GARCH-MIDAS-Global-GPU, GARCH- 

Fig. 3. Carbon trading risk and economic policy uncertainty.  
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MIDAS-EU-GPU, and GARCH-MIDAS-US-GPU). The coefficient of major 
interest was the theta (θ),7 which indicates the predictability of EPU and 
GPU for carbon risk. The results show that the three EPU and GPU 
indices heighten risk levels in the EU-ETS market, in line with the un-
derlying theoretical intuition of the study. This is reflected in the posi-
tive and statistically significant values of the θ coefficients for the global, 
EU, and US EPU; however, none of the three positive GPU coefficients 
was statistically significant. The exception is the US GPU index. Among 
the three EPU indices, EU EPU shows the biggest impact, followed 
closely by global EPU and US EPU, which is a very distant third; how-
ever, global GPU has a greater impact on carbon trading risk than EU 
GPU. The coefficient of US GPU is insignificant. The results show that 

returns in the EU-ETS market exhibit stronger responses to EPUs in 
European countries than other uncertainties in other countries. These 
findings indicate wider market inefficiencies in the European carbon 
emission market (Rammerstorfer and Wagner, 2009; Borges, 2010). 

Table 4 shows that additional results involve distilling the high un-
certainty series from the EPU and GPU series obtained as the positive 
partial sums (Shin et al., 2014) of the uncertainty variables from their 
level forms; these sums are used as predictors of carbon trading risk.8 

This is more consistent with the body of theoretical constructs that 
largely present arguments about how increased uncertainty affects 
macroeconomic and financial variables, including carbon market fun-
damentals (Bijsterbosch and Guérin, 2013; Kisswani and Elian, 2021; 

Fig. 4. Carbon trading risk and geopolitical uncertainty.  

7 The ARCH and GARCH terms are theoretically expected to be positive 
(a> 0) and strictly positive (b≥ 0),respectively, and the sum less than 1 (i.e., 
a+ b < 1). The two terms fulfill all of the necessary conditions across the 
models, and the respective statistics are all statistically significant. 

8 The mathematics behind the decompositions are as follows: high EPU, 
∑t

j=1ΔEPU+
j =

∑t
j=1 max(ΔEPUt

j ,0); low EPU, 
∑t

j=1ΔEPU−
j =

∑t
j=1 min(ΔEPUt

j ,

0); high GPU, 
∑t

j=1ΔGPU+
j =

∑t
j=1 max(ΔGPUt

j , 0); and low GPU, 
∑t

j=1Δ 

GPU−
j =

∑t
j=1 min(ΔGPUt

j , 0). 
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Table 2 
The Conditional Autoregressive Value at Risk [CAViaR] results.  

Statistic CAViaR 1% CAViaR 5% 

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

β1 0.5741 0.8636 0.8729 1.0300 0.2142 0.1044 0.3775 1.1394 
Standard errors 0.2925 0.4026 1.0791 0.2110 0.0640 0.0464 0.1849 0.0907 
P values 0.0248 0.0160 0.2093 0.0000 0.0004 0.0122 0.0206 0.0000 
β2 0.8039 0.7295 0.8124 0.0000 0.8753 0.8909 0.8728 0.0000 
Standard errors 0.0498 0.0666 0.0567 0.0000 0.0263 0.0398 0.0143 0.0000 
P values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
β3 0.5459 0.3728 1.3318 0.0000 0.2036 0.1133 0.2702 0.0000 
Standard errors 0.1413 0.1361 2.6360 0.0000 0.0382 0.0634 0.0835 0.0000 
P values 0.0001 0.0031 0.3067 0.0000 0.0000 0.0370 0.0006 0.0000 
β5 0.0000 0.7494 0.0000 0.0000 0.0000 0.2442 0.0000 0.0000 
Standard errors 0.0000 0.1240 0.0000 0.0000 0.0000 0.0944 0.0000 0.0000 
P values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0048 0.0000 0.0000 
RQ 330.46 327.15 324.81 370.40 1009.0 1002.1 1005.3 1041.8 
Hits in-sample (%) 1.0333 1.0000 1.0333 0.9667 5.1000 5.0667 5.1667 4.8333 
Hits out-of-sample (%) 2.3136 3.0848 2.8278 2.0566 6.4267 6.4267 6.1697 5.3985 
DQ in-sample (P-values) 0.0000 0.0263 0.0001 0.0002 0.0052 0.0921 0.0049 0.0000 
DQ out-of-sample (P-values) 0.1728 0.0004 0.0084 0.0106 0.6125 0.5704 0.8974 0.6142 

Note: The statistics presented are the Value at Risks obtained from the Conditional Autoregressive Value at Risk (CAViaR) approach detailed in Engle and Manganelli 
(2004). Model 1 = Adaptive model, Model 2 = Symmetric absolute value model, Model 3 = Asymmetric slope model, Model 4 = Indirect GARCH model. The optimal 
CAViaR models are Model 1 for 1% CAViaR and Model 2 for 5% CAViaR judging by the Hits% and statistical insignificance of the DQ statistics. 

Table 3 
Uncertainty-carbon trading risk [GARCH-MIDAS].   

Economic policy uncertainty Geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Theta (θ) 0.0010*** 0.0017*** 0.0006*** 0.0436*** 0.0089** 0.0206 
(0.0002) (0.0002) (0.0002) (0.0022) (0.0042) (0.0141) 

ARCH term 0.1216*** 0.1293*** 0.1199*** 0.0502*** 0.1165*** 0.1162*** 
(0.0070) (0.0077) (0.0071) (0.0025) (0.0066) (0.0066) 

GARCH term 0.8613*** 0.8449*** 0.8636*** 0.9004*** 0.8694*** 0.8701*** 
(0.0075) (0.0092) (0.0078) (0.0043) (0.0071) (0.0070) 

ϖ 1.0046** 1.0391*** 39.402 5.0000*** 49.899 23.456 
(0.4321) (0.1759) (46.026) (0.0008) (54.787) (31.072) 

Mu 0.0012*** 0.0012*** 0.0012*** 0.0014** 0.0013*** 0.0012*** 
(0.0004) (0.0004) (0.0004) (0.0006) (0.0004) (0.0004) 

Constant − 0.0004 − 0.0020*** 0.0005* − 0.0322*** 0.0009*** 0.0009*** 
(0.0003) (0.0003) (0.0002) (0.0015) (0.0002) (0.0004) 

Note: The table presents the results of the mixed data sampling (GARCH-MIDAS) estimation of the economic policy uncertainty-carbon trading risk model and the 
geopolitical uncertainty-carbon trading risk model. Carbon trading risk here is measured with realized volatility obtained from the GARCH-MIDAS model of the EU- 
ETS returns. The carbon trading risk (realized volatility of EU-ETS returns) is the high frequency (daily) variable while the uncertainty series (EPU & GPU) are of lower 
(monthly) frequency. Theta is the key parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. The values in round 
brackets are standard errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 

Table 4 
High uncertainty-carbon trading risk [GARCH-MIDAS].   

High economic policy uncertainty High geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Theta (θ) 0.0190*** 0.0149*** 0.0161*** 0.0166*** 0.0168*** 0.0143*** 
(0.0051) (0.0040) (0.0044) (0.0047) (0.0027) (0.0039) 

ARCH term 0.1190*** 0.1188*** 0.1184** 0.1180*** 0.1492*** 0.1172*** 
(0.0063) (0.0063) (0.0063) (0.0067) (0.0061) (0.0063) 

GARCH term 0.8681*** 0.8679*** 0.8682*** 0.8691*** 0.8345*** 0.8702*** 
(0.0066) (0.0067) (0.0066) (0.0069) (0.0055) (0.0065) 

ϖ 36.657 31.405 39.912 6.8114 3.5156 24.881 
(130.1) (119.28) (142.86) (36.65) (4.378) (89.797) 

Mu 0.0013*** 0.0012*** 0.0012*** 0.0012*** 0.0025*** 0.0012*** 
(0.0004) (0.0004) (0.0004) (0.0004) (0.0003) (0.0004) 

Constant 0.0004** 0.0005*** 0.0005*** 0.0004** − 0.0004*** 0.0005*** 
(0.0001) (0.0002) (0.0002) (0.0002) (0.00007) (0.0002) 

Note: The table presents the results of the GARCH-MIDAS estimation where the predictors of carbon trading risk are high economic policy uncertainty and high 
geopolitical uncertainty. Carbon trading risk here is measured with realized volatility obtained from the GARCH-MIDAS model of the EU-ETS returns. The carbon 
trading risk (realized volatility of EU-ETS returns) is the high frequency (daily) variable while the uncertainty series (EPU & GPU) are of lower (monthly) frequency. 
Theta is the key parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. The values in round brackets are standard 
errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 
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Shafiullah et al., 2021; Yilanci and Kilci, 2021). Considering the high 
uncertainty series, all three EPU and GPU indices have positive and 
significant coefficients, as expected. This further reinforces the results in 
Table 3, showing the uncertainty–carbon risk nexus as positive; how-
ever, to demonstrate the consistency of the result, we also show that a 
reduction in the uncertainty indices reduces carbon trading risk 
(Table 5) and the higher the uncertainty, the higher the carbon trading 
risk. 

The above description suggests that EPU and GPU indices could have 
predictive content for the EU market carbon trading risk. The results 
largely corroborate Dai et al.‘s study results (2021), although these 
include an additional EPU index and comparison between EPU and GPU 
indicators. The results are similar to other research data that show that 
uncertainty indices can be exploited to forecast other financial markets, 
including stock and energy markets (Liu et al., 2017; Junttila and Vataja, 
2018; Yu and Song, 2018; Rakpho and Yamaka, 2021; Yu and Huang, 
2021). We examined the predictive power of twin uncertainty compared 

with the oil price as the baseline predictor of the carbon price. The 
underlying results in Table A1 affirm that the two oil price proxies also 
contribute to higher carbon price volatility; hence, the oil price-based 
model can be a benchmark for forecast evaluation (Hammoudeh et al., 
2015; Shafiullah et al., 2021). We subsequently considered a forecast 
evaluation based on models that include oil price proxies as a bench-
mark to evaluate the predictive content of our uncertainty-based pre-
dictive models of carbon trading risks. 

To make the analysis more robust and extensive, we also estimated 
the carbon trading predictive model designed according to the West-
erlund and Narayan (2012, 2015) model, calculated with the FQGLS 
estimator. This estimation is preceded by obtaining the carbon trading 
risks via the VaR approach, which produces two carbon market risk 
measures (CAViaR 1% and CAViaR 5%). These are considered alterna-
tive carbon risk measures in the predictive models that contain either 
EPU (global EPU, EU EPU, and US EPU) or GPU (global GPU, EU GPU, 
and US GPU) as alternative predictors of carbon risk. 

Table 5 
Low uncertainty-carbon trading risk [GARCH-MIDAS].   

Low economic policy uncertainty Low geopolitical uncertainty 

EPU EPU EPU GPU GPU GPU 

(Global) (EU) (US) (Global) (EU) (US) 

Theta (θ) − 0.2214 − 0.0977 − 0.0219*** − 0.0322** − 0.0043 − 0.0283*** 
(0.3184) (0.1091) (0.0082) (0.0131) (0.5627) (0.0127) 

ARCH term 0.1054*** 0.1040*** 0.1034*** 0.1084*** 0.0745*** 0.1084*** 
(0.0056) (0.0056) (0.0068) (0.0063) (0.0034) (0.0068) 

GARCH term 0.8936*** 0.8938*** 0.8885*** 0.8840*** 0.9254*** 0.8842*** 
(0.0052) (0.0053) (0.0065) (0.0061) (0.0035) (0.0062) 

ϖ 6.5561 49.851 7.8234 1.3177 5.0565 46.911 
(20.128) (106.57) (67.28) (8.2102) (30.173) (239.87) 

Mu 0.0011** 0.0011** 0.0011** 0.0010** 0.0011** 0.0011** 
(0.0004) (0.0004) (0.0004) (0.0005) (0.0004) (0.0004) 

Constant − 0.0022 − 0.0008 0.0003 0.0004 0.0024 0.0002 
(0.0031) (0.0011) (0.0003) (0.0006) (0.0026) (0.0002) 

Note: The table presents the results of the GARCH-MIDAS estimation where the predictors of carbon trading risk are low economic policy uncertainty and low 
geopolitical uncertainty. Carbon trading risk here is measured with realized volatility obtained from the GARCH-MIDAS model of the EU-ETS returns. The carbon 
trading risk (realized volatility of EU-ETS returns) is the high frequency (daily) variable while the uncertainty series (EPU & GPU) are of lower (monthly) frequency. 
Theta is the key parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. The values in round brackets are standard 
errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 

Table 6 
Uncertainty-carbon trading risk [Westerlund & Narayan].   

Economic policy uncertainty Geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Carbon trading risk [CAViaR 1%] 

Constant 5.5524*** 4.1625*** 5.6007*** 5.9205*** 6.7357*** 6.1875*** 
(0.0436) (0.1249) (0.0996) (0.0789) (0.0231) (0.0032) 

Beta-adjusted 0.0104*** 0.0159*** 0.0125*** 0.0145*** 0.0955*** 0.4632*** 
(0.0004) (0.0005) (0.0012) (0.0012) (0.0066) (0.0018) 

RMSE 2.7050 2.6029 2.7617 2.8015 2.7894 2.8047 
DM − 1.8780* − 3.0303*** − 1.4512 − 0.3698 − 0.6768 − 0.4146 
MDM − 1.8719* − 3.0206*** − 1.4466 − 0.3686 − 0.6746 − 0.4133  

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 
Carbon trading risk [CAViaR 5%] 

Constant 3.0942*** 2.3937*** 2.9580*** 3.2635*** 3.7678*** 3.3419*** 
(0.0260) (0.0754) (0.0675) (0.0395) (0.0103) (0.0309) 

Beta-adjusted 0.0059*** 0.0076*** 0.0071*** 0.0094*** 0.0633*** 0.3612*** 
(0.0001) (0.0003) (0.0004) (0.0004) (0.0024) (0.0176) 

RMSE 1.6503 1.6336 1.7190 1.7025 1.7068 1.7085 
DM − 3.2806*** − 3.5147*** − 1.7320* − 1.5116 − 1.5529 − 1.5495 
MDM − 3.2700*** − 3.5034*** − 1.7264* − 1.5067 − 1.5479 − 1.5445 

Note: The table presents the results of the Westerlund & Narayan estimation of the economic policy uncertainty-carbon trading risk model and the geopolitical 
uncertainty-carbon trading risk model. Carbon trading risk here is measured with CAViaR 1% and CAViaR 5% obtained from the Conditional Autoregressive Value at 
Risk. Beta-adjusted is the key parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. RMSE represents the root mean 
square error of the models. DM and MDM are the Diebold & Mariano and Modified Diebold & Mariano test statistics for in-sample forecast evaluation. The values in 
round brackets are standard errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 
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Table 6 presents the in-sample predictability results demonstrating 
the impact of the uncertainty indicators on the carbon market risk. As 
seen in the modeling section, the major coefficient of interest is the beta- 
adjusted coefficient. The beta-adjusted coefficients are analogous to the 
theta coefficients obtained from the GARCH-MIDAS regression. There-
fore, the predictability results are consistent as they also show that EPU 
and GPU and their variants heighten the carbon trading risks obtained 
from the tail risk measure. The beta-adjusted coefficients are positive 
and significant in the alternative models for CAViaR 1% and CAViaR 
5%. The results are consistent in that high GPU and EPU indices ob-
tained as positive partial sums of the level uncertainty series positively 
affect carbon market risk levels (Table 7). Interestingly, this positive 

relationship is consistent with the results in Table 8 since low uncer-
tainty also reduces carbon trading risk. The findings further reinforce 
the evidence from the GARCH-MIDAS regression that carbon market risk 
can be tamed by paying adequate attention to the two primary drivers of 
macroeconomic uncertainty. 

For the forecast evaluation, we compared the carbon trading risk 
(CAViaR 1%-based and CAViaR 5%-based) predictive models with a 
benchmark model that includes oil prices in place of the EPU and GPU 
index, as previously justified. Subsequently, we compared the two 
uncertainty-based models to comment on the predictive content of EPU 
and GPU. We used modified Diebold and Mariano (MDM) statistics for 
the forecasting evaluation. The MDM statistics should be negative and 

Table 7 
High uncertainty-carbon trading risk [Westerlund & Narayan].   

High economic policy uncertainty High geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Carbon trading risk [CAViaR 1%] 

Constant 5.6299*** 5.7665*** 5.8464*** 6.0876*** 5.9183*** 5.7159*** 
(0.0154) (0.1452) (0.0231) (0.0864) (0.1615) (0.0175) 

Beta-adjusted 0.2310*** 0.1592*** 0.1923*** 0.1757*** 0.0964*** 0.1913*** 
(0.0068) (0.0144) (0.0046) (0.0114) (0.0130) (0.0038) 

RMSE 2.7745 2.7568 2.7792 2.7896 2.8102 2.8245 
DM − 0.1879 − 0.4607 − 0.1184 0.0599 0.4678 0.6639 
MDM − 0.1873 − 0.4592 − 0.1180 0.0597 0.4663 0.6617  

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 
Carbon trading risk [CAViaR 5%] 

Constant 3.2336*** 3.2436*** 3.2929*** 3.2765*** 3.1172*** 3.3064*** 
(0.0086) (0.0055) (0.0095) (0.0219) (0.0088) (0.0435) 

Beta-adjusted 0.1181*** 0.1227*** 0.1323*** 0.1155*** 0.0857*** 0.0960*** 
(0.0021) (0.0004) (0.0017) (0.0033) (0.0032) (0.0044) 

RMSE 1.7179 1.7169 1.7217 1.7337 1.7348 1.7352 
DM − 1.0427 − 1.0642 − 0.9497 − 0.6319 − 0.5698 − 0.6075 
MDM − 1.0393 − 1.0608 − 0.9466 − 0.6299 − 0.5680 − 0.6055 

Note: The table presents the results of the Westerlund & Narayan estimation where the predictors of carbon trading risk are high economic policy uncertainty and high 
geopolitical uncertainty. Carbon trading risk here is measured with CAViaR 1% and CAViaR 5% obtained from the Conditional Autoregressive Value at Risk. Beta- 
adjusted is the major parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. RMSE represents the root mean 
square error of the models. DM and MDM are the Diebold & Mariano and Modified Diebold & Mariano test statistics for in-sample forecast evaluation. The values in 
round brackets are standard errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 

Table 8 
Low uncertainty-carbon trading risk [Westerlund & Narayan].   

Low economic policy uncertainty Low geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Carbon trading risk [CAViaR 1%] 

Constant 5.7216*** 6.4873*** 5.8942*** 6.0676*** 6.0919*** 5.7745*** 
(0.0589) (0.0916) (0.0922) (0.0797) (0.0399) (0.0102) 

Beta-adjusted − 0.2621*** − 0.1335*** − 0.1988*** − 0.2061*** − 0.1113*** − 0.1970*** 
(0.0079) (0.0087) (0.0104) (0.0093) (0.0028) (0.0027) 

RMSE 2.8263 2.7536 2.7943 2.7848 2.7712 2.8151 
DM 0.6019 − 0.9332 0.1618 − 0.0290 − 0.3686 0.5246 
MDM 0.6000 − 0.9302 0.1688 − 0.0289 − 0.3674 0.5229  

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 
Carbon trading risk [CAViaR 5%] 

Constant 3.2189*** 3.3105*** 3.2673*** 3.3363*** 3.4345*** 3.3747*** 
(0.0098) (0.0064) (0.0008) (0.0225) (0.0196) (0.0303) 

Beta-adjusted − 0.1445*** − 0.1185*** − 0.1277*** − 0.1211*** − 0.0650*** − 0.1059*** 
(0.0025) (0.0035) (0.0004) (0.0028) (0.0026) (0.0020) 

RMSE 1.7351 1.7457 1.7315 1.7214 1.6992 1.7159 
DM − 0.5942 − 0.2916 − 0.6961 − 1.0627 − 1.8498* − 1.2140 
MDM − 0.5923 − 0.2906 − 0.6939 − 1.0593 − 1.8438* − 1.2101 

Note: The table presents the results of the Westerlund & Narayan estimation where the predictors of carbon trading risk are low economic policy uncertainty and low 
geopolitical uncertainty. Carbon trading risk here is measured with CAViaR 1% and CAViaR 5% obtained from the Conditional Autoregressive Value at Risk. Beta- 
adjusted is the major parameter of interest which measures the impacts of the uncertainty indicators on the carbon trading risk. RMSE represents the root mean 
square error of the models. DM and MDM are the Diebold & Mariano and Modified Diebold & Mariano test statistics for in-sample forecast evaluation. Values in round 
brackets are standard errors. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 
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statistically significant to indicate that models with EPU or GPU as the 
predictor perform better than those using oil price proxies. For the out- 
of-sample forecast evaluation of the models, we considered an analysis 
with 75:25 data split over four forecast horizon periods (3 months, 6 
months, 9 months, and 12 months ahead). 

The out-of-sample forecast evaluation conducted with the modified 
MDM test in Table 9 suggests that only global EPU and EU EPU 
consistently outperform the West Texas Intermediate and Brent crude oil 
price-based predictive models. The associated MDM statistics were 
negative and statistically significant. Similar statistics for US EPU are 
negative but insignificant; however, most of the GPU indices are positive 
and insignificant; therefore, GPU cannot outperform the oil price as a 
better predictor of carbon price risk. This result does not mean that GPU 
cannot predict carbon price, but its predictive content is lower than the 
oil price. We probed further to confirm that our conclusion is consistent 
based on a comparison between the uncertainty series and oil price as a 
benchmark. To do so, we compared the out-of-sample forecast between 
EPU and GPU in Table 10. The results show that our conclusion is 
consistent in that EPU predicts carbon trading risk better than GPU; 
hence, better prediction of carbon trading risk can be achieved with the 
information contained in global and EU EPUs. 

5. Conclusions and policy recommendations 

As a strategy to fight climate change, trading carbon allowances is 
useful as a market-based approach to further the decarbonization 
agenda and ensure that the global economy completely disconnects 
economic growth from carbon emissions. The carbon trading system 
allows carbon emissions to be priced so parties can hold carbon emission 
allowances; thus, energy-intensive companies can transition from dirty 
to clean energy technologies. Parties with excess allowances can trade 
the surplus with those with shortages if the opportunity cost of decar-
bonization is higher than the holding of allowances; however, the 
financialization of the market makes it challenging to separate trading 
from speculative activities and other factors that drive financial markets. 
When the macroeconomic outlook is uncertain, economic agents 
become hesitant and investment decreases, increasing the risk levels of 
the financial market as investor sentiments heighten and equity prices 
destabilize. 

The problems mentioned above are undesirable for the carbon 
trading market. Stable prices and relatively scarce allowances are vital 
to ensuring that the market continues to function effectively, enabling 
economic agents to abandon dirty technologies for cleaner alternatives. 
Therefore, this study examined the nexus between uncertainty and the 
risk levels of the carbon trading market and distinguished between two 
primary forms of macroeconomic uncertainty: EPU and GPU. To ensure 
that the analyses were robust, we used data related to the two uncer-
tainty indicators at the global level: EU EPU and GPU indices and US 
EPU and GPU indices. In addition, we measured the carbon trading risk 
through the realized volatility and VaR approaches. 

Specifically, this study utilized the GARCH-MIDAS modeling 
framework to address the inherent drawbacks of traditional aggrega-
tion/disaggregation methods that result in loss of information from 
mixed-frequency carbon prices/economic uncertainty series. Addition-
ally, we used conditional autoregressive VaR to compute the tail dis-
tribution to evaluate the downside risk of the carbon return series and 
estimate the predictability of carbon trading risk with a modeling 
approach that accounts for the salient features of the data. This paper’s 
empirical results are rendered as in-sample and multi-horizon out-of- 
sample predictability and forecast analysis, which were evaluated using 
the MDM tests. 

This study’s findings indicate that returns on EU-ETS markets exhibit 
a stronger response to EPUs in European countries than other countries. 
In line with our underlying theoretical intuition, the results show that 
the three EPU and GPU indices heighten risk levels in the EU-ETS 
market, as illustrated by the coefficients’ positive and statistically sig-
nificant values across the explored estimation approaches. The forecast 

Table 9 
Out-of-sample forecast evaluation [Uncertainty vs. Baseline].   

Economic policy uncertainty Geopolitical uncertainty 

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 

Out-of-sample forecast evaluation [CAViaR 1%] 

h = 3 − 1.6663* − 3.5434*** − 1.0555 0.9879 0.4203 0.9173 
h = 6 − 1.6447* − 3.4876*** − 1.0440 1.1224 0.5588 0.9544 
h = 9 − 1.8758* − 3.4404*** − 1.3571 − 0.2911 − 0.5767 − 0.2926 
h = 12 − 1.8793* − 3.3872*** − 1.3682 − 0.3228 − 0.6092 − 0.3371  

EPU (Global) EPU (EU) EPU (US) GPU (Global) GPU (EU) GPU (US) 
Out-of-sample forecast evaluation [CAViaR 5%] 

h = 3 − 3.8380*** − 3.4397*** − 1.2363 − 1.1027 − 1.1473 − 1.0832 
h = 6 − 3.7934*** − 3.4051*** − 1.2333 − 0.9961 − 1.0358 − 1.0188 
h = 9 − 3.1322*** − 3.0588*** − 1.5576 − 1.3627 − 1.3768 − 1.3806 
h = 12 − 3.1263*** − 3.0507*** − 1.5465 − 1.3693 − 1.3902 − 1.3928 

Note: This table presents the results of Modified Diebold & Mariano out-of-sample forecast evaluation test. The test compares the preferred uncertainty-based model 
against the oil price-based predictive model as the baseline model. The forecast evaluation extends over 3-, 6-, 9-, & 12-month ahead forecasts. The preferred model is 
adjudged to better predict carbon trading risk than the baseline if the reported statistic is negative and significant. Otherwise, the oil price-based model outperforms the 
uncertainty-based model if the statistic is positive and significant. ***,**, & * indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 

Table 10 
Out-of-sample forecast evaluation [Policy uncertainty vs. Geopolitical 
uncertainty].   

Global (EPU vs. GPU) EU (EPU vs. GPU) US (EPU vs. GPU) 

Out-of-sample forecast evaluation [CAViaR 1%] 

h = 3 − 2.1057** − 3.2776*** − 1.2943 
h = 6 − 2.1485** − 3.2791*** − 1.3030 
h = 9 − 1.8987* − 3.1702*** − 0.9188 
h = 12 − 1.8704* − 3.0871*** − 0.8910  

Global (EPU vs. GPU) EU (EPU vs. GPU) US (EPU vs. GPU) 
Out-of-sample forecast evaluation [CAViaR 5%] 

h = 3 − 2.6570*** − 2.8051*** − 0.1680 
h = 6 − 2.7113*** − 2.8544*** − 0.2243 
h = 9 − 2.2104** − 2.3384** 0.2716 
h = 12 − 2.1854** − 2.3033** 0.3004 

Note: This table presents the results of Modified Diebold & Mariano out-of- 
sample forecast evaluation test. The test compares the economic policy 
uncertainty-based model against the geopolitical uncertainty-based model. The 
forecast evaluation extends over 3-, 6-, 9-, & 12-month ahead forecasts. The 
policy uncertainty model is adjudged to outperform the geopolitical uncertainty 
model if the reported statistic is negative and significant. The reverse holds if the 
statistic is positive and significant. ***,**, & * indicates statistical significance at 
1 percent, 5 percent, & 10 percent respectively. 
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evaluation conducted with the modified MDM tests indicates that 
EPU—primarily global EPU and EU EPU—better predict the carbon 
trading risk than their GPU counterparts, global GPU and EU EPU. 
Generally, policymakers, specifically the Cooperation of Parties under 
the UNFCCC, should understand that macroeconomic uncertainty is 
inimical to the carbon-free economy goal. Researchers and investors 
wishing to minimize downside risk should also pay attention to mac-
roeconomic uncertainty—specifically EPU—as a significant indicator of 
whether or not to hold carbon allowances in an investment portfolio. 

Since no study is entirely exhaustive, future research could focus on a 
burgeoning area of research: the connection between climate risk and 
fundamentals in the carbon allowance market, such as carbon prices, 
returns, volatility, and risk. Prospective researchers interested in this 
area could construct (daily) climate risk indices or use available climate 
data, e.g., temperature anomaly data from the NASA Goddard Institute 

for Space Studies (https://data.giss.nasa.gov/gistemp/) or climate pol-
icy uncertainty data (https://www.policyuncertainty.com/climate_u 
ncertainty.html). For background information on the indices 
mentioned above for macroeconomic analysis, see Oloko et al. (2022) 
and Adediran et al. (2023). 
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Appendix  

Table A1 
Oil price-carbon trading risk nexus   

Full data sample 75% data sample 

WTI Brent WTI Brent 

Theta (θ) 0.0009** 0.0634*** 0.0011** 0.0013*** 
(0.0004) (0.0037) (0.0005) (0.0005) 

ARCH term 0.1228*** 0.0502*** 0.1151*** 0.1161*** 
(0.0076) (0.0025) (0.0079) (0.0081) 

GARCH term 0.8586*** 0.9002*** 0.8731*** 0.8719*** 
(0.0086) (0.0077) (0.0082) (0.0084) 

ϖ 5.4846 5.0000*** 4.7389 4.0337 
(7.0059) (0.0031) (5.8452) (3.4936) 

Mu 0.0013*** 0.0012** 0.0011** 0.0011** 
(0.0005) (0.0006) (0.0005) (0.0005) 

Constant 0.0007*** − 0.0264*** 0.0005* 0.00032 
(0.0003) (0.0016) (0.0003) (0.0003) 

Note: The table presents the results of the baseline model where the oil price proxies serve as the predictors of carbon trading risk 
in the GARCH-MIDAS framework. Carbon trading risk here is measured with realized volatility obtained from the GARCH-MIDAS 
model of the EU-ETS returns. The carbon trading risk (realized volatility of EU-ETS returns) is the high frequency (daily) variable 
while the oil price series (WTI & Brent) are of lower (monthly) frequency. Theta is the key parameter of interest which measures 
the impacts of the uncertainty indicators on the carbon trading risk. The values in round brackets are standard errors. ***,**, & * 
indicates statistical significance at 1 percent, 5 percent, & 10 percent respectively. 
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