I I JOURNAL OF
OBJECT TECHNOLOGY

Journal of Object Technology | RESEARCH ARTICLE

Interface Contracts for Workflow+ Models: an Analysis
of Uncertainty across Models

Richard F. Paige*, Fiona A.C. Polack?, Steffen Zschalerf, Thomas Chiang*, and Nicholas Annable*

*McMaster University, Canada
*University of Hull, United Kingdom
*King’s College London, United Kingdom

ABSTRACT Workflow models are used to rigorously specify and reason about diverse types of processes. The Workflow+
(WF*) framework has been developed to support unified modelling of the control and data in processes that can be used to
derive assurance cases that support certification. However, WFT is limited in its support for precise contracts on workflow
models, which can enable powerful forms of static analysis and reasoning. In this paper we propose a mechanism for adding
interface contracts to WF* models, which can thereafter be applied to tracing and reasoning about the uncertainty that arises
when combining heterogeneous models. We specifically explore this in terms of design models and assurance case models.
We argue that some of the key issues in managing some types of uncertainty can be partly addressed by use of interface

contracts.

KEYWORDS Uncertainty, modelling, process models, interface contracts.

1. Introduction

A model captures information about phenomena of interest,
e.g., a system’s properties, software’s behaviour, constraints
on a design. Very often, models are developed iteratively and
incrementally, in response to improved understanding about
said phenomena. This improved understanding can be acquired
through user-centred means (e.g., interviews with stakehold-
ers, design workshops), through analysis of the incomplete or
partial models that have been so far derived, or through applica-
tion of refinement and refactoring rules that allow engineers to
systematically improve models.

Of the many different types of models used in systems en-
gineering, for architecture and design, requirements (e.g., use
cases, SysML requirements diagrams), etc., this paper focuses
on process models. A process model captures a set of activi-
ties or tasks that can be carried out in some order, according
to some schedule, by a set of actors. A number of process

JOT reference format:

Richard F. Paige, Fiona A.C. Polack, Steffen Zschaler, Thomas Chiang, and
Nicholas Annable. Interface Contracts for Workflow+ Models: an Analysis of
Uncertainty across Models. Journal of Object Technology. Vol. 21, No. 4,
2022. Licensed under Attribution - NonCommercial - No Derivatives 4.0
International (CC BY-NC-ND 4.0) http://dx.doi.org/10.5381/j0t.2022.21.4.a6

modelling languages have been developed, including business
process modelling languages (the current standard is Business
Process Definition Metamodel') and activity diagrams.

Going beyond the foundations of process modelling, Work-
flow+ (WFT) (Annable et al. 2022) is a framework that has been
developed to provide unified modelling of data and control in
processes. Originally developed to help specify safety-related
processes in critical systems engineering, WF provides a set
of modelling concepts for capturing and reasoning about the
interactions between data and control in a variety of processes.
As a framework, it needs to be instantiated in order to pro-
vide a domain-specific modelling language for a particular con-
text (e.g., modelling aerospace software engineering processes).
WFT can be used to document work already done, as well as
processes that remain to be enacted.

A key goal of WF is to model processes in a way that sup-
plies information needed for (safety) assurance. In particular, it
was developed to help systematise the generation of assurance
cases, with support for traceability between data and control
activities and the derived assurance case elements. This in
turn enables other forms of analysis, especially impact analysis.
These elements have been explored in depth in a recent project

! https://www.omg.org/spec/BPDM

An AITO publication

http://dx.doi.org/10.5381/jot.2022.21.4.a6
https://www.omg.org/spec/BPDM

with an industrial partner in the safety-critical domain.

A significant limitation of WET, discovered during the afore-
mentioned project, is its support for modelling the activities
that make up behaviours: they are modelled as coarse-grained
artefacts, with no way to represent what each activity requires
in order to successfully complete its tasks, or what successful
completion then ensures. This lack of a notion of an interface
contract limits the scope and depth of impact analysis, and,
indeed, other forms of analysis.

Interface contracts are particularly important with respect
to analysing and reasoning about uncertainty with respect to a
process model. Interface contracts express constraints on pro-
cess models so as to highlight uncertainty, constrain activities
so that uncertainty is more manageable, and define how pro-
cesses can be connected with other processes to mitigate or
eliminate uncertainty: this is a notion of inter-modelling, i.e.,
composing two (or more) models at potentially different levels
of abstraction. To illustrate, consider the situation where there
are two process models expressed in UML activity diagrams,
one models a software engineering process used by an organisa-
tion, while the other models a safety engineering process. It is
desired to inter-relate these two models via trace links, for ex-
ample, connecting a Review activity in the software engineering
process, with a Hazard Analysis activity in the safety engineer-
ing process. Consider as well the situation where the software
engineering activity of Review is subject to uncertainty: the
process model does not capture what constitutes a Review, what
inputs it requires, what it produces, and what it depends on. We
argue that providing interface contracts on process models can
help manage this situation, and others.

This paper makes several contributions. It summarises the
WET framework for modelling, and describes its Model-Driven
Engineering (MDE) underpinnings. The limitations of WF* are
also highlighted. We then present a lightweight extension to
WF™ to support interface contracts, particularly preconditions
and postconditions. We illustrate both the original WF* and
its extension with a representative example from the safety
engineering domain. Finally, we highlight opportunities that
arise from this extension in terms of supporting richer forms
of analysis, particularly in supporting forms of analysis with
respect to uncertainty.

Our motivation for writing this paper is twofold: to propose
an extension to WF to address the specific process modelling
challenge of supporting richer forms of analysis; and to illustrate
challenges pertaining to uncertainty modelling in the context of
process models.

2. Related Work

2.1. Process modelling

Process modelling is the description of activities and their inter-
relationships (Rolland et al. 1999). A process model captures
an abstraction of a workflow of some kind. Process modelling
is broadly applied in systems and software engineering. Particu-
lar applications include business process modelling (Laguna &
Marklund 2004) which captures activities and interrelationships
pertaining to the behaviour of an enterprise, and software pro-

2 Paige et al.

cess modelling, which captures software engineering activities
and their interrelationships. In the former, a wide range of busi-
ness processes have been captured in real-world examples, in-
cluding procurement processes, manufacturing, insurance claim
processing, and others. In the latter, a range of software engi-
neering processes (e.g., waterfall, spiral, V-model) have been
modelled in order to support scheduling, critical path analy-
sis, workload modelling, etc. The purpose of capturing these
models is multifold: to enhance understanding of what may
be sophisticated and complicated processes; to enable analysis,
e.g., to identify bottlenecks or sources of delay in process; and
to support automation, e.g., to automate the management and
execution of workflows, including determining to what extent a
process has executed.

Numerous languages have been proposed to support process
modelling across a range of domains. UML activity diagrams
(UML 2.5.1 Specification 2017) provide a domain-agnostic syn-
tax and semantics that supports capturing activities, dependen-
cies between activities, synchronisation points, and concurrency.
Activity diagrams are a rich formalism supported by numerous
modelling tools (e.g., Papyrus, Visual Paradigm, PTC Integrity
Modeller), and have been used for many purposes, including
simulation and workflow modelling. However, because they are
founded on UML state diagrams, they do not make it immedi-
ately clear which objects in a system execute which activities.
It is difficult to express hierarchy in activity diagram models of
workflows: a new activity diagram is required for each work-
flow. As a result, diagrammatic models become complicated
very quickly.

Business Process Modeling and Notation (BPMN) (BPMN
2.0 Handbook Second Edition: Methods, Concepts, Case Stud-
ies and Standards in Business Process Management Notation
2011) shares some features with activity diagrams (e.g., swim-
lanes and flow) but introduces concepts specifically for business
process modelling, including gateways and transactions. It has
seen substantial use in domains such as automating procurement
processes, insurance claim handling processes, and supporting
low-code development. BPMN and activity diagrams have very
similar expressiveness. However, BPMN does not support data
modelling, nor does it provide the level of formality that activity
diagrams does through its metamodel and its static semantic
constraints. BPMN does have mappings to an implementation
platform, BPEL, though this mapping is not always straightfor-
ward.

The process modelling approaches discussed above focus on
modelling processes that are to be executed—aiming, inter alia,
to ensure that they are executed correctly or to provide (partial)
automation of process execution. There is an alternative per-
spective: often it is important to document processes that have
happened. This is, for example, important when constructing
safety assurance cases. More generally, documentation of the
processes that have led to the development of an artefact has
been studied using the notion of data provenance. Generic and
fundamental concepts for data provenance have, for example,
been captured and standardised in the PROV ontology (Lebo et
al. 2014).

From a process modelling perspective, work on WF™ has so

far focused on how to capture information relevant to safety in
WEFT metamodels so that when it is instantiated we can support
assurance case development. Ultimately the framework aims to
enable the use of WFT metamodels as reusable templates that
guide development of safety-critical systems and their assurance,
but we have not yet considered how to model how the workflow
should be executed. One benefit of adding contracts is that
we take a step towards specifying how a workflow should be
executed by enabling conditions on when a process can begin
and be considered completed.

2.2. Uncertainty modelling
Uncertainty is a pervasive issue in software and systems en-
gineering. There are different sources of uncertainty, such as
uncertainty about measurements or uncertainty in predictions
of system properties from early-stage design models. However,
irrespective of the source of uncertainty, it is important that
as many as possible of the known uncertainties are captured
explicitly to enable a systematic and well-founded development
process. This is particularly the case for system properties about
which an assurance case must be made, as it is important to
understand the robustness of the assurance argument.
Uncertainty is a topic of increasing interest in many areas
of computer science, building on attempts to define a useful
classification of uncertainty. Some examples of classifications
based on review of existing ontologies are

— Jousselme et al. (Jousselme et al. 2003): a classification
from a situational analysis perspective, distinguishing, for
example, ignorance (a state of mind) and uncertainty (a
consequence of limitations in observation);

— Padulo and Guenov (Padulo & Guenov 2012): a separation
into uncertainty about and uncertainty within a design
space or problem.

A useful classification comes from Esfahani and Malek (Esfa-
hani & Malek 2013), who identify two uncertainty dichotomies:

— reducible versus irreducible, which underpins management
of uncertainty;

— aleatory versus epistemic, which capture the essential na-
ture of an uncertainty, where aleatory uncertainty is a vari-
ation in the underlying system (for example, due to appar-
ently random events — this form of uncertainty is often rep-
resented by statistical prediction models or probabilities)
and epistemic uncertainty is due to a lack of knowledge
(for example about a parameter or process in the system,
which can be resolved).

In (Bernardi et al. 2021), irreducible uncertainty is elabo-
rated as phenomena that are inherently unknowable — uncer-
tainty that persists even in the presence of complete information.
Reducible uncertainty can, however, be resolved by improved
understanding. Irreducible uncertainties need to be recorded:
they are, in a sense, facts about the limitation of certainty.

Reducible aleatory uncertainty cannot be eliminated, but
models used to derive distributions or probabilities may be
improved: the recording of what the uncertainty appears to be
and how it is modelled is important, but quantification of the

effect can never be exact. Reducible epistemic uncertainty is
subject to cost-benefit: some can eventually be eliminated (e.g.
because a parameter or process is tied down in implementation),
but it may not be worth the effort.

The most comprehensive review of uncertainty in model-
based engineering is the systematic review conducted by Troya
et al. (Troya et al. 2021). The paper brings together academic
and practically-based work addressing modelling uncertainty,
under the headings of behaviour, belief, design, measurement,
occurrence, and spatiotemporal. The authors note the immatu-
rity of most work on uncertainty, but also the growing body of
work on real and industrial problems. None of the studies sur-
veyed looks at orthogonal models such as the assurance process
(model). In considering workflows and assurance, we are deal-
ing with at least behaviour, belief, measurement and occurrence.
Of more than 200 papers included in the survey, a minority
address real-world (including critical systems) examples, but
none addresses assurance (Troya et al. 2021).

There is a wide range of research on modelling and man-
aging uncertainty. Vallecillo (Vallecillo 2019), Zhang et al.
(Zhang et al. 2016), and others, propose metamodel extensions
to record belief. Belief recording is useful, but does not cur-
rently support evaluation of cumulative uncertainty or its effect.
Attempts to quantify uncertainty or express the limits of cer-
tainty have focused on statistics and probability, for instance
through Bayesian systems (Dai et al. 2007), or mathematical
modelling of uncertain characteristics, e.g. (Oberkampf et al.
2002; Patelli et al. 2012): these approaches require some insight
into the distribution of possible values (e.g. of a parameter, or
the strength of a belief), and are themselves subject to (undocu-
mented) uncertainty. Fuzzy logic is also unable to handle sub-
jective uncertainty, but, more recently, subjective logic admits
subjective levels of uncertainty, with some scope to combine
uncertainties e.g. (Munoz et al. 2021).

In this paper, we use a simple classification, differentiating
only between aleatory and epistemic uncertainty.

3. Workflow+: an example of process mod-
elling

In this section we provide an overview of the WFT framework,
introduce a running example and highlight some key limitations
of WFT.

WF™ provides a unified view of data and control for mod-
elling of processes (Annable et al. 2022). This is particularly
useful where activities must be carried out in order to ensure
safety. This has been used in practice to model industrial safety
assurance activities and can also model the software develop-
ment process; more details on WEFT can be found in (Annable
2020), with an overview of developing tool support in (Chiang
2021).

The WF framework requires experts in specific domains
(such as automotive or aerospace) to encode their knowledge
on what must be done during development to support safety
cases. Knowledge is encoded in the form of a WFT meta-
model. A WFT metamodel is a domain-specific metamodel
that is defined using the WF™ domain-specific metamodelling

Interface Contracts for Workflow+ Models 3

<<root>>
WorkFlowPlus

<<abstract>>

<<abstract>> N
Reference Node Q—'@'

i T

Input Output -tgt Data
- multAtSrc : char - multAtSrc : char
- multAtTgt : char - multAtTgt : char
-src
r - sre
Process
-tgt

Figure 1 A subset of the metamodel of WF*.

language (Zschaler et al. 2010) shown in Figure 1; that is, it
defines a modelling language for specific types of processes.
As such, it must be instantiated to provide a specific modelling
language for a specific problem.

When the workflow defined in a WFT metamodel such as
that in Figure 2 is executed, the metamodel is instantiated to
document that realization. Constraints included on the meta-
model are designed to ensure that activities are conducted so as
to satisfy the intent of the workflow; the constraints form the ba-
sis of derived (safety) argumentation about what the realization
of the process guarantees.

3.1. Safety Assurance Example

Our running example uses models based on ISO standard 26262,
an automotive functional safety standard (ISO 26262 2018),
specifically parts of the Hazard Analysis and Risk Assessment
(HARA) defined in ISO 26262 Part 3. The models are focused
for this paper and simplified to improve readability. These
models are referenced in later sections to illustrate sources of
uncertainty in WF' models. Figure 2 in particular is used to
illustrate interface contracts in WF™.

Figures 2 and 3 show WFT metamodels capturing part of the
requirements defined for HARA. We use green classes to rep-
resent processes, purple classes to represent generic processes
such as reviews, and yellow classes to represent product data.
The difference between processes and generic processes is be-
yond the scope of this example, but we maintain the distinction
since they play different roles in the model. Directed arrows
show data flow. Purple text with “ports” are used as a shorthand
notation for attributes produced by reviews. Multiplicities on
the process end of data flow arrows constrain the number of
executions that an instance is used by; those on the data (yellow)
end specify the number of instances of data used or produced

4 Paige et al.

Legend
<<Review>>

| | <<Process>> Validity Constraint
— —>

Data

Review Review Process
Process Process Dataflow Dataflow

ItemDefinition

- OperatingEnvironment : Requirement[1..*]
- FunctionalBehaviour : Requirement [1..*]

1

HazardSet |

[NoHazardMissing : Boolm

Hazard

1.
- atVehLvl : Bo
1 1
1
<<Review>>

ReviewHazardDefinition 1

<<Review>>
ReviewCompleteness

Figure 2 WF™ representation of the Hazard Identification
process.

ItemDefinition

- OperatingEnvironment : Requirement[1..*]
- FunctionalBehaviour : Requirement [1..*]

1/1

<<Process>> 1 1 1
SituationAnalysis
1 OperationalSituationSet |
1, ! - NothingMissing? : Boolm
<<Review>> L 11
ReviewCompleteness 1 | 1.* 1.%
1.*

IntendedOperationalSituation |

1I—1 - AppropriateDetail? : Bool

<<Review>>

ReviewsSituationDefinition k

Figure 3 WF™ representation of the Situation Analysis Pro-
cess.

per execution”. Figures 2 and 3 also show WE™ validity con-
straints, using red model annotations: for example, the validity
constraint on HazardSet . NoHazardMissing is that this must
be True in an instance for the consequent safety assurance to
hold. Validity constraints specifically apply to the value of at-
tributes produced by reviews, as opposed to regular structural
constraints such as the multiplicities shown. We make this dif-
ferentiation because of the important role external validation
plays in safety assurance.

Figure 2 is a simplification of the Hazard Identification WF™
model presented in (Annable et al. 2022). The specific (green)
process defined is Hazard Identification. The Item Definition in
this simplified example, which is provided by an external devel-
opment process, can be thought of as a set of requirements for a
system or component that is to be part of a vehicle. The purpose
of this process is to identify the set of Hazards the system may
give rise to based on these requirements. The identified hazards

2 Note that the full WF+ model also expresses dataflow from a process to
association in the output data and between input and output data, but these are
omitted here for readability.

are subject to two generic (purple) Review processes that must
be realized for safety assurance. Each Review process sets the
value of data attributes (NoHazardMissing, atVehLvl: it is
common for such data attributes to be Booleans). Figure 3 is
very similar, but defines the specific process, Situational Anal-
ysis, and its associated data; the Review processes pertain to
the applicability and completeness of the identified intended
operational situations. An example of an instance of a WF™
metamodel can be found in (Annable et al. 2022).

3.2. Limitations of WF+

The WF™ framework currently provides constructs to define
workflows as WF' metamodels and to generate (safety) ar-
gumentation based on constraints in those metamodels. This
generation is demonstrated in (Annable et al. 2022). Prototype
tooling supports creation of instances documenting realizations
of the workflow, checking against constraints and checking if
arguments based on those constraints hold. There are several
limitations of the current framework, including ways to link
versions of the same process model (e.g. a coarse grained haz-
ard analysis process with a more detailed version of the same
process). There is also currently no support for ports, or for
interfacing between processes. Data flow arrows show which
processes use or produce data, which implies dependency, but
WF™ does not explicitly model process dependency.

The limitation addressed in this paper is the need for con-
tracts in WF' models. Aside from checking the structure of
input, there is currently no way of specifying when a process
can legitimately be executed, or when it can legitimately be
considered finished. This also introduces the issue of uncer-
tainty in processes/assurance. For example, in Figure 2, if there
is uncertainty in the requirements, the Hazard Identification
process might not be triggered. Similarly, if the Hazard Identi-
fication and Situation Analysis processes have been executed
but not reviewed we may not want to trigger the Determine
Relevant Combinations process, even though all the required
data is present in the model. In the following, we introduce
interface contracts, and discuss briefly the effects of uncertainty.

4. Interface contracts for WF™*

In this section we present a lightweight extension to the WF+
framework to support interface contracts. By adding these
contracts, we allow for the precise specification of constraints
that otherwise could not be imposed on a WF™ workflow.

The WF™ constraints discussed previously are intended to
be evaluated statically on a workflow that has been completely
realized so they can be used as part of evidence in an assurance
case. In contrast, constraints in interface contracts can be eval-
uated dynamically during the process of realizing a workflow.
This provides a way to more precisely guide the realization of a
workflow and in some cases reduce uncertainty in the resulting
models.

The key extensions to the metamodel are the addition of
Contract, Precondition and Postcondition as shown in Figure 4.
A Contract is a special kind of node, one that is associated
with a Process. A Process may be associated with an arbitrary

<<root>>
WorkFlowPlus
1

| Reference
I
Input output
- multAtSrc : char - multAtSrc : char ‘I_
- MUtAETgt : char - mUtAETgt : char
-src PostCondition || Precondition

Process

Contract

Figure 4 Metamodel of WF with the addition of interface
contracts.

number of contracts (this could, for example, allow support for
versioning of contracts). Each Contract is thereafter composed
of a Precondition and a Postcondition, which are themselves
(OCL) constraints.

Figure 5 shows an example of contracts added to the example
in Figure 2. Starting with the contract for the Hazard Identifica-
tion process, we include the precondition, specified using OCL,
requiring that the item definition contains functional behaviours
before the process can be initiated. While this seems to repeat
the “[1..*]” constraint in ItemDefinition, it plays a very differ-
ent role. While realizing a workflow there will inevitably be
constraints that are unsatisfied, but that does not always mean
we cannot proceed with executing the workflow. By including
this constraint in the precondition, we can precisely specify
constraints that must hold before the process may begin. In
the event that a constraint in a contract is not satisfied, useful
feedback could be provided to practitioners realizing the work-
flow on what they need, and in an integrated model where they
need it from, in order to proceed. The postcondition specifies
that when the validity constraint on Hazard Set is satisfied, then
the process is considered completed. This requires the validity
constraint on Hazard to be satisfied for every instance, since this
is a precondition for Review Completeness to be executed.

Since reviews are processes, they can also have contracts
associated with them. This is also shown in Figure 5. The lower
review, Review Hazard Definition, has no precondition, and
its postcondition is simply that the output has been produced.
Ultimately we want reviews to output the value corresponding
to approval, but during the realization of a workflow a nega-
tive result from a review is acceptable as far as the contract
is concerned. The upper review, Review Completeness, has a
precondition that all Hazards must be reviewed and approved
before the review can be initiated. Its postcondition also only
requires that an output is produced.

From this example, we can begin to see the potential of con-
tracts to address some of the limitations discussed in Section 3.2.
By using contracts to control when the Hazard Identification
and Review Completion processes can be executed and when
they can be considered as completed, we have a greater ability
to model dynamic control flow of processes.

Next, the inclusion of constraints on the output of Review

Interface Contracts for Workflow+ Models 5

Contract: AN
Pre:
self.FunctionalBehaviour->size() >= 1

Post:
self.HazardSet.NoHazardMissing = True

Contract: [N
Pre:
not (self.Hazard->exists(H | H.atVehLvl = False))

Post:
self.HazardSet.NoHazardMissing.ocllsDefined() = True

Contract: AN
Pre:
None

Post:
self.Hazard.atVehLvl.oclisDefined() = True

ItemDefinition

- OperatingEnvironment : Requirement[1..*]
- FunctionalBehaviour : Requirement [1..*]

1

HazardSet |

@ NoHazardMissing : Boom

<<Review>>
ReviewCompleteness

- atVehLvl : Booj
1

<<Review>>
ReviewHazardDefinition |~1

Figure 5 Refined WF™ model of Hazard Identification process from Figure 2 with the addition of interface contracts.

Hazard Definition in the precondition for Review Complete-
ness shows how the dependencies between processes can be
strengthened by contracts. Similarly, the reference to Function-
alBehaviour but not OperatingEnvironment in the contract for
Hazard Identification illustrates how dependencies between pro-
cesses and their input data can be strengthened. Both of these
benefits are particularly important for impact analysis.

Finally, by adding rigorous interface contracts to processes
that define what an execution must satisfy to be acceptable,
we enable a design-by-contract approach to workflow design
and the inherent information hiding and modularization. Using
the contract as a guide, a process could be refined such that it
adheres to its contract and maintains compatibility with other
processes, but does not reveal secrets about its implementation.
Refinement of WEF' models based on their contracts is left for
future work.

5. Analysis

Here we briefly outline opportunities for the analysis of uncer-
tainty and impact in WF' models, and how these are affected
by interface contracts. The aim of this section is to identify
challenges and opportunities for future research.

5.1. Uncertainty

Analysis of uncertainty requires identification, evaluation (what
sort of uncertainty, aleatory or epistemic, what effects might it
have on assurance, etc.), and representation / documentation.
Approaches to identification include ad hoc and systematic ap-
proaches; the latter are often referred to as deviational analysis,
or what-if analysis, and are often derived from the principles
of HAZOP. Identification here is quite ad hoc, focusing on
illustration rather than practical analysis of uncertainty.

Evaluation seeks to understand the nature and potential mit-
igation of an uncertainty. Here, we discuss the nature and
possible effects of a subset of identified uncertainties: this is
an area that needs further research, and would explore not only
aleatory or epistemic, but also the categories of uncertainty
identified in Sect. 2, and might consider for example using sub-
jective logic (Jgsang 2016) to try to put a value on the residual
uncertainty in an assurance argument.

6 Paige et al.

Representation could draw on existing uncertainty notations
(see Sect. 2), and can also be captured in assurance cases; this
is not considered in this paper.

The next section gives examples of aleatory and epistemic
uncertainty from specific features of the WF™ model introduced
in Sects. 3 and 4. The following section looks at challenges of a
more general categorisation of uncertainty in WF™ models.

5.1.1. Identification of uncertainty in data attributes To
illustrate uncertainty in WF™ models, we focus on uncertainty
relating to the data attributes: a more complete analysis should
focus on each model concept (item, process, data flow etc.) in
turn. Revisiting Figs. 2 and 3, we see six specific attributes.
We illustrate with one attribute of ItemDefinition and the
attribute of HazardSet and the joint uncertainty of these two
attributes.

1. ItemDefinition.OperatingEnvironment is mod-
elled as a non-empty set of requirements. Unpicking the
modelling, this means that there must be one instance of
the operating environment, but there may be any number
of operating environments.

Aleatory uncertainties: there is no way to know whether
all aspects of the operating environment(s) of relevance
have been specified, or whether any aspect is represented
in sufficient detail. Real examples of this type of situation
can be found on any site reporting self-drive car accidents,
which typically occur because the operating environment
included situations that had not been foreseen by the de-
signers / assurance process.

Epistemic uncertainties: we do not know, but could po-
tentially know, what constitutes an operating environment
or how many there are. In this case, the ability to refine
or elaborate a WFT model would allow us to define the
operating environment concept more clearly, reducing un-
certainty. A key point here is the engineering imperative of
cost-benefit: as in areas such as assurance and testing, the
engineer needs to determine how much refinement or elabo-
ration is appropriate, trading off further design / modelling
against value added to the product or its assurance.

2. HazardSet.NoHazardMissing:

Bool has its value set
by the realisation of the generic review process; it must
be True for the overall process realisation to be completed
(and the relevant assurance case generated). Safety cases
almost always argue over a set of things that is asserted to
be complete (argue over all hazards, for instance), and this
is an inherent source of uncertainty in most safety critical
systems evaluation.

Aleatory uncertainties: there is no way to know whether
anything is missing from the hazard set. This uncertainty
is mitigated by using techniques such as checklists and
brainstorming, but cannot be eliminated (we cannot prove
a negative). As in traditional safety case analysis, the
assurance is always predicated on the identified hazard set.

Epistemic uncertainties: again, epistemic uncertainties
relate to missing but obtainable information. For in-
stance, there may be identifiable hazards that are not
fully described or depend for their detail on aspects of
the vehicle design that have not yet been resolved. In-
terface contracts can make it easier to trace such con-
nections. For example, in Figure 5, the contract for
HazardIdentification simply states that there must
be at least one FunctionalBehaviour. This could be
refined to require that all FunctionalBehaviours must
be resolved before HazardSet .NoHazardMissing can
be set to true.

. Although the corresponding WFT metamodel is not pre-
sented in this work, the next step in HARA is to determine
relevant combinations of Hazards and Intended Opera-
tional Situations to form Hazardous Events. For example,
a particular hazard might apply in intended operating sit-
uations where the vehicle is moving, but not when it is
stopped. Joint uncertainty of the two attributes refers to the
effects of uncertainty in the operating environments and
a hazard set, as they affect the specification of hazardous
events.

Aleatory uncertainties: if not all operational environ-
ments of relevance have been specified, then it is impos-
sible to determine if all intended operating situations in
which a hazard is relevant are identified. Since both at-
tribute sets cannot be proved “complete” there will always
be irreducible aleatory uncertainty. It may be that a sub-
jective or fuzzy logic, or a belief-based representation can
be used here to try to evaluate both the individual attribute
uncertainties and the combined uncertainty. However, we
cannot remove this type of uncertainty.

Epistemic uncertainties: here, it is theoretically possible
to consider each epistemic uncertainty in the operating
environment set in combination with each epistemic un-
certainty in the hazard set. In some cases, the uncertainty
is reduced or eliminated as the process is refined or elab-
orated, and in others it may be reduced or eliminated as
the system development (e.g. the software engineering,
and the design of the vehicle itself) progresses. As for in-
dividual attribute uncertainties, other combined epistemic

uncertainties may be determined to be not worth resolving,
and are simply recorded as limitations on the assurance of
the system.

5.1.2. Categorising sources of uncertainty in WF™ mod-
els WF' models represent software / systems engineering
processes and the artefacts (e.g., software models) that they
manipulate. Here we identify some general occurrences of
uncertainty.

A first potential source of uncertainty is in the artefacts (e.g.
models) being manipulated (Bernardi et al. 2021). A second po-
tential source of uncertainty is in the processes that manipulate
artefacts. Here most uncertainty arises because processes are un-
dertaken by people, but there may also be uncertainty in process
outcomes. Finally, there may be uncertainty in the WFT models
themselves, because there is insufficient knowledge about the
real processes.

We illustrate each of these sources, showing examples of un-
certainty in each case and discussing opportunities for analysis,
with a particular focus on how uncertainty propagates through a
workflow of processes based on a WF™ model, possibly with in-
terface contracts. Again, we consider only aleatory vs epistemic
uncertainty in this initial discussion.

1. Uncertainty in models/artefacts.

(a) Aleatory uncertainty. This is uncertainty that
is inherent to the underlying system. For exam-
ple, measurement uncertainty limit what can be
known about the precise value of a property of the
system. Similarly, environment uncertainty lim-
its what can be known about the environment in
which the system may operate—even though this
has potentially substantial impact on system be-
haviour. An example of this type of uncertainty
can be seen in Figure 3, where realizations of
ItemDefinition.OperatingEnvironment will
inevitably have uncertainty since they are an abstrac-
tion of an infinitely complex environment.

(b) Epistemic uncertainty. This is uncertainty in the
models that reflects insufficient knowledge about the
system being modelled. For example, we might not
have made a decision between several design alter-
natives yet or there may be uncertainty about the
precise operational temperature range for a particu-
lar component. An example of this type of uncer-
tainty can be seen in Figure 2, where realizations
of ItemDefinition.BehaviouralRequirement
used to identify hazards may be incomplete or may
not accurately represent the system being developed.

Uncertainty analysis and interface contracts. Uncer-
tainty in models and artefacts may be propagated by pro-
cesses manipulating these models and artefacts. Where a
process uses a model or artefact as its input, the process’s
outputs may exhibit corresponding uncertainty, as a result.
WF™ on its own already provides information about the
inputs and outputs of a process and this can be further

Interface Contracts for Workflow+ Models 7

8

refined by an interface contract. Modelling the structure of
entities in more detail allows a more fine-granular tracking
of uncertainty. Similarly, pre- and post-conditions in inter-
face contracts may provide some indication of how outputs
are derived from inputs—further refining the potential for
analysis. An example of this can be seen in Figure 5. If
there is still uncertainty in the quality of identified Haz-
ards and not all Hazard.AtVehLvl are True, the contract
on ReviewCompleteness prevents the review from being
triggered and prevents uncertainty in the Hazards from
being propagated.

2. Uncertainty in processes

(a) Aleatory uncertainty. This is uncertainty inherent
to the actual processes. WF™ is used to capture
processes undertaken by humans and this invariably
leads to a degree of subjectivity and, therefore, un-
certainty in outcomes. An example of this type of
uncertainty can be seen in Figure 2, as the process of
determining the set of possible hazards is complex
and difficult and may have uncertain outcomes. Many
techniques used in practice such as comparison with
results for similar systems, reviewing by one or more
experts and precisely defined guidance aim to reduce
uncertainty in process outcomes, but there always
remains an irreducible core uncertainty.

(b) Epistemic uncertainty. This is uncertainty in our
knowledge about the processes. In other words, it
is uncertainty that manifests in the models of the
processes—WF' models in our example. Some of
this uncertainty may be due simply to the abstraction
inherent to every modelling process. For example, in
WF* we largely abstract from the detailed steps that
form a process, capturing information about what
a process does only at the level of its inputs and
outputs and any changes effected on these (the lat-
ter captured through interface contracts). In other
cases, epistemic uncertainty in processes arises be-
cause we do not know enough about the processes.
This may be because we haven’t understood or de-
signed the process in sufficient detail, but it may also
be because of limited information available about the
process. The latter can, for example, occur were dif-
ferent organisations or departments collaborate and
are hesitant about sharing details of their respective
processes. For example, hazard analysis is a widely
studied topic, and the Hazard Identification process in
Figure 5 could be refined to implement some known
technique using the interface contract as guidance
to reduce uncertainty. Intelligent modularization of
processes using interface contracts can reduce uncer-
tainty in integrating processes when collaborators are
hesitant to share information. For example, later pro-
cesses can know exactly what Hazard Identification
will produce without knowing how.

In some situations there is actually no uncertainty,
and a process can be fully formalized; in those cases

Paige et al.

we can automate the process, for example, in ISO
26262, there is a task that amounts to using a look-up
table.

Uncertainty analysis and interface contracts. Analysing
uncertainty in WF™ models depends on being able to make
the uncertainty about processes explicit in the process mod-
els. We already show some examples of this in our WF
model with interface contracts. For example, the outcome
of a revision process is uncertain until the process has ac-
tually been undertaken for a specific set of artefacts. Con-
sequently, the post-conditions for such review processes
state that the relevant output variable will be defined at
the end of the process, but they do not state the value of
the variable. More fine-granular capture of uncertainty
is conceivable. For example, it is possible that a review
process does not lead to a clear outcome. In other words,
the output variable of such a process would remain unde-
fined in such a case. Such uncertainty could be captured
by using a richer logic for definedness—for example based
on fuzzy set membership (Dubois & Prade 1980).

3. Uncertainty in process models. Epistemic uncertainty
about process models appears to be of limited relevance; it
may be that misunderstandings of what a WFT model actu-
ally represents could be considered epistemic uncertainty.
In past work we have encountered several examples where
after discussions with domain experts, we have discovered
that the domain experts and users of WF™ have different
understandings of what the model meant.

It is also worth briefly discussing aleatory uncertainty about
process models. This occurs where it is inherently difficult
to capture the diversity of processes as performed in a
coherent process model as specified (Parnas & Clements
1986). Humans will inherently vary in their behaviours
even for routine processes. This is even more the case
the more complex a process becomes; the processes mod-
elled in WF™ tend to be fairly complex due to interactions
and interleavings between the engineering tasks, the safety
tasks and how organisations operate. As a result, it can
be inherently difficult to provide process models that ac-
curately represent every single variant of the process as
performed. Some of this uncertainty is implicit in WF'
models, which typically do not provide details of the steps
in a process, for example. Other uncertainty of this type
could potentially be captured by making explicit the range
of possibilities—for example, using may-models (Famelis
et al. 2013).

This analysis of uncertainty across artefacts and processes is
important for the construction of safety cases. Safety cases, in
essence, aim to argue that we have a sufficient level of certainty
that the system will be safe — based on the development process,
models, and analyses used in system development. This means,
it is important that we can identify areas of uncertainty and
their potential impact on safety analysis explicitly in our safety
case. The above analysis, then, enables a more fine-grained
analysis in the safety case: every combination of uncertainty

category and potential source of uncertainty implies the need
of a sub-argument (a) acknowledging this form of uncertainty
in the model and (b) discussing what has been done to mitigate
the impact of the uncertainty on overall system safety. The
above categorisation, thus, enables a more systematic approach
to safety-case construction. For example, aleatory uncertainty
in processes can be addressed in a safety case by (a) explicitly
acknowledging that human review will have a subjective com-
ponent (and potentially identifying specific ways in which this
can manifest in a particular process) and (b) identifying what
has been done to reduce the impact of subjective judgement
(e.g., very carefully structured detailed guidance, or the use of
multiple reviewers and a moderation process). This does not
remove the uncertainty from the overall process, but it makes
it explicit and allows its implications for system safety to be
explicitly discussed and, where possible, mitigated.

5.2. Impact analysis

In our prior work with WFT (Annable et al. 2022), we briefly
discussed how WF' models could be used to support change
impact analysis (Briand et al. 2003), particularly with respect to
assurance cases. Change impact analysis involves identifying
property changes in one model, and calculating the resulting
impact of those changes on any related models. For example, an
assurance case might be automatically generated from a WF™
model, and we might want to know the impact on the assurance
case of refactoring a WF data element into two distinct data
elements that share a common parent. Because WF™T provides
explicit support for traceability between data, process and any
generated assurance case, this enables a coarse form of impact
analysis. In our previous project, impact analysis was calculated
via queries on WF' models; these queries were implemented
in the MMINT?® tool and in Epsilon* using EOL. An example
query might be to calculate which goals or strategies in an
assurance case could conservatively be affected by changes to
data encoded in a WF™ model.

The impact analysis algorithms that have been implemented
so far are, of course, based on queries applied to WF' models
without interface contracts. As such, the impact analysis is at
the level of coarse-grained changes to data (e.g., removing data
elements, splitting data elements, renaming data elements) and
process. By adding interface contracts, impact analysis can
be much more fine-grained, and could potentially even take
into account changes to the contracts, and their corresponding
impact on an assurance case, into account. For example, a
significant problem with impact analysis on large (WF ™) models
is dealing with scope: a conservative impact analysis query
may overestimate the extent to which the traced assurance case
model is impacted by a change to a WF data element. In
the worst case, this could lead to a very significant sub-model
of the assurance case being highlighted as potential impacted
by a WFT model change. By taking into account interface
contracts in impact analysis, it may be possible to further and
more precisely restrict the scope of the impact analysis to a
smaller subset of the traced assurance case. We are currently

3 https://github.com/adisandro/MMINT
4 https://www.eclipse.org/epsilon

intending to explore these ideas in a new project that is building
on the interface contract extensions we have presented in this

paper.

6. Conclusion

WFT models provide a means for capturing the data and control
associated with development of assurance. Their support for
modelling activities, interrelationships, data and constraints is
substantial, in terms of enabling the generation of assurance
cases, but is nevertheless limited. This paper highlighted some
of those limitations, particularly associated with capturing richer
details associated with processes. To address this, the paper in-
troduced a notion of interface contract for WE* which could be
used to more precisely describe requirements and expectations
associated with activities, and which could be used to support a
notion of refinement of processes/workflows.

We illustrated some of the consequences of extending WF™
with interface contracts, particularly for specifying and reason-
ing about uncertainty inherent in models. While our analysis
of the types of uncertainty that could be revealed through ex-
tending WF' models with contracts, it was certainly systematic,
and implies potential substantial benefit to this enrichment. Re-
vealing uncertainty in WFT models has the added benefit of
being able to obtain greater confidence in our models before
they are used to, potentially, automatically generate assurance
cases. In other words, this extension has the potential to give
us greater confidence in the quality of our WF™ models before
they are used for downstream activities.

There are numerous directions for future work we are consid-
ering. Beyond further tool support for creating and editing WF™
models (currently under development using Eclipse tools such
as Sirius), we are exploring different mechanisms for adding
hierarchies to WFT this, combined with interface contracts,
would provide support for a discipline of refinement.

The analysis presented in this paper targets how interface
contracts can be used to more extensively (and accurate) iden-
tify different kinds of uncertainty in WF' models. But there
is another potential way in which this type of analysis can be
used: to test existing classifications of uncertainty to determine
their level of coverage and/or comprehensiveness. For exam-
ple, it may be determined that a particularly uncommon type
of uncertainty is not supported by an existing classification,
by comparing concrete examples of uncertainty against what
is supported by the classification. In this way, we could envi-
sion festing classifications, which in turn could give us greater
confidence in their quality and accuracy.

The support for interface contracts in WF™ models opens
up new opportunities for other forms of analysis. We men-
tioned, in the last section, being able to support richer forms
of impact analysis. As another example, current use of WF™
models (Annable et al. 2022) has generally focused on captur-
ing processes and workflows as documented, e.g., conforming
to ISO26262. Given that, in engineering practice, the process
as documented may differ from the process as actually imple-
mented (Parnas & Clements 1986), it would be interesting to
use WE™ to model both processes and to rely on interface con-

Interface Contracts for Workflow+ Models 9

https://github.com/adisandro/MMINT
https://www.eclipse.org/epsilon

tracts to help to automatically generate a difference model that
expresses how the models — and hence, how the two versions of
process — compare. This could in turn tell us something about
the actual practice of compliance with standards.

Acknowledgments

We would like to thank the reviewers of this paper for their
helpful comments and suggestions. We acknowledge the contri-
butions of Zinovy Diskin, Alan Wassyng, Mark Lawford and
our colleagues at the University of Toronto (specifically Marsha
Chechik and Alessio Di Sandro).

References

Annable, N. (2020). A model-based approach to formal assur-
ance cases (Unpublished master’s thesis). McSCert, Dept. of
Computing and Software, McMaster Univ.

Annable, N., Chiang, T., Lawford, M., Paige, R. F., & Wassyng,
A. (2022). Generating assurance cases using workflow+
models. In 7o appear in Proc. SAFECOMP 2022. LNCS,
Springer-Verlag.

Bernardi, S., Famelis, M., Jézéquel, J.-M., Mirandola, R.,
Palacin, D. P,, Polack, F. A. C., & Trubiani, C. (2021). Living
with uncertainty in model-based development. In R. Hein-
rich, C. Talcott, F. Duran, & S. Zschaler (Eds.), Composing
model-based analysis tools. Springer.

BPMN 2.0 handbook second edition: Methods, concepts, case
studies and standards in business process management nota-
tion. (2011). Future Strategies Inc.

Briand, L. C., Labiche, Y., & O’Sullivan, L. (2003). Impact
analysis and change management of UML models. In 19
international conference on software maintenance (ICSM
2003), the architecture of existing systems, 22-26 septem-
ber 2003, amsterdam, the netherlands (pp. 256-265). IEEE
Computer Society. Retrieved from https://doi.org/10.1109/
ICSM.2003.1235428

Chiang, T. (2021). Creating an editor for the implementation
of workflow+: A framework for developing assurance cases
(Unpublished master’s thesis). McSCert, Dept. of Computing
and Software, McMaster Univ.

Dai, Y. S., Xie, M., Long, Q., & Ng, S. H. (2007). Uncer-
tainty analysis in software reliability modeling by bayesian
approach with maximum-entropy principle. Transactions on
Software Engineering, 33(11), 781-795.

Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: theory
and application. Academic Press.

Esfahani, N., & Malek, S. (2013). Uncertainty in self-adaptive
software systems. In Software engineering for self-adaptive
systems II (pp. 214-238). Springer.

Famelis, M., Salay, R., Sandro, A. D., & Chechik, M. (2013).
Transformation of models containing uncertainty. In A. Mor-
eira, B. Schiitz, J. Gray, A. Vallecillo, & P. J. Clarke (Eds.),
Model-driven engineering languages and systems - 16th inter-
national conference, MODELS 2013, miami, fl, usa, septem-
ber 29 - october 4, 2013. proceedings (Vol. 8107, pp. 673—
689). Springer. Retrieved from https://doi.org/10.1007/
978-3-642-41533-3_41

10 Paige et al.

ISO 26262. (2018). Road vehicles — Functional safety. 1SO.

Jgsang, A. (2016). Subjective logic: A formalism for reasoning
under uncertainty. Springer Cham. doi: 10.1007/978-3-319
-42337-1

Jousselme, A.-L., Maupin, P., & Bossé, E. (2003). Uncer-
tainty in a situation analysis perspective. In 6th international
conference of information fusion (pp. 1207 — 1214). doi:
10.1109/1CIF.2003.177375

Laguna, M., & Marklund, J. (2004). Business process modeling,
simulation and design. Prentice-Hall.

Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney,
J., Corsar, D., ... Zhao, J. (2014). PROV-O: The PROV
ontology. http://www.w3.org/TR/prov-o/. Retrieved from
http://www.w3.org/TR/prov-o/

Munoz, P., Pérez-Vereda, A., Moreno, N., Troya, J., & Valle-
cillo, A. (2021). Incorporating trust into collaborative social
computing applications. In International Enterprise Dis-
tributed Object Computing Conference (EDOC) (pp. 21-30).
IEEE.

Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert,
K. V., & Alvin, K. F. (2002). Error and uncertainty in
modeling and simulation. Reliability engineering and system
safety, 75(3), 333-357.

Padulo, M., & Guenov, M. D. (2012). A methodological
perspective on computational engineering design under un-
certainty. In European congress on computational methods
in applied sciences and engineering (pp. 7509 — 7528). Re-
trieved from https://eccomas2012.conf.tuwien.ac.at/

Parnas, D. L., & Clements, P. C. (1986). A rational design
process: How and why to fake it. IEEE Transactions on
Software Engineering, SE-12(2), 251-257. doi: 10.1109/
TSE.1986.6312940

Patelli, E., Panayirci, H. M., Broggi, M., Goller, B., Beaurepaire,
P., Pradlwarter, H. J., & Schuéller, G. I. (2012). General
purpose software for efficient uncertainty management of
large finite element models. Finite Elements in Analysis and
Design, 51, 31-48.

Rolland, C., Prakash, N., & Benjamen, A. (1999). A multi-
model view of process modelling. Requir. Eng., 4(4), 169—
187. Retrieved from https://doi.org/10.1007/s007660050018
doi: 10.1007/s007660050018

Troya, J., Moreno, N., Bertoa, M., & Vallecillo, A. (2021).
Uncertainty representation in software models: a survey. Soft-
ware and Systems Modelling, 20, 1183-—1213. Retrieved
from https://doi.org/10.1007/s10270-020-00842-1

UML 2.5.1 specification. (2017). OMG. Retrieved from https://
www.omg.org/spec/UML/2.5.1/About-UML/

Vallecillo, A. (2019). Belief uncertainty in software mod-
els. Modelling languages. Retrieved from https://modeling
-languages.com/belief-uncertainty-models-uml/

Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., & Norgren, R.
(2016). Understanding uncertainty in cyber-physical systems:
A conceptual model. LNCS, 9764, 247--264.

Zschaler, S., Kolovos, D. S., Drivalos, N., Paige, R. F., & Rashid,
A. (2010). Domain-specific metamodelling languages for
software language engineering. In M. van den Brand, D. Ga-
sevic, & J. Gray (Eds.), Proc. 2nd int’l conf. on software

https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1109/ICSM.2003.1235428
https://doi.org/10.1007/978-3-642-41533-3_41
https://doi.org/10.1007/978-3-642-41533-3_41
http://www.w3.org/TR/prov-o/
https://eccomas2012.conf.tuwien.ac.at/
https://doi.org/10.1007/s007660050018
https://doi.org/10.1007/s10270-020-00842-1
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://modeling-languages.com/belief-uncertainty-models-uml/
https://modeling-languages.com/belief-uncertainty-models-uml/

language engineering (sle’09) (Vol. 5969). Springer. doi:
10.1007/978-3-642-12107-4

About the authors

Richard F. Paige is Joseph Ip Distinguished Engineering Profes-
sor in the Department of Computing and Software at McMaster
University, Hamilton, Canada. He is also Honorary Professor of
Enterprise Systems at the University of York, United Kingdom.
His research interests are in Model-Driven Engineering, safety-
critical systems, medical devices and systems, and automotive
systems. He is on the editorial board for Software and Systems
Modeling and the JOT Journal.

Fiona A.C. Polack is Professor and Head of Department at the
University of Hull, UK. Her research interests are in Model-
Driven Engineering and the engineering of fit-for-purpose com-
plex systems simulation.

Steffen Zschaler is a Reader in Software Engineering at King’s
College London and director of MDENet, the expert network on
model-driven engineering. His research interests are in the foun-
dations of MDE (in particular, using graph transformations and
enabling modularity in modelling), search-based optimisation
of models, and the use of MDE for the development of agent-
based simulations. He is on the editorial board for Software and
Systems Modeling.

Thomas Chiang is a PhD student at McMaster University,
Canada, where he is studying Model-Driven Engineering, mo-
bile computing and safety. For his MASc research he led the
development of prototype tools for WF™, building on its cate-
gorical foundations.

Nicholas Annable is a PhD student at McMaster University,
Canada, where he is studying automotive software engineering,
Model-Driven Engineering and safety. For his MASc research
he developed many of the MDE foundations for WF™ and
applied it to automotive software engineering examples.

Interface Contracts for Workflow+ Models

11

