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A B S T R A C T   

Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host 
health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent 
different strains would cooperate or compete for resources, and how the establishment of a common biofilm 
microenvironment could influence their interactions. In this work, we develop an integrative experimental and 
computational approach to comprehensively assess the metabolic functionality and interactions of probiotics 
across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism 
and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology 
techniques. 

To show the advantages of the proposed approach, we apply it to the study of the interactions between two 
widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production 
potential for compounds that can be beneficial to human health. Our results show that these strains can establish 
a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an 
increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. 
Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotech-
nological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.   

1. Introduction 

Probiotics are live microbes (usually bacteria and yeasts) with 
beneficial properties for human health. Their precious properties have 
been recognised by the health industry, medical professionals, and the 
public, leading to a large range of probiotic products on the market 
during the last few decades (Kumar et al., 2015). Probiotic microbes are 
known to produce useful vitamins, digestive, enzymes, essential amino 
acids, immunomodulatory and antimicrobial metabolites, therefore they 
can boost human health and protect from gut inflammatory diseases, 
autoimmune disorders and gastrointestinal infections (De Vrese and 
Schrezenmeir, 2008). Yet, novel approaches are required to design 
synthetic probiotic consortia that can overcome the limitations of 
single-strain formulations (Vázquez-Castellanos et al., 2019). 

Microbes are present in nature in two growth modes: the planktonic 

mode where the cells swim in the liquid medium and the biofilm mode 
where cells are attached to each other and/or to a biotic or an abiotic 
surface, often covered with a protective polysaccharide layer. Usually, 
the microbes that colonise our intestine form complex biofilm- 
associated communities, often multispecies (Flemming et al., 2016; Jo 
et al., 2022). The ability of probiotic microbes to affect our health is 
linked with their ability to effectively colonise our gut. Therefore, the 
better their colonisation efficiency, the better their persistence in our gut 
and subsequently their health effects (Han et al., 2021). For example, the 
colonisation of Lactobacillus species has been shown to inhibit biofilm 
formation by certain pathogenic bacteria (Salas-Jara et al., 2016). 

Besides, metabolic interactions shape the structure of the human gut 
microbiome and govern how it responds to dietary changes and per-
turbations (Coyte and Rakoff-Nahoum, 2019). Multi-species cultures 
have been shown to demonstrate different properties compared to their 
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single-species planktonic counterparts, as the different species interact 
with each other and they modify the physiological behaviour and the 
metabolic output of the culture (Ghosh et al., 2016; Medlock et al., 
2018). This has been found to also improve the beneficial health effects 
of a probiotic supplement, such as its immunomodulatory and antibac-
terial properties (Chapman et al., 2012; Foligné et al., 2016; Alshaikh 
et al., 2022). Multi-strain probiotics can more effectively improve host 
health, provided that the strains do not compete for the same resources 
or inhibit the growth of other strains (Toscano et al., 2017). For instance, 
a co-culture study with Lactobacillus acidophilus, Bifidobacterium bifidum 
and S. boulardii was performed using a complex protein-enriched cereal 
medium (boza) as substrate, which supported the growth of all three 
species (Arslan-Tontul and Erbas, 2020). Similar examples of co-cultures 
of yeast and bacteria for a variety of applications in the food industry 
and wastewater treatment showed that mixed cultures had better results 
in these bioprocesses compared to mono-cultures (Jin et al., 2019; 
Dysvik et al., 2020; Liu et al., 2019). In particular, in a study by Jin et al. 
the end probiotic product (mango slurry) that was co-fermented by 
Lactobacillus plantarum and S. cerevisiae DV10 exhibited higher bioac-
tivity, with more phenolics and antioxidants. Moreover, how biofilms 
influence the interactions among gut microbiome members is an open 
question (Salas-Jara et al., 2016). 

Among the techniques for exploring microbial interactions, 
constraint-based genome-scale modelling of metabolism provides a 
bottom-up approach that fully integrates available biochemical knowl-
edge, can span complex multi-omic networks, and is well suited to 
explore the biotechnological potential of microbes (Fang et al., 2020; 
Zampieri et al., 2019; Colarusso et al., 2021; Occhipinti et al., 2018). 
Such an approach is based on the mathematical formalisation of 
biochemical reaction stoichiometry and physical conservation laws, 
which at the steady state permit efficient computation of the reaction 
fluxes across metabolic pathways. One of the emerging frontiers in this 
field is the modelling of ecological interactions in microbial and 
microbe-host communities, with recent studies investigating ecosystems 
of rising size and diversity (Machado et al., 2021; Basile et al., 2020; 
Thiele et al., 2020). Notably, this modelling approach offers a platform 
for experimental data integration and hypothesis testing on a systems 
level, taking into account multiple objectives (Bauer et al., 2017; 
Vijayakumar et al., 2018; Zomorrodi et al., 2014). For example, 
genome-scale modelling can be used to analyse the steady-state or dy-
namic metabolism sustaining biofilm formation and revealed 
non-intuitive dependencies of biofilm-forming ability in the pathogen 
Pseudomonas aeruginosa (Ribaudo et al., 2017; Vital-Lopez et al., 2015). 
However, scarce attention has been dedicated to the modulation of 
microbial interactions over changing growth modes and to the contri-
bution that data-driven approaches can offer to their characterisation 
(Culley et al., 2020; Zhang et al., 2020; Vijayakumar et al., 2020; 
Antonakoudis et al., 2021; Pio et al., 2022). 

This study aims to introduce and test a systematic approach for the 
characterisation of microbial interactions in multiple growth conditions. 
As a prototype application, we focused on evaluating the capacity of 
L. reuteri and S. boulardii communities to produce metabolites relevant to 
gut health while also examining their ecological relationship, effectively 
estimating their potential as a multi-strain probiotic. To this end, we 
sought to evaluate how metabolic interactions between the selected 
strains are affected by their growth mode compared to isolated growth. 
We thus designed and applied an integrated experimental and compu-
tational approach that fully characterises metabolic phenotypes in an 
experimental design space considering strain pairing and growth mode. 

Lactobacillus reuteri and Saccharomyces boulardii are two important 
probiotic species that are already widely available on the market as 
health supplements. L. reuteri is a Gram-positive bacillus that can pro-
duce antimicrobial molecules, such as organic acids, ethanol, and reu-
terin. Via its antimicrobial activity, L. reuteri can inhibit the colonisation 
of pathogenic microbes and improve the balance of the commensal 
microbiota composition in the host. Secondly, L. reuteri can benefit the 

host immune system by reducing the production of pro-inflammatory 
cytokines while promoting regulatory T-cell development and func-
tion. Thirdly, it strengthens the intestinal barrier and decreases micro-
bial translocation from the gut lumen to the tissues (Mu et al., 2018). 
S. boulardii is a yeast that is resistant to the gastric environment and has 
good viability at low pH. It leads to the improvement of gut barrier 
function, pathogen competitive exclusion, production of antimicrobial 
peptides, immune modulation, and trophic effects (Pais et al., 2020). 

We performed a collection of microbial cultures for each growth 
setting by using rich and minimal media, which generated experimental 
data that we contextualised and interpreted with a combination of 
constraint-based and multivariate analysis models. In this way, we ob-
tained a comprehensive picture of strain-level metabolic requirements 
and potential in each condition. Starting from experimental measure-
ments for only six metabolites in the medium, our approach identified 
genome-scale changes in the metabolic potential of the two strains that 
well recapitulate independent evidence. Our results also elucidate cross- 
feeding among the probiotics, recapitulating cross-feeding phenomena 
confirmed by independent studies and identifying hypothesised ones 
supporting the establishment of non-trivial interactions between 
L. reuteri and S. boulardii, shifting across different degrees of cooperation 
and competition. Our approach thus provides a basis for integrative 
multi-strain probiotic development that can be applied to other micro-
bial consortia. 

2. Materials and Methods 

2.1. Microbial strains and media 

Lactobacillus reuteri DSM20016 (DSMZ, Germany) and Saccharomyces 
boulardii (Swiss Bioenergetics, Switzerland) were used in this study. Two 
different growth media were utilised for microbial cultures: tryptone 
soya broth (TSB; Oxoid, UK) and M9 minimal medium with 0.4% 
glucose (Azatian, Kaur, and Latham, 2019). Solid media with 1.5% 
Bacteriological Agar No1 (Oxoid, UK) were also prepared using the 
media mentioned above. 

2.2. Microbial cultures 

A single microbial colony from a solid culture was added to 5 mL of 
liquid medium and the pre-cultures were prepared aerobically at 37 ◦C 
for 5–6 h, with agitation at 250 rpm. 100 μL of these pre-cultures 
(OD600nm 1) were added into each tube or well, containing 10 mL 
(planktonic cultures) or 2 mL (biofilm cultures) of broth, respectively. 
Samples were collected from the planktonic cultures at 0, 3, and 6 h (mid 
and late exponential phase) and from the biofilm cultures at 0, 24, and 
48 h. The optical density of the cultures was measured at 600 nm by a 
spectrophotometer (Libra 512, Biochrom, UK). Colony-forming unit 
(CFU) concentrations in CFU/mL were also calculated by serial dilutions 
and colony enumerations on solid media after 24–48 h at 37 ◦C. Finally, 
biofilm assays were prepared as described previously (Woodward et al., 
2000). For the biofilm assays, sterile polystyrene 24-well plates were 
used, with each well containing 2 mL of broth. At 0 h, each well was 
inoculated as above and at 24 and 48 h the liquid phase was removed 
and the biofilms attached to the bottom of the wells were washed three 
times with sterile water, before being stained with 1% crystal violet for 
5 min. Excess dye was washed three times with tap water and the stained 
biofilms were de-stained by 70% ethanol. The purple colour of the 
resulting solution was measured at 550 nm by the spectrophotometer. 
The biomass dry weight was determined by filtering 1 ml samples 
through 0.45 μm predried, preweighed nitrocellulose membranes (Mil-
lipore, Watford, UK), rinsing three times with distilled water and 
microwaving twice at 650 W for 5 min. All the cultures were prepared in 
triplicate. 
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2.3. Biochemical measurements 

Eight biochemical assay kits (Sigma-Aldrich, UK) were used for the 
measurement of glucose (product code: MAK013), glycerol (MAK117), 
succinate (MAK184), acetate (MAK086), ethanol (MAK076), SCFA 
(SBR00030), L-amino acid (MAK002) and ammonia (AA0100) levels in 
the culture medium. The planktonic culture samples were centrifuged at 
4000×g and the cell-free supernatant was used for the biochemical as-
says as recommended by the manufacturer. Each biofilm was disrupted 
within the liquid broth of the well, vortexed for 30 s and centrifuged for 
5 min at 12,000 rpm. The supernatant was used for the metabolic assays. 
For colorimetric assays, a Biotek ELX 808 multiwell plate reader (Lonza, 
Switzerland) was used. All the measurements were made in triplicate. 

2.4. Genome-scale model reconstruction 

Although a manually curated genome-scale metabolic model 
(GSMM) for L. reuteri JCM 1112, Lreuteri_530, was previously published 
(Kristjansdottir et al., 2019), this was found to have a high percentage of 
flux-inconsistent reactions (Supplementary Table 1). We thus generated 
a new GSMM for L. reuteri DSM20016 exploiting recent advances in 
automated GSMM reconstruction (Mendoza et al., 2019), while also 
leveraging previous curation efforts. An updated proteome sequence for 
L. reuteri DSM20016 was retrieved at the NCBI portal under accession 
number 166843. This was used in the GSMM reconstruction through 
CarveMe v1.5.1 (Machado et al., 2018) in Python 3.6. Compared to 
other GSMM reconstruction tools, CarveMe has been shown to generate 
models with a higher reaction set similarity to manually curated net-
works and a lower content in incomplete pathways with dead-end me-
tabolites (Mendoza et al., 2019). Additionally, CarveMe allows the 
definition of custom metabolic universes used for model creation. As 
Lreuteri_530 was developed within the BiGG namespace (King et al., 
2016), we therefore expanded the native gram-positive universe with its 
reactions and metabolites. This allowed us to use a larger set of network 
components that more likely capture L. reuteri metabolism. Finally, upon 
draft reconstruction, the model was gap-filled for growth on the M9 
medium supplemented with biotin and thiamine, requiring that the 
import and export of sampled metabolites matched experimental ob-
servations, through the –hard argument. Non-growth-associated main-
tenance energy requirement of Lreuteri_530 was integrated into our 
newly built model as a lower bound on the ATPM reaction corre-
sponding to 0.36 mmol/g/h. 

The obtained GSMM was quality-controlled through a series of 
functionality tests, benchmarking against Lreuteri_530 and a model of 
L. reuteri F275 JCM 1112 previously automatically reconstructed via a 
different approach (Magnúsdóttir et al., 2017) (Supplementary Table 1). 
Our newly generated model incorporates 54% of the reactions and 69% 
of the metabolites present in the curated model, while almost doubling 
the number of reactions and introducing 43% as many metabolites. 
Further, our model has only 2.4% of flux inconsistent reactions, against 
35.4% of the curated model, and correctly passes the other functionality 
tests (Supplementary Table 1). All the tests were performed by using the 
COBRA toolbox 3.0.6 (Heirendt et al., 2019) with CPLEX 12.8 as a 
mathematical programming solver. To characterise the differences be-
tween our model and Lreuteri_530 in terms of functional subsytems, we 
mapped BiGG reaction identifiers to those of the ModelSEED database 
(Seaver et al., 2021) via MetaNetX (Moretti et al., 2021). Our model 
results expanded in a number of metabolic functions, especially those 
related to carbohydrates, amino acids, and membrane transport. 
Methionine biosynthesis and arginine, ornithine, and isoleucine degra-
dation are among the pathways with most introduced annotations, 
which also comprise thiamin and cholate biosynthesis and purine and 
pyrimidine conversions. Quantitative improvements in terms of reaction 
class, subclass, and pathway annotation are provided in Supplementary 
Fig. 1. 

To have GSMMs within the same namespace, and because eukaryotic 

organisms are in general more complex to accurately model, for 
S. boulardii we adopted iMM904, a curated and experimentally validated 
Saccharomyces cerevisiae GSMM (Mo et al., 2009). Current genomic ev-
idence supports that these organisms are in fact two strains of the cer-
evisiae species, with recent comparative analysis showing that the 
probiotic yeast is taxonomically close to wine strains of S. cerevisiae and 
possesses the same genes involved in biofilm formation (Khatri et al., 
2017). In this way, we secured a physiologically meaningful model for 
the yeast. 

2.5. Flux sampling 

Starting from the biochemical measurements, the corresponding 
metabolite production and consumption rates q were calculated by using 
the following relation: 

dN
dt

= q X(t), (1)  

where N represents the metabolite concentrations and X the biomass at 
time t. Standard deviations obtained from triplicate measurements were 
propagated to determine exchange rate errors Δq. The obtained values 
were converted to mmol/gDW/h and used to constrain the GSMMs by 
setting q ± 3 ⋅Δq as upper and lower bounds for each metabolite’s ex-
change rate. Growth rate constraints were set analogously as μ ± 3 ⋅Δμ, 
where μ was determined from logarithmic interpolations of OD600 and 
OD550 measurements for the planktonic and biofilm cultures, respec-
tively, and its error Δμ was obtained by propagation. For all the me-
tabolites in the medium without experimental measurements, we set 10 
mmol/gDW/h as an uptake rate bound to avoid unrealistically large flux 
distributions. 

To explore the space of feasible metabolic states allowed by the 
integration of biochemical, culture type and growth mode constraints, 
we employed metabolic expectation propagation (MEP) (Braunstein 
et al., 2017). This method analytically approximates a flux distribution 
as a multivariate truncated Gaussian and allows efficient computation of 
its parameters (mean and variance) through the expectation propaga-
tion algorithm. Moreover, in contrast to traditional flux sampling 
methods, empirical evidence can be explicitly taken into account by 
MEP by matching the experimentally measured mean and variance of 
any flux with the corresponding posterior distributions. We therefore 
provided the algorithm with experimental information regarding 
glucose, glycerol, ammonia, ethanol, acetate, succinate, and growth, 
selecting a more relevant flux configuration subspace. Upon obtaining 
the flux distribution parameters, we sampled 1000 genome-scale flux 
configurations for each strain through a minimax tilting method (Botev, 
2017). 

Using sampled flux solutions, growth-normalised fluxes were defined 
as the ratio between their value and the cellular growth rate in the 
respective condition. Growth rate being equal, growth-normalised 
fluxes represent the biochemical transformation rates necessary for 
maintaining such growth rate. 

2.6. Modelling biofilm formation 

To explicitly account for the metabolic rewiring associated with 
biofilm formation, we modified the biomass pseudo-reaction of both 
organisms with an approach adopted also in previous studies (Ribaudo 
et al., 2017). We assumed that biomass accumulation could be divided 
into a cell-growth-associated and a biofilm-associated component, as 
follows: 

(1 − α)
∑

i
cgrowth

i + α
∑

j
cbiofilm

j →environment, (2)  

where cgrowth
i and cbiofilm

i represent the coefficients of compounds linked 
to cell growth and biofilm formation, respectively, whereas α represents 
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the fraction of biofilm-forming biomass over total biomass. Having α 
fixed, the effect is thus a rescaling of the percent biomass contribution 
for all compounds natively present in the biomass pseudo-reaction by a 
factor (1 − α), with the additional term expressing the fractional 
contribution of the extracellular matrix components weighted by their 
molecular mass. 

In general, the biofilm matrix is largely composed of extracellular 
biomass, with minor fractions of microbial cells (Flemming et al., 2016). 
In our work, we assumed that around two-thirds of the total biomass is 
directed toward extracellular matrix formation and thus set α = 0.65, 
following previous studies (Ribaudo et al., 2017). Coefficients cbiofilm

j 

were established based on the available evidence on strain-dependent 
biofilm matrix composition and the corresponding molecular weights 
for these components. The mechanisms for L. reuteri biofilm develop-
ment have been characterised in vivo, identifying some key genes whose 
products are secreted depending on the development stage (Frese et al., 
2013; Terraf et al., 2016). Specifically, a Fap1-like protein has been 
identified as necessary for the initial adherence to a surface, while 
LysM/YG proteins are responsible for the formation of cell aggregates 
and macro-colony development (Frese et al., 2013). To best reproduce 
the metabolic requirements associated with the production and secre-
tion of these proteins, including the serine-rich Fap1-like protein, we 
retrieved their sequence and assumed their amino acid proportion as the 
coefficients in our biomass pseudo-reaction, appropriately rescaled by 
their molecular weight. The energetic requirements for amino acid 
polymerisation were assumed as 2.306 ATP/molecule, setting the cor-
responding coefficients accordingly (Kaleta et al., 2013). 

In S. cerevisiae, the extracellular biofilm matrix is mainly made up of 
glucose, mannose, and galactose (Beauvais et al., 2009; Faria-Oliveira 
et al., 2015). Based on previous results of genomic comparisons, we 
assumed similar biofilm formation mechanisms in S. boulardii (Khatri 
et al., 2017). We thus defined the extracellular matrix as comprised by 
the polysaccharides of glucose and mannose present in the model, 
including 1,3-β-D-glucan, glycogen, and mannan, together with galac-
tose in uniform proportions. 

2.7. Microbial community modelling 

Microbial community GSMMs representing the mixed cultures were 
created through the createMultipleSpeciesModel function in the COBRA 
toolbox (Heirendt et al., 2019). The result was the creation of a common 
extracellular compartment where the individual GSMMs are encapsu-
lated and share boundary metabolite exchanges with the environment, 
effectively allowing the simulation of cross-feeding and nutrient 
competition. To simulate a metabolic activity reproducing growth pat-
terns observed experimentally, we introduced a community biomass 
pseudo-reaction, defined as follows: 

aLR μLR + aSB μSB→environment. (3)  

here, μLR and μSB denote the flux through the individual biomass pseudo- 
reactions of L. reuteri and S. boulardii, which may include both cellular 
and biofilm components depending on the culture mode. These rates 
were weighted by the strain relative abundances aLR and aSB, calculated 
as the average CFU fraction for each strain over time. Biochemical 
constraints were set in the same way as for the mono-culture simulations 
on the global metabolite exchanges and on the community growth rate. 

2.8. Multivariate flux analysis 

To explore fluxomic profiles obtained by metabolic modelling and 
extract key information, we employed principal component analysis 
(PCA) via the Matlab pca function. Prior to performing PCA, flux profiles 
X were standardised to have null mean and unitary standard deviation 
through the Matlab zscore function. 

To analyse the relationship between experimental factors and indi-

vidual strain metabolism, we used an approach that extends both cor-
respondence analysis and partial least squares correlation, termed 
partial least squares correspondence analysis (PLSCA) (Beaton et al., 
2016). Given two data matrices X and Y representing the flux profiles 
and the experimental factors respectively, pre-processed so that they 
have zero mean and unitary norm, we define R = XTY. PLSCA de-
termines two sets of latent variables of maximal covariance by the 
generalised singular value decomposition, as follows: 

R = UΔVT with UT WXU = I = VT WYV. (4)  

here, U and V are the matrices of the left and right singular vectors, 
respectively, Δ is a diagonal matrix containing the singular values, while 
WX and WX are diagonal matrices weighting the occurrence of cate-
gorical variables assuming that rare occurrences are more informative 
than frequent ones. Akin to PCA, PLSCA projects the two data matrices 
onto a latent space described by orthogonal axes of decreasing covari-
ance. As biochemical reaction fluxes constitute quantitative features, we 
processed them through the Escofier transformation before using PLSCA 
(Beaton et al., 2016). Such transformation takes a continuous, centred 
and scaled feature x and expresses it as two new variables obtained as 
1− x

2 and 1+x
2 . PLSCA and the relative data pre-processing were performed 

with the TExPosition package v2.6.10.1 (Beaton et al., 2014). 
Finally, hierarchical clustering was performed using Euclidean dis-

tances and complete linkage through the Matlab linkage and dendro-
gram functions. For this analysis, exchange fluxes were rescaled by the 
maximum absolute exchange for each metabolite, in order to obtain 
values between − 1 and 1. 

All the analyses were carried out in Matlab R2017b and R 3.5.0. 

2.9. Statistical analysis 

Statistical comparison of experimentally measured metabolic dif-
ferences between cultures was performed using unpaired t-tests. Com-
parison of metabolic flux distributions sampled in silico was instead 
carried out by Wilcoxon rank-sum tests, controlling the false discovery 
rate by adjusting the p-values with the Benjamini-Hochberg correction 
(Benjamini and Hochberg, 1995). 

To evaluate the robustness of PLSCA principal components, we 
resorted to an eigenvalue-based randomisation test as described previ-
ously (Peres-Neto et al., 2005). In brief, the test assumes k random 
permutations of each feature independently among the samples, 
obtaining a new data matrix X′ upon any permutation. For each of them, 
PLSCA of the shuffled data was repeated and the latent variable vari-
ances λ, i.e., the eigenvalues of the covariance matrix of X′, were 
recorded. The probability of obtaining a certain latent variable by 
chance was calculated by: 

p =
|{X’ ∈ X̂ : λ(X’) ≥ λ(X)}| + 1

k + 1
. (5) 

In our case, the number of permutations was k = 999. This test thus 
verified that the model had identified meaningful latent variables. 

3. Results 

3.1. Exploration of the proposed multi-strain probiotic potential 

To characterise the metabolic interactions in the multi-strain pro-
biotic composed of L. reuteri and S. boulardii, we designed a two-factor 
strategy considering: (i) the capacity to form biofilms; and (ii) the 
interaction arising from sharing the same growth environment. We set 
up culture experiments where the strains were grown either in a 
planktonic or a biofilm mode and either in isolation or co-growth with 
the other strain (Fig. 1). In each of the resulting four cases, the strains 
were cultivated both in simple (M9) and complex media (TSB) to test the 
response to different levels of nutrient availability. Growth and activity 
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for each culture were monitored over time based on optical density, 
number of CFU and concentrations for a set of relevant metabolites (see 
Materials and Methods). 

To fully reconstruct and interpret the metabolic behaviour of the 
strains in each condition, we devised an in silico approach for charting all 
axes of the biological space explored. A GSMM for L. reuteri was 
assembled starting from its proteome sequence, spanning 1390 re-
actions, 942 metabolites, and 530 genes (see Materials and Methods for 
details). The model incorporates biochemical transformations for the 
production of reuterin and 1,3-propanediol, which are among the hall-
mark products of this organism, and several molecules relevant to gut 
physiology like vitamins and amino acids, for a total of 177 exchange 
reactions. For S. boulardii, an extensively validated yeast model was used 
based on recent genomic evidence (Mo et al., 2009; Khatri et al., 2017). 
This model encompasses 1577 reactions, 1226 metabolites, and 905 
genes, with a curated set of secretion pathways resulting in 164 ex-
change reactions. Further, manually reviewed cofactor biosynthetic 
pathways are present, including quinone, beta-alanine, and riboflavin. 
By using such GSMMs, we sampled the space of metabolic reaction flux 
configurations that were consistent with observations from the cultures. 
Measured growth and metabolite concentration change rates were used 
to constrain the models, shaping the multidimensional flux space of the 
networks accordingly. Additionally, to reproduce the different growth 
settings, we devised ad hoc constraints based on the definition of 

alternative biomass pseudo-reactions. In this way, we modelled the 
growth modes and the culture types in a condition-specific fashion. 

In general, the biofilm matrix composition varies from organism to 
organism. For example, L. reuteri makes colonies composed of cell ag-
gregates through the secretion of peptidic anchors (Frese et al., 2013; 
Terraf et al., 2016) while S. boulardii mainly exploits glucose, mannose, 
and galactose polymers (Beauvais et al., 2009). To account for appro-
priate biofilm compositions and associated metabolic costs, we modified 
the biomass pseudo-reaction in the GSMMs of the individual strains 
based on the evidence provided by these studies (see Materials and 
Methods for details). The microbial communities were instead modelled 
by defining an outer shared compartment including the metabolic net-
works of the individual strains. Such an approach allows one to unam-
biguously determine the metabolic inputs and outputs for each member 
of the community, which is essential for understanding the effects of 
each biological parameter on their activity. To formalise the relationship 
between the strains, we constrained the community GSMM with the 
experimentally observed growth and metabolite dynamics. To this end, 
we defined a community biomass pseudo-reaction whose flux was 
required to lie in the experimental range and where the contribution to 
the total growth of each strain was set as the relative abundance in terms 
of CFU counts (see Materials and Methods). The metabolite concentra-
tion change rates were used to constrain the boundaries of the system, 
namely the exchange rates in the shared compartment. 

Fig. 1. Schematic diagram of the experimental and computational design of the study. Starting from two isolated strains of L. reuteri and S. boulardii, we experi-
mentally characterised their growth and metabolic behaviour across culture types (mono- and co-cultures) and growth modes (planktonic and biofilm), both in 
simple and complex medium. Next, we expanded the observed metabolic activity up to the genome-scale using constrained-based models of metabolism for the two 
strains and dedicated modelling strategies for microbial communities and biofilm development. To obtain a comprehensive picture of the metabolic potential in each 
condition, we used flux sampling and fully explored the achievable metabolic states. Given their high dimensionality and complexity, these were subsequently 
analysed through multivariate and statistical modelling approaches. 
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In all the conditions, we therefore used a specific network structure 
and parametrisation while exploiting the experimental data to focus on 
the relevant solution subspace. Such an approach had the purpose of 
yielding the ranges of metabolic phenotypes for the two strains that are 
both allowed by the observations and consistent with biochemical 
network knowledge. The obtained space of achievable metabolic fluxes 
was characterised in full to estimate the unobserved metabolic potential. 

3.2. Ecological interactions between L. reuteri and S. boulardii 

Overall, L. reuteri grew better and faster planktonically by 6 h than 
S. boulardii in rich medium and similarly in minimal media, however 
S. boulardii formed better biofilms by 48 h (Fig. 2A). Moreover, the type 
of medium had a more marked effect on growth across the biofilm 
cultures than the planktonic ones, consistently with an elevated meta-
bolic cost necessary for the establishment of biofilm colonies. It was also 
observed that CFU concentration at the final time point significantly 
changes when growing the strains together (Fig. 2B). In particular, 
L. reuteri planktonic growth was drastically reduced in the mixed cul-
tures, while that of S. boulardii was positively affected. In biofilms, the 
same trend occurred even with a less pronounced inhibition of L. reuteri. 
When performing these measurements in anaerobic conditions, L. reuteri 
showed a faster growth and S. boulardii showed a slower growth, which 
resulted in a slower growth also for the mixed cultures (Supplementary 
Fig. 2). CFU counts confirmed the same trends in anaerobiosis, high-
lighting again the suppression of L. reuteri (Supplementary Fig. 2). 

Multiple mechanisms may in principle underlie such patterns 
(Fig. 2C). Firstly, a more efficient nutrient utilisation might allow the 
yeast to thrive at the expense of the lactobacillus. Secondly, S. boulardii 
could benefit from some of the metabolites secreted by L. reuteri (e.g. 

sugars) or the latter species could be harmed by some of the former’s 
byproducts. For instance, Ponomarova et al. suggested a potential 
mechanism by which yeast cells and lactic acid bacteria can interact 
with each other when they are in the same culture (Ponomarova et al., 
2017). S. cerevisiae was found to secrete a pool of amino acids that were 
taken up by the lactic acid bacteria and helped them survive. In return, if 
lactose was present in the medium, the lactic acid bacteria could break it 
down to galactose and glucose, making it accessible to the yeast. In 
addition, Jarosz et al. suggested a prion-based mechanism of commu-
nication between yeast and bacterial cells in co-culture (Jarosz et al., 
2014). In that case, the bacteria induced a prion that made the yeast cells 
produce less ethanol, allowing the bacteria to survive and flourish in the 
mixed culture. Alternatively, the secretion of proteins or glycoproteins 
with antimicrobial effects, termed mycocins, might contribute to 
L. reuteri suppression (Rima et al., 2012). Finally, growth-coupled ion 
exchange or organic acid production might trigger a pH reduction, 
which can affect L. reuteri metabolism on multiple functional levels (Lee 
et al., 2008). 

At the metabolic level, several differences were observed between 
mono- and mixed cultures, as shown in Fig. 3. For example, nearly seven 
times more ammonia was consumed by 6 h in M9 mixed cultures than in 
the corresponding mono-cultures. In addition, about two times more 
acetate and succinate were formed in the mixed planktonic and biofilm 
cultures. Statistical values are shown in Fig. 3D. Moreover, in anaero-
biosis, acetate accumulated in the medium in larger amounts (Supple-
mentary Fig. 2). Acetate and succinate are metabolites that can have 
positive effects on human health. Acetate is a short-chain fatty acid 
(SCFA) that has been shown to reduce inflammation in the gut and affect 
the gut-brain axis, while succinate availability is important for all the 
metabolic pathways that are interlinked with the TCA cycle, including 

Fig. 2. The effect of co-culture on the growth of the individual strains. A. Dry weight dynamics for L. reuteri (top), S. boulardii (middle), and their mixed culture 
(bottom), each grown in planktonic (left) and biofilm mode (right). Planktonic cultures were sampled at 0, 3, and 6 h post-inoculation, while biofilm cultures were 
sampled at 0, 24, and 48 h post-inoculation. All measures were done in three biological replicates. B. Comparison of the final CFU concentration in pure and mixed 
cultures for L. reuteri (top) and S. boulardii (bottom) when grown in planktonic (left) and biofilm mode (right). All measures were done in three biological replicates. 
C. Potential mechanisms underlying the growth patterns of the two strains, where S. boulardii results as a beneficiary of mixed growth while L. reuteri is suppressed. 
The former may have a more effective resource utilisation and potentially inhibit the partner through secreting compounds with a toxic effect or lowering pH. 
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the metabolism of carbohydrates, amino acids, fatty acids, cholesterol, 
and heme and is also involved in immune signalling (Dalile et al., 2019; 
Mills and O’Neill, 2014). 

3.3. Assessing the genome-scale metabolic potential of the multi-strain 
communities 

The biochemical data shown above indicate increased production of 
acetate and succinate in the lactobacillus-yeast consortium, yet they 
embrace a limited set of metabolites. To comprehensively estimate the 
metabolic potential that was not directly measured, we employed 
constraint-based modelling as described above. 

GSMMs account for a large range of metabolites that can be 
exchanged with the environment and microbial partners, including 
amino acids, sugars, nucleotides, vitamins, and fatty acids. By consid-
ering consumption/production potential estimates for such a range of 
metabolites, marked differences between the cultures emerge. Fig. 4A 
shows a PCA representation of the cultures in terms of the corresponding 
metabolic exchanges. While using only experimentally measured ex-
changes the cultures appear broadly distinguishable based on the me-
dium, when integrating the in silico estimates the picture drastically 
changes. Co-cultures in complex medium display an emergent metabolic 
behaviour, visible as a gap separating them from the respective single 
cultures, consistent with a broad metabolic rewiring associated with the 
established biotic interaction. Such a behaviour has been previously 

observed in co-culture studies (Medlock et al., 2018) and reveals that 
even pairwise co-growth can present complex interactions. While here it 
is observed for in silico predictions and might not precisely reflect the 
real metabolic rewiring, it is thus reasonable to assume that, on a broad 
level, this pattern takes place in vitro as well. Moreover, the role of in-
dividual metabolites appears better defined when accounting for 
genome-scale variability. For instance, a larger ethanol release results as 
more clearly associated with the simple medium, while succinate pro-
duction appears better associated with the complex medium compared 
to glycerol and acetate. 

As regards metabolites relevant to the gut microbiota, it was 
observed that different conditions lead to increased exchange potential 
for different beneficial microbial metabolites (Fig. 4B). For example, our 
models predicted a secretion of biotin from S. boulardii, which decreases 
in the biofilm mode when utilising the minimal medium and increases 
with the complex medium. Analogously, a multi-strain environment is 
associated with a decrease in biotin production in the minimal medium, 
whereas the opposite trend is observed in the complex medium. 
Concomitantly, various changes in amino acid exchanges characterise 
the different growth modes. In M9, the amino acids L-valine, L-isoleu-
cine, L-methionine and L-histidine, as well as the short-chain fatty acids 
formate, L-lactate and D-lactate are more highly produced in mono- 
cultures, while L-serine and L-lysine are more highly produced in 
mixed cultures. In mixed cultures, we also see a higher production of 
glycine, isobutyric, isovaleric acid, the antimicrobial compound reuterin 

Fig. 3. Concentration of monitored metabolites over time across the cultures. A. L. reuteri cultures. B. S. boulardii cultures. C. Mixed cultures. Planktonic cultures 
were sampled at 0, 3, and 6 h post-inoculation, while biofilm cultures were sampled at 0, 24, and 48 h post-inoculation. N = 3, where N is the number of biological 
replicates. D. Key metabolic differences between mixed and mono-cultures were assessed by using unpaired t-tests. 
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and nicotinamide (vitamin B3 or niacin). Nicotinamide is more highly 
produced in the planktonic state. Shikimate, an amino acid precursor, is 
overproduced in mixed cultures and planktonic mono-cultures. In TSB, 
six metabolites (L-valine, L-lactate, L-cysteine, L-proline, L-alanine and 
riboflavin - or vitamin B2) had increased exchange potential in mono- 
cultures, while eleven others (L-serine, R-pantothenate - or vitamin 
B5, Glycine, 4-aminobutanoate, 2-methylbutanoic acid, isobutyric acid, 

isovaleric acid, reuterin, nicotinate (a vitamin B3 precursor), nicotin-
amide and L-lysine) had increased exchange potential in mixed cultures. 

To evaluate the confidence in model predictions while also getting a 
comprehensive recapitulation of the above results, we measured total 
amino acid secretion rates across conditions. Fig. 5 shows that, although 
model fluxes tend to be inflated with respect to experimental values, 
trends were correctly captured, such as, in particular, the decrease in 

Fig. 4. Global metabolic exchange potential reconstructed in silico. A. Principal component analysis (PCA) of average measured (left) and in silico inferred (right) 
metabolic exchange rates for the twelve cultures. Variable loadings were rescaled to fit the plot so that the maximum loading distance and the maximum data point 
distance from the origin were equal. B. Agglomerative clustering characterising the average exchange rates for a range of amino acids, vitamins and short-chain fatty 
acids. Values were rescaled by dividing exchange rates by the maximum rate obtained for each metabolite. 
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total amino acid production rates in mixed cultures compared with 
S. boulardii. Thus, it emerges that S. boulardii produced amino acids at 
the highest rate in all the conditions, but also that biofilms are associated 
with a strong reduction in such rates. Measurement of total SCFA pro-
duction rates allowed us to verify a positive correlation with GSMM 
estimates also there, even though uncertainty over the precise detected 
metabolite identity makes it more difficult to fully evaluate these results 
(Supplementary Fig. 3). 

3.4. Inferring strain-specific response to varying growth conditions 

We next sought to disclose the metabolic exchange trends that 
characterise the individual strains across conditions, and whether such 
trends universally correlate with any of the experimental design axes 
considered. An advantage of our GSMM approach is that even when 
modelling multi-strain communities the behaviour of the individual 
members can be directly obtained for free. Each member is in fact 
embedded in a compartment with well-defined transport reactions, 
which are distinct from the global system boundary. Thus, we applied 
PLSCA (Beaton et al., 2016), a multivariate analysis technique that ex-
trapolates the correlation between two sets of variables by extracting the 
shared variance. In our case, we focused on the relation between the 

strain-level metabolic exchange fluxes and the factor set including 
strain, medium, culture type and growth mode. To better capture the 
metabolic mechanisms underlying these parameters, we rescaled the 
fluxes by the growth rate in the corresponding condition, thus obtaining 
growth-normalised metabolic fluxes for each exchanged compound. 

In Fig. 6A, it can be observed that strain and medium type are the 
parameters that have the strongest effect on growth-normalised 
metabolite exchanges, given that they are localised the most distant 
from the origin. Along with a decreasing effect strength, these are fol-
lowed by the type of culture (mono- or co-culture) and then by the 
growth mode (biofilm, planktonic). This was expected as different spe-
cies have different metabolic capabilities, while medium composition 
(rich, poor) directly affects the nutrients that can be absorbed and 
consequently the end products that can be exported. Although the spe-
cific constraints used here could have potentially inflated its contribu-
tion compared to the other parameters (consult Materials and Methods 
for details), the medium composition is thus reasonably among those 
with the stronger effect. Interestingly, the type of culture had a stronger 
effect than the growth mode, which highlights that the ecological 
interaction between the two species had a significant effect on their 
metabolic output and reflects the emergent behaviour shown above 
(Fig. 4A). Among the compounds whose exchange most covaries with 

Fig. 5. Model validation focusing on amino acid production. A. Comparison between experimentally measured and computationally predicted total amino acid 
exchange rates across all the conditions. B. Global relationship between experimentally measured and computationally predicted total amino acid exchange rates, 
where ρ denotes the Spearman correlation coefficient. 

Fig. 6. Strain-level trends in growth-normalised ex-
change fluxes. A. Partial least squares correspondence 
analysis (PLSCA) capturing relationships between the 
GSMM-generated growth-normalised metabolic ex-
changes and experimental factors. The distance from 
the origin of each dot indicates the contribution to the 
total covariance of the corresponding flux/parameter, 
while dot proximity reflects the correlation of 
respective fluxes/parameters. Fluxes are assigned two 
dots each, representing values above and below 
average (see Materials and Methods for details). B. 
Exchange regimes associated with the experimental 
factors, for the metabolites that are most highly 
correlated with each shown factor.   
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experimental factors are vitamins including biotin, folate, niacin, and 
nicotinamide, while several amino acids and other vitamins appear 
associated with the growth mode and culture type. In contrast, SCFAs 
and related compounds tend to be less associated with specific 
parameters. 

Furthermore, Fig. 6B shows the metabolites whose exchange is most 
correlated with each parameter pair and in which direction. S. boulardii 
metabolic activity is generally associated with a higher production of 
several metabolites, which L. reuteri tends to consume or produce in 
lower amounts. The only exception is N-acetylmuramic acid, which is a 
bacterial cell wall component. The remaining metabolites include 
propanoyl phosphate (SCFA derivative), nicotinamide (vitamin B3), 
iron and a siderophore, staphyloferrin B, lanosterol, a steroid precursor, 
and trans-4-hydroxy-L-proline, an inhibitor of proline catalysis. The 

same picture is seen for mono-vs co-culture, as most metabolites that are 
most highly correlated with this parameter pair are produced in co- 
cultures with the exception of cytidine, an RNA component. The 
remaining metabolites include many amino acids, fecosterol (a fungal 
cell wall component) and glyoxylate which is an intermediate of the 
glyoxylate cycle that allows the conversion of fatty acids to carbohy-
drates. Finally, some amino acids are produced by cells in biofilm mode 
and consumed by planktonic cells, while other amino acids have the 
opposite trend. Regarding SCFA, L-lactate is formed by biofilm- 
associated cells, while formate is produced by planktonic cells. 

Finally, we inspected more closely the differences between growth- 
normalised exchanges in mono- and co-cultures to better evaluate the 
impact of community establishment and hypothesise more detailed 
interaction mechanisms. In Fig. 7, it can be seen that numerous health- 

Fig. 7. Strain-specific growth-normalised metabolic fluxes in mono- and co-culture with simple medium for a set of key amino acids, sugars, and vitamins. A. 
Comparison between the growth-normalised metabolic fluxes of L. reuteri and S. boulardii when growing in planktonic mode. B. Comparison between the growth- 
normalised metabolic fluxes of L. reuteri and S. boulardii when growing in biofilm mode. 

G. Zampieri et al.                                                                                                                                                                                                                               



Metabolic Engineering 76 (2023) 120–132

130

relevant compounds are more highly produced in co-cultures than 
mono-cultures when normalising over the growth rate. This observation 
suggests that, despite a decreased total amino acid production (Fig. 5 
and Supplementary Fig. 3), these may in reality be exchanged at large 
rates by the microbes when growing together. Widespread increased and 
decreased metabolic efficiency, defined as a reduced or intensified 
metabolite production per unit of growth, respectively, was previously 
observed in pairwise co-cultures of gut microbes also including Lacto-
bacillus strains (Medlock et al., 2018). Moreover, in the same study, 
increased efficiency was enriched in microbe pairs having positive in-
teractions. Here, L. reuteri and S. boulardii display a negative interaction 
characterised by a suppressed growth of the former. Thus, it is not un-
reasonable that growth-normalised exchanges point to reduced meta-
bolic efficiency. 

Additionally, higher assimilation of amino acids by L. reuteri in 
mixed cultures suggests a mutually beneficial cross-feeding with 
S. boulardii, as observed previously between S. cerevisiae and lactic acid 
bacteria (Ponomarova et al., 2017). Although these strains differ from 
those considered here, this mechanism could also explain the growth 
trends observed for our strains. This explanation would be particularly 
relevant in the case of biofilm communities, given that L. reuteri biofilms 
are predominantly protein-based, as found by previous studies and 
implemented in our model, and more elevated assimilation of amino 
acids was found in this growth mode. Interestingly, in planktonic mode, 
the models suggest a consistent flow of galactose from the lactobacillus 
to the yeast, and of sucrose in minor amounts, with an amino acid flow 
from the yeast to the lactobacillus, as found by Ponomarova et al. 
(2017). Such a cross-feeding is more evident in M9, while in TSB the 
yeast gives away fewer amino acids, suggesting that this mutualistic 
interaction is stronger with fewer resources available in the environ-
ment, as would be expected (Supplementary Table 2). In biofilm mode, 
galactose exchange is pronounced, in both simple and complex media, 
consistent with its role in the extracellular matrix composition. The 
interaction between L. reuteri and S. boulardii would therefore seem 
more complex and dynamic than anticipated by the growth trends: the 
yeast might steal resources from the lactobacillus by growing faster, but 
at the same time the latter provides additional sugars to receive amino 
acid in return (also to grow the biofilm). 

4. Discussion 

Both L. reuteri and S. boulardii are known to produce a wide variety of 
beneficial products for the host (Mu et al., 2018; Kelesidis and Pot-
houlakis, 2012). In particular, L. reuteri produces reuterin and organic 
acids that have antimicrobial effects, while both species produce SCFAs 
and other immunomodulators that can suppress inflammation. Reuterin 
is a broad-spectrum antimicrobial compound that inhibits the growth of 
several harmful Gram-negative and Gram-positive bacteria, along with 
yeasts, moulds, and protozoa (Mu et al., 2018). Moreover, formate is an 
SCFA that has been found to help against cancer, immune system dis-
orders, neurodegeneration and obesity (Pietzke et al., 2020), while 
L-lactate is involved in brain signalling (Mosienko et al., 2015) and 
isobutyrate in ulcerative colitis (Kedia et al., 2016). In addition, the 
biosynthesis of vitamins, amino acids, and enzymes can directly or 
indirectly benefit the host. For instance, some amino acids mentioned 
above are important for protein synthesis and a variety of other cellular 
functions (Neis et al., 2015). The three vitamins that belong to the 
vitamin B complex (B2, B3, B5), are essential for the proper develop-
ment of the skin, lining of the digestive tract, blood cells, as well as our 
metabolism and brain function (Lukaski, 2004). Increased and stable 
production of such metabolites in the gut over a long period of time is 
expected to improve various aspects of human health, leading to pro-
biotic supplements of high health value. As an example, probiotic 
administration was the primary factor influencing the gut microbiome of 
preterm infants in a large-scale longitudinal study (Beck et al., 2022). 
However, whether and how significant benefits can be provided in fully 

developed intestinal microbiota is still to be understood. Firstly, even if 
beneficial metabolites are released in the gut, they could be re-absorbed 
by microbial partners eliminating the benefits for the host. Secondly, 
population levels of different species can change due to factors such as 
diet, host genetics, and environmental stimuli (e.g. exposure to antibi-
otics, acidity/alkalinity, etc.). From a clinical, translational perspective, 
the ability to improve the resilience of the gut microbial ecosystem prior 
to perturbations, or to restore its equilibrium afterwards, would offer 
significant benefits. To be effective, this therapeutic approach will likely 
need a personalised or subgroup-based understanding of individual ge-
netics, diet, gut microbiome and other environmental factors that might 
be involved (Fassarella et al., 2021). 

Several other studies have recently attempted to perform metabolic 
pathway reconstruction and gene expression or proteomic analysis in, 
for instance, L. reuteri, linking their results with its beneficial properties 
(Kristjansdottir et al., 2019; Saulnier et al., 2011; Mangiapane et al., 
2014). Further, pairwise interactions among sets of bacteria have been 
reconstructed through co-culture growth experiments and metabolic 
modelling (Medlock et al., 2018). Here, the authors found that metab-
olite production and consumption generally decreased relative to the 
growth rate of each strain in pairs displaying positive interactions, 
suggesting that co-cultures with positive interactions can utilise re-
sources more efficiently than co-cultures without positive interactions or 
mono-cultures. However, to our knowledge, our study is the first one 
taking into account the effects of growth mode (biofilm vs planktonic 
growth) on ecological interactions (mono-vs mixed cultures) in such an 
integrative experimental and modelling framework. 

In the gut, nutrient availability, growth dynamics, oxygen gradients, 
and microbial community composition are different and much more 
complex (Donaldson et al., 2016). It is therefore important to highlight 
that our in vitro measurements only show specific metabolic effects 
under the tested conditions and in vivo studies are needed in order to 
confirm how the considered species behave. However, to our knowl-
edge, only a few published in vivo studies focus on the metabolism of 
probiotic microbes (Liu et al., 2018). As biofilms are the main mode of 
coexistence in the gut, accounting for its metabolic demands can in 
principle better delineate the type of interactions that arise in vivo 
(Flemming et al., 2016). More generally, adopting an integrative 
approach along multiple biological factors can shed light on the complex 
and plastic nature of microbial interactions. While observed metabolic 
interactions are not guaranteed to take place in vivo, simplified and 
tractable probiotic ecosystems such as the one developed in this study 
can render them more accessible to experimental observations and 
mechanism identification. Our approach thus complements biomedical 
studies using direct probiotic administration Corbitt et al. (2018). 
Furthermore, with the computational method presented in this study, 
probiotic co-cultures could be optimised in such a way that they lead to 
increased levels of beneficial metabolites, prolonged production periods 
or even induction of synthesis of metabolites that are not normally 
produced in mono-cultures. This could enhance the biological and 
commercial values of certain probiotic products with a direct benefit for 
the probiotics industry Jangra et al. (2016). Finally, the effect of dietary 
interventions on the human gut microbiome can be better predicted and 
optimised with our method, potentially leading to the development of 
better treatment strategies for diseases associated with the gut micro-
biome, such as inflammatory bowel disease, obesity, type 2 diabetes, 
cardiovascular disease, autoimmune and neurological disorders Liu 
et al. (2018). 

5. Conclusions 

In this study, we introduced an integrative approach for the genome- 
scale characterisation of microbial interactions in varying conditions, 
which was applied to investigate the metabolic ecology of L. reuteri and 
S. boulardii consortia. It was found that the production of specific mi-
crobial metabolites can be significantly affected by the growth mode, the 
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composition of the growth media, the microbial species and their in-
teractions within a co-culture. 

Moreover, the computational approach that was used here can lead 
to the design of new probiotic products and provide scientific insight for 
the application of metabolic engineering methods in order to optimise 
the production of desired beneficial metabolites. Such probiotic-based 
products are expected to be more effective, providing long-lasting 
health benefits and being used for the treatment or prevention of 
serious diseases such as inflammatory bowel disease, mental illnesses, 
obesity, diabetes, and cancer. 
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