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ABSTRACT

Motivation

Enzymes are complex macromolecules crucial to life on earth. From bacteria to human
beings, all organisms use enzymes to catalyse the many thousands of chemical reactions
occurring in their cells. Enzyme functions are so diverse that the use of enzymes in
industries like pharmaceuticals and agriculture has gained popularity over recent years

as "biocatalysts”.

Unfortunately, the confident laboratory-based characterisation of enzyme function has
lagged behind a massive increase in sequencing data, slowing down initiatives that
look to use biocatalysts as part of their chemical processes. Computational methods
for identifying biocatalysts do exist, but often falter due to the complexity of enzymes
and sequence bias, leaving much of the catalytic space of enzymes and their families

undiscovered.

This thesis has two major themes: the development of in silico approaches for curating
diverse panels of novel enzyme sequences for experimental characterisation, and of
tooling that integrates in silico panel creation and in vitro enzyme characterisation

into a unified and iterative framework.

Contributions of this thesis

The contributions of this thesis can be divided into the two larger themes, starting

with the diverse panel selection of sequences from an enzyme family:

e A novel type of protein network based on patterns of coevolving residues that

can be used to identify functionally-interesting groupings in enzyme families.

e The automatic sampling of functionally diverse subsets of enzyme sequences by

solving the maximum diversity problem.



e A study into the viability of artificially increasing enzyme family diversity through

neural networks-based generation of synthetic sequences.

The second theme, which deals with built tools for bridging the gap between the in

silico and in vitro side of enzyme family exploration:

e A platform that integrates the panel selection process and resulting characteri-

sation data to promote an iterative approach to exploring enzyme families.

e A repository for storing the metadata generated by the major steps of charac-

terisation assays in the lab.
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the subgraph of which can also be seen. The network density for the
SSN and the MDP solution subgraphs can also be seen, along with the
average node degree of the original graph. Similarly to the smaller
datasets, the topological spread of the chosen nodes is high, and the
subgraph density is lower than the graph’™s. . . . . . .. ... .. ...
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4.11 Similarity networks for the Comp69 component discussed in section
3.3.1, with nodes coloured based on EC numbers for A-B, using the
same legend as Figure 3.7. The Comp69 component is a functionally
diverse group of nodes that is densely connected in the CSN | but
disconnected into multiple smaller components in the SSN. A) CSN of
Comp69. Nodes highlighted in yellow are ones selected by the tabu
search MDP algorithm for K equal to 100. Nine sequences of the
chosen subset are located in Comp69, which cover four of the nine
different EC classes contained in this component. B) SSN of Comp69.
Nodes highlighted in yellow are ones selected by the tabu search MDP
solver for K equal to 100. C) CSN of Comp69. Green nodes represent
ones selected by the MDP algorithm, the six red nodes represent the
five uncovered EC classes, and black nodes are the rest. The nodes
pointed at with pink arrows are MDP-sampled nodes that have
publicly available tertiary structures, while those pointed at with a
blue arrow are uncovered EC classes with publicly available tertiary
structures. . . . . ... Lo 122

5.1 Diagram representing the logic of an autoencoder neural network.This
encoder block of layers compresses the input into the bottleneck or
latent space layer. The bottleneck is a compressed vector that should
contain the inherent information of an input summarised as a smaller
set of features. Then, the bottleneck is passed to the decoder, which
attempts to decode the latent space layer back into the origin input.
Autoencoders have been shown to learn to reconstruct various inputs,
from images of numbers to amino acid primary sequences. . . . . . .. 133

5.2  An example of one-hot encoding using amino acid sequence. In
one-hot encoding, a sequence of characters of size L is transformed into
a vector of size L x C', where C' is the size of the alphabet. In the case
of amino acid sequence, the alphabet size is 21, with 20 different amino
acids plus one to represent blank positions. Each letter (or residue) of
this alphabet has an index, and each individual character of a sequence
is given a value of 1 for their respective index, and 0 for all others. . . 137

5.3 Neural network architecture of the discriminant autoencoder
implemented for this work, produced using Keras [4]. The first layer is
the input layer, followed by two blocks of convolutional layers that
condense the input into the bottleneck. Then, the decoder branch on
the left performs the inverse transformation, upsampling the
bottleneck back to the original dimensions of the input. Finally, the
discriminant branch to the right helps teach the autoencoder what not

to learn through the use of random sequences. . . . . .. .. ... .. 139
5.4 Phylogenetic tree of the AKR59 template dataset. Red leaves are the
39 Cladel enzymes, while blue leaves are the 20 Clade2 enzymes. . . . 141
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9.5

5.6

5.7

5.8

The workflow for the generation (steps 1-3) and filtering of synthetic
enzymes utilised in this work (steps 4-9). 1. A set of template
sequences representing the enzyme family of interest was used as input
into the encoder portion of the autoencoder. 2. The latent space of N
sequences were sampled from a gaussian distribution using the mean
and covariace matrix of the latent space that encodes the template set.
3. The N sequences were input into the decoder part of the
autoencoder to generate novel sequences. 4. The N sequences were
‘one-match” BLAST-ed to the template sequences, where only the best
match was recorded at an e-value threshold of 1 * 107!°. Sequences
without a match were discarded. 5. The 90" percentile of -log(e-val)
was computed, and synthetic sequences with a one-match below this
number were discarded. 6. InterProScan was run on the remaining
sequences. Those without a user-specified set of InterPro signatures
were discarded. 7. An MSA of the template sequences and the
remaining synthetic sequences were created. Those that do not
conserve a set of user-specified residues were discarded. 8. One-match
BLAST similarity networks were created, where nodes are either
template or synthetic sequences. Edges were made between synthetic
sequences and their one-match. Sequences were sampled from each
produced cluster for validation in the final step. 9. Tertiary structure
models were predicted for each synthetic sequence using
SWISS-MODEL. The sequences were then ranked based on QMEAN

score, with the top ones being selected. . . . . . . . . ... ... ...

Cumulative probability distribution plots of the e-value of one-match
hits. Dashed red lines are the Q25, Q50, Q75, Q90 (90" percentile)
thresholds. Synthetic sequences below the Q90 value were discarded

for both clades. . . . . . . .

One-match BLAST similarity network, where nodes are either AKR59
(red nodes) or synthetic sequences (blue nodes), and edges are made
between the latter and their respective one-matches. The top hit of
each cluster was selected for assessment by SWISS-MODEL, each of
which was ranked based on QMEAN score. The top 15 of each clade

were kept. . .. ..o

Scatterplots showing the mismatch rate versus sequence length for
both the training and testing datasets. There is no significant
correlation between length and mismatch rate except for some small
sequences below 100 residues in the training dataset, with the average
mismatch rate m being equal to 0.02 mismatches per sequence.
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5.9 Plot showing the performance of the discriminant autoencoder based
on sequence length using precision, recall, and F1-score. Native
sequences from UniProt were sampled for different length ranges, and
random sequences of similar sizes were generated. All these sequences
were passed to the discriminant, and assessed based on the following
definitions: true positives are when a native sequence is predicted as
native, false positives are when a random sequence is predicted as
native, true negatives are when a random sequence is predicted as
random, and false negatives are when a random sequence is predicted
as native. The recall is always flawless while the precision performs
better for longer sequences. . . . . . . ... ... .. L.

5.10 Dimensionality reduction plots for native and reconstructed sequences.
Both the t-SNE and PCA plots confirm an essentially flawless overlap
between native and reconstructed sequences, with many sequences and
their reconstructed counterparts having extremely similar values.

5.11 Boxplots of the one-match e-value, one-match sequence identity, and
QMEAN distributions across the two clades making up the
SynthAKR30 sequences. Both clades have ranges for the e-value and
sequence identity that imply a high similarity to template sequences.
It is also clear that Cladel sequences have better available tertiary
structure templates due to a narrower but higher score distribution of

QMEAN scores. . . . . . . .

5.12 SSNs at 40%, 50%, 60%, and 70% identity thresholds for the AKR59
and SynthAKR30 sequences. There are no edges between the two
clades for any threshold for the native sequences, an observation
repeated by the synthetic sequences. Most synthetic sequences are
part of the larger connected components of each clade, implying that
sequence bias will affect the diversity of generated sequences. . . . . .

5.13 Phylogenetic tree for the AKR59 and SynthAKR30 sequences. The
original two-clade structure seen in Figure 5.4 remains after adding
the synthetic sequences, implying the synthetic sequences fit into this
clade structure similarly to native ones. Also, similarly to the SSNs in
Figure 5.12, synthetic sequences were clustered with their respective
templates unanimously. Furthermore, as highlighted by the ancestor
nodes in orange, most of the synthetic sequences can be traced back to
an ’'ancestor’ that is very close to template sequences, implying these
native sequences are almost direct ancestors. Such an observation
provides clues that it is the latent space around individual sequences
that gets sampled, generating synthetic sequences that have specific
templates as a base. . . . .. ... L
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5.14

5.15

5.16

5.17

Dimensionality reduction plots for native and reconstructed sequences.
There is a clear separation between the two clades for both native and
synthetic sequences. Also, all synthetic sequences are in close
proximity to at least one native sequence, giving further credence to
the hypothesis that the sampling of generated sequences occurs with
individual templates as a base. . . . . .. ...

Pairwise alignment of the template ezyme AITKMWG6 and the synthetic
sequence 12268_cl. This synthetic sequence has the highest similarity
to a template enzyme, with a sequence identity of 86.9%, a one-match
-log(eval) of 403, and a QMEAN score of -1.44 The active site, binding
site, and NADP binding site, as annotated by UniProt, is conserved
for 12268_cl. . . . . . . . e

I-TASSER results for the 12268_c1 synthetic sequence. A- The
normalized B-factor prediction of the sequence. The values of most
residues being below 0 implies likely stable tertiary structure. B-
Predicted tertiary structure of 12268_c1. I-TASSER’s modelling
converged to this structure at a C-score of 1.43, which is a high quality
prediction. C- Superposition of the predicted structure of 12268_c1
and the best identified template, with the PDB ID 40TK. With a
TM-score of 0.977, the predicted structure is very highly similar to a
native enzyme. D- Binding site prediction for the synthetic sequence.
Specifically, NADP, which is the common cofactor in use by aldo-keto
reductases, was correctly predicted with a C-score of 0.65. E- Active
site prediction for the synthetic sequence. The EC-class 1.1.1.274 was
predicted with a C-score of 0.606. Interestingly, this is the same class
predicted by DEEPre (Table 5.6), showing agreement between two
prediction tools about the potential function of this synthetic sequence.

SDS-PAGE gels of the 25 cloned synthetic sequences. The expression
level in total cell fraction (TC) and cell free extract (CFE) was
analysed, with odd numbered lanes showing the former, and even
numbered lanes the latter. A four-step ladder with markers at 30kDa,
40kDa, 63kDa, and 72kDa was used in the lanes marked by M. After
overexpression through induction by IPTG, it can be seen from the
TC lanes that most of the synthetic sequences are able to overexpress.
However, the CFE lanes comparatively have little to no expression,
with light bands present only for 23716_c1 (Lane 26) and 23827_c2
(Lane 28). The implication from this result is that the synthetic

sequences, while overexpressed, are not soluble, likely due to misfolding.
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5.18

5.19

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Bar plots comparing the average frequency of simple perfect repeats
(SPR), Ru4, in AKR59 and SynthAKR30 for the two different clades.
Repeats highlighted in pink are of hydrophobic amino acids. The
average number of repeats per sequence of a clade, R¢, is also
calculated for both datasets and clades. It can be seen that synthetic
sequences have more SPRs than native sequences, across both clades
and for all the different amino acids and repeat lengths. This
observation is also true for hydrophobic repeats, which are likely to

negatively affect the solubility of proteins even more. . . . . . . . . ..

Histogram showing the distribution o hydrophobic repeats counts for
the AKR5H9 and SynthAKR30 datasets. As was shown in Figure 5.18,
synthetic sequences have a higher amount of repeats on average than
native ones. However, there is one notable exception in the synthetic
sequences, with 23717_c1 having just 9 different hydrophobic repeats,

a number which is more in line with native sequences. This synthetic
sequence is one of just two to show some amount of soluble expression,
which could be evidence of such repeats being a principle reason for
the lack of solubility in the synthetic sequences. . . . . . ... ... ..

Figure showing the three main contributions of this thesis thus far.

A workflow for an iterative approach to the characterisation of enzyme
families, divided into four main steps. There are crucial gaps in
between each steps, representing the lack of tooling needed to
integrate the different processes of this workflow to make it accessible.

Screenshot of the front-page of IntEnz-Lab, which is a bespoke
web-interface that facilitates laboratory-based exploration of enzyme
sequences mined from metagenomes. . . . . ... ... ... L.

The architecture of IntEnz-Lab. IntEnz-Lab is made up of two main
services: a web-interface that users interact with containing all of the
necessary forms for performing its functionality, such as workflows,

and graph database that uses Neo4J and that communicates with the
back-end of the web-interface using a REST APL. . . . ... ... ...

Database schema for the Neo4j graph database implemented for
IntEnz-Lab. It is made up of six entities and six relationships, which
can be seen in more detail in Figure 6.6. . . . . . .. .. .. ... ...

Entity-relationship diagram of the graph database in use by
IntEnz-Lab. There are six main entities, all of which have id and name
properties, with the former being the key property. . . . .. . ... ..

Example GET and POST endpoints for the REST API developed for
IntEnz-Lab. . . . . ..
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6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

The main workflow and features available on IntEnz-Lab. There are

six main features, which are A- uploading of metagenomic assemblies,

B- instantiating a unified repository for metagenome-mined sequences

of some enzyme family, C- the mining of a metagenome for some

enzyme family, D- the sampling of diverse enzyme panels from hits

using the MDP method (Chapter 4), E- the integration of

characterisation data into the IntEnz-Lab database, and F- the

masking of sequences from the database that were already

characterised to guide future rounds of panel selection. . . . . . .. .. 190

Screenshot of the IntEnz-Lab form that allows for the upload of
metagenomic assemblies. As seen below, information about uploaded
assemblies are displayed in a table in the "View Metagenomes’ page. . . 193

Screenshot of the IntEnz-Lab form for creating an enzyme family

entry. Such entries consist of unified repositories for any sequences

mined from metagenomes using IntEnz-Lab, thanks to the required
profile-HMM field in the form. . . . . . . .. ... .. ... ... ..., 195

Screenshot of IntEnz-Lab showing the "View Enzyme Families’ page,

which displays a table containing information about the currently

existing enzyme families, including the number of hits and the HMM

in use. Their names are clickable, leading to a profile page for each

enzyme family. When first instantiated, the profile page is mostly

empty as it has not been mined for sequences yet, with most

functionality disabled until then. . . . . . .. .. ... ... ... ... 196

Screenshot of IntEnz-Lab’s "Mine Metagenome” page. This page is
accessible from one of the Action tabs shown in Figure 6.11, giving

context to the form about which enzyme family is being mined, and
therefore which HMM to use. hmmsearch is run using the respective
profile-HMM on the metagenome that a user chose to mine. When

this is done, the profile page of the mined family will now contain a

table populated by information of all the resulting hits. New pages

will now also be available in the Actions tab. . . . . ... .. ... .. 198

Screenshot of IntEnz-Lab of the 'Create Panel’ form. Another page
accessible from the Actions tab, a panel of a user-given size is created

using the tabu search MDP method introduced in Chapter 4. This

enables the Panels tab in an enzyme family’s profile page, which

displays information about any created panels. . . . . ... ... ... 199

Screenshot of IntEnz-Lab showing the "Add assay’ form. A template
spreadsheet (Table 6.1) can be downloaded by the user to be filled and
re-uploaded with characterisation data from enzyme assays. This data

is integrated with the rest of the database, and the Assays panel

becomes populated with a table showing information about the

different compounds that have been assayed. . . . . . . . . .. ... .. 201

Screenshot of SynBioHub-Lab’s front-page, which is a metadata
repository for the synthetic biology lifecycle geared for experimentalists. 203
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6.16 Screenshots comparing the front-end of SynBioHub (B, D) and
SynBioHub-Lab (A, C). In the latter, there is a more present emphasis
on the distinction between the design, build, and test stages of the
synthetic biology lifecycle. This is shown in both the collection page
(A and B) projects page (Cand D). . . ... ... ... ... ... .. 208

6.17 Screenshots of SynBioHub-Lab’s novel forms for adding data about
the build (A) and test (B) stages of the synthetic biology lifecycle. . . . 210

7.1 Diagram describing the integrative and iterative framework for the
lab-based exploration of enzyme family diversity that uses previously
existing approaches on top of the new methods introduced in this thesis. 224
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Chapter 1: Introduction

1.1 Motivation for this research

Enzymes are complex macromolecules crucial to life on earth. From bacteria to hu-
man beings, all organisms use enzymes to catalyse the many thousands of chemical
reactions occurring in their cells. Mostly consisting of proteins, the number of se-
quenced enzymes has increased dramatically thanks to the advent of next-generation

sequencing.

Enzyme function is so diverse that the use of enzymes in industries like pharmaceuticals
and agriculture has gained popularity over recent years [5]. Mostly, they are used to
speed up synthesis reactions as "biocatalysts” by multiple factors, and can sometimes
even increase chemical yield by significant amounts. Also, biocatalysts are considered
a type of "green chemistry” as they categorically eliminate the need for environmentally

harmful solvents and waste products.

Unfortunately, the confident laboratory-based characterisation of enzyme function and
physiochemical properties - which is necessary to increase the portfolio of biocatalysts
available to be used by industry - has lagged behind the massive increase in sequencing
data, slowing down initiatives that look to use enzymes as part of their chemical
processes. There is also a strong bias in the profile of enzymes that do get characterised,
leaving much of the catalytic space of enzyme families undiscovered. Computational
methods that attempt to functionally annotate enzymes do exist but often falter due
to this bias and the complexity of enzyme homology assignment, resulting in unknown

annotation at best, and incorrect annotation at worst on public databases.

Therefore, methods that specifically focus on speeding up and optimising the selection
process of potentially novel enzyme sequences for characterisation would therefore
have high impact, and is the major theme explored in this thesis. Finally, this work
also tackles tooling that integrates both the in-silico and in-vitro sides of enzyme

characterisation.
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1.2

Research question

44

Can the diversity of enzyme panels curated from enzyme families for laboratory-
based characterisation be further optimised using in silico approaches and

tools?

29

1.3 Aims and objectives

This research aimed to achieve the following two goals:

. The development new computational methods that will help build diverse enzyme

panels from enzyme families

The development of software tools that will help promote an integrated and

iterative framework for the laboratory-based characterisation of enzyme families

These two research aims were explored through the following objectives:

The development of novel enzyme similarity networks that are sensitive to de-

tecting functional groupings at lower levels of sequence identity

The development of algorithms for the automatic selection of diverse enzyme

panels from larger enzyme family datasets

The use of a sequence autoencoder to produce artificial enzyme diversity by

generating synthetic enzyme sequences

The development of a platform for integrating the process of in-silico sequence

selection methods and enzyme characterisation assays

The development of a repository for the storage of metadata arising from enzyme

characterisation assays
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1.4 Contributions of this research

The contributions of this research can be divided into two larger themes, starting with

the selection of diverse enzyme sequences from an enzyme family:

e A novel type of similarity network based on patterns of coevolving amino acid
residues, called Coevolution Similarity Networks (CSN). These networks can be

used to analyse enzyme families and identify functionally-interesting clusterings

e Two implementations of algorithms that solve the maximum diversity problem
(MDP) for the functionally diverse selection of enzyme sequences from a larger

set

e An autoencoder neural network with a model refinement pipeline that can gen-

erate viable synthetic sequences of an enzyme family from a template set

The second theme, which deals with built tools for bridging the gap between the

in-silico and in-vitro side of enzyme family exploration:

e IntEnz-Lab, which is a web-interface and repository that integrates the sequence
selection process and experimental characterisation data to promote an iterative

approach to discovering diversity in an enzyme family

e SynBioHub-Lab, which is a web-interface and repository for storing the metadata
generated by the three major steps of the synthetic biology lifecycle with regards
to enzyme characterisation, such as plasmid designs, laboratory protocols, and

SO On.

1.5 Thesis structure

The rest of this thesis is divided into six further chapters. Chapter 2 describes back-
ground research, the motivation behind this work, and a literature review of current

approaches for functional characterisation of enzyme families.

The next four chapters are research chapters, and comprise the following:

_4 -
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e Chapter 3 discusses the development of CSNs for the functional analysis of

enzyme families, and a comparative study with Sequence Similarity Networks

(SSN).

e Chapter 4 explores the solving of the MDP for optimised and automatic se-
lection of functionally diverse subsets from enzyme families, with two different

algorithms implemented and compared to standard clustering methods.

e Chapter 5 described the development of a neural network-based method that
generates synthetic sequences from a template set belonging to an enzyme family,

and the likely structural and functional viability of such artificial sequences.

e Chapter 6 introduces two novel tools - IntEnz-Lab and SynBioHub-Lab - for a
proof-of-concept approach to the exploration of enzyme families that is iterative
and laboratory-based, which attempt to bridge the gap between the in-silico side

and the experimental side of enzyme family analyses.

Finally, Chapter 7 concludes the thesis with a discussion that places the novel research

in context with its motivations, and explores avenues for future work.
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Chapter 2: Background

2.1 Introduction

With the release of the first next-generation sequencing (NGS) technology in 2005
6], the throughput of genome sequencing exploded. Ten years later, the price barrier
of $1000 for sequencing a single human genome was breached [7], and as of August
2020 the National Human Genome Research Institute reported the average price of
sequencing a human-sized genome has dropped to $689 [8]. It is now even possible
to sequence the genomes of entire microbial communities, resulting in what are called
‘metagenomes’, which reveal the genomic content of all organisms existing in some

sample, from the human gut flora [9] to deep-sea vent ecosystems [10].

This significant increase in the accessibility of high-throughput sequencing methods has
similarly led to a boom in the number of genomic and proteomic sequences available
in public databases. The European Nucleotide Archive (ENA) [11], which is a public
database storing sequencing data since 1983, received in 2021 "over 700 000 submissions
to the ENA in 12 months, comprising of 6600 studies, over a million samples and
runs, and 160,000 (meta)genome assemblies” [12]. UniProt, which is a knowledgebase
containing translated protein sequences from the ENA and other nucleotide sources,
contained 45,288,084 sequence entries in the October 2013 release across thousands of
different organisms [13]. However, this incredible number more than quadrupled in

just under seven years, to 189,525,031 sequence entries in the April 2020 release [1].

Out of these rich and diverse resources of natural biological data, applications to
various different fields were born. For example, enzymes are a class of organic macro-
molecules that organisms have evolved to use as catalysts for the countless chemical
reactions ongoing in cells. As they are mostly proteins, the breadth of revealed enzyme
sequences has also increased in magnitude. Between their naturally-evolved diversity
and their optimisation as catalysts, applications involving enzymes as 'biocatalysts’

have grown popular in various industries [14].

This chapter first consists of an review of biocatalysts, their applications, the current
approaches employed in the generation of diverse enzyme panels, along with the limita-
tions of such approaches, which is the principle theme of this thesis. Then, a literature

review of three research branches provides necessary background knowledge relevant to
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this research; the different bioinformatics resources and techniques employed, the prin-
ciples of machine learning and heuristic optimisation, and the application of synthetic

biology in enzymology.

2.2 Enzymes as biocatalysts

Enzymes are organic macromolecules that catalyse chemical reactions in all known
organisms. Mostly made up of protein members (with some being RNA-based), they
are an essential component of complex life due to their incredible power at shortening
the time chemical reactions take. For example, the decarboxylation of orotidine 5'-
phosphate, which is an essential step of the synthesis of nucleic acids, is estimated
to take 78 million years without its respective enzyme, which increases the rate of
reaction by a factor of 10'7 [15]. Escherichia coli, a key model prokaryotic organism,
is known to have as many as 607 enzymes catalysing 744 different reactions organised

into 131 different chemical pathways [16].

It is therefore clear that enzymes are not only essential to life on earth, but also have
strong potential as tools to facilitate many different chemical processes used in modern
industry. Owing to their diverse range of functions and immense efficiency as catalysts,
various sectors of industry have been using enzymes as ’biocatalysts’, a trend that is

growing in popularity.

2.2.1 Applications of biocatalysts

Many different industries have recently adopted the use of enzymes as catalysts in

synthesis reactions, with four main benefits to standard reactions (Figure 2.1):

1. High stereoselectivity and regioselectivity of reactions catalysed by enzymes due

to enzyme specificity.

2. The simplification of chemical pathways through the circumvention of steps via

enzyme catalysis.

3. The elimination of many chemical reagents and waste products necessary for

standard synthesis workflows promoting a more 'green’ chemistry.
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Figure 2.1: The use of enzyme biocatalysts has four main benefits compared to classic
chemical synthesis; high stereo/regioselectivity, simplified pathways, a greener chem-
istry, and increased yield.

4. Increased chemical yield owing to the level of optimisation that enzymes have

for their respective reactions.

For example, biocatalysts are used by the pharmaceutical industry in compound syn-
thesis reactions, owing to their "exquisite regioselective and stereoselective properties”
that allow to bypass more complicated synthesis reactions [17]. Another benefit of
using enzymes in pharmaceutical processes is the elimination of steps of a synthesis
workflow, resulting in a reduction in time and costs . For example, transaminases are
known to simplify such reactions by being able to directly convert "ketones to chiral

amines thereby circumventing multiple synthetic steps” [18].

Also, chemical processes often require reagents and produce waste products that are
hazardous to the environment. The use of biocatalysts for many synthesis reactions
removes the need for such reagents, making industrial processes more environmentally-
friendly, and is often called 'green chemistry’ as a result [19]. For example, a ketone-

reducing enzyme has been used in the synthesis of talampanol, which is a drug used for
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treating epilepsy and neurogenerative diseases. Per ton of talampanol produced, the
use of a biocatalyst not only removed the need for over 300 thousand litres of solvents
and three tons of chromium oxide (a suspected carcinogen), but it also increased the
yield of the reaction from 16% standard chemical synthesis to 51% [19]. The yield
was similarly doubled when a lipase was introduced for the production of a similar
drug, Pregabalin, from 21% yield to 40% [19]. Such increases in yield, combined with
the benefits to the environment, high stereo/regioselectivity, and the simplification of
multi-step processes, shows the multi-faceted benefits of using enzymes in pharmaceu-

tical manufacturing of drugs.

Similarly, biocatalysts have seen use in polymerisation reactions [19-22]. Just as with
the synthesis of pharmaceutical agents, enzymes can help reduce the environmental
impact of generating polymers. For example, polyaniline was successfully synthesised
using a laccase [22]. Also, the use of enzymes in polymerisation reactions helps not
just with regioselectivity, but also by simplifying the processes themselves, such as
lipase-powered polymerisation of trimethylene carbonate which can be "prepared in

one-pot without the need of protection and deprotection chemistry” [19].

Other industries and applications where biocatalysts have proven useful include bio-
fuels [23], waste-water treament [24], and the food industry [25], among others. Given
the specificity of enzymes, and the far-reaching applications of them as biocatalysts,
there is therefore a need for the identification and characterisation of more novel en-
zymes with the range of physiochemical and catalytic properties necessary to meet

modern industrial processes.

2.2.2 Current in silico enzyme panel generation strategies

There is already a breadth of available sequences on public databases thanks to NGS
methods, including metageomic sequencing. The development of NGS techniques has
made it possible to not only explore the genome of an individual organism, but of
entire communities in the form of metagenomes [26]. Metagenomes and the public
databases they help populate are therefore hotbeds of enzymatic diversity which can

be exploited for the purposes of industry.
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However, the vast majority of enzymes in public databases are uncharacterised [27],
complicating the process of choosing a biocatalyst that is useful to some industrial
process of interest. Therefore, a major requirement for the increased use of biocatalysts
is further development of the repertoire of available enzymes that have been confidently

characterised.

The profiling of an enzyme’s function and its physiochemical profile however is highly
complex to perform in silico; modern function prediction tools like DEEPre [28] can
only confirm enzyme function at a general level, with confident substrate-specificity
predictions being out of reach. Therefore, enzyme function can currently only be con-
firmed at a high confidence level in the laboratory, usually through chemical assays on
overexpressed enzyme samples. Consequently, the initiative to discover and charac-
terise further potential biocatalysts faces a bottleneck in time, accessibility, and cost,

as it is not trivial to test an enzyme for some activity.

There have been calls as far back as 2004 for collaborative efforts in the characterisation
of unknown protein (and therefore enzyme) space, due to already existing concerns
that such unannotated space “highlight(s) just one portion of our ignorance about
the information content of genomes and our lack of fundamental knowledge about the
function of so many of the building blocks of cells” [29]. However, NGS methods have

only further worsened the concerns Roberts had in 2004.

Nonetheless, while the proportion of uncharacterised protein space has undoubtedly
increased, as has the amount of ’discoverable’ diversity. It is estimated that the number
of discoverable and useful biocatalysts in metagenomic samples ranges from 1.4 to 19
per million base pairs [30]. For example, 4874 glycosyl hydrolase homologues were
identified in silico in 46 metagenomes [31]. Given the high number of enzyme sequences
that is ever growing, it has become more possible to mine putative enzymes of a sought-
after function to generate panels of enzymes which can then be characterised in the
laboratory. These panels, when designed intelligently, should carry enough sequence
diversity to increase the chances of discovering novel enzymes that can catalyse one or

more reactions of interest.

There are multiple approaches to curating such enzyme panels, but essentially all of

them require an initial an dataset building step, whereby a large data resource like
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UniProt or metagenomic data is mined for enzymes of some interest. For example,
Velikogne and colleagues [32] looked to characterise imine reductases (IRED), which
they did by using four known IREDs from literature as template sequences. These
sequences were used to query UniProt Basic Local Alignment Search Tool (BLAST),
the algorithm of which is described in section 2.3.3. The result of such queries is a
list of sequences similar enough to the template IREDs, which were then manually
filtered based on the expectation of certain conserved domains and residues. This
bioinformatics approach resulted in 182 hits after filtering, a number too high to be
characterised fully in the laboratory. Velikogne and colleagues therefore performed
a phylogenetic analysis, producing a tree displaying the evolutionary relationships
between all the hits and the template IREDs. Finally, they curated a panel of novel
IREDs to test in the lab by randomly picking 15 sequences from the main sub-branches
of the tree, 10 of which were found to indeed be IREDs in the laboratory.

Similarly, Bastard and colleagues [27] looked to characterise one of the many enzyme
families of currently-unknown function curated by the Pfam database [33], DUF849.
Starting with a set of 725 sequences and one template enzyme, a complex bioinformat-
ics analysis comprising sequence similarity, phylogenetics, genomic-context clustering,
and active site modelling, was used to filter the set down to a panel of 322 candidate
sequences. Of these sequences, 124 could be overexpressed and characterised. Impres-
sively, after testing these sequences on 17 substrates, 80 of the 124 enzymes showed

activity against at least one substrate.

Vanaceck and colleagues [34] queried another large public database using BLAST:
the non-redundant (nr) database provided by the National Center for Biotechnology
Information (NCBI) [35]. Specifically, nr was mined for novel dehalogenases, followed
by a hierarchical clustering [36] of the resulting 5661 hits . Based on this clustering, 953
enzymes were kept, which were themselves filtered down to a set of 658 hits after the
removal of incomplete and degenerate sequences. However, Vanaceck and colleagues
did not have the capabilities to characterise such a large set, and instead filtered out
a panel of 20 diverse enzymes. Specifically, they manually picked 20 enzymes based
on diverse complex factors, such as taxonomy, the predicted volume of the active

site, predictions of solubility, and so on. Twelve of the enzymes in the panel were
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successfully characterised, with nine of them exhibiting dehalogenase activity.

In another example, Kim and colleagues [37] used keywords to retrieve 86 different glu-
cosidases from the database GenBank [38] in their search for an enzyme for activity on
the plant extract indican. A phylogenetic tree was constructed for these 86 sequences,
which separated them into 11 subfamilies. One representative sequence was arbitrarily
picked for each subfamily to create a panel of representative enzymes. These enzymes
were then used as BLAST queries to NCBI, and eight hits were arbitrarily chosen
for characterisation based on homology to the template sequences, one of which was

highly active towards indican.

Finally, Baud and colleagues [39] looked to discover novel transaminases from newly-
generated metagenomic data. Tongue scrapings from nine individuals were sampled,
sequenced, and assembled in their study. The open reading frames (ORFs) con-
tained were then identified and translated. These ORFs were then mined for putative
transamianses using a hidden markov model (HMM) [33], another method of searching
for novel sequences described further in section 2.3.3. The resulting panel was small,
with just 15 novel sequences identified, 11 sequences characterised, and just 3 showing
significant activity, though these hits are just for one metagenome combined from nine

samples.

In all the examples discussed here, a common approach is to first mine a large se-
quence resource, which is usually either a public database [32, 34, 37], or an assembled
metagenome for which the ORFs were retrieved [39]. The mining is performed using
some form of common bioinformatics algorithm that can search for hits based on some
template query, with the most popular method being BLAST. Then, depending on the
number of hits and on the characterisation capacity available, the hits often need to
be filtered down to fit said capacity. In these cases, a popular approach is to perform
a phylogenetic analysis followed by sampling from branches interpreted as subfamilies.
In some others, a more complex and manual analysis of the diversity existing in the
mined hits is performed to try and maximise the number of catalytic functions in the

panel.
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2.2.3 Limatations of current enzyme panel generation ap-
proaches

The implication resulting from the approaches discussed in section 2.2.2 is that there
is not yet a defined and consistent framework for the discovery and characterisation of
novel enzymes that is optimised in simplicity, accessibility, scalability, and applicability.
In particular, the current approaches to the filtering of hits that is often necessary due

to the lab bottleneck have various limitations, which are discussed in this section.

First, while the mining of hits using BLAST [40] and other sequence-identity based
methods remains powerful even three decades since its first implementation [41], the
selection of diverse enzyme panels using such methods comes with key assumptions
about the level of sequence identity needed to represent homology between enzymes.
Indeed, multiple of the examples discussed in section 2.2.2 use sequence-based meth-
ods like phylogenetics or hierarchical clustering to group up similar or homologous
enzymes, which are then sampled from to create a smaller list of candidate enzymes

to characterise.

However, while it is accepted that a sequence identity threshold above 40% is high
enough for two proteins to be homologous [42], literature shows that enzymes are
more complex. In 2002, Rost noted that sequence bias in public databases led to an
underestimation of how similar two enzyme sequences need to be to share the same
exact function, with e-values of BLAST as significant as 107°° still leading to errors in
function assignment [43]. In 2003, Tian and Skolnick showed that a sequence identity

threshold of 60% is necessary to transfer function at an accuracy of 90% [44].

Such high levels of sequence identity being necessary for exact function conservation
implies that using sequence-identity methods to discern homologous enzymes for panel
selection requires the use of more stringent thresholds to be more precise. However,
this process is further complicated by our current understanding of the evolution of en-
zyme functional diversity. For example, many protein family classifications are based
on arbitrary sequence similarity thresholds [45], which ignores functional similarities
between enzymes of low sequence similarity. For example, lactonases exhibiting phos-

photriesterase activity have been found in three different superfamilies in an example
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of "convergent evolution’ [46], with further examples found in the enolase superfamily
[47]. Also, new research seems to indicate that promiscuous enzymes, which catalyse
more than one reaction, are more common than once thought, which further diversifies

enzyme functionality beyond a sequence similarity lens [46-48].

There is therefore a need for panel selection methods that are based on more than
sequence identity-based homology, and that are more specialised towards the features
of enzymes like active sites [31]. Indeed, many of the approaches presented in section
2.2.2 use further sequence analysis methods as filtering steps, either to remove enzymes
unlikely to be of the family of interest [32, 34], or to filter the amount of hits down
to panels of a more convenient size for characterisation [27]. Unsurprisingly, these
approaches were the most successful in terms of the proportion of panel enzymes that
were active, at success rates of 66%, 64.5%, and 75%, for Velikogne and colleagues
[32], Vanaceck and colleagues [34], and Bastard and colleagues [27], respectively. The
works of Kim and colleagues [37] and Baud and colleagues [39] however performed no
such analyses, leading to lower enzyme success rates of 12.5% for the former and 27.2%

for the latter.

However, the more successful studies require a large amount of knowledge about the
enzyme family of interest to perform the analysis. The work of Bastard and colleagues
[27] would not have been possible without the previous resolution of the tertiary struc-
ture of one of the DUF849 enzymes. Velikogne and colleagues would not have been
able to perform filtering of the hits based on the active site conservation without the
already existing tertiary structure of one of the used template IREDs [32], similarly
to Vanaceck and colleagues [34]. This requirement for expert knowledge of an enzyme
family of interest is a significant bottleneck given the number of enzyme families of

completely unknown function was as high as 22% in 2013 [27].

Also, having such knowledge about an enzyme family does not trivialise the process
of panel generation by any means. For example, an enzyme labelled to be part of the
strictosidine synthases subgroup of the nucleophilic attack, 6-bladed-propeller super-
family, with a mostly conserved active site and known to be "among the most similar to
the experimentally characterized strictosidine synthases was shown to have ... no de-

tectable strictosidine synthase activity” [47]. Indeed, erroneous annotations on public

- 15 -



Chapter 2: Background

databases are common; it was estimated that two million proteins were given incorrect
taxonomy annotation on the nr database, for example. Inconsistent annotation also
exists between different databases, with disagreements between UniProt and the Kyoto
encyclopedia of genes and genomes (KEGG) being as high 31% of annotated enzymes,
“showing that the two knowledge bases curators have different scientific opinions in
many cases” [49] There is also a large amount of bias in the types of catalytic functions
that are studied. For example, it was found in 2012 that "80% of [enzyme] classes an-
notate only about 10% of UniProt enzymes, while the remaining 20% most common
[enzyme] classes annotate 90% of UniProt enzymes” [49]. Therefore, even existing an-
notation can be unreliable without experimental evidence, further limiting how much

existing knowledge is useful for making decisions about enzyme panel selection.

Furthermore, many of the in-depth analyses performed by the more successful enzyme
panel studies can be difficult and time-consuming. In both the works of Bastard and
colleagues and Vanaceck and colleagues a considerable level of manual analysis and
interpretation was performed, using sequence similarity, phylogeny, active site models,
solubility predictions, genomic-context clustering, and so on [27, 34]. The level of
confident knowledge necessary to better sample new potential diversity in unknown

sequence space is therefore high while also being hard and time-consuming to interpret.

Therefore, three main limitations in current approaches for generating diverse enzyme

panels were identified and addressed in this research:
1. An over-reliance on raw sequence-identity based methods of grouping function-
ally similar enzymes

2. A large burden of knowledge necessary about enzyme families of interest to

perform more in-depth analyses of existing diversity

3. A manual interpretation of such analyses that is complex and time-consuming

that is required to properly sample diverse enzyme panels

In this thesis, novel computational methods that tackle these three limitations were

therefore developed, specifically in Chapters 3, 4, and 5.
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2.3 Bioinformatics for enzyme research

Bioinformatics is a field of research with the following definition:

44

Bioinformatics is conceptualizing biology in terms of macromolecules and
then applying “informatics” techniques to understand and organize the in-

formation associated with these molecules, on a large-scale [50].

2

Enzyme research employs a breadth of different bioinformatics approaches. Indeed,
much of the research performed in this work employs numerous bioinformatics tools
and resources useful for enzyme research. In this section, a background of the bioin-

formatics relevant to this thesis is described in depth.

2.3.1 Bioinformatics databases

Multiple public databases serving different purposes are used in this work. They fall

under the following four categories:

1. Sequence databases, which store the primary sequence of proteins.

2. Protein family databases, which curate classification systems for proteins and

enzymes, usually based on evolution, homology, and conserved domains.

3. Protein annotation databases, which curate functionally and structurally impor-

tant sequence signatures contained in proteins.

4. Tertiary structure databases, which store the resolved three-dimensional struc-

tures of proteins.

Sequence databases

UniProt is a central database that acts as a hub for most protein-related research on
public data [1]. In just two years, over 65 million sequences were added to UniProt, rep-

resenting a 50% increase. Also, UniProt stores entries for protein sequences deposited
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Figure 2.2: Plot showing the growth in the number of entries on UniProt in the last ten
years, published by the UniProt consortium [1]. The growth of the manually curated
branch of UniProt, Swiss-Prot, has massively lagged behind compared to the rest of
the database.

by users along with a rich assortment of annotations when available, including func-
tional annotation, subcellular location, post-translation modifications, protein-protein

interactions, and so on.

UniProt is divided into two main resources: Swiss-Prot and TrEMBL. Swiss-Prot
contains entries that are manually curated by experts, which helps provide a higher
level of confidence about information contained in a protein entry. While TrEMBL
does also get annotated, it is done using bespoke automatic annotation systems [1].
As would be expected given the characterisation bottleneck discussed in section 2.2.2,
TrEMBL is, as of the June 2021 release, more than 380 times larger than Swiss-Prot,
with 219,174,961 entries for the former, and 565,254 entries for the latter (Figure 2.2).
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Protein family databases

Next, the Pfam database [33] was used to help retrieve enzymes based on shared
common characteristics i.e. enzyme families. Specifically, Pfam families are built on
profilee-HMMs, which are probability-based models of alignments of related sequences.
Such models can represent important features the sequences of an enzyme family has,
such as conserved domains and functionally important residues. These HMMs can
then be used to help detect sequences similar enough to be considered members of the
same protein family. Each Pfam family is given an identifier e.g. PF00202 stands for
the aminotransferase class-II1 family of enzymes. Much like UniProt, Pfam has had

remarkable growth, increasing in size from 6109 families in 2004 to 18,259 in 2021 [51].

Protein annotation databases

The InterPro database [52] integrates sequence signatures from 13 other databases.
The nature of the curated signatures varies, from smaller patterns of important residues
like catalytic sites - from the Conserved Domain Database (CDD) [53] - to more gen-
erally conserved sequence-wide patterns - from Pfam [33]. These sequence signatures
are detectable using sequence patterns and profile-HMMSs, similarly to Pfam, with

InterPro providing an automatic annotation tool called InterProScan [54].

Another primary annotation type is the enzyme commission (EC) system provided
by the ENZYME database [55]. EC classes are a curated hierarchical classification
system where numeric labels representing enzyme-catalysed reactions are assigned at
four progressively more specific levels of functional detail, down to the level of substrate
and reaction specificity. For example, the hierarchical breakdown of the EC class
2.6.1.1 is 2.-.-.-, which stands for transferases, 2.6.-.-, which stands for transferases
that tranfer nitrogenous groups, 2.6.1.-, which stands for transaminases, and finally
2.6.1.1, which stands for aspartate transaminase. A drawback of EC numbers is that
the substrate specificity of an enzyme might be known, but it may not have a complete
EC number, as an EC number for that substrate has not been curated yet. Also, some
complete EC numbers are still hierarchical in nature and correspond to entire classes

of enzymes.
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Tertiary structure databases

Finally, some of the more in-depth analyses of enzymes performed in this work used
tertiary structures of enzymes as inputs. The primary bioinformatics resource for
retrieving three-dimensional protein structures is the Protein Data Bank (PDB) [56].
Just like most bioinformatics databases, it has experienced high rates of growth over
the years, going from 16,402 total structures with 2814 new releases in 2001 to 172,952

total structures with 14,029 new releases in 2020.
UniProt as a central hub for enzyme research

As was previously mentioned, UniProt acts as a central hub for most enzyme-related
data retrieval from public databases. Indeed, even though all four databases described
here are self-sufficient, UniProt integrates its protein entries with information from the
other databases mentioned. For example, if an entry has a known tertiary structure
on PDB, a cross-reference to its PDB entry is established. Similarly, UniProt entries
contain any known Pfam family memberships and InterPro signatures. UniProt offers
multiple avenues to querying and retrieving entries based on some search criteria,
including simple but powerful search functionality on which conditional queries can be
formed. For example, in Figure 2.3 a UniProt search query with three filters can be
seen that retrieves entries that contain the Pfam ID PF00202 i.e. transaminases class-
II1, are bacterial in taxononmy, and that are reviewed i.e. from Swiss-Prot. UniProt
also allows for programmatic access in the form of a application programming interface
(API) and a SPARQL Protocol and RDF Query Language (SPARQL) endpoint [57].
All three of these interfaces are used extensively in this thesis to build datasets of

enzymes that are annotated.

2.3.2 Enzyme families

An enzyme family has the following definition:

44

Functionally (or mechanistically) diverse superfamilies are evolutionarily

related sets of enzymes that may be quite diverse in sequence, structure,
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Figure 2.3: An example search query on UniProt using its advanced filtering options.
This query in particular will retrieve entries of the transaminases class-11I Pfam family
(PF00202) that originate from bacteria on Swiss-Prot.

and overall reaction, but share a conserved constellation of active site

residues used for a common partial reaction or chemical capability [47]

As enzyme family evolution is still not well understood [47], for the sake of simplicity
and consistency, enzymes in public databases were defined to belong to a certain family
or superfamily if they were annotated with their respective Pfam ID i.e. if they are

similar enough to the respective curated profile-HMM.

Specific enzyme families were chosen for diverse reasons which are explained in-depth
in the chapters they are used. However, the general reasoning for choosing a family
is the same: they are all very functionally diverse in terms of the number of different
enzymatic reactions they catalyse, they are all populous and well-annotated enough
on public databases that datasets of notable sizes can be built from them, and they
all have applications as biocatalysts. Seven different Pfam family entries were used for

dataset building in this thesis, which are:

1. Transaminase class I&I1 (PF00202), used in Chapter 3 [58].

2. Short-chain dehydrogenase (PF00106), used in Chapter 3 [59] .

3. Enoyl-CoA hydratase/isomerase (PF00378), used in Chapter 3 [60].
4. Transaminase class III (PF00155), used in Chapters 3 and 4 [58] .
5. Radical SAM (PF04055), used in Chapter 4 [61] .

6. Aldehyde dehydrogenase (PF00171), used in Chapter 4 [62].
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7. Aldo/keto reductase (PF00248), used in Chapter 5 [63].

2.3.3 Bioinformatics tools

Many state-of-the-art bioinformatics tools exist, some of which can be split into four

main categories:

1. Sequence alignment, which is the matching and comparison of one or more se-

quences to judge similarity and conservation of residues.

2. Sequence mining, which is the searching of sequences in a database similar to

some given query sequence.

3. Sequence dataset visualisation, which is the displaying of sequences and the

different relations between them, often with added annotation.

4. Enzyme analysis, which is the varied tooling used to assess and make predictions

about individual enzymes, their structure, their function, and so on.

Sequence alignment

One major sequence alignment tool is the Basic Local Alignment Search Tool, or
BLAST [40]. BLAST has been a seminal bioinformatics algorithm for over three
decades, mainly as an efficient search tool that allows to find local sequence matches
from a query sequence to a larger database. In this thesis, BLAST is mainly used not
as a search tool but as a fast alignment tool to verify the pairwise similarity of one
sequence to thousands of others. Specifically, the blastp command-line tool provided

by the NCBI BLAST+ toolkit is used [64].

Another alignment tool is Needleman-Wunsch [65], which is a dynamic programming
algorithm for pairwise alignments. Unlike BLAST, which is a local matching algorithm,
Needleman-Wunsch is a global alignment tool, which finds the optimal alignment be-
tween two whole sequences rather than fragments. While BLAST is faster due to
its nature as a heuristic, Needleman-Wunsch is more useful for judging the similarity

of two sequences with full context. Needleman-Wunsch is mainly used for producing
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pairwise identity measures in this thesis, which are then used as inputs in various ways.
Specifically, the needle command-line tool from the EMBOSS suite is used to perform
these alignments [66].

Finally, Clustal Omega is another alignment tool that generates multiple sequence
alignments (MSAs) [67]. MSAs are a standard data type in bioinformatics that help
discern levels of similarity and patterns of conservation across large numbers of related
sequences, unlike pairwise alignments which only compare two sequences. MSAs are
used often to compare sequences in an enzymatic context, such as comparing active
and binding site patterns. Clustal Omega is the latest iteration of the long-running
Clustal MSA-generating tools [68], and is known to be fast at producing accurate
alignments for even large sets of sequences. Specifically, the clustalo command-line

implementation of ClustalOmega was used [69].

Sequence mining

One main sequence mining tool was used in this work: the HMM-based hmmsearch.
hmmsearch is one of the many command-line tools contained in the HMMER suite [70].
HMMER is a bioinformatics toolkit that allows for the building and usage of profile-
HMMs for various purposes like searching, which hmmsearch achieves. As required
input, hmmsearch simply takes a profile-HMM and a file containing one or more amino
acid sequences. Then, hmmsearch will find sequences in the input file that are similar
enough to the given profile-HMM. Specifically, a sequence is considered similar enough
if its resulting expect value - or e-value - is below a default or user-specified threshold.
The e-value is the number of hits one would expect by chance to find in a database
of a given size, with the lower the e-value the more significant the hit is likely to
be. hmmsearch was used because the enzyme families of interest are summarised into
profile-HMMs, as was described in section 2.3.2, which makes searching for hits of

specific families more convenient [71].

Sequence dataset visualisation

The visualisation of entire enzyme family datasets in various ways is an crucial aspect

of this thesis as it allows the deduction of important patterns in the relations between
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enzymes of a family. Two different state-of-the-art visualisation techniques were used
often in this work, with the first one being phylogenetic trees [72]. Phylogenetic
models allow for the visualisation and analysis of the evolutionary history of a set of
sequences, and are powerful tools in attempts at understanding how diverse enzyme

families evolved [73].

The second visualisation technique employed in this thesis is sequence similarity net-
works (SSNs). SSNs are homogeneous networks made up of sequence nodes - in the
case of this thesis enzymes - and edges are made between such nodes if their sequence
similarity is above some user-specified threshold [74]. While phylogenetic trees are very
powerful at displaying evolutionary relationships between sequences, they are compu-
tationally heavy to produce for larger datasets. Also, SSNs are capable of displaying
all the pairwise relationships of the sequences of a dataset, while trees cannot. How-
ever, they are not a direct substitute when trying to infer evolutionary history, as they

are not built with such data in mind [74].
Enzyme analysis

During this thesis, individual enzymes often needed to be analysed in further con-
texts than sequence identity, phylogeny, and publicly available annotations. Two such
contexts are employed here: tertiary structure analysis and functional annotation pre-

dictions.

The tertiary structure of a protein plays a key role in the type of function it fulfils, a
well-known fact backed by multitudes of studies in the biological sciences [75]. While
enzyme function is harder to deduce from sequence than for other proteins [44], the
different tertiary structure ’folds’ used by some enzyme family correlates well with
their various functions [76]. Such a relationship between structure and function is
often true even though both the tertiary structure and function of two enzymes can

be still be highly similar at sequence identity levels as low as 16% [77] (Figure 2.4).

Therefore, when resolved tertiary structures were available for some enzymes - usu-
ally from the PDB database described in section 2.3.1 - these were used in analysis.

However, when they were not available, a tertiary structure modelling tool called

SWISS-MODEL [78] was used. SWISS-MODEL is a web-server that uses homology
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Figure 2.4: Tertiary structure overlap of two glutathione S-transferase homologues (EC
class 2.5.1.18); IGNW, which originates from Arabidopsis thaliana, and 1PGT, which is
a human transferase. These two enzymes have high tertiary structure similarity, with a
TM-score of 0.77, yet only share 16% sequence identity. This is just one example of the
more complex sequence-structure-function relationship that enzymes have compared
to other protein types.

modelling - which is the process of identifying structural templates to help build a
model - to construct an accurate tertiary structure using a given query sequence as in-
put. Homology modelling has proven to be a successful method of predicting accurate
three-dimenstional models of proteins to help fill in the gaps induced by the bottleneck

of manually resolving quality tertiary structures [79].

With a source of publicly available structures from PDB and the addition of accurate
structure predictions using SWISS-MODEL, comparisons of tertiary structures were
performed in this thesis. Specifically, much like the pairwise alignment of primary
protein sequence is possible, as is the alignment of their three-dimensional structures
using a tool called TM-align [80]. TM-align is an efficient and accurate tool for the
alignment of protein structures, and produces an easy to interpret score called the
TM-score . A TM-score between 0 and 0.3 represents a random structural similarity,
while a TM-score between 0.5 and 1 was shown to be a good indicator for two proteins
being in 'about the same fold’ [81]. TM-align is used in this thesis often, in particular

to investigate structural relationships of enzymes at low sequence identity.

Finally, the prediction of functional annotations of enzymes was performed using three
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Full Dataset

Training Dataset Testing Dataset

Figure 2.5: Diagram showing the common dataset split performed for machine learning
exercises. Dataset of samples should be uniformly split into two both training and
testing datasets, with the former being used for the learning process, and the latter
for quality assessment purposes.

different tools, in particular when certain useful annotations were missing. First, In-
terProScan was used to detect InterPro signatures contained in unannotated enzymes,
as was discussed in section 2.3.1 [54]. Second, DEEPre, which is a web-interface that
allows for the machine-learning based prediction of EC classes using primary sequence
as input, was used to provide more functional context, as DEEPre is highly accurate
at least on the first three numbers of an EC class [28]. Finally, the iterative threading
assembly refinement (I-TASSER) metaserver was used to provide in-depth analysis
about structure and function with protein sequence as input [82]. I-TASSER is one of
the state-of-the-art method for the prediction of protein structure, but also the iden-
tification of active and binding sites, and the likely catalytic functions an enzyme can

catalyse.

2.4 Machine learning and heuristic optimisation

In this thesis, two major fields of computational research were used in substantial ways
in novel applications for the creation of diverse enzyme panels: machine learning and

heuristic optimisation. One definition of machine learning is the following:

‘ ‘ A machine learning algorithm is a computational process that uses
input data to achieve a desired task without being literally programmed to

produce a particular outcome [83]. ’,
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Machine learning therefore tries to semi-automatically learn from some given input
data how to solve a well-defined problem, through a process called "training’. This field
is often applied in situations where data have inherent functions that are complicated
to discern by eye while still being theoretically mathematically learnable. The major
types of problems solved by machine learning include classification problems, pattern

recognition, artificial intelligence, among many others.

Importantly, one aspect of machine learning that is consistent across all its methods
is the requirement for input data to be split in such a way that the performance of
a trained model can be assessed on 'unseen’ data. This split can be seen in Figure
2.5, and consists of separating a full dataset into a training dataset - which is used
for the model to learn - and a testing dataset - which is used to assess the model’s
performance. There should be no overlap in samples between the training and testing
dataset, and they need to be sampled in such a way that the proportion of labels
are balanced similarly in both datasets. Also, every sample of such datasets should

contain one or more labels that the machine learning models are tasked to predict.

One definition of heuristic optimisation is the following:

‘ ‘ Heuristics are simple procedures, often guided by common sense, that
are meant to provide good but not necessarily optimal solutions to difficult

problems; easily and quickly [84]. ,,

Optimisation problems are usually solved through the maximisation or minimisation
of some objective function. Heuristic optimisation is therefore the process of making
an educated guess at a solution that is of ‘good’ quality without necessarily being the
best, with the main benefit of being computationally faster. Specifically, in an iterative
process until some exit criterion is reached, neighbourhoods of solutions similar to
the current solution state are generated, and decisions are made on which solution
to 'move’ to next. Heuristic algorithms are often applied to the non-deterministic
polynomial-time hardness (NP-hard) class of problem, which includes most known

genome assembly models [85].

Both of these fields are rich in approach and applications in bioinformatics. In this

thesis, one method of each was used. Specifically, neural networks were utilised for
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a machine learning application, and the tabu search class of heuristic optimisation
algorithms was used. A background level of knowledge on both of these paradigms is

introduced in this section.

2.4.1 Neural networks

Neural networks are a set of machine learning models inspired by biological neural
networks that are made up of artificial neurons and connections between them. Neural
networks have been used in various state-of-the-art bioinformatics tools, from the
secondary structure prediction tool PSIPRED [86], to the recently-released tertiary
structure software AlphaFold [87], to the enzyme function prediction tool described in

section 2.3.3, DEEPre [88].

While ongoing research into neural networks has generated diverse types for multitudes
of applications, all share a core architecture, set of parameters, and learning logic. To
give a background on this shared structure, the classic artificial neural network (ANN)

is used as an example (Figure 2.6) [89].

In feedforward ANNs, there are three different types of neuron layers which are con-
nected in a feedfoward manner by weighted edges. Each neuron has some value, usually

between 0 and 1.

1. The input layer, which is the initial layer that data is passed to. The input data
needs to be formulated in such a way that can be passed into this vector of input

neurons.

2. The hidden layer - of which there can be more than one - the neurons of which
mathematically transform input data using activation functions [90, 91] and the

weights of connected edges.

3. The output layer, containing one or more neurons that should also be formulated
in such a way that its neurons can be interpreted as a prediction of labels made

by the neural network.

The weights of an ANN are initialised, usually to some random low values. Then,

during training, input from the training dataset is passed to the input layer, one
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Figure 2.6: A diagram of the classic feedforward artificial neural network (ANN) model.
It is made up of three main layers of neurons: an input layer, a hidden layer, and an
output layer. During training, the error of predictions is backpropagated to the begin-
ning of the ANN, changing the weights to make better predictions over the training
process.

sample at a time. The values of the input layers are transformed by the hidden layers,
before some initial prediction is made at the output layer. Based on the way the data
was formulated, the predicted label is then compared to the true label using a loss
function to calculate the error. There are many different existing loss functions like
cross-entropy for classification problems [92] and the Huber loss for regression problems

[93)].

Then, using another class of function called an optimiser [94, 95], this error is "back-
propagated’ in the reverse reaction of the feedforward ANN, changing the weights in
the process. This iterative change in the weights is how neural networks fundamentally

"learn’ how to solve the tasks they are given.

Neural networks research has progressed substantially over the years, and multitudes
more types of neural networks than ANNs now exist. Convolutional neural networks for
example are based on "the natural visual perception mechanism of the living creatures”,
and have proven successful at detecting important patterns and features contained in
input data [96]. More recently, generative adversarial networks (GANs) have gained
popularity for their use in the synthesis of novel data [97]. In this thesis, a variant
of an autoencoder neural network [98] - which are powerful at the denoising and the

dimensionality reduction of data - was described and used in Chapter 5.
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2.4.2 Tabu search

Heuristic algorithms are often designed for bespoke purposes, or can be applied as
black box models to multitudes of problems. In the latter case, these algorithms are
called metaheuristics, which includes the tabu search class of algorithms. Tabu search
was originally developed as a way of escaping local optima - a common challenge in
optimisation problems - which is when an algorithm cannot ’climb’ out of a locally
optimal solution in its current neighbourhood, resulting in solutions closer to the global

optimum being unreachable [99, 100].

Tabu search algorithms achieve this by establishing a concept called 'tabu tenure’,
whereby recently performed moves during the neighbourhood creation process are
considered illegal moves to perform again, or 'tabu’ moves. Such moves are considered
tabu for a defined amount of iterations - at which point the tabu status expires -
which is the tabu tenure parameter. However, a predetermined condition called the
"aspiration criterion’, if reached by some tabu move, is the exception to the rule which
will allow a tabu move to be performed. The combination of tabu tenure and the
aspiration criterion therefore provides tabu search with ’short term memory’, which
helps guide solutions away from local optima [99]. Through this short term memory,
tabu search-based algorithms have been proven to be highly performing at solving
many optimisation problems, including the travelling salesman problem [101], graph
colouring [102], and the maximum diversity problem [103], the latter of which is used

in Chapter 4 in a novel bioinformatics application.

2.5 Synthetic biology for enzyme research

Synthetic biology is the field of research that combines engineering concepts to the
creation of useful biological systems [104]. In application, one of the principle aspects
of synthetic biology is the modularisation of biology into usable 'parts’, like ribo-
some binding sites, promoters, and proteins, among others. The wet-lab expression
and characterisation of enzymes requires a base level knowledge of synthetic biology
and its approaches, which exist both in silico and in vitro. This section delves into

the synthetic biology concepts utilised in this thesis and how they relate to enzyme
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Figure 2.7: Diagram representing the engineering lifecycle, which is made up of four
main stages: design, build, test, and learn. In synthetic biology, engineering concepts
like the DBTL cycle are commonly used, in which it is referred to as the synthetic
biology lifecycle. This lifecycle takes some synthetic biology project through the spec-
ification and design of some biological system, to its build and verification as a con-
struct, to the testing of its performance, to the learning and changing of the original
design based on the data produced in the test stage.

research.

2.5.1 The synthetic biology lifecycle

In many fields of engineering, a common pipeline for project management is the design-
build-test-learn (DBTL) lifecycle [105]. This cyclic workflow has four main stages
(Figure 2.7):

1. The design stage, during which an initial system is thought up to solve some
problem and designed, often using computer-aided design tools.

2. The build stage, during which a design is implemented, with verification and

quality assurance steps in place.

3. The test stage, during which a built design is tested for its original purpose, and

assessed as to how well it achieves said purpose.
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4. The learn stage, during which data about the performance of a tested design is

used to gain insights on what can be improved its next iteration.

The DBTL lifecycle can also be applied to synthetic biology - in which it is referred to
as the synthetic biology lifecycle - including to enzyme characterisation projects. For

example:

1. At the synthetic biology design stage, an enzyme of interest could be reverse-
translated into DNA, and then codon-optimised [106]. This DNA could then be

added wn silico to a plasmid design as a coding sequence.

2. At the build stage, synthesised gene fragments of the coding sequence of the en-
zyme could be cloned into plasmids in the laboratory. These plasmids would then
be verified through sequencing before being transformed into a host organism as

constructs.

3. At the test stage, the verified and built constructs are then used in enzyme
characterisation experiments. Overexpression of the enzyme could be induced
depending on the plasmid used [107], followed by an extraction of the protein

specimen for assaying.

4. At the learn stage, the results of the test stage could be used to help optimise
experimental conditions or even engineer the enzyme sequences themselves to be

closer to optimal.

Using the DBTL lifecycle in synthetic biology is currently an important avenue of
research for the field, with many novel methods having been developed to make it a
more accessible workflow [108, 109]. The synthetic biology lifecycle played a key role
in guiding the development of some of the approaches discussed in this thesis, as it

provides an effective framework for an iterative characterisation of enzyme panels.

2.5.2 The Synthetic Biology Open Language

While the application of engineering concepts to synthetic biology has led to the modu-

larisation of biological parts, this modularisation has become increasingly standardised.
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For example, the international Genetically Engineered Machine (iGEM) competition
[110] - which has taken place yearly since 2004 - requires the depositing of parts in
the BioBrick standard [111] to the iGEM registry. In just ten years, over 12,000 parts
resulting from the competition were added. The standardisation of synthetic biology
concepts has continued to evolve, especially since the development of the Synthetic

Biology Open Language (SBOL) [112].

SBOL is a standard that was originally introduced for the easy dissemination of DNA
components, similar to other sequence formats like FASTA [113] and GenBank [114].
Since then, the capabilities of SBOL have expanded to include concepts more specific to
synthetic biology, like the interactions between different components and combinatorial
derivations. Changes to the SBOL specification are community-driven, through the
creation of SBOL enhancement protocols (SEPs), which are only applied to the model

if the SBOL community votes to do so as a majority.

While the SBOL specification is complex, it has been simplified with the recent release
of SBOL3 [115]. However, the work performed in this thesis was done when SBOL2.3
was current, and is therefore the one described here [116]. Three key terms of the

SBOL2.3 model need to be described:

1. The TopLevel class, which is an abstract superclass from which other classes

inherit important properties from, like name, description, and version.

2. The Collection class, which inherits from TopLewvel, is a class that allows for the

grouping of other relevant TopLevel objects.

3. The ComponentDefinition class, which inherits from TopLevel, is a class that

represents most biological entities, from DNA to RNA to proteins.

More interestingly for this research, SBOL has recently become capable of representing
the entire synthetic biology lifecycle after the passing of SEP19 [117] and SEP21 [118].
SEP19 provided support for representing the build stage through a novel class called
Implementation, while SEP21 added the classes Fxperiment and ExperimentalData.
Also, SEP19 identified best practices for providing provenance information in SBOL,
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which is metadata crucial to reproducibility. This guidance is to use the following

terms from the provenance ontology Prov-o [119]:

e The Agent class, which in SBOL is used to represent the person(s) and/or tool(s)

that generate some TopLevel object.

e The Plan class, which in SBOL is used to represent the steps undertaken by

some lab activity, like a lab protocol.

e The predicate wasGeneratedBy, which in SBOL is used to connect TopLevel
objects to the Agents and Plans that generated them.

e The predicate wasDerivedFrom, which in SBOL is used to connect TopLevel ob-
jects of one DBTL stage to the TopLevel object they were based on. For example,
a built Implementation would be connected to its original design ComponentDef-

inition through a wasDerivedFrom predicate.

As the learn stage can be performed through a distinction of modified designs using
the wversion property of TopLevel classes, the SBOL model therefore has all of the
necessary functionality for being able to represent the synthetic biology lifecycle and
the data and metadata it produces. As the iterative characterisation of enzymes should
ideally be performed using the lifecycle, SBOL was therefore the data standard used

for relevant portions of this thesis.

2.5.3 Tooling gaps in SBOL

While the SBOL standard does possess the capacity for representing the DBTL life-
cycle, tooling that helps perform the cycle using SBOL in the background is a key
requirement due to its complexity. There are multitudes of tools for the design stage,
like SBOLDesigner [120], CELLO [121], iBioSim [122]. ShortBOL [123] can also be
used to create SBOL in a more abstract language. There are also repositories for de-
signs like SynBioHub [109], and popular sequence-editing applications like Benchling
(https://www.benchling.com/) can also output designs in SBOL format.
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However, while SynBioHub can accept Implementations and Fxperiments existing in
uploaded SBOL files, there is no current way of creating novel data of these types
except through using the different SBOL libraries like sboljs [124], which is not ac-
cessible, in particular to those without a programming background. Flapjack is an
SBOL-powered interface that aims to facilitate the transition from the test and learn

stages, but does not physically store constructs from the design and build stages [125].

There is therefore a major tooling gap in SBOL, especially in the later stages of the
synthetic biology lifecycle like build and test. Even though the data model itself can
technically represent the DBTL cycle, the methods to support the model do not yet
exist. The implication from this lack of tooling that is relevant for this thesis is a
reduced inefficiency in the iterative characterisation of enzyme panels. This significant

limitation was therefore addressed in this thesis, specifically in Chapter 6.

2.6 Summary and conclusion

The use of enzymes as biocatalysts in various industries continues to grow in popularity.
This growth is due to various benefits in the replacing of standard chemical synthesis
methods with an enzyme, including higher chemical yield and regio/stereoselectivity,
simplified pathways, and greener chemistry. However, while the amount of discover-
able enzyme diversity has undoubtedly grown thanks to the advent of next-generation
sequencing, this diversity is merely discoverable, not discovered. Indeed, most en-
zymes on public databases are only loosely annotated using automatic systems, with

a large proportion not being annotated at all.

Therefore, initiatives that attempt to mass-characterise enzyme families in the lab are
of particular value, as such assays are currently the only methods that can confidently
reveal the function of enzymes. However, the current approaches to the selection of
diverse enzyme panels to be taken into the lab is limited without a unified framework.
The major limitations include an over-reliance on sequence identity for the assign-
ment of homology, a high burden of knowledge for more in-depth analyses of diversity,
analyses which are complex and time-consuming. Also, while the use of the synthetic

biology lifecycle would be an ideal framework for the iterative characterisation of en-
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zymes in the laboratory, there are significant tooling gaps to make its use accessible

in reality.

All of these limitations have left research gaps that could be filled to help optimise the
process of generating diverse panels of enzymes for characterisation in the laboratory.
The tackling of these gaps has resulted in the identification of two principle aims for

this thesis:
1. The development of new computational methods for building diverse sequence
panels from enzyme families

2. The building of tools that promote an integrated and iterative framework for the

characterisation of enzyme families in the laboratory

In this thesis, methods that achieve these aims are introduced and discussed, starting
with a method of analysing enzyme families that is not based on raw sequence similarity

in Chapter 3.
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3.1 Introduction

The functional analysis of protein families is essential for the application of enzymes
in biotechnology, as was mentioned in section 2.2. Confidently assigning functional
annotations to enzymes and their families can lead to a better understanding of enzyme
evolution and enzyme diversity [126] underpinning many areas of functional genomics.
This understanding can help better pinpoint the sequence space of an enzyme family
that needs further study, leading to better results when building panels to be tested

in the laboratory, as was discussed in the Background (section 2.2.2).

However, the functional analysis and annotation of enzymes and their families is dif-
ficult. Amino acid sequence similarity is the most commonly used evidence for an-
notating protein and enzyme function [2, 127], usually through the identification of
homologous relationships, between which annotations are then transferred. However,
as described in section 2.2.3, such sequence identity methods lose power when applied

to the conservation of enzyme function, especially at the substrate specificity level.

The transfer of annotation relating to the substrate specificity of enzymes is also
made particularly difficult by the overall low quality of existing annotation on public
databases. As of the 13/02/2019 release of UniProt [128], TrEMBL contains over
140 million sequences, while the manually-curated Swiss-Prot only contains around
550,000, of which 238,254 are entries annotated with "catalytic activity’ [129, 130].
Only 10,921 (4.5%) of the "catalytic activity’ Swiss-Prot entries have their catalytic
activity annotations supported by evidence that is "manually curated information for
which there is published experimental evidence”. The majority, 179,784 (74.5%) entries
have had their catalytic activity automatically assigned by Uniprot "sequence models”,

manually-curated protein family profiles to which new entries are matched [131, 132].

While these profiles are manually curated and kept up to date, sequence similarity is
ultimately the core metric behind the assignment of annotations. The proportion of ev-
idence for annotation that is laboratory-based, and therefore which can be confidently
trusted, is consequently low, which has led to the erroneous propagation of catalytic
activity assignments, which is a known problem on public databases [133, 134]. It can

also lead to missing annotations, as enzymes can be notably promiscuous in terms of
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their substrate activity.

The rapid increase in the availability of protein sequences has also lead to an increase
in the size of enzyme protein families. It is now necessary to study the structure and
functional diversity of large enzyme families at a much greater scale than previously
required, including for the optimisation of enzyme panel selection for characterisation
in the laboratory. Standard phylogenetic approaches to family assignment become
computationally challenging when dealing with large protein families [135], to both
produce but also interpret, leading to unoptimised selection approaches like those

discussed in section 2.2.3.

The idea of building networks of proteins based on raw sequence similarity has gained
popularity as a rapid method for gaining a visual and structural overview of large
protein families. Approaches such as Sequence Similarity Networks (SSN) have been
shown to be useful for providing overviews of the functional diversity of enzyme families
and superfamilies [47, 74, 136]. These networks have been demonstrated to be valuable
for visualizing functional trends across protein superfamilies, relying on the assumption
that structural or sequence-based similarity implies functional similarity, while being
computationally less heavy than phylogenetic trees. SSNs, just like the other methods
discussed in section 2.2.2, can therefore be used for the analysis of sequence datasets
in the preparation of diverse enzyme panels for the laboratory. However, SSNs also
suffer from the drawbacks associated with sequence based annotation mentioned in

section 2.2.3 of the Background.

Therefore, new approaches are required to more confidently assign functional homology
of enzymes, annotate enzyme substrate specificity, and perform functional analyses
of large and diverse enzyme protein families. Specifically, some method that can
complement sequence-similarity based methods to fill in homology gaps at low sequence
identity would be of high impact, including for the analysis of enzyme datasets for panel

creation.

3.1.1 Residue-residue coevolution

The analysis of residue-residue coevolution is another useful method for searching for

functional conservation in protein sequence and structure. Two amino acid residues
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Figure 3.1: Residue-residue coevolution is a good proxy for residue-residue contact,
published by Sanchez-Pulido and Ponting [2]. A) An MSA of homologous proteins
from the lambda repressor family. The positions F51 and L65 are found to coevolve,
as a mutation in one position leads to a mutation in the other. B) A heatmap showing
the correlations between different residues. F51 and L65 are seen to correlate, and
therefore likely coevolve. C) One of the secondary structures of a lambda repressor.
The coevolving F51 and L65 residues are in close contact.

are said to coevolve if an influential substitution in one residue is counteracted by a
substitution in the other residue [137]. This phenomenon occurs due to evolutionary
pressure on a protein to retain structural stability. Indeed, residue-residue coevo-
lution is known to correlate particularly well with residue-residue contact, and has
successfully been used to discern the maps of contacts of proteins [137] (Figure 3.1).
Residue-residue coevolution information has been used to infer spatial constraints for
residues for the purposes of predicting tertiary structures [138, 139] in single proteins

and protein-protein interactions between two or more proteins [140].

Patterns of coevolution have also been used in a functional context. Coevolution
patterns are often represented as homogeneous residue-residue coevolution networks,

in which proteins are represented as networks, where nodes represent residues and edges
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exist between nodes when the residues involved are likely to coevolve. Such networks
have been successfully used for identifying functionally important residues [141-144].
With the emergence of more accurate methods for computing coevolution metrics on a
large scale, largely based on direct coupling analysis (DCA), [3, 139, 145, 146], it is now
possible to produce coevolution data for a set of enzymes and to build residue-residue
coevolution networks for pairs of enzymes on a larger scale than has previously been

possible.

Pairwise coevolution data have been used to analyse the functions of individual en-
zymes, but to the author’s knowledge there has been little or no use made of protein co-
evolution data as a similarity metric between proteins in protein family-wide functional
analyses. As coevolution patterns contain information important for the determination
of protein function, it is expected that functionally similar enzymes, specifically with
respect to substrate specificity, will share similar coevolution patterns. The hypothesis

explored in this chapter is therefore the following:

44

An all-vs-all comparison of residue-residue coevolution patterns in an en-

zyme family can be used to perform a functional analysis of that family.

In this chapter, a novel method is introduced for inferring functional relationships
between enzymes called coevolution similarity networks (CSNs). CSNs have a graph
definition similar to that of sequence similarity networks, where nodes represent pro-
teins, and edges exist between nodes if their coevolution patterns are similar, with
the similarity metric based on a user-defined threshold. CNSs also display a network-
based overview of the structure and functional relationships within a protein family,
and provide a complementary approach for the functional annotation of enzymes. Such
an approach would be of high-value for the analysis of datasets of enzyme families,
including for the purposes of delineating functional homologues in a way that is useful

for enzyme panel creation.

This chapter explains how CSNs can be used to represent the distribution of func-

tional diversity of a set of enzymes across a network in terms of substrate specificity,
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in a way that groups functionally similar nodes, in a similar but complementary fash-
ion to SSNs. A comparison of the network structure and performance of CSNs and
SSNs was performed for three different annotated enzyme datasets from Swiss-Prot:
transaminases class 111, transaminases classes I/II, and short-chain dehydrogenases.
Specifically, the family structure was explored for each dataset, and the predictive
power of the networks for the purposes of enzyme substrate specificity was tested us-
ing a label propagation experiment. Also, CSNs were also used to reveal discrepancies
in functional annotation in a fourth dataset made up of enzymes from the crotonase

family:.

3.2 Materials and methods

3.2.1 FEnzyme datasets

Four datasets from different enzyme families were used in this work. The first com-
prised 241 transaminase class III enzymes, the second was a set of 986 transaminase
class I/1I enzymes, the third was a set of 142 enzymes from the short-chain dehydroge-
nases/reductases (SDR) family, and the fourth dataset was made up of 99 crotonases.
All four datasets were built using data from Swiss-Prot [128]. These datasets were
chosen since they are well annotated, functionally diverse, and are relevant to fields

such as the biocatalyst industry.

The datasets were built by searching Swiss-Prot for prokaryotic entries that contain
the PFAM identifiers for their respective families: PF00202 for the transaminase class
[T enzymes; PF00155 for the transaminase class /11 enzymes; PF00106 for the SDRs;
and PF00378 for the crotonases [33]. These datasets are referred to as Trans241,
Trans986, SDR142, and Croto99, respectively, in the remainder of this paper. A table
showing the distribution of all the EC classes across the four datasets can be seen in

table 3.1.

Datasets from Swiss-Prot were used since the functional annotations of proteins in
this database are more accurate than those from other sources [133]. An important
annotation type assigned to most of these entries is the Enzyme Commission (EC)

number [55]. EC numbering is a hierarchical classification system that assigns numeric
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labels to an enzymatic reaction at four progressively more specific levels of functional
detail, down to a level of detail where the substrate specificity can be implicitly derived

from the reaction name.
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3.2.2 SSN construction

Other researchers have used BLAST-based approaches to search for sequences and
build datasets, from which SSNs are then built by thresholding the e-value [74]. How-
ever, the e-value produced by a BLAST search depends on the size of the dataset, and
BLAST therefore cannot be applied consistently across the four datasets. Therefore,
SSNs were generated using global pairwise alignments [65] in an all-vs-all fashion, pro-
ducing a sequence identity matrix for all four datasets. This matrix was then used

along with an identity threshold value to build.

3.2.3 Restdue-residue coevolution network construction

The coevolution data for each enzyme were produced using CCMpred [3], following
the recommended protocol [147]. The result was a residue-residue coevolution matrix
for every enzyme across all four datasets (Figure 3.2). Then, for studies on the residue
couplings that are most likely to coevolve, the developers of CCMpred suggest ranking
all the couplings and picking the top N with the highest score. In this work, N was
chosen to be an arbitrarily high number (600 for SDR142, 700 for Trans241, Trans986,
and Croto99) in order to ensure the inclusion of coevolving pairs that are unique to
functional subclasses of the family. From the selected pairs of residues, created residue-
residue coevolution networks were created for each protein. In these networks nodes
represent residues, and edges exist between the residues of a coevolving pair within a

single protein.

3.2.4 Residue-residue coevolution network mapping

To compare the residue-residue coevolution networks of individual enzymes, a method
for comparing coevolving pairs of enzymes and estimating whether these pairs are
equivalent in terms of positioning in homologous proteins was developed. The amino
acid sequences of proteins in each dataset were aligned using a multiple sequence
alignment (MSA) algorithm, to establish the relative positions of coevolving residues.
It was then assumed that if two residues of a coevolving pair of one enzyme aligned to

two residues from another enzyme that also coevolve, they were equivalent coevolving
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pairs (ECPs). Clustal-Omega [67] was used to align all of the sequences of a set into
MSAs, one for each of the three datasets.

For each dataset an intermediate alignment meta-network was created, in which nodes
represented the coevolving residues of all of the residue-residue coevolving networks of
a dataset, and edges were made between nodes if they aligned according to the MSA;

that is, if they were ECPs.

3.2.5 Clique-based residue-residue coevolution network com-
parison

For each residue-residue coevolution network, all the cliques were computed using
NetworkX [148]. Cliques are a concept in network theory that describe groups of
nodes in a network that are fully connected. Cliques are relevant in this work because
”in the context of coevolution, a clique represents a set of residues wherein each residue

covaries with all of the others” according to Lee and coworkers [144].

Then, a square scoring matrix was produced by matching the cliques of the residue-
residue coevolution networks. If a clique in enzyme A had X coevolving pairs, and
all X coevolving pairs had ECPs in enzyme B they were considered to be equivalent

coevolving cliques, and the score between A and B was incremented by 1 (Figure 3.3).

The clique similarity scores were then normalised to values between 0 and 1 by trans-
forming them into Jaccard similarity scores, in which A and B are the number of
cliques of the residue-residue coevolution networks for enzymes A and B (Equation
3.1). These scores, which are termed as "coevolution similarity” or CS scores hence-
forth, were used to produce CSNs in which nodes are enzymes and edges exist between

two nodes if their similarity value is above a user-defined threshold.

— [AHIB|-[ANB]

(3.1)
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Equivalent Coevolving Residues
...TPLHFMRTMCPTLEGGYHLPTYHLPERT...

...TPLHFMRTMCPTLEGGYHLPTYHLPERT...

—

Equivalent
Coevolving
Cliques

Figure 3.3: The mapping of ECPs onto equivalent coevolving cliques. When all the
residues of a clique of coevolving residues are are ECPs within another protein’s cliques,
then these are considered as equivalent coevolving cliques.

3.2.6 Filtering of family-wide Equivalent Coevolving Pairs

Some coevolving pairs are expected to be general to the family as a whole [149].
ECPs that were present in the majority of sequences in a dataset would therefore
be uninformative for the purpose of discriminating function at the specificity level.
This is especially true as while ECPs common to a whole family are likely to be
important for structure and function, "other positions may be conserved only within
particular subfamilies. These subfamily-specific residues are likely to define the specific
functionality of that subfamily, such as forming three-dimensional clusters that make-

up ligand- and/or protein-binding sites or allosteric chains of residues” [149].

If coevolution similarity scores function similarly to sequence similarity, it can be
assumed that the higher the score between two enzymes the more likely they are to
perform similar enzymatic functions. However, if the coevolution similarity score tends
closer to 1 on average because a family shares a high amount of the total coevolving
pairs across all its sequences, then it becomes harder to threshold and build CSNs in

a way that is specific enough to substrate specificity.
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For example, imagine a gold-standard similarity network existed for an enzyme dataset

with the following properties and assumptions:

e Each enzyme has at most one EC number, with no promiscuous enzymes
e The enzymes themselves are all correctly annotated with EC numbers

e Only edges between enzymes within the same EC number are created, with no

edges between nodes of differing EC numbers

The gold-standard similarity network for the Trans241 dataset would have 7545 edges
spread across its 25 different EC numbers. When a CSN is created using the methods
described previously in this section, without any filtering of the common ECPs, the
threshold that comes closest to creating a CSN of this size is 0.856, with 7578 edges
in total (Figure 3.4). Because the average coevolution similarity is already so high,
the similarity threshold required to get to a CSN as specific as the gold standard is
therefore also high.

This aspect of CSNs makes it difficult to pinpoint thresholds that make linkages specific
to substrate specificity, as any specificity-determinant ECPs that are common only to
certain EC classes are drowned out by the ECPs common to the family as a whole.
Indeed, if the threshold for the Trans241 CSN is lowered by as little as 0.006 to 0.850,
there is an increase in the number of edges of 13.5%, to 8682 edges in total for the CSN.
Such a drastic change in the number of edges from such a small threshold difference
makes it more difficult to produce a CSN that models the linkages in the dataset in a

meaningful way.

This challenge can also be visualised with heatmaps (Figure 3.5). In the unfiltered
heatmap, it can be seen that overall coevolution similarity is high, with an average score
of 0.69. While there are clusters that are brighter than others, it is more difficult to
parse because the background is already bright, which makes it more difficult to judge

how high the similarity should be to associate two enzymes as similar functionally.

Therefore, coevolving pairs that occurred in a high proportion of the dataset were

filtered out from the alignment network. This filtering of common coevolving pairs
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Distribution of Coevolution Similarity Scores for Trans241

Unfiltered ECPs
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Figure 3.4: Distributions of coevolution similarity scores for the Trans241 dataset
before and after filtering of common ECPs.The red line represents the number of
edges the gold-standard similarity network would have. With the distribution being
more skewed to the left after the removal of ECPs that are likely to be common to
the family as a whole, the coevolution similarity score is more impactful when it is
actually high, making it easier to discern more specific functional linkages.

has the effect of amplifying the contribution of the pairs more unique to functional
subclasses during the comparisons of residue-residue coevolution networks. Such com-

parisons are more likely to reveal precise linkages at the substrate specificity level.

The result of filtering of family-wide coevolving pairs for the Trans241 dataset can be
seen in Figure 3.4, where ECPs common to over 60% the dataset were discarded. The
score distribution has been skewed to the left, with 79% of the coevolution similarity
scores being below 0.2. The threshold necessary for reaching the gold standard similar-
ity network size is 0.31, with 7580 edges, a far lower threshold than the unfiltered CSN
at 0.85. With ECPs common to 60% of the dataset not being considered, it means that
when two enzymes have a high coevolution similarity score it is likely more impactful,
resulting in CSNs that can more easily distinguish coevolution linkages that represent

functional diversity in the family.

- 51 -




Chapter 3: Functional analysis of enzyme families using coevolution similarity

networks

paJayid

quaredde (s axe ‘deuryesy oy ut sjods JySLq 91
AJLIR[IUIS UOIIN[OAS0D YSIY JO sired SWAZUS ‘IOADMOY “SULID)Y IoJe IoyIep A[JUROYIUSIS ST AJLIR[IWUIS UOIJN[OAS0D JO [9AS] PUNOISYOR(
9L, SdDH UOWWOod JO SULI[Y IojJe PUR dI0J( 1OSRIRD THESURI], 9U) IOJ SOI0DS AJLIR[IWUIS UOIN[0A0D JO sdewjeoy :G°¢ oIngig

paJayuun

00
20
0
90
8'0 —
0l -

- 52 -



Chapter 3: Functional analysis of enzyme families using coevolution similarity
networks

This impact of the filtering can also be seen in Figure 3.5. The filtered heatmap is
evidently of a far darker background, with an average similarity score of 0.11. How-
ever, bright spots of high similarity still exist, making it more obvious when two se-
quences have high coevolution similarity patterns that are more specific to individual

EC classes.

As all four of the enzyme family datasets used in this work have diverse annotated
functional subclasses, which make up at most 47% of a dataset (2.6.1.9 for the Trans986
dataset, Table 3.1), ECPs common to 60% of a dataset were filtered out all four
datasets used in this work. While arbitrary, this threshold of 60% is likely high enough
to remove family-wide coevolving pairs while not being so low that pairs common to

entire functional subclasses are removed.

3.2.7 Enzyme substrate specificity prediction through label
propagation

To test the predictive power of the networks with respect to the labelling of unanno-
tated enzymes, and to analyse how well the networks captured the diversity in substrate
specificity of the enzymes, a label-propagation experiment was performed using the EC
labels of the datasets, using an algorithm inspired by the work of Schwikowski and co-
workers [150], who performed label propagation on a yeast protein-protein interaction
network. Starting with an initial representative subset of nodes that keep their la-
bels, all other labels are removed. Based on the network structure, the algorithm then
"propagates” the labels of the initial subset and outputs EC numbers for the rest of

the nodes over the course of the algorithm. The pseudocode for this algorithm is as
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follows (Algorithm 1):
Data: Nodes N, CanonicalL.abels CL, MaxIterations I
Result: Dictionary of Predicted EC Labels PL
N, CL = initialization();
S, PL = iniRepSubset(CL);
N.remove(S);
count = 0;
while len(N) /= 0 AND I != 100000 do
node = sampleOne(N);
neighbourLabels = countNeighbourLabels(node, S, PL);
if neighbourLabels !=null then
S += node;
N.remove(node);
PL[node] = pickTop2(neighbourLabels, M);

end

count +=1;
end

return PL;

Algorithm 1: Label propagation algorithm
The algorithm starts by initialising two variables: the list of nodes, N, of a network,
either an SSN or a CSN, and a dictionary, CL, of the EC number of the enzyme taken
from Swiss-Prot, with one or more EC numbers per enzyme in the network. The
algorithm then outputs a dictionary PL containing the annotation predicted by the

algorithm, where keys are entries and values are labels.

An initial random subset S of nodes is selected, and the dictionary PL with the labels
for those nodes is initialised. S is a representative subset that contains at least one
enzyme for each EC number. The algorithm then removes the nodes of S from N, and

progressively predicts annotations for the rest of the nodes through label propagation.

After initialisation, the algorithm iterates through the remaining nodes in random
order, ranking the labels of a node’s neighbours based on the highest ranking EC

numbers. If the node has annotated neighbours by that iteration, the node is added
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to S, is removed from N, and the top two most common EC numbers are assigned to
the node in dictionary PL. This process is repeated until N reaches zero, or until a
specified maximum number of iterations I is reached (in this case 100000). As this

algorithm is stochastic, it is necessary to perform multiple rounds of label propagation.

In order to determine the predictive power of this approach when applied to SSNs
and CSNs, the threshold was first iterated for both networks. This process allowed
for the identification of an optimal threshold for each dataset for each network type
for representing the available EC class annotations. With the thresholds optimised for
this purpose, an in-depth comparison of how annotations propagate on the network

structure could be made.

For each threshold from 0.05 to 0.9, 200 iterations of the label-propagation algorithm
were performed. For each threshold three metrics were generated: average precision,
average recall, and the F1 score, over the 200 iterations. For the purpose of this work,
the assignment of predictions as true/false and positive/negative is based on whether
a propagated EC class matches with the class that an enzyme node is annotated with.
Therefore, for each node in a network, a true positive (7'P) was when a correct class
was propagated, a false positive (F'P) when an incorrect class was propagated, and a
false negative (F'N) when no class was propagated. The precision and recall values
were only calculated for nodes not included in the initial representative subset, and
for nodes which have complete EC numbers. The equations for the precision, recall,

and F1 score are the following:

TP
TP+ FP
TP
TP+ FN
Pl 2 % Precision * Recall _ 2xTP
Precision + Recall 2«TP+ FP+ FN

Precision =

Recall =

While a balance of both precision and recall is necessary to select the optimal thresh-
old, more emphasis was given to recall when selecting the optimal threshold, in order to
consider potential missing annotations and enzyme promiscuity. The optimal thresh-

olds for SSNs and CSNs were identified by ranking the thresholds based on the F1
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score, which is the harmonic mean of both the precision and the recall, and then

selecting the threshold with the highest recall in the top 10 F1 scores.

3.2.8 Comparative analysis of SSNs and CSNs

Several metrics were computed in order to compare the topology of SSNs and CSNs,
including the number of shared edges, the number of connected components of the
network, and the number of edgeless nodes. The network comparisons were carried out
at the optimal predictive threshold for both SSNs and CSNs, determined as described
in section 3.2.7. The networks were visualized using the network visualization software

Cytoscape [151].

Different connected components in a network can contain multiple protein clusters,
comprised of enzymes with different substrate specificities. It is therefore important
to know the distribution and variability of EC labels across clusters in the network. To
achieve this quantification the MaxClust metric was computed. MaxClust is defined
as the largest single connected component that contains nodes of a given EC number
in a network. The size of the MaxClust for every EC label (the MCNumber) was first
computed, followed by the fraction of nodes containing this EC label in the whole
network that is covered by the MaxClust (MCFraction). From these values, a metric
called the weighted-average MaxClust coverage (WAMCC) was computed (Equation
3.2). The WAMCC is calculated over an entire network, and represents how well
enzymes of a similar substrate specificity are connected in a given network. While this
metric does not provide details about individual specificity classes across components,
it works well as an overall comparison metric to indicate the extent of enzyme substrate
annotations that are grouped up across the network. Therefore, for the set of different
EC classes E, with ¢ an index over them, the WAMCC equation is formulated as

follows:

E| .
o ZL:I MC Number;* M C Fraction;
WAMCC = NumN odes

(3.2)

The number of EC numbers covered by each network was also computed; that is, how
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many of the EC classes have at least one node connected to at least one other node.
All the metrics described in this section were computed for the optimised SSNs and
CSNs, and also for the intersection network; the network produced by the set of edges
that are shared by both an SSN and a CSN (SSNNCSN).

3.2.9 Tertiary structure analyses of Trans986 and Croto99

The tertiary structure of enzymes is a better indication of functional conservation
compared to primary sequence. Both the Trans986 and Croto99 datasets contained
enough publicly available resolved three-dimensional structures that a structure-based
analysis was able to be performed. The PDB structures, which number 32 for Trans986
and 18 for Croto99, were extracted. An all-vs-all comparison of their tertiary structures
was then carried out using TM-align [80] for all pairs of nodes connected by an edge,
for both the optimal SSN and CSN, for both of Trans986 and Croto99. Each alignment
produced a TM-score between 0 and 1, with higher values indicating higher structural

similarity.

The pattern of conservation of residues considered functionally important for both
of these datasets was also analysed. This analysis was done by aligning sequences of
interest using Clustal-Omega [67], so that the amino acid makeup of known functionally

important positions could be investigated.

For the Trans986 dataset, five positions were of interest. Using the prephenate amino-
transferase Q02635 as reference, these are Lys/Arg/Gln-12, Gly-39, Trp-125, Asn-175,
and Arg-375 [152]. As for the Croto99 dataset, the type of reaction performed by a
crotonase depends on the amount of negatively charged residues at three important
positions [153]. For example, P76082, a hydratase (4.2.1.17), has the residues Glu-
109, Glu-129, and Gly-137, two of which are negative residues, a pattern which is
conserved across the hydratases of this family. The biochemical significance of these

three positions was investigated in detail for the sequences in question.
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3.3 Results

SSNs have been shown to be valuable for the functional analysis and annotation of
enzymes and for the visual analysis of enzyme families. We therefore investigated the
utility of CSNs for these applications in a comparative analysis with SSNs. First,
the similarity of the network topology of between CSNs and SSNs was assessed, with
an emphasis on how suitable their network structures are for the prediction of en-
zyme substrate specificity. Then, novel functional linkages revealed by the CSN were

explored, particularly at low sequence identity thresholds.

3.3.1 Comparative analysis of CSN topology for the predic-
tion of enzyme substrate specificity

As described in section 3.2.7, optimal thresholds for constructing SSNs and CSNs were
chosen to provide a balance of precision and recall measures and were derived from

label propagation experiments.

For the Trans241 dataset, the optimal thresholds were found to be 0.34 (or 34% se-
quence identity) for the SSN and 0.30 for the CSN. For the Trans986 dataset, the
optimal thresholds were found to be 0.35 for the SSN and 0.52 for the CSN. For the
Trans986 dataset, the optimal thresholds were found to be 0.35 for the SSN and 0.52
for the CSN. For the SDR142 dataset, the thresholds were 0.33 for the SSN and 0.45 for
the CSN. Networks with these thresholds were considered to be optimally predictive

for both families, based on currently available functional annotation.

The first row of Table 3.2 shows the number of edges in the CSN and SSN networks
for the Trans241, Trans986, and SDR142 datasets. The optimal SSN networks had
significantly more edges than the CSN;, for all three datasets. The second row contains
the number of connected components in each network. As edgeless nodes technically
count as individual components, but are uninformative for this purpose, the edgeless
nodes were subtracted. The resulting values are shown in parentheses. The last
row of the Table 3.2 shows the number of edgeless nodes in each network. In each
comparison the CSN also has fewer edgeless nodes than the SSN. As the optimal CSN

has significantly fewer edges than the SSN, the fact that it also has fewer edgeless
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Table 3.2: General network metrics for the optimal SSN and CSN for the Trans241,
Trans986, and SDR142 datasests.

Dataset Trans241 Trans986 SDR142
Network (Threshold) SSN (0.34) CSN (0.30) SSN (0.35) CSN (0.52) SSN (0.33) CSN (0.45)
Edge Num 8,605 6,677 51043 43991 725 537
Component Num (- Edgeless) 11(7) 6 (5) 26 (14) 18 (10) 41 (18) 38 (21)
Edgeless Node Num 4 1 12 8 23 17

nodes could demonstrate an increased robustness to change in thresholds.

Table 3.3 shows the distribution of EC coverage across the network components, as
measured by the WAMCC value. The WAMCC value was computed for both the SSN
and CSN. Table 3.3 also shows the number of EC labels covered by all of the networks
and the intersection network. Disregarding edgeless nodes, both networks possess a
similar number of components (Table 3.2), and a large overlap in the edges present
exists as can be seen in the number of edges in the intersection network e.g. 94% of
the Trans241 CSN edges exist in the SSN, and 73% of the Trans241 SSN edges exist
in the CSN; 66% of the Trans986 CSN edges exist in the SSN, and 57% of the SSN
edges exist in the CSN; 80% of the SDR142 CSN edges exist in the SSN, and 74% of
the SSN edges exist in the CSN. This indicates that while the SSNs and CSNs may

differ in detail, they do share a core network structure.

functional topology. For the Trans986 networks, the WAMCC values are similarly
high, with values of 93.647 for the SSN and 93.865 for the CSN. The intersection
network of this dataset also contains a significant amount of the total enzyme classes,
with 24 of the 27 EC numbers being covered. Finally, for the SDR142 networks, the
WAMCC values are similar: 53.283 for the SSN, and 54.434 for the CSN. Twenty-
four of the 32 EC labels existed in the intersection network, showing that the level of
agreement, between the two networks encompass a large proportion of the functional
diversity.

Table 3.3: Functional topology metrics for the optimal SSN and CSN for both the

Trans241, Trans986, and SDR142 datasets. The metrics were also produced for the
intersection of the two networks (SSNNCSN).

Trans241 Trans986 SDR142
Edges Covered ECs WAMCC Edges Covered ECs WAMCC Edges Covered ECs WAMCC
SSN 8,605 22 97.086 51043 24 93.647 725 24 53.283
CSN 6,677 25 99.174 43991 25 93.865 537 27 54.434
SSNNCSN 6,343 18 - 29122 24 - 429 24 -
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Table 3.4: Label Propagation experiment results for the optimal SSN and CSN for both
the Trans241 and SDR142 datasets. To produce the precision and recall metrics, true
positives are considered to occur when a correct annotation is predicted, false positives
when an incorrect annotation is predicted, and false negatives when no annotation is
predicted.

Dataset Trans241 Trans986 SDR142
Network (Threshold) SSN (0.34) CSN (0.3) SSN (0.35) CSN (0.52) SSN (0.33) CSN (0.45)
Precision 0.934 0.918 0.985 0.950 0.725 0.753
Recall 0.987 0.995 0.984 0.989 0.973 0.982

In order to compare the predictive value of SSNs and CSNs for annotation of enzyme
substrate specificities, the label-propagation approach described in section 3.2.7 was
applied to the networks to test the recovery of known annotations of the datasets
under study. For the Trans241 dataset, the SSN showed slightly higher precision, and
the CSN slightly higher recall (Table 3.4). While this result indicates that the two
networks performed similarly in recovering the majority of the annotations, in some

cases the SSNs failed to assign substrate specificities to several enzyme classes.

For example, of the three neamine transaminases (E.C. 2.6.1.93) in Trans241 - Q6L741,
Q5H3U08, and Q4H4F5 - only the latter two were connected into a single component
in the SSN, leaving one edgeless (Figure 3.6). Ideally, a functional network should
connect all three together as they share the same enzymatic function, but the SSN
fails to do this, leaving one of the nodes edgeless. In the CSN, however, all three were
fully connected into a single component. Whilst the sequence similarity threshold
could be lowered in order to add these connections to the SSN, it was necessary to
lower the threshold to 29%, which caused an overall reduction in label propagation
precision from 0.934 to 0.851. Label propagation tests the potential predictive power
of these networks, and these results indicate that for the Trans241 dataset using the
optimal CSN and SSN thresholds, the structure of the CSN could cover more of the

substrate specificity distribution without sacrificing precision.

For the Trans986 dataset, the precision and recall values are similarly high for both
the SSN and CSN (Figure 3.7). The SSN has a slightly higher precision, at 0.985,
compared to the CSN which has a precision of 0.950. The recall is slightly higher
for the CSN at 0.989, compared to the SSN with a recall of 0.984. Differences in

precision is a harder metric to assess due to the possibility of missing annotation, but

- 03 -



Chapter 3: Functional analysis of enzyme families using coevolution similarity
networks

the significantly high values observed for both the SSN and CSN is evidence that the
topologies of both network types are well suited for the purpose of recovering functional

annotation of enzyme families.

For the SDR142 dataset, the optimal CSN had higher precision and recall than the
SSN, as shown in Table 3.4. The CSN, which was smaller than the SSN for this
family, included three more EC labels than the SSN (Table 3.3). These annotations
are 1.1.1.140, 1.1.1.395, and 1.1.1.56, and apply to four proteins: P05707 and P37079;
P07914, and P00335. These proteins are not connected by edges in the SSN (Figure
3.8), and were therefore not annotated during label propagation. Lowering the SSN
threshold to 30% recovered the annotations of these enzymes, but doing so significantly
lowered the precision, from 0.725 to 0.62. P00335 is connected to a cluster of nodes
with the incomplete EC number 1.-.-.-; an observation which might imply that these
proteins share a similar function to that of P00335. These data therefore show that the
optimal CSN for the SDR142 dataset was able to connect a larger proportion of the

enzymes in the class distribution than the SSN, without overly sacrificing precision.

3.3.2 The use of CSNs to make putative structural connec-
tions at low sequence identity

The tertiary structures were retrieved, where available on Swiss-Prot, for the Trans986
dataset, which numbered 32 structures. An all-vs-all comparison of their structures
was performed using TM-align. A heatmap of the resulting TM-scores can be seen
in Figure 3.9. This figure also shows the subgraph of these 32 sequences for both the
optimal SSN and CSN.

In the CSN, there is a densely connected component that does not exist in the SSN
(highlighted in blue in Figure 3.7). This component contains 69 nodes, and is therefore
named Comp69 henceforth. When the 32 nodes with available tertiary structures are
extracted into a subgraph, there are 25 edges between these nine Comp69 nodes of this
subgraph in the CSN, while there are only 7 in the SSN. From looking at the position
of these sequences in TM-score heatmap, it is clear that they were clustered together
as a clade in the dendrogram, and that indeed they have higher TM-scores within this

connected component compared to scores between other groups.
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Many of the 25 edges are not present in the SSN; this fact implies that the CSN
has connected sequences with relatively low sequence identity but high similarity in
tertiary structure. Evidence for this observation can be seen in Figure 3.10, with
the superposition of the structures of POWPZ5 and Q02635 produced by TM-align.
These two sequences share only 29.4% sequence identity, and yet have a high TM-
score of 0.899. These structures are therefore very similar, especially relative to their
sequence identity. When the same comparison is performed between P0OA959 and
Q02635 the effect of tertiary similarity, and low sequence identity, is more pronounced:
the sequence identity is even lower at 26.6%, with the TM-score being slightly higher
at 0.909.

The same analysis was performed on the Croto99 dataset, which had 18 sequences
with available tertiary structures. Q5LLWG6 is a methylthioacryloyl-CoA hydratase
(4.2.1.155) that is left edgeless in the SSN until around 30% sequence identity (Figure
3.11). The CSN however, places it in a cluster with other hydratases, mainly enoyl-
CoA hydratases like P76082, but also crotonyl-CoA hydratases like P52046. All three
of these enzymes have tertiary structures available, and Q5LLW6 has TM-scores of
0.9 when compared with P52046 and 0.86 when compared with P76082. The sequence
identity of Q5LLW6 with these enzymes is 29.10% for P52046 and 30% for P76082.

Given that much of the power of coevolving residues lies in their strong correlation
with residues being in physical contact, these results provide evidence that CSNs are
able to connect enzymes of low sequence identity but high structural similarity. This
means that not only are CSNs sensitive to structurally similar proteins, it is likely this
sensitivity comes from the CSN using the inherent structural knowledge contained in
coevolving residues when making its connections. Given the importance of tertiary
structure for the function of enzymes, the ability to make structural connections at
the twilight zone of sequence identity, it is proposed that the use of CSNs for enzyme
family analysis has the potential for the discovery of similarly functioning enzymes

that are further apart on the evolutionary scale.
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Figure 3.12: A segment of a multiple sequence alignment of eight Trans986 enzymes
connected by the CSN into a connected component (Comp69), with the Lys-12 position
highlighted (using Q02635 as reference). Lys-12 is an important residue for prephenate
aminotransferase function, and has been shown to conservatively be substituted by Arn
or Gln.

3.3.3 The use of CSNs to indicate putative functional con-
nections at low sequence identity

It was therefore of interest to try and find indications of functional similarity among
these structural connections. In the Trans986 dataset, Q56232 and Q02635 were both
confirmed to be prephenate aminotransferases (2.6.1.78 and 2.6.1.79, respectively),
with a significantly similar tertiary structure (TM-score of 0.941). As shown previously,
both POA959 and P9WPZ5 showed a high structural similarity to Q02635 (Figure
3.10), and are both in the Comp69 component (Figure 3.9). According to both Swiss-
Prot and the literature, there are five functionally important residues for prephenate
aminotransferase activity [152]. Taking Q02635 as reference, these are: Lys-12, Gly-
39, Trp-125, Asn-175, and Arg0375. Lys-12 is a particularly important residue for
this substrate, and has also been substituted by Arg or Gln in known prephenate
aminotransferases. Eight of the nine sequences of the Comp69 nodes with available
tertiary structures have at least the latter four resides conserved, with varying residues
at the Lys-12 position. Figure 3.12 shows an MSA of these eight sequences at the Lys-
12 position.

This alignment shows that P9WPZ5 does indeed have an Arg at that position. These
similarities at functionally important residues, combined with the overall tertiary struc-
ture similarity to known prephenate aminotransferases, might indicate that POWPZ5
could also share prephenate aminotransferase activity. It would be interesting to con-

firm the activity of P9WPZ5 in the laboratory, as currently its only known function is
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Table 3.5: Difference in residue conservation values at the five positions important
for prephenate aminotransferase function (using Q02635 as reference) between the
Comp69 sequences of Trans986 and the dataset as a whole. There are several major
differences in residue conservation between these two groupings.

Lys-12 Gly-39 Trp-125 Asn-175 Arg-375
Pro (35%) Gly (90%)  Tyr (61%)  Asn (100%) Arg (100%)
Comp69 Lys (19%) Ala (10%)  Trp (35%)
Thr (10%) Phe (4%)

Lys (17%) Asn (80%) Tyr (34.7%) Asn (59.1%) Arg (100%)
Al Arg (13%) CGly (16%) Phe (39.1%)  Ser (34%)
Thr (10%) Met (2.8%) Asp (22.9%) Ala (6.5%)

as a succinyldiaminopimelate transaminase (2.6.1.17).

P0A959 has the same residues at these positions as POWPZ5 except for the important
Lys-12 position, where it has a Glu (Figure 3.12). Glu has not yet been confirmed
as a residue that grants prephenate aminotransferase function, however some known
enzymes of this function do have a Gln instead [152]. It is known that a Gln-Glu
substitution is often conservative, so there is a possibility that Glu might fulfil the
same role in the catalysis of the reaction. This possibility is further enhanced by
the strong tertiary structure similarity between POA959 and other known prephrenate

aminotransferases like Q02635 (Figure 3.10).

All of the other Comp69 sequences have residues at Lys-12 that make them unlikely to
have prephrenate substrate affinity, as three of them contain a Pro which is generally
unreactive, and the final one contains a Glycine which has been shown to make these
enzymes unable to perform this reaction [152]. However, given the clear connection in
terms of tertiary structure similarity, there is even the possibility of currently unanno-
tated functions that some these sequences might share currently unknown enzymatic

functions.

Further indications of this possibly new annotation are provided by considering the
residue makeup at the five functionally-important positions for the sequences within
the entire Comp69 component compared to the rest of the Trans986 dataset. An MSA
was generated for the Comp69 sequences to examine the conservation patterns for the

five functionally important residues. This resulted in the residue distributions shown
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Figure 3.13: Multiple sequence alignment (MSA) of three nodes in Croto99 that are
known hydratases - Q5LLW6 is a methylthioacryloyl-CoA hydratase, P76082 is a enoyl-
CoA hydratase, and P52046 is crotonyl-CoA hydratase. The CSN connected all three
of these nodes, indicating a potential sharing of substrate function. The three positions
of the MSA pointed at with arrows are the three key residues that decide the type
of reaction a crotonase catalyses. For hydratases, two negatively charged residues,
usually glutamates, are necessary.

in Table 3.5.

There is a clear difference in the residue conservation at these positions between the
Comp69 sequences and the total Trans986 dataset, with Arg-375 being the only one
that is 100% conserved in both. At Lys-12, while the proportion of Lys and Thr is
similar in both sets, Pro makes up a significant proportion of the residue types at this
position, with over a third of the component sequences having a proline compared to
just 8.8% of the dataset as a whole. The difference at Gly-39 is even more stark - while
90% of the component sequences have a glycine, only 16% of the total datset does, with
asparagine instead being the dominant conserved residue with 80% conservation. Trp-
125 has a strong aromatic hydrophobic residue concentration in both sets, although
there is a clear preference for tyrosine in the component sequences. Finally, while
the proportion of asparagine is high at Asn-175 in both sets, it is universal to the
Comp69 sequences while only 59.1% of the total dataset have an asparagine. While
assertions of functional similarity are not certain without experimental evidence, these
large differences in residue makeup between the Comp69 enzymes and the full dataset

are strong pointers of such assertions.

More evidence of functional connections at low identity being made by the CSN exists
in the Croto99 dataset. As mentioned earlier, the Croto99 CSN was sensitive enough
to recover low sequence identity structural relationships between Q5LLW6 and other
crotonases like P52046 and P76082 (Figures 3.10, 3.11). The conservation of the three

functionally important residues reported by Grishin et al (2012), was observed and
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shown in Figure 3.13. All three of these sequences have the residues characteristic
of hydratases at the three functionally important positions: Glu, Glu, and Gly, rein-
forcing the hypothesis that they may be functionally similar enzymes. This linkage is
confirmed by the literature [154], as QSLLW6 does indeed catalyse the hydration of
crotonyl-CoA as a secondary substrate, P52046’s primary substrate. This functional
linkage is evidence of the CSN connecting enzymes of low sequence similarity that

share not just tertiary structure, but also catalytic function.

Given that Q5LLWG6 and P52046 share only 29.10% sequence identity, have a high
TM-score of 0.9, (Figure 3.10) and there is experimental evidence supporting this
functional similarity, these results further illustrate the value of CSNs for establishing
putative functional similarity between two enzymes of low sequence identity, down to

the substrate specificity level.

3.3.4 The identification of putative evolutionary connections
at low sequence identity using CSNs

A phylogenetic tree was produced for the Trans986 dataset (Figure 3.14), with an em-
phasis on the Comp69 component. The trees were generated with default parameters
using FastTree [155], which produces approximately-maximum-likelihood phylogenetic
trees. The tree was then visualised using IcyTree [156]. The structure of the phyloge-
netic tree was compared to the layout of the Comp69 sequences on the optimal SSN,
which is split into 5 different connected components (Figure 3.14). These components
are referred to as C1, C2, C3, C4, and C5. It is also made up of six edgeless nodes,

which are referred to as NC (no-component).

The Comp69 sequences are very close to each other on the tree, especially relative
to the evolutionary timeline of the total dataset, and they are separated into five
recognisable subclades - the same number of components in the SSN. Indeed, the C2,
C3, C4, and C5 clades all match exactly with their respective components in the SSN,
while the C1 component has just one node outside of the clade all others belong to.
The edgeless nodes are spread all around this subtree, but are still located overall in

this space of the tree, with at least three of them forming their own clade next to the

C4 clade.
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The Comp69 sequences are therefore clearly also close phylogenetically. Combined
with the proven tertiary structure similarity and the interesting aforementioned residue
frequency at important positions, there is strong evidence that the CSN connecting
all of these 69 sequences into a single densely connected component has confident
validity and is likely worth further investigation experimentally. It is clear that the
CSN is able, in this example, to detect sensitive relationships between sequences that

are structural, functional, and even evolutionary in nature, than the SSN.

3.3.5 The use of CSNs to reveal inconsistencies in func-
tizonal annotation

The optimization of SSN and CSN thresholds for the Croto99 dataset and its anno-
tations generated networks in which the SSN significantly outperformed the CSN for
both precision and recall. For example, at 33% identity, the SSN had a precision of
0.964 and a recall of 0.973 after label propagation. The CSN at a threshold of 0.25,
however, had a precision of 0.883 and a recall of 0.902; largely worse results than the

SSN based on these metrics.

Further investigation showed that the CSN could not meaningfully cluster the 27 nodes
labelled as enoyl-CoA hydratase (4.2.1.17) at any threshold, but separated them into
multiple different clusters. In contrast, the SSN could reliably propagate the 4.2.1.17
label to these nodes (Figure 3.11).

Because this method of threshold optimisation depends on accurate annotation, further
investigation on the level of evidence supporting the annotation of these 27 enzymes
was performed. On Swiss-Prot, the annotation of only two of these enzymes is sup-
ported by experimental evidence, while the other 25 are annotated based on similarity,
and have the protein name "probable enoyl-CoA hydratase”, meaning this annotation

might be unreliable.

The possibility that the annotation of these enzymes could be incorrect was there-
fore explored. As mentioned in section 3.2.9, the tertiary structures of 18 Croto99
enzymes were retrieved for an all-vs-all comparison. While the enzymes represented
in Croto99’s supposedly optimal SSN share a high degree of tertiary structure simi-

larity, as indicated by their comparative TM-scores, having a median of 0.92, there

- 74 -



Chapter 3: Functional analysis of enzyme families using coevolution similarity
networks

P76082 POWNP1

TM-score: 0.74
SeqlD: 34%

Figure 3.15: SSN at 33% identity for the 18 sequences of Croto99 that have tertiary
structures available. Nodes are coloured based on EC number. The nodes in the black
box represent P76082 and P9WNP1. The overlapping of their tertiary structures can
be seen on the right.

was one outlier edge with a TM-score under 0.75 between P76082 and POWNP1, both
of which are reportedly enoyl-CoA hydratases (4.2.1.17) (Figure 3.15). These two en-
zymes share 34% sequence identity, and yet, as is evident in Figure 3.15, there is a
significant difference in the orientation of multiple secondary structures, which reduces

the confidence in some of the functional linkages of this SSN.

Since the type of reaction undergone by a crotonase depends on the number of nega-
tively charged residues in three specific positions, it would be expected that all 27 of
these putative hydratases would have two negatively charged residues [153], which was
examined by looking at an alignment of the sequences. It is apparent that this required

biochemical profile for a hydratase is not present for 19 of the sequences (Figure 3.16).

For example, POWNP1 has only one negatively-charged residue at any of these posi-
tions, an aspartate at the last position. Others, like POWNN5 and Q7U004, do not
have any negatively-charged residues at those positions. This result puts into doubt
many of the 4.2.1.17 annotations in Croto99, and was made possible through the ad-
dition of a complementary view of the dataset by using CSNs. CSNs could therefore
also be used for the verification of currently existing annotations by either confirm-
ing existing linkages revealed with sequence similarity, or by pointing out potential

inconsistencies.
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Figure 3.16: Multiple sequence alignment (MSA) of the 27 nodes in Croto99 labelled
as 4.2.1.17 (enoyl-CoA hydratase). The three positions of the MSA indicated are
the three key residues that decide the type of reaction a crotonase catalyses. For
hydratases, two negatively charged residues, usually glutamates, are necessary. Only
8 out of the 27 sequences satisfy this requirement, even though they are all labeled as
hydratases.

This complementarity applies in both directions, with SSNs also being useful for con-
firming assertions made by CSNs . For example, in the CSN for Croto99, Q9XB60 and
069762 were connected, and yet their TM-score was 0.79 with a heavy mismatch in
active site biochemistry. These two sequences are not connected in the SSN, as their
sequence identity is 22%. This finding further reinforces the idea that the use of the
two complementary methods can help provide a better understanding of a dataset,

rather than considering the approaches as two competing methods.
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3.4 Discussion and conclusions

With the rapidly increasing number of protein sequences in public repositories, new
approaches for analysing and annotating protein families at increased scale are im-
portant to fully understand the functional and evolutionary aspects of enzymes. Such
approaches would be especially helpful for the selection process of enzymes to be char-
acterised in wvitro. To this end, SSNs are increasingly being used for the inspection
and functional analysis of protein families. Whilst not as powerful as a phylogenetic
analysis for elucidating the track of evolution, the depiction of the functional relation-
ships between proteins in a family as a network allows the visualisation and analysis
of trends and groupings within large families [74, 136]. Representation of protein fam-
ilies as networks also makes their data accessible to common graph-based analytical
approaches, metrics and tools such as cluster analysis. SSNs have also been applied
to the functional analysis of enzyme protein families, where they can help resolve
substructure in a family and be used to assert functional equivalence. Whilst useful,
SSNs have limitations related to the use of sequence identity as proxy for homology,
as described in section 2.2.3. There is therefore a need for alternate approaches for

the construction of protein similarity networks.

In this work, coevolution similarity networks (CSNs) are proposed as a new approach
for building networks of enzyme protein families, that can help reveal family structure
and functional relationships, but are not based directly on sequence similarity. As
residues that coevolve do so under evolutionary pressure to maintain the stability of
protein structure and function [145], similarity networks built out of a family-wide
comparison of coevolution patterns are likely to display the important structural and
functional relationships for that family. Specifically, the applicability of CSNs down to

the level of substrate specificity was explored, with a particular emphasis on linkages

existing at low sequence identity thresholds.

3.4.1 Strengths and limitations of CSNs

The results presented here show that CSNs offer another useful approach for the anal-

ysis and annotation of large protein families. CSNs and SSNs generally agree on the
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overall network and functional topology of the protein families. The majority of en-
zyme classes are distributed similarly in both types of network, and both network
types performed similarly in the reassignment of annotation to nodes in the label
propagation experiments. However, in this work CSNs were shown, in some cases,
to be able to reveal interesting linkages that exist at lower sequence identity thresh-
olds. CSNs were able to connect enzymes with highly similar tertiary structures yet
sequence identities deep into the twilight zone of homology, down to 26.5% identity
(Figure 3.10), hinting at possible shared function. These revealed connections at lower
identity thresholds are likely due to the inherent structural information contained in

residue-residue coevolution data.

It was also shown that many of these structural connections exhibit residue conser-
vation at positions known to be functionally important at an enzyme subclass level
(Figures 3.12-3.13). These connections were also shown to be between phylogeneti-
cally close enzymes, despite the lower sequence identity (Figure 3.14). Complementing
these features, CSNs were shown to also help identify clear discrepancies and formulate

hypotheses about the correctness of existing enzyme annotation (Figures 3.15- 3.16).

Finally, these described strengths of the CSN method are also valuable in the context
of a lack of dependence on sequence identity as the primary metric used to group up
enzymes of the same putative catalytic function. As was described in section 2.2.3
of the Background, this dependence is a known limitation of current approaches for
generating diverse enzyme panels, and approaches tackling it are therefore valuable.
CSNs provide a promising contribution that was shown in this chapter to provide
credible hypotheses of functional groupings in an enzyme family without a reliance
on sequence identity, but rather through a comparison of residue-residue coevolution

patterns.

A disadvantage of CSNs is that they are less easily constructed than SSNs; they
are computationally more complex to produce, and coevolution is less intuitive to
interpret directly than sequence similarity. Also, CSN network construction currently
uses arbitrary values for two parameters - the size N of residue-residue coevolution
networks, and the filter F that discards coevolution pairs common to a dataset - these

parameters could be optimised and maybe even improve the performance of CSNs.
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Also, much like the SSN, edges made in the CSN will not always be accurate for
the purpose of predicting enzyme function down to substrate specificity, as shown in

section 3.3.5.

Another limitation of this work is that unlike SSNs, CSN thresholds are not consistent
in terms of significance. Sequence identity thresholds, while rife with exceptions, are
easier to formulate correlations and rules about the likelihood of homology at certain
thresholds, with 40% often being used as an arbitrary but provenly successful guideline.
Indeed, the optimal thresholds used in this work for the Trans241, Trans986, and
SDR142 datasets were 0.34, 0.35, and 0.33, respectively. For the CSN however, the
optimal thresholds were 0.3, 0.52, and 0.45 for the same datasets respectively. The
reason for this difference is unclear, but is likely to be related to the higher levels of
parametrisation of CSNs compared to SSNs, in particular due to the use of unoptimised

values for said parameters.

3.4.2 A de novo complementary similarity network approach
to the functional analysis of diverse enzyme families

The datasets used in this work were all annotated on Swiss-Prot. However, as proven
by the analysis of the Croto99 dataset, that annotation on public databases can some-
times be faulty, even when the entries are curated. In fact, a recent study by Bagheri

and coworkers identified up to two million taxonomically misclassified protein entries

in the NR database [134].

As much of the sequence space of enzyme families is unexplored, and annotations can
be wrong even in curated databases, further research is needed to propagate annota-
tions to novel proteins. In 2021, work by Sanchez-Pulido and Ponting showed that the
prediction of tertiary structures using coevolution data can help at "further extending
the detection horizon of homology” when complemented by sequence-homology based
techniques [2]. As is made evident by the novel putative connections the CSN helped
reveal in this work in combination with SSNs, the analysis of enzyme families would
indeed benefit from a complementary approach combining both SSNs and CSNs, which

is described in this section.

As both methods have already been proven to be useful tools for making predictions on
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the functional linkages present in an enzyme family, using both methods side-by-side
would allow for more confident assigning of annotation to novel sequences. The likely
misannotation present in the Croto99 dataset is a major example of how using both
SSNs and CSNs in a complementary approach can help confirm hypotheses about the

function of enzymes.

Also, in this work ’optimal’ thresholds were computed for the similarity networks using
the available functional annotation and label propagation. However, for a dataset with
minimal or no such annotation, this process is impossible. However, another benefit
of using both networks as complements lies in the overall network topology similar-
ity that SSNs and CSNs were proven to share in this work. The expected topology
similarity means one could iterate multiple different thresholds for both network types
and perform graph matching to identify which thresholds in the CSN are most equiv-
alent to thresholds in the SSN. As the assumption is that annotation is lacking in this
scenario, one would need to use multiple such equivalent-threshold pairs for the best

result.

Undoubtedly, both SSNs and CSNs are useful tools for making predictions on the
potential profile of novel sequences, but it is through the use of both methods side
by side that the best understanding of an enzyme family might therefore be gained.
The different meaningful linkages revealed by the approach described in this work are
evidence of its viability for helping guide the selection process for more diverse enzyme

panels to test in the laboratory.

3.4.3 Future work

There are four main avenues for further developing and improving the CSN method.
First, this work did not delve into how optimisation of the parameters F and N would
impact the quality of the resulting CSNs. It is therefore possible that whilst the
quality of the CSNs at the arbitrary parameter values is undoubtedly high, parameter
optimisation might further improve the quality of the linkages created by the network
method. This optimisation of the parameters could also lead to a more consistent CSN

range of optimal thresholds, for which rules and correlations could then be constructed.
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Second, the mapping performed in section 3.2.4 is done using an MSA of the dataset
from which ECPs are then extracted and filtered out using F. However, it would be
interesting to see the effect of swapping to an ECP mapping that is based on pairwise
alignments instead of an MSA, which is likely to be more precise as a method of

associating two coevolving pairs as equivalent.

Third, while in section 3.2.5 clique-based comparisons of coevolution patterns between
sequences was performed to compute the coevolution similarity score because of the
findings of Lee and coworkers [144], other graph-comparison algorithms could work too.
For example, it would be interesting to see how a comparison of communities produced
using the Louvain method [157] would work. Relatedly, the transformation of clique
similarity scores to Jaccard similarity scores is another area where a different metric
could potentially work better, such as a weighted version of the Jaccard similarity

score based on clique size.

Finally, the largest computational bottleneck for producing CSNs is the production
of the residue-residue coevolution matric using CCMPred in section 3.2.3. While it
is possible to speed up the process using powerful graphics processing unit (GPU)
hardware, such resources were not accessible for this work. Such hardware would be
particularly necessary to build CSNs for a much wider range of enzyme families. There
is therefore potential for work on a fast mode for producing CSNs that replaces DCA-
based methods for producing coevolution data with faster but less accurate methods

like mutual information [158].

3.4.4 Conclusions

The features of CSNs could make them a useful tool in the functional analysis of
enzyme families, especially for the goal of revealing the structural and functional di-
versity of a particular dataset. Specifically, CSNs can be used to correctly identify
groups of similarly-functioning enzyme sequences, and to further validate currently
existing functional annotation.The combination of the proven affinity CSNs have for
revealing functional linkages at low sequence identity, with their notable disadvantages,
means their optimal usage is as a complement to other network-based methods like

SSNs. It is also important to consider a range of different cutoff thresholds in both
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types of networks to gain an accurate view of the enzyme family structure.

Importantly, CSNs help tackle one of the major limitations described in section 2.2.3
by not relying on raw sequence identity to ascertain functional similarity between
enzymes. The use of CSNs can therefore provide another method for the enzyme
family functional analysis toolbox, which can then be used to help select and refine

panels of enzymes.
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4.1 Introduction

The characterisation of the catalytic function of enzymes in the laboratory is currently
the best means of increasing the portfolio of available biocatalysts to be used in in-
dustry. As described in section 2.2.2 of the Background, the generation of enzyme
family panels of high catalytic diversity i.e. which can be applied to various chemical
transformations and substrates, is a key step in optimising the enzyme characterisa-
tion process. Studies that seek to experimentally reveal novel biocatalyst space in an
enzyme family generate panels using selection pipelines, whereby a subset of putative
enzymes are selected from a larger set in a way that optimises the amount of catalytic

diversity present [27, 32].

Such selection pipelines often necessitate manual analysis of sequence similarity data
and structures like phylogenetic trees, with some using non-optimised sampling meth-
ods like random selection from clades [32]. While the analysis of enzyme families using
methods like SSNs and phylogenetics has been proven to create more diverse panels,
their use has known limitations. As described in section 2.2.3 of the Background,
these limitations include a dependence on sequence identity, a requirement for ex-
pert knowledge about the enzyme family of interest, and a necessary time-consuming

manual interpretation bottleneck.

The CSN method of performing functional analyses of enzyme families described in
Chapter 3 tackles the first of these limitations, as described in section 3.4.1. However,
CSNs, much like SSNs and phylogenetic trees, still require enzyme-family specific
knowledge for an optimal analysis of their structures, which might not yet exist for
families that are not well studied. This is especially true for the purpose of analysing
enzyme families down to the level of substrate specificity, as SSNs and CSNs require
specific and precise annotation to evaluate the different levels of enzyme class cluster-
ing. It is therefore not trivial to use CSNs on their own as a way of selecting candidate
enzymes to be tested in the laboratory. Finally, CSNs, just like SSNs and phylogenetic
trees, currently require difficult and time-consuming manual interpretation to increase

the chances of choosing sequences that maximise knowledge gain in the laboratory.

Many of these limitations are further amplified the less knowledge exists about the en-
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zymes of a dataset. Therefore, a method that can automatically sample enzymes into
subsets that are catalytically diverse would be valuable. Such a method would neither
rely on the existence of in-depth functional annotation, nor would it require a man-
ual selection process to select enzymes. Moreover, these approaches can help ensure
that more diverse panels of enzymes are taken into the laboratory for characterisation

assays.

The method explored in this chapter took inspiration from a classic computer science
optimisation problem, called the maximum diversity problem (MDP). This problem
tries to solve for a set of objects the subset of K elements with the maximum diversity
(or distance) given some pairwise distance metric between all chosen items [159, 160].
Practically, algorithms that try to solve the MDP take as inputs a square matrix
containing the pairwise distances for all pairs of items and a number, K, for the size
of the maximally diverse solution subset, and the output is simply the subset, U, of
size K that is maximally diverse. It is an NP-hard combinatorial problem to solve
[161], meaning that heuristic algorithms are often used to reach good solutions faster,

as described in section 2.4 of the Background.

4.1.1 Algorithms for solving the MDP

Algorithms solve the MDP as a maximisation problem, where an objective function
is maximised for the solution subset U and non-solution subset Z. Mathematically,

solutions to the MDP are formulated as the following equation:

S = (%1, %9, ...,x1), where x; = (1)

A solution S produced by an MDP solver is simply a binary vector of size L, where L
is the size of the superset to sample from, indices have a value of 1 for items included
in the solution subset U, and a value of 0 if included in the non-solution subset Z.
Specifically, for a subset size of K, a solution will contain K ones and L — K zeros,
where K is the size of the solution subset U, and L — K is the size of the non-solution

subset Z.
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Mathematically, the objective function that is maximised is formulated as the following

equation:

|M| | M]
f(x) :Z Z (1 —s;5), where i,5 € U (2)
i=1 j=i+1

Where M is an identity matrix for some superset of items, and s;; is the identity of
the items ¢ and j. The term (1 — s;;) therefore represents the distance between two
items in U rather than the identity, meaning the objective function being maximised

is the sum of all distances in the subset.

There are many optimisation algorithms and paradigms that solve the MDP efficiently.
For example, simulated annealing has been applied to the MDP [162], where random
solutions are constantly generated as modifications of the current state at each itera-
tion, and approved based on either performance or on a ’temperature’ based probability
that goes down as the iterations progress. Evolutionary algorithms, such as memetic
algorithms [163] have also been used to solve the MDP, where randomly generated
solutions can be combined in 'crossover operations’, akin to chromosomal crossover in
genetics. One other such heuristic paradigm that efficiently solves the MDP is tabu
search, which involves features like short-term memory of recently visited solutions to
evade local optima [160]. Tabu search algorithms generally solve the MDP as a set-
swapping maximisation problem, where the objective function is maximised for the
solution subset U through iterative swapping of items between it and the non-solution
subset Z. This meta-heuristic method is known to be amongst the highest performing

algorithms for solving the MDP [160].

The signature feature of tabu search algorithms for set-swapping implementations is
to make recent swap moves ’illegal moves’ for a short period, or 'tabu’, unless if a
move considered tabu reaches what is called the ’aspiration criterion’. This short-
term memory provided by tabu moves helps move solutions away from local optima.
For most tabu search implementations that solve the MDP, the aspiration criterion is
simply if the objective function of a solution reached through a tabu move is higher

than the current best solution.
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4.1.2 Awm of this work

Many powerful algorithms that solve the MDP exist [103, 159, 160, 164, 165], but to
the best of the knowledge of the author these algorithms have never been applied to
the bioinformatics problem of de novo diverse sampling of enzyme sequences. One way
of solving this problem would be to reframe it using the MDP : instead of analysing
individual enzymes as potentially novel solutions, subsets of enzymes as a whole are
considered as individual solutions, and their diversity is assessed based on how distant

the sequences of the subset are from each other using some sequence identity metric.

It is known that proteins, enzymes included, are likely to be more similar in func-
tion and properties the more similar their sequences are. Therefore, enzyme subsets
sampled by solving the MDP for a dataset would contain a high level of relative se-
quence diversity, and by proxy, catalytic diversity. Such a method would not require
in-depth annotation about a family, and would therefore be applicable to any dataset
and enzyme family independent of the level of existing knowledge. The MDP method
would also provide a way of automatically selecting diverse panels of enzymes to be
characterised in the laboratory, as such a diverse subset is simply the output of any

algorithm that solves the MDP.

To that end, the main aim of the research described in this chapter was to explore the
applicability of sampling from datasets of enzyme sequences by solving the MDP to
automatically generate functionally diverse subsets. In this work, the MDP was solved

using two implemented algorithms:

e A greedy heuristic algorithm called MAXMIN [164].

e A tabu search algorithm, heavily inspired by the work of Wang and co-workers

[103].

Three different families with high known functional diversity and annotation were used
as case studies for MDP-based sampling, and the diversity of their respective subset

solutions were assessed.
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4.2 Methods

4.2.1 The greedy MAXMIN algorithm

The greedy heuristic algorithm implemented is called MAXMIN [164]. The algorithm
functions by iteratively making a greedy decision about which item to add to the

solution set (Algorithm 2).

This algorithm is initialised by choosing the two sequences that have the highest se-
quence distance (and therefore lowest sequence identity) in M. Then, until the solution
vector U reaches the required size K, a 'maxmin’ greedy decision is made to add the
next item, which first involves finding for every sequence in the non-solution subset Z
the minimum distance to the sequences in U. Finally, of all such minimum distances,

the sequence with the maximum distance is greedily chosen to be added to U.

Data: square identity matrix M, subset size K
Result: solution vector U
U = initialisation(M);
while len(S) /= K do
nextltem = chooseMaxMinltem(M, U);
addItem(nextItem, U);
end

return U,
Algorithm 2: Greedy MAXMIN algorithm pseudocode

The heuristic nature of this algorithm lies in the ranking of the next item to be added
using the minimum distance to the current state of the solution subset U. While it
may sound counterproductive to rank based on a minimal distance when the objective
is to maximise distance, it means each item is ranked based on its 'worst’ contribution
to the solution subset. This feature helps avoid scenarios where an item might have
high distance to a single item in U but low distance to all others. This feature also
guarantees that if the minimal distance for an item is still high, then it is a genuinely

good contribution.

Evidently, this heuristic is also faster than attempting to find a optimal solution,
because while looking for the optimal solution for the MDP is NP-hard [161], this
algorithm has a polynomial running time. This algorithm is also proven to produce

good solutions, especially for small values of K [166].
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4.2.2 The developed tabu search algorithm

For this work, the tabu search implementation was based partly on the algorithm Wang
and co-workers designed [103], with some formulaic modifications that are detailed in
section 2.1.2. Pseudocode for the tabu search algorithm used to solve the MDP in this

work can be found in Algorithm 3.

The algorithm starts by taking a square identity matrix M and a subset size K as
inputs. From them, an initial random solution vector S is initialised, and an objective
variation vector A is produced similarly as described by Wang and co-workers [103].
Specifically, A; represents a summary value of how much a certain item in either subset

U or Z varies with the items in subset U.

Next, while the exit criterion has not been reached, a neighbourhood list of two moves
is produced using the same successive filter candidate list strategy as in Wang and
co-workers, with a candidate list size of 10. This means that the ten indices with the
highest value in A from both U and Z are retrieved to form candidate lists for items
to be swapped. Then, all the different possible combinations of moves from U to Z
using items in their respective candidate lists have their move gains computed, again
as done in Wang and co-workers. Finally, the best move and the best non-tabu move

are then computed using equation 2, and then added to the neighbours list.

Then, while a move has not been finalised yet, the best move from the neighbourhood is
evaluated as either tabu or non-tabu. If the move is tabu, and if its objective function
value is higher than the current solution’s (therefore reaching the aspiration criterion),
then this move swap is performed. Otherwise, the best non-tabu move is performed.
After a move, changes are made to the A values as per Wang et al. Once the exit
criterion is reached, then the current best solution is returned as the final output. For
our work, the exit criterion is simply if 50 moves have been applied without a new best

solution.

4.2.3 Modifications to Wang et al’s algorithm - penalty term

One important factor in applying the MDP to protein sequence sampling is the inherent

bias of datasets. Most public databases, including those such as UniProt and PFAM,
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Data: square identity matrix M, subset size K
Result: solution vector S

S = initialisation(M, K);

A = initialiseDelta(S);

while ezit /= true do

moved = false;

neighbours = generateNeighbourhood(S, A);
while moved /= true do

bestMove = chooseBestMove(neighbours);
newSol = move(S, newSol);

if bestMove.isTabu == true then

if newSol.score > S.score then
= newdol;
moved = true;
end
end
else
S = newSol;
moved = true;
bestMove.isTabu = true;
end
end
postMoveChanges(A, bestMove);
end
return S;

Algorithm 3: Tabu search algorithm pseudocode

are likely to be made up of large clusters of very similar sequences accompanied by
many smaller less-studied clusters. For example, in 2012 the 20% most common EC
classes on UniProt annotated 90% of UniProt enzymes with existing annotation, with
the EC class cytochrome-c oxidase (1.9.3.1) representing 12% of enzymes all by itself
[167].

The crux of tabu search applications for the MDP is the naive maximisation of an
objective function, which is the sum of the distances of the solution subset. With
unbalanced datasets, it is therefore possible for the algorithm to consider the full in-
clusion of small groups of highly similar enzymes in the solution subset as optimal.
This could happen due to how relatively distant the enzymes of such groups are from
the larger clusters of sequences in the dataset. Obviously, for the purpose of maximis-
ing the functional diversity present in the solution subset by proxy of this objective

function, this is not ideal.
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Some of the functions used by Wang and co-workers [103] were therefore modified,
specifically by adding a 'penalty term’ P. This term is added to the objective function

and the A calculations, and therefore all other calculations that use A.

Sii
Pj=— (3)

n 1-— Sz'j
For two sequences ¢ and j, the penalty term F;; is equal to their sequence identity

divided by their distance. The penalty term is such that the more similar two sequences

are, the larger the penalty, and vice-versa the more distant two sequences are.

Using the penalty term, for the sequence identity matrix M, our objective function to

maximise becomes:

M M
f(z) = Z (1—s;5) — P, where x;,x; € U (4)
i=1 j=i+1

The calculation of A for a sequence x; becomes:

Yier —(L=sij) + Py (2, €U)

> jev(l—sij) — By (z; € Z)

The calculation of the move gain from swapping z; € U and z; € Z becomes:

Ai+Aj—(1—si) — By (6)

The post-move updates of A become:

—A; + (1 —s5) — Py (k=1)

—A;+ (1 —si;) + Py (k=17)
Ap+ (1 =si) —(L—sju) — Px+ Py k#{i,jhoel
(A = (L =) + (L= sj) + P = P k#{i,jleeZ

These modified equations will therefore guide the tabu search algorithm away from

optimising for solutions that contain too many members from groups of highly similar
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sequences that are very distant from the rest of the superset. The penalty term was
also added to the objective function the greedy MAXMIN algorithm optimises, as to
compare it to the tabu search algorithm at parity. The values for the parameters used

in this work can be seen in Table B.1 of the Appendix.

4.2.4 Diversity assessment - functional labels

The principal aim of this work was to produce subsets of enzyme sequences that
are catalytically diverse representations of their superset. As the diversity of MDP
solutions produced needs to be assessed and quantified, the way in which catalytic

diversity is defined is important to clarify.

Catalytic diversity was primarily based on the level of coverage of the functional labels
that is present in the solution produced by the MDP solver. Specifically, two different
types of functional labels were used in this work - Enzyme Commission (EC) classes and
InterPro (IP) signatures. EC classes are a curated hierarchical classification system
where numeric labels representing enzyme-catalysed reactions are assigned at four
progressively more specific levels of functional detail, down to the level of substrate
and reaction specificity [55]. Assessing the diversity of a solution based on EC classes
can therefore clearly show the many different enzymatic reactions can be catalysed by

the sequences chosen.

IP signatures are conserved sequence signatures of structural or functional signifi-
cance such as structural motifs and catalytic sites, that are curated by the integrated
database InterPro [52]. IP signatures are not as explicit and specific to function as
EC classes, which makes them worse for our purposes. However, any sequence can be
annotated with the known IP signatures it contains using the tool InterProScan [54],
which can help provide an overview of the diversity of a dataset when applied to all
of its sequences. Therefore, IP signatures were also used in this work as a less specific

but more accessible functional label for assessing the diversity of an MDP solution.

- 903 -



Chapter 4: Automatic diverse subset selection from enzyme families by solving the
maximum diversity problem

4.2.5 Diwversity assessment - diversity metrics

To assess functional diversity of subsets based on the level of coverage of the functional

labels described previously, two properties need to be quantified:

e Richness, which quantifies the proportion of the total classes represented by the

subset, with higher richness preferred.

e Relative abundance, which quantifies the level at which classes are represented
relative to each other. Higher relative abundance is also preferred, as it would

imply a lack of bias and over-representation of classes.

Two metrics were therefore computed for MDP solutions that would help quantify

richness and relative abundance: label coverage and the Gini-Simpson index (GSI).

The label coverage is simply the proportion of the total functional labels that exist in
the superset that are covered by the sequences in the subset. Mathematically, this is

defined as:

| Ls|

LC =
| L]

(8)

Where LC' is the label coverage, |Ls| is the number of unique labels present in the
subset, and | L;| is the total number of unique labels in the superset. The label coverage

is computed for the EC classes and the IP signatures separately.

The GSI, a metric classically primarily used in ecology, is the probability that two items
sampled from a set with replacement are of different classes [168]. Ranging from 0 to
1, the higher the GSI is the more likely two sampled items will be of a different class,
and vice versa the lower it is. Applied to the MDP solutions produced, it becomes a
measure of the relative abundance of the functional labels in the solution. Whereas
the label coverage shows the level of total diversity that is present in the solution, the
GSI represents how abundant each individual class is relative to the other classes in

the solution. Mathematically, the GSI is defined as:

C
GSI=1-) p} (9)

=1
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Where GGSI is the Gini-Simpson index, C'is the set of different classes in the subset,
and p; is the proportion of items in the subset that are of the ith class, meaning p? is
therefore the probability that two items sampled from the subset are of the same class

1. The GSI is computed for the EC classes and IP signatures separately.

An important thing to note for the GSI of IP signatures is that sequences are likely
to have more than one signature, whereas sequences are unlikely to have more than
one known EC class. This fact is why the term p; is specified as being the proportion
of classes of class ¢ rather than the proportion of sequences of class ¢. Otherwise, all
of the unique combinations of IP signatures in C' would have to be considered when

calculating the GSI.

4.2.6 Enzyme datasets

The enzyme datasets chosen for this work were based on four factors. First, the
datasets needed to have high amounts of functional annotation that is as confidently-
assigned as possible. Second, these confidently annotated datasets needed to be as
large as possible, to better assess how well our method applies to large datasets.
Third, the datasets needed to have as much diversity in known catalytic activities as
possible. Finally, the datasets needed to be made up of bacterial sequences to avoid
issues caused by large taxonomical differences within a family between eukaryotic and

prokaryotic enzymes.

Bearing these limitations in mind, three ideal datasets were identified in the following
manner. First, sequences were limited to Swiss-Prot, as their sequences have at least
been manually curated, with annotations therefore being more confidently assigned.
Then, the top 200 PFAM families were ranked based on the number of bacterial se-
quences on Swiss-Prot with belonging to each PFAM family. Then, sequences below
150 amino acid residues in length were removed to ignore fragments, along with se-
quences above 500 residues to ignore avoid multifunctional sequences. Then, any
families with less than 900 sequences, a proportion of sequences annotated with full
Enzyme Commission numbers below 90%, and with a GSI value for the EC classes
lower than 0.7 were eliminated from consideration. Finally, of the families remaining,

the top families based on the number of unique EC classes were chosen, with the top
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Number of Unique EC Classes for the Top 15 PFAM Families

401
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PF04055 PFO0171 PFO0155 PF01979 PF08245 PF02875 PF00117 PFO0696 PFO0156 PFO0152 PF01336 PF00133 PFO0587 PF03129 PF08264

Figure 4.1: Bar plot showing the number of unique EC classes for the remaining
top 15 PFAM families after filtering. Filtering was based on total number of bacte-
rial sequences, a sequence length range between 150 and 500, a minimum number of
sequences of 900, a proportion of full EC number coverage above 90%, and a mini-
mum GSI value for the EC classes of 0.7. The top three families (PF04055, PF00171,
PF00155) were chosen as the datasets for this work.

15 shown in Figure 4.1.

The top three families were picked: the radical SAM superfamily (PF04055), the
aldehyde dehydrogenase family (PF00171), and the aminotransferase class I and II
family (PF00155). These three datasets are referred to as SAM, ADH, and ATF,
respectively for the rest of this work (Table 4.1). Importantly, the ATF dataset is the

exact same dataset as Trans986 in Chapter 3.

Also, a fourth dataset was built to test the viability of the MDP method on larger
datasets by retrieving 10,000 PF00155 sequences from Uniprot, which includes the 986
Swiss-Prot sequences of the ATF dataset with a further 9,014 sequences from TrEMBL.
This larger dataset is referred to as ATF_TR in the rest of this chapter.

For all four of the datasets used in this work, square sequence identity matrices were
built to be used as input in the MDP solver. This was done by performing all-vs-
all global Needleman-Wunsch pairwise alignments, and storing all pairs of sequence

identities into a square matrix.
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Table 4.1: Table showing statistics about the size and functional diversity of the SAM,
ATF, and ADH datasets chosen for this work.

Family Sequence count EC classes count Full EC coverage EC GSI

SAM 3105 37 97.9% 0.845
ATF 986 27 94.9% 0.689
ADH 953 35 99.0% 0.687

4.2.7 Visualising MDP solutions in the family sequence space

To visualise where MDP solutions are located in sequence space, sequence similarity
networks (SSN) were generated. With sequences as nodes, they are produced by
thresholding the sequence identity matrices produced for all three datasets, making
edges between sequences when they are at or above that identity threshold. These

networks are then visualised using Cytoscape [151].

Another method to help visualise the sequence space occupied by MDP solutions
relative to their respective datasets used was the use of phylogenetic trees. The trees
were generated with default parameters using FastTree [155], and then visualised using

IcyTree [156].

Also, to visualise how the functional labels are covered by the solutions relative to entire
datasets, signature networks were produced. For both EC classes and IP signatures,
edges are made between enzymes and signatures if the sequence is annotated with said

signature. These networks are then also visualised using Cytoscape [151].

4.2.8 Clustering-based comparative analysis

To further assess the value of MDP-based sampling of diverse subsets, a comparative
analysis of the MDP method was performed using k-medoid clustering as a test-case
[169]. The k-medoid clustering algorithm works by grouping items in a dataset based
on the minimisation of the distance from the items in one group to a representative
item of said group, called a medoid, which is known to help counter the effect of
outliers. For the purpose of sampling K diverse sequences from a dataset using k-
medoids, it is therefore as trivial as picking the medoids themselves as a solution. The

sampling of k-medoids in this fashion was therefore performed in this work.
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Table 4.2: Table showing the average functional and sequence diversity based on EC
classes of the MDP subsets produced by running the tabu search and greedy MAXMIN
algorithms on the SAM, ATF, and ADH datasets after 50 runs. The MDP was solved
with a subset size K equal to 100.

Family EC Coverage (Tabu Search) EC Coverage (Greedy) EC GSI (Tabu Search) EC GSI (Greedy) Avg Seqld (Tabu Search) Avg Seqld (Greedy)
SAM 0.964-0.01 0.97 0.944-0.001 0.940 12.1+6.8 13.4£6.8
ATF 0.824:0.02 0.77 0.8640.002 0.793 18.6+8.1 20.54+7.6
ADH 0.9440.01 0.94 0.86+0.002 0.820 24.248.9 25.249.6

For this comparison, four different values of K were tested: 50, 100, 150, and 200.
The performance of the MDP and k-medoid solutions were assessed based on EC label

coverage and GSI.

4.3 Results

4.3.1 Analysis of the sequence diversity, and richness and
relative abundance of functional classes in MDP sub-
sets

The MDP was solved for the SAM, ADH, and ATF datasets with a solution subset size
of K =100, and the functional diversity of each solution subset was analysed. Because
the tabu search algorithm is stochastic in nature, 50 independent runs were performed
for each dataset, and the results averaged. The greedy algorithm is deterministic and

therefore was only run once per dataset.

In Table 4.2, the average coverage for EC classes can be seen for all three datasets after
solving the MDP with K = 100, and for both MDP-solving algorithms. The average
pairwise sequence identity in the solution subsets can also be seen for both algorithms.
In Table 4.3, the average coverage values for 1000 runs of random solutions for each

dataset can also be seen.

For the tabu search algorithm results, the average EC coverage values (Table 4.2) are
high for all three datasets (SAM, ADH, and ATF). For the SAM and ADH datasets,
the EC coverage is above 0.90, with the lowest value amongst the three datasets being
as high as 0.82 for the ATF dataset. Also, the standard deviation values are low,
implying that even when runs result in different subsets of sequences being sampled,

the overall diversity represented in the solutions converges to high richness.
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When compared to the EC coverage richness of randomly chosen solutions, which
can be seen in Table 4.3, the tabu search MDP solutions outperform their respective
random solutions by +0.65, +0.41, and +0.6 for SAM, ATF, and ADH, respectively.
There also is not as high a convergence in overall diversity for the random solutions,
as shown by the higher overall standard deviations. This result indicates that using
the tabu search algorithm for solving the MDP results in subsets of higher EC richness

compared to random sampling, which is a simple initial test of performance.

The greedy algorithm solutions would be expected to have lower richness than the
tabu search [160, 166]. However, for the three datasets, the two algorithms perform
evenly, except for the ATF dataset, where the tabu search algorithm has +0.05 EC
label coverage. This higher than expected parity is likely partly explained by the
addition of the penalty term to the greedy MAXMIN algorithm. Expectedly, the
greedy solution subsets also have significantly higher richness than those produced
through random sampling, as can be seen in Table 4.3, with higher EC coverage by
+0.66, +0.36, and 40.6 for the SAM, ATF, and ADH datasets, respectively.

These coverage results show that solving the MDP to sample sequences creates sub-
sets that cover a majority of the known functional labels in these datasets, and that
therefore have high richness in terms of functional diversity. These results are also con-
sistent across the datasets, as the MDP solutions for all three datasets contain high
richness. Also, when comparing the tabu search and greedy algorithms, it is shown
that the tabu search MDP solver samples subsets of sequences with higher richness
than the greedy algorithm for one of the three datasets; they are otherwise similar in

performance.

Table 4.3: Table showing the average functional diversity based on EC classes and
InterPro signatures of the subsets produced by randomly sampling subsets of size
equal to 100 for the SAM, ATF, and ADH datasets, after 1000 runs. The functional
diversity present in randomly sampled subsets is significantly worse than those created
by both MDP algorithms, as can be seen in Tables 4.2 and 4.5.

Family EC Coverage EC GSI IP Coverage IP GSI

SAM 0.31+0.04 0.83+£0.011  0.43%£0.053 0.94540.01
ATF 0.41+0.071 0.68£0.032 0.59=£0.05 0.911£0.001
ADH 0.341+0.05 0.68+0.045  0.61+0.059  0.91840.001
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In Table 4.2, the average GSI for both EC classes can be seen for all three datasets
after solving the MDP with K = 100, again for both algorithms. Just as with the EC
coverage, the average EC GSI values are high for all three datasets, with average GSI
as high as 0.94 and as low as 0.86 for the tabu search solutions, and as high as 0.94 and
as low as 0.793 for the greedy heuristic solutions. More specifically, the tabu search
solutions have higher GSI values for both the ATF and ADH datasets, by margins of
+0.067 and 40.04, respectively. Therefore, for relative the tabu search algorithm is

seen to marginally outperform the greedy algorithm for two out of three datasets.

The GSI is a measure of relative abundance of classes, and therefore comparing the
GSI of the solution subsets to the original datasets (Table 4.1) can help assess the
amount of diversity in the solution subsets. It is shown that for the tabu search MDP-
sampled subsets, the average EC GSI values are significantly higher than those of the
original datasets, with performances better by +0.095, +0.171, and 0.173 for SAM,
ATF, and ADH, respectively. The solutions of the lower-performing greedy algorithm
also have higher relative abundance than the original datasets, with higher GSI values

by +0.095, +0.104, and +0.133.

Finally, in Table 4.2 the average pairwise sequence identity of sequences in the solution
subsets can be seen. This metric gives an idea of how each algorithm has maximised the
objective function itself i.e. the amount of sequence distance between items included
in the solution subset. For all three datasets, the tabu search algorithm outperforms
the greedy algorithm, by margins of +1.3, +1.9, and +1.0 for the SAM, ATF, and
ADH datasets, respectively. This result implies that while the two algorithms have
similar performances in choosing datasets of high richness and relative abundance of
EC classes, the tabu search method does produce subsets with higher raw sequence
distance between them. Owing to the higher performance across this metric of the
tabu search algorithm, along with marginally better relative abundance of classes, this

method is used as the basis of the rest of the results of this section.

The highest performing run for every dataset was retrieved, and signature networks
with the selected sequences highlighted can be seen for each dataset in Figure 4.2.
These act as visual representations of this significant improvement in GSI for the

subsets. For all three datasets, the distribution of nodes representing each EC class
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is relatively even - larger connected components do not overwhelm the membership
of the solution subset, and the vast majority of smaller connected components were
represented even when they only have one node per EC class. These networks therefore
showed, just like the GSI values, that the tabu search MDP solutions have a high

relative abundance of EC classes compared to the total diversity of the datasets.

In Figure 4.3, scatterplots show how each individual EC class” abundance (p? in equa-
tion 9) changes from the superset to the solution subset for all three datasets. It can be
seen on these plots that for every dataset, if a class was originally highly represented in
the superset, its level of membership in the solution subset gets significantly reduced,
without being absent. With the abundance of such classes going down, less common
classes were represented in higher numbers in the solution subset. This change in
distribution of relative abundance is also seen in the change in the mean value of p?
from the superset to the subset - for all three datasets, p_z2 is significantly smaller for
the solution subset (Figure 4.3). This result therefore also shows the higher and more

equitable relative abundance of EC classes in the MDP solutions.

To summarise, the MDP algorithm, and in particular the tabu search algorithm de-
veloped, was shown to have high relative abundance of the known catalytic classes on
top of the high richness observed previously. Specifically, MDP solutions showed high
GSI values of solution subsets, especially when compared to the supersets, and showed
changes in individual GSI contributions that increase overall abundance of rarer classes

at the expense of over-represented classes.

4.3.2 Analysis of similarity relationships between MDP-sampled
sequences

In Fig 4.4, SSNs at 40% identity threshold can be seen for the three datasets studied,
along with the solution subgraphs made up of the MDP solution subset nodes (in
green) for the highest performing run of each dataset. This figure also shows the

network density of each network and its respective solution subgraph.

It can be seen that for all three SSNs, selected nodes are spread out across the topology
of the network, with almost every connected component having selected nodes at this

threshold. As such components can be interpreted as areas of likely protein homology,
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a diverse solution subset will contain sequences from many of these individual compo-
nents. Such a spread in the network topology would therefore represent a minimisation
of homologous relationships between sampled sequences, and therefore maximising the

functional diversity between them, which is indeed seen here.

Also, while differing thresholds can very quickly connect edgeless nodes to the rest
of the network, almost all edgeless nodes present at 40% identity are present in their
respective solution subsets: the SAM subset contains 29 of its 49 edgeless nodes (59%),
the ATF subset contains 15/17 of the edgeless nodes (88%), and the ADH subset
contains all 11 edgeless nodes (100%). This high representation of edgeless nodes in
solution subsets is another indication that the solutions produced maximise sequence
(and therefore functional) diversity, as edgeless nodes are likely to be some of the
members most distant from the rest of a dataset for that threshold. These sequences
would therefore be more likely to contribute functional diversity when included in

solutions.

It can also be shown that the solution subgraphs have lower network densities than
their original datasets, meaning that on average sequences have less in common in the
subgraphs than in the original graphs. However, the density of the overall solution
subgraph seems to depend on the density of the original network, and therefore of the
sequence bias of the original dataset. Indeed, 56.9% of ADH sequences belong to a
single highly dense component at 40% threshold (indicated by a red arrow) - implying
high sequence bias - has the highest density of all three solution subgraphs, with only
16% of its nodes being edgeless. As for the SAM dataset - which has a far lower density,
higher EC GSI of 0.845, more unique EC classes, and more than triple the amount of
sequences - its subgraph has far lower network density, with 67% of its nodes being
edgeless. Nonetheless, relative to this sequence bias, the ADH solution subgraph still
contains all of the topological indicators of a diverse solution subset - with a far lower
density than the original network, with all of its edgeless nodes being selected, and all

of its connected components being well-represented.

In Figures 4.5, 4.6, and 4.7, the phylogenetic trees can be seen for each dataset.
Branches coloured in red represent the sampled sequences of the best performing runs

and their respective ancestor nodes. It can be seen that on all three trees there is
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a high amount of evolutionary spread, with all major clades represented as shown
by the almost complete highlighting of ancestor nodes across all three trees. Another
observation is that in every clade, leaves furthest away in terms of evolutionary change
from the rest tend to be picked by the MDP algorithm, as shown by the green arrows.
Such an observation implies the MDP algorithm does prefer sequences at the edges of

sequence space, even at the individual clade level.

However, evolutionary bias in terms of the sampled sequences is also clearly present,
with some clades being overrepresented, which are indicated by blue arrows. The sam-
pled sequences could therefore optimally be more spread out, as such over-representation
of clades is unlikely to be optimal. One hypothesis to explain this over-representation
of certain clades is that the penalty term introduced in section 4.2.3 does not per-
form optimally. Specifically, the trade-off of fully selecting highly similar clusters that
are highly dissimilar to the rest of the subset still produces a mathematically better

solution in terms of the sum of distances.

4.3.83 Comparison of MDP-based sampling with k-medoids

It is important to assess how the MDP-based method of sampling functionally diverse
subsets competes with other known methods. k-medoids is a clustering technique that
can be used to sample from a dataset by solving it with k being equal to the subset

size K and then extracting the medoids themselves as the members of the subset.

For a thorough comparison of the two competing methods, four different values for K
were studied: 50, 100, 150, and 200. The tabu search MDP was run 50 times for each
value of K, with the results averaged up. The result of these runs for both methods

can be seen in Table 4.4.

For the EC class coverage, there are 12 comparisons made here - three datasets for each
value of K. Across these, the MDP method has higher coverage of the EC classes in 10
of them, with a margin ranging from 0.029 to +0.37. The MDP has higher richness in
terms of EC classes across all three datasets for K=50 and K=100, and for two of the
datasets for K=150 and K=200. The other two comparisons where the MDP does
not outperform the k-medoids is K=150 and K=200 for the ATF dataset, where the
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Table 4.4: Table showing the functional diversity of the tabu search MDP-based solu-
tions in comparison to the k-medoids sampling for values of K equal to 50, 100, 150,
200. For the EC coverage, the MDP method outperforms the k-medoids method in
10 of the 12 different comparisons. For the GSI, the MDP method outperforms the
k-medoids method in 9 of the 12 comparisons.

MDP (Tabu Search) k-medoids

Family EC Coverage GSI Family EC Coverage GSI

SAM 0.77840.019 0.9484+0.001 SAM 0.54 0.89
K=50 ATF 0.7010.02 0.88+0.005 ATF 0.333 0.627
ADH 0.62£0.02 0.86940.003 ADH 0.342 0.738

SAM 0.9640.01 0.9440.001 SAM 0.73 0.89

K=100 ATF 0.82£0.02 0.8640.002 ATF 0.52 0.66
ADH 0.9440.01 0.8640.002 ADH 0.63 0.86
SAM 0.97940.0 0.94140.0007 SAM 0.783 0.904
K=150 ATF 0.87+0.01 0.83+0.002 ATF 0.888 0.779
ADH 0.9884+0.01 0.84640.001 ADH 0.828 0.859

SAM 0.98240.012 0.94140.0007 SAM 0.89 0.9
K=200 ATF 0.962+0.005 0.82+0.001 ATF 0.962 0.806
ADH 140.0 0.82+0.01 ADH 0.971 0.862

two methods are seemingly even. These results therefore seem to indicate that tabu

search-based MDP solutions have significantly higher richness than the k-medoid ones.

As for relative abundance, there are once again 12 comparisons. The MDP solutions
are once again better in 9 of the 12 comparisons, with margins of the GSI ranging from
0.014 to 0.26. The MDP algorithm yet again unanimously outperforms the k-medoid
for K=>50, and for two of the datasets for the other three values of K. For two of the last
three comparisons, the GSI is even between the two methods, while for K=200 for the
ADH dataset the k-medoid has a higher GSI by 0.042. However, the label coverage
for the MDP solution for this scenario is at 100%, a state of full coverage it likely
achieves at a subset size smaller than 200. Therefore, the MDP algorithm substantially
outperforms the k-medoids in both richness and relative abundance for subset selection.
The reason is likely because any MDP algorithm more directly maximises the distance
between members of a subset, compared to k-medoids which is at its core a clustering

algorithm.
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Table 4.5: Table showing the average functional diversity based on InterPro signatures
of the MDP subsets produced by running the tabu search and greedy MAXMIN algo-
rithms on the SAM, ATF, and ADH datasets after 50 runs. The MDP was solved with
a subset size K equal to 100. Unlike with EC classes, the tabu search algorithm is not
shown to be unanimously superior to the greedy algorithm for every dataset (Table
4.2), though the average richness and relative abundance are still high for both.

Family IP Coverage (Tabu Search) IP Coverage (Greedy) IP GSI (Tabu Search) IP GSI (Greedy)

SAM 0.89£0.009 0.94 0.95+0.0003 0.955
ATF 0.8940.01 0.92 0.91+£0.0003 0.91
ADH 0.91£0.008 0.98 0.91£0.0002 0.91

4.3.4 InterPro signatures as de movo functional labels for
subset analysis

As confident EC labels are scarce, since they require experimental evidence, the use of
IP signatures as a stand-in for unannotated data was assessed. As described in section
2.3.1 of the Background, IP signatures can be identified de novo for sequences and
can therefore help give an idea of the amount of diversity in a dataset and resulting

subsets when knowledge about individual sequences is scarce.

Ideally, IP signatures are therefore a direct replacement to EC labels for the assessment
of functional diversity in a dataset. For these signatures to qualify as such, the three
patterns in EC-assessed MDP solutions revealed in section 4.3.1 must therefore be

conserved:

1. The solutions have high richness in IP signature label coverage
2. The solutions have high relative abundance in IP signature GSI

3. The solutions produced by the tabu search algorithm are as good or marginally

better than the greedy heuristic solutions across all three datasets

In Table 4.5, the average coverage of IP signatures can be seen for all three datasets
for both MDP algorithms after solving it with K = 100. Once again, 50 runs of the

tabu search algorithm were averaged due to its stochastic nature.

Much like with EC classes, the label coverage when using IP signatures is high across
all three datasets and for both algorithms. For the tabu search subsets, the coverage

ranges from 0.89 to 0.91, while for the greedy algorithm it ranges from 0.92 to 0.98.
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There is a higher state of solution convergence than with EC labels, as shown by the
even lower standard deviations of the coverage. When compared to the IP signature
coverage of randomly selected subsets (Table 4.3), the MDP solutions again have higher
richness. These results therefore clearly imply a high richness of IP signatures achieved

in the MDP-produced subsets.

Also, for both algorithms and for all datasets, the IP GSI is high, ranging from 0.91 to
0.95 for both the tabu search and greedy solutions. It is worth noting that, compared
to the GSI of randomly selected subsets (Table 4.3), those values are the same. This
observation is likely due to the inherently high number of signatures in each dataset,
combined with the fact that sequences will have more than one IP signature each,
unlike with EC classes. This high number of signatures makes it therefore already
unlikely that two randomly selected classes from a subset would be of the same class,
resulting in a high IP GSI for the randomly selected subsets. One implication of this
result is that the GSI might not be well-suited to assess relative abundance of classes
when the number of different classes is high. Nonetheless, the relative abundance of

the signatures is clearly high for the MDP solutions, even with this limitation.

The final pattern that needs to be conserved for IP signatures to make a reliable
replacement for EC classes for diversity assessment, is for the tabu search algorithm
to have a similar performance as the greedy algorithm in terms of the richness and
relative abundance of their respective solutions. However, this pattern is not conserved.
Indeed, while the coverage values are high as a whole for both algorithms, the greedy
solution has higher IP signature coverage than the tabu search solution for two of the

three datasets.

In Table 4.6 further details of the coverage of IP signatures in the different solutions
can be seen for the highest performing run of each dataset: the number of IP signa-
tures shared between both the tabu search and greedy solutions (intersection), those
unique to both, and those not covered by either of them. For all three datasets, the
majority of the signatures were covered by both the tabu search and greedy solutions,
with the intersection coverage ranging from 85.6% to 90.9%. As the results in Table
4.5 showed, the greedy search solutions have slightly higher coverage for the SAM and
ADH datasets, with up to 8.8% of the SAM IP signatures being uniquely covered by
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Table 4.6: Table showing the coverage of IP signatures for the MDP solutions produced
by the tabu search and greedy algorithms for all three datasets, including overlap and
signatures uniquely covered by each method, for the SAM, ATF, and ADH datasets.
While most IP signatures are covered by both methods, the greedy solutions have
two more uniquely covered signatures than the tabu search solutions across the three
datasets for a total of 10 versus 8. Only a minority of signatures are not covered.

SAM ATF ADH
Intersection of Signatures 107 (85.6%) 49 (89.0%) 50 (90.9%)
Unique Tabu Search Signatures 3 (2.4%) 0 (0%) 1 (1.8%)
Unique Greedy Signatures 11 (8.8%) 2 (3.6%) 4 (7.2%)
Signatures Not Covered 4 (3.2%) 3 (5.4%) 0 (0%)
Total 125 95 95

the greedy solutions. However, both the tabu search and the greedy solutions have
signatures unique to their solutions: in total across all three datasets, the tabu search
solutions contain 4 unique signatures, while the greedy solutions contain 17. Finally,
only a minority of signatures are covered by neither method, with the uncovered sig-
natures ranging from 0% to 5.4%, showing that both methods produce solutions with

a high level of richness for IP signatures.

To examine the potential reasons for a higher performance parity between the tabu
search and greedy algorithm when using [P signatures, signature networks were cre-
ated for their respective solutions, which can be seen in Figure 4.8. Orange nodes are
signatures that are present in both solutions (or in the intersection), green nodes are
unique to the tabu search solutions, pink nodes are uniquely covered by the greedy
algorithm solutions, blue nodes were not in either solution, and finally black nodes
are enzymes. As shown in Table 4.6, the vast majority of signature nodes are orange
and therefore covered by both methods. The vast majority of signatures in the inter-
section have very high degree, and the most high degree signatures tend to be in the

intersection.

For example, in Table 4.7 further information can be seen on the signatures that
have the highest degree in the three networks shown in Figure 4.8, including for both
the intersection nodes and the nodes unique to MDP solutions. The top intersection
signature nodes have the highest degree possible for their respective networks i.e. every
sequence in a dataset has these respective signatures as annotation. The SAM dataset

has one signature at the maximum degree, while ADH and ATF both have three
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signatures at the maximum degree. From the description of these signatures, and the
fact that every enzyme of each respective dataset bears these signatures, they simply
represent each of the three enzyme families used in this work. In fact, the signatures
IPR0O07197, IPR004829, and IPR015590 are the InterPro IDs given to the PFAM ID

of each respective dataset, which were used to build the datasets in the first place.
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As for the signatures unique to MDP solutions, the result is different. First of all, the
degrees are far lower, at node degrees of 42, 31, and 2 for the SAM, ATF, and ADH
datasets, respectively. Second of all, while the intersection signatures of a dataset are
general to the sequences of that dataset, these signatures are specific in description -
the SAM signature is an evolutionary subfamily specific to mitochondrial machinery,
the ATF signature is a specific type of aminotransferase, while the ADH signature is

a specific type of dehydrogenase with a very small degree of 2.

This difference between intersection signatures and those unique to MDP solutions,
combined with the fact that both algorithms produce solutions with uniquely covered
signatures, points to an explanation involving the lack of completeness of IP signatures.
As the InterPro database is continuously integrating more signatures based on the
proteins that get researched, and that these can be biased, it means that certain

enzymes will have a more complete set of IP signatures than others.

Also, it is known from the results in section 4.3.2 that the tabu search algorithm tends
to select sequences further at the edges of sequence similarity compared to the greedy
algorithm. With respect to IP signatures, it is therefore likely that sequences with
less annotation are picked by the tabu search solver at a higher frequency than the
greedy algorithm. Indeed, the average node degree of sequences for all three datasets
can be seen in Figure 4.8. As suspected, the average degree of sequences selected
by the tabu search algorithm is lower than for the greedy algorithm across all three
datasets, especially for SAM and ADH. This result therefore implies that sequences in
tabu search solutions have less curated IP signatures on average, likely due to a higher

proportion of sequences at the edge of the respective family.

In conclusion, it is therefore unlikely that InterPro signatures can be used as de novo
functional labels on par with EC classes due to incompleteness and annotation bias.
However, this is likely to depend on how well studied sequences of interest are, with
the assumption that the more studied an enzyme family is, the more spread out recog-
nisable sequence signatures will be. Also, these results with IP signatures are further
evidence of MDP-based solutions sampling diverse subsets in terms of both richness
and relative abundance of the annotations given. Finally, while IP signatures are less

specific than EC classes overall, they are far easier to produce for novel sequences or
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sequences that are not as well studied, and therefore still qualify as a good annotation

for the assessment of MDP-sampled subsets when EC classes are impossible to retrieve.

4.3.5 FEvaluation of MDP-based subsets from larger datasets

The ideal use case for diverse sampling of enzymes by solving the MDP is large unan-
notated datasets from which smaller diverse subsets can be selected for further explo-
ration and analysis. Therefore, to evaluate the utility of MDP-based subset selection,
the ATF_TR dataset, which contains 10,000 enzymes, was compiled and analysed with
respect to MDP solutions generated by both the greedy and tabu search algorithm.
As discussed before, annotation for enzyme datasets of this scale is unreliable, so the
labels used for this evaluation are IP signatures. The MDP was solved for K=500 as

a single run for each algorithm.

For the ATF_TR dataset and for K=500, the greedy MDP solver had an IPR coverage
of 0.85 and a GSI of 0.905. The TS solver had an IPR coverage of 0.77 and a GSI
of 0.909. Therefore, based on IPR signatures alone, the greedy MDP solver slightly
outperforms the tabu search algorithm. However, as was shown in section 4.3.4, there
is not a direct correlation between IP signature diversity and EC class diversity, the

latter of which is a better indicator for the purpose of diversity in catalytic profile.

Therefore, a SSN at 40% threshold was also built for ATF_TR to examine the spread
of the chosen subsets in sequence space, with the tabu search subset highlighted in
Figure 4.9 and the greedy subset highlighted in Figure 4.10. Both solutions show high
topological spread, with nodes selected across all major and most minor components
of the SSN by both solutions. The subgraph of both solutions is also expectedly less
dense, going from a density of 0.026 to 0.004 for the tabu search solutions, and even

lower to 0.0001 for the greedy algorithm solution.

The tabu search solution also has a significantly higher average degree of 60.42 com-
pared to the greedy solution’s average degree of 20.23, for this SSN at 40% threshold.
However, the average pairwise sequence identity of the tabu search solution subset
is 13.7%, which is lower than the greedy solution’s 16.8% average sequence identity.

It is therefore clear that while the distance between sequences is being maximised

- 118 -



Chapter 4: Automatic diverse subset selection from enzyme families by solving the

maximum diversity problem

“pasturydo aq [[13s A[o)I[ UeDd SUOIIN[OS sy} IR} SUIMOYS ‘(SMOLIR Pal [Im Je pajutod) sjueuoduIod pajoauuod IR[IWUIS AIOA (|
[[ews WoI sopou Aurtl yoId 09 WSS SPOP SUOTIN[OS YDIRSS NRY) YY) ‘TOADMOY ()] § 2INSI] Ul UAS UOIIN[OS APSSIS 91[) 10J URY) IS[[RUUS
Apyureoyrusts st ydelrs s1y) 10J 99189p opou dageIosr oy ], ‘s, yders oY) uey) 1omo[ st Aysuop ydersqns o) pue ‘YSIy SI SOPOU USSOYD o)
Jo peaids [eorsojodo) oY) ‘sjeseiep I9[[RWS ) 01 A[IR[IWIS "UaS a( os[ke ued sydeisqns uonnios J(N 2Y) pue NSS o3} 10} Ajsuop
yromjou oy, ‘Yydels [RUISLIO oY) I0J 99I39P OPOU 9FRISAR 9} M SUO[R ‘UdS 9 Os[® Ued PIYM Jo ydeidqns o) ‘wydLiose JAIN
pIeos nqe) o) Aq pordures sowAzuo o) Ju0soIdol SOpou UedIr) “jose)ep Y I, ALV 92 I0] P[OYSOIy) AIUapt % 0F © 18 NSS 6§ 0In3ig

oo o 0000
oo 000 OO0
oo 00000
o0 00000
o000 00O
oo o000 00
oo 000 00
oo 00000
o0 00000
C I B B B B
® 000000
oo o000 00

U LE ..
VIt Il

I R IR &
¥/ VPRI

g v b b B
e 00

¥00°0=p

kR kRl

¢"09=9a1b60p ‘Bae g
920°0=pP

- 119 -



Chapter 4: Automatic diverse subset selection from enzyme families by solving the
maximum diversity problem

‘s, ydeis o) ury) 1oMO[ ST Ajsuop ydeisqns o) pur ‘YSIy SI SOpou U9SOYD
o1} Jo peaids [eorsojodo) o) ‘syesejep Io[[ews oY) 0} Are[ruulg ‘Ydeis [RUISLIO S} JO 92I89p 9pOU SFRIGAR O} [[JIM FUO[R ‘USS d(
oste ueo sydeidqns wornjos J(N Y3 pue NSS oY) 10J A)ISUSP JIOM)OU 9, "U9dS 9 Os[e urd PIYMm Jo ydersqns o) ‘wyjtiosre JqIN
Apoo1d o) Aq pordures sewAzuo oY) juesardol sopou uedlr) -jasejep Y[, ALV 9U} I0] ployseay) £)1uept 9,0F ® 18 NSS 01 F oInsig

e teeeceeeeeeeeeeaeeae.n mr..”.
R EEEEEREEEEEE . .
EEEEEEEEEEEEEEEEEEEE XX m"..wn. -
® ® ® % O O OO O OO OO OO OO D w -h-.h
R EEEEEREEEEEE Iy u ..W
R EE R E R N m.m.f...
R EE R N NN NN mu%ﬂ.
ee e eoo0ce0c0000 00000 00RO muﬁ..-‘
oo o0 0000000000000 BOOOOGOSES mmm..%. iy
e o oo 000000000000 > —e *—, .un“h ...,«am
_x.m K
Piew o .
RN ’ . .
o R, . €2'02¢=93169p "HBae Apaain
Fooo ° U wc . - ONo-ouu

- 120 -



Chapter 4: Automatic diverse subset selection from enzyme families by solving the
maximum diversity problem

by both algorithms, the two methods do so differently. Therefore, the tabu search
subset still has lower average sequence identity even though its sequences are more
densely connected at 40% identity. More thresholds need to be explored in detail, as
at slightly lower thresholds the greedy solution might suddenly start containing more
edges. However, one hypothesis for this result is that tabu search solutions contain
more nodes that have significantly higher distances to the rest of the subset, compared

to the greedy solution.

Another observation of note is that the tabu search solution does select multiple se-
quences from small connected components of high sequence similarity, even with the
addition of the penalty term discussed in section 4.2.3, which are indicated by red
arrows in Figure 4.9. These fully connected components being included in the solution
subset undoubtedly also increased the density of the tabu search solution subgraph.
Consequently, this result implies that while the tabu search solution is likely to be
more diverse in a vacuum, it can clearly be optimised and refined further with regards

to the penalty term introduced in section 4.2.3.

4.3.6 FEwvaluation of coevolution similarity-based MDP solu-
tions

So far in this chapter, subsets created by maximising the distance in sequence identity
between the sequences of the subset were explored. In Chapter 3, the use of similarity
networks built on comparisons of residue-residue coevolution patterns was described,
with the primary finding being that coevolution similarity can create thresholded net-
works that reveal structurally and functionally interesting sequence groupings in a

complementary way to sequence similarity.

It was therefore of interest to see how MDP solutions created by maximising the
coevolution similarity would function compared to sequence similarity. The sequence
similarity matrix was replaced by a coevolution similarity matrix produced as described
in section 3.2.5. The MDP was solved for the ATF dataset for K=100 for the tabu

search algorithm with EC classes as labels. The results were averaged up over 50 runs.

The average EC coverage of these runs is 0.66+£0.01, while the GSI is 0.7840.003,

which are significantly worse values than the sequence identity based subsets. The
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P77806 Q02635

POA959

Figure 4.11: Similarity networks for the Comp69 component discussed in section 3.3.1,
with nodes coloured based on EC numbers for A-B, using the same legend as Figure
3.7. The Comp69 component is a functionally diverse group of nodes that is densely
connected in the CSN | but disconnected into multiple smaller components in the
SSN. A) CSN of Comp69. Nodes highlighted in yellow are ones selected by the tabu
search MDP algorithm for K equal to 100. Nine sequences of the chosen subset are
located in Comp69, which cover four of the nine different EC classes contained in this
component. B) SSN of Comp69. Nodes highlighted in yellow are ones selected by
the tabu search MDP solver for K equal to 100. C) CSN of Comp69. Green nodes
represent ones selected by the MDP algorithm, the six red nodes represent the five
uncovered EC classes, and black nodes are the rest. The nodes pointed at with pink
arrows are MDP-sampled nodes that have publicly available tertiary structures, while
those pointed at with a blue arrow are uncovered EC classes with publicly available
tertiary structures.

most likely reason for this is related to the Comp69 component discussed in section
3.3.1, which is a densely connected single component that only exists in the optimal
CSN for the ATF dataset but remains disconnected in the optimal SSN (Figure 4.11,
A-B). It is a very diverse component in which 9 of the 27 EC classes of the ATF dataset

are unique to it.

When overlapping the sampled sequences of the highest performing run onto the op-
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Table 4.8: Table showing the TM-score for the pairwise comparison of tertiary struc-
tures for the six different Comp69 nodes for which they are available. The enzymes
coloured in red are those with EC classes that are not covered by the MDP solution,
while green ones are covered by the MDP solution. Both P77806 and P9WPZ5 have
significantly high TM-scores, and therefore high tertiary structure similarity, to multi-
ple enzymes that are already in the MDP solution. This finding increases the likelihood
that these two enzymes could be functionally similar to those already chosen by the
MDP algorithm.

P77806 PI9WPZ5 PO0A959 Q02635 Q08432 (56232

P77806 1 0.9375 0.84751 0.8871 0.85677 0.90543
P9WPZ5 _ 1 0.87194 0.89878 0.88012 0.90822
POA959  _ _ 1 0.90916  0.83243  0.89339
Q02635  _ _ _ 1 0.85009  0.94061
Q08432  _ _ _ _ 1 0.85941
Q56232  _ _ _ _ _ 1

timal CSN, 9 of the 100 sequences chosen are located in Comp69, covering 4 different
EC classes, meaning this sequence space was not ignored (Figure 4.11, A). However,
of the 9 ECs that are not covered at all by the subset, 5 of them are in Comp609.
Also, these 5 uncovered Comp69 labels exist on only 6 sequences total. Given the
already high representation of sequences from Comp69 in the MDP solution, the al-
gorithm is unlikely to sample more sequences from a component that is already so
highly represented. Given how densely connected in the optimal CSN Comp69 is, if
sequences in this component do have more functional similarity than is known from
current annotation, then MDP solutions produced using coevolution data will seem to

have underperformed overall.

This MDP solution was therefore explored more thoroughly, focusing on the subset of
the highest performing run. Of the nine sampled sequences that are in Comp69 (Figure
4.11), four of them have a solved tertiary structure. Of the six sequences carrying the
five missing labels unique to Comp69, two of them have tertiary structure. An all-vs-
all analysis of their tertiary structures was therefore performed using TM-align just
like was performed in section 3. The resulting TM-scores can be seen in Table 4.8,
where the two proteins with missing labels are coloured in red, while the four sequences

included in the solution are coloured in green.

P77806 and P9WPZ5 carry the uncovered EC classes 2.6.1.88 and 2.6.1.17, respec-
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tively. Based on the TM-score, it can be concluded that they have high tertiary
structure similarity, with the value as high as 0.94. As for comparisons between them
and the rest of the sequences in the table, the TM-scores range from 0.85 to 0.91.
These values are especially high when compared with Q02635 and 56232, for which
they range from 0.89 to 0.91. And yet, the sequence identity between them ranges
from 26.2% to 33.2%, which are relatively low. Therefore, while the annotation to
support such a conclusion does not exist, these results indicate that the MDP solver
not choosing more sequences from Comp69 does not constitute a worse solution in
reality, due to this high structural similarity potentially also meaning high functional

similarity, as was discussed in section 3.3.1.

While the coevolution-based solutions could undoubtedly be better as shown by lower
values of GSI, the worse performance of the MDP solver indicates missing and /or incor-
rect annotation played a part. Such problems will tend to inflate sequence similarity-
based results as much of the existing annotation will be automatically assigned using
such data, even if incorrect. As this study only sampled sequences based on coevolution
data for one dataset, it therefore is inconclusive where the such data stands relative
to the sequence similarity-based results. One certainty however is that the MDP tabu
search algorithm, due to its nature as a metaheuristic, can be applied with any sort of
relevant similarity measure and optimally choose subsets that maximise the inherent
features of said measure. This is evidenced by how the sequences in Comp69 of similar
tertiary structure but lower sequence identities were not chosen in larger amounts, as

coevolution similarity acts as a good proxy for tertiary structure similarity.

4.4 Discussion and conclusions

As the amount of unannotated sequence data deposited to public databases continues
to increase, the optimised selection of enzymes for panels to be characterised in the
laboratory becomes more important. Current methods of sampling such panels often
necessitate a high level of prior knowledge and annotation about an enzyme family’s
overall structure, and time-consuming construction of models like phylogenetic trees

and SSNs which then have to be manually interpreted. These factors are further am-
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plified for more challenging applications like enzyme function analysis, as they require

even more stringent levels of knowledge to make confident assertions.

In this work, a novel method for the subset selection of functionally diverse enzyme
sequences was introduced, through the solving of the maximum diversity problem, a
classic computer science problem. This method is entirely context and knowledge free,

as it functions purely based on the primary sequence of enzyme proteins in a dataset.

4.4.1 Strengths and limitations of the MDP approach

The primary strength of the method shown in this work is that solving the MDP
for a dataset with an all-vs-all sequence identity matrix as input results in subsets
containing high catalytic diversity, as determined using three publicly sourced enzyme
family datasets and their assigned functional labels. The solutions produced contain
both high richness i.e. much of the known functional classes of a dataset are present in
a solution subset, and high relative abundance i.e. labels present in a solution subset

are generally as abundant as each other for both EC classes and IP signatures.

Furthermore, chosen proteins laid out on sequence similarity networks show high topo-
logical spread, with the majority of connected components having representative nodes
being chosen. This is also evidenced quantitatively by significant reductions in net-
work density when transforming the SSNs into their respective solution subgraphs and
the relatively high proportion of nodes which are edgeless in the subgraphs. A similar
observation is made when the proteins are instead laid out on a phylogenetic tree, with

sampled sequences often being on the edge of sequence space.

A significant strength of the MDP method beyond the high diversity shown in the
subsets is the lack of existing annotation about the dataset necessary for the it to
function. As the algorithm only requires primary sequences as input, and also attempts
to make up for potential sequence bias, it is able to automatically select sequences
that are the most distant from each other as possible based on identity. By proxy, this
method therefore produces panels of varied enzymatic profiles and specificities when
applied to a dataset containing such diversity, without needing to know the actual

canonical diversity present. This strength is particularly helpful when applied to large
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novel sets of sequences, for which the MDP method was also shown to function at a
high level. Also, this method of diverse enzyme selection is purely automated, and
therefore requires no manual interpretation. Therefore, the method tackles two of
the limitations of current panel selection approaches described in section 2.2.3 of the

Background.

One potential disadvantage of this method is that sequence bias is likely to always
affect the quality of the solutions to an extent, as shown by the presence of some high
identity edges in the sequence similarity subgraphs (Figure 4.9). Therefore, it would
still be helpful to complement MDP solutions with manual examination and refinement
of the solution to counteract any present bias. Also, preprocessing of datasets to reduce

redundancy and very high identity pairs would help with this problem.

Also, the significantly better MDP solving algorithm is tabu search, which is a stochas-
tic algorithm. For datasets with minimal or no annotation to assess the quality of
subsets, it not clear how to optimise the choice of solution produced by multiple tabu
search runs. However, this potential limitation is unlikely to be much of a problem
given how the functional diversity of produced solutions seems to converge well, as

shown by the low standard deviations of every metric assessed in this work.

Another limitation of this work lies in that the GSI as a metric becomes less useful
the higher the number of overall labels exist, to the point that even randomly selected
subsets can have higher values for the GSI. When using labels like InterPro signatures,
this limitation becomes more challenging as most proteins will have multiple signatures
at a time. This challenge was made obvious by the difficulty shown in this work in
assessing relative abundance of MDP solutions when InterPro signatures were used,

with a weighted GSI approach [170] likely having been better placed for such labels.

A final limitation of this work is the selection of the medoids to create solution subsets
in the comparison of the MDP approach with k-medoid clustering. It is possible that
sampling enzymes around each medoid might have better results. However, given
the level of difference in performance between the k-medoid method and the MDP

algorithm it is still unlikely to reach that level from such a change alone.
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4.-4.2 A de movo approach to diverse sampling from enzyme
families

The tabu search method for solving the MDP is a meta-heuristic, meaning that it can
solve problems independent of specification and details. This is demonstrated by how
easy it was to swap in the coevolution similarity information instead of the sequence
identity metric, the results of which matched up with the strengths of the former
metric. Nothing about the problem specification needed to be modified, because it
is a context-free approach that simply maximises a solution based on a mathematical

objective function.

This method can therefore be applied de novo to datasets for which little to no infor-
mation exists about their sequences, such as metagenomic datasets. It is possible to
define new objective functions, choose different distance metrics to achieve said objec-
tive, and change how the solutions are assessed, but the result will stay the same; a
subset of proteins for which the given distance metric is maximised. Such a method
is powerful because annotation-based selection is made difficult due to the potential
for incorrect annotation and the reality of incomplete annotation. Also, potential
applications of the MDP method is not are not limited to maximising diversity in cat-
alytic function, but could also include other enzyme attributes: diversity in structure,

physiochemical properties like optimal pH and temperature, etc.

Undoubtedly, the MDP approach does not produce perfect solutions, by nature of it
being a metaheuristic, but also due to the reality of enzymes being highly complex
macromolecules that cannot be grouped with perfect accuracy using similarity mea-
sures alone. Therefore, an automated method like the MDP could benefit from refine-
ment by manual curators to select areas where a generated subset could be improved
or reduced in size. In particular, currently existing tools like SSNs and phylogenetic
trees can help with such refinement, but also novel methods described in this thesis
such as CSNs (Chapter 3). In this context, an MDP-based panel can provide a diverse
initial subset that could be further optimised using CSNs.

Selected enzyme family panels could then be biochemically characterised under lab-

oratory conditions. Given the inherent functional diversity of the selected enzyme
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subsets, such characterisation assays could become more time and cost effective using

the methods developed in this work.

4.4.3 Future work

One avenue for future work would be the use of different identity metrics. For ex-
ample, while global identity was used, BLAST identity could be a way of reducing
the running time of the method provided it produced subsets of similar functional
diversity. Other potentially interesting metrics include secondary structure similarity,

solvent accessibility similarity, and tertiary structure similarity.

This first avenue for future work leads to a potential second: the aggregation of multiple
different similarity scores. It would be interesting to see how a concatenation of all
the strengths of different similarity metrics can help produce better solutions than
with individual metrics. One could then perform parameter optimisation on such an

aggregate score to determine which metric is most influential for the purpose at hand.

Also, as the quality of coevolution-based MDP solutions was only assessed based on one
dataset, the result of that endeavour are inconclusive for now, though it performed as
expected for said dataset. In the future, performing this analysis on more data would
help clarify how well coevolution similarity would adapt as a functioning metric for

such a sampling method.

Finally, there would be value in developing a pre-processing pipeline that assures
datasets do not suffer from common pitfalls like sequence bias and sequence length

outliers at both ends.

4.4.4 Conclusions

Solving the maximum diversity problem using sequence similarity as a metric appears
to produce functionally and phylogenetically diverse subsets based on gold-standard
datasets and labels. This method outperforms standard clustering methods like k-
medoids, and can also be applied to larger datasets without a drop in performance.
MDP-based panel construction can therefore function as a context-free technique for

automatically generating enzyme family panels of a desired size.
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5.1 Introduction

In the previous two chapters, two novel methods were described - Chapter 3 introduced
a novel network method for the functional analysis of enzyme families, and Chapter
4 described a novel technique for automatically sampling subsets of enzymes that are
catalytically diverse from a larger superset. These two complementary methods focus
on gaining a better understanding of existing enzyme datasets, either by visualising
clusters in a family for the former, or through the automatic sampling of enzymes
that are representative of the family’s diversity for the latter. The methods of the
previous two chapters therefore facilitate the selection of putative enzymes from larger
datasets. This selection process aims to optimise enzyme panel creation for laboratory-
based characterisation, so that enzymes of novel properties can be discovered and used

by industry.

However, another approach to increase the portfolio of useful biocatalysts is the en-
gineering of already discovered and well-characterised enzymes. In particular, the
engineering of enzymes has been successful in artificially introducing novel functions
and properties through changes to their amino acid sequence. In these experiments,
an enzyme is mutated to reach a state with novel properties and functions [171, 172].
While the resulting enzymes are artificial, such modifications have been shown to be
successful, including engineering enzymes to be resistant to chemical oxidation [173],
increasing stability against certain solvents [174], and for increasing catalytic activity

[175].

However, while it is possible to create synthetic enzymes that are functionally viable,
enzyme engineering is often very manual, complex, and requires much trial-and-error
in the laboratory to be successful. While the generation of synthetic enzymes offers
an avenue for increasing the diversity present in enzyme families, in silico approaches
that optimise the creation of such enzymes, de novo, would be valuable. As described
in section 2.4 of the Background, machine learning has been at the forefront of mul-
tiple recent breakthroughs in bioinformatics. This chapter describes research into the

development of a machine learning-based method that attempts to achieve this goal.
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5.1.1 Neural network applications for generating novel se-
quences de novo

Recent developments in the de novo generation of enzyme sequences mainly consists
of the use of deep learning neural networks [176-179]. For example, Wan and Jones
[177] used a generative adversarial network (GAN), which is a type of neural network,
to produce synthetic sequences that help improve the performance of Gene Ontology
(GO) term prediction tools. Repecka and colleagues [178] trained another GAN to
create 55 novel enzyme variants of malate dehydrogenases, of which 13 were successful

in the laboratory both in terms of solubility and catalytic activity.

Neural networks are popular for such applications because they have been proven to
be highly successful at learning and recognising subtle features of a given training
dataset i.e. recognising snout differences between a dog and a cat to label a picture as
containing either one of the latter two. Protein sequences also contain features, such
as secondary structures and solvent accessibility, which can be used in classification.
These features make them highly relevant for models like neural networks for recog-
nition and prediction. Indeed, many of the state-of-the-art structural bioinformatics
tools that predict such features use neural networks, like PSIPRED for secondary
structure prediction [180], MetaPSICOV for contact-map prediction [181]. Also, even
enzyme-specific prediction problems have successful machine learning-based methods,
such as the prediction of the Enzyme Commission number (EC) using DEEPRe [8§]
and active site detection [182]. Therefore, neural networks that learn such important
enzyme features for prediction purposes, can also learn them for generative purposes,

as shown by Repecka and colleagues [178].

5.1.2 The logic of autoencoders

As discussed in the preceding section, neural networks are able to learn complex fea-
tures inherent to protein sequences [88, 181]. Also, neural networks have been suc-
cessful at generating novel enzyme sequences de novo that are functionally viable
[178]. Therefore, neural networks are a promising avenue for attempting to artificially

increase the catalytic diversity of an enzyme family using a generative approach.
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Autoencoder

\

Input > Encoder [ Decoder Output
I—
LTF... LTF...

Figure 5.1: Diagram representing the logic of an autoencoder neural network.This
encoder block of layers compresses the input into the bottleneck or latent space layer.
The bottleneck is a compressed vector that should contain the inherent information of
an input summarised as a smaller set of features. Then, the bottleneck is passed to the
decoder, which attempts to decode the latent space layer back into the origin input.
Autoencoders have been shown to learn to reconstruct various inputs, from images of
numbers to amino acid primary sequences.

More specifically, one neural network structure of interest that was used in this work
is called an autoencoder [176, 183]. Autoencoders are made up of three main layers:
an encoder, a decoder, and a bottleneck (Figure 5.1). Autoencoders work by first con-
densing some input into a smaller encoded representation called a bottleneck through
the encoder layer. The bottleneck (also called a latent space) is then usually decoded

back into the original input using the decoder layer.

The logic of autoencoders lie in their dimensionality reduction properties. As an exam-
ple, an autoencoder could be given the image of the number four as input (Figure 5.1).
When the image is passed to the encoder, it will be mathematically transformed into
a condensed vector summarising the input. The decoder then attempts to reconstruct
the number four from the bottleneck representation during the training process. Con-
sequently, an autoencoder learns how to encode an input into the condensed bottleneck

into a shape that is amenable to being decoded back into its original form.

This training logic results in the bottleneck vector consisting of important inherent
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features that summarise the input - in the case of the number four, it could be the
different corners and edges that make up the number. When applied to protein primary
sequence (Figure 5.1), a hypothesis can be formulated: a trained autoencoder can learn
complex inherent features that make up proteins, such as secondary structures, and
substrate binding sites. As a result, protein sequences encoded as such could then be

summarised as a vector made up of important features [184].

5.1.3 Awm of this work

A crucial feature of an autoencoder is that they can be used to generate new synthetic
data through the sampling of their latent space. Therefore, an autoencoder trained
to reconstruct proteins could then be used to generate completely novel and artificial
sequences. As such, a network can be trained on native protein sequences, from which
learned features from the bottleneck can then be sampled from to be decoded into

sequences resembling viable proteins [176, 179].

While Costello and and Martin [184] have trained an autoencoder to generate synthetic
enzymes in the manner just described, they have not studied in significant detail the vi-
ability of such synthetic enzymes in the laboratory. Also, while Repecka and colleagues
[178] have shown that using neural networks can produce functionally viable enzymes,
their results were limited to a specific use case of synthetic malate dehydrogenases,
rather than an entire enzyme family. Therefore, to the best of the knowledge of the
author, no study on the use of autoencoder-generated enzyme sequences for increasing

the amount of catalytic diversity in an enzyme family has yet been performed.

The principle aim of this work was therefore to research a method for generating
additional catalytic diversity in an enzyme family by sampling novel primary sequences
from the latent space of a trained autoencoder model. This aim was separated into

two primary objectives:

1. A discriminant autoencoder was designed and trained on a large set of curated

enzyme sequences, along with an assessment of the reconstruction quality.

2. A pipeline to sample and select novel enzyme sequences from the autoencoder
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bottleneck layer was developed, along with a thorough study of how functionally

viable sampled sequences might be.

The second objective of this work resulted in the curating of 30 synthetic enzyme
sequences from the aldo-keto reductase (AKR) family, which were then assessed in the

laboratory in terms of overexpression and solubility.

Attribution: The laboratory experiments carried out on the set of synthetic sequences
were performed by collaborators at Prozomix Limited. The methods described in section

5.2.7 and the SDS-PAGE results in section 5.3.5 are therefore fully attributed to them.

5.2 Methods

5.2.1 The datasets

As described in section 2.4 of the Background, to perform machine learning, two

datasets are needed:

1. A training dataset, which is used to train the neural network’s weights to solve

a well-defined problem.

2. A testing dataset, which is used to assess the performance of the neural network

on unseen data.

The training dataset was built by retrieving all enzyme primary sequences on Swiss-

Prot [128, 185]. Specifically, the SPARQL endpoint of Swiss-Prot was queried:

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX up:<http://purl.uniprot.org/core/>

SELECT DISTINCT 7prot 7enz 7aa_sequence
WHERE
a8
?prot a up:Protein .
?prot up:reviewed 7status .
?prot up:sequence 7seq .
7?seq a up:Simple_Sequence .
?7seq rdf:value 7aa_sequence .
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?prot up:enzyme 7enz .
FILTER ( 7status IN ( true ) )
1}

From the resulting enzyme set, sequences with more than 800 amino acids were dis-
carded to remove potential multifunctional enzymes. Enzyme sequences containing
any ambiguous amino acid positions (B, Z, X, J) or any of the non-primary 20 amino
acids (O, U) were also discarded. The testing dataset was made up of 5,309 enzyme
sequences that were retrieved from TrEMBL instead of Swiss-Prot, as all the enzymes
on Swiss-Prot were included in the training dataset. This choice of query database
was made to better guarantee that enzymes in the testing dataset are unseen data.

Statistics on sequence length for both of these datasets can be seen in Table 5.1.

5.2.2 Discriminant autoencoder architecture

The architecture of any neural network starts with an input layer to which each sample
(i.e. primary sequence) is fed. As discussed in section 2.4 of the Background, the input
layer of a neural network contains a mathematical representation of the data that is
amenable for a neural network to learn from. As the primary sequences in the training
and testing datasets are at most 800 residues long, the length of the vector was set
to 800. Each of the 800 positions - i.e. residues - of this vector can be one of the 20
different standard amino acids. Each position can also be a blank position to represent
sequences of lengths shorter than 800. The width of the input vector is therefore 21,
with a value of 1 for the specified residue, for a total vector dimension input of 800x21.
This representation of sequences is called a one-hot encoding and is standard for such

data, an example of which can be seen in Figure 5.2.
The rest of the neural network architecture can be seen in Figure 5.3. Following the

input layer are two blocks of 1D convolution layers and maxpooling layers. These layers

Table 5.1: Table with summary statistics about the training and testing datasets. Q1
to Q3 represent the sequence lengths of each quartile.

Dataset Number of sequences Average length Q1 Length Q2 Length Q3 Length
Training 244,514 351.5 240 334 443
Testing 5,309 332.9 213 308 428
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Residue | i=0 i=1 i=2 i=3 i=18 i=19 i=20

1 0 0 0 0 0 0
L 0 1 0 0 0 0 0
0 0 1 0 0 0 0
F 0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0

Figure 5.2: An example of one-hot encoding using amino acid sequence. In one-hot
encoding, a sequence of characters of size L is transformed into a vector of size L x C,
where C' is the size of the alphabet. In the case of amino acid sequence, the alphabet
size is 21, with 20 different amino acids plus one to represent blank positions. Each
letter (or residue) of this alphabet has an index, and each individual character of a
sequence is given a value of 1 for their respective index, and 0 for all others.

help summarise and condense the input from a latent space vector with dimensions of
800x21 to one with dimensions 200x32 - a 61% decrease in vector size. This section of

the autoencoder is effectively the encoder.

Next, the autoencoder splits into two branches - a reconstruction branch, and a dis-
criminant branch. The reconstruction branch scales the bottleneck layer back to an
output of the original vector size of 800x21, attempting to decode the bottleneck back

into the original input.

The discriminant branch flattens the bottleneck into a one-dimensional vector, which
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is then connected to a single output node. As will be discussed in section 5.2.3, the
training process includes randomly generated primary sequences, which the discrimi-
nant will try to differentiate from the real sequences. The purpose of the discriminant
branch is to teach the neural network "what not to know”, to get as close as possible
to a latent space that truly learns important features of enzyme sequences. The use

of this discriminant turns the neural network into a discriminant autoencoder.

5.2.3 The training process

The neural network described in the preceding section is implemented using Keras [4],
a Python library that helps abstract the creation and training of neural networks. The
Python Keras code that generates and compiles the discriminant autoencoder model

is the following:

def create_discriminant_autoencoder():

# Input -> Encoded representation
input = Input(shape=(800, 21))

nn = ConviD(64, (5,), activation='relu', padding='same') (input)
nn = MaxPoolingiD((2,), padding='same') (nn)
nn = ConviD(32, (5,), activation='relu', padding='same') (nn)

encoded = MaxPoolingliD((2,), padding='same') (nn)

# Encoded —-> Decoded Representation
nn = Conv1D(32, (5,), activation='relu',
— padding='same') (encoded)

nn = UpSamplinglD(2) (nn)

nn = ConviD(64, (5,), activation='relu', padding='same') (nn)
nn = UpSamplinglD(2) (nn)

# Output

decoded = ConvliD(21, (5,), activation='softmax',

— padding='same', name='decoder') (nn)

flat = Flatten() (encoded)

discriminant = Dense(l, activation='sigmoid',

< name='discriminant') (flat)

outputs = [decoded, discriminant]

losses = ['categorical_crossentropy', 'binary_crossentropy']

# Compile the model
autoencoder = Model (inputs=input, outputs=outputs)
autoencoder.compile(loss=losses, optimizer=Adam())

- 138 -



Chapter 5: Autoencoder-generated sequences for artificially increasing enzyme family
diversity

input: | (None, 800,21)
output: | (None, 800,21)

input_1: InputLayer

Y
input: | (None, 800, 21)

output: | (None, 800, 64)

convld_1: ConvlD

 J

input: | (None, 800, 64)
output: | (None, 400, 64)

max_pooling 1d_1: MaxPooling1D

Y
input: | (None, 400, 64)

output: | (None, 400, 32)

convld_2: ConvlD

 J

input: | (None, 400, 32)
output: | (None, 200, 32)

e

max_pooling 1d_2: MaxPooling1D

1d 3: ConviD input: | (None, 200,32) q LA input: | (None, 200, 32)
convld_3: Conv atten_1: Flatten
output: | (None, 200, 32) output: (None, 6400)
input: | (None, 200, 32) input: | (None, 6400)
up_samplingld_1: UpSampling1D dense_1: Dense
output: | (None, 400, 32) output: (None, 1)

Y
input: | (None, 400, 32)

output: | (None, 400, 64)

convld_4: ConvID

 J

input: | (None, 400, 64)
output: | (None, 800, 64)

up_samplingld_2: UpSampling1D

Y
input: | (None, 800, 64)

output: | (None, 800, 21)

convld_5: ConvID

Figure 5.3: Neural network architecture of the discriminant autoencoder implemented
for this work, produced using Keras [4]. The first layer is the input layer, followed
by two blocks of convolutional layers that condense the input into the bottleneck.
Then, the decoder branch on the left performs the inverse transformation, upsampling
the bottleneck back to the original dimensions of the input. Finally, the discriminant
branch to the right helps teach the autoencoder what not to learn through the use of
random sequences.
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As described in background section 2.4 of the Background, neural networks are highly
parametrised models. These parameters were optimized through a systematic manual

exploration and the values can be seen in Table C.1 of the Appendix.

Since the network is a discriminant autoencoder, randomly generated sequence data
was added to the training dataset for the discriminant to learn from, to teach the
neural network "what not to know”. This was done by creating amino acid sequences
that start with a methionine, followed by a random assortment of the 20 amino acids,

for a random sequence length between 150 and 800 residues.

The training process was then as follows: at every epoch, the training dataset is shuffled
along with the concatenation of 5000 randomly generated sequences. Then, for every
epoch, the training data is input in batches of 16 sequences, which is a standard batch
size number. This occurs for five epochs, with newly generated random sequences at

every iteration.

To assess the performance of the training process, after five epochs all the sequences
of the training and testing datasets described in section 5.1 are passed through the
autoencoder. Then, the reconstructed sequence is aligned to its respective original se-
quence using global Needleman-Wunsch pairwise alignment [65]. The average training

and testing pairwise identities were finally produced as a result.

5.2.4 Generation of novel enzyme sequences

Novel synthetic enzymes were generated from the autoencoder using the same method
as Costello and Martin [184], which is made up of steps 1 to 3 Figure 5.5. A template
set of enzyme sequences as input was chosen and then encoded into the latent space
vector. Then, the mean and covariance matrix of the latent space vector was computed.
Using the mean and covariance matrix of the template, a Gaussian distribution was
then modelled and sampled from. Specifically, each sample represents a bottleneck
vector representing the learned latent space. Each of these vectors were then finally

decoded, creating a cohort of novel and synthetic primary sequences.

The template enzyme sequences were chosen from the AKR family, as they are highly

diverse biocatalysts of interest to industry. AKRs have the PFAM id PF00248, which
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Cumulative Probability Distribution of One-Match e-values for Synthetic Sequences
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Cumulative Probability Distribution of One-Match e-values for Synthetic Sequences
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Figure 5.6: Cumulative probability distribution plots of the e-value of one-match hits.
Dashed red lines are the Q25, Q50, Q75, Q90 (90" percentile) thresholds. Synthetic
sequences below the Q90 value were discarded for both clades.
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was used to retrieve all of the prokaryotic AKRs available on Swiss-Prot. The resulting

dataset contained 59 enzymes, which will be referred to as AKR59 henceforth.

An approximately-maximum-likelihood phylogenetic tree for AKR59 was produced
using ClustalOmega [67] and FastTree [155], which can be seen in Figure 5.4. It
can be seen that the tree contains two major clades, one in red (Cladel) and one
in blue (Clade2). Cladel contains 39 enzymes, while Clade2 contains 20 enzymes.
Therefore, to produce a panel of synthetic enzymes that is representative of the AKR
family, sequences were generated using each clade as individual templates rather than
using all of AKR59 as one template. For each clade, 50,000 synthetic sequences were
generated, for a total of 100,000.

5.2.5 The filtering pipeline

To better assess the viability of synthetic AKRs produced as described in the preceed-
ing section, it is necessary to identify and filter those most likely to be functionally
viable enzymes. This need is especially true for testing these enzymes under laboratory

conditions. This filtering process can be seen in Figure 5.5 from step 4 to 9.

In the first step of the filtering, step 4, a BLAST search (at an e-value threshold of
le~1%) was performed for every synthetic sequence to its respective clade template set.
The best scoring match in terms of e-value is kept and recorded. In this work, this pro-
cedure is referred to as ’one-match BLAST’. This was done by first making a BLAST
database out of each template clade using makeblastdb [40, 64], and then running
BLAST using each synthetic sequence as a query against this database, recording the

best match. Enzyme sequences with no matches were immediately discarded.

Then for step 5, the distribution of e-values for all one-match hits was computed, and
all sequences below the 90 (Q90) percentile were discarded. This step helps better
guarantee that the remaining enzymes have a core similarity with the sequences in
AKR59. Steps 4 and 5 of the filtering pipeline reduce the number of enzyme sequences
50,000 for each clade to 5,090 and 5,251 for Cladel and Clade2, respectively. The

cumulative probability distribution of the e-values can be seen in Figure 5.6.

Step 6 consists of identifying the minimal set of InterPro signatures the enzymes of
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Table 5.2: Table describing the four different InterPro signatures contained in the min-
imum set of signatures for the AKR59 enzymes. All four of these InterPro signatures
are present in all template enzymes for both clades, and are used to filter out synthetic
sequences that are unlikely to be viable.

Signature Description Database
IPR023210-PF00248 Aldo/keto reductase family PFAM
IPR023210-cd06660 Catalytic tetrad CDD
IPR036812-G3DSA:3.20.20.100 NADP-dependent oxidoreductase domain CATH-Gene3D
IPR036812-SSF51430 NAD(P)-linked oxidoreductase SUPERFAMILY

AKR59 have, and filtering out synthetic enzymes not fully containing this set. This
step was performed to guarantee that the chosen synthetic sequences have the mini-
mum sequence features that all AKRs are expected to have. The InterPro signatures
for the synthetic sequences were computed using InterProScan ([54]). The minimum
set of InterPro signatures for the AKR59 enzymes was then extracted, and consists of
four different signatures from four different databases (Table 5.2). After this step 719

sequences remained for Cladel and 214 for Clade 2.

In step 7, an MSA was produced containing both the remaining synthetic sequences
and AKR59. A catalytic tetrad made up of four functionally important residues is
known to be conserved in almost 100% of the AKR59 sequences. Using the Cladel
sequence P74308 as reference, these are D-52, Y-57, K-86, and H-119. In an effort to
guarantee the presence of the correct catalytic residues in the synthetic enzymes, step 7
discards synthetic sequences that do not have all four of these residues conserved when
examined on the MSA. After this step, there are only 280 and 23 synthetic sequences

remaining for Cladel and Clade2, respectively.

For the next step of the filtering pipeline (step 8), one-match BLAST similarity net-
works were produced, where nodes are either AKR59 enzymes or synthetic enzymes,
and edges are made between the latter and their one-match template sequences. As
each synthetic node has only one edge, connected components form on this network,

with template enzymes as hubs (Figure 5.7).

Finally, for step 9, the synthetic enzyme with the best e-value was selected from
each connected component and then passed to the homology modelling web-interface,
SWISS-MODEL [78]. The purpose of this step is to assess how likely a synthetic
enzyme sequence is to fold by modelling their tertiary structure. SWISS-MODEL
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Figure 5.7: One-match BLAST similarity network, where nodes are either AKR59 (red
nodes) or synthetic sequences (blue nodes), and edges are made between the latter and
their respective one-matches. The top hit of each cluster was selected for assessment
by SWISS-MODEL, each of which was ranked based on QMEAN score. The top 15
of each clade were kept.

produces an aggregate score called the QMEAN, with a score higher than -4.00 be-
ing considered a statistically good model. Finally, synthetic enzymes passed through
SWISS-MODEL are ranked and selected based on their QMEAN scores. From each
clade, 15 synthetic enzymes were selected, for a total size of 30 synthetic AKRs. This
set is referred to as SynthAKR30 henceforth.

5.2.6 Assessment of predicted sequences

The performance of the discriminant branch in distinguishing between native and
random sequences can provide information on whether the black box neural network
model used has learned features inherent to enzymes. This performance was therefore
assessed by sampling 100 random enzyme sequences from Swiss-Prot at 50 residue

intervals from a range of 150 to 800. For example, 100 sequences of random length

- 146 -




Chapter 5: Autoencoder-generated sequences for artificially increasing enzyme family
diversity

were chosen from the range of 150-200 residues, another 100 sequences were chosen
from the range 200-250, and so on. Then, for each of these sequences, a random
sequence of the same length was generated. Both the native and random sequences
are then passed to the trained autoencoder, and the prediction of the discriminant is

retrieved. A truth table analysis was then performed with these definitions:

True positives: when a native sequence is predicted as native.

False positive: when a random sequence is predicted as native

e True negative: when a random sequence is predicted as random

False negative: when a random sequence is predicted as native

Three performance measures were recorded: the precision, the recall, and the F1l-score.
The precision helps interpret how confident the neural network is when it predicting
sequences as native, while the recall helps interpret how many of the total native
sequences the neural network is able to recover. The F1-score is the harmonic mean

of the precision and recall, providing an aggregate score.

To visualise the similarity in the latent space between native and predicted sequences,
two dimensionality-reduction techniques were used: principal component analysis (PCA)
and t-distributed stochastic neighbour embedding (t-SNE). PCA and t-SNE plots were
produced to compare the sequences of the training dataset with their reconstructed
sequences after decoding. These techniques were also used to compare the AKR59 and
SynthAKR30 sequences. Sequence similarity networks (SSN) were also generated for
the union of the latter two sets, which are networks where nodes are sequences and

edges are made between nodes sharing a pairwise global identity higher than some set

threshold.

To assess the potential viability of the synthetic AKRs, multiple in silico tools were
used. First, DEEPre, which is a machine learning tool that predicts EC class for
enzyme sequences, was used to provide functional labels to the synthetic AKRs. These
annotations were looked at in-depth. In a similar vein, the metaserver I-TASSER was

used on the synthetic sequence with the most significant e-value (due to I-TASSER
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being computationally slow as discussed in section 2.3.3) to get an in-depth analysis

of the quantitatively best synthetic enzyme generated.

Finally, detection of low complexity regions low complexity regions (LCRs) was per-
formed on the SynthAKR30 sequences to assess whether the synthetic sequences have
LCRs that align with what would be expected of working AKRs. More specifically,
the prevalence of simple perfect repeats (SPRs) of amino acids, as defined by Luo and
Harm [186], from repeat sizes 2 to 4 were computed for SynthAKR30 and AKR59.
SPRs are repeats where the same amino acid is repeated in a sequence 2 or more times
in a row. The prevalence was calculated using two equations: Ru,c (Equation 1),
which is the individual amino acid repeat frequency average for some set of sequences
C, and R¢ (Equation 2), which is the per clade amino acid repeat frequency average.
For aa being a perfect repeat of one of the 20 amino acids, the Raa,C simply sums up
the number of occurrences of said repeat |R,,| in the sequences of set C', and then
averages them up. This metric is calculated per amino acid repeat. Rc on the other
hand is the average number of perfect repeats per sequence for all such repeats, for one

of the two clades. Per perfect repeat length from 2 to 4, the Re sums up the amino

acid repeat frequency average for the sequences of a clade.

- > | Raa,
RMC — £i=0177aai] (1>
C]

R
Be =" Rune @)

aa=0

5.2.7 FExperimental expression and solubility study of syn-
thetic AKR sequences

Of the 30 enzyme sequences in SynthAKR30, 25 were successfully cloned and trans-
formed into a host organism to assess how well they express. Specifically, these 25
sequences were assembled from codon optimised gene fragments provided by Twist
Biosciences into pET28a vectors via Ndel and Xhol restriction sites. Sequence ver-
ified plasmids were then transformed into FEscherichia coli strain BL21(DE3) onto

kanamycin containing agar plates.
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A single colony from each of the 25 synthetic-sequence containing plates was picked
and grown for 8 hours in 10mL LB media at 35°C, induced with isopropylthio-(-
galactoside (IPTG) and left to continue growing for 16 hours at 25°C. 1.5mL of cell
culture was harvested via centrifugation at 13,000 rpm for 1 minute using a SLA-3000
rotor, resuspended in 0.3mL pH 7.5 sodium phosphate buffer, and then finally lysed
via sonication at 4°C. Total cell fraction sodium dodecyl sulphate—polyacrylamide gel
electrophoresis (SDS-PAGE) samples - which contain all of the cell’s contents - were
prepared from 15ul of the sonicated material. The remainder was then centrifuged

for 5 minutes at 13,000 rpm using a SLA-3000 rotor.

Finally, cell free extract samples were prepared from 15uL of the supernatant. Samples
were boiled for 5 minutes in a water bath and run on 12% acrylamide SDS-PAGE gels.
On the gels, the total cell fraction samples showed the level of protein expression, while

the cell free extract columns showed the level of protein solubility.

5.3 Results

5.3.1 Reconstruction of native sequences

An initial objective of the discriminant autoencoder built in this work is to encode
enzyme sequences into condensed bottleneck representations, and reconstruct (i.e. de-
code) them back to their original sequences at a high degree of accuracy. Through
the training process, the autoencoder will learn important features that summarise
proteins in the bottleneck. The reconstruction accuracy of the autoencoder on the
training and testing data was assessed by aligning reconstructed sequences to their
corresponding native sequence in a pairwise global alignment. The pairwise identity

resulting from these alignments is therefore interpreted as the reconstruction accuracy.

The average reconstruction accuracy for the training and testing dataset can be seen
in Table 5.3, along with the number of reconstructed sequences that have at least one
gap in their respective alignment. Widespread gapped sequences would represent a
type of error indicating the autoencoder could not reconstruct sequences back to their
original length, due to insertions and deletions, and therefore could not learn protein

length as a basic feature.
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Table 5.3: Table showing the reconstruction performance of the discriminant autoen-
coder for the training and testing datasets.

Dataset Size  Average Reconstruction Accuracy Gapped sequences
Training 244,514 98.10%+1.0 74
Testing 5,309 98.02+0.9 1

The sequence reconstruction for both training and testing datasets is almost exact,
with average reconstruction accuracies above 98% for both. Overfitting on the training
dataset is unlikely due to the high average reconstruction accuracy also shown for the
testing dataset, which is made up of unseen data, as described in section 2.4. Also,
the number of sequences with gaps is negligible for both datasets, with 99.97% and
99.99% of the training and testing sequences reconstructed exactly to the length of

their native sequences, respectively.

These results therefore show that there is no loss of significant information when
sequences are encoded into the bottleneck layer, as enzyme sequences are reconstructed
to a high degree of accuracy when passed through the decoder. These results also
imply that the main error type introduced in the decoding process is mismatches,
with negligible insertions and deletions. These mismatches also do not occur in large
enough numbers to put into question the autoencoder’s ability to encode and decode

sequences accurately.

To verify whether this high level of reconstruction is consistent across different enzyme
lengths, the reconstruction mismatch rate was plotted against sequence length for both
training and testing datasets as a scatterplot, which can be seen in Figure 5.8, with
the red line representing the average mismatch rate m. The mismatch rate is the
complement of the reconstruction accuracy e.g. if a sequence is reconstructed at 98%
accuracy, its mismatch rate is 1 — 0.98 or a mismatch rate of 0.02. Indeed, there is
no noticeable pattern of a worse mismatch rate at particular lengths, bar some very
short sequences in the training dataset with lengths below 100 residues. One reason
for these few exceptions could be due to a negligible amount of enzymes with such

short sequence length in the training dataset.

A similar length-based assessment was performed on the discriminant, with the preci-

sion, recall, and F1-score being computed for the predictions made by the discriminant
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Reconstruction Mismatch Rate vs. Sequence Length
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Figure 5.8: Scatterplots showing the mismatch rate versus sequence length for both
the training and testing datasets. There is no significant correlation between length
and mismatch rate except for some small sequences below 100 residues in the train-
ing dataset, with the average mismatch rate m being equal to 0.02 mismatches per
sequence.
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Performance of the autoencoder discriminant
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Figure 5.9: Plot showing the performance of the discriminant autoencoder based on
sequence length using precision, recall, and Fl-score. Native sequences from UniProt
were sampled for different length ranges, and random sequences of similar sizes were
generated. All these sequences were passed to the discriminant, and assessed based
on the following definitions: true positives are when a native sequence is predicted
as native, false positives are when a random sequence is predicted as native, true
negatives are when a random sequence is predicted as random, and false negatives are
when a random sequence is predicted as native. The recall is always flawless while the
precision performs better for longer sequences.

for the sampled enzyme sequences (as described in section 5.2.6), plotted onto Figure
5.9. A noticeable imbalance between recall and precision can be seen, as the recall is
equal to 1 across all sequence lengths, while the precision starts at 0.6 for the sequence
length range 150-200. However, as the sequence length increases, the precision also
increases, especially from 350 residues and above. The precision does decrease for the
450-500 range, before increasing again and converging with the recall from a sequence

length of 600 and above.

A potential reason for this pattern lies enzyme sequences increase in the length dis-

tribution of the training dataset. As shown in Table 5.1, the average sequence length
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of the training dataset is of 351.5 residues. Therefore, the autoencoder is likely to
better distinguish between native and random enzyme sequences of that length and
above due to more experience. Also, the trend of higher precision at higher sequence
lengths could be due to a higher amount of recognisable features the bigger an en-
zyme sequence is. Therefore, while the discriminant could perform better for shorter
sequence lengths, this data could still imply the autoencoder has learned important

features that enzymes should have.

To assess the similarity of the native and reconstructed sequence classes, two dimensionality-
reduction techniques were used: PCA and t-SNE. These plots can be seen in Figure
5.10. If sequences are being reconstructed accurately, the two groups should not sepa-
rate. Indeed, for both the PCA and t-SNE plots not only do the native and predicted
sequences not separate into clear groups, there is high overlap between native and
predicted sequences in where they are laid out in two-dimensional space. This result
is further confirmation that the discriminant autoencoder learned how to accurately

reconstruct protein sequences from the smaller condensed latent space.

5.3.2 QOwverview of the SynthAKR30 dataset

The SynthAKR30 dataset was sampled from the synthetic sequences after using the
filtering pipeline described in section 5.2.5, with 15 sequences from Cladel and 15
sequences from Clade2. The primary sequences of the SynthAKR30 enzymes can be

seen in the Appendix section C.

In Figure 5.11, the distributions of three different scores can be seen for each clade:
the one-match e-value, the one-match sequence identity, and the QMEAN of their
generated SWISS-MODEL structures. These scores provide an overview of how similar
to native enzyme sequences the SynthAKR30 are, based on sequence alignments for the

e-value and pairwise sequence identity, and on homology modelling for the QMEAN.

In terms of e-value, the scores are high for both clades, with distributions ranging from
around 1e~300 to le — 375 for Cladel, and from around 1e~300 to 1e~400 for Clade2.
Cladel also has two outliers, with one sequence with a one-match e-value of around

1e7150 , and another of around 1e7400. The distribution of e-values is more spread
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Figure 5.10: Dimensionality reduction plots for native and reconstructed sequences.
Both the t-SNE and PCA plots confirm an essentially flawless overlap between native
and reconstructed sequences, with many sequences and their reconstructed counter-
parts having extremely similar values.
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out for the synthetic Clade2 sequences. In terms of the one-match sequence identity,
Cladel’s distribution leans slightly higher than Clade2’s, with ranges from around 0.72
to 0.83 for Cladel and 0.67 to 0.77 for Clade2. Cladel yet again has two outliers, one
at each end of the distribution. Overall, for both of these two similarity measures, the
SynthAKR30 sequences have high sequence similarity to their respective one-match

AKR59 enzymes.

Finally, the QMEAN score distribution is skewed higher for the Cladel sequences than
for Clade2, with a range from around -3.0 to around -1.5 for the former, and from -5 to -
1.5 for the latter. Such a result implies that it is harder for SWISS-MODEL performing
homology modelling for Clade2 sequences, likely due to a lack of structural templates
to rely on. However, this result does not imply that Clade2 enzymes sequences are less
likely to be functional, especially since both clades peak around the same QMEAN
score, and since both clades also have highly scoring one-match e-value and sequence

identity distributions.

5.3.3 Comparative analysis of SynthAKR30 and AKR59

Since the sequences of SynthAKR30 were generated using the two clades of AKR5H9, a
comparative analysis to see how the predicted sets compare to their native sets could

indicate how likely the synthetic sequences are to being viable enzymes.

First, SSNs were built for the union of AKR59 and SynthAKR30 at sequence identity
thresholds of 40%, 50%, 60%, and 70% (Figure 5.12). There are zero edges between
the native Cladel and Clade2 sequences, an observation that the synthetic sequences
also emulate across all thresholds, and therefore showing consistency between native
and synthetic sequences. Also, it is clear from these SSNs that the distribution of the
synthetic sequences does depend on the distribution of the template sequences - most
of the synthetic sequences of each clade are part of the largest connected component

for that clade (indicated by orange arrows).

The density of the subgraphs for native and synthetic sequences of each clade at
each threshold can be seen in Table 5.4. When comparing the clades, it is clear

that Cladel sequences are more densely connected than Clade2 for both native and
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i

. C1-Native D C2-Native
. C1-Synth . C2-Synth

Figure 5.12: SSNs at 40%, 50%, 60%, and 70% identity thresholds for the AKR59 and
SynthAKR30 sequences. There are no edges between the two clades for any threshold
for the native sequences, an observation repeated by the synthetic sequences. Most
synthetic sequences are part of the larger connected components of each clade, implying
that sequence bias will affect the diversity of generated sequences.

Table 5.4: Table containing the SSN subgraph density for both clades, for both AKR59
and SynthAKR30, and across identity thresholds of 40%, 50%, 60%, and 70%.

Threshold 40% 50% 60% 70%
Clade Cladel Clade2 Cladel Clade2 Clade 1 Clade2 Cladel Clade2
AKRS59 subgraph density 0.648 0.037 0.310 0.037 0.242 0.026 0.128 0.026

SynthAKR30 subgraph density  0.638 0.400 0.371 0.400 0.305 0.219 0.105 0.019

synthetic sequences except for threshold 50%, where the Clade2 synthetic subgraph is
slightly more dense than its Cladel counterpart. This pattern being present in AKR59
and also mostly present in SynthAKR30 reinforces the hypothesis that the synthetic

enzyme sequences are similar to their respective templates.

Finally, for all thresholds, the synthetic Clade2 subgraphs have higher density than

their respective native subgraphs. This observation is made evident by the relatively
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high amount of edgeless nodes in the C2-Native subgraph, and implies a less diverse

representation of the Clade2 sequence space in SynthAKR30.

This less diverse representation of its template’s sequence space compared to Cladel
is likely due to a higher baseline sequence diversity in the native Clade2 enzymes, as
shown by its comparatively lower densities for the latter across all thresholds. As the
latent space of a template set is sampled from to generate synthetic enzymes, sequence
space that is better represented in the template is more likely to be sampled from, as
evidenced by the dense components shown in Figure 5.12. An implication of the
latter observation is that the latent space sampling method used here can be affected
negatively by sequence bias. However, given that the synthetic Clade2 sequences
are still less dense than synthetic Cladel sequences across most thresholds, a higher

amount of catalytic diversity would stilll be expected in the synthetic Clade2 enzymes.

The evolutionary relationships between synthetic sequences and their native templates
was explored using a phylogenetic tree, which is shown in Figure 5.13. This tree
still displays a two-clade structure after the addition of the SynthAKR30 sequences.
Much like in the SSNs, synthetic sequences clustered with their respective templates

unanimously.

Most of the synthetic sequences across both clades on this tree can be traced back to
a common ancestor that is evolutionary close to at least one native sequence. This
is evidenced by negligible branch lengths from native sequences to said common an-
cestors (highlighted in orange). This observation implies that the native sequences
phylogenetically closest to synthetic sequences function similarly to direct ancestors.
This observation could imply that the autoencoder is sampling from the space around

individual template sequences, resulting in modified versions of them.

For further analysis on where the synthetic sequences lie relative to the native se-
quences, two dimensionality reduction plots were created out of the latent space of
both AKR59 and SynthAKR30: t-SNE and PCA, which can be seen in Figure 5.14.
The first observation of note is that on both plots there is a clear separation between
the two clades for both native and synthetic sequences, with synthetic sequences yet
again being grouped up with their respective template sequences. Also, as was discov-

ered from the phylogenetic tree (Figure 5.13), synthetic enzymes are in close proximity
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Latent Space t-SNE of Native and Synthetic AKRs
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Figure 5.14: Dimensionality reduction plots for native and reconstructed sequences.
There is a clear separation between the two clades for both native and synthetic se-
quences. Also, all synthetic sequences are in close proximity to at least one native

sequence, giving further credence to the hypothesis that the sampling of generated
sequences occurs with individual templates as a base.
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to at least one native enzyme, instead of being spread out across the clade space ran-
domly. This observation is consistent with the hypothesis that synthetic sequences are

generated directly from the space around individual template enzymes.

In conclusion, it is clear that sequence similarity patterns existing in AKR59 - such as
Cladel being less diverse than Clade2 - also exist for SynthAKR30. The distribution
of sequences that are viable across the templates was also discovered to depend highly
on the sequence distribution of the templates themselves. Finally, the results of this
section also point at a possible mechanism that the autoencoder uses to generate novel
sequences, which is to directly pick around the latent space of individual template
sequences. This mechanism clearly results in synthetic enzymes that are highly similar

to the native template enzymes, with some modifications.

5.3.4 Functional and structural predictions for the SynthAKR30
sequences

Many computational tools exist for the sequence-based prediction of function. It may
therefore be possible to verify the functional viability of the SynthAKR30 sequences in
silico by using tools which predict function from primary sequence, examples of which

were discussed in section 2.3 of the Background.

First, the synthetic sequences were analysed with the web-tool DEEPre [28], which
is an Enzyme Commission (EC) classifier. The resulting predictions can be seen in
Table 5.5. While DEEPre makes very confident predictions of the first three levels of
an EC number (section 2.3), the fourth and most specific number is a more compli-
cated problem. Nonetheless, for the purpose of this study, the predictions made by
DEEPre are assumed to be true to make assess the possible catalytic diversity of the
SynthAKR30 dataset. The set of predicted EC classes was also compared to the set
of EC annotations that the AKR59 enzymes contain on Swiss-Prot. This comparison

can be seen in Table 5.6.

Across both clades, the synthetic sequences were predicted as having seven different
EC classes. Table 5.6 shows that all seven of the predicted functions are valid AKR

functions, which we would expect for functionally viable sequences. As was predicted
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Table 5.5: Table showing the DEEPre-predicted EC classes for the SynthAKR30 se-
quences. The EC classes in red represent the four predicted reactions that are unique

to SynthAKR30 relative to AKR59.

Synthetic Sequence Predicted EC Synthetic Sequence Predicted EC
41284 cl 1.1.1.188 4466_c2 1.1.1.2
12268_c1 1.1.1.274 9223_c2 1.1.1.316
23919_c1 1.1.1.274 26444 c2 1.1.1.317
11553_cl 1.1.1.346 2957_c2 1.1.1.317
11719_cl 1.1.1.346 33894 _c2 1.1.1.317
16119_cl 1.1.1.346 45873 _c2 1.1.1.317
23716_cl 1.1.1.346 49250_c2 1.1.1.317
26539_c1 1.1.1.346 9840_c2 1.1.1.317
32249_c1 1.1.1.346 13192_c2 1.1.1.65
36404_c1 1.1.1.346 23504 _c2 1.1.1.65
42186_c1 1.1.1.346 23827_c2 1.1.1.65
45878_cl 1.1.1.346 26535_c2 1.1.1.65

6626_c1 1.1.1.346 26820_c2 1.1.1.65
8092_cl 1.1.1.346 43465_c2 1.1.1.65
9261_cl 1.1.1.346 5050_c2 1.1.1.65

Table 5.6: Table showing the comparative set membership of EC classes for AKR59
and SynthAKR30. The EC classes predicted by DEEPre for the SynthAKR30 are
those shown in table 5.5, whereas the annotations of the AKR59 enzymes originate
from Swiss-Prot. While there is an overlap between the EC classes represented by
both sets, both datasets represent EC classes that are unique to themselves. All four
of the EC classes unique to the synthetic sequences do represent aldo/keto reductase
functions.

Membership EC class Description
1.1.1.184 Carbonyl reductase (NADPH)
1.1.1.122 D-threo-aldose 1-dehydrogenase
Unique to AKR59 1.1.1.218 Morphine 6-dehydrogenase
1.1.1.107 Pyridoxal 4-dehydrogenase
1.1.1.283 Methylglyoxal reductase (NADPH)
1.1.1.2 Alcohol dehydrogenase (NADP(+))
1.1.1.316 L-galactose 1-dehydrogenase
Unique to SynthAKR30 1.1.1.317 Perakine reductase
1.1.1.188 Prostaglandin 11-ketoreductase

1.1.1.274  2,5-didehydrogluconate reductase (2-dehydro-D-gluconate-forming)
Present in both 1.1.1.346  2,5-didehydrogluconate reductase (2-dehydro-L-gluconate-forming)
1.1.1.65 Pyridoxal reductase

in section 5.3.3, the Clade2 synthetic sequences have more diversity in predicted EC

classes, with four of the seven EC classes being unique to them (Table 5.5).

The AKRA59 sequences have eight different curated EC classes on Swiss-Prot. Of those
eight, almost half of them are also present in the EC classes predicted for SynthAKR30,
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Seqld%: 86.9% e-val: 403 QMEAN: -1.44
12268 _c1 1 MTGFAGAAPAPSITLNDEHTMPVLGLGVGELSDDETERAVAAALEIGCILIDTAYAYGNE 60
MTG +GAA APSITLNDEHTMPVLGLGV ELSDDETERAV+AALEIGC LIDTAYAYGNE
A1KMW6 1 MTGESGAAAAPSITLNDEHTMPVLGLGVAELSDDETERAVSAALEIGCRLIDTAYAYGNE 60
12268_c1 61 AAVGNAIRASGVDREELFVTTKLATPDGGFTRSQEACRASLDRLGLDEVDLHHIHPYAPP 120
AAVG AI ASGV REELFVTTKLATPD GFTRSQEACRASLDRLGLD VDL+ IH APP
A1KMW6 61 AAVGRAIAASGVAREELFVTTKLATPDQGFTRSQEACRASLDRLGLDYVDLYLIHWPAPP 120
12268_c1 121 VGKYVDAWGGMIQPRGEGAARSIGVSCFTAEHIENLIDLTFVVPAVIQRELHPLLPQDEL 180
VGKYVDAWGGMIQ RGEG ARSIGVS FTAEHIENLIDLTFV PAV Q ELHPLL QDEL
A1KMW6 121 VGKYVDAWGGMIQSRGEGHARSIGVSNFTAEHIENLIDLTFVTPAVNQIELHPLLNQDEL 180
12268_c1 181 RDKNAQHTVVVQSYCCLALNRLLDNPTVTSIASEYTKTPAQVLLLWRLQLGNAVVVRSAR 240
R NAQHTVV QSYC LAL RLLDNPTVTSIASEY KTPAQVLL W LQLGNAVVVRSAR
A1KMW6 181 RKANAQHTVVTQSYCPLALGRLLDNPTVTSIASEYVKTPAQVLLRWNLQLGNAVVVRSAR 240
12268 _c1 241 PERIIIAFDVFDFELAHEHMDAAGGLNDGTPVREDPHTYAGT 282
PERI FDVFDFELA EHMDA GGLNDGT VREDP TYAGT
A1KMW6 241 PERIASNFDVFDFELAAEHMDALGGLNDGTRVREDPLTYAGT 282
Active Site Binding Site NADP Binding Site

Figure 5.15: Pairwise alignment of the template ezyme AIKMW6 and the synthetic
sequence 12268_c1. This synthetic sequence has the highest similarity to a template en-
zyme, with a sequence identity of 86.9%, a one-match -log(eval) of 403, and a QMEAN
score of -1.44 The active site, binding site, and NADP binding site, as annotated by
UniProt, is conserved for 12268 _c1.

with five of them being unique to the native sequences (Table 5.6). There is therefore
some overlap between the predicted EC classes of SynthAKR30 and the template

sequences used to generate them.

Interestingly, the synthetic sequences also have EC classes that are unique compared
to the native AKR30 set (Table 5.6). Furthermore, all four of these EC classes do
also represent enzymatic functions that are considered part of the AKR family. The
canonical AKR annotation is by no means complete, and the predicted EC classes are
not necessarily true until experimentally confirmed. However, these four EC classes in-
dicate that the autoencoder generated synthetic enzyme that are predicted to perform

relevant catalytic functions that are not known to exist in the template sets.

Next, the meta-server 'TASSER [82, 187, 188] was used to perform an in silico analysis
of synthetic sequence and structure. I-TASSER performs multiple different analyses,
including tertiary structure modelling, active site detection, and substrate binding

prediction, and is known to be a state-of-the-art method in these fields.

This analysis was limited to just one synthetic enzyme sequence due to I-TASSER

being a computationally time-consuming platform. To maximise the chances of useful
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predictions from I-TASSER, the synthetic sequence most similar to a native template
sequence was chosen. Consequently, 12268_c1, which is a Cladel sequence most similar
to the native sequence with the UniProt accession AIKMWG6, a D-threo-aldose 1-
dehydrogenase was selected. A pairwise alignment of these enzymes can be seen in
Figure 5.15, with the active site, binding site, and nicotinamide adenine dinucleotide
phosphate (NADP) binding site highlighted. 12268_c1 has a sequence identity of 86.9%
with AIKMWG6, a one-match e-value of 403, and its SWISSMODEL tertiary structure
has a QMEAN score of -1.44, all of which are high quality scores, making it a suitable
candidate for this study.

Key I-TASSER results for 12268_c1 can be seen in Figure 5.16. The normalized B-
factor, which is a measure of residue thermal mobility and stability, is plotted for the
whole sequence (Figure 5.16-A). Values of the B-factor below 0 (the red dotted line)
are considered more stable, and the opposite when above 0. The start and ends of the
sequence are seemingly unstable, as is expected [189], with most of the other residues
having stable values under 0. This result indicates that 12268_c1 has a potentially
highly stable tertiary structure.

One of the key results that - TASSER displays is the top five tertiary structure models
predicted. However, it is possible for this top five to converge to a single structure
if the model is good enough. The confidence score (C-score) given by I-TASSER can
range from -5 to 2, with higher scores signifying higher confidence in the predicted
structure. Indeed, the predicted structure for 12268_c1 did converge to one structure,
which can be seen in Figure 5.16-B. This converged model has a C-score of 1.43, which
is relatively high, and therefore implies that 12268_c1 is likely to have a structure
similar to one modelled by I-TASSER. This result implies that 12268_c1 is considered
to be similar enough to a native AKRs that a structure can be confidently modelled

for it by I-TASSER.

Part of the I-TASSER pipeline is to identify template experimental structures to help
with predictions, using TM-align [80] to assess tertiary structure alignment quality,
a tool which was described in section 2.3.3. The top template structure chosen by
[-TASSER has the PDB ID 40TK, and an alignment of its structure with the one pre-

dicted for 12268_c1 can be seen in Figure 5.16-C. The superposition of these two struc-
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tures is almost identical, and is made quantitatively evident through a high TM-score
of 0.977. This score is further indication of not just a higher likelihood of structural

viability for the synthetic sequence, but also of its viability as a potential AKR.

Finally, - TASSER attempts functional predictions for input sequences by identifying
binding and active sites, and potential molecules that could fit said sites, giving C-
scores that range from 0 to 1, the higher the score the more confident the prediction. In
Figure 5.16-D, the top binding site prediction can be seen as NADP, with a C-score of
0.65. AKRs always have either a nicotinamide adenine dinucleotide (NAD) or NADP
binding site, and the top template of 12268_c1, AIKMW6, indeed bears the latter.
Also, in Figure 5.16-E, the active site was predicted as bearing the EC class 1.1.1.274
with a C-score of 0.606, which is the same class predicted by DEEPre (Table 5.5),
and is indeed an AKR function. This second prediction of the same potential function
gives further credence to 12268_c1 being not just an AKR, but one that catalyses the
reduction of 2,5-didehydrogluconate. Such assertions of function from different sources

increases the confidence that SynthAKR30 enzymes could be functionally viable.

5.3.5 FExperimental expression and solubility of SynthAKR30
proteins

A common method of analysing synthetic proteins is to overexpress them in some
expression host system and then observe the level of expression using SDS-PAGE gels.
25 out of the 30 sequences from SynthAKR30 were successfully transformed into E.
coli strain BL21(DE3). Their the level of expression was inspected using SDS-PAGE
gels. Both the total cell fraction (TC) and cell free extract (CFE) were analysed, the
latter of which helps indicate the level of solubility of individual proteins. The primary
sequence and molecular weight of the different enzymes can be seen in the Appendix

section C

The gels can be seen in Figure 5.17. Odd numbered lanes contain the TC samples,
followed by even numbers being CFE samples e.g. lane 3 is the TC sample of 4466_c2
while lane 4 is its CFE sample. The marker lanes help identify the bands that corre-

spond to the individual proteins based on protein weight.

The TC lanes of the gels show that almost all of the 25 synthetic enzyme proteins
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were able to overexpress, including some with very dense bands like 33249_cl and
42196_c1. It can however also be seen that most of the proteins, whilst overexpressing,
are not soluble, with far lighter CFE bands only present for 23716_c1 and 23827_c2
(highlighted in orange), with the rest of the proteins not having noticeable bands in

the CFE lanes at the correct molecular weight at all.

While insoluble enzymes do not necessarily imply non-functional enzymes, one reason
for proteins to be insoluble is because they are misfolded. Given that almost all of the
25 synthetic proteins tested here appear to be insoluble, it might therefore be a pattern

for most of the sequences generated using the methods described in this chapter.

While it is difficult to clarify the reasons for such high levels of insolubility in the syn-
thetic sequences without further laboratory experiments, in silico methods could offer
some clarity. Therefore, an analysis of low complexity regions (LCR) was performed on
both the AKR59 and SynthAKR30 datasets, where patterns of simple perfect amino

acid repeats were identified, as repeats can have an impact on protein solubility [186].

In Figure 5.18, bar plots for different repeat sizes, for all 20 amino acids, for both clades,
and for both AKR59 and SynthAKR30, can be seen. It is clear that for every repeat
size, the synthetic sequences have significantly higher rates of repeats. Quantitatively,
for both clades and for all repeat sizes, the synthetic Rc is far higher than the native
R¢, ranging from 0.73 to 37.67 for the former, and from 0.1 to 17.5 for the latter.
While both native and synthetic sequences have significant amounts of repeats of size
2, there are multiple amino acids for which the synthetic Ry, is higher for both clades,
such as for glycine (GG), valine (VV), and leucine (LL). This difference in repeat
frequencies is even true for perfect repeats as long as 4 residues for both clades, but
especially so for k=3. The source of these unexpected patterns of repeats is likely as
to arise from incorrect artefacts of the decoding process, where smaller repeat patterns

common to the template sequences are mistakenly extended more than necessary.

Interestingly, multiple of the hydrophobic residues like valine (V) and leucine (L)
make up some of the highest amino acid repeats. Given that the more hydrophobic a
compound is the more insoluble it is, such a detail merited further study. In Figure
5.19, a histogram showing the counts of hydrophobic repeats for native and synthetic

sequences can be seen. It is clear yet again that the distribution of the number of
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Hydrophobic repeat counts for Native and Synthetic sequences

Bl Native
I Synthetic

Frequency

5 10 15 20 25 30
Repeat counts

23716_c1

Figure 5.19: Histogram showing the distribution o hydrophobic repeats counts for the
AKR59 and SynthAKR30 datasets. As was shown in Figure 5.18, synthetic sequences
have a higher amount of repeats on average than native ones. However, there is one
notable exception in the synthetic sequences, with 23717_c1 having just 9 different
hydrophobic repeats, a number which is more in line with native sequences. This
synthetic sequence is one of just two to show some amount of soluble expression, which
could be evidence of such repeats being a principle reason for the lack of solubility in
the synthetic sequences.

hydrophobic perfect repeats in the synthetic sequences are higher compared to the
native sequences, with a mean of 21.13 hydrophobic repeats for the former and 9.71

for the latter.

There is however one exception: 23716_cl, which is indicated by an arrow, has just
9 hydrophobic repeats, which is in line with the native sequences. This enzyme in
particular is one of the few synthetic sequences that displayed a noticeable level of
solubility (Figure 5.17). This exception could imply that the synthetic sequences are
insoluble partly due to a higher level of hydrophobic repeats than expected. Therefore,
most synthetic enzymes were able to overexpress in-vitro, it is likely that identifiable

characteristics of the synthetic sequences like the patterns of perfect repeats explain
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why most are insoluble.

5.4 Discussion and conclusions

While sequencing of environmental samples for the mining of potentially novel bio-
catalysts from metagenomes has become simpler over the last two decades, it is by
no means an easy process, especially for particularly novel organisms and sequences.
Studies generating functioning variants of specific enzymes [178] in silico have already
been successful, but as far as the author is aware, have not been replicated on an
enzyme family scale. Therefore, there is value in the synthetic generation of novel and

viable sequences to artificially increase available panels of enzyme families.

To this end, this work consisted of a study into the viability of enzymes generated using
a discriminant autoencoder neural network. Trained on all of the enzymes available
on Swiss-Prot, the autoencoder was trained to reconstruct primary sequences after
condensing them into smaller sets of features that are representative of proteins as a
learnable concept, called a latent space, which it achieved with high accuracy. This
latent space can then be sampled from to generate novel 'variants’ of sequences from

an input template set.

5.4.1 Strengths and limitations of the autoencoder approach

The output of the sampling of the latent space, after going through a strict filtering
pipeline, is a set of automatically generated synthetic sequences that was shown to
represent the sequence space around the template set. Specifically, high levels of simi-
larity was observed between the native template aldo-keto-reductases used in this study
and their synthetically generated counterparts, including similarity in sequence, pre-
dicted tertiary structure, and taxonomy. This similarity is a strength of the approach,
as generating synthetic enzymes similar to a given template set is a requirement for

potentially introducing novel properties to an enzyme family using this method.

Functional and structural predictions were performed on the sequences using state-of-
the-art tooling like DEEPre [88] and I-TASSER [82], showing that all of the synthetic

enzymes were predicted to belong to the AKR family, with features consistent with
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this designation like conserved catalytic residues and nucleotide-binding sites, pre-
dicted fold, etc., being present. Also, some of the more specific predictions like EC
classes were confirmed by multiple sources, like in the case of the synthetic enzyme
12268_c1, showing that the approach used in this work is capable of generating en-
zymes similar enough in both hypothetical function and structure in the eyes of modern

bioinformatics tooling.

To gain further experimental insight on their validity, the synthetic sequences were
expressed in E. coli, and their levels of expression and solubility were observed. Most
of the sequences were capable of overexpressing in-vitro, which is another noteworthy

strength.

However, the majority of the synthetic enzymes were found to be insoluble, which is
a significant limitation, as a likely implication of such widespread insolubility is that
they are misfolded. At such low levels of solubility, it is complex to extract enough
enzyme to perform characterisation studies. Therefore, it was not possible to test the
activity profile of the synthetic enzymes, which is another limitation of this study.
However, one likely reason for this weakness is a pattern of deleterious amino acid
repeats that are seemingly inherent to the machine learning approach used to generate
the sequences chosen for this work. An artefact of the training process such as this
is one that can likely be refined away through iterating on the model, but also on

improving the filtering pipeline in use.

Ultimately however, artefacts such as this are a likely indication that the neural net-
work architecture is not complex enough to learn a problem as complex as enzyme
structure and function. While the dimensions of the bottleneck layer relative to the
original input have been significantly reduced, it is likely that a vector size of 200x32
is still too large. Indeed, a latent space of size 200x32 is still a vector of size 6400 when
flattened - more than enough for a neural network to learn how to 'copy and paste’
any native enzyme sequence, and therefore overfit. An indication of this happening is

the significantly high average reconstruction accuracy displayed in Table 5.3.

In terms of methodology, while the training dataset is made up of over 200,000 man-
ually curated sequences from Swiss-Prot, some sequences are very short. These short

sequences potentially could have impacted the learning process negatively, as sequences
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of such length are likely to be fragments rather than full sequences. Also, the protocol
for the laboratory experiments on the SynthAKR30 enzymes discussed in section 5.3.5
miss two crucial components: positive and negative controls. An enzyme known to
function as an AKR, and known to be soluble under the laboratory conditions used
in this work, would be an ideal positive control. Also, a soluble but non-AKR protein

like Green Fluorescent Protein (GFP) would function well as a negative control.

Finally, despite a large amount of manual work that was spent parametrising and
optimising the neural networks model, more systematic methods are available with
enough compute power. For example, genetic algorithms have been used to optimise
neural network parametrisation [190]. The simple model used here could be improved

by this kind of system.

5.4.2 A de movo approach to artificially maximise the di-
versity of enzyme family panels

Although it was unfortunately not possible to get a definitive conclusion on the func-
tional viability of the synthetic AKRs generated in this work, the results are promising
overall. The synthetic enzymes were all recognised as being close enough to native
AKRs by bioinformatics tools and that almost all could be overexpressed in wvitro, im-
plying that refinement of the training process to reduce regressive sequence artefacts
could be a final hurdle for generating functional synthetic enzymes of a particular fam-
ily. Such a possibility is backed up by the literature, with similarly produced synthetic
sequences proven to add value to training sets [177] and functional synthetic malate

dehydrogenases having very recently been constructed [178].

Therefore, a de novo approach for increasing panel diversity artificially using synthetic
sequences created by an autoencoder could be formulated. Not only does this approach
use the work shown in this chapter, but also the Maximum Diversity Problem (MDP)

method of diverse sampling from Chapter 4. This approach has four major steps:

1. Curate sequences of an enzyme family of interest, then create a template set

using the MDP approach.
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2. Feed the latter template into a refined autoencoder and sample from the latent

space X sequences.

3. Input X sequences into an improved filtering pipeline that selects Y potentially

viable sequences, discarding the rest.

4. Create a panel set of diverse synthetic sequences using the MDP approach and

characterise them in the laboratory.

This approach can also be iterative in nature, as any synthetic sequences proven to
work can be fed backwards - to the training dataset of the network and the template
sequences - resulting in further potential diversity at the next iteration. This approach
can therefore, pending necessary refinement of the method, help increase the known

diversity of enzyme families through artificial means.

5.4.3 Future work

An initial avenue of future work that could significantly improve the approach laid
out in this chapter would be a more automated optimisation of the neural network
training process. In particular, tuning parameters like the number of convolutional
layers, trying out different optimisers and batch sizes, etc., could result in a better
autoencoder for the purpose of generating novel enzyme sequences. As was pointed
out in the previous section, a further reduction of the dimensions of the latent space
would also be necessary to avoid the likely overfitting that occurred at training. Re-
latedly, provided higher levels of computational power for training like GPU nodes on
higher performance computing servers become available, the depth of the autoencoder
could be increased to the levels of deep learning, to allowing reduce the dimensions of
the bottleneck layer, potentially improving the feature vector that is learned by the

autoencoder.

Future work would not just concern the neural network structure and parameters,
but also the data it is trained on. While retrieving all of the enzymes from Swiss-
Prot created a dataset of over 200 thousand samples, which is substantial, there are

ways of increasing this dataset size by multiple magnitudes. For example, including
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enzymatic sequences from TrEMBL, while a little risky in terms of quality of data,
can be done in a safe way by adding high-similarity non-redundant subsets of it like
UniRef90 [191]. Such a change could easily increase the training dataset size to factors
of millions rather than hundred-thousands. Also, sequences below a certain size are
likely to be fragments rather than full sequences, which could reduce the quality of the
neural network. Filtering these out could therefore be another step forwards. In terms
of sequence bias, one could also help reduce it in the training dataset using tools like

cd-hit [192].

Finally, the last major avenue of future research identified is related to the generation of
the novel sequences from the trained autoencoder. While in this work the latent space
was sampled from using a gaussian distribution, other methods like training an entirely
new neural network with the latent space of a template as input could yield better
results. Also, it remains to be seen in more detail how much the size and diversity
of a template set affects the diversity and quality of the generated sequences. While
in this work the template set was split into two for phylogenetic reasons to provide
guaranteed spread, a bigger more representative set for the sequences as a whole might
have different qualities. Furthermore, with the revelation that the current autoencoder
model overly produces perfect simple amino acid repeats in its sequences, an extra step
to the filtering pipeline that scans sequences for such repeats and discards those above

the expected amount could be significant.

5.4.4 Conclusions

In this study, it was shown that the generation of novel enzyme sequences using a
discriminant autoencoder structure has strong potential as an approach for artificially
increasing the diversity of enzyme families. They were shown in silico to be highly
similar to native template sequences, and with further development can help increase
the functional and physiological profiles of enzyme families in a more accessible way,

due to the lack of a sequencing prerequisite for this approach.
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Figure 6.1: Figure showing the three main contributions of this thesis thus far.

6.1 Introduction

In the last three chapters, three methods were introduced for facilitating the generation

of enzyme family panels (Figure 6.1):

1. Coevolution similarity networks (CSN), which are a novel type of network based
on patterns of coevolving residues to complement sequence similarity based net-

works, in Chapter 3.

2. Sequence-based subset selection from diverse enzyme datasets based on solving

the maximum diversity problem (MDP), in Chapter 4.

3. Generation of structurally and functionally viable synthetic sequences using neu-

ral networks, in Chapter 5.

The methods in Chapters 3 and 4 help create panels for enzyme families of interest,
either by automatically selecting diverse subsets in the latter, or by revealing novel

functional groupings in a family in the former. The machine learning-based method of
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Chapter 5 attempts to add artificial diversity to enzyme family panels by generating
synthetic enzymes based on a curated template set. Therefore, all approaches discussed
so far exist to improve the panel curation process, resulting in sets of enzymes that
are likely to display high amounts of catalytic diversity. Optimising this process was
the principle aim of the research presented in this thesis, with the goal of positively
impacting the diversity of panels of novel biocatalysts that are taken to be characterised

in the laboratory.

For example, from a mined set of metagenomic enzymes of a family of interest, a
subset of enzymes can be selected by solving the MDP (Chapter 4), followed by a
polishing of the selection through an analysis that uses SSNs and CSNs (Chapter 3).
This subset can then be complemented with a panel of synthetic enzymes that was
generated using the machine learning-based approach introduced in Chapter 5. The
endpoint of a panel curated in this manner is to be assayed experimentally, as the

diversity of the panel can only be verified in the laboratory.

Characterisation assays performed on panels of enzymes help reveal knowledge about
their potential functions, whether an assayed activity is positive or negative. Also, it
is estimated that the number of discoverable and useful biocatalysts in metagenomic
samples ranges from 1.4 to 19 enzymes per million base pairs [30]. The amount of
diversity present in metagenome-scale data is therefore likely to be larger than the

amount of diversity that can be represented in a single curated panel.

Furthermore, all methods discussed thus far can exploit novel knowledge produced by
characterisation assays. For example, characterised enzymes can be annotated with
their revealed functional profiles, which can help with the interpretion of similarity
networks for future panels. Tested enzymes could also be filtered out for future rounds
of MDP-based selection, increasing the chances that novel sequence space will be
represented in the next panel. Finally, autoencoder-generated enzymes proven to be
functional could either be used as an additional source of training data for the neural
network, or to add further diversity to the template set. Therefore, the study of
enzyme families through panel creation and characterisation approaches would benefit

from being an iterative process in the long-term.
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6.1.1 Tooling gaps in iterative enzyme family exploration

A framework for such an iterative approach to enzyme family exploration that includes
experimental assays can be formulated, using metagenomic data as an example. This

framework is divided into four main steps (Figure 6.2):

1. The first step is dataset building. which consists of compiling a set of sequences
that are likely to be of some enzyme family. This step can be achieved using

tools like hmmsearch [70] or BLAST [40] as discussed in section 2.2.2 of the

Background.

2. The second step is panel preparation. A catalogue of sequences from the built
dataset is then built by using the analysis tools described in previous chapters,
such as MDP solvers (Chapter 4) and similarity networks (Chapter 3). Synthetic
sequences generated by the autoencoder (Chapter 5) can also be added to the

catalogue for extra artificial diversity.

3. The third step is laboratory characterisation. these sequences are characterised
in the laboratory, passing through the synthetic biology workflow of design-built-

test, producing metadata on the way.

4. The fourth and final step is learning. One can iterate on the next panel based

on what was learned from the characterisation assays, which is the learn stage.

However, it is not currently accessible to use this framework due to gaps in tooling
within and between individual steps (Figure 6.2). While every step can currently be
performed individually, the framework is not optimised due to a lack of appropriate
integrated tooling and storage platforms. For example, dataset building using multiple
metagenomes requires the recording of provenance for individual enzyme sequences and
metagenomes. Also, panel preparation methods are currently only accessible from the
command-line, and are not integrated to a platform that links to the enzyme datasets

built in step 1.

Furthermore, as discussed in section 2.5.3 of the Background, there is a lack in tooling

for the build and test stages of the synthetic biology lifecycle. Therefore, as enzyme
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characterisation assays pass through these stages, the data and metadata produced
does not have a bespoke storage platform to be stored on. Consequently, the datasets
built in step 1 cannot easily be integrated with the newly discovered functional profiles
of assayed enzymes. Finally, there is not currently a method of easily feeding back the

results of these assays into a learning process to iterate further.

Crucially, every step produces substantial amounts of data and metadata, for both
in silico and experimental steps, which need to be stored. For example, it is im-
portant to store the metagenomic sequences and the MDP-created subsets that are
computed from them. Autoencoder-generated synthetic sequences need to be traced
back to their original templates and the parameters used for their filtering. Further-
more, experimental protocols and the data produced by applying them, from gels to
characterisation data of individually tested enzymes, also need to be stored. Finally,
the synthetic biology lifecycle requires the storage of provenance links and other types
of metadata to store, from construct design, to construct building, to raw experimental

data.

The storage of these different data types and the relations between them is paramount
to the success of the approaches discussed in this thesis over the long-term. The lack
of integrated tooling that promotes an iterative approach to the characterisation of
enzyme families complicates the framework further. There is therefore a need for

tooling that fills these gaps, which was the second aim of this research.

6.1.2 Objectives

In this chapter, we describe two platforms to tackle the aforementioned gaps through

these three objectives:

1. The integration of the in silico panel preparation pipeline and enzyme charac-

terisation data.

2. The development of integrated platforms containing iterative functionality that

guides future assays based on the results of previous runs.

3. The development of storage platforms for data and metadata produced by in

silico and in vitro processes.
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The first platform is Integrative Enzyme Lab (IntEnz-Lab), which is a bespoke web-
interface that facilitates the laboratory-based exploration of enzyme sequences mined
from metagenomes. It does so by integrating the creation of diverse enzyme panels and
the assays that characterise them. This integration allows for an iterative approach
towards exploring such datasets where the next round of assays is informed by previous

results.

The second platform is SynBioHub-Lab, which is a repository for storing data about
the different steps of the synthetic biology lifecycle described in section 2.5.1 of the
Background - from design, to build, to test. Characterisation assays will pass through
every step of this lifecycle, producing data that can be uploaded to SynBioHub-Lab,

such as plasmid designs, built constructs, lab protocols, and experimental results.

Attribution: SynBioHub-Lab was developed in collaboration with Dr. James McLaugh-
lin. In particular, the initial code refactoring necessary to transition from using sboljs

[124] to sbolgraph, and from JavaScript to TypeScript, are fully attributed to him.

6.2 IntEnz-Lab

6.2.1 Background

IntEnz-Lab (Figure 6.3) is a bespoke repository that was developed to integrate en-
zyme family dataset building from metagenomic data, with the MDP-based creation
of diverse panels from said datasets. IntEnz-Lab also integrates these steps with the
characterisation data produced in the laboratory for said panels. A principle novel
feature of IntEnz-Lab’ is to use this integration to promote an iterative approach to
exploring enzyme families by guiding future enzyme panels based on what has been

characterised previously. The requirements of such a platform are fourfold:

1. A reliable database that connects enzyme family datasets to individual enzyme

sequences and the metagenomes they originate from.

2. Producing subsets of user-defined sizes that are likely to contain high catalytic
diversity using the MDP-based methods of Chapter 4, for the purpose of exper-

imental characterisation.
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3. Integrating the aforementioned database with results of characterisation assays

performed in the laboratory.

4. Assay-based sequence masking options that further narrow down the sequence

space to be explored in future panels.

IntEnz-Lab was built with these requirements in mind as an approach to the laboratory-

based iterative exploration of enzyme families and the diversity they contain.

6.2.2 Architecture of IntEnz-Lab

IntEnz-Lab is a platform consisting of two main services (Figure 6.4):

1. A web-interface that consists of both a frontend and a backend, with users inter-
acting with the former. The backend populates the webpages, and validates and
sends forms. Some forms lead to the running of workflows; from workflows that

run hmmsearch [193] for dataset building, to the MDP-based panel selection.

Family
Datasets

> Workflows

nexcflow

Ve
IntEnz:Lab >
&=

docker

Figure 6.4: The architecture of IntEnz-Lab. IntEnz-Lab is made up of two main
services: a web-interface that users interact with containing all of the necessary forms
for performing its functionality, such as workflows, and graph database that uses Neo4J
and that communicates with the back-end of the web-interface using a REST API.
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Figure 6.5: Database schema for the Neo4j graph database implemented for IntEnz-
Lab. It is made up of six entities and six relationships, which can be seen in more
detail in Figure 6.6.

2. A graph database that interfaces with the backend of the web-interface using a
bespoke REST application programming interface (API).

The webpages and endpoints of both the frontend and backend of the interface are
run entirely using Flask [194] and associated Python libraries. The workflows callable
using IntEnz-Lab are either packaged up in the Nextflow scripting language, or are
compiled binaries of software developed by others. Both the web-interface and the
collection of workflows are containerised using Docker [195] for software isolation and

ease of distribution.

6.2.3 Database Schema

IntEnz-Lab’s graph database uses Neo4j [196], a NoSQL database management system
(DBMS) based on graph storage, in contrast to traditional relational databases which

are based on the storage of tables and their relations.

The schema uses six different entities and six different relationships. All six entities
have both id and name properties, with the id functioning as a primary key. The
schema can be seen in graph format in Figure 6.5. The detailed entity-relationship

diagram of the schema in use by this database can be seen in Figure 6.6.

- 185 -




Chapter 6: Tools for an iterative laboratory-based approach to the exploration of

enzyme families

DI OART] TPIYA JO [[¢ ‘SOIIJD

1s : uondlosap~Aesse
21ep : a1ep Aesse
jeoyy : Apane

yyum palesse

9)ep : 9jep paulw
|00q : pa1SaY qge|
s : bas

11S :awouabejaw
120|} :|eAd

11s : aweu

ui: pi

awAzug

dWAzus~sey

‘Ayrodoxd Aoy o) Sureq Iouwiof oy Yym ‘serpredord swreu pue
ureur XIs aIe oIy [, ‘qe-zui{iu] Aq osn ur aseqeiep yders o) Jo wriseip dIysuorye@I-A)usy 9'9 9Insiyg

s : prrigayd
s : sweu
L p

punodwo)

I : azIs
1S : sweu
ul: pi

j1osejeq Ajlwey

19sqgns sey

(49sn Jo dpw) : adAy
ns : aweu
jul: pi

19sqns

yImpauiw

Ul D Wwnu” Lo

a1ep : a1ep buydwes
1S : 921n0S

jui: pl

awouabejap

1S : sweu
i

- 186 -



Chapter 6: Tools for an iterative laboratory-based approach to the exploration of
enzyme families

The first entity is Metagenome, which represents metadata about metagenomic as-
semblies uploaded to IntEnz-Lab, such as the physical source of the metagenome, its

sampling date, and the amount of ORFs identified on it.

The next entity is HMM, which represents profile HMMs representing individual en-
zyme families of interest. This entity is needed as hmmsearch is used by IntEnz-Lab

for dataset building.

Thirdly, the Family Dataset (or Famset for short) entity represents the individual
datasets of enzyme families of interest. In terms of architecture, this entity plays the
wrapper role of connecting three other entities in a way that makes logical queries
easier. For example, each Famset has precisely one HMM, which can have mined_with
relationships to many other metagenomes, allowing us to formulate queries that iden-

tify all of the metagenomes that were mined to create some family dataset.

The fourth entity is Enzyme, which represent individual mined enzyme sequences. In-
formation about each Fnzyme in the database includes peptide sequence, hmmsearch
e-value, a reference to the originating Metagenome, and importantly a boolean prop-
erty for whether the enzyme has been characterised yet in the laboratory. Enzyme
entities have a relationship to Famsets, so that all of the hits of a certain family stored

on the platform can easily be retrieved.

The fifth entity, Subset, is also connected to the Enzyme entity. It represents subsets or
panels produced by runs of the MDP algorithm. The relationship between this entity
and Enzyme makes it easy to find the members of any subset, and vice-versa whether
an enzyme already belongs to any generated subsets. This entity is also connected to

Famset to make it possible to find all of the subsets produced for a given family.

The final entity, Compound, represents chemical compounds that are assayed with
Enzyme entities for activity, resulting in assayed_with relationships between them.
Compound entities have properties that make it easy to identify the compound in
question, such as the Chemical Entities of Biological Interest (ChEBI) ID and name.
ChEBI is a standardised ontology for chemical entities [197]. The assayed_with rela-
tionship is the only one in this schema that has edge properties. These include assay

activity, allowing IntEnz-Lab to quantitatively store and identify how reactive assayed
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enzymes were with connected chemical compounds.

6.2.4, Database Splitting

The database schema is such that there will be at least N has_enzyme edges, where
N is the number of Enzyme entities in the database. If N were to get large enough
- which is possible with high amounts of different families and metagenome mining -

scaling could become an issue.

Therefore, to future-proof the database against this potential issue, the database is
split into different graphs, one for each Famset. This change guarantees that only
one enzyme family’s worth of nodes ever has to be loaded into memory at one time,
and the only other duplicate nodes possible are Metagenome, and Compound entities,
which are relatively negligible in number. In queries, the argument used to refer to a

specific Famset’s graph is db_name.

To allow for queries that retrieve all of the Metagenome and Famset entities in the
database, along with the mined_with relationships that are present in the database, one
further graph dataset called metagraph is created, where such entities and relationships

are also stored.

6.2.5 Database API

The database API is made up of 20 endpoints, 12 of which are GET endpoints, with
the remaining 8 being POST endpoints (Figure 6.7). In IntEnz-Lab, this API com-
municates between the Neo4j database and the backend of the interface. When any of
the endpoints are called, the requests are first validated, then converted into a Cypher

query to the Neo4j database.

For example, to retrieve all of the Enzyme nodes in the aldo-keto-reductases Famset,
the /api/get_all_enzymes/{db_name} endpoint is called with "aldo-keto-reductases” in
place of db_name. This endpoint then performs the following Cypher query on the

graph corresponding to the latter enzyme family:

MATCH (n:Enzyme)
RETURN n
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api Main APls

POST

/api/add_enzyme/{db_name}

POST

/api/add_enzyme_assay/{db_name}/{enzyme_ name}

POST

/api/add_famset/{db_name}

POST

/api/add_hmm/{db_name}

POST

/api/add_metagenome

POST

/api/add_metagenome/{db_name}

POST

/api/add_subset/{db_name}/{enzyme name}

POST

/api/create_db

)
m
-

/api/get_all compounds/{db_name}

- r ~ r ~ r ~ .

(2]
m
-

/api/get_all compounds/{db_name}/{enzyme_name}

()
]
-

/api/get_all dbs

o
m
-

/api/get _all enzymes/{db_name}

GET

/api/get_all enzymes/{db_name}/{subset_name}

Figure 6.7: Example GET and POST endpoints for the REST API developed for

IntEnz-Lab.

This basic query returns all of the Enzyme nodes that belong to the aldo-keto-reductases

Famset. The backend of the interface then processes the result of the query and

presents it on the IntEnz-Lab interface.
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Characterisation

@ ﬂeOLd Annotation
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Family HMM Tested Sequence || Characterisation
y Masking Assays
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Masked Subset
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Novel Family ¢ Maximally
Metagenome .
9 Sequences Diverse Panel
» hmmsearch pP——— — seqg-mdp

o

K

Figure 6.8: The main workflow and features available on IntEnz-Lab. There are six
main features, which are A- uploading of metagenomic assemblies, B- instantiating
a unified repository for metagenome-mined sequences of some enzyme family, C- the
mining of a metagenome for some enzyme family, D- the sampling of diverse enzyme
panels from hits using the MDP method (Chapter 4), E- the integration of character-
isation data into the IntEnz-Lab database, and F- the masking of sequences from the
database that were already characterised to guide future rounds of panel selection.

6.2.6 Features of IntEnz-Lab

IntEnz-Lab has six key features (Figure 6.8), which are the following:
1. Uploading metagenomic assemblies containing translated open reading frames
(Figure 6.8-A).

2. Instantiating to the database a unified repository for novel enzymes of a partic-

ular enzyme family, using an HMM profile as a base (Figure 6.8-B).

3. Mining a metagenome for an enzyme family using its uploaded profile HMM

(Figure 6.8-C). Mined sequences of this family are integrated with the unified
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repository so that a large knowledge-base made up of the results of various mined

metagenomes is built over time.

4. Sampling maximally diverse panels from metagenome-mined sequences by solv-

ing the MDP (Figure 6.8-D).

5. Uploading and integrating of enzyme characterisation data with the database

(Figure 6.8-E).

6. Masking of already assayed enzymes that were integrated in the previous step

for future rounds of MDP-based panel selection (Figure 6.8-F).

With these six functionalities, IntEnz-Lab is an accessible and centralised platform
that integrates the data types and bioinformatics pipelines necessary for the iterative

sampling and characterisation of putative enzymes mined from metagenomes.

6.2.7 An example walk-through of IntEnz-Lab

As IntEnz-Lab is driven by a web-interface, all of the features discussed in the precious
section are easily accessible. This section goes through an example walk-through of

IntEnz-Lab to show how such features are accessed.

In Figure 6.3, the landing page of IntEnz-Lab can be seen. At the top, a navigation
header can be seen, separating into two main tabs of pages - pages about metagenomes,

and pages about enzyme families.

As was discussed in the preceding section, the first feature of this platform is the
uploading of metagenomic assemblies. This feature is accessed in two ways: from the
metagenome tab in the header, and a button at the bottom of the landing page, as it
is chronologically going to be the first feature used. When either of these buttons are
clicked, a form is presented to the user requiring four different input fields: metagenome
name, metagenome source, sampling date, and an input FASTA file containing the
sequences from the assembly. The first three of the latter fields make up three of
the four properties of the Metagenome entity (Figure 6.6). Consequently, when the

form is validated and submitted, a Metagenome entity containing is created with the
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inputted values in the metagraph dataset described in section 6.2.4. The next step of
this walk-through is to the click on the header 'Metagenomes’ tab, and then on "View

Metagenomes’.

The following page displays a table containing all of the Metagenome entities in the
database along with relevant information about them (Figure 6.9). This information
displayed consists of the fields uploaded by the user in the preceding form, except
for one: ORFs. This number is the final property of the Metagenome entity, and
is automatically generated from the uploaded assembly FASTA file by counting the
number of sequences. This number is then be added to the newly created metagenome

node in the database. These two pages conclude the first feature of IntEnz-Lab.

The next step in this walkthrough, and the second feature of the interface, is to
instantiate a Famset for an enzyme family of interest. This feature is accessed by
clicking on the 'Enzyme Families’ tab and then on the 'Create Enzyme Family’ button
that presents itself. In a similar fashion to uploading a metagenome, a page containing
a form for the user to fill is displayed (Figure 6.10). This form has three required fields:
the name of an enzyme family, a description of it, and a file upload for an HMM file
corresponding to the profile of the enzyme family in question. While uploading a
metagenome only creates a node of entity type Metagenome, submitting this form
creates multiple: a Famset node is added to the metagraph dataset, a new dataset
named after the given enzyme family is created, and finally a Famset node and a
HMM node are added to the latter dataset, with the latter two nodes connected by a
mined_to edge. This step therefore instantiates a unified repository for mined enzymes
of a certain family, which is quantitatively described using the uploaded HMM profile.
The next step is to then click on the header 'Enzyme Families’ tab, and then on "View

Enzyme Families’.

In a similar fashion to the table displaying existing metagenomes, the "View Enzyme
Families’ page shows a table showing all of the created enzyme families thus far (Figure
6.11). Each entry has four columns: the name of the family, the given description, the
number of hits, and the corresponding HMM. The first two and the final column all
represent information input by the user for each family, while the number of hits is

initialised at 0 as can be seen for the ADH family in Figure 6.11, which changes later
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in the walk-through. The enzyme family names are clickable, leading to profile pages
for each individual enzyme family (Figure 6.11). As the ADH family is initially empty,
there is little to display on its page. However, each family page is presented with
multiple clickable tabs, including the "Actions’ tab. This tab contains three different
functions of IntEnz-Lab: mining a metagenome, creating a diverse panel, and adding
an enzyme assay. These individual enzyme family pages are therefore the hubs of the

platform, where pipelines can be run for enzyme families of interest.

The first action that can be performed for an enzyme family is the mining of a
metagenome. Selecting a specific enzyme family page and then clicking on the "Mine
a Metagenome’ button leads to another form page (Figure 6.12). This form is made
up of a single field: a drop-down menu that is populated by all of the Metagenome
entities created thus far. These action pages programmatically follow from individ-
ual enzyme family profiles, meaning that the context for which family a metagenome
should be mined for is inherently known. Therefore, when this form is submitted, the
HMM uploaded for a given family is located and used as input along with the selected

metagenome to hmmsearch with a default e-value threshold of 1e=5.

In the backend, a node of type Metagenome is then created in the relevant family
dataset, and connected to its HMM node by a mined_with edge. Following this,
for every sequence hit resulting from the hmmsearch run, a Enzyme node is created
with the appropriate values for its properties (Figure 6.6): the name and sequence is
retrieved from the FASTA header in the metagenome assembly file, and the e-value
is retrieved from the hmmsearch hit. The provenance metagenome property is also
stored, and the current date is assigned as the mined_date. Also, the lab_tested property
is initialised as Fulse. Finally, for each of these new Enzyme nodes, a has_enzyme edge

is created to the Famset node of the dataset.

With the database now populated with Enzyme nodes, the profile page for a mined
enzyme family changes significantly (Figure 6.12). First, a list of metagenomes that
were mined for this dataset are displayed. Also, a table is now populated by all of the
mined enzymes, and information relevant to them is displayed such as the originating
metagenome, the e-value for the hit, and whether they’ve been tested in the lab yet.

This table is dynamic and can be sorted differently, depending on the column that is

- 194 -



"ULIOJ oU) Ul poy NNH-o[yoid parmbox oy} 03 syuey) ‘qer-Zufju] SUISN SOWOUSRIOUI WOI] poulll seouanbas Aue
I0J SoL1031s0dol poyrun JO )SISU0D SOLIjue [ong “AIjue AJIurej swWAZuo Ue JUIPeaId I0] ULIOJ (R-ZUHIU] oY) JO JOYSU9DIDG ()] 9 2INTIq

uwans

*Bujuiw 1oy 359J3Ul Jo AjiLie) SWAZUS dY) SasIIeEWWNS JeYy) 3|1 INIAH 3[1yo4d e peojdn

uasoyp 3|1y ON | 3|1y 3s00Y)

9|4 WANH

- 195 -

uondunsaqg

aweN Ajlweq sawAzu3

Ajlweq4 swAzu3z ue a1eal)

Alweq awAzug ajeal) / swoH

A Soljlweq swAzug . sswouslesy SwoH  gel-zu3iu|

Wejzus 91ea1o/000s:Isoyed0] © O =

+ X qeT-zuaiy| Y

Chapter 6: Tools for an iterative laboratory-based approach to the exploration of
enzyme families




Chapter 6: Tools for an iterative laboratory-based approach to the exploration of

enzyme families

WA [IUN PI[RSIP A)I[RUOHOUN] JSOUT A )94

soowenbos 10} pourwr uooq jou sey 1 se Ayduwo A[psowr st oFed o[gord o) ‘pojerjueIsur JsIy WO A AJIUIR] dwAZUD oes 10] oged oigord
© 0} SUIPRO[ ‘O[(RDI[D oIe SOWRU I, oS Ul NJNH oY) Pue sy Jo Ioquinu o) SUIPN[OUL ‘SOI[IUIR] oWAZUS SUIISIXo A[JUSLIND oY)
IMOQe UOIJRULIOJUT SUTUIRIUO0D dS[r) ® sAe[dSIp yorym ‘98ed sor[iuue] oWAZUY MIIA, S} SUIMOYS (eTT-ZUHIU] JO JOYSURING :TT°Q 9INSL

1£1004d

S51004d

paJT3y oply

WIWH

L10T

9ce

SUH

19K Ajlwey siyy Joy sawoua8eiaw Aue pauiw 3,Usney NOA

A SUOIY

Hay / saljiwey dWwAzul MalA / SWOH

A S3ljlweq wAzug . sawoua8eld) SWoH gel-zujiu|

Hav/swejzus/0005:3s0Ue0] © O >

+ X

saseuadoupAyap apAysply Hav

|| PUB | S9SSE[D SOSeUIWEeSUR. | 1I-l-9seujwesues |
S9SEIINPIY 019)Y (€E}: )]

uonduinsag aweN

sal|iweq awAzug maIA

Ajweq awAzu3g ayeasy

saseuagoupAysp apAysply |

Hav

qet-zuzu Py

saljiweq awAzu3 MalA / SWOH

a S9l|lweq dwAzug . sswouadelsy SwoH geT-zu3uj

swejzus/000g:soyleao] @ O &« >

+ X qeT-zuaiy| )

- 196 -



Chapter 6: Tools for an iterative laboratory-based approach to the exploration of
enzyme families

clicked, and is searchable using the search bar. Using the latter two functionalities,
it is possible to download either all of the hits in the table, or a selection, using a
checkbox associated with each row of the table. This table makes it possible to gather
hits mined from hmmsearch and perform further bioinformatics analysis outside the

platform, like alignments and trees, or to share the hits with others.

The next action and feature of IntEnz-Lab is to sample MDP-based subsets from a set
of mined hits. Once again, starting at the hub that is an enzyme family page, clicking
on the "Actions’ tab followed by the 'Create Diverse Panel’ button leads to a new form
page. This page only has two fields: the panel size, which is required, and a masking
filter, which is optional. This form already contains the enzyme family context and it

is therefore not needed as input.

Once a panel size is chosen and the form is submitted, the tabu search algorithm for
solving the MDP discussed in Chapter 4 is run with all of the enzyme hits previously
mined for this enzyme family, with the subset size K equal to the panel size chosen.
Once the workflow is finished, a node of type Subset is created, and has_enzyme edges
are made between it and all of the Enzyme objects sampled into the subset by the
algorithm. A single has_subset edge is also created between the Subset node and the
Famset node of the dataset. Once at least one such panel has been created, the 'Panels’
tab in the enzyme family profile page is usable, and displays another table containing
information about individual panels, such as size and the average e-value of the hits
(Figure 6.13). Clicking on the automatically generated name of a panel downloads a

FASTA file containing the sequences of the panel.

The optional masking filter is another novel feature of IntEnz-Lab. When used, it will
discard enzymes previously marked as having been tested in the lab for the next run of
the MDP workflow. This feature allows for the iterative sampling of diverse sequences

for assaying to guarantee previously characterised sequences are not sampled again.

Finally, there is one more novel action that can be performed on enzyme families on
IntEnz-Lab - the integration of characterisation data with the rest of the database. The
final button in the ’Actions’ tab of an enzyme family page is the ’Add Enzyme Assay’
button, and when clicked another form is presented with just one field (Figure 6.14).

The form requires a comma-separated values (CSV) file of a specific format, an example
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of which can be seen in Table 6.1. This file will contain the raw characterisation data
for enzymes tested in the laboratory, along with the necessary mapping column to

integrate this data to the knowledgebase on IntEnz-Lab.

The CSV file should contain five columns, and at least two rows including the header,
containing these column names: Enzyme Name, Compound Name, ChEBI ID, Activ-
ity, and Date, in that order. Each row corresponds to an individual assay, with the
Enzyme Name mapping to its respective entry in IntEnz-Lab. Then, the Compound
Name and ChEBI ID represent the chemical substrate that was tested for some en-
zyme, with the ChEBI ID linking to a standardised ontology for chemical entities [197].
Then, the quantitative activity level goes into the next column, followed by the date
the assay was performed in the final one. As can be seen in Table 6.1 for AOPXP5,
it is possible to integrate multiple chemical assays for the same enzyme in the same
spreadsheet. To make filling this spreadsheet easier, IntEnz-Lab provides a template

file with the examples shown in Table 6.1.

When such a form is validated and submitted, the backend of IntEnz-Lab will first
create Compound nodes for every substrate in the spreadsheet that does not yet exist
in the database. The ChEBI ID and name are taken from the spreadsheet and added
to each node. Then, assayed_with edges are created between every tested Enzyme node
and the compounds. This edge type is the only one in the IntEnz-Lab schema that has
properties, including the substrate activity and the date the assay was performed. Once
an assay has been added for the first time, the enzyme family profile page changes again
- the "Assays’ tab becomes available, and a table displaying the different compounds
tested is shown (Figure 6.14). This table displays the number of enzymes tested
for each compound to provide users with information about which compounds have
already been heavily tested. The atable also identifies the enzyme with the highest
activity for some compound. This feature of integrating assay data with the rest of
the database is crucial to making IntEnz-Lab a platform that facilitates the iterative

exploration of enzyme families through wet lab characterisation experiments.
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Table 6.1: Table showing the template spreadsheet for adding characterisation data
to IntEnz-Lab.

Enzyme Name Compound Name ChEBI ID Activity Date

AOPXP5 Ethanol CHEBI:16236 0.5 2021-01-12
AO0Q9F3 Ethanol CHEBI:16236 0.3 2021-01-12
A0QHI1 Ethanol CHEBI:16236 0.7 2021-01-12
AOPXP5 Propanol CHEBI:28831 0.01 2021-01-12

6.3 SynBioHub-Lab

6.3.1 Background

SynBioHub-Lab is a partial rewrite of an existing platform called SynBioHub [109].
SynBioHub is an open-source repository for storing and sharing biological designs, and
is meant to be a unified hub for synthetic biologists to upload their designs onto. As
discussed in section 2.5.2 of the Background, the Synthetic Biology Open Language
(SBOL) is the primary data model to record information on the four different steps
of the synthetic biology lifecycle - design, build, test, learn - and is the format in
use by SynBioHub’s backend for manipulating and displaying uploaded designs. The
laboratory-based work required for the exploration of enzyme families passes through
the whole lifecycle, producing multiple different data on the way that need to be
stored. The SBOL data model has already reached multiple important milestones in
its attempts at modelling the synthetic biology lifecycle. Crucially for this work, the
data model for the links between designs, constructs, and the respective experiments

performed on them, was formulated and approved in 2019 [116].

However, while SynBioHub is undoubtedly a key resource for modern synthetic bi-
ology, and is well-maintained and updated by a team of developers from the SBOL
community, using it to exploit the SBOL model’s latter milestones is not yet accessible.
In particular, while SynBioHub can easily display sequence designs, the nomenclature
in use by the platform necessitates a significant level of knowledge about the SBOL
data model to optimally use it. Similarly, the overall flow of control a user would
undertake is one that follows overall SBOL logic. For example, everything on Syn-
BioHub belongs to a Collection, which is the class defined by SBOL as a set of other

SBOL items. Whether you want to search for entries, or upload new ones, a collection
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must first be created. This problem becomes particularly amplified for SynBioHub’s
implementation of the next two steps of the lifecycle - build and test - as these are
performed in the laboratory, usually by researchers whose interests do not align with

the need for working knowledge of the complex SBOL model.

While recent changes to the data model have simplified it significantly [115], it is still
relatively unfriendly to understand without specialist domain knowledge of SBOL,
as proven by the drive to create layers of abstraction that help more users interact
with SBOL, such as ShortBOL [123]. Given that the nomenclature and interface
design in use by SynBioHub is SBOL-heavy, it is therefore difficult to market towards
to experimentalists. Consequently, synthetic biology experiments that are past the
design stage often do not have a structured repository to store resulting data and
metadata that corresponds to their needs. Indeed, a review of the current state-of-
the-art platforms for managing synthetic biology data ruled that SynBioHub, while
useful, should be more "biologist-friendly and hide the underlying resource description

framework (RDF) predicates” [198].

For the purposes of this work, while storing a plasmid design containing enzyme se-
quence to be characterised can be done on SynBioHub, it is harder to keep track of
information relevant to the built construct e.g. host context, lab protocol used, meta-
data about who built it and when. A similar problem arises for the test stage; when
an enzyme is characterised, similar protocols and metadata need to be stored, on top
of needing to record information like the construct(s) used, location of raw experi-
mental data. The knowledge-floor required for handling this data should of course be

"biologist-friendly” from start to finish, unlike on SynBioHub [198].

Therefore, there is strong potential in a new platform that allows for SBOL-based
storage of these different data in a way that is designed for use by experimentalists,
not just in the nomenclature and levels abstraction over the SBOL data model, but
also in the way the site is designed. The result of this endeavour is the focus of this
section, and is a partial rewrite of SynBioHub called SynBioHub-Lab; a metadata
repository for the different steps of the cycle (Figure 6.15). SynBioHub-Lab tries to

tackle the aforementioned challenges through the following two major changes:
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1. A set of nomenclature changes, swapping the SBOL-heavy lexicon in-use on

SynBioHub with terms more widely known to experimentalists.

2. A redesign of the front-end, both in visuals and in the flow of control undertaken

by users.

The next three sections dive into these changes. Importantly, SynBioHub-Lab was
developed when the latest release of SBOL was 2.3, and therefore does not include

additions and features that were added in 3.0 onwards [115].

6.3.2 Nomenclature changes

Due to the relative complexity of the nomenclature in use by SynBioHub, all references
to SBOL-specific terms were swapped for terms more geared towards experimentalists
in SynBioHub-Lab. More specifically, a dictionary was compiled from discussions
with a multitude of laboratory professionals for a series of important synthetic biology

terms. This dictionary was then applied to the nomenclature on SynBioHub-Lab.

The meaning and purpose of the terms replaced are described in-depth in section 2.5.2

of the Background, and are the following:

e The term Collection, which represents lists of other SBOL items, was replaced

with Project.

e The term ComponentDefinition, a subclass of the TopLevel class that represents

sequence designs in SBOL, is replaced with the term Design.

e The term Implementation, a subclass of the TopLevel class that represents built
constructs along with their provenance links to the design stage, is replaced with

the term Construct.

e Design-stage components can be of multiple different types, like promoters, pro-
teins, ribosome binding sites, etc. In SynBioHub-Lab, these components are

explicitly referred to as their respective component type.
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e SBOL uses the ontology Prov-o [119] to record provenance. The Prov-o term
Agent, which represents the person(s) and/or tool(s) that generate some TopLevel
object, is replaced by Researcher. While researchers are only a subset of what
an Agent can be according to SBOL, it is a conscious decision to narrow it down

to a definition more helpful to SynBioHub-Lab.

e SynBioHub uses the TopLevel Prov-o class Plan to refer to the steps undertaken
by some lab activity. In SynBioHub-Lab, these are instead directly referred to

as lab protocols.

e SynBioHub uses the predicate wasGenerated By and wasDerivedFrom to connect
relevant TopLevel objects to Agents and other TopLevel objects, respectively.
Predicates like these are never displayed in SynBioHub-Lab, instead directly
referring to the object the predicated point to, like Researchers for Agents,
but also Original Design instead of a wasDerivedFrom predicate linking to a

Construct’s respective design.

The terms used in SynBioHub-Lab were chosen based on discussions with specialists,
but the difference in reach for the new lexicon can also be shown quantitatively for
some of the replacements. On Google scholar [199], searching for 'ComponentDefi-
nition synthetic biology’ returns 283 results, versus 'Design synthetic biology’ which
returns 2,710,000 results. Also, searching for 'Implementation synthetic biology’ re-
turns 351,000 results, versus 'Construct synthetic biology’ which returns 1,280,000

results.

To summarise, not only were all the TopLevel terms in use by SynBioHub-Lab re-
placed with more colloquial wording, but the nomenclature for predicates between
these classes were also changed. Objects are also referenced more directly as what they
are rather than using a general term like component. These changes make it easier for

experimentalists to understand how to use the interface and exploit its strengths.

6.3.3 Front-end redesign

The steps in which a user interacts with the front-end, or the flow of control, was

redesigned significantly for SynBioHub-lab in a way that makes it more friendly for
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biologists to use. As mentioned in section 6.3.2, Collections were replaced by Projects
as the starting point of a user. Also, on SynBioHub, a collection must first be created,
and requires the uploading of an SBOL-compliant file containing any number of SBOL
objects. In SynBioHub-Lab, however, it is first necessary to create an empty project.
This change allows users to create and organise projects without necessarily having

the necessary SBOL objects ready.

Another major difference between Collections and Projects is that Collections are
presented as lists of SBOL items, with no separation between the different types of
the synthetic biology lifecycle (Figure 6.16-B). However, in SynBioHub-Lab, entries
contained in Projects are separated into three major categories: Designs, Constructs,
and Fzxperiments. Each of these categories are clearly marked and colour-coded to
be recognisable, with submit buttons for Designs in orange, Constructs in green, and
Ezperiments in blue (Figure 6.16-A). Also, each of these three sections of a project
contains a bespoke table displaying entries relevant to each part of the cycle; the de-
sign table contains SBOL entities representing sequence designs and their hierarchies
(ComponentDefinition and ModuleDefinition objects), while the constructs and exper-
iments tables will contain entries for Implementation and Fxperiment entities. These
tables subsequently use the nomenclature outlined in section 6.3.2. This separation
makes it easier to organise the different three steps of the lifecycle along with the data

they produce.

The next major front-end change is in the way lists of projects are displayed. Whereas
SynBioHub displays them as simple vertical lists, one for private and one for public
access (Figure 6.16-D), SynBioHub-Lab organises them into tables. These tables have
four columns, with the first one being the project name, and the final three being
one of the three major entities of the lifecycle; designs, constructs, and experiments
(Figure 6.16-C). A tick is drawn for each entity type that is present in some project.
This change is to help users immediately identify the stage of the synthetic biology
lifecycle a project has reached, and helps in distinguishing them by more than just

their name.

Finally, the last major difference to the flow of control between the two interfaces is

in the addition of entities relating to test and build to a project. On SynBioHub,
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the only way to currently upload such files is to submit further SBOL files containing
Implementation or Ezrperiment objects. While there are many tools for producing
SBOL-compliant files for the design stage such as SBOLDesigner [120], there is a lack
of biologist-friendly tools for producing SBOL for the build and test stages. This
fact limits users to producing such SBOL data with one of the many existing SBOL

libraries like sboljs [124], which is inaccessible to experimentalists.

The solution to this problem presented in SynBioHub-Lab is the addition of form
pages that allow for the creation of individual construct and experiments entries (Fig-
ure 6.17). These forms are accessed from within a project page by clicking one of the
respective submit buttons, and when submitted, automatically generates compliant
SBOL in the back-end. These forms also store the provenance of a construct rela-
tive to its design (Figure 6.17-A), raw data location and experimental conditions for
experiments (Figure 6.17-B), lab protocols for both constructs and experiments, and
metadata relevant to build and test, such as the researchers who undertook the pro-
cesses. This feature makes SynBioHub-Lab one of the first accessible platforms for

generating and storing SBOL data about the build and test stage.

6.4 Discussion and Conclusions

While the approaches introduced in the previous three chapters share the purpose of
optimising the diversity in an enzyme family panel, the computational methods that
help select such panels are not well integrated with the experimental processes that
characterise them. There is a lack of tooling that makes the transition from each step
of the selection and testing process more complicated; from mining, to analysis, to
panel selection, to enzyme characterisation. Furthermore, this lack of tooling limits
the iterative potential of the workflow, as there is no concrete way of learning from
previous assays for future ones. Finally, there are no suitable repositories for data and
metadata produced by each step of this workflow, the storage of which is particularly
important for the experimental stage. Therefore, tools that alleviate these gaps were
developed to help make the process of exploring the diversity of enzyme families more

smooth, especially in the transition from in silico to in vitro steps.
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The first tool developed, called IntEnz-Lab, is a bespoke platform that integrates the
mining and panel selection process and the enzyme characterisation data procured for
said panels. This integration helps promote an iterative approach to the functional
profiling of enzyme families. The second tool developed, called SynBioHub-Lab, is a
repository for storing data and metadata resulting from the synthetic biology lifecycle.
As a biologist-friendly rewrite of SynBioHub with novel functionalities, SynBioHub-
Lab facilitates the storing of data and metadata produced by characterisation assays,

which will pass through every step of the lifecycle.

6.4.1 Strengths and limitations

IntEnz-Lab is a novel web-interface that integrates two important command-line tools
used by the workflow shown in Figure 6.2 - hmmsearch and the MDP algorithm (Chap-
ter 4) - with the intention of becoming a central hub for enzyme family dataset building
and panel preparation from metagenomes. It is also meant to be a central repository
for storing the results of such operations on enzyme families of interest, due to a
database schema and bespoke API that makes individual families the central entity
of the interface to which other data are integrated. Importantly, this integration in-
cludes characterisation data for sampled panels, and is done in such a way that future
panels can be guided through functionality that automatically masks tested enzymes.
This centralisation of relevant tools, their metagenomic inputs, the resulting panel and

profiling outputs, and is an important feature and strength of IntEnz-Lab.

However, IntEnz-Lab is missing some functionalities for it to reach its potential as a
central hub for enzyme characterisation research. For example, there is currently only
one method of sequence masking - based on testing status - which limits the different
ways a can iterate for the next enzyme panel. Furthermore, panel preparation without
performing an analysis of the selected MDP panel is not recommended, as discussed in
section 4.4.2; but IntEnz-Lab does not yet have the functionality for such analysis to
be performed on its interface. Finally, the current way of uploading characterisation
data through a template spreadsheet requires a user to be consistent with the naming
of enzyme entries, and chemicals and their ChEBI IDs; which could cause issues like

duplication of data and incorrect data integration.

- 211 -



Chapter 6: Tools for an iterative laboratory-based approach to the exploration of
enzyme families

A major strength of SynBioHub-Lab is the reworking of the vocabulary used by the in-
terface, through the replacement of SBOL terms with a more biologist-friendly lexicon.
This change in terminology, along with a new flow of control that emphasises the sepa-
rations between design, build, and test, makes the interface significantly more suited to
experimentalists, including those carrying out enzyme characterisation studies. Also,
SynBioHub-Lab is one of the few tools that can be used to represent synthetic biology
entities of the build and test stage in an SBOL-compliant way, thanks to novel forms

that allow a user to create them.

However, an important limitation of the current version of SynBioHub-Lab is that it
is locked to version 2.3 of the SBOL specification, the latest version of which is 3.0.
Such a drawback is likely to result in SynBioHub-Lab being incompatible with newly
generated SBOL data and implemented tools. Also, an inconvenient aspect of the
current SynBioHub-Lab flow of control is the inability to add entries of any type in
batches, as currently each must be uploaded or created individually. Finally, while
both SynBioHub-Lab and IntEnz-Lab help plug in gaps in tooling that are necessary
for an iterative approach to exploring enzyme families, there is no integration between

them, reducing the potential of the approach.

6.4.2 Future work

Most of the future work for both IntEnz-Lab and SynBioHub-Lab lies in the de-
velopment of further functionality that can make each platform more useful. For
IntEnz-Lab, the addition of more sequence masking options would greatly improve the
iterative aspect of the platform. Also, with more masking options, one could also allow
for multiple such options to be applied in the same query. Some new useful masking

queries that could be implemented include:

e Discarding sequences from panel selection that have been tested with a specific
list of chemical compounds, rather than any compound. This masking option
could be useful if sequences with desired activity profiles have been identified
for some tested substrates, but not all, allowing to refine the search to a more

specific sequence-function space.
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e Discarding sequences from panel selection that have some user-specified sequence
identity threshold with an already tested enzyme. While this query would require
more work as IntEnz-Lab does not store sequence identity, a graph database
like the one in use in this tool is perfectly suited for implementing this extra
functionality. Such a masking option would allow for reducing the sequence space
further by also discarding sequences with high levels of identity to characterised
enzymes. Doing so could save time spent on needing to analyse and refine a

panel with visualisation methods.

Another high-impact avenue for future work on IntEnz-Lab would be to add visual-
isation functionality to the interface. Specifically, if SSNs, CSNs, and trees could be
generated for individual enzyme families, along with the annotation and highlighting
of tested enzymes, it would make the analysis step of panel preparation more acces-
sible. Finally, integrating the uploading of characterisation data into the interface in
a more dynamic way instead of depending on an spreadsheet would lead to less user

errors, as the interface would be able to validate any new annotation.

As for SynBioHub-Lab, the most impactful change to be made to it lies in the refac-
toring of the codebase to use SBOL3, which is the most recent major version. Such
refactoring would likely be time-consuming, but it would allow for a healthier back-end
infrastructure as SBOL3 lowered the complexity of the model significantly. This change
would also allow SynBioHub-Lab to be more compatible with other state-of-the-art

SBOL tools and the data they produce.

On an interface level, another major change to SynBioHub-Lab that would be beneficial
is added functionality for the uploading or creation of entries in batches. Finally,
integrating both IntEnz-Lab and SynBioHub-Lab into a single toolkit where both
platforms can communicate with each other would be highly impactful. For example,
it could allow for seamless links from tested enzymes on IntEnz-Lab to their respective
entries on SynBioHub-Lab to identify which organisms they were transformed into at

build and test, or to locate raw data associated with them in more detail.
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6.4.3 Conclusions

In this work, two novel platforms were developed to help tackle gaps in tooling to
increase the level of integration between the in silico and in vitro side of enzyme family
exploration. IntEnz-Lab was implemented as a web-interface that firstly unifies the
dataset building and panel selection processes, and secondly integrates them with the
enzyme characterisation made possible by them in such a way that gained knowledge
can be iterated and improved upon. SynBioHub-Lab was then designed as a repository
for metadata resulting from the in silico design step and the in vitro build and test
steps of the synthetic biology lifecycle. Given the importance of data and metadata like
plasmid designs and experimental protocols used, having a bespoke storage platform
for them that uses the well-recognised standard of SBOL was a crucial gap, which is
now filled by SynBioHub-Lab. Both of these tools help promote an iterative approach

to the exploration of enzyme families that is more successful over the long term.
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7.1 Introduction

The use of enzymes as biocatalysts in industry has many varied benefits when com-
pared to classic chemical synthesis methods, such as higher stereoselectivity [17] and
the simplification of pathways [18], while being more environmentally-friendly, often

with higher yields [19].

The application of biocatalysts depends on the selection of enzyme panels that catalyse
varied chemical transformations of interest, often for specific enzyme families. These
enzymes are often tested in panels, to ensure that the best match for a process is iden-
tified. However, the construction and curation of panels is currently limited by the
ever-increasing amount of uncharacterised enzymes in public databases [27]. Therefore,
efforts to bridge knowledge gaps in enzyme families through laboratory-based charac-
terisation of panels is necessary for expanding the catalogue of biocatalysts useful to

industry.

However, as was discussed in section 2.2.3 of the Background, current methods for
the generation and characterisation of diverse enzyme panels have many limitations,
including an over-reliance on sequence identity, enzyme sampling methods that are
un-optimised, and a tooling gap for iterating on characterisation studies. Therefore,
novel methods that help optimise this process of panel curation have high value, due
to a shortening of the time and burden of knowledge necessary to undertake mass
characterisation projects of enzyme families, and improved tooling. To this end, two

principal aims were identified:
1. The development of new computational methods for building diverse sequence
panels from enzyme families
2. The building of tools that promote an integrated and iterative framework for the

characterisation of enzyme families in the laboratory

This final chapter restates the primary approaches used to tackle these aims, identifies
the research gaps that were filled by them, and frames the research in the context of

already existing work. The chapter is divided into two main sections - one for each

- 216 -



Chapter 7: Discussion and conclusions

aim. Finally, a unified framework for the iterative and integrative characterisation of
diverse enzyme families based on this thesis is proposed, along with a discussion on

the research gaps remaining for future work.

7.2 The generation of diverse enzyme panels

The catalytically diverse selection of enzymes from an enzyme family dataset for the
experimental profiling of putative biocatalysts was the key theme of this research
project. Indeed, the improvement of the panel generation process was a direct aim of
the research described in three of the four research chapters (Chapters 3, 4, 5). This

section summarises how each chapter contributes to this overarching aim.

7.2.1 Functional analysis of enzyme families

As was discussed in section 2.2.2, the current methods of sampling from larger enzyme
datasets to select diverse enzyme panels include the functional analyses of enzymes
to make informed decisions on panel selection [27, 34]. However, as was discussed in
section 2.2.3, these analyses are often limited by a a need for prior knowledge about
an enzyme family of interest, reducing accessibility. There are other approaches, such
as phylogenetic analysis, which are useful at delineating the diversity of an enzyme
family without much prior knowledge. However, these methods are based on sequence
identity methods that are not as applicable to enzymes due to more stringent evidence

requirements for annotation transfer [44].

Chapter 3 introduced a novel approach for the functional analysis of enzyme fami-
lies that tackles the limitation of sequence identity methods. CSNs, or coevolution
similarity networks, are similarity networks that visualise the delineation of enzyme
families based on patterns of coevolving residues. Coevolving residues have long been
used as proxies for residues in contact [137], and patterns of them therefore contain
information inherent to the tertiary structure of enzymes. Also, coevolving residues
are often important to enzyme function [141-143]. Therefore, CSNs were developed
with the aim of better grouping enzymes based on enzyme features more specific to

function than raw sequence identity methods. The results of this chapter in section
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3.3 showed that CSNs are capable of more sensitive functional groupings at the edge

of the sequence identity twilight zone in four different enzyme families.

Recent developments in the functional analysis of enzyme families have similarly de-
veloped methods less dependent on sequence identity by also including other enzyme
features. For example, Holliday and coworkers combined sequence similarity with
structural and chemical similarity in an analysis of three enzyme superfamilies [200].
Approaches that similarly visualise structural and chemical similarities are useful for
diverse enzyme panel creation as they provide a more detailed view of an enzyme fam-
ily, which can help inform the selection process. CSNs, due to the inherent structural
information present in residue-residue coevolution data, are able to represent simi-
lar structure-based relationships, and therefore offer similarly useful views of enzyme
families. Indeed, many CSN linkages were made between enzymes of low sequence
identity, but high tertiary structure similarity. Importantly CSNs were able to cap-
ture structure relationships without requiring resolved tertiary structures, as CSNs are
built from primary sequence alone. This distinction sets CSNs apart as being more
accessible than approaches similar to Holliday and coworkers’ [200], which explicitly

require PDB files to construct structure similarity networks.

While enzyme function does not consistently transfer based on arbitrary sequence
identity thresholds [44, 200}, such arbitrary thresholds are still used to automatically
annotate enzymes on public databases, with negative repercussions [133]. As recently
as 2021, over 78% of sequences representative of the S-2-hydroxyacid oxidases were
experimentally found to be misannotated [201]. Erroneous functional annotations on
public databases directly impacts panel selection by giving an incorrect view of the
diversity of an enzyme family, from which panels are sampled. However, as CSNs were
shown to computationally highlight misannotations in the crotonase family, CSNs
offer a method of identifying such misannotations in silico, rather than in vitro. The
advent of approaches like CSNs can therefore play a role in fixing some of the negative

repercussions of sequence identity-based family analyses.

To conclude, CSNs can help perform in silico analyses of the catalytic diversity of
enzyme families. As enzyme panel selection is currently based on such analyses [178],

CSNs can therefore be used as a direct refinement tool in panel selection owing to

- 218 -



Chapter 7: Discussion and conclusions

more sensitive functional linkages.

7.2.2 Automatic selection of diverse enzyme panels

CSNs, much like SSNs and phylogenetic trees, currently require manual interpretation
and iteration of parameters like similarity thresholds to optimally analyse enzyme
families. This process can be time-consuming and difficult, especially without an
already rich understanding of the enzyme family at hand. There was therefore a
need for a complementary method of automatically sampling highly diverse subsets of
enzymes from a larger dataset, which could then be optimised using CSNs and similar

methods.

In Chapter 4, heuristic algorithms were developed for solving the maximum diversity
problem (MDP) on enzyme datasets. The hypothesis explored in this chapter was that
MDP-solved subsets would automatically generate subsets of enzymes with high cat-
alytic diversity. Indeed, this approach was shown to produce, without prior knowledge
or parameter optimisation, representative subsets that are diverse in catalytic profiles
on three different enzyme families using sequence identity matrices as input. Sam-
pled subsets were shown to well represent the delineation of functional diversity using
sequence identity, while also correctly summarising the clustering of enzyme families

using the coevolution similarity metric introduced in Chapter 3.

As far as the author is aware, there does not yet exist study on the automatic and
optimised selection of diverse enzyme panels from larger sets of enzymes. Recent
developments sample diverse panels by computing clusters of similar enzymes based
on factors of varying complexity, from which enzymes are then manually sampled from.
For example, Vanaceck and coworkers [34] manually sampled a panel of 20 enzymes
based on a balance of taxonomy, solubility predictions, predicted active site volume,
and other factors. While this approach was successful, as the panel was proven to be
diverse, it is a highly involved and manual process that also requires the computation
of various data. MDP-based panels instead offer a novel metaheuristic approach that
also selects highly diverse panels, but without the time and analysis complexity of an

approach like Vanaceck and coworkers’.
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A simpler approach is the one used by Velikogne and coworkers [32]. Velikogne and
coworkers produced a phylogenetic tree out of a larger set of enzymes, and created
their panel by randomly sampling enzymes from the main sub-branches of the tree.
While simpler and more efficient than Vanaceck and coworkers [34], sampling from sub-
branches of a tree still requires manual interpretation to delineate the clade boundaries
that are sampled from. In comparison, MDP-based panels do not have such require-
ments; the only user input required is the panel size, which is a parameter that does

not need to be optimised, as its value is likely to depend mostly on laboratory capacity.

While enzyme panels generated using the MDP approach were shown to be catalyti-
cally diverse, it was also clear that some oversampling of certain sequence space nat-
urally occurs using this method. MDP panels would therefore benefit from manual
interpretation and refinement, similar to the ones performed by Vanaceck and cowork-
ers [34] and Velikogne and coworkers [32]. Novel methods introduced in this research
like CSNs could similarly be used. In the context of refinement, an MDP provides a

diverse initial subset, which simplifies the analysis and interpretation of applied CSNs.

In conclusion, the MDP-based approach helps circumvent the requirement for burden
of knowledge in diverse panel generation. MDP subsets also reduce the complexity of
analysis needed to interpret structures CSNs, by providing a starting point panel that

is already likely to be diverse.

7.2.3 Neural network-based de novo enzyme generation

Chapter 5 describes a generative approach for increasing the amount of known diver-
sity in an enzyme panel by generating it de novo. Using a neural networks approach,
a discriminant autoencoder was trained on all of the enzyme sequences available on
Swiss-Prot, with the goal of learning an inherent enzyme model. Then, this learned
space was sampled from using a template set of aldo-keto reductase (AKR) enzymes to
generate novel and synthetic candidates of that family. These synthetic aldo-keto re-
ductases were pushed through a semi-automated filtering pipeline to keep high quality

candidates based on user-defined constraints.

The filtered synthetic sequences were assessed using both in silico and in vitro methods.

Specifically, these putative synthetic enzymes were used as input to bioinformatics tools
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like I-TASSER [82] and DEEPre [28] to judge their potential viability, with promising
results. In the laboratory, they were shown to be capable of overexpressing in E. coli,
while being mostly insoluble, likely due to misfolding. While the method therefore
does warrant further improvements, some of which are outlined in section 5.4.3, it
was shown to have promise as an approach for artificially increasing the diversity of

enzyme panels through the generation of synthetic but viable candidates.

There have been many other recent approaches to the de novo generation of func-
tionally viable enzymes. These approaches include other neural networks-based meth-
ods, such as the work of Repecka and coworkers [178]. Using generative adversarial
networks (GANSs), Repecka and coworkers generated 55 synthetic malate dehydroge-
nase candidates, of which 13 showed activity. Russ and colleagues [202] successfully
produced five artificial chorismate mutases through the sampling of the evolutionary
history of the enzyme class. Furakawa and coworkers [203] used a state-of-the-art phy-
logenetic technique called ancestral sequence reconstruction to successfully generate

two ancestral enzymes of 3-isopropylmalate dehydrogenase.

The artificial generation of functioning enzymes is therefore quickly becoming a heavily-
researched area. The research undergone in Chapter 5 does also make a unique con-
tribution to this rising field. Specifically, while the aforementioned three approaches
were all bespoke to the enzyme class level, the method explored in this research was
generalised to the enzyme family level. The discriminant autoencoder architecture was
trained on a dataset of hundreds of thousands of enzymes, and generated synthetic
enzymes displaying a high degree of similarity to a specific family. This similarity in-
cluded a high overall sequence identity to canonical enzymes, the presence of domains
and other sequence signatures, and the prediction of functional and structural anno-
tations that are consistent with those of the given enzyme family. Therefore, in spite
of negative experimental results, the work undertaken here can function as a platform

for future work that is able to generate panel diversity on an enzyme family level.

7.2.4 Conclusion

All three strands of work therefore contributed to the aim of optimising the panel

generation process. With a novel functional analysis and visualisation method in

- 221 -



Chapter 7: Discussion and conclusions

CSNs (Chapter 3), a heuristic algorithm for automatically generating catalytically
diverse subsets of enzymes (Chapter 4), and a promising approach for the synthetic
generation of novel enzymes (Chapter 5), this thesis made significant contributions in

the plugging of specific research gaps for the generation of diverse enzyme panels.

7.3 Tooling for an integrative and iterative frame-
work of enzyme family characterisation in the
lab

The initial three research chapters expanded specific aspects of enzyme panel gen-
eration, and while they can theoretically be integrated together in a framework as
described in sections 3.4.2, 4.4.2, and 5.4.2, no tooling yet achieves this integration.
Furthermore, as described in section 2.5.3, there are significant tooling gaps in the
representation of the design-build-test-learn (DBTL) cycle in SBOL. These two gaps
limit the potential of an integrative and iterative framework for the characterisation of
enzyme families in the laboratory. Consequently, the second aim of this thesis tackled
these limitations. In this section, the ways in which the two tools discussed in Chapter

6 help counter these limitations are recalled.

IntEnz-Lab is a platform that integrates some of the in silico techniques for enzyme
panel generation utilised in this thesis, including the mining of hits from metagenomes
in a way that is enzyme family-focused, and the automatic generation of diverse panels
from hits using the MDP-based methods of Chapter 4. Also, IntEnz-Lab provides
the novel functionality of integrating enzyme characterisation data produced in the
laboratory for the purposes of guiding future rounds of panel selection, thereby making

the process iterative .

SynBioHub-Lab is an SBOL-powered repository for whole lifecycle synthetic biology
experiments, including enzyme characterisation. As a rework of SynBioHub [109],
SynBioHub-Lab allows for the storage of synthetic biology designs, while also providing
functionality for the storage of metadata about constructs and experiments. This novel
functionality allows a user to take advantage of SBOL’s powerful modelling of the build

and test stage of the lifecycle, making the use of the DBTL cycle for synthetic biology
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and enzyme characterisation studies accessible for the first time.

Both of these tools help achieve the second central aim of this thesis, by providing
accessible and simple tooling that not only helps unify the novel methods of the thesis,

but also allows for a better exploitation of the benefits of the synthetic biology lifecycle.

7.4 An applied framework for lab-based exploration
of enzyme family diversity

While IntEnz-Lab and SynBioHub-Lab have limitations in their current iterations,
their various strengths help formulate an applied framework for lab-based exploring of
enzyme family diversity. This framework uses the two tools introduced in this chapter,
but also the in silico methods discussed in Chapters 3, 4, and 5, along with other es-
tablished methods like hmmsearch-based dataset building and SSN construction. Also,
this framework helps fulfil the four different stages of the synthetic biology lifecycle;

design, build, test, learn.

This framework is described with using a curated HMM for an enzyme family of interest
and multiple sets of translated open reading frames from different metagenomes as a

starting point (Figure 7.1).

First, IntEnzLab is used to upload the different metagenome files. Then, the enzyme
family of interest is created on IntEnz-Lab using the existing profile HMM as input.
Next, each metagenome is mined using hmmsearch on IntEnz-Lab for potential se-
quences of that family. The resulting hits is then used as input for the MDP solver to
sample a diverse panel. Then, SSNs and CSNs are generated for the hits. The afore-
mentioned MDP panel is then refined using these similarity networks. Then, another
MDP panel is produced to act as template for the generation of synthetic sequences.

After filtering of unviable sequences, a panel of synthetic sequences is selected.

The natural and synthetic sequences are then combined into a single larger panel. The
sequences of this combined panel are then codon-optimised into DNA sequence, and
then inserted into relevant plasmid designs. These designs are finally uploaded to a
new SynBioHub-Lab Collection. This step and preceding ones fulfil the design stage.

Once a design from the panel is built in the laboratory, a construct is then also added to
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SynBioHub-Lab, along with any validation and quality assurance measures. This step
fulfils the build stage. Once the panels are characterised, SynBioHub-Lab can then
be used to create entries storing relevant metadata and experimental conditions. The
characterisation data itself can also be uploaded to IntEnz-Lab for integration with its
knowledgebase. This step fulfils the test stage. Finally, the next iteration of panel
generation is guided by IntEnz-Lab using its native sequence masking functionality.

This step fulfils the learn stage.

This workflow, starting with a large set of metagenomic sequences and a profile-HMM
for an enzyme family of interest, is able to utilise the methods discussed in this research
to iteratively generate and characterise diverse enzyme panels. The integration of in
silico methods and experimental data thus enables the semi-automatic exploration
of an enzyme family’s diversity over multiple iterations. With the use of tools like
IntEnz-Lab and SynBioHub-Lab, the framework is made more accessible, along with
key functionalities that make the DBTL-based functional analysis of enzyme families

a reality.

However, while this workflow can currently be performed, future work is needed to
simplify and optimise it further. First of all, the discriminant autoencoder described
in Chapter 5 needs to be improved further before synthetic sequences it generates are
worth adding to panels, as was discussed in section 5.4.3. Also, the addition of further
sequence masking options to IntEnz-Lab would significantly improve the learn stage,
with some examples given in section 6.4.2. Finally, it would make the framework
more accessible if the analysis of sets and subsets created on IntEnz-Lab could be
performed in-place, which would require the further integration of tools, including

similarity network generation.

7.5 Conclusion

With the power of similarity networks like CSNs, which can be used to help refine
automatically-selected panels produced by the MDP method, and the added diversity
of synthetic sequences generated by an improved autoencoder, the panel curation pro-

cess has been optimised by the novel approaches introduced in this thesis. Specifically,
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these methods successfully tackle three important gaps in current panel preparation
approaches - CSNs address the dependence on sequence identity for assessing func-
tional groupings, MDP sampling addresses both the requirement for prior knowledge
for diversity assessment in enzyme families and the manual interpretation that is of-
ten necessary to perform such assessments. The discriminant autoencoder explores an

avenue for automatically generating novel diversity in an enzyme family.

Also, novel tools like IntEnz-Lab and SynBioHub-Lab help integrate the in silico and
in wvitro processes of enzyme selection and characterisation. The integrative and it-
erative framework that is born from the combination of already existing approaches
and the ones introduced in this thesis is one that can significantly optimise the thor-
ough analysis of enzyme families. To conclude, the work contained in this thesis is
a significant step towards the important goal of creating a more diverse portfolio of
biocatalysts, which is necessary for making the substantial benefits of enzymes more

accessible and useful to industry.
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Multiple different datasets of enzyme families were built from public databases in this
thesis. Specifically, Pfam IDs representing specific families were used to retrieve entries

from Swiss-Prot. Here, the different lists of UniProt accessions making up each dataset

1s written.

Transaminase class I&II (PF00202), referred to as Trans241 in Chapter 3:

P22256,
H8WRO5,
BOVH76,
P38021,
066442,
P36568,
P12677,
Q9FCC2,
Q31QJ2,
Q8YS26,
Q8ZPV2,
B2J7M9,
B3QSA6,
B3EKJ7,
Q3AP59,
Q7VMS5,
QOI8G1,
Q7MAE6,
P59320,
Q9ZEU7,
Q9AP34,
ATMUU9,
B2SKSO0,
066998,
P59315,
059282,
Q8CUM9,
Q8R7C1,
Q8PH31,
Q7MH19,
Q7A4TS

P12995,
030508,
Q9APM5,
M1GRN3,
P59321,
pPo4427,
POA4X7,
POWQ79,
AOQYS9,
A2BVES,
pP56744,
Q81M98,
Q2JMP7,
A2SKQ7,
Q3B1A1,
Q7VAS9,
A5GUJ2,
BOLKSO,
(8EHCS,
(8X4V5,
AOQR33,
Q4L7G9,
A3NCF3,
A3MMQS8,
Q9K8V5,
008321,
Q9KEBO,
Q92BCO,
Q82UP3,
Q7U5R5,

PowQ81,
P77581,
QrM181,
Q5SHH5,
P28269,
Qo1ver,
025627,
B7GHMS,
P40829,
D2D3B2,
Q9PIR7,
Q7VDA1,
ASGMT2,
A2C0U2,
B8HYK1,
Q8CSG1,
Q3ALU9,
Q89VE9,
Q9KU97,
Q8FL16,
B7GIKO,
A4FPX3,
QoccC12,
P46716,
P63566,
Q98BB7,
Q9JRWI,
Q925A0,
Q8FTN2,
Q5HERO,

Q9I700,
P23893,
Q53U08,
P16932,
P46395,
055665,
066557,
Q9ZKM5,
POWMNO,
PowWQ78,
Q4H4FS5,
A2BPWG,
Q110Z9,
AOBEAS,
BOCC57,
B1XIT5,
Q7V0GO,
Q7W7HG,
Q9AAL3,
P30949,
B7GH35,
Q7MHYO,
QoJYY4,
(882K8,
Q99T15,
059928,
Q8CRW7,
P54752,
Q5HNT1,
P63569,

P40732,
P42588,
052250,
Q8X4536,
P57600,
Q6L741,
Q74CT9,
P57379,
P63505,
B1X023,
Q7NPI4,
B3EIO7,
A1BJGS,
ATNKV1,
A8G3J9,
BOTFVO,
POWPZ6,
Q885K0,
Q9KNW2,
Q7251I1,
Q2G283,
Q1IWZ8,
P59316,
QOCHD3,
Q2FXR4,
Q8XWN8,
Q9K8G3,
Q9PDF2,
Q7WDN7,
Q9JTX9,

P50457,
P24630,
P59324,
P59317,
Q7NOES,
Q9I6M4,
P45488,
(Q89AK4,
(Q8DLKS8,
Q3AWP4,
AOWIST,
B4S3Q6,
B7KA18,
Q3M3B9,
Q31C50,
B7K2I1,
Q46GT9,
Q89LG2,
P73133,
Q9KLC2,
ASALDS,
ABWC94,
Q5H3I5,
A1V1LO,
Q7VvTJ7,
P59319,
QOCNT1,
Q05174,
P63567,
Q7V8L1,

P53555,
Q93R93,
(Q88RB9I,
Q8Z1Z3,
P59086,
QO9X2A5,
P44426,
Q8K9PO,
QORWT75,
Q7NN66,
Q8KAQ7,
Q2JS870,
B4SGW1,
Q7v233,
B3QRD2,
Qrverr,
A2CT717,
Q8Y6U4,
Q8P5Q4,
P30900,
Q5ZVAG,
POC2D9,
Q8Y6J9,
P59322,
Q9A652,
Q87L20,
(828A3,
Q92AX5,
P59323,
Q5HP24,

P18335,
POWPZ7,
P22805,
Q916J2,
P53656,
E1V7VT,
Q2FVJ6,
POWQ80,
Q8DOD7,
Q818w2,
BOJPWG,
A3PBKS,
B8G822,
A5UU40,
A4SGT2,
Q7U598,
P36839,
Q9L1A4,
pP24087,
QORWWO,
025183,
BODZGO,
Q3JPN1,
Q8UIT1,
Q97GH9,
Q7WKW5,
Q7VSH3,
Q6QUY9,
Q72RHS8,
P48247,

Short-chain dehydrogenase (PF00106),

referred to as SDR142 in Chapter 3:
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P14697,
Q48436,
P0O5707,
D3U1D9,
B7N6C8,
B7LDD3,
P23102,
(Q8X505,
QOLOF7,
P50202,
066148,
Q8U8I2,
P41177,
032229,
POWGPS,
Q49WS9,
Q5HLDS,
P35320,

P39831,
(Q8RJB2,
pPO7772,
P96825,
Q83QJ8,
B1XB16,
POWGSS,
(83RES8,
P47230,
P50201,
P00335,
POWGQ7,
POAFP4,
P14802,
P25970,
Q8CN40,
Q2FE21,
034896,

P80702,
Q82IY9,
Q1Qu27,
P16544,
P39071,
B6I15B4,
pP66784,
P72220,
P08088,
p27874,
Q9ZAU1,
P13859,
POWGRS,
P25145,
P45200,
Q92EKT7,
P66780,
POWGR7,

P07914,
QO9KWN1,
POCI32,
Q46381,
B7TM7P4,
QOT1X8,
Q7N4VT,
P08694,
P50204,
Q01198,
POA9QO,
POWGS1,
005730,
P66778,
POWGR3,
P55434,
Q7A3L9,
P44481,

Q9RAO05,
POCI31,
POASP9,
Q8XA72,
A77PY4,
B1LNJ7,
Q8FHD2,
C8WMPO,
P50206,
P39577,
P37694,
P16542,
P54554,
Q53877,
Q4L8Y1,
POWGR2,
Q8NUV9,
P39884,

Q8KES3,
Q1R183,
Qo3Uv4,
POWGP9,
Q3YZ12,
ABA347T,
POWGS3,
Q59987,
P37079,
E3VWK2,
P31808,
P21158,
034782,
Q9ZKW1,
Q99RFb5,
POWGQ6,
Q6GDV6,
032185

POWGS9,
P47227,
AOR610,
B7NRJO,
C4ZXB6,
B5Z114,
P69936,
P45375,
P17611,
Q5HKG6,
P43168,
Q9X6U2,
032291,
POWGS2,
Q2FVD5,
Q5HD73,
Q6G6J1,

QOWXG7,
pP74167,
A7B4V1,
Q04520,
B1IVT6,
Q31XU9,
P69935,
Q6F7B8,
P50203,
E3VWI6,
032099,
P37959,
POWGSO,
POAFP5,
Q4A054,
POWGR4,
Q03326,

Enoyl-CoA dehydrogenase (PF00106), referred to as Croto99 in Chapter 3:

POABUO,
P31551,
Q39TV7,
Q8DSNO,
P40802,
QOCLV5,
POWNP4,
P45361,
P95279,
A9MR28,
B4TWR3,
Q7U004,
ABU753,

POWNP5,
QOLCU3,
(Q8DR19,
G4V4T6,
Q4L549,
Q7AGA9,
(Q8FLA6,
007137,
P64015,
B4T6J5,
A8ALR7,
P64019,
POWNN2,

A5JTMS,
P52045,
Q7CQ56,
P94549,
Q49WG8,
Q6GI37,
P40805,
POWNNS,
(52995,
Q5PIL1,
B1IREO,
Q7TXE1,
P31907

(Q8KLK7,
P76082,
P52046,
Q8GB17,
Q8ZRX5,
(Q8NXAO,
POWNNO,
P53526,
AOQJHS,
B1LFW9,
B5R1Q9,
POWNNGE,

Q9XB60,
085078,
Q2LXU2,
087873,
Q5HQC3,
Q6GAGT7,
POWNP1,
POWNN4,
POWNN3,
COQ4L2,
Q57TJ1,
POWNN7,

Q5LLWG6,
pP77467,
087872,
QOAVM1,
POABU1,
032178,
P24162,
A1KN36,
AOMYJ5,
B4ATIGO,
B5FHG4,
POWNPO,

Q93TU6,
Q5HH38,
AOQRD3,
G4V4TT7,
Qo9v4s,
(8XA35,
034893,
Q73vC7,
QOTLVS3,
B4EY26,
B5BL54,
P64017,

069762,
P23966,
(84HH6,
P44960,
Q8CPQR4,
P59395,
007533,
Q50130,
B5F749,
B5RGA4,
Q8Z9L5,
POWNNS,
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Transaminase class 111 (PF00155), referred to as Trans986 in Chapter 3 and ATF in
Chapter 4:

066875, 067781, B5Y9Z4, B3QLR6, Q8KDS8, BSELF7, B7J3Y7, B5YFU5, P21633, P08080, P08262, P18079, P43089, (92623, AOL3L7, ASFZN8, ATHP29,
A9HJS7, A9W106, BOSZS9, BOUKC8, BILYP9, B1Z7Y8, B2IH50, B4RFX5, B7LOL2, BSERL9, BS8GVE2, BSIBW2, QOAPZ9, QOBUV6, Q2W3L2, Q9A7Z1, QO6191,
A3PMF8, 086459, 087320, P58350, (02635, Q1RGVO, Q4UND3, Q68XV9, Q92JE7, Q9ZES6, A9H311, P34037, QOBVWA, Q51687, QSLNM6, AOKBO3, A1ITK1,
A1K6Q1, A1KVF6, AITTVO, A1V819, A1VUJ6, A2S7R1, A2SD53, A3MNG3, A3N522, A3NQS3, A4GEN9, A4JIBS, A6SU64, A9AE46, A9BV10, AOHVE9, A9M251,
B1JZD9, B1Y500, B1YNSO, B2AG98, B2SWS7, B2UBJ3, B4EIL6, B4RP93, QOAE73, QOBBD6, QOKF88, Q12D74, Q12F38, Q146K3, Q1BT36, Q1GZA7, Q1LS75,
Q2T1Q2, Q2Y9Y8, Q39CE6, Q3JWR6, Q3SLX9, Q477A3, Q47CO4, Q5F6R6, QSNZF5, Q62MX1, Q63Y23, Q7NPW2, Q7WH76, Q81ZZ4, Q8XZC3, Q9KOUO, Q82WAS,
Q6AL81, A1AQT1, ASG6I9, ATHG96, ASZUS7, B3EAEO, BAUCB1, BSEEVS, B8J3VO, B8J637, BOM8U3, 026320, Q1DCV8, Q2IF62, Q39XE0, Q3A3Z8, Q749W3,
Q9ZLN3, P44425, P72173, Q56114, P71348, P77434, QOHUI9, P09053, P97084, Q9I468, A7N6R9, AOKIC7, A1JS67, A1U4B1, A1WVME, A4SPR6, A4TNGS,
A4VR87, A4WSBS, A4XZR8, ASUCE4, A5UJ44, ASVXF2, A6T6L6, AGUYW1, A6WOYO, ATFKM8, A7MJ02, ATMX30, A7ZJI5, A7ZY32, A8AJ11, A8GBC6, AOMIES,
A9MTI7, A9R3C9, BOKJ54, BORMR1, BOU6JO, B1IXJ2, B1JES4, B1JSS3, BILM67, B1X7A6, B2FLM5, B2I9H7, B2K8T1, B2SS66, B2TVF4, B2VBT8, B3PISS,
B4ESU4, B4SM82, B4SZJ8, BATC49, B4TQUO, BSBC30, BSEUP9, B5FO73, BSFP62, B5QX66, BS5R762, B5XZ74, BSYRL5, BEESC6, B6I7TO, B7LCES, B7LJIY7,
B7M748, B7MQM9, B7NA75, B7NNK6, B7ULX3, B7V486, B7VH15, B8F713, B8GTH6, COPWY3, P12998, P36570, P44422, QO2TR5, QOA5W2, QOT6I4, QOTJIS2,
QOVMD1, Q1C946, QICFQ4, Q1I3N7, Q1QYD6, Q21FY4, Q2NUJ6, Q2P8F2, Q2SBD5, Q31E64, Q324B6, Q32I45, Q3BYNO, Q3K5P2, Q3Z408, Q47829, Q48CS2,
Q4K4T3, Q4QKR3, Q4UZN9, Q4ZMA9, Q57RG2, Q5DZH9, QSH5RO, Q5PG49, Q609V1, Q66D66, Q6D3CO, Q6LPR3, Q7CHE6, Q7MLU9, Q7N6QS, Q7VLO9, Q83S45,
Q87DT2, Q87QN5, Q88A97, Q88QX1, QG89AK6, Q8DSNO, Q8FJQ2, Q8PDF1, (8X823, 082892, Q8zQQ7, Q9CJUO, Q9I617, Q9KSZ3, QIPDM2, PO6986, P10369,
Q4QN73, QSHOLO, Q65S79, POAB77, P37419, P43336, P04693, P74861, Q73KM3, 007587, 033822, P36692, P53001, (55128, (56232, Q59228, 060013,
Q82DR2, P63499, POWQ90, POWQ9L, BOKS90, BOKC20, B1XL23, B7KOL9, P74770, Q119K2, Q3M9A4, Q67N86, Q8DJ97, AOPPO2, AOQHJ9, AORIBY, A1KJOO,
A1T8U6, A1UHM3, A3DBD5S, A3Q146, A4TOL3, A5U2S6, ASWMQ5, A6TUSS, A7GSE1, A7Z5B4, ASFDG9, ASMEX7, A9VGS6, BOC205, BOJQZO, B1I4F9, B2HQ9O,
B2J1W1, B7GHW7, B7HAZO, B7HNN4, B7IWN1, B7JLX2, B7KD70, BS8HTV6, B8ZR84, BOIWYO, 031777, POA4X5, P22806, P45487, P53556, P9WQ86, POWQS7,
Q1B7FO, Q5SHZ8, 0635G4, Q65ML1, Q6HE48, Q731H9, Q740R7, Q7NNL4, Q818X0, Q81MBO, Q8KZM9, Q8YZT3, Q9K625, Q8RSU4, P16524, A2CC97, A5GINI,
QOID68, Q7V4Z3, P17731, P73807, Q02135, Q9KJU4, QOS962, Q8FU28, P60120, P60121, POWQ88, Q795M6, A6LMP4, ATHMMi, A9BGLO, B7ID58, 066630,
A6L7E4, A6L8U2, B6YRL2, Q5LCO3, Q64SY6, Q8AABS, AOLEA5, A1ATI6, A1VDD3, A5GD93, A8ZXV5, B3E933, BSEGX2, B8DJJ6, B8IZX8, BOM384, COQFJ4,
C6BUK3, C6E9Q7, QIMR87, Q30ZX9, Q39Z65, Q3A1US, Q72BI1, Q74GT3, BOB7WO, BOBC25, Q253K9, Q5LEMO, Q6MDEO, (824A4, Q9PKO4, BOSEH8, BOSMK7,
QO4UL5, QO4YV8, Q72NJ3, Q8F814, P63503, POWQ82, POWQ83, (08432, Q5SHWO, Q93QC6, QOCBM9, Q84CG1, Q3MAL4, Q3MDN5, Q8YM38, Q8YP73, A2BT75,
A2BYM6, A2CAT7, A3DK17, A3PEY9, ASFRC5, A5GW23, A9BCJ1, A9KJ19, BOCDHS, BOJUMO, BOTA38, B1I544, BiWSG7, B1XKF6, B24250, B2J2U3, B7JVLS,
B7KL61, B8CX89, B8HJY4, C4Z4Y1, C4ZG66, Q10ZC3, Q24S01, Q2JLLY, Q2JS04, Q2RK33, Q318P3, Q31PY6, Q3AC10, Q3AMUS, Q3AW44, Q3Z8H5, Q3ZXC8,
Q461X2, (55828, Q5N492, Q7NDX4, Q7U4C3, Q7UZZ3, Q7VA14, Q8DH57, POWPZ4, POWPZ5, Q02636, P39643, A7Z4X1, P26505, Q04512, QO6965, QIRIVZ2,
Q4UJV4, Q68VS3, Q9ZCB8, 031665, Q8DTM1, B4USL1, 067857, AOM287, A1BGB4, A4SE60, ASFFYO, A6GY79, A6L2V8, A6LAM2, B3ECG2, B3QP11, BA4SSL6,
B4SGL8, Q11VM5, Q3ARM7, Q3B3L3, Q5LAZ9, Q64RES, Q8ABA8, A3PIA4, A4WUN9, ASFVN2, A7ICA9, ASHZS2, ASLK96, BOUNO4, B2IDA4, B3Q8Z5, B6IYQO,
BSIRU5, BOKPH4, P45358, P55683, P61002, QO7IG8, QOAM22, QOC348, Q11DR9, Q131B9, Q163G3, QIGET3, Q1GP30, Q1QQD5, Q20YH9, Q28TL1, Q2GAI1,
Q2IS68, Q2N7G6, Q2RP86, Q2WO47, Q3J445, Q3SV41, Q4FP52, Q5FQA6, Q5FRR4, Q89GXO, Q89ULY, Q8U9W3, Q92L21, Q92MGO, Q930J0, Q987C8, Q98BOO,
Q98G10, Q9ASB6, A1KVO6, A1TKZO, A1VK38, A1W431, A2SEO5, A9M185, B4RJO5, BOMDV4, 007131, Q2Y6Y6, Q2YAU6, Q39CT7, Q39K90, Q39M27, Q3JMZ7,
Q3JW89, Q3SI68, U3SK85, Q46Y48, Q47AL9, Q47GP2, QSF7D7, Q5P791, Q62FCO, Q62GE0, Q63Q87, Q63XM1, Q7POF4, Q7VSZO, Q7VWLS, Q7W2Y3, Q7W6Q1,
Q7WDY3, Q7WHN5, Q82WM3, Q82XEO, (845V2, Q8YOY8, Q9JTH8, Q9JYH7, AORMN9, A1VEWA, A1VY36, A5G9G1, A6Q1Z5, A6QBYS, ATHO84, ATH556, ATHCR6,
ATI2V8, A7ZCF3, A8FKA6, BSEOW9, BOKDN6, BILZ53, C6E916, P61000, Q2LST8, Q30TC9, Q311Z4, Q39YP6, Q3A7R3, QSHWF4, Q6AQK2, Q72DA0, Q7M7Y6,
Q7VIJ3, AOKKB7, A1ACN3, A1JTV9, A1S6Z2, A3M2I8, A4SMP7, A4TKK4, A4WCTO, ASCVRS, ASF2A2, A5VZ57, A6TBC4, A6VUD3, ATFJH1, A7MJP4, A7MX17,
A7ZNJ3, ABA1P5, ABAEK3, A8GC78, A9ML15, A9MSC2, A9R2K5, BOKQJ6, BORSLS, BOTY45, BOU3B2, BOV7Q2, BOVV21, B1IZ53, B1JBCO, B1JPWi, BILP20,
B1X6V8, B2FPMO, B2HTWS, B2ISYO, B2JZM8, B2TYF9, B3PCJ2, B4STN8, B4SX42, BATON5, BATMR6, BSBFBY, BSEX40, BSFDAO, BSFM42, B5QZL3, BSRBR3,
B5XPE6, B5YU77, B6EJ89, B6I848, B7GZI3, B7I6C5, B7LOPS, B7TLUF2, B7M400, B7MDH5, B7MWUO, B7NC61, B7NQG9, B7UT58, B8D707, B8SD8Q3, COQ1K1i,
C3LU31, C4ZSBO, C6DF75, P44423, P57202, P58891, P58892, Q058A6, QOT3A6, QOTGE6, QL5RUS, Q1C9R1, Q1CGXO, QLIE97, QILT68, Q1R089, Q1RA52,
Q2NTX2, Q2P3K2, Q2SBJ7, Q31GD4, Q31I36, Q323J1, Q32EF0, Q3BUF6, Q3J7H2, Q3JENS, Q3K8U2, Q3KHZ1, Q3Z0G4, Q47XB7, Q48EDO, Q492K2, Q4FQF9,
Q4FSH2, Q4K8NO, Q4KI72, Q4QLD1, Q4UU41, Q4ZNWO, Q57004, Q57MS2, QSE637, QSPDP4, Q5QWQ9, Q5QZ49, Q5WX92, Q5X5X0, Q5ZW88, Q608S3, Q609W4,
Q65RB2, Q66C50, Q6D410, Q6FEC7, Q6LT75, Q7MLSS, Q7VQW9, Q83KJ6, Q84I51, Q84I52, Q84I53, Q87C30, Q87QLO, Q87WV6, Q88P86, Q89AX7, Q8D8Q1,
Q8EFB2, Q8FG51, Q8Z5J9, Q8ZFX6, QOCLM3, Q9CMI7, Q9KSX2, QOL6I2, QIPBC6, QORIO0, Q9S5G6, Q9ZHES, P60998, B2UPR9, B3DXN2, Q7UNC3, QO4QWS,
Q04z75, Q72PG3, Q8F6WY, COR1ZO, 052815, AOAK37, AOPP15, AOPXP5, AOQHI1, AOQX82, A1A2H6, A1R558, A1T8W2, A1UHK7, A2RKS5, A3CNT7, A3Q130,
A41Q80, A4QFG6, A4XMY1, A5CZ78, ASFR29, A5I245, ABN7Q7, A5V022, A6LUF3, ATFU81, A7GDQ6, A7GN55, A7NFV2, A7Z614, ASAY31, ASFEJ6, ASMEH2,
B0JJJ7, BOK625, BOK735, B1HTD4, B1ILA9, BINOO9, B1WY56, B2GBRS, B2HQA3, B7GHJ8, B7JUI4, B8DCO1, B8FP20, BSHW95, BSISV1, BS8ZRBO, BIDK21,
BOE168, BOEAC1, COZCE7, C1ATZ5, C1FN41, C1KWM5, C3KVX5, C5D3D2, P16246, P28735, P60999, P61001, QO2YW3, QO3K75, QO3VY3, QOSHX9, Q10VSO,
Q1AY33, Q1B7G5, Q24QJ1, Q2J8K9, Q2JPM4, Q2JTG5, Q2RL44, Q2YSI3, Q31PF9, Q3AAT6, Q3AD52, Q3M504, Q3MAX6, Q3Z879, Q3ZXL8, Q47QS8, Q49VSO,
Q4JWS8, Q4L4E7, Q5KXV3, Q5N4R3, Q5WGR9, Q5YYP9, Q63A05, Q63DL4, Q65I137, Q67KI2, Q6A8L4, Q6GBA6, Q6GIRS, Q6HHF6, Q71Y90, Q736A5, Q73AX7,
Q7NLO3, Q81C43, Q82AA5, Q8SUE6, Q8CTG8, Q8DM42, Q8DTQ4, QSEQBY, QUBESS3, Q8FNZ1, (8G4S8, Q8KZ92, Q8NXN3, Q8R5Q4, Q8Y5X8, Q8YMG7, Q8YV89,
Q97ES6, QOKCA8, Q9RRM7, Q9X7B8, Q72LL6, ASINE2, B1L869, BOKOR9, Q3S8P9, AOPVNO, AOQOF3, AOR5X8, A1KQA5, A1TGS6, A1UN51, A3Q7J9, A4QAL4,
ASU9A1, BIMFCO, BiVP97, B2HLJ8, COZM44, C1AIM6, C1B997, P61004, P61005, POWML4, POWML5, Q1B1Z8, Q47KH1, Q4JSJ5, Q5Z3CO, Q6ABU3, Q6ABX6,
Q7TVQO, Q82FJ1, Q8NTT4, Q9ZBYS, P95468, 085746, P77806, QSHIC5, Q6GBT7, Q6GJB8, QSEMO7, Q8NXY3, P63501, P9WQ89, A5IQS7, A6QF32, A6TZK2,
ATWZLO, A8YZZ5, P67724, P67725, Q2FIR7, Q2G087, QSHHU9, Q81FQ1, Q3J9D6, C6C2Z3, QSHRO8, B2JKH6, Q46WL3, Q9PII2, P58661, POA959, POAIEO,
POA961, QOKM65, QOHVXO, POAB78, POAB79, P23034, P96847, AOQX65, A1KJ16, ASU2V6, C1ANM2, POA679, POWMLE, POWML7, Q92A83, Q9XODO, Q9XO0Y2,
ASEWM9, P00509, Q8Z8H8, A1A918, B7MGN4, QiREF4, Q5WV43, Q81P62, Q8KDO1, Q7VWP1, Q7W9I4, Q8PQD8, 084395, Q3KLW3, Q9A671, B1YMC6, Q81I05,
Q81V80, Q8XV80, Q5X3Q5, Q5ZU10, QOHZ68, ASVSV7, Q2YR81, Q57AR7, Q8FY98, Q8YJK3, Q6HL37, Q81SV5, ASUA19, ASUGY2, Q9Z856, Q5KY23, Q18T09

Radical SAM (PF04055), referred to as SAM in Chapter 4:
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B2V8G9, B4U973, COQR28, 067104, BIGYW9, Q3ARP5, AOM7A9, A1BCQ5, A4SGW2, ASFLT1, A6GW77, A6LD84, B2RHOS, B3EI42, B3EPW2, B3QLR7, B4S690,
B4SGZ7, Q11S94, Q2S4I8, Q3ANX4, Q3B169, Q7MT97, Q8KGB6, Q02550, BSELRS, B7J403, B5YKS5, 031381, P33770, P95651, A3PH74, ASVAC6, A6X2S8,
ATHP26, A7IEC3, B3QCX3, B4RBP5, B6JDD7, BOKM96, QO7PI4, Q138Z3, QIGTT5, Q212A8, Q2GAF7, Q2IUT3, Q3J561, Q3SW30, Q4UM45, Q5LN74, Q5NRD6,
Q6N859, QSREUO, AOL3MO, A1B1ZO, A4YQS3, ASEFG5, ASFZN9, A8IJUS, A9CFX5, AQHRF2, A9WSMS, BOT1Y4, BOUS11, BiLV19, B1ZFX7, B2IEZ6, B7TKN34,
BSEMZ5, B8H640, B8IU36, BOJYY6, BOKGM2, QOATN3, QOBUVS, QOC661, Q1QRH1, Q2GDF4, Q2GHB1, Q2GLB4, Q2NB65, Q2W3L4, Q3YRGE, Q5FFY2, Q5FPC,
QSHANO, Q5PA14, Q9A2NS, QOAMS7, PO7748, ASGUH3, QOBSW6, Q1GGW2, Q2K8V9, QAUKO7, Q92GH8, QORNY7, A7IGB2, A9HIM2, B6JCT6, BTKVEO, Q5FHD1,
Q5GSS2, Q5HBR5, Q5LLMO, PO6770, P09824, P24427, P71517, Q89FG1, Q9L3BO, A4WRD4, Q6NCS3, ASLNFO, BIM1U6, Q28VS6, Q2K3B1, Q2W897, Q3SNT2,
Q7CWI1, 087941, AOKBOS, A1K9C8, A1KUO1, A1TQ53, A1VUJ4, A1W7J6, A2SGQ6, A4GIF1, A4JIB7, A4SV63, A6SU66, A9AE44, A9C2R2, A9I023, A9LZ69,
B1JZE1, B1Y502, B1YNS2, B2AGAO, B2JKH4, B2SWS5, B2UDA1, B4E9L4, BOMJH4, P94966, QOAE72, QOBBD4, QOKF86, Q12D73, Q12F39, Q146K5, Q1BT34,
Q1GZA6, Q1LS73, Q21W43, Q2KWF1, Q2Y9Y9, Q39CE4, Q3JWRS, Q3SLYO, Q477A1, Q47IF6, Q5P7M6, Q7NPW1, Q82SL7, Q8Y2R9, QOEYP3, A9HZZ2, Q39D51,
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ASGML6, A5GRJS, BOK1A1, BOK9L4, B1XQK7, P73127, QOAYB7, Q119H9, Q2JKYO, Q2JQX6, Q31KL5, Q3ALB4, Q3AV90, Q3M8N9, Q47RR8, Q5N199, Q5SME9,
Q67NJ9, Q72J39, Q7USRO, Q83FT9, G83HG3, Q8DJB2, P20627, (43883, COZY23, ASIJD4, A6LJA7, ATHK86, ASF716, A9BGV7, BIL8F3, B7TIFC4, Q9WZC1,
067886, P51008, 051676, 025376, Q9ZLHO, Q38HX2, Q84F14, P74132, Q53U14, 066772, 067826, 067929, Q1IHK7, P59038, A6HIN2, Q89ZC3, QSKFKS,
B5YJ09, AOL7R4, A1B4A2, A5VQC9, A6U9U3, ASLIRS, A9MAX5, BOCLTO, B2S5I1, B3PQO8, B3QCQ7, BSZRMS, CORIT4, Q139F2, Q1QN98, Q2K7L4, Q2NCE3,
Q2YNT7, Q3STBO, Q3V7S1, Q57DG3, Q89NT2, Q8GOX4, QS8UERO, Q8YGY6, Q92PB4, Q98MKE, Q9AC48, Q9X5W3, AOW3RO, BOUE13, BILUE7, BiZIB2, BTKXC6
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SAM dataset continued:

BSENI9, B8ITV7, QOBQS8, Q5LTB4, Q6NSF3, QOEXUS, Q9ZDB6, A9CF16, Q2RSY6, Q9ZCV2, Q8YOK4, Q9KOQ5, AORMJ2, A1VXP5, A6Q5D0, A6Q6R2, A7GWAS,
ATHIN9, A7ZB87, A8ERSO, ASFJXO, B6JMO1, BOKDV3, BIL851, C6CO60, P56414, Q1CTA2, Q30P92, Q5HX04, Q747W9, Q9PIW6, Q9ZL75, Q74CF3, AOKILS,
A1SWQ3, A1US78, A3NO54, A4XWO5, AS5F2Q5, ASUBK4, ASUFB4, A5VZZ2, A6T6M5, A6VPY2, A7MJ10, A9MTH7, BOBNX2, BOKST1, B1JCWO, B2FUMO, B2TVE9,
B3GXC5, B4SL67, BATCS5, B5XYW6, B7LJY1, B7ULX8, B7VLU4, C3LTS1, CALFK3, C5B7H2, P45311, Q12T28, Q1I6J5, Q21162, Q31JB9, Q3KAS8, Q4QJR9,
Q4ZU05, Q65TT2, Q6D3C7, Q7N6P6, Q7VLN1, Q87MYO, Q882V6, Q88E69, Q8D894, Q8PNH1, QOCN21i, Q9I3K7, QOKT81, A4XTR4, ASVXG4, A6T9H2, BOV494,
BOVQD7, B2I0IS, B2VL10, B5XX58, B7H2YO, B7I6M8, B7VAB6, CIDEWS, P27507, P59748, Q01060, QO2LD6, Q48CT3, Q4K4US, Q4ZMC1, Q608PO, Q88AS4,
Q88QV8, Q8PHY1, Q9I2CO, BORQ25, B2SSW3, Q2P4Y9, Q3BQI4, Q4UXI4, Q8PEM7, P43761, P45097, Q8K9D9, Q7UVGS, Q7UTE9, Q9Z874, 083293, P54462,
AOAHGO, AOPKZ7, AOR443, A1ULP7, A3Q648, A4J6S5, A4QDF8, A5CYZO, A5I365, ASIVS0, A6QJA8, A6TVF9, A6U3Z2, ATFUZ6, A7GEQS, A7GUO1, A7X5J1,
A7Z9PO, ASMLWS, A8Z366, BOCDZ6, BOJNC2, BOTI16, B1IN35, B1KU20, B1X0G3, B1XLR4, B2GCN4, B2HFA4, B2J1M7, B7JWW6, B8HWW4, COZ9B3, C1BIN5,
C1FPG7, C1L1W8, C3KXJ8, C3LA56, P39757, P62588, P65385, P65388, P65389, P69848, POWJSO, POWJS1, QOAVU6, QOS2N2, Q119N9, Q1B3F3, Q2FEM4,
Q2J146, Q2RGL2, Q2YYS8, Q3ADX8, Q3AGB7, Q3AVP9, Q3MC34, Q49ZI6, Q4L8D2, 55369, Q56211, QSHDT9, Q5HLY1, Q5N5F7, Q65DY5, Q6G754, Q6GEGE,
Q721B9, Q7NCF5, Q7TX84, Q7U3H2, Q88WY1, Q8CNE6, Q8Y870, Q8YQG6, Q92CY2, Q931G4, Q97HL8, QOEYNS, QOKOW9, QORJA7, Q9ZIM6, Q5SK48, Q8CJIT5,
Q9K864, Q9XAP2, P59749, 068575, POA442, POA443, Q2FK43, Q2G1D7, Q2YV52, Q46267, QSHIF3, Q6GCP9, Q6GK89, Q71ZR3, Q7A1W8, Q7A7X5, Q99WZ6,
Q81G67, P73667, Q7NCE3, Q7VOH9, Q97D55, A9BF51, QOWZT7, B2V8NS, B4U6U1, 067016, Q028J0, 066761, BSYF65, B1GZH1, B2KB59, AOM3K8, A1BHAO,
A4SFH7, AS5FA30, A6GZF6, AGLSE7, A6LAJ6, B2RHD7, B3EDL2, B3EPX5, B3QMNO, B3QSS3, B4S8Z6, B4SBD5, Q11XC6, Q3ASP1, Q3B317, QSLCF8, Q64TK5,
Q7MXM3, Q8A9A2, Q8KCL7, BSEK28, B7J3M4, BSYKD1, Q7D1M2, P55477, Q136A2, A1B3K8, A3PIGO, A4YUI3, ASEJS8, A5V3Z4, A5VUQO, A6X529, A7INVO,
A8IOG1, ASLI17, A9IUA4, AOMBK6, A9W8D2, AOWYNS, BOUQE6, B1M6H4, BiZEV4, B2IHC3, B2SB89, B3QIV5, B6IRQO, B6JF93, B7L2K9, QO7M57, QOCOU1,
Q136X7, Q169Q9, Q1GIY4, Q1GV83, Q214L6, Q28TNO, Q2GA32, Q2IW68, Q2NDN5, Q2RQI7, Q2W2S4, Q2YKI5, Q3J3Y8, Q577W6, QSLUV8, QSNPCY, Q6GSEO,
Q6N6E2, Q89LGY, Q8FW94, Q8YC29, Q98MN9, A1TMP4, AOK7Q6, A1K487, A1VAH3, A1VQ18, A1WAJ7, A1WMVS, A2S2C9, A2SG87, A3MK46, A3NA26, A3NVU2,
A4G6D4, A4JEL4, A4SXC8, A6SXU1, A9BVZ2, A9IFP1, B1JT65, B1XUT6, B1Y223, B1YR17, B2JG80, B2T3US, B2UFU5, B3R4X7, B4EAF5S, QOAG95, QOBEZ5,
QOKBP2, Q12425, Q13Z56, Q1BGU5, QLHOX3, Q21X03, Q2SWB9, Q2Y7J7, Q39FUO, Q3JRTL, Q3SI16, Q472G1, Q47CFO, Q5PIL3, Q62JZ1, Q63UQ8, Q7NYA1,
Q7VsS95, Q7WiU6, Q7WQS2, Q82VY8, Q8XYX0, A2SLX7, AORQM9, A1ATL9, A1V9Z2, A1W162, A5GBX9, A6Q526, A6QCC6, ATH6G8, ATIOP9, A7ZE21, ASERBY,
ASFNC1, A9AOB5, A9F1Y8, B2UT98, B3EAM2, B4UKQ2, BSED60, B5Z796, B6JLW7, 025434, QOP8G1, Q17XY7, Q1CTD7, QiDC90, QiMQJ5, Q2LQ68, Q30PSO,
Q315T9, Q39QQ6, Q3A8J5, QEHSX7, Q6AQ27, Q726F7, Q747RO, Q7VGLO, Q9ZEN7, Q9ZLA9, ATHIL1, A9EPV3, P66130, QiCYEL, Q9ZMFO, AOKHZ9, AOL1CS,
A0Q4U9, A1A974, AIRNY7, A1U488, A3D958, A3N2T4, A4SKK7, A4XT11, A4Y27Z8, ASF514, ASIGM4, A5VZS9, A6VAS8, AGVLD6, A6WIP6, ATMF19, A7NA32,
A72JQ2, A7ZY97, A9KZF7, AMIP6, A9MSQ9, BOBRW2, BOKTLO, BOUO54, BOUS28, BOV6ES, B1IXD2, B1JD88, BILMDO, B1iX7X6, B2FP10, B2SWCO, B2TV93,
B3H2N3, B3PGP3, BAF137, B4RYE6, B4SQX0, BATCVO, B5R840, B5XYQ3, BSYSC6, B6ISF5, B7H1U1, B7I9V4, B7LCBS, B7LMZ9, B7M7BO, B7MGU2, B7MQTS,
B7NAI1, B7NNRS, POAEI4, POAEI5, Q02I76, QOA8I9, QOBNJ1, QOHEKO, QOHZF3, QOI4D9, QOT6C8, QOTJL3, Q15UT4, Q1I6D1, QIREQ0, Q21FE3, Q2P0S4,
Q2SBG3, Q31G14, Q323V7, Q3BRJ5, Q3KH22, Q3Z3U9, Q4KHAS, Q4UWF3, Q4ZWM9, Q5GXP5, Q5PGP7, Q5WYL5, Q5X765, Q5ZXP6, Q60CM4, Q65QA6, Q6D3N6,
Q6FCH4, Q7MG88, Q7VKK2, Q83LT1, Q88NLO, Q8D4N8, Q8EA37, Q8FJK5, Q8P7P7, Q8PJ10, Q8Z861, QICKN9, Q9I541, QOKNWO, A6VEX8, QO2KY4, P44743,
Q6MGT1, B1ZW93, B2ULZ9, B3DYX1, Q254N4, Q5L5W7, Q6MBU9, Q7UK39, (823A0, Q7UPG1, BOSGD8, BOSPT9, QO04R21, Q04ZD0, Q72PC8, Q8F710, AOLVi1,
A0QOP6, A1SJ39, A2BNPS, A2BU62, A2C661, A3DDZ7, A3PAG5, A4FLZO, A4J5U4, AAXLD9, AS5D2R3, A5GNW7, ASGQP4, ASI4T1, A5N854, A5UQQ2, AGLSR6,
A6TRJ4, A6WS833, ATFVY1, A7GFZ4, A7NIS8, A8G2A6, ASMLX7, A9AZS3, A9BCV9, AOKLS2, A9WDA3, BOCB83, BOK1C1, BOKON5, BOTIH8, B1I310, B1II37,
B1KWJ5, B1VXY2, B1WUD1, B1XPZ7, B2A3CO, B2IVR7, B2TJ67, B2VAI1, B7JV66, B7TKDB6, 086812, QOAXI3, QOI735, QOSSES, QOTPS8, Q10Y85, Q18BJ2,
Q1J1F6, Q24W37, Q2RJK1, Q3ACX5, Q3AH63, Q3B002, Q3MFH1, Q47RT4, 55803, Q5SJ39, Q67NX5, Q6A908, Q72JG1, Q7NDB8, Q7U477, Q7V3H3, Q7V8Z5,
Q7VE92, Q82K95, Q895I7, Q8DIL8, Q8RA52, Q8XJS9, Q8YXJ1, Q935Y2, Q97140, Q97L63, Q55914, ASIL80, A6LM59, ATHMK2, ASF8W3, A9BEU9, B1LAGO,
B7ID25, P39409, QO1QF9, B5YF42, B8EOX3, B1HO70, AOLY94, A1BGN4, A4SEQ5, ASFJO6, A6H1B8, A6L3I9, A6L8GO, B2RMIO, B3ED49, B3EJF5, B3QS43,
B4S808, B4SA62, C1A949, Q11QF0, Q2SOP9, Q3ASD4, Q3B4B8, Q5LGKS, Q64XE8, Q7MTBO, Q89ZK5, Q8KD71, Q8RFZ9, A3PFQ4, B3Q9D7, B5ZTF1, QO7VNS,
Q13D92, Q21DC2, Q2J405, Q2RP22, Q92L68, AOLBZ1, A1B4Z8, A1UUF7, A4WNI9, A4YJY2, ASES8P3, ASVAJ8, ASVN22, A6UE14, A6WV17, ATHSW7, A7ICB3,
A8IQ73, A9IL44, ASMES9, A9W383, BOCII9, BOT387, BOUQR1, B1ZG98, B2IGZ5, B2S7X6, B3PQYS, B4RCA4, BSEIRO, B8GXM4, B9JCI9, BOJU97, BOKQP1,
CORGD9, C3MAJ1, QOATR3, QOBVO8, QOBWY9, Q11EEO, Q16DM2, Q1GC70, Q1GV98, QIMAN2, QI1QHE3, Q2G8E3, Q2N9J2, Q2YNV3, Q3IY22, Q57FT9, Q5FUA9,
Q5LN66, Q5NNQ4, Q6G1CO, Q6G592, Q89X03, Q8G374, Q8YEL1, Q98ES6, Q9ABT6, AOK7T8, A1ISB3, A1K3Y6, A1KUD6, A1TM24, A1V4K3, A1VNF1, A1WE19,
A252A0, A2SHB8, A3MK77, A3NAS6, A3NVX3, A4G4J9, A4JEP2, A4SYE2, A6SZX3, A9IKS7, AOLZN6, B1JT94, B1XXL6, B1YR46, B2JIV3, B2SXT2, B2U9U6,
B4EAX1, B4RMG2, C1DD41, QOAE39, QOBEWS, QOK959, Q12AB5, Q13X26, Q1BGX6, Q1HOU6, QILLI8, Q21W25, Q2KY87, Q2SWE6, Q2Y6F3, Q39FQ7, Q3JRA1,
Q3SL73, Q46ZI0, Q47BR3, Q5F911, Q5P7BO, Q62JW2, Q63UT5, Q7NS85, Q7VWKS, Q7W6P5, Q7WHMS, Q8Y032, Q9JZ42, Q47GWS, AOLQM1, AORRUO, A1AL40,
A1VAL8, A1WiWe, ASGEC2, A6Q115, A7GVW3, ATH662, ATHCD6, A7I414, A7ZGBO, ASEQWS, ASFP27, A8ZV25, A9FFJ6, B2UVG6, B5Z947, B6JNSO, BSDRUZ,
BOKEA4, BOL721, C4XTP4, 025970, QOP7R8, Q17ZF6, Q1CRK2, Q1D6I6, Q1DCU1, Q1MQJ3, Q2IIC5, Q2LUM5, Q30NR4, Q30X35, Q39S71, Q3A2Z4, Q5HS83,
Q6ALWL, Q727F1, Q74E53, Q7MSWi, Q7VGY9, Q9ZJI4, A1JKR9, A4TMUO, A5CX33, ASF3F8, ATFFY6, A7MU39, A9R805, BORT51, BOU494, B1JSO2, B2I7V5,
B2K9Q3, B7VJTS, C3LT10, Q1C5I5, Q1CK94, Q2P2TO, Q4UUL5, Q5GZT3, Q667Z6, Q7CIM9, Q7MNF3, Q87B36, Q87S19, Q8D1Y5, Q8DEZ6, Q8P984, Q8PKZ1,
Q9PG43, AOKJ41, AOKUJ2, AOQ6HO, A1AWA4, A1S866, A1SU36, A1TZP7, A1WXZ3, A3D6W2, A3M208, A3N1S4, A3QCF9, A4IY03, A4SPO4, A4WD95, A4XY35,
A4Y8U3, ASEVN1, ABUAC2, ABVYT2, A5WGQ4, A6TCD6, A6VOV7, A6VQX9, A6VV0O3, A6WQQO, A7MGV3, A7NC58, A8A323, ASAD69, ASFT67, ASGHWS, ASH242,
A9KFVO, A9KXL1, ASMHL3, AON1Z8, AONDW2, BOBQK6, BOKPI4, BOTLI1, BOUO83, BOUWRO, BOV4UO, BOVKS2, B1JDQ5, B1KKI9, B2FNQ6, B2I3E2, B2SGH6,
B2VE9S, B4EZT6, BASSW3, B4TOQ1, B4TD95, BATRO7, B5BAY3, BSF1AO, BSFAWY, BSFR66, BSR584, BSRCZ4, BSXNL2, B5ZOY6, BEEGY4, B6IZM7, B6J7Q9,
B7HO72, B7I5G4, BTLKC1, B7N6A5, B8E9S4, COPYM8, C3K1L7, C4LC34, CSBET4, P44665, P57373, Q057Q1, QO085U9, Q0A989, QOBLY6, QOHKW2, QOHX60,
QOT202, QOVND7, Qi2PT7, Q14HF5, QLIEI4, Q1QD22, Q1QTL1, Q21KT6, Q2A3H3, Q2SDWi, Q31I07, Q3ID16, Q3JCN4, Q3K7B3, Q47WB7, Q492D9, Q4FTXO,
Q4K6U6, Q4QNH7, Q57LI4, QSE775, Q5NGO3, QSPNI4, Q5QYCO, Q603CO, Q65R87, Q6D273, Q6FEM6, Q6LU52, Q7N709, Q7VNZ4, Q83C77, Q83K42, Q88PKO,
Q89AK8, QBEC29, Q8FF55, Q8K9P5, (8Z4P2, Q8ZN52, Q9CJJ8, Q6MPV7, B1ZQz5, B1ZVM5, B2A0B9, B2UNF2, Q6MDDO, Q6MED6, Q7UHU7, BOSGAS, BOSPQS,
B2S216, 083107, Q72NP7, Q73KZ3, Q8F7V1i, AOAFT6, AOLV48, AOPQ89, A0Q112, AOQVE4, AORHN7, A1SLQ4, A1T787, A1UEJ3, A2BT57, A2BYK7, A2C4M8,
A2C6T3, A2RDK1, A2RHR3, A3CLL3, A3DCX9, A3PEXO, A3PXZ7, A4FMC5, A4J582, A4QF26, A4TC75, A4W3A5, A4XL78, AS5D1B6, A5GNG9, ASGVES, A5I4T4,
A5ISA3, A5UT23, A6LSK1, A6QGB8, A6TRW3, A6U137, A6W7W9, ATFW72, A7GG92, A7GRJ4, A7NPY6, ATX1H8, A7Z4J5, ASAVZ7, ASFD40, A8G6Y2, ASL6DS,
A8M6B6, ASMH89, A8Z3Q4, A9AYS5, A9BCH2, A9KM95, AONEU7, A9VTA2, ASWFY6, BOC9F4, BOJT33, BOK1Y9, BOKAO6, BOS143, BOTGT1, BIHQE6, B1I501,
B1IAU3, B1IIL7, B1KX56, B1VYT2, B1WU13, B1XQH8, B1YG36, B2A2K6, B2GJ15, B2HJP3, B2INFO, B2J6D0, B2THS9, B2V4B5, BAU1IT1, B5SE369, B5XMBI,
B7HDY7, B7HLJ7, B7IUM3, B7JJV1, B7K4N4, B8DCJ5, BSFS78, B8I259, BIDPM7, BIDUW7, B9IVF3, COMBZ4, COMD67, C1B2VO, C1C6BO, C1CJL5, C1CVX7,
C1EP88, C1KZZ3, C3L763, C3P635, C4z523, 034617, 086754, PODF10, PODF11, QO32R6, Q03J17, QOALD5, QOAXL8, QOI7M1i, QOSS81, QOTPL4, Q110I1,
Q182S0, Q1AYWO, Q1BAG9, Q1JOP9, Q1J5R7, Q1JAS5, Q1JG02, Q1JKX6, Q24U12, Q2FHMO, Q2FZ66, Q2J713, Q2JMN2, Q2JRQS, Q2RK16, Q2YXJ8, Q318R1,
Q31MD1, Q3AC22, Q3AHX9, Q3AZAO, Q3K2R2, Q3M9B9, Q46J26, Q47S46, Q48SKO, Q49WZ9, Q4JV24, Q4L5R9, Q55880, QSHGL4, Q5HPX3, QSLOS1, Q5LY9S,
Q5M2V3, Q5MZJ6, Q5SGZ3, Q5WKB6, Q5XAZ6, Q5YS67, Q636G2, Q67PQ7, Q6G9Z5, Q6GHL7, Q6HEV1, Q6NGK9, Q6XK03, Q723G9, Q72HC1, Q732K6, Q73VRS,
Q7A600, Q7NIV3, Q7V010, Q7V5P5, Q7VA32, Q819U3, Q81WH4, (82JY3, U833B6, Q895P8, Q8CSWO, Q8DG98, Q8DAG7, Q8DVGS, QBE1A3, Q8E6Q7, QSELW7,
Q8EVKO, Q8FP78, Q8G481, Q8NPO6, Q8NX16, Q8PO58, Q8R9T4, Q8XJL6, Q8Y9P2, Q92EH6, Q97IC4, Q97RN5, Q99UQO, Q99YU5, Q9CJ27, QOK9IY8, QORVTS,
ASILF6, A6LN47, ATHNQ1, ASF8C2, A9BICO, BILAW7, BOK7Z6, Q9X240, B1Y6D6, Q2L1Z5, Q3SHI2, Q7NVT9, AOFD89, A4VLN9, A4XU99, Q9I2Q6, A1A917,
B7MGN3, B7MQM8, Q1REF5, Q8FJQ3, P30140, Q9S498, Q9K7C9, B5QWC1, BSR817, Q5HKJ7, AOL887, Q72DS4, Q4K5I3, A7ZJJO, BILM72, BSYRMO, B6I7TS,
B7LC63, B7M753, BTMQN5, P65382, P65383, Q324B1, BOSGV6, BOSQ03, QO4UGL, Q04Z14, Q4KAT2, A1W574, Q72DE5, A6QCU6, BORTEO, A6T6T1, A1KMM4,
C1AFZ5, POA645, POWH14, Q1IRD1, A1B656, ATHBU9, QAURNO, Q8PBX1, P64554, P64556, Q484J7, A1AE55, ASIC42, A7ZPWO, B1IWE4, BILNH2, B1XAZ2,
B2TXU2, B6I589, B7LDA9, B7M7M1i, B7MIO2, B7N304, B7NRG7, B7UGW3, C4ZX92, P36979, QOTEWS, Q1R8L6, Q31XX3, Q32D45, Q3Yz35, Q73JG6, QOTTH1,
A1KKRO, A5U4P6, C1AQD3, P65284, POWK90, POWK91, Q8DLC2, P9WJS3, 031677, Q9X2H6, BSGWS2, Q9A7I8, Q4FNN5, AOLIMO, B2FUS8, BATOB2, BATQZ6,
B5BBX8, BSFOX7, BSFPB9, B5QXV6, Q57RA8, Q8ZQM1, Q5WWH4, QSHKIO, Q8CTX5, QORDQS, BOKBR9, Q7WB85, Q7WMQ3, A6T6L5, QOT6I5, Q83S46, Q93GG2,
B7JLW9, Q635G7, Q6HES1, Q81MB3, AOAO69AMK2, Q7USKO, 066732, Q8KBK9, A1IRY3, B4RLI6, Q5F8G2, Q9JRW7, Q9JZA5, QO2SE8, Q187U6, AOLVGO,
Q0S277, ASMUHS, B4SYNO, B4TB74, B4TPZO, BSEZB2, BSFNB2, Q57RQ7, Q8Z8G5, QORCI2, BOUUK6, A3M659, BOVMU3, B2I330, Q48LZ7, Q4ZX26, Q886Z3,
Q5X516, Q5ZV93, A4IM49, P09825, A4TNY6, QO2RWO, BOJJIS5, A1A280, Q48FA7, Q87YO1l, A5G209, POA1E1, POA1E2, Q2GJJ5, P32675, ASIRA1, A6QFD6,
A6U030, A7XOC7, A8Z1I3, P65285, P65286, P65287, Q2FIE9, Q2FZX4, Q4LAT8, Q5HHGO, Q6GBO1, Q6GIG3, Q6ATK4, B5Z928, Q1CRM5, Q48DM6, Q4ZN84,
B4RLK9, Q5F8IO, Q8Y2L3, Q9JUC8, Q48HV8, QOKTX3, B9J9I5, QOC606, Q8ZGWS5, Q48CS1, Q88A98, P75794, Q2NS37, Q2J5A7, Q65JS3, A5VUGL, A9MBDS,
A9WYH2, B2SBFO, CORL26, Q2YKB8, Q577P8, Q8FWG3, Q8YBW1, A1V817, A2S7R3, A3MNG1, A3N520, A3NQS1, Q2T1Q4, Q62MW9, Q63Y25, A7ZY37, B1X7B1,
B4SZK4, B4TQU6, B5BC24, B5FO79, BSFP68, B5QX73, BS5R769, B7TMGN9, B7NA81, B7NNL1, COPWZO, C4ZXV3, P30745, P65386, P65387, Q32I50, Q3Z403,
Q5PG37, (83540, A2AXI2, ASHBL2, QOFBG4, QOSS32, A3M4U4, BOVCAS, B2HYX9, B7H3S4, B7I4I4, A1A1I4, Q6A7V7, Q5PAD4, Q7VVF1, A6T689, B5XZS6,
A6GZL9, Q5KVM7, AORMES, A6L1US, Q18CP3, POAON4, POAON5, POAON6, POAON7, B7JDM3, C3LCA6, C3PDK2, Q6HBT4, (81XM8

Aldehyde dehydrogenase (PF00171), referred to as ADH in Chapter 4:
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067166, Q3B2U3, BOTS8I8, Q1GV29, Q2GOT9, Q9A7W2, Q9AAL5, P54222, Q92YD2, A9IMB2, BOT315, QIGHC8, Q3SVIO, Q8UBS1, Q8YJ78, AOK608, A1V675,
A3NBM7, A3NXG2, A4JCWO, A9AD19, B1JYT5, B1YW19, B4ECZ8, QOBGVO, Q141D3, Q1BXP1, Q39I25, Q3JQC6, Q62LN5, Q63SD7, Q7NXX7, AOK4I3, A1WGI4,
A4SVE2, A6T242, Q1BZ67, Q39JM2, Q3SG61, AQEN94, P53000, A1AB46, A4WAR9, A7ZLN7, A8A002, ASAGJ9, ASGHZ8, A9MQY3, B1IS15, BILFH3, B1XDF5,
B6IAI9, B7L6F9, B7TLR95, B7LZ33, B7MMS8, B7MUNO, B7N4K1, B7URJO, C4ZVI3, C6DD82, P77674, QOT431, QOTHX6, Q1RBX3, Q32FQ5, Q3Z1H6, Q6D6Y7,
Q83R90, Q8FHK7, H2IFE7, P12693, P25553, P33008, AOKN18, AOKST2, A1RNU4, A1U5WS, A3D039, A4SK35, A4W9J7, A4XWE7, A4Y344, A5F529, ABICK3,
ASWOD5, A6T7T5, A6WST7, ATMNVS, A7MX96, ASAOTS8, ASAHDS, ASFRE9, ASGFQ3, ASHSEO, A9L3U4, A9MFGO, AON276, BOKRA7, BOTU38, B1JCH3, BIKDF2,
BILDY5, B2U3C8, B2VJX8, BAT3Z6, BATGE2, BATUC3, B5BA70, B5F7JO, BSFBM2, BSFJD6, BSQWI8, BSRAZ9, B5YQ33, B6EMLS, B7L6MO, B7LQ46, B7MVMS,
B7N582, B7NT31, B7USC7, B7VLI4, B8CIT6, BSEBC2, COQ6X8, C3JXY7, C3LRS7, 050174, QO7XY1, QOT4V3, QOTH84, Q12JA9, Q12QD2, Q15Y60, Q1I6Z5,
Q1QTQ7, Q2SKP1, Q321N8, Q32G88, Q3IC91, Q3IFT7, Q3K885, (488Y0, Q5E2GY, QSPHCO, Q5QVX3, Q5ZUTS, Q6FCQO, Q6LVES, Q7ADE6, Q7MH21, Q7N2G9,
Q7UCI7, Q87L22, Q88EI4, Q8DCS9, Q8EJ54, Q8FHO1, Q8Z6G1, QG8ZPVO, Q9KNW4, P17445, Q8FKI8, E1V7V8, Q88RCO, Q9I6M5, P80668, POA391, BOU111,
PO7004, Q21FC9, Q31IES, Q4FUZ5, QSE6WO0, Q5GZF2, QOPEM3, P23883, 006478, 034660, P39616, P42329, P46329, P94358, Q2FK94, Q2G1J0, Q2YUN1,
Q2YV11, Q49Z69, Q4L803, Q4L919, Q5HIK3, QSHLA3, Q6G7I8, Q6GCV9, Q6GEV3, Q6GKD8, Q8CN24, Q8GAK7, Q8NVG4, PODPFO, Q59931, POWNX8, AOREBS,
A7BJC4, P42412, Q5KYKO, A2RJM8, A5GSHO, B7GTL2, P39821, P54903, Q1IZP1, Q3AYD4, Q3MH53, Q47MWi, P38947, Q9A777, A3PI00, A4WUY6, A6U6EY9,
A6X2G8, A9MOH7, BOCKN3, B3PTE1, B5ZUG3, B9JBA3, BOKNS6, CORHQ3, C3MIES, AOB2F6, A1UVS4, A2RWD6, A3MEC6, A3NKP8, A4JJG5, A9ANOO, B1K708,
B1Z033, B2JS88, B2TCJ9, B4EHJ1, A3M365, A4TNP1, A4VKC2, A4XPI6, ASWA96, A6VEI4, A6W2P7, ATFKL5, A7N2Q0, A7ZI51, A7ZWVS, ASGBXS, BOKN18,
BORNVO, BOV944, BOVST2, B1JOWS, B1J2K9, B1JSQ9, BILIJ8, BiXET7, B2FQ90, B2HV80, B2K8US, B4SHWO, B5Y007, BSZ1R1, B6I075, B7GYG4, B7I896,
B7L441, B7M2V6, B7N8L4, B7NK50, B7UJGS, B7VSR4, B7VQ28, C6DKYS, QOKWS5, 086447, Q9I6C8, Q1MJU3, Q2KB42, Q3J4E9, Q8G1Z9, Q985M6, P55653,
QOB712, Q13NG6, Q1BQE1, Q39A43, Q62CH7, Q63KK8, H1ZV37, Q02DY9, QOT7M9, QOTKWO, Q1C931, QICFR8, Q1IG69, Q3BXK7, Q3K5H4, Q4K4K8, Q4UYN4,
Q66D53, Q6DEEO, Q6FDF8, Q7AH91, Q7MF13, Q87H52, Q88CW7, Q8D3K3, Q8P5D8, Q8PPG7, Q8ZGV9, QOHTJ1, Q9I702, Q9L4K1, P25526, P86808, P19059,
Q2FWX9, Q3C1A6, AOPN13, AOQMB9, A1KF54, ABTYV9, 032507, 069497, POWNX9, Q55585, Q73TP5, Q7U2I0, Q1JUP4, P28810, AORDW1, A4IPF5, A5YBJ3,
A7GPH3, A7ZAI1, A8FDV4, ASVFO6, B7H597, BTHR31, B7IW48, BSDCT8, B9IZZ7, C1KZ99, Q4VIF6, Q5L025, Q5WH11, Q5WKZ1, Q63B74, Q63BLO, Q65IX1,
Q6HJ19, Q738L2, Q81DR5, Q81QR5, QSEMV4, Q8ES27, Q8Y9Y4, Q92EQ7, Q9KAHS, P42269, (84DC3, POA390, Q8YVi5, Q3JNN5, Q63QT9, P94682, Q9AHG1,
Q59702, Q6F9GO, Q79EM7, Q8GAI8, B2VOF3, B4USAO, COQSO0, Q1IS80, BSYEQS, BSEOD2, B3EE24, B3QPWO, Q2S354, B5YK66, AOLCZ1, A1BAM3, A3PQJ2,
A4YKF1, ASE961, ABFYS4, A5V8TO, A5VSI3, A6UDV8, A6WXS2, A7HT65, ASLK12, AOM880, A9W6Q2, AOWWW7, BOUMS9, B1M695, B1ZFJO, B2IE42, B3PRZ5,
B3Q733, BSZUES, B6JD19, B7KS47, BSEQHO, BSIEM1, B9JER3, BOJUH7, BOKWO6, CORF92, QO7VO9, QOAL88, QOBWP1, Q11CP8, Q13DNO, Q165Y8, Q1GVMO,
Q1MA74, Q1QQT7, Q21D00, Q28Q10, Q2GCB4, Q2J3J6, Q2K2X4, Q2NOV1, Q2RVO6, Q2VZT9, Q3IXX7, QSLRY6, QSNLX5, Q6NDE4, Q89X85, Q8FYM3, Q92LB2,
Q98EZ5, QOK845, A1KTV4, A1VTR9, A1WCP4, A2SCE2, A4GSE9, A4JBI4, A9C1G5, ASLYY9, B1YTBO, B2JGX3, B2SYN3, B2UC98, B3R6RO, BARLE6, BOMH63,
C1D6E4, QOAEA6, QOBIB2, QOK710, Q122S5, Q13U85, Q1GZB2, Q1LJ33, Q220P2, Q2KXEO, Q2YBP9, Q46XE1, Q47IN4, Q5F8D3, Q5P255, Q7NQ51, Q7VWZO,
Q7W9M7, Q7WH30, Q82017, Q8XVT6, Q9JUKS, Q9JZG3, AOLPG2, A1AUTO, A1VCR9, A1VYR7, A5G906, A6Q3B4, A6QB48, A7GVZ7, ATH6U9, ASEVNO, ASZRY3,
A9GVS8, B3E3M7, B4UMS9, BSEEI4, B8FM70, B8J495, B8J8Z7, BILOA2, BOMOD6, COQLF1, C4XSQ4, C6BSC1, CEE7L9, Q2IMGO, Q2LUSS, Q30SGO, Q311G6,
Q39QR2, Q3A1EO0, Q6AKO09, Q72AN9, Q747Q4, Q7M8Z4, Q7VIO5, AOKNQS, A1A7V4, A1AVHO, A1JNX6, A1S8L1, A1SYT9, A1U3C3, A1WYZ4, A3M1Z8, A3N3P3,
A4SJF6, A4TPKO, A4VRO7, A4W6XS5, A4XYY4, ASCXP4, ASUBQ2, AS5UF66, ASW9J6, ASWH78, A6TS61, A6VOA3, A6VMV2, A6VZ85, ATFLI1, A7MI49, A7ZI02,
A7ZWK6, ABAKP4, ABFYU6, ASH764, A9MNR4, A9MYO2, A9R2XO, BOBTX9, BOKJYS, BORSE9, BOTQC4, BOU208, BOUSH2, BOV4S6, BOVKT1, B1J0Z1, B1J133,
B1JIH2, B1KD27, BILHT9, B1XDY6, B2I3D3, B2I7L2, B2K6Q4, B2SHW6, B2U3T4, B2VHM6, B3H321, B4EUV1, BASVW6, BAT7Q6, BATZ91, B5BDP7, BSEWKS,
B5FBJ5, BSFJX5, BER4S6, BSRSR9, B5Y169, B5Z117, B6I023, B7HO81, B7ISF5, B7L3Z5, B7LNF7, B7M272, B7MC93, B7MQ79, B7NS8H4, B7NK82, B7UJD1,
B7V8A7, B7VJBO, BSCKFO, BSF6K8, COQ6U2, C1DMQO, C3K2M9, CALBK4, C4ZTAO, C5BNNO, C6DCX4, P45121, QO2SH4, QOABNO, QOI2ES, QOT7R6, QOTL73,
QOVN49, Q12SX8, Q1C4E7, Q1CLC6, Q1I4F0, Q1QDZ7, Q1QXB4, Q1RFS7, Q2NVE9, Q2P2G1, Q2SA27, Q325P3, Q32J27, Q3BSJ1, Q3IEY7, Q3J7T1, Q3K693,
Q37594, Q47UQ0, Q48DL4, Q4QJW6, Q4UVIO, Q4ZN73, Q57ST2, Q5PF69, Q5QY68, Q606Y1, Q65S49, Q66DY8, Q6D1I4, Q6FEN5, Q6LTX2, Q7MN58, Q7N7B1,
Q83SH9, Q87EK9, Q87RU9, Q87VV6, (88DL4, Q8DF94, QSEHU1, QSFKM3, U8PSK3, Q8PK35, Q8X7N4, Q8Z932, Q8ZCO9, Q9CM98, Q9HX20, H8ZPX2, Q2BN77,
PODOVY, 005619, 069763, B1ZMC1, Q7UNV2, BOS9AS, BOSRT9, B2S2U7, COROB8, P74935, P94872, Q04Q92, QO54P8, Q72NQ9, AOAI64, AOPUO4, AOPXA4,
AOR115, A1KLCO, A1SHPS, A1TC11, A1UIZ7, A2BQ71, A2BVQ3, A2C148, A2CAS7, A2RD38, A3CMT1, A3DC22, A3PBWA, A3Q2E3, A4F9M1, AAIPN4, A4J3Q0,
A4QG75, A4T2I0, A4VTTS, A4WO028, A4X1X0, A4XK60, ASCR34, A5CZ28, ASFQ48, A5GJS5, ASNOV1, A5U5SC2, ASURC6, ASVIEO, A6LPD5, A6TUAO, AGWDM6,
A7NSB7, A7Z3T1, ABAX77, A8G3V6, ASL1V4, A8MO64, ASMFQ5, A9KMVO, A9VK31, AOWBM7, BOCFLO, BOJWWS, BOKOT2, BOK9C5, BOTBV8, B1IBAO, B1MX68,
B1VXE5, BiXLA4, B2G5WS, B2HME9, B2IP88, B2IZ89, B2THG5, B2UX78, BAU4K6, B5E435, BSXMLS, B7GJH1, B7H673, BTHVK6, B7ILK1, B7JD15, B8DOYS,
BSDHP3, B8FUB6, BSGBEO, BSHYG3, B8I6TO, B8ZP35, B8ZRNO, BODV79, BOE4Q5, B9J498, BOLE47, BOMK8O, C1AQZ3, C1C6R4, C1CDS9, C1CK18, CICRW1,
C1EZ15, C1L2G7, C4Z075, C4Z9V4, C5D2V2, 086053, POCIEO, POC1E1, PODD20, PODD21, P54902, P65789, P96489, POWHVO, POWHV1, QO2XWO, QO35M3,
Q03J03, QO3ZF1, QO4FB2, QO4KZ2, QOAWJ6, QOI8ZO, QOSH62, QOSPX8, QOTM73, Q112S1, Q1B639, Q1J5F6, Q1JAG3, Q1JKL4, QIWRR6, Q2JDN7, Q2JN71,
Q2JQB4, Q2RKZ6, Q31BU4, Q31KX4, Q3AF39, Q3K395, Q3Z6Z9, Q3ZYH9, Q46LWO, Q48RY7, Q55167, Q5KYA2, Q5LY84, Q5M2U1, Q5NOZ7, Q5SHO2, Q5WHS4,
Q5XALO, Q52025, Q639W9, Q65IS9, Q65KU7, Q67LC2, Q6A9H6, Q6AFX9, Q6HHC2, QENFWO, Q735X3, Q73XR2, Q7NEF6, Q7U654, Q7V293, Q7V8C3, Q7VBM1,
Q82C81, (839W3, Q890J4, Q896G4, Q8CUQ4, Q8DKU1, Q8DQ60, Q8DVMI, QBEIR9, Q8E783, QSFN87, Q8NZX9, Q8RAE5, Q8XHA7, Q92CE5, Q93Q55, Q97E62,
Q97R94, Q99YJ8, Q9CBZ7, QICF73, QOKCR5, QORDK1, QORTD9, ASIKB6, A9BJ18, B1L9J9, C5CE09, P23105, P43503, Q5HMAO, Q8CNIS, B3WA82, B1JVH2,
A1A1U9, A1URN6, Q4K5F9, Q6GOS6, Q6G4Z0, A1KAH8, ASHWX2, AS5VPA5, B2SA42, Q2YMP8, Q57EIO, Q8YFYO, A3P6BO, Q3JLL8, A1TVU4, A8GAD4, QSUHS6,
Q92UV7, Q2SXN9, BSZOWO, Q8X9WS, Q5WVZ4, P40861, Q2FF06, Q2FWD6, QSHETS8, Q7A1Y7, Q7A4D8, Q7A825, Q99SD6, Q99X54, Q3AKUS, QOWYC9, BEIBG6,
Q48G19, Q4ZQH8, Q6F9F7, Q4K837, (885J7, P42236, P94428, P76149, Q8G5H9, P17857, Q65D00, Q24XR6, Q720G3, Q6HIK3, Q81QB6, B7MCD1, Q2SZ88,
Q62H23, Q5X4K4, A4TIPB2, Q5KYR4, QS88AE9, A9VMS6, Q723T1, C3K3D2, Q48CM6, Q4ZM62, P71016, A7ZML4, B1IPI4, B1XGK7, B7MIF8, B7MAV7, C4ZZA2,
P76217, Q1RB47, Q4JWT3, Q2YLI7, Q57B47, ABF602, Q9KPT9, Q9A2X6, A9MYQ4, COQ4N4, Q57P61, Q5PHVS, Q8Z747, Q8ZPC9, C3LEW9, C3NZU4, Q81P27,
Q5FRT2

Aldo/keto reductase (PF00248), referred to as AKR59 in Chapter 5:

Cladel:

P74308, P06632, P80874, Q46857, P46336, P77256, (52472, P30863,
Q46851, (02198, Q76KC2, P77735, P15339, 032210, Q8ZI40, Q8ZMO6,
POA9T4, P25906, Q8XBT6, P58744, Q8ZH36, Q8ZRM7, Q8X7Z7, Q8Z988,
POWQAS5, P76187, AOQV10, 005408, 034678, Q8X529, P46905, POWQA7,
Q7TXI6, AOQJ99, AOQV09, P42972, 069462, A1T726, Q73SC5, A4TE41,
A1UEC6, A5U6Y1, A1UEC5, AOQL30, AOPQ11, A3PXTO, Q1BAN7, B2HIJ9,
POWQA4, B8ZS00, A3PXS9, A1KMW6, Q73VK6, P54569, POWQA6, P63485,
P76234, POA9STS5, Q01333

Clade2:

P80874, P46336, P77256, Q52472, Q46851, Q76KC2, P77735, POA9T4,
P25906, P76187, 005408, (Q8X529, P46905, POWQA7, P42972, P54569,
POWQA6, P63485, POA9T5, Q01333
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Chapter B: Automatic diverse subset selection from enzyme families by solving the
maximum diversity problem

In Chapter 4, a tabu search algorithm inspired by Wang and colleagues [103] is imple-

mented. The parameters used for this algorithm are shown here:

Table B.1: Table showing the different tabu search parameters used in this work and
their values.

Parameter Value

Tabu list size 12

Tabu tenure length 50 iterations

Exit condition 50 iterations without improvement

Candidate list size 10
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Chapter C: Viability of autoencoder-generated sequences for artificially increasing
enzyme family diversity

In Chapter 5, a neural network inspired is implemented and trained. The parameters

used for this algorithm are shown here:

Table C.1: Table showing the different neural network parameters used and their
values.

Parameter Value
Reconstruction loss function Categorical crossentropy
Discriminant loss function Binary crossentropy
Reconstruction activation function Softmax
Discriminant activation function Sigmoid
Input and hidden layer activation functions ReLu
Optimiser Adam
Batch size 16
Epochs )

Random dataset size per epoch 5000

In Chapter 5, 25 of the 30 SynthAKR30 synthetic enzymes were tested in SDS-PAGE
experiments in the lab. Their primary sequences along with their molecular weight in
kilodalton are show here. The "c1” and "¢2” suffixes represent which clade each enzyme

belongs to.

>2957_seq_c2(36.6kDa)
MSELDVDGIGQVSLIGLGTMFFGSMEWEGGDYYATAAARATVKRAAALGRTVTDTAYYYGLGKSETILG
EAFGDDLTTEVYASKVFVVAPGPAPNRRRELASARRLOLRRRPLYGQHGPNPVVDDSVTMVGMRLLLDS
GDIGAAGVSRDHLAWWRKAADALGRPVVVVQVFFSHAAPDALDDVVPFAELENRIVIAYSPLAQGLLGG
GYGLEERPGGVLALNPLFGTECLRIIPPLLATLLATAVDVDAPPAQAVLAKLSQLPQVVDIPGSSSVPQ
LEDFTAAADTERSASSODALTAAALAPRPVSTGRFLTDMYREKVSRRQ

>4466_seq_c2(40.4kDa)
MQRHHITHSHLETSTLGLLTFMFGMQONSEADAHDQLDYAVDAGGGNIDVAMMYPVPPRPETQGLTVTYV
GRWHYKRGSEEKLITASKVSSPSRNRKNGIRPDPALDRNNIREALHDHLKRRGTDYLDLHQVHWPSPPT
NCHGKHGHSDTDSAPAVSLLDTDDLLAEYQHAGKIRYIGVSNERTAGVMMMLLLDDKDDLPRIVTINPP
YSLLNLSSEVGLAEVSQCFGVELLAHSQLGGGGLTGYFLRGWGKAPARNNLQSTFTYYSGEEIQQDVAA
DVDIHHRHALDPAQVARAGVQLQOPFVASTLLQATMMDQLQTITESLHLELSEDVLAETEAVHQVYTYPA
P

>5050_seq_c2(36.5kDa)
MKYLDVDGIGGVGNIGRGTPQYGLRSWFMGDRFAVGAARDNVDTAAATGVVLDDTAEIYGLGKEERILG
EAEGDDRTEVVVASKKGPVPPEPAVIKNRARADHSLRQLNLRPLYQQHQPHPVPPDSVIMPGMLDLLDS
GDIGAAGRSRHSLYRWAKDDAALGRVVVSNQVHSALAHPDALLLLVPFDEREFLIVIAYASLAQQLLGG
GYGLENRPGGVAALNPLAGREELHIILPLLATLATITAVDVDPKPAQVALAWLIWLPGVVDIPGASSVEQ
LEFEVHAADNILSAQQNDADTDAPHAFMPVSTGLGLVDEVREKVSR
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enzyme family diversity

>6626_seq_c1(31.9kDa)
MTGTTGFAAQIPSTLLDDFSTPPLGLGGTGSLSDETARRAVAALEEGGQLLDDAAAYGQEEAVARRIAA
AGGVPRELQVVTTKHAVADGGFTSTYADARASLSLGGHDVYYSHLIHWAPGVGFYMMDWGGGRTSHKGG
GAAHIGVCCFFAEHHLNNIIDLFMFPAVIQIQLHHLLNQSEELRCCYQQQVVVTEAYFPLPGGLLDDDA
AVQIAASAHKTPAAVRLLLWLQHHGTVVVRHAAPNATATSLHMVDFFLLTDDMAATLNLLDGGVRNPDD
PETAGG

>8092_seq_c1(32.4kDa)
MTGESGAAAAPSITLNDEAEEPVLGLVVAELSDDETERAVAAHLEIGCRLIDTAYYYGNEEVVGRATAA
SGVARAELFVTVKLATPDGGFTRSQEACHASLDRLGLDYVDLHLTHWWAPPVGCYVDAWGGMISSNGEG
HARSIGVSCFEAELNENLIDLTFVVPAVIITELAPLLGQDELCDKNAQHVVVQQSYCPLLLGLLLDNDT
VTSIASEYVKTPAQVLLLWRLQLGAAVVVRDARPELIASAFDVFDGELAAMAMDALGGLGLGTLVRDDP
LTYAGQEDP

>9223_seq_c2(38.3kDa)
MRKKKLGTSDLDISEVGLGCMGHGTEKFKARIISDADTARGIIYLDTADLYDRFRREEIVGDQINNRRI
DINLATKAGWRWDDGEEGWYMDPSWAKIKEAVSSSLTLLKTDIIDHYQLHGGVIEDNDDETIEAFELLK
GGGVIRIQGIISIHVRVIKEYYSKINIVSIMVMFSHFDRDPHWWLPLLEEAQISVVAQGPVAKGLLTEK
PLDQASESMWQNGSLSHSGEEHRNANWAMEAVAPDLSMTEKSLQYLLDQRAVASVSVGAATITEQRTRTE
QADNARLLTEEETAQLFSHTKQDKEKAHLSRDPVMEERPPHALE

>9261_seq_c1(32.7kDa)
MTGPRGPHADIPSVSLNDGSTPPVPGHGVGFLSESAAERSVHAALEAGYRLIDTAAGYGNEAAVGRAAA
AIGTPRREIYVTKKHAPAAQGEQTSSDAARASLERLGLDYVDPYHIHWPAGDAFYYCDYWGGLMQYDQD
GVDRSQGVCNFEAEHLSIIITLSFFAPARNQIEEHPLLNQAHLREVNYQYGNVTEYYGPLGVGTLLDHP
AVTGTAQAHADTPAGVLRRWSIQLGVVVIIRSANPARITSNLEVFDFFLTTDEEATRLGLDFGTRFRFD
PATYTGP

>9840_seq_c2(39.7kDa)
MVWLATIPERCGTMFYRFCGKSGLQLPALLLGWWNIHGQVNALLSQLHRLIKALDLGITEFDLAPIYGPP
PGSAEHEQGRLLIEEGAAANDELIISTKAGMDMEFWGPYGSGGSKKYLLAALDLSLKLMGLEYVDIFASH
SVDECTPMEETASALAHQVTSGKAHHVGISAASPERTQKEVELLQEKDIPHLPHSPSYHLLIRWVDKYG
LLLTLQNGGCGCGDFHPLAGGLLTGKYHPGIPADSVVHQEGNKVNGRTKWMETEAALWLLQLRNEEAQQ
RGQSMAEMALSPLLKLHETTSVLVGASAALQLEESVAALNILTFSTEELAQFDQHIADGELLLNGASSD
K

>12268_seq_c1(32.5kDa)
MTGFAGAAPAPSITLNDEHTMPVLGLGVGELSDDETERAVAAALEIGCILIDTAYAYGNEAAVGNAIRA
SGVDREELFVTTKLATPDGGFTRSQEACRASLDRLGLDEVDLHHIHPYAPPVGKYVDAWGGMIQPRGEG
AARSIGVSCFTAEHIENLIDLTFVVPAVIQRELHPLLPQDELRDKNAQHTVVVQSYCCLALNRLLDNPT
VTSIASEYTKTPAQVLLLWRLQLGNAVVVRSARPERIIIAFDVFDFELAHEHMDAAGGLNDGTPVREDP
HTYAGT

- 238 -




Chapter C: Viability of autoencoder-generated sequences for artificially increasing
enzyme family diversity

>13192_seq_c2(37.0kDa)
MDYLDVDGIGGVSRIGLGTWQYGSREWGMGDYYAVGAARDICKLALALGVTLTDTAYQYGLGKSEEQLG
EALGDDRTEVVSASKVFVVPPEPAVIKNRMRASARRLQOLNLRPLYQQHIPHPVVPDSVQPPGMRDLLDS
GDIGAAGRSRYYLARCRKADAALGRPVTGNQVHHHLAHPAALEERVPFDELERLNVIAYSPLHQQLLGG
GYGLENRPGGVRALNPLDGTENLLIIEPPLATLAVIAVDVDPKPAQVSRAWLIWLPGVVDIPGSASVEQ
LEFEVADADIELSAQARDALTDAPRAGRPVSTGLHLVSMVREKVSRR

>16119_seq_c1(32.4kDa)
MTGSTGAAAAPSITLLDEHTVPVLGGGVAELSEDETELAVLAALEIGCRLIDTAAYYGNEAAVARATAA
SGRPLHELFVTTKLAPVDQGFTTSQKACNDSLDRLGPDYVDLHHIHWWAPPVGYYVDAWGGMTIRSGEG
HARSIGVQONFTAEEHHITIIDLTFVTPAVNQIELLPLLNQDEHRDKAAQHIVVQQSYTPLVGGRLLDRDT
STSIASEYTKTPAQVLLLWILQLGQVVVVRAYHPERIASHFDVFDGELAEMHMDAALLLGDGTTRPDDP
STYAG

>23504_seq_c2(39.8kDa)
MVWLDPEERAGCWNCRCCGKSGLLLPHSSSGLWHNFGAVDALESSQAQLIKAGDGAITHGDLANNYGPG
PGSDSEIEGRLLREDEAAARDELIISTKAFMDMMPGPSGSGGSRSSLLAAADSSLKRVGLEYVDIQYSH
SVDEETPMEETASALAAATQSKKALYVGISSYSPEETYKMEELLLEWKIPLLILQPSYNLLRRKVDKGG
LLDTLQNNGGCCIATTPLAQGRLTGGQLQGIPADHAMDMEFVKVTGLTPKWLTEAYLRNRRLLNEMAQQ
LGQSMAFMARSLLLLDDRTTSVLSGARRAIQREENVQALNNLTFSTEELAQIDQAQDDFELNLWQASSD
K

>23716_seq_c1(32.9kDa)
MANPTIIRLGDGSVMPSLGLGVWQASNEEVIAATAKALFVGYRNIDTASAYYNEEGVGKALKKASVYVR
ELFTTVKLNNDDQWRPRLALLLSLSKLQLDYPDEYYMHPPVPAIDHDVDAWKGMIALNKEGLCKSIGVC
VFQRHHLQRLIDETGVPPVINQIELHLLPQQLQLHAANATHIQQTESPSSLAGGFGGVDDDDVIRFLAD
KKGKTPAQIVDRWHLDYGLVVIPKSVTPSRIAYNGDVDDFRLEKDDLFETAKLDAGKRPGPDPDQFGGE
ER

>23827_seq_c2(36.8kDa)
MKKLAVDGISQVSRGGLOTYQFGSEEWWGGDYYYVGTAIDIVKRARALGVTLTDTAEEYGHGKTERILF
LFLGDDRTEVVAASKVPPVPPGPAVICRRERASARRLTLNLLPLHGQHQPLPVVPDSVPPVGMRDLDDS
GGIGAAGVSRHSLANVRKCDDALGRPSTVNQVLHSLHHPAALEELPDFAEEENNTVIAYSPLAQGLLGG
KYSLENLPGGVRYLPPLDGTEELLPIEPELATLHATAVDVDAPPAQVALAGIINLPGVPDPPGSSSVEQ
LLFHCADADNELSAQAADALTLAAAAPRPVSTGRFLVSVVRYKVSRSEYR

>26444 _seq_c2(40.1kDa)
MVWLDNPEIFGQMQSRHCGKSGLRLPHSSSGLWANGGHVAAHFSSTATLLKAFDLGITHFDLANNYGPG
PGGDDDNEGVVLLDDDAAEPDPLITIITKAGMDMWPGPGGSGGSRYYLLASSAQSLWNMGLSSVIIQSSH
MMDMNTPMEETAHALAAAVSSGKALFVGISSYSPERPQKMMLLLLEEWWPLLILQPSYPLLRLWVKKSG
LLDTMQNNGVGCARFPLLQGGLLTLKYLLGNPEDSAMAREGMDKRGLTLKMLTEYNHRNSTARRSMAGQ
LGFFMAQVARSLLLLDRRVTSVLSLASRARQLRNERQALNNLEFSTEELAQIDMAPDDEELRLWQASSD
K
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>26820_seq_c2(37.0kDa)
MKYLDVDGDSSVGRIGLGTPQFGSRENEYSYLSAFGAARDNVKTTDALGVTLDDTVEIYGLGKSYLILG
ELHGDDRTEVVVASKYGPVPPFPDVIDKDEHASSSLLQLPRPPLYHWHQNNPVVDDSVIEMGMLDLLDD
GDIGAAGVSNYSLHWWAKADAALGLKVVSNQVFCSLALPDPLLDLVPAAELENRTVIAYSPHGQQLLGG
GYGLEERPGGVRALNPRAGTEELEIILLLAATLRARDVDVDPKPAGAALDWLILLPQGVAIPGASSVEQ
HEFAVARADIELSAQSRSALTDDDHQFRPVSYGTFRTDMVREKESRL

>32249_seq_c1(32.6kDa)
MEGFSGAPAAPHITLMDEHTTPVLGHGVAELSDDETERAVSAALEIGCNLIDTYYAYGNEFAVGRAIAA
SGVFREELFVTVKKAAADQGFTRSQEACRAQLDRLGLDYVDLHHIHWWAPPVGKYVDAWGGGIQYRGEG
GYNNIGVTCHTAEENNNNIDRTAVVPAVNQRELHPLLNQDEHRKANAQHYNVVQSYCPLAGGRLLDNDT
VVSIASEYVPTPAQVLLLWNLQLGQAVVVRSARPERIISNHDVFDGELAAADMDALGGLGDRTRVEEDP
HTTAG

>33894_seq_c2(37.4kDa)
MYYLDVGGVGGVSLIGLGTWQYGSWWMMYGYYYATGAARDIVKRAAALGVTLTDTAAQYGLGKSETIRG
EALGDDRTETVVVVKVFVVVPFPAPNRRRELHSRTRLONRRRPLYQQHQPHPVVPVSVIVVGVRDRLDS
GPIGAAGVVREYLATWRKKAAALGRPVTVNQVHSSHHHPDDLEDLVPFDEHENNIVIYYSPLDQGLLGG
KDGRENRPGGVRHLNPLFGTENLRITPPTLALLAAIVVDVDPYPAQVVHAWLSWLPQVVDAPGASSVST
LEFNVAAIDIERSAQDADTHTDAALAPRPVSTGLDLTDVVREKVSTR

>36404_seq_c1(33.6kDa)
MTTFSGAAAAAHTITHNDEHYMPVLGHGVFELSDDETENAVSAALETQCNRIDTYFYYGNEAAVGRATAA
SGVAREELFVTVKLAAPDQGFTRSQEACRASLDRLGLDYVDRYNTHWWAPPMGKYVDAWGGMIRRRGFG
AARNIGVQNHEAEEHENLIDRTFVVPHHNQEEHHPLLNQDEHRKCNAQHQTTQQSYCPLAGGRLLDRDT
VTSIASYYVKTPAQVLLRWRRONGNVVVARSYREARIISNFFVEDFELAAMDMDAAGGLGDGTRRREDP
HTYAG

>41284_seq_c1(32.6kDa)
MTSTTGEFPGIPSVSLNDGHSTPVLGLGVGEHSEAEAERFVAARLEAGYRHIDAAAVYGNEAAAQRAVS
ASGIPEEEIYVTKKLAVAQQGFGTSSDAARASLRRLGLYYVYLPHIHWPAGDAGMIIDSWGGHCCADQD
GVSRSIGVCCFEEHHSSTIIDLSFFTPAINQREHHPLLQQAEHNNTNYQYGIVTTYYGPLGVGVLLDHA
AVAGVAQAGGKTPAHVLLRWSIQLQNVVIAHSANNDRITSNLEVFDFEETDDMMAMHNLLGGGPRRRFD
METYTG

>42186_seq_c1(33.4kDa)
MTGFAGSPPAPATIYLNDEATMPVLGLGVFFLSDDETTRAVSAALFIGCRLIDTAYYYGNEFVVGRAAAA
SGVAREELFVTTKTYTADQGQTRSAEACHYSLDRLGLDLVDLYHNHWWAPPVGKYVDAMGNMIQQRGEE
ARRQIGSSSFTATNIENLRDLTFVVPAVNVRELYPLLNQDELAAANAQHVVVTASYSHLALQLLHDNPT
VTSIASEYVKTPAQVLRRWRLQLGRAVRVRSARPERENANFDVFDFFLAHHHMHAHGGLNDNTRVREDP
LTYAGT
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>43465_seq_c2(39.4kDa)
MKALDVQIIGRVSRSGLTTWQGGSPYWFFGDYYATGAARDIRCRRRALVVTLADTYYIYGHGKSERQLE
EFLDHDRTETVVASKCYPVPPGDAVCKNRERAAAPRRONQRRPRYNQHQPLPVVPDSVQMPQMRDDHDS
QDIGAAGVSRYSLARCRCCDAALGRPVQCRQVRSSLHHPDALLERVPFYELNNNTVIAYSPLHQQHLGG
KYSLNNLPGGVRALPPLFGTEELLRREPLLLTLATIAVDVDPPPAQVVLAWLINSPGVVDPAQASSVET
LEFNVAAADNELSAQDADALTDRARAFRPVSTGTHLTSHVREKVSRSDEPRQQRQNQQ

>45873_seq_c2(38.9kDa)
MYYLDVDIIGGVSSSGLGTWQFGSREWFGGDYYATGAARATVKRARALTTTLFDTAYIYGLKKSEEQLG
EAFGDDRTETVVASKVAVVAPAPAVICKRERARARRRQLNNLPLYQNHQNHPVVPDSVQMPQMRMRLDS
QDIGAAGVSNYSLARMRAADAALGRPVQSRQVRSSLHHPDALEDLVMFFELENRIVIAYSPLHTQLLGG
GYGLENLPGGVRARNPLFGTENLRIIEPLLLTLAATAVDVDAPPAQVVLWWLISLPGVVPIAGASSVSQ
LEFNVAAADNELSASSRDALTDAARAFRPVSTGLFLTSRYREKVSRRREEMHRHTYTPP

>45878_seq_c1(33.0kDa)
MTGFTGRQSQPSIILNDEMTVPTLGLGAAELSEDETERAVHAALTIGCRLIDTAAAYQNEAAVHRATAA
SGQPTAMLFVDTKLATPDQGYTSSSDACAASLDRLGVDYVDRYHIHWWAPPVGVFVDAWGGIISRSGEG
HARRISVGNFTEEARISIIDLTFTAPAVNQIELHPLWNQDEHHKKKAQHNVTQQSYTPRPLGRLYDNST
RTRIAFEFTKTPAQVLLRLNLQLGLAVVARSAAAEHTHSNNDVDDFELALMMMDAAGQLDDQTRRRPDP
MTEAGS

>49250_seq_c2(39.8kDa)
MVHLANPERCGMVSCRCCGPSGLRLPASSSGHWAIFGFVNALSSQRDRLCKAGDLGITHFDLANNYGPP
PGSHQSEEFLLLRFDFAAYHDELITSTKAFFDMWPGPYGSGGGLSSLLLSLDSRLKLMGLFYVDIFPSH
HVDENTPTEETASDLAAAVQSGAALYVGSSSYSPERTQKVVVLLLEEKKPLLLLOPEYWLLNNWVKKGG
HLLTLQLNGVGGIADAPPAGGLLTGKYLNGIPFHSHMHRRGNKKRGLTPKMLTEAALNSLRLLNEMASQ
RGQDMAFMALSWLLKDDNVTSSLSGASRARQLEENVQHLINLTFSTSELAQIDQHIADAELLLNQASSD
K

The following five sequences could not be cloned due to cloning inefficiency:

>26539_seq_c1
MTTSTGHTSQPSIIRNDNMTMPTLGLFLAELEEDETERAVLAAHERGCRLIDTAAAYQNEAAVARAIAS
SGRPRHRLFTTTKLATPDQGFTKCQDADAASLSSLGVFYVDLYHIHWWAPPGGFQVDQWGGMIQSRGEG
HARSIGVICFTAEHLHHIIDLTFVTPAVCIIELHPLONQDEYRKKKAQHNVIVTSYSPLPLGRLMDNDT
LTATAAEFGKQPAQVLRLWRLHLGLAVVVRAHAAEATHSSFDVDDFELAMHHMDAAAALDDRTRRRPDP
ETYAFS

>26535_seq_c2
MYYLDVDGIGGVSRIGLGTWONGSMSWFYFDRGATGAARDCCCTAAAAGVALDDTAYNYGLGKSERQLG
HALGDHRTEVVVVSKKGPVPPEPYCIKRRERTSHSLHLLRRPPEYSTHQPRPVTPDSVQIPGMRDLLDS
GDIGGAGRSRHYLAWLAKADAALGRPVVSNQVASAHALPLDLELLVPFAFLENLIVIAPAALARLLLDG
GYGHVNRPGGAPALLPLAGTENLHIILPHLLTLRATAADVDPYKAQVALAWLIWSPGVVDIPGVSVVTQ
LEENVHAADIELSALSTSADTDAPLAFRHVSTGRDLDDLVREKVSRR
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>23919_seq_c1
MTESSGSSPAPSIILNDEDTVPVLGLGVDELSDDETETAVAAALEIGCNLIDTAAYYGNEAVVGRAIAA
SGVPRAHLFVTVKHATPDQGFTMSQEACHASLDRLGLDYVDLYLIHWWAPPVTKYVDAWGGMIQRRREG
HQRSISVTCFTAEHRYNNIDRTFVVPAVYIIELHPLLNQDELHDKIAQHTVTPQSYCPLALGFLHDNDT
VTHIASEYVKTPAQVLLLWNLGLGNAVVVRSALEELEAFQFDVFDGELAHHHMDAAGGLQDGTRLLLDP
HTYAG

>11719_seq_c1

MYTPTIINLQDGNVMPQLGPGWWQDSYEMVITAINKALFVGQNSIDTAAYYYNEEGCGKALKNASVYRE
ELFTTTKLNNDDKNRPREALFHSLYKLQLDYLDRHHMHWPVPAADHAVAAPKGMQARQKGGLTRSIGVC
RFRIHHLQRLIDETGVTPVNNIEELLLLMQQHQLHACCDNHIIATFSPSPLAQGWFGVFFQGVNRDLAA
KYGPQPAIIVINNHLDHGLVVAPQSVTPSRDDENFMVWDFRDTKDELGFIAKLDGGGRLGPDPDQFGGG

>11553_seq_c1
MAIPAFGLGTFRLKDDVVISSVKTAHELGHNAIDTAQYYDNEAMVGAAAAEGGVPRHELYITTKWPIEN
LSKDKLIPSLWKSLQKLRTDVVVLTHIHWSSPPDEVSVEEFMQMLLEDKKFGLTREIQISNDTIPRWEA
ATAAVFADDDHTNQIEHSPYLONRKVVDAAWQAGIHITSYWTLAYGKHLDDDVIDITAADANATPAGVI
LWWAMGEGYSVIPSSTQREELYSNLSAQNLHLAAEDAKATARLDCIDRLVSPEGLYPAWD
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