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Abstract 

Floating Offshore Wind Turbines (FOWTs) have shown a promising future due to the 

goal of Net Zero emissions by 2050. However, the highly coupled nonlinear performances 

of FOWTs bring many challenges to the implementation of numerical and basin 

experimental methods in design and optimisation. This PhD project proposes an 

innovative method, named SADA (Software-in-the-Loop combined Artificial 

Intelligence Method for Dynamic Analysis of Floating Wind Turbines), to optimise the 

design and predict dynamic performances of FOWTs. SADA is built based on a coupled 

aero-hydro-servo-elastic programme DARwind and Machine Learning Algorithms. 

Firstly, the concept of Key Disciplinary Parameters (KDPs) is inspired by FOWT-related 

disciplinary theories. Secondly, DARwind will take continuous action through the 

Software-in-the-Loop (SIL) model to obtain more accurate prediction results. Thirdly, 

SADA can build data sets and analyse deep-seated physical laws of FOWTs. 

Then, case studies were conducted to prove the feasibility of the SADA method on the 

basin experiment data. The results show that the mean values of some physical quantities 

can be predicted by SADA with higher accuracy than the original DARwind simulation 

results. In addition, full-scale case studies were conducted by extending SADA to 

engineering applications, though some design parameters are not accessible. Furthermore, 

other physical quantities that cannot be obtained directly in full-scale measurement easily 

but are of great concern to industry can also be obtained from a more credible perspective.  

The proposed SADA method could benefit the wind industry by taking advantage of the 

numerical analysis method and AI technology. This brings a new and promising solution 

for overcoming the handicap impeding direct use of traditional basin experimental 

technology or full-scale measurement. Therefore, designers in the wind industry can 

optimise FOWTs designs to a higher level, thereby achieving a better method of and 

maintaining safe operation of FOWTs in a complex sea state. 
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𝐴  Tower drag in aerodynamic 

𝐶𝑑𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚
𝐻  Platform drag in hydrodynamic 

𝐶𝐷
𝑇 Drag coefficient for cylindrical structures 

𝐶𝐷 Drag coefficients in aerodynamic 

𝐶𝐿 Lift coefficients in aerodynamic 

𝐶𝑇 Thrust coefficient in aerodynamic 

𝑒𝑔 Global inertial frame 

𝑒𝑝 Body-fixed frame of the platform 

𝑭𝑯 Hydrodynamic loads 

𝑭𝑹 Linear wave radiation force 

𝑭𝑠 Restoring force of the static water in hydrodynamic 

𝑭𝑽 Hydrodynamic damping 

𝑭𝒘 Excitation load 

𝑭𝒔
𝒘 Second-order wave forces 

𝐹𝑃 Prandtl’s tip loss factor in aerodynamic 

𝐹𝑟 Froude number 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐  Added static force in hydrodynamic 

𝒈 The gradient of the objective function 

�̃� The stochastic gradient 

𝐻𝐴 Horizontal tension in mooring dynamic 
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𝐻𝐹  The horizontal force of the fairlead 

𝐻𝑠 Significant wave height 

𝐻1
3⁄
 The mean of the one third highest waves 

𝐼𝑡 Turbulence intensity 

𝐾 The von Karman constant 

𝑙𝑏 The length of the bottom section in contact with the seabed 

𝑙𝑠 The length of the mooring line from the bottom point 

𝑀𝐴𝑆 Axial stiffness in mooring dynamic 

𝑀𝐶𝑑 Mooring drag in mooring dynamic 

𝑀𝑊𝑑
 Wet density in mooring dynamic 

𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 Target data in percentage difference evaluation 

𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐾𝐷𝑃𝑠 Numerical results by initial KDPs 

𝑂𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝐷𝑃𝑠 Numerical results by weighted KDPs 

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Percentage Differences of initial results 

𝑃𝑝𝑟𝑒𝑠𝑒𝑛𝑡  Percentage Differences of present results 

𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  Percentage difference in SADA 

�̂� Prediction in Temporal-Difference Learning 

𝑅 Reward in reinforcement learning 

𝑅𝑒 Reynolds numbers 

𝑆 State in reinforcement learning 

𝒮 State space in reinforcement learning 

𝑆′ New state in reinforcement learning 

𝑇𝐹 The tension of the fairlead 

𝑇𝐺𝑒𝑛 Generator torque in control dynamic 

𝑇𝑝 Spectral peak wave period 

𝑇1 Mean wave period 

𝑢∗ The friction velocity 

𝑼0 Three-dimensional beam deformation 

𝑈(𝑧) Horizontal component of the wind velocity with height 

𝑈𝑐(𝑧) Current velocity with vertical depth below the water surface 

𝑈𝑡 Return in reinforcement learning 
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𝑉𝐴 Vertical tension in mooring dynamic 

𝑉𝑐 Current speed 

𝑉𝑤 Wind speed 

𝑽𝟎
𝒘𝒊𝒏𝒅 Velocity component of upstream wind speed 

𝑽𝑻𝑬 Velocity component of the cross-section of the tower 

𝑥𝑘 The normalization function factor, mapminmax, in MATLAB 

𝑥𝑚𝑖𝑛 The smallest number in the data sequence 

𝑥𝑚𝑎𝑥 The largest number in the sequence 

𝑥𝑛𝑜𝑟𝑚 The normalized value  

𝑋 Value of KDPs 

𝑋𝑆𝐹 Significant figures of the KDPs value 

𝑌 Number of digits to the left of the decimal point 

𝑧 The height concerning the ground level 

𝑧0 The roughness length 

𝑧𝑟𝑒𝑓 Related to properties at a reference height 

𝜌𝑎𝑖𝑟  Air density 

ρ𝑐 The correlation coefficient 

𝛾 Spectral peak parameter 

𝝓 Spatial shape function matrix 

𝜑𝑥
1 Polynomial Flap 1st vibration modes 

𝜑𝑥
2 Polynomial Flap 2nd vibration modes 

𝜑𝑦
1 Polynomial Edge 1st vibration modes 

𝜋(𝑎|𝑠) Policy function 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) Action-value function 

𝑄∗(𝑠𝑡 , 𝑎𝑡) Optimal action-value function 

𝑉𝜋(𝑠𝑡) State-value function 

𝜽𝑛𝑒𝑤 the current policy network parameter 

𝜽𝑛𝑜𝑤 The new policy network parameter 
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Chapter 1. Introduction 

This chapter mainly introduces the background knowledge of Floating offshore wind 

turbines (FOWTs). The application of artificial intelligence (AI) technology in marine 

technology and onshore wind turbine technology will also be introduced to show the 

novelty and contribution of this PhD research project to the wind industry. 

1.1. Background of the offshore wind industry 

Faced with the rapidly increasing energy demands and increasingly harsh environmental 

conditions, traditional energy supplies will be difficult to meet the demand for sustainable 

development. Therefore, offshore wind has enormous potential for renewable energy 

markets (James and Ros, 2015). Compared with the traditional fixed-bottom offshore 

wind power generation, the FOWTs can make use of the abundant wind resources in the 

deep sea and have the capacity to be towed to the wind power generation site and 

assembled at the port (Stewart and Muskulus, 2016b). In addition, the visual and noise 

impacts will be reduced due to their distance far from the coast (Musial et al., 2004). 

General design details of offshore structures can be found in the literature (Halkyard, 

2005).  

Being dependent on the way of supporting the platform to obtain stability and restoring 

force (Froese, 2019), four main basic concepts (Figure 1.1) were proposed which are 

(Butterfield et al., 2007):  

⚫ Spar-buoy type; 

⚫ Tension-leg platform (TLP) type; 

⚫ Semi-submersible type (Column stabilised); 

⚫ Pontoon-type (Barge-type). 
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Figure 1.1 Types of floating wind foundations (Froese, 2019). 

The following content will introduce their features. 

Spar type 

For the spar-type, the designed centre of gravity (COG) is lower than the centre of 

buoyancy (COB), and the water plane is small. Therefore, the floating body has the 

characteristics of self-stabilisation, and the wave load received is also small. However, 

due to the high height of the top wind rotor at the rated wind speed, the wind can lead to 

a larger platform pitch. Through reasonable design, the natural frequency of the platform 

can avoid the range of the first-order wave force and it is also insensitive to the second-

order wave force. However, the large draft design of the platform leads to a special 

requirement for the working water depth, which is usually more than 100 m (Muliawan 

et al., 2013). 

Semi-submersible (Semi) type 

The Semi-type can generate a restoring moment to resist the tilting motion of the platform 

through the distributed buoy structure. The applicable water depth is usually greater than 

40 m (Cao et al., 2021). The motion of the platform is moderate in all directions. However, 
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it is sensitive to the second-order force of low-frequency waves. It is suitable for a wide 

range of water depths and can be transported by wet dragging with flexible deployment 

and relatively mature technology. 

TLP type 

The TLP-type balances the excess buoyancy of the floating body upward by vertical 

mooring tension. Therefore, it has good vertical motion performance. However, the 

installation process is complicated, the cost of the tension tendon structure is high and 

relevant experience in manufacturing and construction installation is required. The 

applicable water depth is usually greater than 40 m (Kausche et al., 2018), and is sensitive 

to the second-order force of high-frequency waves. 

Barge type 

The Barge-type is similar to a ship, using the buoyancy of the platform to offset gravity. 

Its adaptability to water depth is usually greater than 30 m (Kopperstad et al., 2020). It is 

simple in structure, easy to manufacture and has good instability. However, the natural 

frequency of vertical motion of the barge type is within the first-order wave frequency 

range. Therefore, it is more sensitive to the wave frequency response, and it is necessary 

to optimise the platform motion frequency in design. 

In summary, Table 1.1 summarizes the advantages and disadvantages of the four types of 

FOWTs foundations. Although there are many similarities between the FOWT platform 

and the offshore oil platform, it also has some coupling effects with the wind turbine. 

Therefore, it is necessary to study its stability by checking calculations and criteria under 

different working conditions according to its basic structure and function characteristics.  
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Table 1.1 Four types of FOWT foundations (Chen et al., 2020a). 

Types Operation Advantages Disadvantages 

Semi 
• Wide area 

• Water depth>40m 

• Suitable for shallow to 

deep water 

• Easy to installation 

• Easy to repairs 

• Complex structure 

• Higher cost (active 

ballast systems)  

Spar • Water depth>100m 

• Simple structure 

• High stability, no need 

for dynamic stabilization 

system 

• Water depth limit 

• Requires lifting capacity 

to install boat 

• Not easily towed back to 

port for repairs 

TLP • Water depth>40m 

• Lightweight structure 

•High stability, no need 

for dynamic stabilization 

system 

• Complicate installation 

• The anchor chain is 

heavily loaded and prone 

to metal fatigue 

Barge 

• Water depth>30m 

• Sensitive to 

environment. 

• Simple structure 

• Flexible transportation 

• The wave frequency 

response is more 

sensitive, and needs to be 

optimized during design 

 

In an earlier development of FOWTs, a significant R&D effort has been made with the 

appearance of coupled numerical tools (Jonkman and Sclavounos, 2006; Wayman, 2006; 

Jonkman, 2009). Several projects have extensively promoted the development of FOWTs. 

For example, Hywind and DeepCwind in the OC projects (Jonkman and Musial, 2010; 

Robertson et al., 2014; Robertson et al., 2017; Robertson et al., 2020) and OO-Star Wind 

Floater (Pegalajar-Jurado et al., 2018), Nautilus steel semi-submersible (Galván et al., 

2018), IDEOL concrete floater (Beyer et al., 2015) in the LIFES50+ project, etc. Table 

1.2 shows the main contents of the two series of projects. 

FOWT is a highly complex system, accounting for the coupling between aero-hydro-

servo-elastic dynamics. Due to the high cost of the floating substructure and foundations, 

there is a sizeable overall cost difference (Wu et al., 2019). More precisely, the 

preliminary design or analysis may cause an increase in the operation and maintenance 

cost of the wind farm, such as gearbox failures; accelerated blade surface erosion; 

accidental ship collisions. The deterioration of the mooring line over time will lead to an 
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increase in the failure of single or multiple lines (Lugsdin, 2012). Regardless of the aspect, 

only based on reasonable and reliable R&D can minimise exposure to technical risks and 

reduce the cost of FOWTs. 

Table 1.2 OC6 and LIFE50+ projects (IEA, 2022; LIFES50+, 2022). 

Types Task 30 LIFES50+ 

Aim 

• Validating FOWTs design tools by 

engineering-level modelling tools 

and higher-fidelity tools to 

measurement data. 

• FOWTs in water depths from 

50m to 200m 

• Reducing cost in short term 

of 10MW Offshore wind farm  

Objectives 

and 

achievements 

• Assessing the accuracy and 

reliability of simulations results. 

• Identifying and validating the 

capabilities and limitations of 

implemented theories 

• Investigating and refining applied 

analysis methodologies 

• Identifying further research and 

development needs. 

• Two innovative substructure 

designs for 10MW turbines 

• Develop a streamlined and 

KPI (key performance 

indicator) based methodology 

for the evaluation and 

qualification process of 

floating substructures 

 

1.2. Doctoral programmes overview 

1.2.1. The research background and significance 

Although FOWT has broad development prospects, it is still a cutting-edge emerging 

technology. Related research is still in the initial stage, many theoretical models are not 

mature, and some technical engineering problems have not been resolved. Many theories 

involved in FOWTs’ dynamic models include massive functions and formulas 

conventionally determined based on assumptions and empirical parameter values. 

However, many assumptions and empirical parameters were not initially proposed for 

FOWTs but inherited from land-based wind turbines, traditional floating offshore units, 

or other engineering applications. For example, the lift or drag coefficient of wind turbine 

blades in aerodynamics can bring potential problems to the numerical simulation of the 

entire system. Many other critical environmental parameters, such as viscous damping in 
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hydrodynamics, mooring line damping values etc., are also challenging to be issued 

unique values during the analysis (Chen et al., 2021b).  

1.2.2. Motivation 

The existing FOWTs’ technology has gaps between academia and industry, especially 

integrated design, and dynamic performance prediction. Based on the above discussion, 

an innovative AI-based method, SADA, has been proposed in this thesis. Designers in the 

wind industry can optimise the FOWT designs to a higher level through SADA to achieve 

a better method of maintaining the safe operation of FOWTs in a complex sea state. 

1.2.3. Aim and objectives 

The work presented in this thesis aims to propose an innovative method for the optimised 

design and dynamic performance prediction of FOWTs based on AI technology. In 

addition, Figure 1.2 shows the workflow during the entire PhD project. To achieve this 

aim, the following key objectives are identified: 

• To propose an AI-based method, SADA, which uses artificial neural network 

technology to fit the experimental results and the numerical results of DARwind 

to optimise the dynamic performance prediction of the FOWTs. 

• To expand the SADA method based on deep reinforcement learning and the 

concept of KDPs (the data transmission interfaces) to optimise the design and 

dynamic performance prediction of the FOWTs. 

• To conduct case studies to verify the feasibility of the SADA method by using basin 

experimental data of a spar-type FOWT.  

• To extend the SADA application to optimise the dynamic performance of a 

Hywind FOWT by using full-scale measurement data. 
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• To carry out in-depth qualitative research on KDPs in terms of boundary 

conditions, categories, impact, etc., to help other scholars better understand SADA 

and the characteristics of KDPs. 

 

Figure 1.2 Workflow during the entire PhD program. 

1.2.4. Outline of the thesis 

The research content and ideas of this thesis are shown in Figure 1.3. More specifically, 

the general scope of each chapter is arranged as follows: 

Chapter 2: A literature review of FOWTs’ experimental and numerical techniques is 

conducted in this chapter. The advantages and disadvantages of the current FOWTs design 

and verification method are summarised. The challenges of the basin experiment of 

FOWTs are discussed in detail. The development of numerical simulation and hybrid 

approaches are summarised as well. 

Chapter 3: This chapter introduces the overall of the novel SADA method, including the 

whole structure and methodology. The process of the entire SADA method is presented 

in detail in terms of experimental and full-scale measured data collection and AI 

technology implantation. 
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Chapter 4: A novel concept of KDPs in the SADA method is proposed in this chapter. 

The determination of the KDPs is one of the most critical steps in the SADA method. The 

concept of the KDPs involved in FOWTs and their impacts are introduced in this chapter 

in terms of Environmental KDPs, Disciplinary KDPs and Specific KDPs. Some examples 

are given to illustrate the details of these KDPs. 

Chapter 5: An essential basis of the SADA method, in-house programme DARwind, is 

introduced in this chapter. The compilation process and theoretical basis of the time-

domain coupling program DARwind for FOWTs are presented, including the calculation 

process of each functional module, the coupling method between each module, and the 

program’s composition. 

Chapter 6: The algorithms and applications of ML are introduced in this chapter. The BP 

algorithm and DRL methodology are the core of this chapter. Their strengths and 

weaknesses combined with DARwind will be summarised. Three training models are 

introduced: discrete model, continuous model and segmented model. 

Chapter 7: This chapter conducts case studies for the SADA method using basin 

experimental data. The technical details of a Spar-type FOWT basin experiment are 

briefly introduced. 

Chapter 8: This chapter conducts cases-of-studies for the SADA method by using full-

scale measurement data collected from the Hywind Scotland wind farm. The details of 

the wind farm will be introduced, and some technical challenges of full-scale 

measurement will be summarised as well. Finally, two groups of KDPs were adopted to 

conduct the case studies. 

Chapter 9: This chapter conducts a further analysis of KDPs in the SADA method. Four 

main issues regarding the concept of KDPs in the SADA method are investigated in this 

chapter: (1) What physical quantities are included in KDPs in the field of FOWTs? (2) 
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What is the influence of different numbers of KDPs affecting the dynamic response of 

FOWTs? (3) What is the influence of boundary conditions of KDPs affecting the dynamic 

response of FOWTs? (4) How to adjust the boundary conditions of KDPs in response to 

specific situations? 

Chapter 10: This chapter concludes the present work. It gives remarks about the novel 

aspects which help this work to evolve as a contribution to FOWTs research. Finally, 

directions and possibilities for future research are discussed. 

 

Figure 1.3 The content of this thesis. 

1.2.5. Overview of novelties 

Based on the above research content, the novelties of this research project can be 

summarized as follows: 
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1) Optimize existing programs DARwind and combine AI technology to create a 

novel methodology SADA using big data and numerical simulation. 

2) Comprehensive use of aero-hydro-servo-elastic theories of FOWTs to build an 

integrated coupled dynamic model. In addition, put forward the concept of 

interdisciplinary KDPs involved in the prediction of a full-scale Hywind FOWT. 
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Chapter 2. Literature review 

This chapter aims to critically compare and conclude the state-of-the-art approaches in 

the horizontal axis FOWTs design and validation method to help researchers make a 

footstone for proposing a more efficient and functional hybrid basin experimental method. 

Firstly, a brief introduction is given to the technical issues of FOWTs. Secondly, scaling 

problem and rotor simulation in basin model test of FOWTs. Thirdly, some numerical 

codes of FOWTs and the application of the hybrid basin experiment are summarised. 

Finally, the AI application for offshore engineering and wind industry was introduced. 

2.1. Introduction of Technical issues 

There are still some challenges impeding the success of more accurate prediction of 

FOWTs and validation of new full-scale concepts under high coupling effects. These 

challenges have received significant attention and led to many efforts by both academia 

and industry. In general, scaled model experiments, numerical simulation and full-scale 

measurement are three reasonable methods to demonstrate the technical feasibility of 

FOWTs. Chen et al. (2020b) summarised several inherent challenges and validation 

techniques in these three reasonable methods. A brief comparison of these three methods 

is provided in Table 2.1. 

Table 2.1 Comparison of three different methods 

Methods Advantages Disadvantages 

Full-scale 

measurement 

More accuracy. 

The actual sea state. 

Limit published data.  

Difficult to measure. 

Expansive cost and high risk. 

Time-consuming high resources 

required. 

Numerical 

simulation 
Faster, Cheaper, Convenient. 

High fidelity of the model. 

Hard to simulate nonlinear 

phenomena. 

Model scale 

experiment 

Nonlinear phenomena. 

Better controls and repeatable 

environmental conditions. 

Scaling issues,  

High specific facilities are required. 
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2.1.1. Full-scale measurements of FOWTs 

For full-scale measurements, some existing prototype projects of FOWTs are also 

summarised in Table 2.2 (Chen et al., 2021c). These evolving prototype projects have 

promoted the long-term development of the floating wind industry. For example, one 

commercialised wind farm in the UK since 2017 (Equinor, 2019), shown in Figure 2.1. 

 

Figure 2.1 Location of Hywind Scotland Pilot Park (Equinor, 2019). 

Table 2.2 Some prototype projects of FOWTs 

 Project Company Capacity and Site 

Semi-

submersible 
WindFloat 

Principle 

Power 

2MWin Aguçadoura, Portugal (2011) 

and Kincardine, Scotland (2018) 

Barge 
Damping 

Pool 
Ideol 

2MW in Le Croisic, France (2018) and 

3MW in Kitakyushu, Japan (2018) 

Spar Hywind Equinor 2.3MW in Karmøy, Norway (2009) 

TLP Blue H Blue H 2.4 MW in Brindisi, Italy (2009) 

 

Other countries and companies have also been intensively emerging in this field. Many 

notable projects have analysed the dynamic response of FOWTs through basin 
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experiments and numerical simulations. There are some commercial software and open-

source programmes available now, but they are not globally acknowledged due to the 

difficulty of credible verifications by basin experimental data. Therefore, full-scale 

measurement data is one of the possible solutions. However, how to compare the results 

from numerical simulations and basin experiments with full-scale measurement data and 

make the software and codes acknowledged by the FOWTs industry is still a significant 

challenge. This challenge is mainly reflected in the fact that previous theoretical 

foundations based on onshore wind turbines or traditional offshore platforms are not 

necessarily fully applicable to highly coupled FOWTs. 

Nonetheless, there are not many public works of literature on full-scale data in this area 

due to business confidentiality. Although full-scale measurement projects are seldom in 

FOWTs, they have been widely used in traditional offshore oil & gas engineering fields. 

For example, Van den Boom et al. (2005) discussed the importance of marine 

environmental conditions and platform dynamic response monitoring and related 

technologies. Matos et al. (2010) explored the slow motions of the semi-submersible 

platform by monitoring the frequency spectrum, thus proving the importance of 

considering the resonant roll and pitch motion in the design of the large-capacity semi-

submersible platform. Garcia-Pineda et al. (2013) utilised the Textural Classifier Neural 

Network Algorithm (TCNNA) to process Synthetic Aperture Radar data to map oil spills 

in the Gulf of Mexico. In their TCNNA structure, similar environmental parameters such 

as wind speed are also considered. The shear index of the vertical wind profile at the 

height of the hub was proposed by Hasager et al. (2013) observing the airflow at the hub 

height on the North Sea offshore platform. Ma et al. (2013) defined the phenomenon of 

“swing” in the large-scale measured project of floating production, storage, and 

offloading (FPSO). They also show that changes in environmental factors in actual 

measurement need to be determined and optimised compared with traditional theories. 

Zhou et al. (2014) analysed the dynamic response of turret-moored FPSO to mooring 
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forces under typhoon weather. Sun et al. (2020a) reviewed the actual full-scale 

measurement of the wake effect of the wind turbine. Gao et al. (2018) introduced the 

physical testing, transportation, installation, operation, and maintenance of offshore wind 

turbines.  

Early research on the comparison of measured data and simulated responses of the 

Hywind demonstration project can be found in Hanson et al. (2011). They used HAWC2 

(Larsen and Hansen, 2007), SIMO (Ocean, 2017) and RIFLEX (Fylling and Soedahl, 

1995) to compare the tower’s bending moments, pitch and roll motions under three short-

term load cases with statistical parameters. The comparison of natural frequencies and 

dynamic responses shows good agreement. However, the simulated high-frequency 

elastic response is under-predicted. Since the wave data was obtained between January 

and April 2010, it did not include extreme wave conditions. More verification of the 

Hywind prototype can be found in the works of literature (Skaare et al., 2015; Driscoll et 

al., 2016). In Japan, Utsunomiya et al. (2013) attempted to explore more. In their 

verification under the Typhon Sanba (1216), the highest wind speed and significant wave 

height reached 35.6m/s and 9.5m, respectively. Similar research can be explained in more 

detail in the literature (Utsunomiya et al., 2014; Tanaka et al., 2020).  

In general, whether it is the acquisition of measured data or the application of simulation 

software in the previous verification of measured data, limitations are caused by many 

challenges. For actual measurement, obtaining the data with high accuracy is a relatively 

straightforward consideration. The natural sea environmental loads of floating wind farms 

are much more complicated than land-based wind farms. The wave-induced forces can 

be computed in the time domain through the wave elevation of the undisturbed wavefield 

at the site. However, the actual wave height acting on the floating platform is challenging 

to obtain, especially for the floating wind farm. It is only possible to obtain the turbulent 

wind field through different measurements and statistical parameters combinations. Most 

notably, the wind forces acting on the tower, the nacelle and the platform have other 
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effects. Therefore, the determination of different drag coefficients in each component is 

also a challenging task for the relative wind speed. The wake effect of FOWTs is another 

consideration for wind speed measurement. To estimate the wake losses, the wind 

resource distribution of the construction area will be measured via years of sampled onsite 

wind speed first (Hou et al., 2019). As the service age increases, many factors for dynamic 

analysis of FOWTs will change quite a lot due to the deformation and erosion of rotor 

blades and marine growth on the components under wave surface. In addition, marine 

growth on the mooring lines and cables can damage the structures and change the 

hydrodynamic characteristics of the components below the water surface. In summary, 

these factors will affect the design and dynamic response prediction of FOWT. 

2.1.2. Experimental research of FOWTs 

The experiment of the scale model within a controlled environment can also be seen as 

an essential validation step of the qualification process of system behaviour, nonlinear 

phenomena, extreme and detailed loads and validating codes (Bachynski et al., 2016). 

For example, extreme wave and viscous loads or wave-current interaction effects on 

floating moored structures are impossible to simulate or model in numerical simulations 

in the current state (Sauder et al., 2016). Therefore, experimental assessments in terms of 

preliminary platform, turbine controller and mooring lines have been regarded as valuable 

and reliable methods to predict the global dynamic response of floating structures in the 

overall design and validation process apart from novel challenges. In addition, time 

efficiency and risk assessment have been required while demonstrating better controls, 

repeatable environmental conditions and accurate data than numerical simulation and 

full-scale measurement (Chen et al., 2018).  

Nonetheless, there are critical challenges when conducting basin experiments of FOWTs. 

The impossibility of applying traditional basin testing data-processing technology 

directly for FOWTs testing is for the listed reasons: 
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• Scaling issues: Froude number (𝐹𝑟)  and Reynolds number (𝑅𝑒)  cannot be 

satisfied simultaneously in the basin model test of FOWTs. However, the 

aerodynamic performance and hydrodynamic performance of FOWTs are both 

essential, and neither can be neglected. Coupling effects between aero-hydro and 

structural dynamics responses are also significant. Thus, full-scale performance 

cannot be obtained by transferring model-scale data using the traditional method, 

which usually neglects 𝑅𝑒 And uses 𝐹𝑟 as the unique dominating factor.  

• Blade pitch control strategies: Simulation of pitch control for FOWTs is 

challenging to conduct under basin testing scenarios due to the mass sensitivity 

and signal delay.  

• Experimental facilities and calibration methods: There are also some other 

challenges, including mass property simulation, installation of measurement 

devices and wind-wave generator techniques.  

To accurately measure the coupling response of FOWT under aerodynamic load and 

hydrodynamic load, it is necessary to design and manufacture a controllable wind system 

and wave generators and wave absorbing devices. However, modelling wind, wave, and 

current at the same time in experiments is very challenging. This challenge lies in the very 

high requirements for the space and facilities of the experimental site.  

Most wind generation systems are movable, which is convenient for generating wind 

speeds in different directions. However, the stable area for wind generators must cover 

the moving range of wind turbines. Taking the research of Duan et al. (2016a) as an 

example, the wind-generating system consists of 9 independent fans arranged in a 3x3 

square array. Its height reached nearly 4 meters. In addition, the simulation of unsteady 

wind is complicated, and requires automatic computer control. A high sensitivity hot-wire 

anemometer is needed to measure wind speed, so that the measured instantaneous wind 

speed can enter the computer acquisition and analysis system. 
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The simulation of waves requires the laboratory to be equipped with special wave 

generators and wave-absorbing devices. However, current has a significant impact on the 

waveform. For example, the current in the same direction will lengthen the waveform, 

while the current in the opposite direction will shorten the waveform. Therefore, in the 

basin, before simulating irregular waves, the specified current speed and direction should 

be generated first. Similarly, in the case of wind load simulation, the simulation of 

irregular waves needs to be modified accordingly. 

Scholars have made many efforts and summarised the current experimental and numerical 

progress (Stewart and Muskulus, 2016b). Table A.1 (in Appendices) shows the different 

methods for conducting the experiment of FOWTs. For numerical methods, the balance 

between accuracy and speed (calculation time) is also an essential consideration for 

evaluating the dynamic response of FOWTs. The linear (or quasi-linear) method is used 

in the preliminary research phase. In addition, nonlinear methods are suitable for non-

moderate design situations (e.g., wave-structure interaction under extreme events). Cruz 

and Atcheson (2016) gave a detailed explanation of the principles and applications of 

numerical methods and related experimental verification. They also summarised the 

specific issues that the designers are concerned about (for example, design load (Nichols 

et al., 2016) and guidelines (Ronold et al., 2010). However, the numerical fidelity of 

different software is still under testing in terms of innovative optimisation methodologies, 

computational efficiency, and accuracy. 

2.2. Scaling issues 

The first significant challenge is the scaling issues that extend to blade design problems 

and control strategies caused by dissimilar low Reynolds. This involves the consideration 

of the dynamic similarity criterion. Generally, the exact simulation of hydrodynamic and 

aerodynamic forces depends on the similarity of 𝐹𝑟  and 𝑅𝑒 , respectively. Scaling 

incompatibility is induced by these two factors. The appropriate scale rule and eliminating 
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the scale effect as much as possible can be regarded as a significant point to obtain a 

reasonable overall dynamic response of the whole system. Early scholars have 

summarised the current experiments in response to these existing challenges. Stewart and 

Muskulus (2016b) reviewed nine experiments of FOWTs in detail as a preliminary 

preparation for the Integrated Research Program on Wind Energy. In the seven 

experiments they discussed, the difference in scaling using Froude is mainly due to the 

size of the basin facility. And one of the main differences is how aerodynamic loads are 

applied. Three of the experiments used wind fields generated by fans. The rest of the 

experiments used simple constant forces to simulate steady thrust or discs instead of rotors. 

Although these simulated aerodynamic actuators provide dynamic feedback and correct 

scaling, they are limited by aerodynamic simulators. Müller et al. (2014) listed some 

representative basin experiments and projects in the past and put forward a methodology 

for the existing problems by redesigning model scale rotors. However, aerodynamic 

torque and gyroscopic momentum are not scaled correctly with their Software-in-the-

Loop (SIL) procedure. Alternatively, rotating scaled mass was used to represent the rotor 

inertia to match the gyroscopic effects. The concept of SIL can be seen in Figure 2.2.  

 

Figure 2.2 SIL operating principle (Antonutti et al., 2020). 
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In the SIL model, the simulation of the virtual software will be regarded as a very 

important part, especially when it is combined with the model experiment. Using virtual 

software to simulate hydrodynamic or aerodynamic loads can solve scaling issues. 

However, this method based on the SIL model also sacrifices the coupling response of 

the original complete FOWT system under different loads. 

2.2.1. Hydrodynamic simulation 

For the basin model experiment of the traditional floating structure, Froude-scale is 

usually the priority because gravitational forces are the main factor that impacts the 

hydrodynamics of the floater rather than viscous forces. The gravitational and inertial 

forces in the wave force components can be accurately simulated, which are the dominant 

external loads for ships or floating offshore structures. A steady thrust force has been 

replicated using a constant horizontal force corresponding to a steady wind from 

Utsunomiya et al. (2009). Myhr et al. (2011) performed a 1/100th scale TLP platform in 

2011. As further work in 2014, they exploited another 1/40th scale TLP. They tested to 

validate the hydro-elastic properties of three different Tension-Leg-Buoy (TLB) floaters, 

compared with an aero-servo-hydro-elastic simulation tool (3DFloat). In 2012, a 

simplified 1/80th scaled TLP model testing was performed by Wehmeyer et al. (2013) 

under the ultimate limit state, therefore no aerodynamic loading and gyroscopic effects 

were modelled. Sethuraman and Venugopal (2013) conducted a 1/100th scaled stepped-

spar basin experiment at the University of Edinburgh. Their study better captures the non-

linearities of the mooring lines and the four-point mooring configuration is found to offer 

significant reduction in surge motions. Based on the data of previous basin model tests, 

Gueydon (2016) carried out the validation (without control). Two numerical models were 

established to examine the design concept and the small-scale constructed physical model, 

matched at operating speed, wave, and steady wind at a fixed rate. However, these 

experiments focused only on hydrodynamic parts and did not consider the coupling effect 

of the rotor, blade. Therefore, the coupling effects between aero and hydro cannot be 

presented well by controller-induced platform motion. 
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2.2.2. Aerodynamic simulation 

The 𝑅𝑒 is usually adopted in wind tunnel tests to validate the size and parameters of the 

blade and rotor (Jamieson, 2018), to ensure that the viscous forces and inertial forces in 

the correct airflow field can be obtained. However, the 𝑅𝑒 will become much smaller on 

the basin experiment of FOWTs under the Froude-scale, for example, the 𝑅𝑒 will reduce 

to 1/350 under 1/50th Froude-scale (Hall et al., 2014). Therefore, the 𝑅𝑒  cannot be 

considered simultaneously with the 𝐹𝑟 in FOWTs’ experiment, which means difficulty 

replicating the coupling between aero-hydro dynamic forces (Bayati et al., 2017). 

If the similarity of the 𝑅𝑒 cannot be simulated by inappropriately, a significant impact 

on the aerodynamic performance such as blade performance (lift and drag forces), 

aerodynamic damping, resulting in dissimilar thrust force, thus affecting the dynamic 

response performance of the entire system. Currently, the 𝐹𝑟  is still adopted in the 

experiment of FOWTs to simulate the correct wave force and inertial force effect, which 

are also the premise rather than the 𝑅𝑒. For this composite model test, the density and 

dynamic viscosity of the airflow field are unlikely to simulate. Despite some related 

aerodynamic properties affected by the 𝑅𝑒 , it mainly reflects the relative relationship 

between the viscous force and the inertia force (Martin, 2011). As a result, the viscous 

effect is usually neglected in the model test to equal the Froude similarity between model 

and full-scale to satisfy the gravitational and inertial similarity. 

The most critical and significant aerodynamic loads are gyroscopic momentum, thrust 

force, and torque. These three loads are transmitted from the blade to the floater, which 

mainly represents aerodynamic performance (Martin et al., 2014). Gyroscopic 

momentum can be obtained by satisfying the blade’s weight, centre of gravity (COG), 

and rotating speed under the Froude scale. Many scholars have studied the gyroscopic 

effect (Gyro-effect) (Murai and Nishimura, 2010; Fujiwara et al., 2011; Bahramiasl et al., 

2018; Chen et al., 2021a). The gyro-effect of rotating blades-induced yaw motion has 
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been proved to not reduce generator power sharply. An experiment and numerical 

simulation of Gyro-effect on coupled dynamic responses has been done by Fujiwara et al. 

(2011), and the derivation of formulas for gyroscopic damping and motions. In addition, 

the 6 Degree of Freedoms’ (DOFs’) equation in the frequency domain has been provided 

in terms of aerodynamic loads (Semi), model test and numerical simulation (TLP) in the 

research of Blusseau and Patel (2012) and Bahramiasl et al. (2018). Karimirad (2011) 

demonstrated the instability of FOWTs, due to high amplitude in yaw and pitch motion 

coupled by Gyro-effect. 

If the thrust and torque are not corrected, it cannot meet the requirements for correctly 

simulating the corresponding relationship of the full-scale. In addition, it is necessary to 

determine the priority relationship between thrust force and torque if they cannot be 

satisfied simultaneously. The thrust force is directly transmitted to the tower and platform, 

significantly impacting the whole system. Therefore, providing a correctly scaled thrust 

force is more accessible and feasible since torque is less critical for global dynamic 

responses (Martin et al., 2014). In the case where the motor instead of the wind drives the 

rotation axis of the blade. The platform undergoes 6DOF motions under the action of 

wind and waves. The aerodynamic load of the wind turbine aggravates the responses of 

the platform. At the same time, the motion of the platform is induced by the speed of the 

rotor to change the flow field. Unsteady distribution, the aerodynamic load of the rotor 

adjusts accordingly. As the rotor rotates continuously, its aerodynamic loads generally 

change with the rotational position, and the platform motion affects this periodically 

varying load. Therefore, platform motion and rotor load are mutually coupled processes. 

This coupling problem poses a challenge for the design and analysis of FOWTs and it has 

received much attention in recent years. Based on the free wake vortex method, Sebastian 

and Lackner (2012) analysed the interaction between the rotor and the downwind vortex 

under the pitch motion of the platform. It is considered that the change in the aerodynamic 

loads caused by the platform pitching motion is not negligible. Sebastian and Lackner 
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(2013) also assumed that the platform motions caused an unsteady flow field, compared 

the aerodynamic loads of fixed, and studied the freedom of motion of the platform with 

different influences on aerodynamics under various platform forms. Jeon et al. (2014) 

also analysed the effects of pitch motion using the vortex lattice method. Farrugia et al. 

(2014) carried out experimental research on the aerodynamic performance of the floating 

platform, measured the load and wake state of the rotor, and proposed that the FOWTs 

should reduce the longitudinal motion to avoid running at a relatively high tip speed. 

Rockel et al. (2014) studied the influence of the platform’s pitch motion on the wake 

through wind tunnel tests. The other DOF motion of the floating body may also 

complicate the wake. Wu et al. (2015) used the Computational Fluid Dynamics (CFD) 

method to study the effects of platforms’ sway, pitch, and yaw motions on the 

aerodynamic loads of the whole rotor and single blade, combined with the velocity 

distribution of the disk surface and wake. Power and load changes caused by platform 

motion. The analysis was carried out, and these changes will be considered important 

challenges in the study of control systems, structural fatigue, and strength. However, these 

studies are only for the degree of freedom of the platform motions, lack of comprehensive 

analysis and comparison of the 6DOF. 

2.3. Rotor simulation & Blade-pitch control 

The dissimilarity of direct geometric scaling of the blades cannot match the aerodynamic 

performance as expected. Several researchers have proposed a more sophisticated “non-

geometrical” scaling approach to avoid the discussed dissimilar problem. New Froude-

scale rotors and blades have been redesigned to make up for performance reductions of 

the aerodynamic load modelling in the experiment, including drag disk by Wan et al. 

(2015) and Cermelli et al. (2010) or modified low-Reynold airfoils with enlarged chord 

lengths (Duan et al., 2016a) to only match the full-scale thrust force (de Ridder et al., 

2013; Fowler et al., 2013; de Ridder et al., 2014; Make, 2014). 
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2.3.1. Drag disk 

Principle Power conducted a 1/67th scale model test in the first phase of WindFloat 

(Cermelli et al., 2009; Cermelli et al., 2010). Considering the excessive complexity of 

simulation control execution, a compromise approach was adopted, even disk instead of 

blades to get enough thrust. In 2010, the 𝑅𝑒 has been well overcome by using enlarged 

blades in unique airfoils and roughened leading edge (Martin, 2011). The National 

Renewable Energy Laboratory (NREL) 5MW blade was the prototype of that Froude-

scale rotor. They increased the wind speed to match the thrust force to balance the aero-

hydro dynamic force between the model and full scale. Following this in 2013, second-

round testing was conducted based on a semi-type of the platform, and the hybrid 

combination of potential flow theory and Morison’s equation was considered in this 

specific experiment. The detailed parameters, the definition of external wave conditions, 

and the specification of installation (sensors) have been provided in their papers. However, 

limited experimental results have been published. MARIN (Maritime Research Institute 

Netherlands) tested FOWTs equipped with such blades in basin model tests and they were 

only applied to a semi-submersible platform until this project ended. 

Based on Phase IV of OC3, Shin (2011) used model blades to replicate the thrust disks to 

conduct a 1/128th scale model test under stochastic wind and wave. Motions of the 

platform and rotating rotor effect include linear hydrostatics, excitation force (incident 

waves), radiation (outgoing), and nonlinear effects (added mass effects and viscous 

forces), have been discussed in their research. In addition, the spar torus combination 

(STC) proposed at the Norwegian University of Science and Technology (NTNU) (Wan 

et al., 2015; Wan et al., 2016; Wan et al., 2017) and semi-wind energy and flap-type wave 

energy converter (SFC) (Luan et al., 2014; Michailides et al., 2014; Gao et al., 2016; 

Michailides et al., 2016) have been studied by model tests and numerical validation, based 

on EU FP7 MARINA Platform project. They adopted a drag disk on the top of the tower 
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to replicate the mean thrust on the rotor because it mainly validates the structural integrity 

of STC under severe sea states. 

2.3.2. Re-deign rotor and blade 

In 2014, three-scale relationships, including prototype-to-model (Chakrabarti, 1998), 

Froude-scaled wind and TSR (Jonkman, 2010), were discussed by Martin et al. (2014). 

Hansen et al. (2014) studied a 1/200th scale TLP with an optimised rotor and low 𝑅𝑒 

through an alternative pitch angle distribution. Duan et al. (2016a) conducted a 1/50th 

scale spar-type model test by comparing the testing results of the TMBS and GMBS under 

different environmental conditions. Du et al. (2016) examined similar geometrical blades’ 

aerofoils, showing only 24.3% of the target. They optimised the thrust force of the model, 

and the lift and drag coefficient was obtained by the RANS method. The improved blade 

referenced by Fowler et al. (2013) has better aerodynamic performance than the original 

geometrically similar blade. This is more in line with the target value, which largely 

compensates for the inability of the geometrically similar blade to simulate the rotor’s 

performance accurately. A quasi-static and unsteady methodology has been proposed by 

Salehyar and Zhu (2015) to analyse the aerodynamic dissipation effect. Although MARIN 

and SJTU have taken relevant remedial measures at low 𝑅𝑒, its structure for non-rotor 

parts (such as towers) and details of the float above the water surface will also produce 

unwanted extra thrust. To ensure the correct simulation of the axial thrust, the accurate 

collection of other aerodynamic loads, such as torque, was abandoned. 

Ahn and Shin (2017) conducted a 1/128 scaled 3-leg catenary spread mooring system 

with a delta connection. The water depth of the entire system is matched numerically and 

experimentally in various combinations, including wind and rotor rotation, to predict 

platform performance. The validity of the numerical simulation they proposed can be 

assured by comparing the significant motion and response amplitude operators (RAOs) 

with conventional and irregular waves. Due to the small size, the blade had to be re-
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corrected for the thrust force and surge excursion because the flap-wise surface of the 3D 

blade model was the only match in their project. For this reason, 3D printing can be used 

as another optimal solution for the construction of a small-scale experimental physical 

model. 

In general, the geometric downsizing of the rotor effectively alters the aerodynamics of 

the scaling issues (Jain et al., 2012). In this method, gyroscopic forces can be provided 

by a correct mean thrust force and aerodynamic damping is spinning. However, whether 

it is a drag disk or a modified blade, the thrust force is the only condition that has been 

considered in the preview experiment. More detailed investigations’ fidelity will be lose 

if the torque, rotor blades’ load, scalability for aerodynamic damping at different wind 

speeds and advanced blade pitch control cannot be considered. 

2.3.3. Blade-pitch control strategies 

How to simulate the rotation of the rotor is related to control technology. Adjusting the 

blade-pitch angle and generator torque is one of the essential requirements in most wind 

turbines (Pao and Johnson, 2011), which are discussed above briefly. In general, under 

different wind speed, the control strategies vary. 

• Wind speed < rated: The maximum power is the priority, and the generator 

torque will adjust (pitch angle keeps 0). 

• Wind speed > rated: The generator’s torque constant by adjusting pitch angle to 

maintain stable power output. 

It is appropriate for both land-based and floating types. However, due to the particularity 

of FOWTs, the standard land-based control strategies cannot apply to the floating turbine 

blade directly (Jonkman, 2008). It is a challenge to use the controller on a floating 

platform, which will make the floater unstable, especially when the damping and the 

controller mode are within the same bandwidth (Savenije and Peeringa, 2014, p. 2). This 
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is precisely mentioned above, the poly-trope of thrust force on the rotor. In this case, good 

control strategies for active turbine blades and generator control ensure stable operation 

of FOWTs, including maintaining appropriate rotating speed and power regulation 

(Pardalos et al., 2013), as well as reducing the motions and a substantial load of floaters 

(Savenije and Peeringa, 2014). In general, not only do the motions of the floater impact 

the superstructure, but the controllers will influence the floaters, which are also coupled 

effects. 

Many scholars have conducted numerous studies on these specific blade-pitch control 

strategies. Namik and Stol (2013) provide a detailed review of FOWTs’ controllers. 

Savenije and Peeringa (2014) provided a brief review of control development for FOWTs 

and compared four different controllers, including FPfloat (fixed pitch), OC3 float, 

ECNland (without modifications) and ECNfloat. Some researchers have investigated the 

active blade-pitch control and generator control based on global dynamic responses of 

FOWTs (Bredmose et al., 2017; Goupee et al., 2017; Yu et al., 2017). Although some 

blade-pitch control systems have been investigated in this area and achieved specific 

results, few references are available to how the control strategies are combined with a 

real-time hybrid experiment, especially the influence of active turbine controls. 

José et al. (2014) proposed another approach that performed a 1/40th scale test of semi-

type FOWTs. They applied a ducted fan to provide the required thrust force. Although it 

was controlled via a real-time numerical simulation with active controls, it still had a 

limited ramping rate and results integrated with simulation results very well. Goupee et 

al. (2014) compared campaigns using a geometrically similar and improved performance-

matched DeepCwind model (OC4 Phase II) conducted in 2011 and 2013, respectively. As 

a corrective measure, the wind speed was increased to obtain the correct mean thrust force 

in the 2011 campaign. The coupled aero-hydro-elastic response in region three and active 

blade pitch control were tested in 2013, not executed in 2011. 
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Yu et al. (2017) conducted a 1/60th scale Triple Spar floater, a hybrid between a spar-

buoy and semi-submersible tri-floater, tested with an active blade-pitch control DHI 

Denmark for the first time. The aerodynamic damping, interaction effects induced by 

wind and wave and blade-pitch control are discussed in their work. They applied a real-

time active controller to the model. In this campaign, different control methodologies 

related to negative aerodynamic damping and simulation have been investigated to show 

the possibility of a low Reynolds rotor to control the rotor speed by adjusting the blade 

pitch angle. The calibration of the simulation model has also been proposed due to the lift 

and drag coefficients, aerodynamic losses, and drivetrain mechanical friction. 

2.3.4. Summary in rotor simulation 

The model size of the blade is large. The scaled mass is very light. At the same time, it 

needs to bear various wind loads in the test to meet sufficient strength and rigidity, which 

involves blade manufacturing technology. The upper structure of the FOWTs is very 

lightweight and, at the same time, the most complicated part of the arrangement and 

installation. It needs to install the motor, connect the hub, the six-component force sensor, 

the accelerometer sensor, the various components, etc., to meet the objective scale quality 

involving control strategies and mass control techniques. 

In summary, the mass adjustment of the blade-pitch physical model (gear and motor) and 

a wind speed estimation is the primary consideration. Also, the coupling effect of the 

controller induced dynamic behaviour in terms of platform pitch motion damping 

(Goupee et al., 2017) and extra aerodynamic damping (e.g., negative damping 

phenomenon (Larsen and Hanson, 2007; Thiagarajan and Dagher, 2014) which do still 

not have the conclusion, because of the limited research. 
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2.4. Experimental facilities and calibration methods 

To accurately measure the coupling response of FOWTs under the action of both 

aerodynamic and hydrodynamic loads, a set of controlled wind field rectification systems 

needs to be specially designed for the experiment to achieve spatial and temporal 

uniformity. Wind-generation techniques may not be feasible on an open basin (Martin et 

al., 2014), especially for less advanced facilities. Improved wind generation systems have 

been proposed by Courbois et al. (2011), Newton et al. (2015) and Philippe et al. (2013). 

Before the experiment, other vital factors are calibrated, directly influencing the whole 

experiment, involving tuning the platform, tower, and aerodynamic parameters. Wind 

turbine geometry, mass properties, aerodynamic losses and drivetrain mechanical friction 

in simulated rotor and blade models should be examined. Decay tests are required to 

determine the approximate constants of the initial conditions. Through the decay test, the 

stiffness, mass and added mass, the moment of inertia and damping accuracy of the model 

system can be verified. Stewart et al. (2012) and Browning et al. (2014) proposed a 

method called further decay tests and also gave some details for calibration and validation 

(physical and numerical). The hammer test can test the natural frequency of the tower. 

Rotor and nacelle parts are not included in the hammer test. However, the influence of 

the sensor and cable is not negligible. 

For this reason, the mass of the wind turbine has a distinct difference from the design 

value in the basin model test. Yu et al. (2017) and Bredmose et al. (2017) discussed 

calibration partly in the Triple spar campaign. Based on the previous work of Duan et al. 

(2016b), Li et al. (2018) proposed an improved deficient thrust force correction approach 

that used the wind to drive the rotor rather than the motor. 
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2.5. Real-Time Hybrid Approach 

Under the premise mentioned above, many scholars selectively avoided simulating 

aerodynamic issues when studying the dynamic responses of FOWTs, mainly focusing 

on the effects of hydrodynamic forces, or using the original disk to replicate the required 

thrust force in a much easier way. With the limitations of methods and facilities, these 

practices were popular in early research. However, very few details have been thoroughly 

open to the public. By improving theoretical & numerical models’ fidelity and increased 

computational power, the RTHA (Real-Time Hybrid Approaches) has been proposed 

recently. It consists of physical and virtual subsystems defined as basin experiments and 

Hardware-In-the-Loop (HIL). A numerical model in HIL simulation accounted for the 

transient and degraded responses, interfacing with the scale model through sensors and 

actuators (Plummer, 2006). This presented method applied all aerodynamic load 

components (thrust force and torque) on a wind turbine model in a new way, while, unlike 

previous similar champions, only satisfying thrust force. 

In RTHA, the wind turbine or floating platform will replace some actuation systems. And 

a full range of transient aero-hydro-servo-elastic dynamics force, which is calculated in a 

numerical model simulation in real-time, will be applied to the model by these actuators. 

A thorough introduction of the working mechanism of RTHA in the context of floating 

structures and proposes its use in basin experiments of FOWTs have been provided by 

Chabaud et al. (2013). Different usual numerical simulation, delays, and dynamics are 

undesired compensations in this alternative approach, which means one feedback-

controlled facility was settled to emulate aerodynamic forces (Hall et al., 2014; Hall et 

al., 2018; Hall and Goupee, 2018) or wave forces (Bayati et al., 2014; Bottasso et al., 

2014; Filippo et al., 2014). The aero-elastic response of the tower and blades is usually 

neglected in basin experiments. However, these can be simulated with a scale model in 

software using BEMT (Blade Element Momentum Theory) and beam bending models in 
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RTHA. Additionally, this method created an easy way to solve wind generator techniques 

at model scale effectively and relatively simply by utilising non-generic designs. 

2.5.1. Code Development 

The rapid development of software technology promoted the birth of RTHA. Moreover, 

hardware and software played significant roles in the experiment. Therefore, it is 

necessary to overview numerical simulation before briefly discussing RTHA. Currently, 

researchers have been exploiting numerous numerical simulation tools for analysing full-

scale FOWTs, which can be classified into two categories (Liu et al., 2016): frequency-

domain and time-domain analysis. In recent years, many new numerical simulation tools 

have been created, and most related experiments are undergoing code-to-code or code-to-

experiment validation, especially in hybrid basin experiments. This section will briefly 

introduce and summarise the numerical simulation tools. 

2.5.1.1. Frequency-domain analysis 

Glauert proposed the BEMT to apply the aerodynamic forces of the wind turbine based 

on the one-dimensional momentum theory (Hansen, 2015). According to Cordle and 

Jonkman (2011), BEMT is an aerodynamic model currently used to calculate 

aerodynamic loads. However, the presence of significant low-frequency motion in 

FOWTs makes the flow field around the blade more complex than a fixed wind turbine. 

Therefore, researchers have proposed many correction methods for this theory (Hansen 

et al., 2006; Hansen, 2015): Prantl’s tip loss correction factor and Glauert’s correction. 

The calculation of the hydrodynamic load of FOWTs usually depends on the structure of 

the floater. For a spar-type floater, the analysis of hydrodynamic loads is a complex 

coupling problem that requires consideration of incident wave excitation force, potential 

flow radiation damping, and added mass. The Morison empirical formula can solve the 

hydrodynamic load calculation of the floating structure. Subsequently, the formula is 
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widely used to analyse cylinders’ hydrodynamic loads (Faltinsen, 1993; Wei et al., 2014). 

This formula is also the earliest model for hydrodynamic calculation of FOWTs. But it is 

mainly applied to analysing hydrodynamic loads of offshore fixed wind turbines. The 

Morison formula is primarily suitable for applications on small-scale structures since it 

ignores the memory effect of the free surface and uses a long-wave approximation to 

simplify the diffraction problem. All these make the Morison formula not applicable to 

large-scale structures. Later, the researchers numerically analysed the FOWTs in the 

frequency domain under the linear assumption. 

For linear systems, when a periodic load of a single frequency is applied to the system, 

such as a floating body under the action of a regular wave, the excitation response should 

be a single frequency. The RAO is defined in the traditional ship, and ocean engineering 

is based on this linear input-output hypothesis to reflect the responses of the floating body 

by the wave excitation load. Therefore, for the traditional floating platform, the frequency 

function can be solved by direct frequency-domain calculation to predict the responses of 

the floating body under the wave excitation load (Ma et al., 2014). However, for FOWTs, 

its normal operating state is subject to wind and wave loads. In the case of turbine blades 

rotating at a specific speed, the wave load of a single frequency can no longer be seen as 

a single input. At the same time, a single frequency wave load excitation can also result 

in multiple frequency responses. This nonlinear characteristic is mainly caused by the 

rotation effect of the blade and the system instability induced by the blade-pitch controller 

(Jonkman et al., 2010). Therefore, for FOWTs, the system’s response to wave excitation 

cannot directly solve the frequency function or the RAO from the traditional frequency-

domain equation. Secondly, when evaluating the system’s responses induced by wave 

excitation, the regular operation of the wind turbine, that is, the rotation effect of the blade 

and the wind load effect, cannot be ignored. This is determined by the system 

characteristics of the FOWTs themselves. Otherwise, only the response characteristics of 

the wave load are considered. The forecast is of little significance in practice.  
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Inspired by the technologies of offshore O&G industries in the field, some researchers 

have studied the dynamic characteristics of FOWTs using frequency-domain analysis 

tools. For example, Lee (2005) and Wayman et al. (2006) performed a series of 

investigations on TLP and analysed shallow-drafted barge and the MIT/NREL TLP, 

respectively. Wang et al. (2017) proposed a frequency-domain approach to analyse the 

coupling effects of FOWTs. However, FOWTs are typical nonlinear system, which are 

not capable of modelling, involves the influence of coupling between aerodynamic loads, 

structural elastic deformation, and motion modes. 

2.5.1.2. Time-domain analysis 

In traditional ocean engineering, the floating structure is considered a single rigid body, 

which can be used to establish the dynamic equation of the structure. And this rigid body 

must have no relative motion between the various mass points inside the structure. 

However, when the FOWTs are operating, the rotor rotates continuously. There is relative 

motion between the rotor, blade, nacelle structure and platform, which does not meet the 

conditions for the single rigid body dynamic theory. Therefore, the FOWTs could be 

regarded as a fully coupled aero-hydro-servo-elastic model by solving the dynamical 

equations of numerous DOFs in the time domain. The DOF of FOWTs’ systems (except 

mooring system) mainly are: 

• 6DOF motions of the supporting platform. 

• Modal coordinates of the elastic deformation of the tower in all directions. 

• The rotation of the nacelle relative to the top of the tower. 

• The rotation of the rotor relative to the nacelle. 

• The rotation of each blade is relative to the hub of the end of the transmission 

rotor. 

• Modal coordinates of the elastic deformation of each blade. 
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To study a simple system consisting of a small number of rigid bodies, it is convenient 

and feasible to use any mechanical method. However, a more general mechanical model 

needs to be established for a plurality of rigid bodies, even systems containing flexible 

bodies. Some objects are assumed to be rigid bodies in multi-body systems, and some 

things must consider elastic deformation. The mechanical model is called the rigid-

flexible multi-body system. 

The traditional hybrid coordinates model ignores the quadratic coupling term when 

considering the coupling between the large-scale rigid body motion and the high-

frequency elastic deformation motion of the flexible body at low frequencies. It directly 

uses the analysis results suitable for small deformation displacement in structural 

dynamics. It is not only unable to deal with the dynamic stiffening phenomenon brought 

by the rigid body motion to the flexible body but also causes the negative stiffness 

phenomenon when the large-scale rigid body motion is very large or the flexible beam is 

long, which affects the solution of the flexible beam motion displacement. The longer the 

length of the flexible beam, the more pronounced the phenomenon of dynamic stiffening, 

and the elastic deformation is reduced. The coupling effect of high-order elastic 

deformation and large-scale rigid body motion should be considered for the large and 

slender flexible structures. Therefore, the time-domain analysis method has come into the 

mainstream gradually. 

Karimirad and Moan (2011) conducted extreme structural responses and fatigue loads of 

spar-type FOWTs. Bachynski et al. (2013) researched transient events in time-domain 

analysis. In addition to unique research & development (R & D), some researchers have 

made improvements from O & G industries or other existing codes. For example, 

Jonkman and Buhl Jr (2005) added hydrodynamic mooring loads to the FAST code, 

developed for onshore bottom-mounted wind turbines, originally by Wilson et al. (1999). 

Several time-domain numerical tools have been generated from commercially available 

general-purpose multibody-system (MBS) codes. ADAMS and SIMPACK have been 



 

34 

used by combining additional aerodynamic, mooring and hydrodynamic subroutines for 

Withee (2004) and Matha et al. (2011), respectively. Ormberg and Bachynski (2012) 

described the RIFLEX extension of aerodynamic load on elastic structural components. 

Also, aNySIM has been developed and validated by MARIN to provide clients with a 

more integrated simulation package including multi-body side-by-side, the mooring 

system and, dynamic positioning capability studies (Naciri et al., 2007; De Wilde et al., 

2009; Serraris, 2009). Another integrated code, DARwind, has been proposed by Chen et 

al. (2019a). Some theoretical backgrounds can be found in their papers, which are also 

verified by code-to-experiments (Chen et al., 2017). 

With the development of computer technology, CFD has become one of the robust tools 

to analyse the global dynamic responses of FOWTs. Zhao and Wan (2014) and Liu et al. 

(2015) conducted a series of investigations using their own CFD tool, NAOE-FOAM-

SJTU. Comparisons of the wave load effects of TLP by combining potential flow theory 

approaches and CFD were conducted by Nematbakhsh et al. (2015). Tran et al. (2014) 

applied the CFD method to study the influence of periodic pitching motion on the 

aerodynamics of FOWTs and compared other calculation models. In the simulation of 

large-scale pitch motion, the CFD method has a smaller load than the traditional 

aerodynamic model. It can be a more accurate calculation of the effects of unsteady loads 

and random motion of the platform.  

In summary, previous works have concluded the different numerical simulation tools in 

each module (Liu et al., 2016). Nonetheless, limited studies have elaborated on the rigid-

flexible coupling multi-body methodologies implemented in FOWTs. Detailed testing 

data is hardly openly available to the public. The development of CFD technology has 

played a specific role in promoting FOWTs research. However, due to the high hardware 

or software requirements, prolonged time consumption, and lack of accurate verification, 

compared with the traditional numerical simulation method, it still needs to be improved. 

Although some of these tools have been used in a wide range and even been benchmarked 
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through code-to-code check work. For instance, FAST and HAWC2, but few of these 

numerical tools have been accepted consistently for their reliabilities. These tools are used 

solely to predict global responses of FOWTs. In addition, in numerical tools, the coupling 

effect is a challenge to be considered in an integrated way. Due to some assumptions or 

simplifications introduced in theoretical calculations, such as hydrodynamic calculations 

without considering second-order wave forces, potential flow calculations neglecting 

viscous effects, etc., it will bring inaccuracies in some aspects of the simulation results of 

numerical simulation tools. For example, the hydrodynamic calculation linearisation 

cannot account for the second-order frequency wave force, which causes the oscillation 

of the surge, pitch, and heave under wave excitation to be correctly simulated at the 

natural frequency; the second-order harmonic wave force cannot be considered. It is 

possible that the vibration of the tower at its natural frequency cannot be sufficiently 

exciting. But this coupling effect can be reflected and obtained in a basin model test. 

2.5.2. Hybrid basin experiment 

A real-time hybrid method was first applied to the earthquakes of civil engineers in the 

1970s in Japan by Carrion and Spencer Jr (2007). They tried to validate the assumption 

of large-scale structural behaviour, which can be realised and interface experiments with 

simultaneous simulation. A review of this RTHA has been applied to simulate 

aerodynamic forces within the automotive car industry, where Plummer (2006) made the 

individual parts (Klerk et al., 2008; De Klerk, 2009; Li, 2014). The development of this 

method has been promoted in the United States by Shao and Griffith (2013) and Europe 

by Pinto et al. (2004). As the development of RTHA, challenges arose because of its 

interaction between multi-disciplinary simulation, including software, hardware, 

fabricating measurement, experimental methods, signal processing, control engineering 

and data acquisition, which all require instantaneity and precision for real-time coupling. 
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Some examples of each discipline’s actual progress or advanced methods have been 

provided by Sauder et al. (2016) including control strategies (Carrion and Spencer Jr, 

2007) and stability analyses (Kyrychko et al., 2006). The application of RTHA in 

renewable energy and marine technology can be found in (Li et al., 2006; Munteanu et 

al., 2010; Signorelli et al., 2011; Cao and Tahchiev, 2013; Chabaud et al., 2013). The 

objective aerodynamic thrust and generator torque should be considered or actuated, and 

have the most significant effects on floaters when using a modified numerical simulation. 

Gyroscopic moments, non-thrust loads (pitch and yaw moment, sway, and heave force), 

dynamic torque, and thrust directionality have been neglected in RTHA (Bachynski et al., 

2015). Bachynski et al. (2016) and Sauder et al. (2016) also offered a brief review of the 

RTHA testing adopted for FOWTs’ experiments by limiting a part of the environment to 

avoid the discussed scaling problem. Their experiment proposed one method to apply 

wind-wave induced forces and the blade-pitch control algorithm by using a series of 

tensioned wires to connect the turbine and actuators to provide the transient simulated 

force rather than a ducted one. The specific process of this hybrid method on a 1/30th 

scaled 5MW semi-type wind turbine has been proposed in terms of qualification, 

quantification, possible error sources and performance of FOWTs. In the last stage, 

Berthelsen et al. (2016) introduced a methodology of using experimental data to calibrate 

the numerical model and quantify and mitigate equipment. Karimirad et al. (2017) used 

SIMA to extend previous work by Berthelsen et al. (2016) regarding the BEM model for 

rotor forces and second-order loads compared with experimental data. In addition, 

coupled aerodynamic simulations were conducted to avoid potentially incorrect 

modelling of the aerodynamic damping (Stewart and Muskulus, 2016a). Results of 

experimental data and full-scale numerical simulation from hybrid testing of 1/50th scale 

FOWTs have been provided by Hall et al. (2014) and five considerations of RTHA have 

been proposed: Actuator displacement; Velocity and acceleration envelopes; Actuator 

force envelopes; Motion tracking accuracy; Force actuation accuracy and system latency. 
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Bayati et al. (2013) performed a 2-DOF (Pitch and Surge motion) experimental rig-

HexaFloat in a wind tunnel to simulate the motion of a 1/25th scale DTU 10 MW wind 

turbine model which combined hydrodynamic and aerodynamic loads within LIFES50+ 

project (Bayati et al., 2016). Following year, HexaFloat (Figure 2.3) expanded to 6DOF 

(Bayati et al., 2014). In 2017, they proposed an aerodynamic design methodology and a 

scale model technology for a 1/75th scale DTU 10 MW wind turbine rotors (Bayati et al., 

2017). 

 

Figure 2.3 Hexafloat robot (Bayati et al., 2014). 

In general, the technical issues and methodologies of this hybrid/HIL test can be found in 

(Delbene et al., 2015). In the former case, Bayati et al. illustrated the method of blade 

design. However, they did not put the turbine system in actual water and simplified the 

6DOF motions of the supporting platform to a large extent. They ignored the coupling 

effect between the blade-pitch controller-induced instable of the floater and the 

aerodynamic load due to blade rotation and wave excitation. Therefore, it can be pointed 

out that the model test in a wind tunnel is a promising way to predict global responses of 

floating wind turbines but still in the face of many challenges. 
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Another real-time hybrid approach was validated by Hall et al. (2018) and Hall and 

Goupee (2018), as shown in Figure 2.4. In their experiment, an actuation system 

combined numerical wind turbine model was set to simulate the thrust force of winch and 

cables, pulling fore and aft on the nacelle. Three controls are integrated, which was 

executed by changing cable length. 

 

Figure 2.4 Arrangement of cable system (Hall et al., 2018). 

Hall also demonstrated the benefits and possible disadvantages of some hybrid 

approaches and compared them with physical wind-wave tests, which showed  

satisfactory agreement. However, some other aerodynamic forces and moments have been 

neglected. In addition, the mean value of the platform surge motion has a significant 

difference of up to 17% (no wind) and 14% (steady wind), respectively. This may be due 

to unidirectional dynamic forces on the nacelle by the actuation system. Hall et al. (2018). 

Vittori et al. (2018) proposed one hybrid experimental method using the SIL method, 

which validates that generated code has the same behaviour as was tested in the model 

simulation and does not need a hardware interface. This SIL method was applied to OC4 

to integrate the aerodynamic performance. Results of all the cases in the experiment 

compared with numerical software. However, since the data type accuracy is set in the 

SIL, all the calculations inevitably cause calculation errors. 
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In summary, the scalability and fidelity of the basin experiment could be improved by 

RTHA. The dissimilar scaling issue can be avoided, and any scale can be modelled. 

Requirements of experimental facilities can be reduced, and blade-pitch control can be 

modelled without the limitations of small-scale actuation. This makes the model test of 

FOWTs more accessible and flexible for researchers. However, there are still possible 

disadvantages. The significant difficulty in numerical modelling of FOWTs is the accurate 

estimation of the influence of sensor cables (Coulling et al., 2013). Since the model of 

FOWTs is very light, the impact of the sensor cable can be said to be non-negligible and 

even very important. In addition, sensor cables of various test institutions globally are not 

the same, and the arrangement of cables in basin tests cannot be unified. The influence of 

cables may even be nonlinear, so it is difficult to estimate the impact of cable accurately. 

Errors may also arise due to the various inaccuracies and delays. In addition, the quality 

of virtual subsystems will improve the results. In addition, almost all the theories have 

been adopted in numerical simulation, which relies on assumptions (Sebastian and 

Lackner, 2013; Jeon et al., 2014; Farrugia et al., 2016). Most importantly, more problems 

(design, manufacture, and optimisation) may come due to finding an alternative actuation 

system. 

2.6. AI application of offshore engineering and wind industry 

Artificial Intelligence is a large category of technology, which includes various 

algorithms and applications. Figure 2.5 illustrates their relationships in a Venn diagram.  

In AI technology development, data-driven technology has been gradually being 

recognised by academia and industry. Machine Learning is one of the most important 

extensions of the AI field, and it can be divided into the following methods (Alpaydin, 

2020):  
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• Supervised Learning. 

• Unsupervised Learning. 

• Reinforcement Learning.  

 

 

Figure 2.5 Relationship of AI (Dong et al., 2020). 

Major research institutions and government organisations also value applying artificial 

intelligence technology in the future. For example, the UK’s EPSRC (Engineering and 

Physical Sciences Research Council) launched four robotics and AI centres in 2017 to 

meet this challenge (EPRSC, 2018). The ORCA Hub, led by Heriot-Watt University and 

the University of Edinburgh, is pioneering the development of fully autonomous remote 

services to monitor, maintain and repair offshore assets such as offshore wind turbines 

(ORCA, 2021). There have been some promising applications for introducing ML 

techniques in the offshore renewable energy field. For example, Li et al. (2019) and Li et 

al. (2020) studied the wave energy control algorithm with Artificial Neural Networks 

(ANN) to implement real-time wave force prediction.  

However, most existing applications are based on land-based wind turbines for wind 

energy harvesting devices. Li and Shi (2010) used ANN to forecast wind speed, critical 

for wind energy conversion systems. Further research has been done by Pelletier et al. 
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(2016) who used ANN to obtain the power curves of the wind turbine at six parameters. 

Li (2003) discussed the temporal characteristics of wind power generation. The recurrent 

multilayer perceptron neural network is trained based on the time algorithm of the 

extended Kalman filter to predict the wind turbine’s power. Kusiak et al. (2009) used 

weather forecast data generated on different time scales and ranges to establish short-term 

and long-term wind power prediction models. They also verified that the model developed 

by the neural network is superior to other models in both short-term and long-term 

predictions.  

The wake effect is also a significant and complex issue in the wind power industry. Sun 

et al. (2020b) proposed a power prediction model based on an ANN and optimised the 

yaw angle to minimise the impact on the overall wake of the wind turbine. The model can 

estimate the total power generation of a wind turbine for a given wind speed, wind 

direction and yaw angle. In particular, the supervised learning algorithm can also optimise 

the FOWTs platform’s motion (Chen et al., 2019b). Stetco et al. (2019) conducted a 

systematic review of conditions for monitoring in 2019. For example, blade failure 

detection or generator temperature monitoring. In addition, they classified the ML model, 

including data source, feature selection and extraction, model selection (classification, 

regression), verification and decision-making. Neural networks, support vector machines, 

and decision trees are mainly used among them. In general, the application of ML in 

traditional wind energy is relatively mature and widely recognised by the scientific 

community. Nowadays, most applications are based on the supervised learning method, 

relying on a large amount of data for training and analysis. Through supervised learning, 

knowledge can be obtained from the data without needing to master the comprehensive 

nonlinear inter-relationship of FOWTs. However, supervised learning means that the 

labelled data must satisfy independent and identical distributions (i.i.d.); there is no 

correlation between them. If there is a connection, this network is not easy to learn.  
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Although AI technology has extensively promoted the development of the traditional 

wind industry, its applications in the FOWT industry are few, especially for the innovative 

design methodology and validation approach. Understanding the phenomenon more 

deeply and promoting the further development of the theories by AI technology is the 

focus of the academic community at this moment, rather than simply explaining and 

predicting the phenomenon. Therefore, the combination of fundamental theories based on 

numerical tools and AI technology could work better for developing FOWTs in the future, 

especially when the experiment is not so easy to carry out. 

2.7. Summary 

With the commercialisation of FOWTs and their engineering applications, more academic 

issues will emerge. For example, the current OC6 project aims to understand the under-

prediction of loads/motion in floating semi-submersibles in pitch/surge natural 

frequencies. In addition, it is also aimed to develop and employ more rigorous validation 

practices through the OC6 project (Robertson et al., 2020), in terms of identifying a 

specific validation objective, using metrics to assess validation success, and calculating 

associated experimental uncertainty of metrics. Furthermore, with the maturity of 

experimental technology and the improvement of hardware and software equipment, the 

method of RTHA will be applied, promoted, and innovated to a greater degree. The 

dissimilarity of the scaling issue can be solved. Requirements of experimental facilities 

can be lower, and blade-pitch control can be simulated effectively. This makes the model 

test of FOWTs more affordable to researchers. However, there are still some challenges 

in basin experiment technology. For instance, testing errors may arise due to various 

inaccuracies, delays, and theories are adopted in the numerical simulation. Most 

importantly, more problems (design, manufacture, and optimisation) may come due to 

finding an alternative actuation system. All the above may be problems to be solved in 

the future application of the RTHA method. In addition, the application of artificial 

intelligence technology has also brought new ideas to the FOWT industry.  
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Chapter 3. Methodology of SADA 

This Chapter provides a fundamental description of the methodology of the SADA 

method. The details, including the KDPs concepts, DARwind programme and AI 

algorithm are given in Chapter 4-6. 

3.1. Introduction 

SADA is a novel concept to integrate AI technology (Artificial Neural Networks and 

Deep Reinforcement Learning) and DARwind (a coupled aero-hydro-servo-elastic 

programme) for optimized design and dynamic performance prediction of FOWTs. 

Figure 3.1 shows the general flowchart of the entire SADA algorithm.  

 

Figure 3.1 General flowchart of SADA method. 

Firstly, the concept of Key Disciplinary Parameters (KDPs) is proposed, and it is the most 

crucial concept in SADA, working as a data transmission interface between AI 

technology and disciplines in numerical simulation of FOWTs. Specifically, the KDPs 

can be divided into three categories (Environmental KDPs, Disciplinary KDPs, Specific 

KDPs), with their unique boundary conditions in SADA.  

Secondly, DARwind can be trained to be more intelligent and give more accurate 

predictions for FOWTs by ANN or DRL algorithms on target data (experimental or full-
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scale measured data). All information generated in the iterative loop will be recorded, 

including the change of KDPs and the corresponding percentage difference of FOWTs 

simulation. 

Finally, this information will be integrated to carry out relevant statistical analysis to 

feedback on the optimal selection of KDPs. The following sections will introduce these 

aspects separately. 

3.2. KDPs 

This section briefly introduces the KDPs selection and analysis, and the full details can 

be found in Chapter 4.  

3.2.1. KDPs selection 

It is challenging to obtain an accurate forecast and develop an integrated design by 

measurement, experiments (basin or wind tunnels) and numerical simulation. The 

disciplinary knowledge involved in FOWTs is very complex and has strong nonlinearity. 

Therefore, KDPs are proposed in SADA as a concept covering multiple disciplines and 

aspects, including various uncertain or experience-based parameters.  

In SADA, KDPs interface traditional numerical computation and neural network 

parameter optimization, which can be adjusted based on the percentage difference 

evaluation with the specific target data and the weighting of the deep neural network. 

However, the corresponding boundary conditions limit each KDP.  

The flowchart of KDPs selection is shown in Figure 3.2. Among them, the fix range 

represents that in the program loop, the value of KDPs remains unchanged. The small and 

large ranges represent that KDPs allow small and large changes in the adjustment process, 

respectively. No limit means that KDPs are not constrained in the program loop. The 

specific decision process is as follows: 
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• Step 1: Choose the corresponding KDPs in three categories. 

• Step 2: Use the concept of significant figures to set the boundary conditions 

according to the specific values of each KDP. 

• Step 3: Determine the percentage difference between the numerical results and the 

target data. 

• Step 4: Adjust the boundary conditions appropriately. 

 

Figure 3.2 KDPs selection flowchart. 

3.2.2. KDPs analysis 

The database established by SADA can statistically analyse the changes of KDPs and the 

dynamic response of related FOWTs. Correlation analysis is used to explore the influence 

of KDPs on the entire FOWTs system in the coupled state, which is fed back to the 

selection and theoretical revision of KDPs in the first stage. Taking the Spearman 

correlation coefficient as an example, for a sample with a sample size of n, n raw data is 

converted into rank data, and the correlation coefficient ρ is 

 ρ𝑐 =
∑ (𝑥𝑖 − �̅�)𝑖 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑖 ∑ (𝑦𝑖 − �̅�)2𝑖

 Eq. 3.1 

For a more detailed analysis, please refer to Section 9.3 
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3.3. DARwind 

This section briefly introduces the DARwind programme, and the full details can be found 

in Chapter 5.  

FOWTs bear complex sea environmental loads, including wave, current, wind, etc. In 

addition to mooring systems and control systems, these are usually decoupled from the 

main structure and calculated as external forces in the numerical calculation. Therefore, 

a fully coupled aero-hydro-servo-elastic method was developed and then programmed as 

an integrated code DARwind (Dynamic Analysis for Response of wind turbines) to 

simulate the dynamic response of FOWTs (Chen et al., 2019a). The current version of 

DARwind is written in the high-level programming language FORTRAN, verified by a 

series of code-to-experiment comparisons to show its feasibility. The functional modules 

of the DARwind program can be roughly divided into Input module, Solver module and 

Output module, as shown in Figure 3.3.  

 

Figure 3.3 Modules of DARwind procedure. 
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3.4. AI technology application 

This section introduces the AI technology used in the SADA method, including Artificial 

Neural Networks and Deep Reinforcement Learning. For more details on these methods, 

please refer to Chapter 6. 

3.4.1. Artificial Neural Networks application 

The application of ANN is pervasive, mainly for nonlinear fitting according to the input 

information in terms of image recognition, information processing, neural differential 

equation solving, etc. The traditional ANN concept does not require relevant dynamic 

knowledge, but trains massive data based on the “black box”. Nevertheless, in SADA, it 

is optimized based on DARwind. 

In SADA, ANN can directly optimize the prediction of the FOWT platform motions’ 

physical quantity. The application of BP neural networks has such feasibility. Figure 3.4 

shows the application of BP-optimised prediction in SADA. In this flowchart, the initial 

numerical result of DARwind is used as the input parameter of ANN, such as the 

amplitude of the platform’s 6DOF motions. 

Before the training, the data were normalized. All data is converted into [0, 1]. SADA 

uses the Min-max normalization, as shown in Eq. 3.2 below. The normalization function 

uses the original function, map minmax, in MATLAB:  

 𝑥𝑛𝑜𝑟𝑚 =
(𝑥𝑘 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 Eq. 3.2 

Where 𝑥𝑚𝑖𝑛 is the smallest number in the data sequence; 𝑥𝑚𝑎𝑥 is the largest number in 

the sequence. The purpose is to remove the different order of magnitude of the data, 

avoiding the significant difference in the orders of magnitude of the input and output data. 

In addition, disrupting the data allows the input data to satisfy the conditions of 

independent distribution approximately. 
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Figure 3.4 BP optimized prediction in SADA. 

3.4.2. Reinforcement learning application 

In this section, the application of RL in SADA is introduced, mainly feature engineering 

and reward engineering in DRL. Furthermore, the RL module’s two algorithms in SADA 

are the Brute-force algorithm and the deep reinforcement learning algorithm. 

3.4.2.1. Notations 

The development of RL is rapid, but its mathematical principles are very complex, far 

more than deep learning. The most successful applications are basically in Atari, Go and 

other games (Holcomb et al., 2018). In summary, the application of RL in SADA is the 

most innovative highlight. The specific notations and nouns combining FOWTs and RL 

in SADA can be seen in Figure 3.5. 
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Figure 3.5 RL notations in SADA. 

3.4.2.2. Feature engineering 

As an agent, DARwind will take continuous action through the SIL algorithm, i.e., 

adjusting KDPs appropriately to obtain more accurate prediction results and minimize the 

percentage difference of dynamic performance of FOWTs. The action here affects the 

immediate reward and the next state, thus the subsequent reward. The purpose of 

DARwind is to find what action can be taken to maximize the numerical reward signal. 

The roles of the deep neural networks are amplified to record [state, action, reward, next 

state] in different situations through the SIL algorithm. The reward here is the feedback 

of the evaluation of percentage difference, which are: 

 

{
 
 

 
 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = |

𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 − 𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐾𝐷𝑃𝑠
𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎

| × 100%

𝑃𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = |
𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 − 𝑂𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝐷𝑃𝑠

𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎
| × 100%

𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑃𝑝𝑟𝑒𝑠𝑒𝑛𝑡

 Eq. 3.3 

𝑂𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑡𝑎 is the target data which can be the experimental results or measured data. 

𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐾𝐷𝑃𝑠 is the numerical results by initial KDPs. 𝑂𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝐷𝑃𝑠  is the numerical 

results by weighted KDPs. 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is used to measure whether the results of SADA 

is better than the initial KDPs. If 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is positive, it means that the difference 
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between the target data and numerical results has decreased by SADA, otherwise the 

difference has increased. In short, evaluation of 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   is to establish a reward 

mechanism to tell DARwind how much benefit has been obtained in this iteration.  

In addition to the 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  evaluation in feature engineering and reward engineering, 

target data is not the only criterion. One of the challenges of setting reward engineering 

in SADA is that the DARwind needs to learn, approach in actions, and finally, achieve the 

goal that the designer hopes. If the designer’s goal is easy to distinguish, this task may be 

solved well, such as finding the most minor 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   of a physical quantity or 

balancing the 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   among multiple physical quantities. Nevertheless, in some 

problems, the designer’s goal is challenging to quantify, and it is not easy to be translated 

into a loss function, especially when these problems require the agent to make very skilful 

actions to complete complex tasks or a series of tasks. 

However, due to different FOWT models and structures, some target data obtained from 

experiments and actual measurements may be very small. Therefore, in SADA, 

corresponding weighting parameters are designed for different target physical quantities. 

Take the platform motions as an example, the difference of some motions needs to be 

weighted due to the small amplitude. The specific weighting method of mean absolute 

percentage difference (MAPE) can be shown in equation:  

 𝑴𝑨𝑷𝑬 =
1

𝑚
∑𝑤𝑖 |

𝑦𝑖 − �̂�𝑖
�̂�𝑖

| × 100%

𝑚

𝑖=1

 Eq. 3.4 

Where: 𝑚 is the number of platform motions, and 𝑤𝑖  is the weight difference of each 

physical quantity. 𝑦𝑖 means the numerical results and �̂�𝑖 means the experimental results. 

3.4.2.3. Reward engineering 

In practice, a reasonable result signal can make the agent learn successfully and efficiently 

and can effectively feedback and guide the agent to learn during the process of interacting 
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with the environment. For SADA, reward engineering is not unique. For example, when 

the surge and pitch are used as the target physical quantities, the reward project is based 

on 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  of these two physical quantities. The change in 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  reflects the 

feedback on the quality of the action. In addition to the profit target of 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  , 

𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   continuity of each iteration will also be randomly selected in the reward 

engineering. 

In summary, as shown in Figure 3.6, SADA starts by selecting the initial critical KDPs 

by FOWTs designers. Then, some physical quantities such as 6DOF platform motions are 

chosen as the states in the RL algorithm.  

 

Figure 3.6 The layout of SADA. 
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According to the states, the agent will give the corresponding action to adjust the KDPs 

values properly to run the next loop if the evaluation is not satisfied. When 𝑃𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is 

reduced to an acceptable range, this means that the program is good enough to conduct 

the final numerical analysis. In addition, some other physical quantities that cannot be 

measured directly in the experiment or measurement can be predicted as well. Such as 

the deformation of blade and tower. Besides, SADA can also exclusively complete the 

FOWTs dynamic response analysis in the sea states different from those used in basin 

experiments or measurement through the training process.  

3.4.2.4. RL (Brute-force algorithm) application 

Brute-force (BF) algorithm is inspired by the concept of RL framework. In BF, all 

decisions of the agent are random and obtained through interaction with the environment. 

The agent needs to explore the environment by constantly interacting with the 

environment, which requires a lot of trial and training. More specifically, DARwind 

continuously weights the selected KDPs through an exhaustive method. Figure 3.7 shows 

the framework of the proposed Brute-force algorithm in SADA. Each action is weighted 

by random gaussian distribution. Each KDP has its own unique boundary conditions to 

prevent value overflow. 

In the specific process, the designers should first select the initial KDPs in different 

disciplines and find the corresponding positions of these KDPs in DARwind programme. 

For the weighted KDPs, the second dynamic response analysis and difference analysis 

are performed again.  
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The specific process of SADA (Brute-force) in Figure 3.7 is as follows: 

• Step 1. Manual selection of KDPs from different disciplines. 

• Step 2. Use initial KDPs to run dynamic response analysis in DARwind to 

obtain state. 

• Step 3. Use target data for percentage difference evaluation. 

• Step 4. Select actions according to the Gaussian distribution of random noise. 

• Step 5. KDPs in DARwind are weighted by actions. 

• Step 6. Use weighted KDPs to run dynamic response analysis to obtain next 

state. 

• Step 7. Determine whether the percentage difference meets the requirements. 

If yes, output KDPs, if not, return to Step 3. 

• Step 8. Use final KDPs to run dynamic response analysis in DARwind. 

 

Figure 3.7 The framework of Brute-force algorithm, in SADA 
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3.4.2.5. Deep Reinforcement Learning 

This section will introduce the DRL algorithm in SADA in detail. The flowchart of DRL 

frame is presented in Figure 3.8.  

 

Figure 3.8 The flowchart of the SADA algorithm. 

Firstly, the Deep Deterministic Policy Gradient (DDPG) algorithm is adopted in SADA 

to estimate the optimal policy to adjust the KDPs. The DDPG algorithm (Lillicrap et al., 

2015) can be regarded as a combination of the deterministic policy gradient (DPG) 

algorithm and deep neural networks. The whole pseudocode is list in Table A.2.  

It aims to tackle the problem with continuous action spaces that deep Q-learning network 

(DQN) cannot be straightforwardly applied to. The detail algorithm of SADA method 

(with DDPG) is listed in Figure 3.9, and the main loop is the thick black solid line. The 

difference from the BF algorithm is that the decision is made by a deep neural network 

instead of a random Gaussian distribution function. Based on the DDPG algorithm and 

Brute-force algorithm, the AI-based DARwind can be applied in different demands. 
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Figure 3.9 The algorithm of SADA. 

3.4.2.6. DRL training model 

The DRL module in SADA has three training models: Segmented model, Discrete model, 

and Continuous model. In the Segmented model, the duration of the data for one specific 

case will be divided into multiple segments for training. As for the remaining two models, 

they are summarized as follows: 

• Discrete model: Suitable for analysing a single known sea state and working 

condition. For example, SADA can optimize KDPs to reduce differences in a 

single case further. 

• Continuous model: Suitable for analysis of known (implemented in the 

experiment) and unknown (not implemented in the experiment) sea states and 

working conditions. For example, the optimizable working conditions are not 

limited to experiment.  
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In the Continuous model, two continuous methods are proposed for comparing their 

efficiency. The single training (ST) method uses independent cases for training in a 

specific permutation. In combining training (CT) method, the cases will be selected in a 

random order for training the model (Figure 3.10).  

 

Figure 3.10 Two training methods in the Continuous model. 

For example, case 1 gets a new state through action, and the number of this action is 

manually set (if 10). However, after ten actions, the training does not end, but the model 

automatically and intelligently updates the new numerical calculation settings according 

to the given case list, starts the calculation of the following case and loops in turn. This 

means that the three cases do not necessarily represent only three loops. Instead, it can 

repeatedly train in three cases in several loops. There is no fixed exit condition in actual 

operation. Generally, only one maximum number of loops is set. Unlike classification and 

identification problems, due to the limitations of numerical software, it is currently 

difficult to define the exit conditions, which are determined according to the designer’s 

needs. It can be the percentage difference of the platform’s motions between numerical 

and experimental results or other conditions. 
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3.5. Summary 

This chapter introduces the overall structure of the SADA method including the selection 

of KDPs, DARwind programme and the AI module. More details will be introduced in the 

following chapters. 
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Chapter 4. Key Disciplinary Parameters 

This chapter aims to demonstrate the concept of KDPs, which come from the highly 

coupled nature of FOWTs. Many theories involved in FOWT dynamic models include 

massive functions and formulas conventionally determined based on assumptions and 

empirical parameter values. However, many assumptions and empirical parameters were 

not initially proposed for FOWTs but inherited from land-based wind turbines, traditional 

floating offshore units, or other engineering applications. For example, the lift or drag 

coefficient of wind turbine blade in aerodynamics can bring potential problems to the 

later numerical simulation of the entire FOWTs system. Many other key environmental 

parameters, such as viscous damping in hydrodynamics, mooring line damping values 

etc., are also challenging to be issued unique values during the analysis. These parameters 

belong to the category of KDPs, which can be shown in Figure 4.1. 

 

Figure 4.1 The Venn diagramme of KDPs. 

These KDPs are very representative of uncertain parameters in the field of FOWTs and 

reflect the complexity of their coupling. The proposal of KDPs is of great importance for 
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a practical application of FOWTs and the SADA method. They are the data transfer 

interface between AI technology and FOWTs design and application. Although they have 

changed under the coupling effect of FOWTs, their boundary conditions can help the 

designer to define their variability to some extent.  

4.1. Environmental KDPs 

In the most current numerical simulation for dynamic analysis of FOWTs, a wide range 

of parameters rely on empirical data and require manual input. These parameters vary 

with different models and locations, such as gravitational acceleration, water density, air 

viscosity, operational water depth, etc.  

Firstly, air density can be taken as an example. With the difference in altitude, temperature 

and air pressure in various regions, the air density is also different. Under different air 

pressure, temperature, and water vapour pressure, the calculation formula of air density 

can be defined as: 

 𝜌𝑎𝑖𝑟 =
1.276

1 + 0.00366𝑡
×
𝑝 − 0.38𝑒

1000
 Eq. 4.1 

Where the 𝑝  is the pressure, the 𝑡  is the temperature, and 𝑒  is the water vapour 

pressure. The height of offshore floating wind turbines is significant. For example, 5MW 

FOWT Hywind has a tower height of 77.6 and a blade length of 63. This means that the 

blades or tower height and wake effect will vary air density and viscosity. It will impact 

the wind load applied on the rotating blades, though these effects have been mostly 

neglected in the current numerical program. The empirical formula for calculating air 

density changes with altitude is (Lu and Zhou, 2018): 

 𝜌𝑎𝑖𝑟 = 1.225𝑒
−0.0001ℎ Eq. 4.2 

Where 𝜌 is the air density corresponding to height ℎ. Therefore, in this example, the 

empirical value of -0.0001 before ℎ  can be considered a KDP. The value of this 
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parameter can be changed within a range in the SADA method to consider the variation 

of the air density. 

Secondly, the wind profile and wind turbulence intensity are other examples. It is well 

known that wind speed can be calculated based on vertical wind profile such as the 

logarithmic profiles or power law (Pelletier et al., 2016): 

 

{
 
 

 
 𝑈(𝑧) =

𝑢∗

𝐾
𝑙𝑛 (

𝑧

𝑧0
)

𝑈(𝑧) = 𝑈(𝑧𝑟𝑒𝑓) (
𝑧

𝑧𝑟𝑒𝑓
)

𝛼 Eq. 4.3 

Where 𝑈 is the horizontal component of the wind velocity, 𝑧 is the height concerning 

the ground level, 𝑢∗ is the friction velocity, 𝐾 is the von Karman constant, 𝑧0 is the 

roughness length, 𝛼 is the exponent for the power law, and the subscript 𝑟𝑒𝑓 is related 

to properties at a reference height. In this case, the friction velocity 𝑢∗ , von Karman 

constant 𝐾 and roughness lengths 𝑧0, etc., can all be considered within the scope of 

environmental KDPs. 

Besides, the turbulence intensity, also often referred to as turbulence level, is defined as 

(Nishi et al., 1993): 

 𝐼 ≡
𝑢′

𝑈
 Eq. 4.4 

Where 𝑢′ is the root-mean-square of the turbulent velocity fluctuations, and 𝑈 is the 

mean velocity (Reynolds averaged). If the turbulent energy, 𝑘 , is known, 𝑢′  can be 

computed as: 

 𝑢′ ≡ √
1

3
(𝑢𝑥′

2 + 𝑢𝑦′
2 + 𝑢𝑧′

2) = √
2

3
𝑘 Eq. 4.5 

𝑈 can be computed from the three mean velocity components 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧 as: 
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 𝑈 ≡ √𝑈𝑥
2 + 𝑈𝑦

2 +𝑈𝑧
2 Eq. 4.6 

In this example, the turbulent energy parameter 𝑘 in the above formula can be selected 

as a KDP, which have a vital influence on the power generation of wind turbines. Different 

changes mean that the wind turbine may need to adjust the pitch angle of the blades to 

maintain a constant power generation. This also means that there will be a chain reaction 

to the dynamic response of the entire FOWTs system, including platform motions, tower 

and blade deformation and fatigue, etc. Therefore, the turbulent energy parameter 𝑘 is 

selected as a KDP in the SADA method. 

Considering the viscous effect of sea level on wind speed, change of the average wind 

speed gradient along the height conforms to the logarithmic rate: 

 �̅�(𝑧) = �̅�(ℎ) (
𝑧

ℎ
)
1
𝑛⁄

 Eq. 4.7 

Where, ℎ is the reference height above sea level is usually 10 m; �̅�(ℎ) is the average 

wind speed at the reference height; 𝑧 is above sea level; �̅�(𝑧) is the average wind speed 

at 𝑧; 𝑛 is the wind profile index, which characterizes the sea level roughness. For the 

open coastal area, the value of 𝑛 is usually 3; for the uncovered sea area, the value is 

usually 7 ~ 8. However, its real value varies and depends on quite a lot of experience in 

simulation, so parameter 𝑛 is chosen as one KDP. 

Thirdly, for wave load calculation, the JONSWAP (Joint North Sea Wave Project) type 

spectrum is popularly used to simulate the irregular waves in FOWT analysis. The 17th 

ITTC recommended the following JONSWAP type spectrum for limited fetch (Faltinsen, 

1993): 

 𝑆(𝜔) = 155
𝐻1

3⁄
2

𝑇1
4𝜔5

𝑒𝑥𝑝 (
−944

𝑇1
4𝜔4

)3.3
𝑒𝑥𝑝[−(

0.191𝜔𝑇1−1

√2𝜎
)
2
]
 Eq. 4.8 
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Where: 

𝜎 = {
0.07 𝑓𝑜𝑟 𝜔 ≤ 5.24 𝑇𝑝

⁄

0.09 𝑓𝑜𝑟 𝜔 > 5.24 𝑇𝑝
⁄

 

𝐻1
3⁄
 is the significant wave height defined as the mean of the one third highest waves 

and 𝑇1 is a mean wave period. In the JONSWAP spectrum. Their value can be adjusted 

in the SADA method during the AI optimization process. Similarly, the peak period, and 

the wave direction can all be selected as KDPs in the SADA method. 

Fourthly, the parameters of current also can be selected as KDPs. The current model in 

numerical analysis can be expressed as below: 

 𝑈𝐶(𝑧) = 𝑈0 (
𝑧 + ℎ

ℎ
)
𝑐

 Eq. 4.9 

Where, 𝑧 is the vertical depth below the water surface; ℎ is the depth of the water to 

the bottom; 𝑈0 is the velocity of the water. Parameter 𝑐 commonly uses empirical value 

1/7, but it varies for different sea states. Thus, 𝑐  can be chosen as one of the 

environmental KDPs.  

In general, the above-mentioned environmental KDPs, especially wind and waves, have 

a significant impact on the dynamic response of the FOWTs system. A slight difference 

may significantly change the entire system’s dynamic response because the FOWT is a 

high nonlinear coupling system, and all the disciplines involved are highly coupled to 

others. This characteristic makes the application of AI technology in the analysis essential.  

4.2. Disciplinary KDPs 

Disciplinary KDPs constitute the largest category of KDPs. Those empirical formulas and 

parameter values in the fundamental theories for calculating loads, motions, and all the 

dynamic responses of FOWTs can be put in the disciplinary KDPs category. Many of the 
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empirical formulas and parameters involved in physical modelling are determined based 

on assumptions or practical fitting works. Some assumptions and empirical parameters 

are not explicitly designed for FOWTs but are inherited from land-based wind turbines 

and offshore oil & gas engineering practices. Therefore, many KDPs can be defined in 

this category. The following will use KDPs in aerodynamics, hydrodynamics, servo 

dynamic and kinematics as examples to introduce the disciplinary KDPs.  

4.2.1. Aerodynamic parameters KDPs 

Aerodynamic load is one of the dominating loads applied on FOWTs. Conventional 

aerodynamics theories include one-dimensional momentum theory (ideal disk) and 2-D 

BEMT for the simulation and experimental design. There are many assumptions and 

empirical parameters popularly used in these theories. For the BEMT model, there are 

some critical assumptions, such as no radial dependency. Many correction models also 

use empirical parameter values, such as Prandtl’s tip loss factor and Glauert correction 

parameters. 

4.2.1.1. Glauert correction 

For aerodynamic calculation, when the axial induction factor becomes more significant 

than approximately 0.4, the simple momentum theory breaks down. Different empirical 

relations between the thrust coefficient 𝐶𝑇 and axial induction factor 𝑎 can be made to 

fit with measurements, for example: 

 𝐶𝑇 = {
4𝑎(1 − 𝑎)𝐹 𝑎 ≤ 𝑎𝑐

4𝑎 (1 −
1

4
(5 − 3𝑎)𝑎)𝐹 𝑎 > 𝑎𝑐

 Eq. 4.10 

𝐹 is Prandtl’s tip loss factor and corrects the assumption of an infinite number of blades. 

The last expression is found in (Hansen, 2015) and 𝑎𝑐 is approximately 0.2. Because 𝑎𝑐 

is an empirical value, it is chosen as one KDP.  
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4.2.1.2. Prandtl’s tip loss factor 

Take Prandtl’s tip loss factor as an example. For a rotor with a finite number of blades, 

the vortex system in the wake is different from a rotor with an infinite number of blades. 

The relevant formula is as follows (Hansen, 2015): 

 

{
 

 𝐹𝑃 =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝑒−𝑓)

𝑓 =
𝑁(𝑅 − 𝑟)

2𝑟𝑠𝑖𝑛𝜑

 Eq. 4.11 

Where, 𝑁  is the number of blades. 𝑅  is the total radius of the rotor, 𝑟  is the local 

radius of the blade element, 𝜑 is the flow angle. In some cases, when 𝑓 is less than 7, 

it can be calculated according to the 𝐹𝑃 parameter. When 𝑓 is greater than 7, the change 

is small so that the tip loss can be neglected. Therefore, the threshold value seven plays 

an essential role in the aerodynamic load calculation. However, this threshold value was 

initially proposed and determined based on onshore wind turbines theories. For FOWTs, 

this threshold value could be different, and therefore it can be defined as a disciplinary 

KDP. 

4.2.1.3. Lift and drag coefficients 

In the BEMT method, reliable lift and drag coefficients are required and are usually 

obtained from model experiments. However, the model experiment can only be conducted 

for a small angle of attack until stall mode. Beyond stall mode, the Viterna method is 

commonly used. The technique predicts the lift and drag coefficients from stall angle to 

90 deg. Beyond that range, the original flat plate theory assumption can also be adopted 

(Mahmuddina, 2016). The Viterna method is formulated to extrapolate the lift and drag 

coefficients using the following equation: 
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 {𝐶𝐿 = 𝐴1𝑠𝑖𝑛2𝛼 + 𝐴2
cos1 𝛼

𝑠𝑖𝑛𝛼
𝐶𝐷 = 𝐵1𝑠𝑖𝑛

2𝛼 + 𝐵2𝑐𝑜𝑠𝛼

 Eq. 4.12 

Where, 

 

{
 
 
 
 

 
 
 
 𝐴1 =

𝑐

2
𝐶𝐷𝑚𝑎𝑥 = 1.11 + 0.018𝐴𝑅

𝐵1 = 𝐶𝐷𝑚𝑎𝑥

𝐴2 = (𝐶𝐿𝑠𝑡𝑎𝑙𝑙 − 𝐶𝐷𝑚𝑎𝑥𝑠𝑖𝑛𝛼𝑠𝑡𝑎𝑙𝑙𝑐𝑜𝑠𝛼𝑠𝑡𝑎𝑙𝑙)
𝑠𝑖𝑛𝛼𝑠𝑡𝑎𝑙𝑙
𝑐𝑜𝑠2𝛼𝑠𝑡𝑎𝑙𝑙

𝐵2 =
𝐶𝐷𝑠𝑡𝑎𝑙𝑙−𝐶𝐷𝑚𝑎𝑥𝑠𝑖𝑛

2𝛼𝑠𝑡𝑎𝑙𝑙
𝑐𝑜𝑠𝛼𝑠𝑡𝑎𝑙𝑙

  

The symbol 𝐴𝑅  stands for aspect ratio, obtained from the BEMT application where 

finite blade length affects the flat plate assumption. The recommended value for 𝐴𝑅 is 

10 for most computations. However, using different values of 𝐴𝑅 will impact the results 

(Mahmuddin et al., 2017). Therefore, 𝐴𝑅  can be considered as the category of 

disciplinary KDPs. 

4.2.1.4. Tower drag coefficient 

Due to the large-scale motion of the platform, its tower structure has more significant 

deformation and vibration than the fixed wind turbine. Therefore, it is necessary to 

perform an aerodynamic load calculation on the tower, especially under severe wind 

conditions. The tower needs to be divided into many differential units in the analysis. The 

aerodynamic load of each discrete tower unit is calculated according to the following 

empirical formula. It is equivalent to the centre of each unit. 

 𝑑𝑭𝑻 =
1

2
𝜌𝐶𝐷

𝑇𝐷(𝑽𝟎
𝒘𝒊𝒏𝒅 − 𝑽𝑻𝑬)|𝑽𝟎

𝒘𝒊𝒏𝒅 − 𝑽𝑻𝑬|𝛿𝐿 Eq. 4.13 

𝐶𝐷
𝑇 is the drag coefficient for cylindrical structures, usually 0.5; 𝐷 is the local tower 

diameter; 𝑽𝟎
𝒘𝒊𝒏𝒅 is the velocity component of the upstream wind speed perpendicular to 

the tower axis; 𝑽𝑻𝑬 is to consider the velocity component of the cross-section of the 
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tower caused by platform motion and tower vibration perpendicular to the tower axis; 𝛿𝐿 

is the length of the differential element. The uncertainty of the drag coefficient is an 

essential component of KDPs. 

4.2.1.5. Yaw correction 

There is a local yaw state when there is a non-orthogonal relationship between the 

incoming wind and the wind turbine disk surface. 

 {
𝑎𝑠𝑘𝑒𝑤 = 𝑎0 [1 +

𝑟

𝑅
𝑡𝑎𝑛

𝜒

2
𝑐𝑜𝑠(𝜃𝑏 − 𝜃0)]

𝜒 = (0.6𝑎0 + 1)𝛾
 Eq. 4.14 

𝑎𝑠𝑘𝑒𝑤 is a modified aerodynamic induction factor; 𝑎0 is an uncorrected aerodynamic 

induction factor; 𝛾 is the angle between the incoming wind direction and the normal of 

the disk surface, the yaw angle; 𝜒 is the angle between the inclination direction of the 

wake and the normal direction of the disc surface; 𝜃𝑏  is the current azimuth of the blade; 

𝜃0  is the azimuth angle when the blade points to the deepest part of the wake. The 

azimuth angle can be determined by the direction of the projected component of the 

incoming wind on the wind turbine disk surface. The accurate yaw angle is one of the key 

parameters that affect the dynamic response of FOWTs, and it can also be considered a 

part of KDPs here. 

4.2.1.6. Dynamic inflow model 

A dynamic inflow model must be applied to consider the time delay with the aerodynamic 

loads. In two EU-sponsored projects (Schepers and Snel, 1995; Snel and Schepers, 1995), 

different engineering models were tested against measurements. One of these models, 

proposed by S. Øye, is a filter for the induced velocities consisting of two first-order 

differential equations (Liu et al., 2019): 
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 {
𝑎𝑖𝑛𝑡 + 𝜏1 ∙

𝑑𝑎𝑖𝑛𝑡
𝑑𝑡

= 𝑎𝑞𝑠 + 𝜅 ∙ 𝜏1 ∙
𝑑𝑎𝑞𝑠
𝑑𝑡

𝑎 + 𝜏2 ∙
𝑑𝑎

𝑑𝑡
= 𝑎𝑖𝑛𝑡

 Eq. 4.15 

𝑎𝑞𝑠 is the quasi-static value. 𝑎𝑖𝑛𝑡 is an intermediate value and 𝑎 the final filtered value 

used as the induced velocity. The two constants are calibrated using a simple vortex 

method as:  

 

{
 

 𝜏1 =
1.1

(1 − 1.3𝑎)
∙
𝑅

𝑣0

𝜏2 = [0.39 − 0.26 × (
𝑟

𝑅
)
2

] ∙ 𝜏1

 Eq. 4.16 

𝑅 is the rotor radius, 𝜅 = 0.6, and 𝑎 is the axial induction factor defined for zero yaw 

as 𝑎  is not allowed to exceed 0.5. Parameter 𝜅  and induction factor 𝑎  can also be 

considered part of KDPs. 

4.2.2. Hydrodynamic parameters KDPs 

Potential flow theory and Morison’s equation are commonly used methods for 

hydrodynamic load calculation in FOWT analysis. Nevertheless, the potential flow 

damping cannot consider the viscous effect of fluids accurately. 

4.2.2.1. Viscous damping correction 

As for FOWTs, when the supporting platform is a Spar type floater, the calculation of 

viscous damping force can use Morrison’s equation: 

 𝑑𝑭𝒎
𝑽 = −

𝜌

2
𝐶𝐷
𝑀𝐷𝑑𝑧 ∙ (𝒗𝒘 − 𝒗𝒔) ∙ |𝒗𝒘 − 𝒗𝒔| Eq. 4.17 

Where, 𝐷 is the diameter of the cylinder; 𝒗𝒘 and 𝒗𝒔 are the velocity component of 

the fluid velocity when the water mass is not disturbed and the cross-sectional slice 

velocity of the underwater component perpendicular to the cross-section axis; 𝐶𝐷
𝑀  is 

drag coefficient; Among these parameters, drag coefficient and added mass coefficient 
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both have empirical values and are quite crucial for the hydrodynamic load calculation. 

The drag coefficient and added mass coefficient can also be selected as disciplinary KDPs. 

4.2.2.2. Added restoring force matrix 

In the static water flow field, the FOWTs will also change the wet surface due to the 

motions of the floating body, which will cause the static water pressure to change and be 

affected by the restoring force of the static water. 

 𝐹𝑆 = [0 0 𝜌𝑔𝑉∇ 0 0 0]𝑇 − 𝑪 ∙ 𝑿 Eq. 4.18 

 𝑪 =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 𝜌𝑔𝐴𝑤 0 0 0

0 0 0 𝜌𝑔(𝐼𝑥 + 𝑧𝐵𝑉∇) 0 0

0 0 0 0 𝜌𝑔(𝐼𝑦 + 𝑧𝐵𝑉∇) 0

0 0 0 0 0 0]
 
 
 
 
 

 Eq. 4.19 

The restoring force also needs to be compared with the experimental results in the 

numerical calculation. The parameters in the added restoring force matrix are very 

significant KDPs. 

4.2.3. Servo dynamics 

4.2.3.1. Low-pass filter 

The generator torque controller uses the generator speed as the signal source. To filter the 

high-frequency components in the signal to avoid causing the frequency response of the 

controller, the following low-pass filter can be used for signal slip: 

 {
𝑦[𝑛] = (1 − 𝛼)𝑢[𝑛] + 𝛼𝑦[𝑛 − 1]

𝛼 = 𝑒−2𝜋𝑇𝑠𝑓𝑐
 Eq. 4.20 

𝑦 is the generator speed signal after passing through the filter; 𝑢 is the original generator 

speed measurement signal without filtering wave; 𝑛 is the current value of the number 

of discrete-time intervals; 𝛼  is the low-pass filter coefficient; 𝑇𝑠  is a discrete-time 
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interval; 𝑓𝑐  is the corresponding angular frequency. Among them, the low-pass filter 

coefficient 𝛼 can be considered as KDPs. 

4.2.3.2. Generator torque constant 

Control operation will induce some unexpected dynamic responses of FOWTs, so some 

control parameters are selected as KDPs. The wind speed is greater than the cut-in wind 

speed but less than the rated wind speed. Different speeds can be further divided into three 

stages, namely, zone 1½ (wind turbine start to work), zone 2 (partial power operation) 

and zone 2½ (rated power operation). The generator torque constant in the wind speed 

operation region is chosen as one of the KDP in the SADA method. When in area 1½, the 

wind turbine starts to use wind energy, and the generator torque is proportional to the 

rotor speed to maintain a better power factor. At this moment, there is a linear relationship: 

 𝑇𝐺𝑒𝑛 = 𝑘1(𝜔 − 𝜔1)𝑁 ∙ 𝑚 Eq. 4.21 

When the wind speeds further increase, the rotation speed also increases accordingly. At 

this moment, region two is entered, and the generator torque is adjusted to a quadratic 

relationship proportional to the rotation speed. 

 𝑇𝐺𝑒𝑛 = 𝑘2𝜔
2𝑁 ∙ 𝑚 Eq. 4.22 

When the wind speed is close to the rated wind speed, the generator speed is also close to 

the rated speed, then enter the area 2½, the generator torque and speed are readjusted to 

a linear relationship, as a transition area between rated and non-rated conditions. 

 𝑇𝐺𝑒𝑛 = 𝑘3(𝜔 − 𝜔𝑠𝑦)𝑁 ∙ 𝑚 Eq. 4.23 

The value of the 𝑘1, 𝑘2, 𝑘3 usually are determined as an empirical value of FOWTs. But 

it varies for a different type. Therefore, 𝑘1, 𝑘2, 𝑘3 can be chosen as KDPs as well. 
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4.2.4. Kinematics and Dynamics 

The mode method (Andreaus et al., 2016) is used in DARwind to approximate the finite 

DOF of the three-dimensional beam deformation 𝑼𝟎, as follows: 

 𝑼𝟎 = 𝝓 ∙ 𝑸 Eq. 4.24 

Among them, the axial and lateral deformation are as follows: 

 

{
 
 
 
 

 
 
 
 𝑙1 =∑𝜙𝑥𝑖𝑞𝑥𝑖 = 𝝓𝒙

𝑻𝒒𝒙 = 𝒒𝒙
𝑻𝝓𝒙

𝑛

𝑖=1

𝑙2 =∑𝜙𝑦𝑖𝑞𝑦𝑖 = 𝝓𝒚
𝑻𝒒𝒚 = 𝒒𝒚

𝑻𝝓𝒚

𝑛

𝑖=1

𝑙3 =∑𝜙𝑧𝑖𝑞𝑧𝑖 = 𝝓𝒛
𝑻𝒒𝒛 = 𝒒𝒛

𝑻𝝓𝒛

𝑛

𝑖=1

 Eq. 4.25 

Where the spatial shape function matrix is: 

𝝓 = [

𝝓𝒙
𝑻 𝟎 𝟎

𝟎 𝝓𝒚
𝑻 𝟎

𝟎 𝟎 𝝓𝒛
𝑻

] ,

𝝓𝒙 = [𝜙𝑥1 𝜙𝑥2 ⋯ 𝜙𝑥𝑛]
𝑇

𝝓𝒚 = [𝜙𝑦1 𝜙𝑦2 ⋯ 𝜙𝑦𝑛]𝑇

𝝓𝒛 = [𝜙𝑧1 𝜙𝑧2 ⋯ 𝜙𝑧𝑛]
𝑇

 Eq. 4.26 

The coefficients of polynomial mode 𝜙𝑥1  value is 0.0622 as an empirical value of 

Hywind. But it varies for a different type of structure and material. Therefore, 𝜙𝑥1 will 

be adopted as one KDP in the kinematics & structural module, the x-axis component of 

spatial shape function. 

4.3. Specific KDPs 

For specific KDPs, some experimental models or design parameters of the full-scale 

FOWTs are different from the actual physical models. In addition, due to commercial 

confidentiality, it is impossible to obtain all the design parameters. In this case, users can 

only take similar physical models to replace them or design according to the original 
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model. For FOWTs, there are many new physical phenomena worth exploring, and if 

these phenomena involve an additional force, moment, and damping, they can also be 

considered in specific KDPs. 

Besides, some experiments used static lines or cables to replace a static thrust from a 

given turbine’ thrust curve or drag discs to reproduce the static wind loading (Roddier et 

al., 2010; Guanche et al., 2011; Wan et al., 2016c). There is also the simplification of the 

mooring lines model: use the quasi-static catenary equation to replace the delta link of 

multi-lines by increasing the yaw stiffness. As for potential flow theory, there are also 

some empirical parameters based on previous experiments. Their values might not be 

accurate for FOWTs calculation, and these empirical parameters involved can be 

classified as specific KDPs. 

4.4. Boundary conditions of KDPs 

To adjust KDPs efficiently in the SADA method, the boundary conditions of the KDPs 

must be adequately defined. This section will discuss the boundary conditions of KDPs. 

Figure 4.2 shows the flowchart of KDP and boundary conditions in SADA.  

 

Figure 4.2 The flowchart of KDP and boundary conditions. 

A good boundary condition can speed up the convergence of SADA and reflect the 

rationality of the dynamic response of FOWTs accurately. Each KDP has a specific value, 

and the magnitude of their values may vary significantly, so the boundary conditions are 
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also set on this basis. Although the amplitude of each KDP is different, the significant 

figures of these KDPs values can also provide a reliable classification and setting method. 

Therefore, based on significant figures of each KDP, the general formula for defining 

their boundary conditions can be defined as: 

 {

𝑋 ∈ [𝑋 − 𝑎 ∙ 10(−𝑋𝑆𝐹), 𝑋 + 𝑎 ∙ 10(−𝑋𝑆𝐹)], 0 ≤ |𝑋| ≤ 1

𝑋 ∈ [𝑋 − 𝑎 ∙ 10(𝑌−𝑋𝑆𝐹), 𝑋 + 𝑎 ∙ 10(𝑌−𝑋𝑆𝐹)], 1 < |𝑋| ≤ 10

𝑋 ∈ [𝑋 − 𝑎 ∙ 10(𝑌−2), 𝑋 + 𝑎 ∙ 10(𝑌−2)], |𝑋| > 10

 Eq. 4.27 

Where, 𝑋 is the value of KDPs; 𝑌 is the number of digits to the left of the decimal point; 

𝑋𝑆𝐹 is the significant figures of the KDPs value; 𝑎 is the boundary condition coefficient, 

which determines the range of the boundary conditions of KDPs. The four specific ranges 

in equation 4.28 are shown in the following formulas: 

 𝐵𝐶 =

{
 

 
𝐹𝑖𝑥 𝑟𝑎𝑛𝑔𝑒 𝑎 = 0

𝑆𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 𝑎 ∈ [−1,1]

𝐿𝑎𝑟𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 𝑎 ∈ [−5,5]

𝑁𝑜 𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 |𝑎| > 5

 Eq. 4.28 

To better understand the definitions of Eq.4.27 and Eq.4.28, take wind speed 𝑉𝑤𝑖𝑛𝑑
𝐴  in 

aerodynamics and viscous damping coefficient 𝐶𝑉𝐷(1,1)
𝐻  and current speed 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐻  in 

hydrodynamics as examples to demonstrate how to use Eq.4.27 and Eq.4.28 to choose 

the corresponding boundary conditions.  

As for the steady wind speed in aerodynamics, if 𝑉𝑤𝑖𝑛𝑑
𝐴 =9.5 m/s, then 𝑌=1, 𝑋𝑆𝐹 = 2, 

So the three boundary conditions are: 

 𝑉𝑤𝑖𝑛𝑑
𝐴 (𝐵𝐶) = {

𝑆𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 ∈ [9.49,9.51] 𝑎 = 0.1

𝐿𝑎𝑟𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∈ [9,10] 𝑎 = 5

𝑁𝑜 𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 ∈ [0,19.5] 𝑎 = 100

 Eq. 4.29 
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In the boundary condition without range limitation, the value of 𝑎 is 15. The original 

boundary condition should be [−0.5,19.5]. The steady wind speed cannot be negative, 

so the default here is [0, 19.5]. 

As for the added viscous damping coefficient in hydrodynamics, if 𝐶𝑉𝐷(1,1)
𝐻 =10000.0, 

then 𝑌=5, So the three boundary conditions are: 

𝐶𝑉𝐷(1,1)
𝐻 (𝐵𝐶) = {

𝑆𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 ∈ [9000,11000] 𝑎 = 1

𝐿𝑎𝑟𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∈ [5000,15000] 𝑎 = 5

𝑁𝑜 𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 ∈ [−1000,21000] 𝑎 = 11

 Eq. 4.30 

Similar to current speed, if 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐻  =0.05 m/s, then 𝑋𝑆𝐹 =3, So the three boundary 

conditions are: 

 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐻 (𝐵𝐶) = {

𝑆𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑔𝑒 ∈ [0.049,0.051] 𝑎 = 1

𝐿𝑎𝑟𝑔𝑒 𝑟𝑎𝑛𝑔𝑒 ∈ [0.045,0.055] 𝑎 = 5

𝑁𝑜 𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 ∈ [0, 0.1] 𝑎 = 50

 Eq. 4.31 

The above discussion and classification of KDPs boundary conditions are only for general 

situations. For some specific KDPs, the actual boundary conditions must be combined to 

make judgments based on their value of them. 

4.5. Summary 

This chapter introduces the concept of KDPs. As the data transmission interface between 

AI technology and DARwind, KDPs play a pivotal role in SADA. The choice of KDPs is 

very challenging. It requires designers to understand the knowledge of the entire FOWTs 

system in various disciplines and requires a lot of verification work to verify its 

quantitative impact on the dynamic performance of FOWTs. In summary, one example 

list of the most KDPs has been provided in Table 4.1. More specific details about the 

study of KDPs will be found in Chapter 9. 
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Table 4.1 Example list of KDPs 

KDPs 

Aero 

Wind speed 

Glauert correction 

Tower drag 

Hydro 

Current speed 

Added linear viscous damping matrix 

Added linear restoring matrix 

Added linear mass matrix 

Mooring 

Wet density 

Axial stiffness 

Kinematics And Structural 

Polynomial Flap 1st vibration modes 

Polynomial Flap 2nd vibration modes 

Polynomial Edge 1st vibration modes 

Servo Generator torque constant 
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Chapter 5. DARwind 

This chapter introduces the methodology of DARwind briefly, and for more specific 

information about DARwind, please refer to the published literature (Chen et al., 2019a). 

The following sections will discuss the methodology of each subdivision module in the 

solver. 

5.1. Aerodynamic module 

A brief introduction to the aerodynamic load calculation methods is described in this 

section. 

5.1.1. BEMT method 

The Blade Element/Momentum theory (BEMT) with aerodynamic corrections is 

currently applied in the code (Hansen, 2015). The blade is discretized into many 

differential units (blade elements), and it is assumed that the blade elements at different 

radial distances are independent of each other. The aerodynamic force does not affect 

each other between the blade elements. The wind turbine blade is divided into several 

micro-segments along its radial direction, and the forces (lift, drag and aerodynamic 

torque) of each blade element are calculated independently. The resultant force of the 

entire blade is obtained by integration. The blade element model and the aerodynamic 

relationship of the blade are shown in Figure 5.1.  

Among them, 𝑣0 is the inflow wind speed of the blade element. 𝑎 is the axial induction 

coefficient, 𝑎′  is the tangential induction coefficient, 𝜔𝑟  is the relative tangential 

velocity caused by the blade rotation, 𝑟 is the radial distance from the hub centre to the 

section centre, and 𝑣𝑟𝑒𝑙 is the final relative wind speed, 𝜃 is the local pitch angle of the 

blade, 𝜑  is the structural twist angle of the blade, 𝜙  is the angle between the final 

relative wind speed and the rotation plane, that is, the inflow angle, and 𝛼 is the local 

inflow angle of attack of the blade element. 
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Figure 5.1 Blade element model (Chen et al., 2019a). 

In BEMT, each element’s axial and tangential induction factors are iteratively calculated 

in turn, and then each aerodynamic physical quantity can be obtained. The specific steps 

are as follows: 

• Step (1) Initialize axial 𝑎 and tangential 𝑎′ inducer, typically 𝑎 = 𝑎′ = 0. 

• Step (2) Compute the flow angle 𝜙. 

• Step (3) Compute the local angle of attack 𝛼. 

• Step (4) Read off lift coefficient 𝐶𝑙(𝛼), drag coefficient 𝐶𝑑(𝛼), and pitching 

moment coefficient 𝐶𝑚(𝛼) from table based on the local angle of attack 𝛼. 

• Step (5) Compute thrust coefficient 𝐶𝑛 and tangential force coefficient 𝐶𝑡. 

• Step (6) Calculate axial inducer 𝑎 and tangential inducer 𝑎′. 

• Step (7) If 𝑎 and 𝑎’ has changed more than a certain tolerance, go to step (2) or 

finish. 

• Step (8) Compute the local loads on the segment of the blades. 

After completing the calculation of each blade element according to the above process, 

the overall thrust and power of the wind turbine can be obtained as follows: 
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{
 
 

 
 𝑇 = ∫ 𝑑𝑇(𝑟) = 4𝜋𝜌𝑣0

2∫ 𝑎(1 − 𝑎)𝑟𝑑𝑟
𝑅

0

𝑅

0

𝑃 = ∫ 𝑑𝑀(𝑟) ∙ 𝜔 = 4𝜋𝜌𝑣0
2𝜔2∫ 𝑎′(1 − 𝑎)𝑟3𝑑𝑟

𝑅

0

𝑅

0

 Eq. 5.1 

In summary, the process of aerodynamic force calculation is shown in Figure 5.2 (Chen 

et al., 2019a). 

   

Figure 5.2 Flow chart of the aerodynamic (Chen et al., 2019a). 
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5.1.2. Aerodynamic correction 

The models in BEMT are based on some idealized assumptions, which are different from 

the aerodynamic loads experienced by FOWTs. For example: when the aerodynamic 

induction coefficient exceeds a specific value, the calculation accuracy of BEMT may be 

reduced; the influence of the existence of the hub is not considered; the time delay of 

actual aerodynamic response needs to be considered. These need to be modified to 

improve the accuracy of the BEMT method in the application of FOWTs.  

Therefore, aerodynamic corrections have been taken to improve the accuracy of the 

BEMT method in the DARwind, which are shown in Table 5.1.  

Table 5.1 Comparison of three different methods 

Corrections Object References 

Prandtl’s tip-loss and hub-

loss corrections 

Consider the vortices shed at these 

locations 
(Hansen, 2015) 

Glauert’s correction 
Take the large induction velocities into 

account 
(Hansen, 2015) 

Skewed wake correction 

Consider the effects of incoming flow 

that is not perpendicular to the rotor 

plane. 

(Spera, 2009) 

Dynamic wake correction 
Consider the aerodynamic time delay 

effect 
(Hansen, 2015) 

 

5.2. Hydrodynamic module 

This section will introduce the hydrodynamic calculation in DARwind. 

5.2.1. Definition of Coordinate System 

The hydrodynamic calculation uses two cartesian coordinate systems, shown in Figure 

5.3: the global inertial frame 𝑒𝑔: 𝑂0 − 𝑥0𝑦0𝑧0 and the body-fixed frame of the platform 

𝑒𝑝 : 𝑂1 − 𝑥1𝑦1𝑧1 . The 6 degrees of freedom (DOFs) of the FOWTs’ platform can be 

defined as three translational DOFs (surge (𝑥0), sway (𝑦0), and heave (𝑧0)) and three 

rotational DOFs (roll (𝑥1), pitch (𝑦1) and yaw (𝑧1)). 
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Figure 5.3 Coordinate systems defined in the hydrodynamic module. 

5.2.2. Hydrodynamic loads calculation 

The calculation involving hydrodynamic loads (𝑭𝑯) in DARwind includes the following 

five parts: 

 𝑭𝑯 = 𝑭
𝒘 + 𝑭𝒔

𝒘 + 𝑭𝑹 + 𝑭𝑽 + 𝑭𝒔 Eq. 5.2 

Where, 𝑭𝒘 is the excitation load; 𝑭𝒔
𝒘 is the second-order wave forces; 𝑭𝑹 is the linear 

wave radiation force; 𝑭𝑽  is the hydrodynamic damping; 𝑭𝒔  is the buoyancy and 

hydrostatic restoring forces. The current models involved in DARwind include sub-

surface, near-surface, and depth-independent (Jonkman et al., 2014). In summary, the 

hydrodynamic calculation of DARwind is shown in Figure 5.4.  

First, through the three-dimensional frequency domain potential flow software WAMIT, 

the hydrodynamic force of the FOWTs’ platform is pre-calculated. In addition, significant 

hydrodynamic parameter files are generated, such as the platform’s static water restoring 

force coefficient, the first-order wave excitation force transfer function, first-order wave 

excitation force transfer function, wave radiation force parameters etc. In the early stage 
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of operation, the program establishes an environment based on the read-in hydrodynamic 

data files and related environmental information parameters. Subsequently, the program 

sets a time-domain wave field based on the Airy linear wave model and related wave 

parameters and establishes a current time history model. Finally, the program calculates 

the first-order wave force, second-order wave force, wave radiation force, hydrostatic 

restoring force, and the viscous damping force modified by the Morrison method (or 

steady viscosity coefficient matrix). 

 

Figure 5.4 Procedure of hydrodynamic module. 
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5.3. Mooring dynamic module 

This section will introduce the mooring system in DARwind. More details can be found 

in the literature (Chen et al., 2019a). 

5.3.1. Quasi-static model 

The gravity catenary mooring system is more commonly used in FOWTs. Since the 

mooring line is much denser than water and moves slowly, a quasi-static catenary 

mooring model can be used in numerical calculations (Masciola et al., 2013) to calculate 

the restraint loads platform from the mooring system. A local coordinate system is 

established for a single catenary mooring model in DARwind with anchor point, mooring 

line, fairlead, as shown in Figure 5.5. 

 

Figure 5.5 Catenary mooring line (Chen et al., 2019a). 

Among them, the anchor points are subjected to horizontal tension 𝐻𝐴  and vertical 

tension 𝑉𝐴. The length of the bottom section (the part of the anchor chain in contact with 

the seabed) is 𝑙𝑏. The tension at any point of the mooring line is 𝑇(𝑠). The horizontal 

tension is 𝐻 and the vertical tension is 𝑉. The horizontal distance from the anchor point 

is 𝑥(𝑠). The length of the mooring line from the bottom point for 𝑙𝑠. The tension of the 
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fairlead is 𝑇𝐹 and the horizontal force is 𝐻𝐹 . The vertical distance from the fairlead to 

the seabed is 𝑧𝐹, and the overall horizontal projection length of the anchor chain is 𝑥𝐹. 

The total length of the mooring line is 𝐿, the wet density is 𝑤, the cross-sectional area 

of the mooring line is 𝐴, and the axial stiffness is 𝐸𝐴. 

When there is a mooring line in contact with the seabed (lying on the bottom), i.e., 𝑙𝑏 ≠

0 in Figure 5.5, the mooring line is not tensioned at the anchor point. The vertical tension 

at the anchor point is zero. According to the horizontal (𝑥𝐹) and vertical (𝑧𝐹) distances 

between the fairlead and the anchoring point, the horizontal and vertical tension of the 

anchor chain at the fairlead of the platform is related as follows: 

 

{
 
 

 
 
𝑓1 = 𝐿 −

𝑉𝐹
𝑤
+
𝐻

𝑤
∙ ln

𝑉𝐹 +√𝑉𝐹
2 + 𝐻2

𝐻
+
𝐻 ∙ 𝐿

𝐸𝐴
− 𝑥𝐹 = 0

𝑓2 =
1

𝑤
(√𝑉𝐹

2 +𝐻2 − 𝐻) +
𝑤𝑙𝑠

2

𝐸𝐴
− 𝑧𝐹 = 0

 Eq. 5.3 

When the mooring line is not in contact with the seabed (not lying on the bottom), i.e., 

𝑙𝑏 = 0 in Figure 5.5, the anchor chain at the anchor point is in a tensioned state. So, the 

relationship is as follows: 

 𝑉𝐴 = 𝑉𝐹 −𝑤𝑙 Eq. 5.4 

Therefore, the horizontal tension and vertical tension at the fairlead have the following 

relationship: 

{
 
 

 
 𝑓1 =

𝐻

𝑤
∙ ln

𝑉𝐹 +√𝑉𝐹
2 + 𝐻2

𝑉𝐹 − 𝑤𝐿 +√(𝑉𝐹 −𝑤𝑙)2 + 𝐻2
+
𝐻𝐿

𝐸𝐴
− 𝑥𝐹 = 0

𝑓2 =
1

𝑤
(√𝑉𝐹

2 +𝐻2 − √(𝑉𝐹 −𝑤𝑙)2 +𝐻2) +
1

𝐸𝐴
(𝑉𝐹 −

𝑤𝐿

2
) ∙ 𝐿 − 𝑧𝐹 = 0

 Eq. 5.5 
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5.3.2. Mooring force calculation in DARwind 

The calculation process of the mooring system module of the program is shown in Figure 

5.6. The program first reads in the attribute parameters of the mooring lines and calculates 

the spatial position information of each fairlead according to the motions of the platform. 

Then, according to the quasi-static calculation method, the dynamic equation of each 

anchor chain is constructed to calculate the tension of mooring lines. The nonlinear 

equations are solved by Newton’s iteration method. The solved tension of each fairlead 

must be uniformly transformed into the platform coordinate system for load superposition 

to obtain the total force and moment of the mooring system. 

 

Figure 5.6 Procedure of the mooring dynamic. 

5.4. Kinematics and dynamic calculation and control system 

This section will introduce the fundamentals of Kinematics and dynamic calculation 

(Chen et al., 2019a) and control system (Chen et al., 2019a) in DARwind.  
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FOWTs are complex multi-body system models, which will be simplified in DARwind. 

Some components with little or no deformation that do not affect the overall kinematics 

can often be reduced to rigid bodies. The structural deformation of parts such as the hub, 

nacelle, and platform of FOWTs is relatively small to be simplified as a rigid body. Other 

slender structures such as wind turbine blades, towers, and mooring lines can be simulated 

as flexible bodies to maintain accuracy. In summary, the procedure of the kinetics module 

introduced in Figure 5.7.  

 

Figure 5.7 Procedure of the kinetics module. 

The control system involved in DARwind consists of a generator torque controller and a 

unified pitch controller. When the wind turbine is in normal operation and is below the 

rated operating condition, the generator torque controller is mainly used to maintain the 

optimal tip speed ratio of the wind turbine and maximize the wind energy capture 

efficiency. Above the rated operating condition, the pitch angle controller is mainly used, 

and the goal is to constrain and stabilize the generator speed and power to avoid overload 
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and excess. The calculation process of the entire servo controller module is shown in 

Figure 5.8.  

 

Figure 5.8 Procedure of the servo module. 

5.5. Summary 

The combination of the AI technology in the SADA method is based on a reliable 

numerical calculation software. Therefore, the purpose of this chapter is mainly to 

introduce the basic principles of the DARwind program. More details about the AI-based 

DARwind algorithm will be found in Chapter 6. 
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Chapter 6. AI technology in SADA 

This chapter introduces the AI technology used in SADA, Artificial Neural Networks 

(ANN) and Reinforcement Learning (RL).  

AI technology has benefited so much from the rapid development of computing power 

and data volume that it can already outperform humans on many tasks (Dong et al., 2020). 

As one of the most important key technologies of AI, Machine Learning (ML) has also 

been called a topic in recent years, mainly divided into supervised learning, unsupervised 

learning, and reinforcement learning. For the development and application of artificial 

neural networks (ANN), please refer to the work of Walczak (2019). Furthermore, Deep 

reinforcement learning (DRL) combines the content of Deep Learning (DL) based on the 

original RL algorithm. In SADA, the prediction based on ANN was tried as the first step, 

followed by the application of DRL. Therefore, in the following sections, the content of 

ANN and DRL will be introduced.  

6.1. ANN 

This section mainly introduces ANN from the Perceptron model and the Backpropagation 

(BP) algorithm. The perceptron model is the most basic ANN concept, and the BP model 

is its specific application combined with error backpropagation. 

ANN is a modern information processing model intended to simulate the structure and 

function of brain neurons and neural networks. The essence of ANN is to connect many 

processing units according to a particular mathematical algorithm or model. The historical 

development of ANN is roughly divided into five stages (Wen and Ru, 2019): 

⚫ Stage 1: embryonic period (the 1940s-1960s) 

It mainly discusses how to build a model that can simulate neurons and nervous 

systems. 
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⚫ Stage 2: trough period (the 1960s-1970s) 

ANNs were questioned by the rise of integrated circuits and computers because 

ANN could not train complex networks. 

⚫ Stage 3: development period (the 1970s-1980s) 

With the emergence of high-performance computers, the bottleneck of ANN 

research has been gradually broken. 

⚫ Stage 4: agglomeration period (the 1980s-2000s) 

Research on ANN is rapidly advancing, and the theory is constantly being 

promoted.  

⚫ Stage 5: the explosion period (the 2000s-) 

The concept of deep learning is proposed by learning the deep nonlinear network 

structure, characterizing the input data, and realizing complex function 

approximation. 

The characteristics of ANN mainly include nonlinearity, parallel processing, fault 

tolerance and associative ability, self-learning, self-organizing and adaptive ability. ANN 

can handle nonlinear problems well. There will be a complex nonlinear relationship 

between input and output in practical problem processing. By designing ANN, these 

complex nonlinear functions can be fitted and approximated to solve problems where the 

environmental information is very different, and the knowledge background and 

reasoning rules are unclear. The structure of ANN uses many processing units to be 

combined in parallel, and the order of processing is also parallel. Therefore, its 

information storage method is distributed to all connection weights. Each neuron stores 

not only one external information but parts of multiple types of information. If some 

neurons are damaged, it will not impact the whole system. The distributed storage 

algorithm integrates operation and storage. When the data is incomplete, it can be restored 
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through associative memory. Therefore, ANN also has extreme fault tolerance and self-

learning ability. That is, appropriate weights and structures can be obtained in continuous 

training. Adaptive allows ANN to use different application environments by changing its 

structure and conditions. 

6.1.1. Perceptron model 

This subsection briefly introduces a single-layer and multi-layer neural network named 

the Perceptron model, the first ANN that can be fully described algorithmically. As Figure 

6.1 shows, the neuron model consists of a linear accumulator (Σ) and transfer function 

unit (𝑓). The input signal is weighted by the synapse, summed together with the bias by 

an accumulator, and then passed through the transfer function unit to obtain the output. 

Where 𝑥 is the input signal, 𝑤 is the weight, Σ is the accumulated symbol, 𝑏 is the 

bias, 𝑛 is the response value, 𝑓 is the transfer function, and 𝑦 is the output. 

 

Figure 6.1 Structure diagram of Perceptron. 

The accumulator can sum the signal and bias to get the response value. The output of the 

Perceptron with transfer function can be expressed as: 

 {
𝑛 = 𝑤𝑥 + 𝑏
𝑦 = 𝑓(𝑛) = 𝑓(𝑤𝑥 + 𝑏)

 Eq. 6.1 

Where 𝑤𝑥  represents the inner product, when the output is different from the target 

feature, the weights and biases can be adjusted. 
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6.1.1.1. Single-layer Perceptron 

Figure 6.2 is a specific single-layer Perceptron structure, and its simplified symbol, 

including the directly connected input and output layers.  

 

Figure 6.2 Structure and symbol diagram of single-layer Perceptron. 

The input layer accepts external signals, and each input node receives an input signal. The 

output layer processes information. Among them, 𝑆 represents the number of neurons of 

the Perceptron model, 𝑅 represents the input element, 𝑤𝑖,𝑗 is the corresponding weight. 

According to Figure 6.2, the output of the i-th accumulator and output layer are: 

 

{
  
 

  
 𝑛𝑖 =∑𝑤𝑖,𝑗𝑥𝑗 + 𝑏

𝑅

𝑗=1

 (𝑖 = 1,2,⋯ , 𝑆; 𝑗 = 1,2,⋯ , 𝑅)

𝑦𝑖 = 𝑓(𝑛𝑖) = 𝑓 (∑𝑤𝑖,𝑗𝑥𝑗 + 𝑏

𝑅

𝑗=1

)

 Eq. 6.2 

The weight matrix 𝑾 is: 

 𝑾 = [

𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝑅
𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝑅
⋮ ⋮ ⋱ ⋮
𝑤𝑆,1 𝑤𝑆,2 ⋯ 𝑤𝑆,𝑅

] Eq. 6.3 

The i-th row vector in the weight matrix 𝑾 is defined as: 
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 𝒘𝟏 = [𝑤1,1 𝑤1,2 ⋯ 𝑤𝑖,𝑅]𝑇 Eq. 6.4 

Then the weight matrix 𝑾 can be expressed as: 

 𝑾 = [𝒘𝟏
𝑻 𝒘𝟐

𝑻 ⋯ 𝒘𝑺
𝑻]𝑇 Eq. 6.5 

Since 𝒘𝑖 represents the i-th row vector, 𝒘𝑻 contains 𝑤1,1, the output of the i-th output 

neuron according to a specific transfer function in the Perceptron is: 

 𝑦𝑖 = 𝑓(𝑛𝑖) = 𝑓(𝒘𝒊
𝑻𝒙 + 𝑏) Eq. 6.6 

6.1.1.2. Multi-layer Perceptron 

The multi-layer Perceptron model adds a hidden layer to the single-layer structure, which 

is a full connection of the two networks. Each neuron in the multi-layer Perceptron 

contains a differentiable nonlinear transfer function. Furthermore, there are more hidden 

neurons between the network’s input and an output layer. These hidden neurons 

continuously extract proper feature values from the input and allow the network to 

complete more complex tasks. By changing the weights and the number of nodes, the 

network can have more robust continuity. Figure 6.3 shows the structure of a multi-layer 

Perceptron.  

 

Figure 6.3 Structure diagram of multi-layer Perceptron. 
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6.1.2. Back propagation Neural Network 

This subsection aims to introduce the Back propagation Neural Network model (BP 

model) A single perceptron cannot handle the XOR loop, and the BP model is proposed 

to solve this problem effectively. McClelland et al. (1987) described an algorithm based 

on directional propagation and gave a complete mathematical extension with strong 

computing power.  

The BP model consists of forwarding information propagation and backpropagation of 

errors. The input layer receives data and passes it to the hidden layer responsible for data 

processing. In practice, the hidden layer can be one or more layers. The last hidden layer 

transmits information to the output layer, which is the forward propagation process of the 

BP model. When the error between the actual output and the target output exceeds 

expectations, it is necessary to conduct the process of backpropagation of the error. First, 

the weights of each layer are modified according to the gradient descent method from the 

output layer and then propagated to the hidden layer and the input layer. Through 

continuous forward propagation of information and backpropagation of errors, the 

weights of each layer will be continuously adjusted. The training ends when the output 

error is reduced to the excepted level or the iterations finish. 

6.1.2.1. Structure of BP model 

A typical structure diagram of the BP model is shown in Figure 6.4, which consists of an 

input layer, hidden layers, and an output layer: 

⚫ Input: External information is passed to the next layer. 

⚫ Hidden: Information process and transform. 

⚫ Output: output information feature determined by a transfer function. 
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The 𝑀 layer in Figure 6.4 is set to be greater than or equal to 2. Except for the input 

layer, each layer has a weight matrix 𝑾, a bias vector 𝒃, a net input vector 𝒏 and an 

output vector 𝒚. In addition, the first layer in the 𝑀 layer network has 𝑅 input and 𝑆1 

neuron nodes and the second layer has 𝑆1 inputs and 𝑆2 neuron nodes. The 𝑀-th layer 

has 𝑆𝑀−1  inputs and 𝑆𝑀  neuron nodes. Each input connection to the next layer of 

neuron nodes has different weights. 

 

Figure 6.4 Structure diagram of BP model. 

6.1.2.2. The BP algorithm 

Figure 6.5 shows simplified symbol diagram of BP model.  

From forward propagation, the sum of input nets is: 

𝑛𝑖
𝑚 = ∑ 𝑤𝑖,𝑗

𝑚

𝑆𝑚−1

𝑗=1

𝑦𝑗
𝑚−1 + 𝑏𝑖

𝑚 ,𝑚 = 1,2,⋯ ,𝑀 (𝑀 > 2) Eq. 6.7 

Where, 𝑛𝑖
𝑚 represents the input sum of the weights and biases, and 𝑀 represents the 

number of layers. So, the output of the m-th layer is: 
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 𝒚𝑚 = 𝒇𝑚(𝒏𝑚) Eq. 6.8 

Where, 𝒇𝑚 represents the transfer function of this layer.  

 

Figure 6.5 Simplified symbol diagram of BP model. 

When 𝑚 = 1, 𝒚1 represents the output information of the first layer neuron node, so 

𝒚1 can be expressed as:  

 𝒚1 = 𝒇1(𝑾1𝒙 + 𝑏1) Eq. 6.9 

At this point, the output of the BP network is the output of the last layer: 

 𝒚 = 𝒚𝑀 Eq. 6.10 

Backpropagation needs to consider loss function, weight correction, update method, and 

sensitivity. The loss function used by the BP algorithm is the mean square error function. 

The samples are taken as the input ( 𝑥𝑅 ) and the target output: ( 𝑡𝑅  ): 

{𝑥1, 𝑡1}, {𝑥2, 𝑡2},⋯ , {𝑥𝑅, 𝑡𝑅} . For each input sample, the output of the network is 

compared to the target output to minimize the mean squared error: 

 𝐹(𝒛) = 𝐸[𝑒2] = 𝐸[(𝑡 − 𝑦)2] Eq. 6.11 

Where, 𝐸[ ] represents the expected value, and 𝒛 is the vector of weights and biases, 

expressed as 𝒛 = [𝑤 𝑏]𝑇. If BP has multiple outputs, Eq. 6.11 can be expressed as: 
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 𝐿(𝒛) = 𝐸[𝒆𝑇𝒆] = 𝐸[(𝒕 − 𝒚)𝑇(𝒕 − 𝒚)] Eq. 6.12 

If �̂�(𝒛) is used to approximate the mean squared error, Eq. 6.12 can be expressed as 

 �̂�(𝑧) = (𝒕(𝑘) − 𝒚(𝑘))
𝑇
(𝒕(𝑘) − 𝒚(𝑘)) = 𝒆𝑇(𝑘)𝒆(𝑘) Eq. 6.13 

Where, 𝑘 means 𝑘-th iteration. The gradient descent method with Eq. 6.13 can be used 

to correct the weights: 

 

{
 
 

 
 𝑤𝑖,𝑗

𝑚(𝑘 + 1) = 𝑤𝑖,𝑗
𝑚(𝑘) − 𝜂

𝜕�̂�

𝜕𝑤𝑖,𝑗
𝑚

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝜂
𝜕�̂�

𝜕𝑏𝑖
𝑚

 Eq. 6.14 

where 𝜂 represents the learning rate. The partial derivatives are solved using the chain 

rule: 

 

{
 
 

 
 
𝜕�̂�

𝜕𝑤𝑖,𝑗
𝑚 =

𝜕�̂�

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚

𝜕�̂�

𝜕𝑏𝑖
𝑚 =

𝜕�̂�

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚

 Eq. 6.15 

From Eq. 6.7: 

 
𝜕𝑛𝑖

𝑚

𝜕𝑤𝑖,𝑗
𝑚 = 𝑦

𝑚−1,
𝜕𝑛𝑖

𝑚

𝜕𝑏𝑖
𝑚 = 1 Eq. 6.16 

If 𝑠𝑖
𝑚 =

𝜕�̂�

𝜕𝑛𝑖
𝑚 is used to denote sensitivity: 

 

{
 
 

 
 
𝜕�̂�

𝜕𝑤𝑖,𝑗
𝑚 = 𝑠𝑖

𝑚𝑦𝑚−1

𝜕�̂�

𝜕𝑏𝑖
𝑚 = 𝑠𝑖

𝑚

 Eq. 6.17 
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The recurrence relation for sensitivity requires the use of the Jacobian: 

 
𝜕𝒏𝑚

𝜕𝒏𝑚−1
=

[
 
 
 
 
 
 
 
𝜕𝑛1

𝑚

𝜕𝑛1
𝑚−1

𝜕𝑛1
𝑚

𝜕𝑛2
𝑚−1 ⋯

𝜕𝑛1
𝑚

𝜕𝑛𝑠𝑚−1
𝑚−1

𝜕𝑛2
𝑚

𝜕𝑛1
𝑚−1

𝜕𝑛2
𝑚

𝜕𝑛2
𝑚−1 ⋯

𝜕𝑛2
𝑚

𝜕𝑛𝑠𝑚−1
𝑚−1

⋮ ⋮ ⋱ ⋮
𝜕𝑛𝑠𝑚

𝑚

𝜕𝑛1
𝑚−1

𝜕𝑛𝑠𝑚
𝑚

𝜕𝑛2
𝑚−1 ⋯

𝜕𝑛𝑠𝑚
𝑚

𝜕𝑛𝑠𝑚−1
𝑚−1 ]

 
 
 
 
 
 
 

 Eq. 6.18 

Computing the expression in Eq. 6.18 must considers the i, j elements: 

{
 
 

 
 𝜕𝑛𝑗

𝑚

𝜕𝑛𝑗
𝑚−1 =

𝜕(∑ 𝑤𝑖,𝑗
𝑚𝑦𝑖

𝑚−1 + 𝑏𝑖
𝑚𝑠𝑚−1

𝑖=1 )

𝜕𝑛𝑗
𝑚−1 = 𝑤𝑖,𝑗

𝑚(𝑓𝑚−1)′𝑓(𝑛𝑗
𝑚−1)

(𝑓𝑚−1)′𝑓(𝑛𝑗
𝑚−1) =

𝜕𝑓𝑚−1(𝑛𝑗
𝑚−1)

𝜕𝑛𝑗
𝑚−1

 Eq. 6.19 

So, the Jacobian matrix is abbreviated as: 

 
𝜕𝒏𝑚

𝜕𝒏𝑚−1
= 𝑾𝑚(𝑳𝑚−1)′𝒏𝑚−1 Eq. 6.20 

(𝑳𝑚−1)′𝒏𝑚−1 =

[
 
 
 
(𝑓𝑚−1)′(𝑛1

𝑚−1) 0 ⋯ 0

0 (𝑓𝑚−1)′(𝑛2
𝑚−1) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ (𝑓𝑚−1)′(𝑛𝑆𝑚−1

𝑚−1 )]
 
 
 

  Eq. 6.21 

Therefore, the recurrence relation of the sensitivity matrix can be obtained as: 

 
𝒔𝑚−1 =

𝜕�̂�

𝜕𝒏𝑚−1
= (

𝜕𝒏𝑚

𝜕𝒏𝑚−1
)
𝑇 𝜕�̂�

𝜕𝒏𝑚
= (𝑳𝑚−1)′(𝒏𝑚−1)(𝑾𝑚)𝑇𝑠𝑚

  

Eq. 6.22 

 
𝒔𝑚 =

𝜕�̂�

𝜕𝒏𝑚
= [

𝜕�̂�

𝜕𝑛1
𝑚

𝜕�̂�

𝜕𝑛2
𝑚 ⋯

𝜕�̂�

𝜕𝑛𝑠
𝑚
]

𝑇

 
Eq. 6.23 
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Then, the sensitivity can be backpropagated from the last layer through the network to 

the first layer: 𝒔𝑚 → 𝒔𝑚−1 → ⋯ → 𝒔2 → 𝒔1. In addition, Eq. 6.22 shows that for the BP 

algorithm to perform backpropagation, it must first calculate the value of the 𝑆𝑀: 

 𝑠𝑖
𝑀 =

𝜕�̂�

𝜕𝑛𝑖
𝑀 =

𝜕(𝒕 − 𝒚)𝑇(𝒕 − 𝒚)

𝜕𝑛𝑖
𝑚 = −2(𝑡𝑖 − 𝑦𝑖)

𝜕𝑦𝑖
𝜕𝑛𝑖

𝑀 Eq. 6.24 

Because: 

 
𝜕𝑦𝑖
𝜕𝑛𝑖

𝑀 =
𝜕𝑦𝑖

𝑀

𝜕𝑛𝑖
𝑀 =

𝜕𝑓𝑀(𝑛𝑖
𝑀)

𝜕𝑛𝑖
𝑀 = (𝑓𝑀)′(𝑛𝑖

𝑀) Eq. 6.25 

The Eq. 6.24 can be rewritten and the matrix form are: 

 {
𝑠𝑖
𝑀 = −2(𝑡𝑖 − 𝑦𝑖)(𝑓

𝑀)′(𝑛𝑖
𝑀)

𝒔𝑀 = −2(𝑳𝑀)′(𝒏𝑀)(𝒕 − 𝒚)
 Eq. 6.26 

The weights and biases are updated as: 

 {
𝑤𝑖,𝑗
𝑚(𝑘 + 1) = 𝑤𝑖,𝑗

𝑚(𝑘) − 𝜂𝑠𝑖
𝑚𝑦𝑗

𝑚−1

𝑏𝑖
𝑚(𝑘 + 1) = 𝑏𝑖

𝑚(𝑘) − 𝜂𝑠𝑖
𝑚  Eq. 6.27 

If expressed in matrix form, it is: 

 {
𝑾𝑚(𝑘 + 1) = 𝑾𝑚(𝑘) − 𝜂𝒔𝑚(𝒚𝑚−1)𝑇

𝒃𝑚(𝑘 + 1) = 𝒃𝑚(𝑘) − 𝜂𝒔𝑚
 Eq. 6.28 

6.2. Reinforcement Learning 

This section will introduce the RL. For a thorough introduction referred to standard 

textbooks (Sutton and Barto, 2018).  

RL originates from the two directions of “trial-and-error” (animal psychology) and 

optimal control. Trial and error learning (TE learning) focuses on selecting actions that 

lead to better outcomes in subsequent decision-making processes. The first scholar who 

proposed this idea, Thorndike, named it “Law of Effect” in 1927 (Hovanky, 2017). It 
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contains two essential concepts: choice and association. More precisely, the former refers 

to choosing one of the many optional actions in each state. The latter refers to 

remembering the most effective action in a specific situation.  

The second main direction of RL mainly explores designing a control system to measure 

the action of a dynamic system. Richard Bellman proposed the “state” and “value function” 

to construct the Bellman equation and used the dynamic programming algorithm to solve 

the optimal control problem of the dynamic system (Wei et al., 2018). Markov decision 

process (MDP) is the discrete random version proposed by Bellman (Guo and Hernández-

Lerma, 2009). Howard (2002) proposed a policy iteration method to solve the MDP 

problem. In addition, Temporal Difference Learning (TD learning) is also a unique and 

novel method in later RL development. These concepts are all essential in today’s RL 

algorithms. In conclusion, unlike supervised learning, RL does not require labelled 

datasets, which emphasizes information collection through the system’s interaction with 

the environment. 

6.2.1. Basic concepts of RL 

This section will introduce some basic concepts of RL and their integration with FOWTs 

in SADA. In general, RL’s mathematical basis and modelling tool is the Markov decision 

process, which includes state space, action space, state transition function, reward 

function, etc. It will therefore be discussed in detail in these sections. 

6.2.1.1. Environment and Agent 

The main body of RL is called an agent, which often makes decisions or actions. For 

example, vehicles are agents in the application of automatic driving. Correspondingly in 

SADA, DARwind will adjust the KDPs and conduct dynamic response analysis of FOWTs, 

so DARwind is an agent. The environment is what the agent interacts with, which can be 

abstractly understood as the rules or mechanisms in the interaction process. In automatic 
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driving applications, the actual physical world is the environment. In the same way, it is 

the actual environment of FOWTs. 

6.2.1.2. State space and transition 

The state is not unique, and it can be the feedback of the environment or the feedback of 

the agent. In the example of autonomous driving, the analysis of road conditions and the 

state of the car (vehicle speed, fuel consumption, etc.) can be considered states. In the 

SADA method, the dynamic responses of FOWTs can be considered as states. The 

observation of the environment can be real-time or partial. For example, vehicle speed 

and changes in road conditions need to be observed in real-time. States in strategy games 

like Red Alert and StarCraft are partially observed because the current refresh frame rate 

is not enough for the player to decide. In SADA, the observation of states depends on the 

designer’s needs, which are: 

⚫ Real-time observation: consider the dynamic response of FOWTs in real-time. 

⚫ Partial observations: consider the dynamic response of FOWTs over the mean time. 

The state-space refers to the set 𝒮  of all existing states, which can be discrete or 

continuous, a finite set or an infinitely countable set. In the automatic driving example, 

the state-space is infinite. In SADA, the states of FOWTs also belong to an infinite set. 

The agent is transitioning from the state 𝑠 at the current time 𝑡 to the next state 𝑠′. 

From one iteration to the next iteration is considered a state transition in SADA. In RL, 

state transitions are described by state transition probability functions, often assumed to 

be random, depending on the environment. In the current state 𝑠, the probability of the 

next state 𝑠′ obtained by action 𝑎. Referred to as: 

 𝑝(𝑠′|𝑠, 𝑎) = ℙ(𝑆′ = 𝑠′|𝑆 = 𝑠, 𝐴 = 𝑎)  
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6.2.1.3. Action space 

Actions are decisions made by the agent based on the current state. The selection of 

actions can be deterministic or random. Random refers to the selection of actions with a 

certain probability. Action space is the set of all possible actions, denoted 𝒜. It can be 

discrete, continuous, finite, or infinite sets. There are many actions to control the car in 

autonomous driving, including braking, accelerator, steering wheel, indicator lights, etc. 

These actions include discrete actions (playing the indicator light) and continuous actions 

(playing the steering wheel). In SADA, the actions are adjustments to KDPs. Since the 

values of KDPs belong to a continuous distribution, the action space in SADA belongs to 

a continuous infinite set. 

6.2.1.4. Reward 

After the agent acts, the environment gives the agent feedback (reward: 𝑟). The designer 

can define this feedback, and the definition of reward will dramatically affect the result 

of RL. The reward function is denoted as: 

 𝑟(𝑠, 𝑎, 𝑠′)  

Where 𝑠 is the current state, 𝑎 is the current action, and 𝑠′ is the next state.  

Assume that the reward function is bounded that is, for all 𝑎  and 𝑠′ , there is 

𝑟 (𝑠, 𝑎, 𝑠′) < ∞. For example, the percentage difference of surge is considered a criterion 

for judging good or bad action in SADA. Depending on the value of the percentage 

difference, corresponding rewards are given. 

6.2.1.5. Policy 

The essence of the policy is to decide the action based on the state. The stochastic policy 

function 𝜋 can be expressed as: 
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 𝜋(𝑎|𝑠) = ℙ(𝐴 = 𝑎|𝑆 = 𝑠)  

The input of the policy function is the state 𝑠  and the action 𝑎 . The output is a 

probability value of 0-1. However, the determining policy has no randomness. The 

deterministic policy can be thought of as a particular case of a stochastic policy. 

6.2.1.6. Return and discounted return 

The return is the sum of all rewards in one episode. An episode is one complete play of 

the agent interacting with the environment in the general RL setting. The return is also 

called cumulative future reward. The agent’s goal is to find a policy to take action that 

maximizes the expected return (the optimal policy). The goal of maximizing here refers 

not to the current reward but the cumulative reward. Let the return at time 𝑡  be the 

random variable 𝑈𝑡. If the program ends, take the reward 𝑢𝑡 as all rewards that have 

been observed: 

 𝑈𝑡 = 𝑅𝑡 + 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 +⋯+ 𝑅𝑛  

Discount factor 𝛾 is usually given on a discounted return: 

𝑈𝑡 = 𝑅𝑡 + 𝛾 ∙ 𝑅𝑡+1 + 𝛾
2 ∙ 𝑅𝑡+2 + 𝛾

3 ∙ 𝑅𝑡+3 +⋯+ 𝛾
𝑛 ∙ 𝑅𝑡+𝑛 

= 𝑅𝑡 +∑𝛾𝑖 ∙ 𝑅𝑡+𝑖

𝑛

𝑖=1

 
Eq. 6.29 

Where, 𝛾 ∈ [0,1]. 

6.2.1.7. Agent environment interaction 

The agent observes the state 𝑠 and takes action 𝑎, the action changes the state of the 

environment, and the environment feeds back to the agent a reward 𝑟 and a new state 

𝑠′. Figure 6.6 shows a schematic diagram of the agent-environment interaction. 
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Figure 6.6 Agent-environment interaction. 

The environment has a set of rules that describe itself, called the dynamics of the 

environment, which determine the agent’s information. When all the information is open 

to the agent, the environment is fully observable. When the environment only exposes 

part of the information to the agent, the environment is partially observable. Some 

agents can model the dynamics of the environment through observation and reward 

information and then decide the agent’s actions according to the model. The model 

established by the agent can be very close to the dynamic of the environment, or it can be 

quite different from the dynamic of the environment. A complete model usually predicts 

the agent’s next state after acting and the reward from the environment. The actual 

physical world in which FOWTs work is the environment in SADA, and DARwind is an 

agent. The numerical simulation accuracy of DARwind may never be accurate (simplified 

model, the nonlinearity). However, the knowledge of various disciplines is constantly 

improving, so the established FOWTs numerical simulation program is also constantly 

improving. 

In RL, describing policies in mathematical language is a mapping from agent state to 

action. The two policies (random and deterministic policy) have application scenarios. 

When solving RL problems, agents usually build one or more of the three components: 

policy, model, and value function. The agent accumulates experience and forms memory 

through interaction with the environment, so as to continuously learn TE to optimize its 
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strategy, model or value function, and gradually approach the optimal solution of the 

problem. According to these characteristics, agents in RL can be classified as follows: 

⚫ The value function only: such an agent has an estimation function for the value of 

the state, but there is no direct policy function, which is obtained indirectly by the 

value function. 

⚫ The policy only: The action is directly generated by the policy function, and the 

agent does not have a value function of each state. 

⚫ Actor-Critic: Agent has both value and policy functions, and the two are combined 

to solve problems. 

In addition, agents can be divided into two categories according to whether they build a 

model for the dynamics of the environment: 

⚫ Model-free: The Agent do not attempt to understand how the environment works but 

focus only on value and policy functions, or either. 

⚫ Model-based: The Agent attempts to build a model that describes the operational 

process of the environment to guide the update of the value or policy function. 

In summary, the DARwind is a model-based agent. 

6.2.2. Value function 

The specific values function can evaluate the states and actions. For RL problems with 

small scale and few states, the Table Lookup algorithm can store the value of each state 

and action with independent data (like a giant table). A similar data structure is used in 

programming implementations through which the value of state and actions are obtained. 

However, many problems are very complex in practice. Some problems have a vast 

number of states and actions or are continuous. If the Table Lookup algorithm is used for 

these problems, the efficiency will be very low or even impossible to solve. Hence, the 
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concept of value function is proposed to approximate the value of a state or action by 

constructing a specific function. The advantage of this design is that there is no need to 

store the data of each state or action value and only a limited number of parameters and 

function designs. After introducing the value function, designing, and solving the 

function’s parameters become the main work of RL. Function approximation is mainly 

divided into linear function approximation and nonlinear approximation. The mainstream 

design of nonlinear approximation is to use deep ANN technology. The ANN can be 

solved according to the standard training process: establishing an appropriate objective 

function, selecting an appropriate optimization algorithm, preparing a training data set, 

training a network, etc. 

6.2.2.1. Action-value function  

Suppose that state 𝑠𝑡 has been observed and action 𝑎𝑡 is selected. Then the randomness 

in 𝑈𝑡 will come from all states and actions from time 𝑡 + 1: 

𝑆𝑡+1, 𝐴𝑡+1, 𝑆𝑡+2, 𝐴𝑡+2,⋯ , 𝑆𝑛, 𝐴𝑛  

Evaluating the conditional expectation of 𝑈𝑡 with respect to this variable can get: 

 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑆𝑡+1,𝐴𝑡+1,⋯,𝑆𝑛,𝐴𝑛[𝑈𝑡|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡] Eq. 6.30 

Where 𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡  is the condition, the value of the state and action has been 

observed. The action-value function 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)  at time 𝑡  depends on the following 

three factors: 

⚫ Current state 𝒔: The better the current state, the greater the value of 𝑄𝜋(𝑠𝑡 , 𝑎𝑡), 

and the greater the expected return. For example, the better the percentage difference 

of the dynamic response of FOWTs, the better the state, and the greater the value of 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡). 
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⚫ Current Action 𝒂 : The better the agent performs, the greater the value of 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡). For example, DARwind adjusts well for KDPs, so the value of 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) 

is also good. 

⚫ Policy function 𝝅: The policy determines the quality of future actions: the better the 

policy, the greater the value of 𝑄𝜋(𝑠𝑡 , 𝑎𝑡). 

The optimal action value function can remove the influence of the policy and only 

evaluate the quality of the current state and action: 

 𝑄∗(𝑠𝑡 , 𝑎𝑡) = max
𝜋
𝑄𝜋(𝑠𝑡 , 𝑎𝑡), ∀𝑠𝑡 ∈ 𝒮, 𝑎𝑡 ∈𝒜 Eq. 6.31 

The optimal action-value function depends only on 𝑠𝑡 and 𝑎𝑡, regardless of the policy. 

It can guide the agent to make the correct decision. For example, in simulating the 

dynamic response of FOWTs, given the current state 𝑠𝑡 (percentage difference of 6DOF 

platform motions), it is assumed that the agent’s action space is: 

𝒜 = [

 reduce wind speed
 unchange wind speed
 increase wind speed

] 

If the 𝑄∗ function is known, then these three actions can be scored, for example: 

{

𝑄∗(𝑠𝑡 , 𝑟𝑒𝑑𝑢𝑐𝑒 𝑉𝑤) = 100

𝑄∗(𝑠𝑡 , 𝑉𝑤  𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒) = −50

𝑄∗(𝑠𝑡 , 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑤) = 200

 

The 𝑄∗  value is the expected return, which represents the maximum cumulative 

expectation researched after the end of iteration. If DARwind chooses to reduce the wind 

speed in the next iteration, then no matter what policy 𝜋 DARwind adopts afterwards, 

the expectation of return 𝑈𝑡  will not exceed 100. Similarly, if DARwind choose to 

increase the wind speed, the expectation of return will not exceed 200. Undoubtedly, 
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increasing the wind speed in next loop in the numerical simulation can close to the actual 

response. 

6.2.2.2. State-value function 

Suppose DARwind uses the policy function 𝜋 to adjust KDPs in iteratively steps. The 

state-value function can be used to judge the current state 𝑠𝑡  whether achieves the 

terminal state: 

 𝑉𝜋(𝑠𝑡) = 𝔼𝐴𝑡~𝜋(∙|𝑠𝑡)
[𝑄𝜋(𝑠𝑡 , 𝐴𝑡)] 

= ∑ 𝜋(𝑎|𝑠𝑡) ∙

𝑎∈𝒜

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) 
 

Where, 𝐴𝑡 is a random variable, and 𝑉𝜋(𝑠𝑡) only depends on the policy 𝜋 and current 

state 𝑠𝑡, not on actions. 𝑉𝜋(𝑠𝑡) is also the expected return 𝑈𝑡: 

 𝑉𝜋(𝑠𝑡) = 𝔼𝑆𝑡+1,𝐴𝑡+1,⋯,𝑆𝑛,𝐴𝑛[𝑈𝑡|𝑆𝑡 = 𝑠𝑡] Eq. 6.32 

A larger value of 𝑉𝜋(𝑠𝑡) means a larger expected return 𝑈𝑡. The state-value function can 

be used to measure the quality of policy 𝜋 and state 𝑠𝑡. 

6.2.3. Monte-Carlo and Temporal-Difference Learning 

This part mainly introduces the methods of Monte Carlo and Temporal-Difference 

Learning. These two methods are one of the essential tools in dealing with RL problems. 

6.2.3.1. Monte-Carlo Reinforcement Leaming 

Monte-Carlo learning (MC learning) is a general term for randomized algorithms and an 

essential element of many RL algorithms. The essence of MC learning is to estimate the 

actual value through random samples. It has many applications, such as approximating 

values, estimating areas, and approximating definite integrals. This part focuses on the 

application of MC learning to approximate expectations and stochastic gradient. 
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Let 𝑋 be a 𝑑-dimensional random variable whose value range is Ω ⊂ ℝ𝑑. The function 

𝑝(𝑥) is the probability density function of 𝑋. Let 𝑓: Ω → ℝ be an arbitrary multivariate 

function. Then its expectation about the variable 𝑋 can be expressed as: 

 
𝔼𝑋~𝑝(∙)[𝑓(𝑋)] = ∫ 𝑝(𝑥) ∙ 𝑓(𝑥)𝑑𝑥

Ω

 Eq. 6.33 

Since the expectation is a definite integral, uniform sampling is performed in the set Ω, 

and the obtained sample is used to approximate the definite integral. On the other hand, 

the probability density function 𝑝(𝑥) can be used to conduct non-uniform sampling: 

1. Perform non-uniform random sampling on the set Ω  according to the 

probability density function 𝑝(𝑥), and obtain samples 𝑛 and record them 

as vectors 𝑥1, 𝑥2,⋯ 𝑥𝑛~𝑝(∙). 

2. Average the 𝑓(𝑥1),⋯ , 𝑓(𝑥𝑛): 

𝑞𝑛 =
1

𝑛
∑𝑓(𝑥𝑖)

𝑛

𝑖=1

 

3. Return 𝑞𝑛 as the estimated value of Eq. 6.33. 

Stochastic gradient algorithms can also be conducted through MC learning. Let 𝑤 be the 

parameters of the neural network. Then the loss function can be 𝐿(𝑋;𝒘). The smaller the 

value of loss function 𝐿, the more accurate the prediction made by the model. Therefore, 

the training of ANN can be defined as an optimization problem to adjust the w to 

minimize the expectation of loss function: 

 min
𝑤
𝔼𝑋~𝑝(∙)[𝐿(𝑋;𝒘)] Eq. 6.34 

The gradient of the objective function 𝔼𝑋[𝐿(𝑋;𝒘)] with respect to 𝒘 is: 
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 𝒈 ≜ ∇𝒘𝔼𝑋~𝑝(∙)[𝐿(𝑋;𝒘)] = 𝔼𝑋~𝑝(∙)[∇𝒘𝐿(𝑋;𝒘)] Eq. 6.35 

Gradient descent can be done to update 𝒘 to reduce the objective function 𝔼𝑋[𝐿(𝑋;𝒘)]: 

 𝒘 ← 𝒘− 𝛼 ∙ 𝒈 Eq. 6.36 

Here, 𝛼  is the learning rate. To compute gradients quickly, the Monte Carlo 

approximation (𝒈 = 𝔼𝑋~𝑝(∙)[∇𝒘𝐿(𝑋;𝒘)] ) to the expectation is required (stochastic 

gradient �̃�) to update 𝒘: 

1. According to the probability density function 𝑝(𝑥), random sampling is 

performed to obtain 𝑛 samples, which are denoted as: 𝑥1,⋯ , 𝑥𝑛. 

2. Calculate the gradient ∇𝒘𝐿(𝑥𝑖;𝒘), ∀𝑖 = 1,⋯ , 𝐵 and average it: 

�̃� =
1

𝑛
∑∇𝒘𝐿(𝑥𝑖;𝒘)

𝑛

𝑖=1

 

�̃� is the stochastic gradient, which is an unbiased estimate of 𝒈. 

3. Do stochastic gradient descent to update 𝒘: 

𝒘 ← 𝒘 − 𝛼 ∙ 𝒈 

The number of samples 𝑛 is called the batch size, which is usually called mini-batch. In 

the probability density function 𝑝(𝑥) of the sample is generally unknown. When training 

an ANN, a training dataset will be used to solve the empirical risk minimization: 

 
min
𝑤

1

𝑛
∑𝐿(𝑥𝑖;𝒘)

𝑛

𝑖=1

 Eq. 6.37 

6.2.3.2. Temporal-Difference Learning 

This part will introduce the Temporal-Difference Learning (TD learning) in detail which 

can learn from incomplete state episode. 



 

111 

Suppose there is a model 𝑄(𝑠, 𝑑;  𝒘) in SADA, where 𝑠 is the initial state (percentage 

difference of surge) by initial KDPs, and 𝑑 is the optimal state by weighted KDPs. 𝒘 

is the parameter of ANN. Model 𝑄 can predict the number of iterations required from 𝑠 

to 𝑑. This model may be randomly inaccurate in the beginning. But as continue to train 

and collect data, the model will become more accurate. DARwind will have a prediction 

�̂� = 𝑄(𝑠, 𝑑;  𝒘) before iterating. When DARwind finishes the iteration of this episode, 

the actual number of iterations 𝑦  is fed back to the model. The �̂� − 𝑦  reflects the 

evaluation effect of the model and corrects the model. 

Suppose the prediction of the model before DARwind starts iterating is: 

 �̂� ≜ 𝑄(𝑆𝑖𝑛𝑖𝑡𝑎𝑙 , 𝑆𝑓𝑖𝑛𝑎𝑙 ;  𝒘) = 10 Eq. 6.38 

Where 𝑆𝑖𝑛𝑖𝑡𝑎𝑙  means the initial difference of surge between numerical results and target 

data. 𝑆𝑓𝑖𝑛𝑎𝑙  means the final difference of surge, which can be defined by designer. For 

example, under 10%. When DARwind obtained a more accurate prediction of FOWTs 

response by adjusting KDPs, the actual number of iterations 𝑦 = 20, and it was fed back 

to the model. So gradient descent can be used to update the model: 

 𝐿(𝒘) =
1

2
[𝑄(𝑆𝑖𝑛𝑖𝑡𝑎𝑙 , 𝑆𝑓𝑖𝑛𝑎𝑙 ;  𝒘) − 𝑦]

2
 Eq. 6.39 

Using the chain rule to calculate the gradient of the loss function: 

 ∇𝑤𝐿(𝒘) = (�̂� − 𝑦) ∙ ∇𝑤𝑄(𝑆𝑖𝑛𝑖𝑡𝑎𝑙 , 𝑆𝑓𝑖𝑛𝑎𝑙 ;  𝒘) Eq. 6.40 

Then update the model parameters 𝒘: 

 𝒘 ← 𝒘− 𝛼 ∙ ∇𝑤𝐿(𝒘) Eq. 6.41 

Where, 𝛼 is learning rate.  
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Suppose the initial surge difference is 20%. According to Eq. 6.38, �̂� = 10. When the 

surge difference drops to 15%, the actual number of iterations is 𝑟 = 8 currently. Then, 

the model predicts the surge difference will reach the required value 10% that is the �̂�′ =

7. According to the model, the total iteration number now is: 

�̂� ≜ 𝑟 + �̂�′ = 8 + 7 = 15 

The original forecast �̂�  estimate was without any factual component. �̂�  is also an 

estimate but has the actual observations 𝑟. Based on the above discussion, it can be seen 

that，�̂� = 15 is the TD target which is much reliable than �̂� = 10. Therefore, the �̂� can 

be used to modify the model in Eq. 6.39. 

 𝐿(𝒘) =
1

2
[𝑄(𝑆𝑖𝑛𝑖𝑡𝑎𝑙 , 𝑆𝑓𝑖𝑛𝑎𝑙 ;  𝒘) − �̂�]

2
 Eq. 6.42 

According to Eq. 6.29: 

 
𝑈𝑡 = 𝑅𝑡 + 𝛾 ∙ ∑ 𝛾𝑘−𝑡−1 ∙ 𝑅𝑘

𝑛

𝑘=𝑡+1⏟          

= 𝑈𝑡+1

 Eq. 6.43 

Combined with Eq. 6.31, the optimal Bellman equation can be expressed as: 

𝑄∗(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑆𝑡+1~𝜋(∙|𝑠𝑡,𝑎𝑡) [𝑅𝑡 + 𝛾 ∙ max𝐴∈𝒜
𝑄∗(𝑆𝑡+1, 𝐴)|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡 ] Eq. 6.44 

It can be obtained by Monte Carlo approximation: 

 𝑄∗(𝑠𝑡 , 𝑎𝑡) ≈ 𝑟𝑡 + 𝛾 ∙ max
𝑎∈𝒜

𝑄∗(𝑠𝑡+1, 𝑎) Eq. 6.45 

Replacing the optimal action-value function 𝑄∗(𝑠, 𝑎) in Eq. 6.45 with a neural network 

𝑄(𝑠, 𝑎;  𝒘): 
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𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) ≈ 𝑟𝑡 + 𝛾 ∙ max
𝑎∈𝒜

𝑄∗(𝑠𝑡+1, 𝑎) Eq. 6.46 

𝑞�̂� ≜ 𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) is the prediction made by the neural network at time 𝑡 without any 

factual component. The TD target 𝑦�̂� = 𝑟𝑡 + 𝛾 ∙ max
𝑎∈𝒜

𝑄∗(𝑠𝑡+1, 𝑎) is the prediction made 

by the neural network at time 𝑡 + 1, which is a partially based on true observations 𝑟𝑡. 

𝑞�̂� and 𝑦�̂� are all estimates of the optimal action-value function. The loss function can 

be: 

 𝐿(𝒘) =
1

2
[𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) − 𝑦�̂�]

2 Eq. 6.47 

Compute the gradient of 𝐿 with respect to 𝒘: 

 
∇𝑤𝐿(𝒘) = (𝑞�̂� − 𝑦�̂�)⏟      

𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 𝛿𝑡

∙ ∇𝑤𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) Eq. 6.48 

Then update the model parameters 𝒘: 

 𝒘 ← 𝒘− 𝛼 ∙ 𝛿𝑡 ∙ ∇𝒘𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) Eq. 6.49 

Given (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), 

𝑞�̂� = 𝑄(𝑠𝑡 , 𝑎𝑡;  𝒘) 

and TD target and TD error: 

{
𝑦�̂� = 𝑟𝑡 + 𝛾 ∙ max

𝑎∈𝒜
𝑄(𝑠𝑡+1, 𝑎)

𝛿𝑡 = 𝑞�̂� − 𝑦�̂�
 

The TD algorithm uses Eq. 6.49 to update the parameters. 

6.2.4. Policy objective function 

The agent aims to obtain as many cumulative rewards as possible in the process of 

interacting with the environment, and a good policy can accurately reach this goal. This 
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objective function excludes the factor of state 𝑆 and only depends on the parameters 𝜽 

of the policy network 𝜋 . The better the policy, the larger the value of 𝐽(𝜽) . Policy 

learning can be described as an optimization problem: 

 max
𝜽
{𝐽(𝜽) ≜ 𝔼𝑺(𝑉𝜋(𝑆))} Eq. 6.50 

The objective function is larger by updating the parameters 𝜽 of the policy network. 

Therefore, gradient ascent needs to be used to update 𝜽 . Suppose the current policy 

network parameter is 𝜽𝑛𝑜𝑤. The new parameter 𝜽𝑛𝑒𝑤 is obtained by gradient ascent: 

 𝜽𝑛𝑒𝑤 ← 𝜽𝑛𝑜𝑤 + 𝛽 ∙ ∇𝜽𝐽(𝜽𝑛𝑜𝑤) Eq. 6.51 

The subscripts now and new represent the weights in the neural network before and after 

the update, respectively. Where ∇𝜽𝐽(𝜽) is the policy gradient, and its theorem is proved 

as: 

 ∇𝜽𝐽(𝜽) = 𝔼𝑆 [𝔼𝐴~𝜋(∙|𝑆;𝜽)[𝑄𝜋(𝑆, 𝐴) ∙ ∇𝜽𝑙𝑛𝜋(𝐴|𝑆;𝜽)]] Eq. 6.52 

6.2.5. Actor-Critic method 

The Actor-Critic algorithm contains a policy function and an action value function. The 

policy function 𝜋(𝑎|𝑠; 𝜽)  acts as an Actor, generating and interacting with the 

environment; the action value function 𝑞(𝑠, 𝑎; 𝒘) acts as a Critic, which is responsible 

for evaluating the Actor’s performance and guiding the Actor’s subsequent action. Critic’s 

action value function is an approximation given to the policy: 

𝑸∗(𝒔, 𝒂) ≈ 𝑸𝝅(𝒔, 𝒂) 

The Actor-Critic method in this section will approximate 𝑄𝜋  with a neural network. 

Figure 6.7 shows the relationship of this method. 
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Figure 6.7 Actor-Critic relationship diagram. 

6.2.5.1. Policy network 

The policy network needs the value network to improve actions. When the policy network 

outputs an action, the value network feeds back the corresponding output score �̂� ≜

𝑞(𝑠, 𝑎; 𝒘) to the policy network. The policy network uses the state 𝑠, action 𝑎, and �̂� 

of the value network to calculate the approximate policy gradient to update the parameters 

𝜽. In this way the �̂� value is maximized. 

Training a policy network requires updating the parameters 𝜽 using an approximation 

of the policy gradient 𝛁𝜽𝑱(𝜽): 

 𝒈(𝑠, 𝑎; 𝜽) ≜ 𝑄𝜋(𝑠, 𝑎) ∙ ∇𝜽𝑙𝑛𝜋(𝑎|𝑠;𝜽) Eq. 6.53 

The value network 𝒒(𝒔, 𝒂;𝒘) approximates the action value function 𝑸𝝅(𝒔, 𝒂), so 𝑸𝝅 

in the above formula is replaced by the value network: 

 �̃�(𝑠, 𝑎; 𝜽) ≜ 𝑞(𝑠, 𝑎; 𝒘) ∙ ∇𝜽𝑙𝑛𝜋(𝑎|𝑠;𝜽) Eq. 6.54 

Finally do gradient ascent: 

 𝜽 ← 𝜽 + 𝛽 ∙ �̃�(𝑠, 𝑎; 𝜽) Eq. 6.55 
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6.2.5.2. Value network 

The method of training the policy network is based on the value network. Therefore, the 

policy network can only improve when the �̂� of the value network can truly reflect the 

action value 𝑸𝝅. In the initial stage, the parameters 𝒘 of the value network are random. 

As the parameters are updated, the output of the value network also gets closer to 𝑸𝝅. 

The reward 𝒓  of each feedback from the environment is used as the criterion for 

optimizing the value network. 

At time 𝒕, the output of the value network is �̂� = 𝒒(𝒔, 𝒂;𝒘). It is an estimate of the 

action-value function 𝑸𝝅(𝒔𝒕, 𝒂𝒕). At time 𝒕 + 𝟏, 𝒓𝒕, 𝒔𝒕, 𝒂𝒕 are observed. So, the TD 

target is calculated: 𝒚�̂� ≜ 𝒓𝒕 + 𝜸 ∙ 𝒒(𝒔𝒕+𝟏, 𝒂𝒕+𝟏; 𝒘). It is also an estimate of the action-

value function 𝑸𝝅. However, the 𝒓𝒕 part of the formula is to give facts. Therefore, the 

value network parameter 𝒘 is updated with the help of the TD error. Define the loss 

function as: 

 𝐿(𝒘) ≜
1

2
[𝑞(𝑠𝑡 , 𝑎𝑡;  𝒘) − 𝑦�̂�]

2 Eq. 6.56 

Suppose �̂� ≜ 𝒒(𝒔, 𝒂;𝒘). Then the gradient of the loss function is: 

 
∇𝑤𝐿(𝒘) = (𝑞�̂� − 𝑦�̂�)⏟      

𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 𝛿𝑡

∙ ∇𝑤𝑞(𝑠𝑡 , 𝑎𝑡;  𝒘) Eq. 6.57 

Update 𝒘 according to gradient descent in Eq. 6.41. 

1. Observe state 𝑠𝑡, and then randomly sample action 𝑎𝑡~𝜋(∙ |𝑠𝑡; 𝜽𝑛𝑜𝑤). 

2. Agent performs action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1. 

3. Randomly sample action 𝑎𝑡+1~𝜋(∙ |𝑠𝑡+1; 𝜽𝑛𝑜𝑤). (Agent does not perform 

action 𝑎𝑡+1.) 

4. Let the value network score the (𝑠𝑡 , 𝑎𝑡): 
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�̂�𝑡 = 𝑞(𝑠𝑡 , 𝑎𝑡;𝒘𝑡) 

5. Let the target network score the (𝑠𝑡+1, �̂�𝑡+1): 

�̂�𝑡+1 = 𝑞(𝑠𝑡+1, �̂�𝑡+1;𝒘𝑡) 

6. Compute the TD target and error:  

{
�̂�𝑡 = 𝑟𝑡 − 𝛾 ∙ �̂�𝑡+1
𝛿𝑡 = �̂�𝑡 − �̂�𝑡

. 

7. Update the value and policy network: 

{
𝑤𝑡+1 ← 𝑤𝑡 − 𝛼 ∙ 𝛿𝑡 ∙ ∇𝒘𝑞(𝑠𝑡 , 𝑎𝑡; 𝒘𝒕)

𝜃𝑡+1 ← 𝜃𝑡 + 𝛽 ∙ �̂�𝑡 ∙ ∇𝜽𝑙𝑛𝜋(𝑎𝑡|𝑠𝑡;𝜽𝒕)
 

6.3. Summary 

The purpose of this chapter is to give a brief introduction to the AI technology involved 

in SADA. More importantly, it introduces how to combine AI technology with the 

concepts of DARwind, KDPs and FOWTs.  
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Chapter 7. Case study for the SADA method with basin 

experimental data 

This chapter aims to conduct a case study of the SADA method using basin experimental 

data. The basin experiment was carried out in the Deepwater Offshore Basin at Shanghai 

Jiao Tong University. The experiment was conducted by Duan et al. (2016a) who from 

the previous research team. The details of the basin experiment for a Spar-type FOWT 

are demonstrated in section 7.1. Then, the application of the SADA method with basin 

experimental data is demonstrated in two: 

• Using ANN to predict the dynamic performance of FOWT directly. 

• Using the DRL in the SADA method to optimize the dynamic performance of 

FOWT. 

In the DRL framework, KDPs are used as the data transmission interface between AI 

technology and DARwind, and experimental data are used as target parameters. The 

average value of the platform will be used as an evaluation criterion to train the decision-

making network to optimize the prediction of DARwind. Among them, three models will 

be discussed separately: ANN, brute force and DDPG (section 7.4). Random Gaussian 

distribution will provide a decision-making mechanism to adjust KDPs in each DARwind 

calculation in the brute force method. In DDPG, the decision-making mechanism 

comprises two types of typical deep neural networks, namely action and actor networks. 

More specifically, three training modes are discussed separately: the discrete method, 

continuous method, and segmented method. More details discussed in the following 

sections. 

7.1. Basin experiment description 

A brief description of this experiment is given in this section. The experiment was 

conducted at the Deepwater Offshore Basin at Shanghai Jiao Tong University for a Spar-
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type FOWT. The ratio scale of the basin experiment was 1:50, and the Spar-type FOWT 

is shown in Figure 7.1. The main scantlings of the spar-type floater are shown in Figure 

7.2. More details about the experimental executions, such as the testing model fabrication, 

wind field generation, decay test, and wind-wave test, can be found in reference (Duan et 

al., 2016b). 

 

Figure 7.1 Spar-type FOWT model. 

 

Figure 7.2 Dimensions of spar-type floater (Duan et al., 2016b). 

The wind turbine model was designed and fabricated to emulate the prototype parameters 

in NREL’s 5-MW wind turbine for the OC3 project (Jonkman et al., 2009). The blade 
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model properties reported by Martin (2011) were utilized to fabricate the blade models. 

The design and fabrication of the tower were also based on the tower properties in the 

model testing program of the University of Maine, as reported (Martin, 2011). The 

prototype water depth modelled in the experiment was 200 m and was consistent with 

MARIN’s tests (Koo et al., 2014). For the model basin experiments conducted at MARIN, 

Koo et al. (2014) reported that their taut mooring system utilized a delta connection to 

simulate the Statoil Hywind configuration, and the delta mooring design was adopted in 

this basin experiment. The layout of the mooring system configuration can be found in 

Duan et al. (2015). Also noted are the three tension sensors used to measure the tension 

of the mooring system. The full-scale properties of the mooring system are based on those 

reported by Koo et al. (2014). The main properties of the experimental FOWT at full-

scale is shown in Table 7.1.  

Table 7.1 Main properties of model at full-scale. 

Item Measurements 

Blade (kg) 52,659 

Hub(kg) 57,272 

Nacelle(kg) 232,291 

Tower (kg) 287,128 

Platform Mass, including Ballast (kg) 7,316,578 

Platform Roll and pitch Inertia around the CM (kg m^2) 4,656,382,813 

Mass of the entire floating system (kg) 8,066,110 

CM locations of the entire floating system (m). −78.947 

Radius & depth of an anchor (m) 445; 200 

Radius & depth of a fairlead (m) 5.2; 70 

Diameter of A, B and C lines (m) 0.167; 0.125 

Unstretched length of A, B and C lines (m) 424.35; 30 

Extensional stiffness (N) 121E6; 68E6 

Unit weight of lines in fluid (kg/m) 22.5; 12.6 

 

7.2. ANN prediction 

This section introduces the application of the SADA method to predict the dynamic 

responses of the FOWTs by using artificial neural networks (ANN). In ANN optimized 

prediction, the results of DARwind simulation of 3DOF motions will be the input data, 
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and the basin experimental results will be the target data. The BP algorithm will be 

adopted, and the differences between the output data and targe data is used for ANN 

training. The load cases for the following works are time-domain data from the 

experiment introduced earlier, as shown in Table 7.2.  

Table 7.2 Test matrix of BP prediction. 

 

 

 

 

The irregular wave cases are based on the JONSWAP wave spectrum. The ANN adopts a 

double hidden layer structure, and the comparison mainly focuses on the motions of the 

platform in terms of 3DOF (Surge, Heave and Pitch) with total sets of 10221 & 10121 

data respectively. The results from DARwind and the experiment will be the primary data. 

The specific classification can be found in Table 7.3, which shows the main components 

of input and output data of ANN. 

Table 7.3 ANN data collection. 

Item LC2 LC3 

Total Sets 10221 3618s 10121 3583s 

Training input data (DAR) 1-9721 3441s 1-9621 3406s 

Training Output data (EXP) 1-9721 3441s 1-9621 3406s 

Test input data (DAR) 9721-10221 177s 9621-10`21 177s 

Test output data (EXP) 9721-10221 177s 9621-10`21 177s 

Input data Surge, Sway, Heave, Roll, Pitch, Yaw 

Output data Surge, Heave, Pitch 

 

In these two cases, the training data was selected randomly ordered. The remaining 500 

sets of data (177s) for each condition are used as network test data. In Figure 7.3 and 

Figure 7.4, the results after optimization by the ANN keep the same trend as the results 

of the basin model test (MT).  

Case No. wV  (m/s) 
Wave parameter 

cV  (m/s) 
sH (m) pT (s)    

LC1 11.4 — — — — 

LC2 11.4 7.1 12.1 2.2 — 

LC3 11.4 7.1 12.1 2.2 0.5 
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Figure 7.3 The prediction of ANN under LC2. 

 

Figure 7.4 The prediction of ANN under LC3. 

The maximum difference occurs in LC3 in Table 7.4. The difference between ANN and 

MT of minimum value of the surge motion is 1.626m, and the maximum value of the 

Pitch motion is 0.22deg. Furthermore, the percentages differences are 29.862% and 
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328.358%, respectively. However, the magnitude of pitch motion under LC3 is minimal, 

and it is found through a complete data time-domain comparison that only a few minority 

prediction differences are significant. In addition, from the standard deviation results, the 

maximum difference between ANN and MT are 0.873m and 0.201deg, respectively, 

which is the same as the experimental results of 0.862m and 0.201deg, and the results are 

similar to the average data volatility is not substantial so that it can be accepted. An 

illustration of the average comparison can be seen in Figure 7.5. 

Table 7.4 Statistical comparison of BP prediction. 

Response 
Surge (m) Heave (m) Pitch (deg) 

ANN MT ANN MT ANN MT 

LC2 

AVG 8.559 8.581 -0.620 -0.619 6.364 6.369 

Max 10.547 10.368 -0.194 -0.184 7.060 7.204 

Min 6.892 6.928 -1.075 -1.043 5.569 5.458 

Stdev 0.770 0.789 0.175 0.175 0.344 0.363 

LC3 

AVG 9.172 9.209 6.486 6.485 -0.619 -0.614 

Max 11.243 10.980 7.302 7.266 0.067 -0.153 

Min 5.445 7.071 5.195 5.325 -1.327 -1.154 

Stdev 0.873 0.862 0.399 0.410 0.210 0.201 

 

 

Figure 7.5 Comparison results with ANN and experiment. 
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Table 7.5 and Figure 7.6 give a comparison of the percentage difference of the average 

value, which allows a more intuitive comparison of the differences between the SADA 

and DARwind results. It is not difficult to see that the difference percentage of numerical 

simulation results after optimization by ANN is significantly reduced in every motion, 

especially in Heave and Pitch. 

Table 7.5 Average percentage difference (%) of BP prediction. 

Response 
Surge (m) Heave (m) Pitch (Silver et al.) 

ANN DAR ANN DAR ANN DAR 

LC2 AVG 1.701 6.910 6.159 63.912 1.305 11.710 

LC3 AVG 2.570 6.932 2.054 10.243 11.574 51.724 

 

 

Figure 7.6 Average percentage difference (%) between BP and DARwind. 

It should also be mentioned that although the average percentage difference of the 

platform Heave & Pitch motion in the DARwind calculation results is as high as 63.9% 

and 51.7% under LC2 and LC3, respectively, the result is still acceptable because the 

actual amplitude of these two motions is small. 
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7.3. Brute-Force prediction 

This section will use the selected KDPs and experimental data to optimize the forecast 

results of DARwind, to improve the accuracy. The cases for the following works are time-

domain results from the experiment, as shown in Table 7.6.  

Based on the framework of RL, SADA will use the BF method to modify and weight 

KDPs. Table 7.7 summarizes 11 KDPs used in this section. More KDPs have not been 

considered, which will be added in KDPs analysis in next section 7.4.  

Table 7.6 Test matrix of Brute-force. 

Case No. Classified 
wV   Wave cV   

m/s sH (m) pT (s)    m/s 

1 current only - - - - 1.2 

2 wave only - 2 7.1 12.1 - 

3 wind only 10.9 - - - - 

4 wind and current 10.9 - - - 1.2 

5 wind & irregular wave 10.9 7.1 12.1 2.2 - 

6 
WWC 

10.9 7.1 12.1 2.2 1.2 

7 11.4 2 8 3.3 0.6 

 

Table 7.7 Selected KDPs in BF. 

Discipline KDPs 

Aero 
Wind speed 

Glauert correction 

Hydro 

Current speed 

Added linear restoring matrix 

Added linear viscous damping matrix 

Added quadratic viscous damping matrix 

Added static force 

Mooring 
Wet density 

Axial stiffness 

Structural Polynomial Flap 1st vibration modes 

Servo Generator torque constant 

 

Table 7.8 shows the maximum percentage difference change of the 6DOF motions in 

each case. The positive value in the table represents how much the difference of the result 
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calculated by the weighted KDPs is lower than the initial difference of the unweighted 

KDPs in 500 loops. A negative number means the difference has increased. 

Table 7.8 Statistics of maximum percentage difference in BF. 

Case No. Surge Sway Heave Roll Pitch Yaw 

1 2.48 0.02 77.58 0.14 2.22 0.05 

2 15.30 3.19 33.81 3.80 0.40 1.29 

3 5.94 10.37 165.17 31.86 4.48 4.03 

4 9.46 8.03 34.40 76.63 5.14 4.85 

5 4.69 16.39 0.91 1.97 3.79 2.67 

6 8.15 7.77 25.32 178.16 4.42 4.56 

7 8.05 15.66 28.19 8.88 4.56 6.69 

 

The concept of total difference is to measure the agent’s performance after an action. 

Since only surge and pitch have the largest amplitude, the total difference is the sum of 

these two differences. Table 7.9 selects the statistics result of the most significant decline 

of total percentage difference among 500 actions of each case. The percentage difference 

of the 6DOF motions calculated by weighted KDPs corresponds to the most significant 

decline of the total percentage difference.  

Table 7.9 Statistics of maximum total percentage difference in BF. 

Case No. Total difference Surge Sway Heave Roll Pitch Yaw 

1 4.66 2.35 -0.02 71.48 -0.11 1.75 -0.01 

2 14.62 13.98 -2.33 27.28 0.87 -0.39 -0.24 

3 9.97 5.76 0.08 97.39 -2.70 4.36 0.37 

4 16.41 8.36 1.52 21.54 -9.87 4.04 2.30 

5 5.88 4.55 -8.18 -4.47 1.40 3.65 1.85 

6 11.60 6.01 1.44 12.84 -52.50 3.68 2.60 

7 14.28 7.49 -9.25 12.76 4.71 4.06 3.16 

 

From Table 7.9, the difference of some motions has increased. For example, in case 1, 

the sway, roll, and yaw differences increased by 0.02%, 0.11% and 0.01%, respectively. 

Surge and pitch reduced by 2.35% and 1.75%, and their experimental average amplitudes 

were 2.469 m and 0.763 deg. The average amplitude of roll, pitch and yaw are only 

0.161m, -0.025 deg and 0.113 deg. Therefore, the increase in their difference is within an 
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acceptable range. From the comprehensive point of view of 7 cases, the difference change 

of surge (Figure 7.7) remains between [-5%, 5%] during 500 actions, except for case 2 

(Wave only), which is only affected by a single environmental factor (wave). 

 

Figure 7.7 Percentage difference of surge in 500 actions in BF. 

The difference of surge is reduced in all 7 cases in Figure 7.8. For example, the LC1 is 

only affected by current, which eliminates wind and waves. The influence can be 

preliminarily judged whether there is a deviation in the numerical calculation or the 

measurement of the current speed in the experiment under this case.  

The difference of heave (Figure 7.9) has fluctuation. In the case of non-couple cases, 

heave’s performance is more ideal than other cases. The limitations of the KDPs may 

cause it. Adding static force will have a significant impact on heave in coupling cases if 

added static force is included.  
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Figure 7.8 Total Percentage difference of surge in BF. 

 

 

 

Figure 7.9 Total Percentage difference of Heave in BF. 
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The difference of pitch (Figure 7.10) shows a declining state, except case2. Comparing 

cases 6 and 7, the experimental values of pitch are 4.367 deg and 4.164 deg, respectively. 

Represented by this order of magnitude, the amplitude change corresponding to 4% of 

different in case 7 is about 0. 17deg.  

 

Figure 7.10 Total Percentage difference of Pitch in BF. 

For yaw (Figure 7.11), in a non-coupled environment, it cannot effectively reduce the 

difference based on the initial calculation results. In a coupled environment, the reduced 

difference is also limited. Moreover, the initial numerical simulation results of yaw have 

significant differences.  

The BF method uses random Gaussian distribution to weight KDPs, with a certain degree 

of randomness. However, these KDPs can achieve continuous distribution changes during 

the training process due to boundary conditions. Nevertheless, this cannot be based on 

the powerful intelligence of the program. 
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Figure 7.11 Total Percentage difference of Yaw in BF. 

7.4. DDPG prediction 

The DDPG and BF methods are based on a reinforcement learning framework. The 

difference is that its decision-making network uses a deep neural network instead of 

Gaussian distribution. The case studies of Discrete model, Continuous model, and 

Segmented model in SADA are discussed in this section. 

7.4.1. Discrete model 

The Discrete model is suitable for analysing a single known sea state and working 

condition. For example, optimise KDPs to reduce differences in a single case further. In 

this subsection, nine testing cases will be selected for AI training, shown in Table 7.10. 

In Table 7.11, the positive value shows that SADA reduced the difference between 

numerical calculation and experiment by percentage and vice versa. The number of 

actions taken in each case is different, determined according to the specific case. 
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Table 7.10 Test matrix of discrete model in DDPG. 

Case No. Classified 
𝑉𝑤 Wave 𝑉𝑐 

m/s 𝐻𝑠(m) 𝑇𝑝(s) 𝛾 m/s 

1 
current only 

- - - - 0.3 

2 - - - - 0.5 

3 wind only 9.4 - - - - 

4 wind only 12.8 - - - - 

5 wind and current 11.1 - - - 0.85 

6 
wind & irregular wave 

10.9 7.1 12.1 2.2 - 

7 12.8 7.1 12.1 2.2 - 

8 
WWC 

11.4 2 8 3.3 0.6 

9 10.9 7.1 12.1 2.2 1.2 

 

Table 7.11 Percentage difference in discrete model. 

Case No. Surge Heave Pitch Yaw 

1 21.065 -0.84 0.629 0.021 

2 9.937 0.787 1.239 0.001 

3 4.324 10.615 0 -0.964 

4 0.939 -2.227 0.792 1.631 

5 12.666 -14.725 0.244 -0.115 

6 0.947 -1.01 0.73 1.151 

7 2.053 -1.322 1.527 0.64 

8 4.05 -4.261 1.706 1.587 

9 1.62 -8.184 1.875 1.213 

 

In case 1 (Figure 7.12), SADA weighs the KDPs 7 times. In the first four actions, the 

difference of surge has changed significantly by each action. However, the fifth action is 

unchanged compared to the fourth one. The weighted KDPs has been chosen as the most 

suitable one. Therefore, the difference of each step is unchanged from the previous step. 

In some cases, only part of the sea state has been considered, for example, in the wind 

only (case 3 &4), which will not be changed with some KDPs (current speed, wave loads, 

etc.).  
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Figure 7.12 Comparison under case 1 & 8 discrete model. 

Figure 7.13 shows the trend of the average amplitude of surge with each action. As shown, 

the solid red line is the average experimental value of 7.07 m, and the red dashed line is 

the 5% tolerance in the range of 6.7165 m.  
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Figure 7.13 Average surge amplitude change in discrete model. 

Similar to the situation encountered in case 1, surge amplitude remains unchanged after 

the fourth weighting action in a fully coupled environment (WWC). It can be seen from 

Table 7.11 that the difference of Heave in case 9 is increased, while the experimental 

result of Heave in case 9 is only 0.307m, so the slight change is within the tolerable 

difference range. The results of other cases are not listed, all provided in Table 7.11. From 

Figure 7.14-Figure 7.17, the entire FOWTs system is in a shutdown state, without the 

influence of wind and waves in case 1 (current only).  

Compared with wind only and case 5, it shows that in the coupled environment of wind 

and current, weighted KDPs can effectively reduce the difference of surge. In the last four 

couple cases, the surge amplitude is very close to the experimental value in these coupled 

cases. Therefore, the difference remains stable. Although the Heave decreases in most 

cases, its experimental value is only 0.065m. In general, the amplitude of Heave in all 9 

cases is two decimal places. In addition, there are not many KDPs that directly affect the 

Heave. Therefore, the added static force and added linear restoring matrix could also be 

considered for further optimisation.  
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Comparing case 6 and case 7, it is found that the higher the wind speed, the better the 

optimisation of the pitch in the wind and wave environment. The average amplitude of 

pitch is 6.42 deg and 4.512 deg in case 6 and case 7, respectively. The 11 KDPs can 

achieve the most significant optimisation in the last two cases. If KDPs are expanded 

from 11 to 31 and more factors included, then it is conceivable that there will be a massive 

change in pitch in the WWC environment. The percentage difference of yaw is more 

dramatic. In the current only case, the percentage difference did not change, showing that 

the current speed does not significantly impact the yaw motion. The wind only has a more 

significant impact due to the difference in wind speed. 

Nevertheless, comparing experimental results (-0.281deg and -0.866 deg), the more 

considerable wind speed causes yaw amplitude to increase. In addition, the differences 

are all reduced under the combined wind and wave conditions. The wind will inhibit the 

motion of the platform under wave conditions, and the hydrodynamic parameters in KDPs 

have been corrected more accurately. 

 

Figure 7.14 Percentage difference of Surge in discrete model. 
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Figure 7.15 Percentage difference of Heave in discrete model. 

 

 

Figure 7.16 Percentage difference of Pitch in discrete model. 
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Figure 7.17 Percentage difference of Yaw in discrete model. 

7.4.2. Continuous model 

A multi-combination training mechanism is set according to the selected cases in the 

continuous model. In Table 7.12, the first three cases are training cases, and case 4 is the 

forecasting case.  

Table 7.12 Test matrix of continuous model in DDPG. 

Case No. 
𝑉𝑤 Wave 𝑉𝑐 

m/s 𝐻𝑠(m) 𝑇𝑝(s) 𝛾 m/s 

LC1 11.4 2 8 3.3 0.6 

LC2 12.8 7.1 12.1 2.2 0.8 

LC3 10.9 7.1 12.1 2.2 1.2 

LC4 11.1 7.1 12.1 2.2 0.85 

 

From Table 7.13, it can be pointed out that the optimisation effect of the CT method is 

more significant than that of the ST method. Case 2 has a general performance in the 

variation of difference of each motion. This may be caused by the wind load and the high 

rotor speed. Wind load can effectively restrain the platform motion, but too high rotor 

speed will increase the influence of gyro moment. 
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Table 7.13 Percentage difference of two methods (%) in continuous model. 

Case No. 
Surge Heave Pitch Yaw 

ST CT ST CT ST CT ST CT 

1 0.52 4.75 0.23 -19.60 -0.12 9.94 0.16 14.07 

2 0.68 2.68 -0.06 -2.55 -0.15 0.86 -0.16 1.14 

3 1.13 3.97 -0.46 -15.38 -0.03 11.32 0.15 12.74 

 

The three cases defined in Table 7.12 belong to the combination of wind, wave and 

current, and the percentage difference platform motions are carried out according to each 

action. In Figure 7.18-Figure 7.21 the CT method has the advantages of rapid 

convergence compared with the ST method.  

For example, in case 1, the KDPs of the CT reach the boundary after the sixth action and 

no more extended change. The ST model still tends to change after the 11-th action. This 

also means that the CT method can judge the next step more effectively according to the 

state obtained after each action.  

 

Figure 7.18 Actions of Surge in continuous model. 
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However, the ST method obtains the best KDPs after 25 operations which did not show 

in Figure 7.18-Figure 7.21, The difference in the first action of the CT method drops by 

11%. The difference gradually increased in the following five actions, but the percentage 

increase was minimal (within 2%). This is also a reflection of the intelligence of the CT 

method. The model itself measures how to act to obtain better benefits. According to the 

reward engineering, if the difference of surge reaches within 10%, which represents the 

acceptable range.  

For Heave, the ST model performs well initially, and the difference gradually decreases, 

but after the fifth action, it remains unchanged. The difference increases rapidly after the 

first action for the CT method, but it remains stable afterwards. However, the heave 

amplitude is only 0.411m in case 1. Even if the difference of the first action increases by 

12%, the impact on the entire FOWTs system is tiny. This is also the intelligence of the 

CT model, which can effectively filter the weight of the maximum benefit by choosing 

between surge and Heave. 

 

Figure 7.19 Actions of Heave in continuous model. 

For pitch and yaw, the optimisation effect of the CT method is much better than that of 

the ST model, in case 1. The difference reduction of each step in the ST method is only 
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kept in a small interval. The CT method is consistent with the two motions discussed 

above. SADA made choice in the first action, reducing the difference by about 8%. In 

subsequent actions, on the one hand, the KDPs may reach the boundary, and it weighs 

other factors and benefits. Therefore, the difference no longer changes significantly and 

maintains fluctuations in a small range. 

 

Figure 7.20 Actions of Pitch in continuous model. 

 

Figure 7.21 Actions of Yaw in continuous model. 
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7.4.3. Segmented model 

This subsection will focus on three aspects: single impact, two sea loads impact, and fully 

wind/wave/current. A total of 12 experimental cases were selected, shown in Table 7.14. 

Table 7.14 Training cases matrix of segmented model. 

Case No.  
wV  Wave cV  

m/s sH  (m) pT  (s)   m/s 

1a 
current only 

- - - - 0.3 

1b - - - - 0.85 

2a 
wind only 

9.4 - - - - 

2b 10.9 - - - - 

3a 
wave only 

- 2 8 3.3 - 

3b - 7.1 12.3 2.2 - 

4a 
wind and current 

11.1 - - - 0.85 

4b 10.9 - - - 1.2 

5a 
wind and wave 

12.8 7.1 12.1 2.2 - 

5b 10.9 7.1 12.1 2.2 - 

6a 

WWC 

8 2 8 3.3 0.6 

6b 11.4 7.1 12.1 2.2 0.8 

6c 18 7.1 12.1 2.2 0.85 

 

These cases include the wind only, wave only, current only, wind and wave, wind, wave 

and current (WWC). The impact here refers to the factors affecting the FOWTs system. 

The wind, waves, and currents will be considered in a single impact (case 1-3). Wind and 

wave, wind and current will be considered in coupling impact (case 4-5). 

7.4.3.1. Single impact 

A single impact includes current only (case 1 a & b), wind only (case 2 a & b) and wave 

only (case 3 a & b) cases in Table 7.14. Figure 7.22 summarises the results of the 6 DOF 

motions of these 6 cases. The stacked histogram represents the percentage difference 

change, while the dotted line chart corresponding to the right axis represents the change 

in amplitude under the corresponding percentage. 
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In current cases (1 a & b), the current speed has a dominant influence on the FOWTs 

system. Except for surge motion, the amplitudes of other motions are small. The 

difference reductions of the surge are 46.35% and 32.68%, and the amplitude of the 

changes are between 0.16m and 0.4m. Figure 7.23 shows the time history of the surge in 

1b.  

 

Figure 7.22 6DOF motions percentage difference in single impact cases.  

 

Figure 7.23 Time history of surge under case 1b in segmented model. 
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In wind only cases (case 2 a & b), the percentage difference of roll has increased, but its 

experimental amplitude does not exceed 0.03 deg. Taking case 2b as an example, the 

amplitude changed 0.01 deg. Although this may not be the optimal global solution, it is 

acceptable for the entire highly coupled FOWTs system. Figure 7.24 shows the time 

history of the surge and sway in 2b. The amplitude of the surge in 2b changed 0.13m 

(from 5.52m to 5.65m). The tension difference of the fairleads at the connection of the 

three mooring lines is also reduced by 1.2%, 1.69% and 1.73% (29.66kN, 49.73kN and 

50.83kN).  

 

 

Figure 7.24 Time history of surge and sway in case 2b in segmented model. 
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In the case of the wave only (case 3 a & b), the platform is maintained in a stable state, 

and the wind turbine is in a parked state. Under this environment, heave and pitch motions 

are the dominating motions. Taking 3b as an example, the mean difference of Heave has 

been reduced by 83.71%, which is a satisfactory optimisation result in amplitude. Figure 

7.25 shows the frequency analysis in 3b. From the frequency domain, it can also better 

show that SADA has improved the motion induced by the natural frequency of the 

platform. 

 

Figure 7.25 Frequency of heave in case 3b.  

Figure 7.26 shows the change of heave motion in a random 60 explorations. The mooring 

system plays a vital role in maintaining the platform’s stability in the waves. Since the 

boundary conditions of KDPs are determined initially based on empirical values, their 

characteristics can be further analysed according to the correlation during the training 

process. More accurate boundary conditions change with different environments and 

accelerate the convergence of the model.  
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Figure 7.26 Heave and added restoring force (3,3) in case 3b. 

7.4.3.2. Combined loads impact 

In this section, The SADA method will be used to verify the optimization of the FOWTs 

system by the two sea loads, including wind and current cases (cases 4a, 4b) and wind 

and wave cases (cases 5a, 5b). The optimization effect of the six DOFs and the amplitude 

of the corresponding change are shown in Figure 7.27. Take case 4b as an example, 

through the optimization of the SADA method, the mean difference of surge is reduced 

from 3.7% to 0.8%. Figure 7.28 shows the corresponding time history curve of surge. 

Although the mean difference of Heave has increased by 10%, it is still a relatively ideal 

change from the perspective of the change in the time history curve (Figure 7.29). 
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Figure 7.27 Percentage difference in two sea loads impact cases.  

 

 

 

Figure 7.28 Time history of Surge in case 4b. 
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Figure 7.29 Time history of Heave in case 4b. 

The coupling effect of wind and wave will inhibit some platform motion. Therefore, in 

the case of wind and waves, the motions of the platform have no apparent amplitude 

except for surge and pitch. For basin experiments and numerical simulations, the 

optimisation of a single impact is the most challenging. Because based on numerical 

assumptions, other parts will not affect the entire system apart from a single factor. In 

contrast, coupled conditions can better reflect the dynamic response of FOWTs in the 

actual sea state. In general, the SADA performed well in both single impact and two sea 

loads impact optimisation. 

7.4.3.3. Wind/wave/current impact 

This subsection will use SADA to optimise the dynamic response of FOWTs in a 

wind/wave/current sea environment (case 6 a, b and c). Case 6b will be adopted to train 

the Continuous model in SADA. The duration of the experimental data for Case 6b is 1 

hour, and it will be divided into four segments, each containing 900-second target data 

for training. The axial thrust of the rotor is the most critical response that affects the 

motions of the FOWTs, especially on the pitch motion. For basin experiments, a more 
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matched thrust is the best choice to simulate the dynamic responses of the FOWTs better. 

However, if the rotor speed and wind speed in the experiment are fully used in the 

numerical simulation, the thrust force calculated by the numerical value will be different 

from the measured value due to the unmatching of low Re . Therefore, the rotor speed 

is also added to the adjustable KDPs better to simulate the axial thrust of FOWTs in this 

section. 

Figure 7.30 shows the final difference and amplitude change of the four segments. The 

difference between surge and pitch increases slightly. Taking pitch as an example, the 

difference range of the four segments are all within 5 percent. This is a tolerable category 

in training. The actual amplitude changes are also within the range of 0.2deg.  

 

Figure 7.30 Percentage difference and amplitude change in case 6a. 

The difference of Heave and Thrust has dropped significantly. Taking the third segment 

as an example, the average value of thrust has increased by 47.5kN. Figure 7.31-Figure 

7.33 show the time history of Surge, Heave and Thrust in first segments in case6b. The 

thrust increased by 36.5kN. They are all much closer to experimental value. In addition, 
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the mean value of each segment changed significantly from the initial KDPs through 

SADA. Taking the first segment as an example, the mean difference of surge is reduced 

by 2.6%. The time history curve of pitch and thrust optimised by SADA is closer to the 

experimental data.  

  

Figure 7.31 Time history of Surge in first segments in case 6b. 

 

 

Figure 7.32 Time history of Pitch in first segments in case 6b. 
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Figure 7.33 Time history of Thrust in first segments in case 6b. 

It is difficult to see each segment’s changes and training conditions only from the time 

history curve, so it is necessary to analyse the difference changes during the training, 

which first requires the classification of the random segment data. Figure 7.34 shows the 

difference between surge and pitch in 500 iterations (Black lines represent trends). The 

four colour curves represent the difference changes of each segment in 500 iterations. It 

can be seen in the first 20 training sessions, the second group is randomly selected, and 

then the experimental means is automatically selected as the fourth group, and so on. 

In the first and fourth segmented training (red and purple lines) of the surge, the difference 

gradually decreases, which is also the same as the final optimisation result in Figure 7.34. 

The pitch difference is stable within a range, although each segment slightly increases. 

Therefore, to better explore pitch performance in 500 iterations, its statistics are listed in 

Table 7.15.  
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Figure 7.34 The difference of surge & pitch in 500 iterations. 

 

Table 7.15 Statistical description for Pitch and KDPs 

 Avg Std Min Max 

Pitch (deg) 6.49 0.174 6.19 6.90 

Wind speed (m/s) 11.35 0.233 11 11.8 

Rotor speed (m/s) 14.42 0.016 14.48 14.35 

Current speed (m/s) 0.80 0.080 0.7 0.9 
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The average pitch values of the four segments are 6.54deg, 6.42deg, 6.45deg and 6.57deg, 

respectively. The mean value of 500 iterations of numerical simulation is close to the 

experimental value. The average value of other KDPs is also consistent with the initial 

setting of this working condition. The standard deviations of rotor speed and current speed, 

and the wet density of the mooring system are very close to zero. This is due to the 

boundary conditions of these three physical quantities, which are not allowed to change 

too much. From the maximum and minimum points of view, the wind speed, the rotation 

speed of the rotor, the axial stiffness of the mooring system and the current speed have 

been cut off after touching the boundary conditions. The wet weight of the mooring 

system is always within the boundary conditions. 

The wind speed has a more significant impact on the aerodynamic load of FOWTs and 

affects the thrust. Because the blade pitch control is not considered in the experiment, the 

entire rotor is more sensitive to changes in wind speed. Therefore, it is a ubiquitous 

simulation technology to adjust the measured wind speed value in numerical simulation 

so that the axial thrust of the rotor matches the measured value as much as possible. 

Finally, SADA increased the wind speed to satisfy the thrust similarity as much as 

possible, although at the expense of some pitch accuracy. This also reflects the weighting 

effect on the main physical quantities in training. Therefore, it is essential for the users to 

understand the fundamental theories and practical technology of FOWTs. 

7.4.3.4. Prediction by DDPG optimization 

In this subsection, the deep neural network model trained in 6b will be applied to predict 

cases 6a and 6c. It is assumed that cases 6 a & b have not been carried out in the basin 

experiment, so there is no target value in the difference assessment, and the model is only 

used for weighting the feedback of each loop. There are ten iterations of forecast 

optimisation. Figure 7.35 illustrates the mean difference and amplitude change of the 

four Experimental Physical Quantities (EPQs): surge, heave, pitch and thrust, in 6b and 
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6c. In 6b, the mean difference of Heave decreased by 35.4%. The most significant is the 

change in thrust, an increase of 51.8kN. The mean difference in 6c is all decreased.  

 

Figure 7.35 Percentage difference and amplitude change in 6a and 6c. 

Through the forecast of SADA, the thrust in 6a can match better. As shown in Figure 

7.36-Figure 7.38, the thrust change is quite significant, and although the difference of 

surge and pitch has decreased, it is still acceptable. The pitch curve shows that the mean 

difference has increased, but the trend of increase is closer to the experimental result. This 

also shows that the SADA method is not independent of the scope of traditional FOWTs 

numerical calculations. It must work together with a reliable dynamic response agent, 

such as DARwind, that allows SADA to make judgments and learn faster, more effectively, 

and more accurately. This is the character that the SADA method differs from traditional 

reinforcement learning methods.   
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Figure 7.36 Time history of Surge in case 6a. 

 

 

 

Figure 7.37 Time history of Pitch in case 6a. 
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Figure 7.38 Time history of Thrust in case 6a. 

For the result of 6c, the difference of the mean value of pitch and thrust is reduced through 

the optimised forecast of SADA from Figure 7.39-Figure 7.41.  

 

Figure 7.39 Time history of Surge t in case 6c. 
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Figure 7.40 Time history of Pitch in case 6c. 

 

Figure 7.41 Time history of Thrust in case 6c. 

In the numerical simulation, the KDPs corresponding to this result, especially the wind 

speed and the rotation speed of the rotor, did not reach the boundary conditions. 

According to the set difference weighting, SADA chooses equalisation optimisation 

instead of sacrificing the accuracy of some other physical quantities in 6a and 6b. 
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7.4.3.5. Blade and tower deformation prediction 

Table 7.16 shows the DARwind and the AI-Based DARwind results of blade deformations 

and aerodynamic loads in segments 1. Aerodynamic loads represent the thrust and torque 

acting on the rotor. “BtDefx”, “BtDefy”, and “BtDefz” represent the three coordinate 

components of the blade tip deformation along with the blade follower coordinate system.  

Table 7.16 Comparison of deformations and aerodynamic loads. 

items  Avg Std Min Max 

BtDefx AI-Dar 5.55 0.42 3.97 6.82 

/m Dar 5.97 0.47 4.19 7.41 

BtDefy AI-Dar 0.23 0.32 -0.31 0.78 

/m Dar 0.20 0.32 -0.33 0.76 

BtDefz AI-Dar -0.42 0.06 -0.62 -0.21 

/m Dar -0.50 0.08 -0.76 -0.25 

Thrust AI-Dar 881.07 83.88 621.75 1126.87 

/kN Dar 844.54 83.06 578.62 1081.70 

Torque AI-Dar 4374.14 860.16 2036.86 7200.79 

/kN.m Dar 3920.73 812.11 1721.87 6630.10 

 

Time history comparison of blade tip deformation and the vibration is shown in Figure 

7.42. The deformation of the blade tip in the flap-wise changes significantly, and it 

remains consistent edge-wise. 

In the numerical simulation, the KDPs corresponding to this result, especially the wind 

speed and the rotation speed of the rotor, did not reach the boundary conditions. If the 

difference of the lowest thrust is pursued further, the difference of surge and pitch may 

change dramatically. According to the set difference weighting, SADA chooses 

equalisation optimisation instead of sacrificing the accuracy of some other physical 

quantities like case 1 and case 2. 
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Figure 7.42 Time history of blade tip deformation in first segments. 

 

Table 7.17 Comparison of deformations and aerodynamic loads in case 1. 

items  Avg Std Min Max 

BtDefx AI-Dar 3.93 0.41 2.38 5.34 

/m Dar 4.19 0.46 2.44 5.76 

BtDefy AI-Dar 0.09 0.32 -0.42 0.64 

/m Dar 0.07 0.32 -0.43 0.62 

BtDefz AI-Dar -0.21 0.04 -0.38 -0.08 

/m Dar -0.25 0.05 -0.46 -0.09 

Thrust AI-Dar 568.45 78.50 313.58 819.76 

/kN Dar 522.47 76.55 253.20 766.57 

Torque AI-Dar 1672.13 542.70 241.22 3722.78 

/kN.m Dar 1364.64 490.43 46.60 3228.32 

 

Table 7.17 and Table 7.18 show the statistical data of blade tip deformation and 

aerodynamic load for the two prediction cases. The deformation of the blade tip of case 1 

and case 3 is reduced in flap-wise mean value, compared with the initial KDPs. The 

difference is that in case 1, the mean value of thrust increased, while in case 3, it decreased. 

Figure 7.43 and Figure 7.44 show the deformation of the blade tip in two directions.  
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Table 7.18 Comparison of deformations and aerodynamic loads in case 3 

items  Avg Std Min Max 

BtDefx AI-Dar 3.88 0.41 2.38 5.41 

/m Dar 4.34 0.47 2.92 5.90 

BtDefy AI-Dar 0.12 0.32 -0.37 0.62 

/m Dar 0.15 0.32 -0.35 0.68 

BtDefz AI-Dar -0.21 0.04 -0.40 -0.08 

/m Dar -0.26 0.06 -0.49 -0.12 

Thrust AI-Dar 542.37 68.21 318.65 770.24 

/kN Dar 589.05 74.61 348.99 820.60 

Torque AI-Dar 3556.10 706.78 1483.69 6068.72 

/kN.m Dar 3461.38 705.69 1429.56 5860.04 
 

 

Figure 7.43 Time history of tower top deformation under case 1. 

 

Figure 7.44 Time history of blade tip deformation under case 3. 
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7.5. Summary 

This chapter uses the data from the basic experiment to study case studies of two AI 

technology applications in SADA, which are BP network and reinforcement learning 

optimisation. The BP network is weighted again on the DARwind result to be closer to the 

experimental result. However, supervised learning relies too much on the target data. 

Therefore, if specific physical quantities cannot be obtained from experiments, the BP 

neural network will not optimise the results of DARwind, such as the response on the 

blade. The framework based on KDPs, and reinforcement learning takes the SADA 

method one step further. The BF method verifies the application feasibility of the 

reinforcement learning framework. Randomly changing these KDPs through Gaussian 

distribution makes the SADA result closer to the target data. The physical quantities 

obtained in the basin experiment and other physical quantities cannot be measured. 

Nevertheless, the BF method will no longer apply to those working conditions that have 

not been carried out in the basin experiment. The DDPG method based on the DRL 

framework has the advantages of combining the former methods. Not only can it fit the 

existing target data at the same time, but the trained deep neural network can also be used 

to predict the dynamic performance of FOWT under unknown working conditions. 
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Chapter 8. Application of SADA method with full-scale Hywind data 

The purpose of this chapter is to demonstrate the engineering application of SADA on the 

full-scale measurement data of the Hywind FOWT, provided by Equinor and ORE 

Catapult. The intelligent SADA model is used to do comparisons and predictions, and the 

results show that the AI-trained numerical model can predict the motions of Hywind 

supporting floater with higher accuracy than original DARwind results. In addition, other 

physical quantities that cannot be obtained directly in full-scale measurement but are of 

great concern by industry can also be obtained from a more accurate perspective. Firstly, 

the dimension of the Hywind FOWT and the information about the wind farm where it is 

located, and the challenges in the actual measurement technology will be introduced. 

Secondly, more details of SADA applications are introduced, including data collection 

and KDPs selection. 11 cases are selected based on finding stationary environmental 

conditions relevant to doing simulations of the same events. Typical operational cases 

with a range in wind speed and wave height are provided. Finally, the application results 

of SADA will be displayed and divided into the training part and the forecast part. 

8.1. Hywind Scotland 

The basic information of the Hywind Scotland wind farm and the size of the Hywind is 

introduced in this section. There are five floating turbines and a wave buoy at the site. 

The full-scale measurement data is from FOWT HS4, and the FOWT is circled in red in 

Figure 8.1.  

The turbine type for Hywind Scotland is SWT-66.0-154, supplied by Siemens Gamesa 

(Gamesa, 2021). Furthermore, the operational draft for the floater is 77.6 m. The main 

scantlings and a simple sketch of the supporting Spar-type floater can be found in Table 

8.1. Delta-line arrangement is used for the mooring lines near the fairleads connecting to 

the Spar hull. The main characteristics of the mooring system are shown in Table 8.2. 

Nevertheless, for simplicity, delta-lines are not simulated in the analysis. 
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Figure 8.1 Location of HS4 in the Hywind Scotland. 

Table 8.1 Main scantlings of the floater. 

Z, bottom [m] Z, top [m] Length [m] Diameter bottom [m] Diameter top [m] 

-77.6 -19.6 58 14.4 

-19.6 -4.6 15 14.4 9.45 

-4.6 7.4 12 9.45 

 

Table 8.2 Characteristics of the mooring system. 

Mooring system 

Property Unit Value 

Water depth m 100 

Radius of the anchors m 640 

Draft of mooring point m 20.6 

Number of lines - 3 

Connection point outside wall m 0.8 

Segment name (from top to bottom) - Bridle Main line 

Segment Length m 50 609.7 

Nominal diameter mm 132 147 

Young's modulus MPa 53941 43624 

Segment Dry Mass per meter kg/m 348.5 432.2 

Weight in water per meter kN/m 3.403 3.8707 

 

 



 

163 

8.2. Key technologies in full-scale measurement operation 

The sea environment that Hywind FOWTs must bear is very complex. The motions of the 

floater and the mooring lines loads are critical and coupled with the dynamic responses 

of the entire FOWT system. A detailed description of the full-scale measurement key 

technologies and the collected data properties are introduced in this section.  

8.2.1. Measurements of sea environmental loads  

The definitions of sea environmental loads directions in full-scale measurement projects 

are different from those used in the basin experiments. The directions of wind, wave and 

ocean current are defined in this study according to the regulations used in the 

measurement facilities. In the numerical analysis of the SADA method, the directions of 

sea environmental loads are defined accordingly.  

Wind direction is defined as the direction from which the wind is coming. Thus, 

“northerly wind” is coming from the North, and the wind direction is defined as 0 degrees, 

and “easterly wind” is coming from the East, and the wind direction is defined as 90 

degrees. Wave direction is defined as the direction from which the waves are coming. 

Thus, “northerly waves” are coming from the North, and the wave direction is defined as 

0 degrees, and “easterly waves” are coming from the East, and the wave direction is 

defined as 90 degrees.  

Current direction is defined as the direction in which the current is going. Thus, “northerly 

current” is coming from the South, and the current direction is defined as 0 degrees, and 

“easterly current” is coming from the West towards the East, and the current direction is 

defined as 90 degrees. All coordinates’ definitions are shown in Figure 8.2.  

The wind speed is the undisturbed wind speed measured by the turbine’s anemometer 

located at 99m above sea level. In this Chapter, the only steady wind is considered. The 

wave buoy measures the wave and current conditions. 
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Figure 8.2 Definitions of environmental loads coordinates. 

8.2.2. Measurements of dynamic response data 

Floater motion is an essential part of monitoring work for the dynamic response of the 

entire FOWT system in different sea conditions. In this project, the measurement of the 

5DOF motions of the floater will be introduced (while heave motion was not included in 

the full-scale data). The motion reference unit (MRU) in the nacelle is rotating along with 

the nacelle. These are Euler Angles in the ZYX convention. The roll-axis is pointing 

towards the rotor plane (and blades). With 0 as Yaw-Direction (rotor oriented towards 

North), the coordinate system of the nacelle and tower MRUs are coinciding in Figure 

8.3.  

 

Figure 8.3 Coordinate system convention of the motion measurements. 
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Floater surge and sway GPS measurements are listed in Table 8.3. It is worth mentioning 

that since the GPS is located at the floater level, some of the translational motions may 

be due to rotations (roll/pitch motions). 

Table 8.3 Tower roll & pitch and floater surge & sway measurements. 

Tagname Measurement Unit Location 

HYS-HS4-MRUTower-

RollAngle 
Roll orientation radian 

Tower MRU is located at 

+16.9m rel. sea level 

HYS-HS4-MRUTower-

PitchAngle 
Pitch orientation radian 

HYS-HS4-MRUTower-

YawAngle 
Yaw orientation1 radian 

HYS-HS4-DGPS-

LatitudeDriftOff 

North-south 

motion 
metre GPS antenna is located at 

elevation +15.3m rel. sea 

level 
HYS-HS4-DGPS-

LongitudeDriftOff 
East-west motion metre 

 

8.2.3. Challenges of numerical validation with Full-scale data  

The technology challenges of the FOWTs in the experiment can be improved to a large 

extent in the actual measurement verification. For example, the scaling problem between 

𝑅𝑒  and 𝐹𝑟 , mass distribution, yaw and pitch control, etc (Chen et al., 2020b). 

Nevertheless, it is not a simple matter to directly obtain the dynamic response of a full-

scale FOWT through numerical simulations, especially in a real-time simulation. This 

subsection will introduce these challenges encountered in the numerical simulations in 

detail. 

For full-scale measurement, its complexity is reflected in the uncertainty of the 

measurement data and a challenge to existing theories. The dynamic responses prediction 

of FOWTs involves multiple disciplines, including aerodynamics, hydrodynamics, 

structural mechanics, multi-body dynamics and kinematics, mooring dynamics, etc. 

Many of the functions and formulas involved in these theories are determined based on 

assumptions and empirical parameter values. However, these empirical parameter values 
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may not be proper for FOWTs due to their high nonlinear coupling effect. For example, 

the empirical aerodynamic parameter values, such as the wind resistance coefficient of 

blades, can bring potential problems to the later numerical simulation of the entire 

FOWTs system. Many other critical environmental parameters, such as wave parameters 

in hydrodynamics and mooring line damping values etc. are challenging to be issued 

unique values during the analysis.  

The measured data used in this chapter is mainly based on the 5DOF motions of the floater. 

However, there are no published specific structural parameters of the SWT-6.0-154 wind 

turbine. Nevertheless, the goal of this chapter is to verify the feasibility of the AI-based 

SADA method in the actual measurement and forecasting, so there are several 

assumptions made for using full-scale measurement data in this chapter: 

• The wind, wave and current are assumed to be in the same direction in the 

simulation. 

• Only steady wind and ocean current acting on the floating body is considered. 

• The parameters of the 5MW Hywind wind turbine and tower in OC3 (Jonkman 

and Musial, 2010) are used to replace the wind turbine of HS4.  

• The delta-connection of mooring lines is simplified, directly connected to the hull, 

and an additional yaw stiffness is added. 

8.3. Data collection and SADA analysis 

This section mainly introduces the data collection in SADA. The measured data will train 

the action value network in DDPG in reinforcement learning by defining rewards in 

difference analysis.  
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8.3.1. Case setting 

The setting of the working conditions has unique characteristics, which is to obtain 

enough sample data to train the deep neural network in SADA. There are 11 intervals 

with varying environmental conditions shared. Table 8.4 and Table 8.5 show that 8 of 

them are used for training, and the remaining three are used as forecasts, respectively. 

All-time references are given in Universal Time Coordinated (UTC) format. 0.5h of data 

is provided for 30 minutes. The ‘Date’ column represents the midpoint in the intervals.  

Table 8.4 Training Cases in full-scale studies. 

No. Date 
𝐻𝑠 𝑇𝑝 𝑉𝑤 𝑉𝑐 

(m) (s) (m/s) (m/s) 

1 2018-01-06T07.45.00+00.00_2018-01-06T08.15.00+00.00 2.2 10.6 8.5 0.24 

2 2018-01-09T09.25.00+00.00_2018-01-09T09.55.00+00.00 4.2 8.7 20.4 0.32 

3 2018-01-14T15.25.00+00.00_2018-01-14T15.55.00+00.00 2.1 10.5 5.2 0.32 

4 2018-01-24T11.25.00+00.00_2018-01-24T11.55.00+00.00 2.5 7.3 14.1 0.17 

5 2018-02-24T04.35.00+00.00_2018-02-24T05.05.00+00.00 4.4 10.9 13.7 0.21 

6 2018-04-14T00.25.00+00.00_2018-04-14T00.55.00+00.00 2.3 6.5 15.6 0.12 

7 2018-05-02T03.45.00+00.00_2018-05-02T04.15.00+00.00 3.9 8.3 30 0.27 

8 2018-07-29T03.45.00+00.00_2018-07-29T04.15.00+00.00 3.9 8.3 30.3 0.3 

 

Table 8.5 Prediction Cases in full-scale studies. 

No. Date 
𝐻𝑠 𝑇𝑝 𝑉𝑤 𝑉𝑐 

(m) (s) (m/s) (m/s) 

9 2018-01-24T11.15.00+00.00_2018-01-24T11.45.00+00.00 2.1 6.5 15.5 0.27 

10 2018-02-13T01.05.00+00.00_2018-02-13T01.35.00+00.00 3.2 9.3 13.9 0.09 

11 2018-03-26T23.15.00+00.00_2018-03-26T23.45.00+00.00 3 7.9 16.6 0.33 

 

8.3.2. KDP selection 

In this Chapter, the selected KDPs are divided into two groups. The first group contains 

51 selected KDPs, and the second group contains 108 selected KDPs. In addition to the 

most apparent quantitative difference between the second and first groups (adding some 

unknown dynamic structural parameters), some KDPs are also divided. For example, In 

the numerical simulation, the tower is divided into 11 stations and solved by the modal 
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superposition method. Each station has its own drag coefficient. However, the drag 

coefficient of the tower in aerodynamic in group 1 only be the same initial value (0.5) for 

each tower station. However, in the second group, they are divided into 11 KDPs, which 

all belong to the same tower, but they are arranged in different stations. Due to the 

symmetry, only the diagonal parameters are considered in hydrodynamics for the added 

viscous damping coefficient matrix and the restoring force coefficient matrix. As for the 

vibration mode, polynomial coefficients of the tower and blades are considered 

independent in the two sets of selected KDPs. Since many structural parameters are from 

similar models, the specific parameters are specially set for the corresponding wind 

turbine and tower structure to demonstrate SADA’s optimisation effect better. Table 8.6 

and Table 8.7 show the selected KDPs in group 1 and group 2, respectively.  

Table 8.6 Selected basic KDPs in group 1. 

No. KDPs 

1 

Aero 

Wind speed 

2 Glauert correction 

3 Tower drag 

4 

Hydro 

Current speed 

5-10 Added linear viscous damping matrix 

11-16 Added quadratic viscous damping matrix 

17-22 Added linear restoring matrix 

23-28 Added linear mass matrix 

29 Added static force (3, 3) 

30-32 
Mooring 

Wet density 

33-35 Axial stiffness 

36-40 Kinematics 

And 

Structural 

Polynomial Flap 1st vibration modes 

41-45 Polynomial Flap 2nd vibration modes 

46-50 Polynomial Edge 1st vibration modes 

51 Servo Generator torque constant 
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Table 8.7 Selected additional KDPs in group 2. 

No. KDPs 

1 

Aero 

Wind speed 

2 Glauert correction 

3~13 Tower drag 

14 Cone Angle of blade 

15 

Hydro 

Current speed 

16 Added static force 

17-22 Added linear viscous damping matrix 

23-28 Added quadratic viscous damping matrix 

29-34 Added linear restoring matrix 

35-40 Added linear mass matrix 

41 Significant wave height 

42 Peak period 

43 Shape factor 

44 water depth 

45-47 

Mooring 

Wet density 

48-50 Axial stiffness 

51-53 Length 

54-56 Diameter 

57 

Kinematics 

And 

Structural 

Hub mass 

58 Shaft angle of rotor 

59 Nacelle mass 

60 Floater mass 

61 Floater volume 

62-64 Hub refence point. 

65-67 Hub dynamic refence point 

68-70 Hub inertia about rotor axis. 

71-73 Generator inertia about HSS 

74-76 Nacelle refence point 

77-79 Nacelle dynamic refence point 

80-82 Nacelle inertia 

83-85 Floater refence point 

86-88 Center of Floater mass 

89-91 Floater inertia 

92-96 Polynomial Flap 1st vibration modes 

97-101 Polynomial Flap 2nd vibration modes 

102-106 Polynomial Edge 1st vibration modes 

107 
Servo 

Generator torque constant 

108 Gearbox ratio 
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8.4. Application of SADA for Hywind FOWT 

This section will discuss the SADA analysis results and the feasibility of the SADA 

method from 5DOF (except heave) of the floater and other physical quantities, including 

thrust, tower top and blade tip deformation, etc.  

8.4.1. Natural period 

Before starting numerical calculations, the numerical model is built in DARwind based 

on the dynamic properties of the complete HS4 system provided in Table 8.8. In addition, 

the natural frequency will be calibrated between DARwind and provided results in Table 

8.9. 

Table 8.8 Dynamic properties of the complete HS4 structure. 

Property Unit Value 

Draft m 77.6 

Displacement tons 11754 

Dry mass tons 11483 

Mooring tension tonf 270.9  
X Y Z 

COG m -0.14 0 -50.03 

COB m 0 0 -42.04 

 

Table 8.9 Comparison of numerical model with measured data. 

 SADA Measured 

Data 
DOF Damping 

ratio 

Natural angular 

frequency 

Natural 

period 

Eigen period 

（-） (rad/s) (s) (s) 

Surge 0.0445 0.0654 96.1 96 

Sway 0.0441 0.0654 96.1 96 

Heave 0.0125 0.2436 25.8 25.8 

Roll 0.0223 0.1864 33.7 33.7 

Pitch 0.0233 0.1864 33.7 33.7 

Yaw 0.0425 0.4828 13.0 13.0 
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8.4.2. Motion optimization 

The surge motion of the floater has an apparent motion amplitude. The research on surge 

motion is helpful to understand the motion characteristics of the floater. Therefore, in this 

section, the surge motion of the floater and the 5DOF motions (except heave) will be 

optimised by the SADA method. 

8.4.2.1. Surge motion optimization 

This part will first show the surge motion of the floating Floater optimised by the SADA 

method. The optimisation of a single case can effectively reduce the difference of surge, 

mainly when the SADA contains 108 KDPs. Table 8.10 and Figure 8.4 show the 

optimisation results of 7 cases, which compare the differences between DARwind (the 

initial numerical simulation without any AI-based technology) and SADA. 

Table 8.10 Comparison of numerical simulations and measured data. 

Training Amplitude of Surge DARwind AI-based SADA 

Measured（m） Initial (%) 51 KDPs (%) 108 KDPs (%) 

Case 1 6.997 19.389 14.586 3.948 

Case 2 9.751 55.141 51.545 11.399 

Case 3 7.948 69.342 65.275 48.097 

Case 4 3.327 68.973 50.198 42.342 

Case 5 9.422 39.352 35.037 15.057 

Case 6 3.850 21.873 13.127 11.879 

Case 7 8.972 54.548 50.183 0.313 

 

The orange colour in Figure 8.4 represents the relative difference between the DARwind 

numerical results and the actual measurement results that do not include AI technology. 

Corresponding green and purple curves are the relative differences between the numerical 

results of DARwind, including AI technology and the measured data. It is not difficult to 

see from Figure 8.4 that SADA with 108 KDPs has a significant optimisation effect for 

each working condition than that of 51 KDPs, and its difference has been reduced. 

Especially in case1 and case7. In contrast, SADA with 51 KDPs can only achieve a 
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relatively small difference reduction on the original basis. So, it is indicated that more 

reasonable selected KDPs in the SADA method can lead to a better AI-trained analysis 

tool. In addition, the direction of the waves and wind are 17 and 11 degrees under case 1, 

respectively, but the mean difference of the initial surge under this case is only 19%, 

which maintains a satisfactory degree of consistency in the same direction as the default 

wind and waves. In particular. the mean difference of surge also dropped significantly in 

case 2, case 5 and case 7. To optimise a single motion, SADA can effectively reduce the 

difference between numerical simulation and measured data, especially the model 

containing 108 KDPs.  

 

Figure 8.4 Comparison with different KDPs. 

Figure 8.5 and Figure 8.6 show the time history of the surge in case 1 and case 6. The 

green line tends to approach the measured data (gray line). For every single case, using 

SADA for training can obtain a more accurate mean performance of surge than that of 

DARwind.  
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Figure 8.5 Time history of the Surge in case 1. 

 

Figure 8.6 Time history of the Surge in case 6. 

Then, the data of 7 cases will be used to train the deep neural network to obtain a model 

that can predict unknown operating conditions. Table 8.11 and Figure 8.7 show the 

comparison of the DARwind and SADA in prediction. The prediction data uses the trained 

deep neural network model to assess the states without any training and target data. By 

optimising SADA, the difference between the three cases has been reduced.  
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Table 8.11 Comparison differences of simulation with measured data. 

Prediction Amplitude of Surge DARwind AI-based SADA 

Measured（m） Initial (%) 51 KDPs (%) 108 KDPs (%) 

Case 9 3.166 64.338 39.441 13.897 

Case 10 8.854 36.497 30.881 11.119 

Case 11 11.087 54.784 52.581 20.680 

 

 

Figure 8.7 Mean difference between DARwind and SADA. 

The results show that 108 SADAs can effectively reduce the average surge difference in 

the forecast's three cases, especially in case 9 and case 10. Figure 8.8 and Figure 8.9 

compare the time history curves of the surge under these two cases. It is also worth 

mentioning that the average difference of SADA with 51 KDPs is lower than that of 

DARwind, but it is only reflected in the average. The changing trend of the entire time 

history curve is still consistent with those of DARwind.  
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Figure 8.8 Time history of the Surge in case 9. 

 

Figure 8.9 Time history of the Surge in case 10. 

8.4.2.2. 5DOF motions optimization 

In this part, SADA will use the average value of the five motions provided by the 

measured data of the floater motions for AI training. In this optimisation analysis, only 

the SADA with 108 KDPs is considered.  
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Figure 8.10 shows the training results of 8 cases. The ordinate on the left shows the 

difference changes of the five motions corresponding to the stacked graph, and the dot-

line graph on the right ordinate is the corresponding amplitude change of each motion 

under 8 cases.  

 

Figure 8.10 Comparison of the percentage differences in 5DOF. 

Among the five motions, the difference reductions of surge and sway are of most 

significance, and the changes in amplitude are also relatively noticeable. Taking case 1 as 

an example, the differences of surge and sway have been reduced by nearly 14% and 98%, 

respectively, while the amplitudes of the corresponding mean values have changed by 1m 

and 1.29m, respectively. The yaw motion difference reduced significantly, but the 

amplitude changes are maintained between 0.1-0.81deg.  

Figure 8.11-Figure 8.13 show the comparison chart of the time history curves of the 

surge, sway and yaw in case 1. It can be pointed out that the optimisation results of SADA 

and the measured data are in good agreement with the mean value. 
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Figure 8.11 Time history of the Yaw under case 1. 

 

 

 

Figure 8.12 Time history of the Surge under case 1. 
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Figure 8.13 Time history of the Sway under case 1. 

Figure 8.14 shows the results of the forecasting cases. In the 5DOF forecasting, the 

optimisation of the surge is still of the most significance. Taking case 1 as an example, 

the difference of surge and pitch is reduced by 30% and 172%, and the corresponding 

amplitude concept is 1m and 0.37deg, respectively. 

 

Figure 8.14 Mean difference between DARwind and SADA.  
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Figure 8.15 and Figure 8.16 show the time history curve of roll and surge. 

 

Figure 8.15 Time history of Roll between DARwind and SADA. 

 

Figure 8.16 Time history of Surge between DARwind and SADA. 

Unlike the 51 KDPs model, 108 KDPs model contains some structural parameters of wind 

turbine and tower, which will include more details and influences of the whole system, 

such as the mass distribution and inertia of the system. To optimise a single motion, 

SADA can effectively reduce the difference between numerical simulation and measured 
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data, especially the model containing 108 KDPs. From the results, the SADA method also 

can use AI technology to compensate for the impact of unknown structural parameters to 

the greatest extent and fit the surge that is more consistent with the actual situation. 

Therefore, in optimising 5DOF motions, the SADA containing 108 KDPs was 

comprehensively tested. The result proves that it can effectively reduce the difference in 

the average value. 

8.4.3. Dynamic response prediction 

In this subsection, based on the 5DOF optimisation of SADA, the prediction of other 

physical quantities will be demonstrated, including the thrust force, blade tip and tower 

top deformation. However, the benchmark in this subsection is not based on the 

measurement results but the more stable platform motions. 

8.4.3.1. Axial thrust force and torque 

Axial thrust is an essential physical quantity in the FOWT system, and it has a vital 

influence on the dynamic response of the entire system. Table 8.12 compares the 

aerodynamic axial thrust of the FOWT system in case 9. SADA gives different statistical 

predictions of the thrust force from those of DARwind. This can be found as one of the 

effects of that AI-based SADA method giving a better dynamic response prediction model 

for the objective FOWT because all the dynamic responses of the FOWT system are 

tightly coupled. Figure 8.17 shows the time history of Thrust under case 9. 

A better prediction of FOWT motions by the SADA method can prove its capability to 

predict other critical physical quantities better. 

Table 8.12 Comparison of aerodynamic loads under case 9. 

items 
 

Avg Std Min Max 

Thrust SADA 426.973 28.102 326.854 522.893 

/kN DARwind 442.152 29.449 338.061 541.359 

Torque SADA 2208.890 293.327 1238.620 3261.036 

/kN.m DARwind 2303.343 308.704 1289.868 3394.313 
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Figure 8.17 Time history of thrust force under case 9. 

8.4.3.2. Tower top deformation 

The deformation of the tower is divided into 11 stations in numerical simulation. Because 

the deformation of the tower top is the most significant, Table 8.13 shows the tower top 

deformation of the FOWT system under case 9. The deformation of the top of the tower 

is also reduced due to the reduction of Floater motion. The deformation of the SADA in 

the X direction has not changed much, compared with the results from DARwind.  

 

Table 8.13 Comparison of tower top deformation under case 9. 

items 
 

Avg Std Min Max 

Tower_x SADA 0.164 0.044 0.003 0.298 

/m DARwind 0.170 0.046 0.002 0.311 

Tower_y SADA -0.016 0.001 -0.019 -0.012 

/m DARwind -0.015 0.000 -0.016 -0.014 

 

Although the amplitude of the deformation in the Y direction is small, there is a big 

difference in the time history in Figure 8.18.  
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Figure 8.18 Time history of tower top deformation. 

8.4.3.3. Blades tip deformation 

Due to the large scale of FOWT, the flexible blades are long as 60-100 meters, so the 

deformation of the blade tip will be very significant. Table 8.14 shows the blade tip 

deformation of the FOWT system under case 9. The deformation of the blade in the X 

direction changes significantly, which is due to the change of the normal force caused by 

the Floater motion. Figure 8.19 shows the time history curves in both directions. 

 

Table 8.14 Comparison of blade tip deformation under case 9. 

items 
 

Avg Std Min Max 

Blade_x SADA 3.322 0.188 2.656 4.113 

/m DARwind 3.448 0.197 2.827 4.112 

Blade_y SADA 0.113 0.313 -0.334 0.581 

/m DARwind 0.120 0.318 -0.336 0.590 

Blade_z SADA -0.152 0.017 -0.232 -0.097 

/m DARwind -0.164 0.019 -0.232 -0.110 
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Figure 8.19 Time history of blade tip deformation. 

The prediction results can be used as a reference for blade tip deformation because a 5MW 

wind turbine has replaced the 6MW wind turbine. The blades and towers data are usually 

not available in the full-scale measurement operation because installing deformation 

sensors on blades is a quite challenging and high-cost task. Therefore, it is impossible to 

find a method that can indirectly provide reliable data on blade tip deformation. The 

research in this chapter proved that the SADA method could be a promising solution for 

this challenge. 

8.5. Summary 

This chapter aims to demonstrate the feasibility of the SADA method on predicting the 

dynamic response of FOWT on full-scale measurement. The actual full-scale FOWT in 

operation has a more substantial nonlinear coupling effect, challenging to analyse and 

predict. The AI-based SADA method brings a potential solution to overcome this 

challenge. SADA uses deep reinforcement learning algorithms to allow numerical 

software to carry out self-learning to help traditional numerical tools to make decisions 
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intelligently. It can also effectively help them break through its theoretical and parameter 

limitations to a large extent. 

SADA can reduce the difference between numerical calculation and the measured data 

and can fit missing unknown original design parameters. In contrast, the numerical results 

without SADA optimisation can only rely on the designer to adjust the relevant 

parameters during the design stage.  

The advantages of the SADA method in full-scale measurement application are 

summarised as follows: 

• In the case of the known sea conditions and measured data, SADA can optimise 

the numerical simulation results to achieve higher accuracy and obtain prediction 

results with a moderate increase of KDPs number. 

• SADA can simulate the dynamic responses of the FOWT system, even if some 

design parameters are not available and be replaced by some approximated models. 

For example, the design parameters of the 6MW wind turbine are not available in 

this study by replacing it with a 5MW wind turbine instead.  

• SADA gives different statistical predictions of the thrust force from those of 

DARwind. A better prediction of FOWT motions by the SADA method can prove 

its capability to predict other critical physical quantities better. 
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Chapter 9. Correlation analysis and KDP selection guidance 

This chapter aims to use the SADA method to conduct deeper investigations on KDPs 

and show more details of KDPs in SADA. For example, how to choose KDPs in SADA, 

determine their boundary conditions, and which types of KDPs are more critical. 

Furthermore, how these important KDPs can affect the dynamic performance of FOWTs 

in a nonlinear robust coupling environment. Firstly, the number, boundary conditions, and 

types of KDPs are explored. Secondly, the correlation analysis is carried out between the 

changes of KDPs and the forecast results. Finally, guidance is provided, which can help 

other scholars have a deeper understanding of the SADA method in future. 

9.1. Introduction 

This section introduces a case setting and KDPs in this chapter. In addition, an essential 

process of selecting KDPs for analysis in terms of number and category. The specific 

boundary conditions are grouped and sorted for these KDPs. The case study is proposed 

from the results of the basin experiment. Table 9.1 shows the experimental case used for 

the case of study analysis. 

Table 9.1 Case matrix of KDPs analysis. 

 𝑉𝑐(m/s) 𝐻𝑠(m) 𝑇𝑝(s) 𝛾 𝑉𝑐(m/s) 

Case 11.4 7.1 12.1 2.2 0.8 

 

9.1.1. KDPs selection 

First, the KDPs involved in this chapter are introduced. According to the three KDPs 

discussed above, 39 of KDPs are selected as the basis for the analysis. Table 9.2 shows 

the selected KDPs. Category A, B and C are the categories of Environmental KDPs, 

Disciplinary KDPs and Specific KDPs, respectively. For some KDPs, they will be 

subdivided into multiple values. For example, due to the symmetry of the floating body, 

only the diagonal parameters of the added viscous damping coefficient matrix and the 



 

186 

added restoring force coefficient matrix are considered hydrodynamic disciplinary KDPs. 

Therefore, there will be 6 KDPs in added linear viscous damping matrix. 

Table 9.2 List of all selected KDPs. 

No. Category Discipline KDPs Symbol 

1 

A 

Aero Wind speed 𝑉𝑤 

2 

Hydro 

Current speed 𝑉𝑐 
3 Significant wave height 𝐻𝑠 

4 Peak period 𝑇𝑝 

5 Shape factor 𝛾 

6 

B 

Aero 
Glauert correction 𝑎𝑐 

7 Tower drag 𝐶𝑑𝑇𝑜𝑤𝑒𝑟
𝐴  

8~13 

Hydro 

Added linear viscous damping 

matrix 
𝐶𝑙𝑑
𝐻  

14~19 Added linear restoring matrix 𝐶𝑟
𝐻 

20 Added static force (3, 3) 𝐹𝑠𝑡𝑎𝑡𝑖𝑐(3,3) 

21 

C 

Platform drag 𝐶𝑑𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚
𝐻  

22 

Mooring 

Wet density 𝑀𝑊𝐷  

23 Axial stiffness 𝑀𝐴𝑆 
24 Mooring drag 𝑀𝐶𝑑 

25~29 

Structural 

dynamics 

Polynomial Flap 1st vibration 

modes 
𝜑𝑥
1 

30~34 
Polynomial Flap 2nd vibration 

modes 
𝜑𝑥
2 

35~39 
Polynomial Edge 1st vibration 

modes 
𝜑𝑦
1 

 

9.1.2. Grouping for quantitative analysis 

To better study the impact of different numbers and types of KDPs on the dynamic 

response of the FOWTs system, 39 KDPs are divided into three groups: 

• Group 1: A (5 KDPs). 

• Group 2: A+B (20 KDPs). 

• Group 3: A+B+C (39KDPs). 

Environmental KDPs for wind, wave and current are included in the first group. In the 

second group, the environmental KDPs and disciplinary KDPs are included. In the third 
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group, all 39 KDPs are considered. To establish three groups, the optimisation effect of 

SADA, including different types and numbers of KDPs, can be compared.  

9.1.3. Grouping for boundary condition analysis 

The study of boundary conditions (BCs) for KDPs is also essential, and it is grouped 

based on the range definitions in section 4.4. 

a) Fix (no range). 

b) Small range. 

c) Large range. 

d) No limit ranges. 

A total of 39 KDPs are divided into three categories (A, B, and C), and four BCs are used 

to permutate and combine to obtain eight sets of BCs in Table 9.3. This can maximise the 

impact of different types of KDPs and the effects of their boundary conditions for analysis. 

Taking the BC1 as an example, only A (Environmental KDPs) allows small changes, and 

B (Disciplinary KDPs) and C (Specific KDPs) remain unchanged in SADA calculation. 

Through this grouping method, not only can the influence of different types of KDPs on 

the dynamic response of the FOWTs system be analysed, but the optimisation effect 

comparison under different BCs can also be obtained. 

Table 9.3 Boundary conditions of 39 KDPs in 8 cases. 

No. Fix Small range Large range No range limit 

BC1 B C A - - 

BC2 C A B - - 

BC3 - A B C - - 

BC4 - B C A - 

BC5 - C A B - 

BC6 - - A B C - 

BC7 - - B C A 

BC8 - - C A B 
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9.2. SADA analysis results and discussions 

This section conducts an in-depth analysis of KDPs with the SADA method using the 

above groupings in section 9.1. The experimental data will be used as the AI training data, 

and SADA calculation will be conducted to make the numerical calculation programme 

DARwind intelligent through the weighting and optimisation of KDPs. The optimisation 

effects of different numbers of KDPs and different BCs in SADA are compared and 

discussed. 

9.2.1. The impact of KDP numbers 

This section will discuss the optimisation effects of KDP numbers according to the 

analysis results and comparisons. The deep neural network is trained to optimise the 

correctness of its decision-making by storing the memory of each iteration. The trained 

SADA model uses the corresponding KDPs to calculate FOWTs dynamic response 

prediction, and the result are shown in Figure 9.1.  

 

Figure 9.1 The difference and amplitude change of three groups. 
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The left-hand vertical axis represents the percentage difference change of the 

corresponding physical quantity. The right-hand vertical axis shows the corresponding 

amplitude change. If the percentage difference is positive, the difference between the 

experiment and numerical simulation has decreased by SADA. It can be seen from Figure 

9.1 that the stacked graphs of the optimisation results of the three groups of KDPs reached 

10%, 11%, and 50 %, respectively.  

This also means that the actual difference of the third group with the largest number 39 

of KDPs is 50% lower than the traditional numerical calculation result that does not 

consider the change of KDPs. From the amplitude changes in these physical quantities, 

the fairlead tension and thrust are the most significant. From Figure 9.1, the overall 

optimisation effect of group 3, which has the largest KDPs number 39, is the best.  

The influence of KDPs can be discussed by the differences of different physical quantities 

during the process of SADA training. Figure 9.2 shows the percentage difference of four 

physical quantities in three groups in 100 training iterations. These four physical 

quantities are the surge motion of the platform, the pitch motion of the platform, the 

tension of the first fairlead (Fline1), and the axial thrust of the wind turbine. From Figure 

9.2, one key point can be obtained that the case with the largest KDPs number can reduce 

the oscillation of four physical quantities differences in the SADA training process. The 

percentage difference of four physical quantities in group 1 changes significantly in the 

environmental KDPs only. Especially in the first group, the relationship between thrust 

and pitch is negatively correlated. The oscillations of the four physical quantities in the 

second group are smaller than that in the first group, because this group considers more 

KDP. The trend of pitch and thrust is similar, which can be observed in the third KDP 

group. Only environmental KDPs are considered, for example, simply increasing or 

decreasing wind speed, which cannot effectively improve the prediction of multiple 

physical quantities (due to coupling effect). Therefore, when more KDPs are considered, 

the prediction of these physical quantities can be effectively improved. 
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Figure 9.2 The difference variation of three group in iteration. 

9.2.2. The impact of boundary conditions of KDPs. 

This section discusses the boundary conditions (BCs) of KDPs in the SADA method from 

two aspects: 

• Difference reduction  

• Iterative difference variation 

Through the analysis from these aspects, the influence of KDPs of different BCs on the 

prediction difference of the dynamic response of FOWTs can be found. By analysing the 

difference variation of each physical quantity in the SADA iteration process, the 

convergence effect of KDPs of different BCs can be evaluated. In addition, the statistical 

analysis of the difference variation of each physical quantity in the KDPs of different BCs 

can further determine the oscillating of physical quantities and the variation of the 
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difference values. However, the initial BCs also need to be revised for some exceptional 

cases. 

9.2.3. Difference reduction analysis 

This section uses the selected KDPs to analyse their impact on the FOWTs system under 

different BCs in the SADA method. The Gaussian distribution used for the weighting of 

KDPs is randomly weighted each time. Figure 9.3 shows the percentage differences of 8 

BCs.  

 

Figure 9.3 The difference variation of different BCs. 

The more considerable the positive difference variation, the better the SADA optimisation 

effect, and the differences between original numerical and experimental have been 

significantly reduced. The optimisation effect of the last five cases is much better than 

that of the first three (BC1, BC2 and BC3). In general, SADA balances the optimisation 

of other physical quantities simultaneously by giving up the accuracy of part of the surge, 

which is also the intelligence of the SADA method. From the perspective of BC3 and 
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BC5, only the environmental KDPs have been considered with a more extensive 

boundary condition. The difference variation is noticeable. Comparing BC6 and BC7, the 

change of KDPs did not bring much difference to the four physical quantities. The 

environmental KDPs have a relative interval limit for the difference adjustment of the 

FOWTs system. In contrast, the effect of the last two BCs has declined. For example, in 

BC8, the thrust difference is reduced by about 6.5%, and the corresponding amplitude 

change is about 60kN.  

The first three BCs are fixed or only allow for small changes. From the results, the 

environmental KDPs in the first three groups have a decisive effect on the surge, pitch 

and thrust. The difference of fairlead tension force gradually decreases with the change 

of BCs. Only the fairlead tension reflects little effect from the change of BCs on 

environmental KDPs. When BC2 and BC3 are included for the disciplinary KDPs, the 

difference began to decrease more obvious. BC3 allow three group KDPs to have changes, 

which shows a more reliable fairlead tension prediction. Comparing BC3 with BC4, the 

difference of the surge is increasing, and the differences of the other three physical 

quantities of BC4 have decreased significantly. For example, the difference of thrust is 

reduced by about 10%. That is, the corresponding amplitude change is 93kN. Although 

the difference changes were significant in BC4, BC 5 and BC6, the amplitude of surge 

and pitch did not change significantly relative to thrust and fairlead tension, shown in 

Figure 9.4.  
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Figure 9.4 The amplitude changes of three BCs. 

In general, as the combination of BCs of each group of KDPs changes, some summary 

can be roughly obtained: 

1) The environmental KDPs determine the relative maximum magnitude of the 

prediction accuracy.  

The environmental KDPs have a vital influence on the forecast of the dynamic 

responses of the FOWTs system. Due to the measurement difference in the 

experiment or the simplification of the numerical model, larger BCs of the 

environmental KDPs is recommended. However, for the forecast of some physical 

quantities, such as Fairlead tension force, it is not enough to only consider the 

environmental KDPs.  

2) KDPs with large BCs improve the prediction accuracy significantly.  

KDPs with larger BCs can significantly improve the prediction accuracy of dynamic 

response prediction of FOWTs. In addition, SADA can intelligently balance the 

accuracy of each physical quantity by adjusting KDPs, to avoid overfitting a particular 

physical quantity. 
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9.2.4. Statistical analysis 

This part will discuss the statistical results of difference variation. By analysing the 

difference changes of different physical quantities, the oscillation relationship between 

them and the BCs of KDPs can be found. The statistical results of different physical 

quantities under 8 BCs are shown in Table 9.4 to Table 9.7, including average (Avg), 

standard deviation (Std), sum, minimum (Min), interquartile range (IQR), and maximum 

(Max). Among them, the interquartile range represents the width of a set of numbers from 

small to large, and the middle 50% of the numbers. It can also simply measure the degree 

of dispersion of a set of data. The smaller the interquartile range, the less scattered the 

data. According to the definition of the difference variation above, the Min (minimum 

value of the difference variation) in the table represents the maximum difference between 

numerical simulation and experimental results, vice versa (The Max).  

From the average and standard deviation, the surge is basically in a state of increasing 

difference, especially under large BCs and no BCs. The combined standard deviation 

means that as the range of BCs increases, the data oscillation becomes more significant. 

Although the oscillation of pitch gradually increases with the expansion of BCs, its 

average value is relatively stable, except for BC8.  

Table 9.4 Statistics of percentage difference of surge in KDPs analysis. 

BC No. Avg Std Sum Min IQR Max 

BC1 -1.15 1.87 -606.66 -5.45 -0.97 1.48 

BC2 -1.06 1.81 -557.36 -5.70 -0.74 1.50 

BC3 -1.23 1.92 -648.63 -6.34 -0.89 1.50 

BC4 -7.76 5.32 -4088.86 -19.05 -7.80 1.50 

BC5 -6.66 5.50 -3508.10 -21.94 -5.76 1.50 

BC6 -6.15 5.56 -3241.39 -21.97 -4.96 1.49 

BC7 -10.40 10.94 -5481.91 -56.95 -7.32 1.47 

BC8 -17.38 16.47 -9160.83 -76.35 -12.34 1.49 
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Table 9.5 Statistics of percentage difference of pitch in KDPs analysis. 

BC No. Avg Std Sum Min IQR Max 

BC1 -0.12 1.79 -65.80 -2.46 -0.90 2.44 

BC2 0.25 1.75 131.05 -2.74 0.66 2.82 

BC3 -0.19 1.80 -101.72 -3.24 -0.36 3.10 

BC4 -0.97 9.43 -510.39 -14.41 -1.71 15.64 

BC5 -0.19 8.65 -98.20 -14.99 -0.81 15.64 

BC6 5.43 7.24 2863.66 -16.25 5.95 15.65 

BC7 -0.55 10.83 -290.98 -38.31 0.45 15.54 

BC8 -8.90 14.82 -4689.82 -72.03 -8.14 15.65 

 

 

Table 9.6 Statistics of percentage difference of Fline1 in KDPs analysis. 

BC No. Avg Std Sum Min IQR Max 

BC1 -0.64 2.22 -335.69 -4.19 -0.71 3.50 

BC2 -0.40 2.20 -212.84 -4.43 -0.45 3.62 

BC3 0.18 1.96 93.01 -4.80 0.31 4.40 

BC4 0.59 3.31 309.60 -7.38 0.71 7.15 

BC5 -0.64 3.57 -335.40 -10.31 -0.62 7.97 

BC6 -1.25 3.34 -656.38 -10.51 -0.99 8.98 

BC7 -1.20 4.35 -634.55 -12.94 -0.90 12.29 

BC8 -0.84 7.14 -440.88 -20.89 -0.34 19.83 

 

 

Table 9.7 Statistics of percentage difference of Thrust in KDPs analysis. 

BC No. Avg Std Sum Min IQR Max 

BC1 -0.22 1.89 -116.32 -2.08 -1.00 2.09 

BC2 0.19 1.87 97.52 -2.09 0.66 2.10 

BC3 -0.09 1.93 -45.08 -2.96 -0.20 2.64 

BC4 -2.32 8.44 -1220.32 -14.97 -1.83 10.46 

BC5 -1.86 7.60 -981.08 -14.97 -0.96 10.41 

BC6 3.21 5.68 1691.42 -15.29 4.79 10.45 

BC7 -3.37 10.53 -1776.66 -42.47 -1.07 10.44 

BC8 -11.85 15.19 -6245.00 -79.02 -9.55 10.19 

 

For the fairlead tension, the average value of the difference variation of the eight groups 

of BCs is not significant. The oscillation in the training process is also very small. The 

average performance of axial thrust shows different results according to different BCs. 
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However, the oscillation law of thrust is roughly the same as the other three physical 

quantities. 

Comparing BC3 and BC4 from the above tables, it is not difficult to see that the oscillation 

of the four physical quantities has increased significantly. In this case, the BCs of the 

environmental KDPs become larger, and the remaining two groups of KDPs maintain 

small. In combination with BC4, 5, and 6, even if the BCs of disciplinary and specific 

KDPs expand the range, their impact on oscillation is small, even reducing its oscillation 

in pitch. It is not difficult to conclude that the environmental KDPs are the main reason 

for the more significant oscillation of optimisation. The same conclusion can be obtained 

by comparing BC6 and BC7 in the above tables. 

Figure 9.5 and Figure 9.6 show the statistical bar chart of difference variation statistics 

in 8 BCs in Min and Max. It can be seen from Figure 9.5 that as the BCs increase, the 

maximum difference between numerical simulation and experimental results during 

training will increase significantly. The first three BCs of small boundaries and even fixed 

BCs is relatively stable. From Figure 9.6, with the expansion of the BCs, the maximum 

value of the mean difference decrease gradually increases. For example, in the last five 

BCs, the pitch difference is reduced by 15.6% compared to the initial difference without 

SADA. Combining the two figures, it can be found that although the best performance of 

BC4, 5, and 6 is similar to that under borderless KDPs (BC7 and 8), its worst performance 

is better than that of borderless KDPs. In general, larger BCs have a more robust 

oscillation of prediction accuracy. Based on the above analysis, it can be summarised that 

the oscillation of prediction accuracy is mainly caused by environmental KDPs, which 

play a decisive factor in this phenomenon. The other two types of KDPs may effectively 

reduce the oscillation of prediction accuracy based on specific conditions and physical 

quantities during the expansion of BCs. 
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Figure 9.5 Maximum Difference variation statistics in 8 BCs. 

 

Figure 9.6 Minimum Difference variation statistics in 8 BCs. 

9.2.5. BCs adjustment for specific situation 

This subsection mainly adjusts BCs on the original basis for some specific situations. 

Through these adjustments, not only can the forecast accuracy be better, but also good 

results can be obtained more efficiently. 
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The result without AI-based surge motion is already close to the experimental value (the 

original difference between numerical simulation and experiment is 2%). If the KDPs are 

slightly changed, the difference of surge will have a relatively large oscillation. In addition, 

even though the differences of the first six groups of BCs have risen, they oscillated within 

a small range. For KDPs without limiting BCs, the oscillation of the mean difference of 

surge is very significant. For a specific situation, when one or more dynamic responses 

quantities of the FOWTs system already have a very high accuracy without AI-based, the 

BCs of the first six BCs may be more applicable for training, and they are fully capable 

of reducing the existing differences. For other physical quantities, the optimisation of 

small BCs is minimal for pitch motion. The optimisation effects of the 8 BCs on the 

fairlead tension are similar. Therefore, a larger boundary condition based on KDPs seems 

more reasonable for fairlead tension. The environmental KDPs only have limited 

optimisation of the thrust force. The latter two groups of BCs can reduce the differences 

of thrust force by up to about 8%.  

In general, for the physical quantities of different initial differences between numerical 

simulation and target data, the effects of each BCs are different, which puts forward 

higher requirements for the adjustment of BCs. Based on the above analysis, it can be 

summarised as the following points: 

1) The initial difference of target physical quantity is small 

Due to the slight initial difference, selecting BCs with larger boundary conditions 

requires careful consideration. The significant difference oscillation may happen, 

affecting the prediction accuracy of other physical quantities due to the solid nonlinear 

coupling of the entire system. Therefore, it may be more appropriate to choose smaller 

BCs when the initial difference of target physical quantity is small. 
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2) Significant initial difference of target physical quantity 

It is inevitable to encounter relatively significant initial differences of specific 

physical quantities (for example, greater than 20%). It may be necessary to choose 

between small BCs (disciplinary and specific KDPs) and large BCs (environmental 

KDPs). 

9.3. Correlation analysis 

This section will carry out correlation analysis on the relationship between the weighted 

KDPs and the dynamic response of FOWTs system during the loop of SADA 

optimisation. 

9.3.1. Grouping of boundary conditions for KDPs. 

Table 9.8 shows the categories of three sets of boundary conditions, where A, B and C 

refer to Experimental environment, Disciplinary KDPs, and Specific KDPs, respectively. 

Taking the first group (BC1) as an example, only the environmental KDPs (wind, current, 

and wave) allow small-scale changes, while the other two types of KDPs do not have any 

changes during the SADA loop. 

Table 9.8 Different boundary conditions of 39 KDPs. 

No. Fix Small 

BC1 B C A 

BC2 C A B 

 

9.3.2. Correlation analysis 

The correlation between the parameters can be obtained by changing the percentage 

difference of each KDP and related physical quantities during the training process. 
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9.3.2.1. BC1 

The correlation coefficient is spearman, and the confidence interval is 95. Taking BC1 as 

an example, the correlation analysis results are shown in Table 9.9 (*: the correlation is 

significant at 0.05). A unitless measure (correlation coefficient r) is used to describe the 

correlation in the table. The value of r is [-1, 1]. The closer r is to 0, the weaker the linear 

relationship. Greater than 0 is a positive correlation; less than zero is a negative 

correlation. When the p-value is small, the null hypothesis will be rejected, and its 

threshold is usually set to p=0.05. If p<0.05, the correlation coefficient is not 0.  

It uses a two-tailed significance test, and the * in the table indicates that the correlation is 

significant at the 0.05 level. It is not difficult to see that the 𝑉𝑤 and 𝑉𝑐 have a strong 

correlation with the four physical quantities. Among the three parameters related to waves, 

only surge and fairlead tension are related to 𝑇𝑝 and 𝛾 respectively. This shows that the 

percentage differences of the four physical quantities have no relation with the wave 

parameters during SADA optimisation. This also shows that the wave in the numerical 

model is more accurate. Therefore, following the experimental settings when simulating 

waves, even a small range of fluctuations will not significantly impact the overall 

dynamic response of the FOWTs system.  

Table 9.9. Spearman correlation of KDPs in BC1. 

  𝑉𝑤 𝑉𝑐 𝐻𝑠 𝑇𝑝 𝛾 

Surge 
r -0.17* -0.37* -0.01 -0.06 0.13* 

p 0.00 0.00 0.89 0.20 0.00 

Pitch 
r -0.91* -0.41* 0.03 -0.06 0.05 

p 0.00 0.00 0.49 0.19 0.26 

Fline1 
r 0.22* 0.98* -0.04 0.20* -0.00 

p 0.00 0.00 0.32 0.00 0.96 

Thrust 
r -0.95* 0.21* 0.00 0.07 0.03 

p 0.00 0.00 0.95 0.08 0.46 

 

Figure 9.7 and Figure 9.8 show the scatter distribution diagrams of pitch percentage 

difference and wind speed, fairlead tension percentage difference, and current. The black 
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dots in the figure are data points. The red line is the curve of its linear fit. The percentage 

difference of pitch has a robust negative correlation with wind speed, and its r-value is -

0.91. Correspondingly, the r-value of fairlead tension and the current speed is 0.98. 

Furthermore, F1 has a strong positive correlation with current speed.  

 

Figure 9.7 Linear fit between 𝑉𝑤 and percentage difference of Pitch. 

 

 

Figure 9.8 Linear fit between 𝑉𝑐 and percentage difference of F1. 
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The percentage difference of pitch has a strong negative correlation with wind speed (r=-

0.91) and current velocity (r=-0.41). A bubble chart is a multivariate chart that is a 

variation of a scatter chart. That is, three values are used to determine each data series. 

Data in two dimensions are mapped in a Cartesian coordinate system, replaced by X and 

Y, respectively. However, unlike scatter plots, bubble charts have categorical information 

for each bubble. Its area represents the value of the third data. For example, in Figure 9.9, 

X and Y represent wind speed and current speed, respectively. The bubbles are the 

difference changes of the normalised pitch motion. The size of its area and the 

corresponding colour represent the difference between the pitch and the target data. The 

larger the area, the larger the difference. The colour of the bubbles in the picture 

represents the difference in pitch. It is not difficult to see from Figure 9.9 that the 

decreasing trend of bubbles along the x-axis is more significant. This also echoes the -

0.91 correlation between 𝑉𝑤 and percentage difference of pitch in Table 9.9 

 

Figure 9.9 Bubble map of Pitch. 
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9.3.2.2. BC2 

In BC2, not only the environmental KDPs are considered, but there are also some 

Disciplinary KDPs and Specific KDPs that designers often care about, such as the added 

restoring force matrix coefficient and the added first-order linear damping matrix 

coefficient. Table 9.10 shows the results of the correlation analysis in BC2.  

Table 9.10 Spearman correlation of KDPs in BC2. 

  Surge Heave Pitch Fline1 Thrust 

𝑉𝑤 
r -0.17* 0.47* -0.91* 0.18* -0.95* 

p 0.00 0.00 0.00 0.00 0.00 

𝑉𝑐 
r -0.25* 0.88* -0.30* 0.98* 0.09 

p 0.00 0.00 0.00 0.00 0.04 

𝐻𝑠 
r -0.07 0.21* -0.07 0.24* 0.06 

p 0.12 0.00 0.14 0.00 0.19 

𝑇𝑝 
r -0.13* 0.22* -0.11* 0.25* 0.00 

p 0.00 0.00 0.01 0.00 0.92 

𝛾 
r 0.03 0.13* -0.11* 0.15* -0.08 

p 0.51 0.00 0.01 0.00 0.07 

𝐶𝑟(1,1)
𝐻  

r -0.05 0.00 0.15* -0.05 -0.28* 

p 0.24 0.93 0.00 0.28 0.00 

𝐶𝑟(3,3)
𝐻  

r -0.02 -0.04 -0.03 0.04 -0.04 

p 0.60 0.38 0.47 0.34 0.37 

𝐶𝑟(5,5)
𝐻  

r -0.01 0.13* -0.06 0.15* -0.02 

p 0.82 0.00 0.21 0.00 0.74 

𝐶𝑙𝑑(1,1)
𝐻  

r 0.19* -0.37* 0.16* -0.39* 0.04 

p 0.00 0.00 0.00 0.00 0.35 

𝐶𝑙𝑑(3,3)
𝐻  

r 0.01 0.00 0.00 -0.03 -0.05 

p 0.74 0.98 0.99 0.55 0.29 

𝐶𝑙𝑑(5,5)
𝐻  

r 0.04 -0.08 0.08 -0.09 0.04 

p 0.38 0.08 0.06 0.04 0.32 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐(3,3) 
r -0.02 -0.07 -0.01 -0.03 -0.04 

p 0.71 0.12 0.77 0.52 0.36 

 

The first-order linear added damping significantly affects platform motion and fairlead 

tension. Especially the correlation between percentage difference of heave, fairlead 

tension and 𝐶𝑙𝑑(1,1)
𝐻  reached -0.37 and -0.39, respectively. However, compared to the 

environmental KDPs, other KDPs have a limited impact due to their minor boundary 
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conditions. Unlike BC1, the three-wave parameters have a more significant impact on the 

percentage differences of the five physical quantities. 

In the case of KDPs coupling except for the environment, the relationship between thrust 

and wind speed is consistent with BC1. Figure 9.10 shows the linear fitting results of 

wind speed and thrust.  

 

Figure 9.10 Linear fit between 𝑉𝑤 and percentage difference of Thrust. 

The percentage difference of heave is more sensitive, and the current speed also occupies 

the leading role and reaches 0.88. Figure 9.11 shows the bubble map between 𝐶𝑙𝑑(1,1)
𝐻 , 

𝑉𝑐  and percentage difference of heave. Obviously, the heave percentage difference is 

minor with a lower current speed and a significant platform viscous damping. It can be 

seen in Figure 9.12 that when the current is determined, greater damping will reduce the 

percentage difference of the fairlead tension. 
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Figure 9.11 Bubble map of Heave. 

 

 

Figure 9.12 3D map of F1. 
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9.3.2.3. Discussion 

In general, the study of KDPs is very challenging due to the nonlinear coupling 

characteristics of the FOWTs system. For the analysis of BC1, designers can initially 

understand the relationship between environmental KDP and the percentage difference of 

dynamic response. Ignoring the simplification of the numerical model and the limitations 

of the theoretical analysis method, the environmental KDPs can be modified to a certain 

extent to meet the more realistic essential experimental environment. This is primarily 

through correlation analysis to determine the percentage difference relationship between 

the experimental values or measured values. Taking the current speed as an example, it 

may not directly derive the specific, accurate distribution under the basin environment. 

However, it can be seen from the SADA iteration process that the percentage difference 

of dynamic response in the numerical calculation is more affected by the current than that 

by wave parameters. The metric to measure the size of this difference can be seen as a 

judgment on the importance of its correlation with the variation of the percentage 

difference of each physical quantity. It is supposed that the slight change of current has a 

significant correlation with the percentage difference change of other physical quantities. 

In that case, there is a particular gap between the experimental value of the basin, the 

numerical calculation model, and the actual design condition value. 

The analysis of BC2 is more complicated because it also considers other types of KDPs. 

In the past, the designer could only modify these parameters based on the dynamic 

performance of FOWTs in the basin experimental environment to carry out static water 

attenuation as a reference. The SADA method provided in this article can optimise this 

type of KDP to a certain extent. On the one hand, the modification is based on previous 

basin experiment techniques. On the other hand, the optimisation results consider the 

specific basin environment, and the coupling results between different KDPs, especially 

the sea environment, is not limited to static water. Therefore, based on the correlation of 

such KDPs, designers can further understand the factors that have a more significant 



 

207 

impact on the FOWTs system in a specific environment. Some more exciting phenomena 

were also discovered, such as the correlation between added linear viscous damping with 

the heave. However, the current work does not provide the correlation between KDPs 

quantitively. 

9.4. Summary and guidance 

Based on the determination of physical phenomena, using AI technology to adjust these 

KDPs through self-learning intelligently is one of the critical technologies of the SADA 

method. In addition to a higher accurate numerical model, laws of KDPs are needed. This 

Chapter analyses and discusses the selection and boundary conditions of KDPs involved 

in the field of FOWTs. Finally, corresponding guidance methods and suggestions are 

given for KDPs. 

Comprehensive guidance on the application of KDPs in the SADA method is shown in 

Figure 9.13 to summarise the analysis on the proposed KDPs concept, including how to 

select and set BCs. The specific decision process is as follows: 

• Step 1: Choose the corresponding KDPs in the three categories. 

• Step 2: Use the concept of significant figures to set the boundary conditions 

according to the specific values of each KDP. 

• Step 3: Determine the difference size between the numerical calculation result and 

the target data. 

• Step 4: Adjust the boundary conditions appropriately. 
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Figure 9.13 The flowchart of KDPs selection in SADA. 

It can be pointed out that a better optimisation effect through the SADA method can be 

achieved with the greater number of KDPs, the Environmental KDPs are one of the most 

significant factors affecting the dynamic response of the entire FOWTs system, and all 

KDPs need to cooperate with a relatively suitable boundary condition. It is challenging 

to optimise and verify traditional empirical formulae or parameters involved in FOWTs. 

The SADA method can provide a reference for the verification, optimisation and coupling 

analysis of this type of KDPs. By analysing the environmental KDPs, the environment of 

FOWTs in numerical simulation can be corrected and provide a set of more reliable 

analyses and experimental environment basis. 

The current theories based on the numerical calculation of FOWTs are all based on the 

improved products of onshore wind turbines. Although they have also withstood the test 

of experiments, there are still many gaps in basin experiments of FOWTs and new 

phenomena waiting to be discovered. Therefore, a deeper KDPs analysis was conducted 
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by the SADA method in section 9.3. The correlation analysis of different KDPs during 

the SADA loop is performed. The results can be summarised as the following: 

1. By analysing the environmental KDPs, the sea environment of FOWTs in 

numerical simulation can be corrected and provide a set of more reliable analyses 

and experimental environment basis. 

2. By analysing different categories of KDPs, the accuracy can be further improved 

based on the original values and provide a reference for the coupling analysis of 

FOWTs. 
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Chapter 10. Conclusions and Future work 

As a clean and renewable energy source, wind energy harvesting technology is receiving 

more and more attention worldwide, with the improvement of wind power equipment-

related technologies in recent years. FOWTs are currently one of the most popular ways 

to harvest wind energy at sea. Nevertheless, the dynamic responses prediction of FOWTs 

involves multiple disciplines, which is a strongly nonlinear coupled problem. It will show 

responses to the coupling effects, thus indicating that caution must be taken when 

simplifying the theories for the analysis of FOWTs (Amaral et al., 2021).  

10.1. Proposed SADA method 

SADA is a novel and unprecedented method that can analyse and predict the dynamic 

responses of FOWTs, through the incorporation of an advanced AI training process. It can 

comprehensively optimise the numerical simulation results of adjusting KDPs to achieve 

higher accuracy in the prediction of the dynamic response of FOWTs under complex sea 

states. It can overcome the limitations of engineering-level software and optimise its own 

from the fundamental theoretical part through training experimental results or full-scale 

data. In addition, a better predict of FOWTs motions by the SADA method can prove its 

capability to better predicting other critical physical quantities. SADA can not only deal 

with existing target data but also work well to predict real-time cases. The correlation 

analysis of the KDPs changes in the process of SADA is helpful to promote and break 

through the existing theoretical research process of strongly coupled nonlinear 

phenomena in FOWTs.  

At present, the academic community is focusing on the experimental verification methods 

of large-scale wind turbines (ultra-long blades) and innovative floating support platforms. 

Therefore, it is inevitable to face the steps of how to further develop the integrated design. 

As far as the industry is concerned, integrated design is one of the most important R&D 

directions in the future. At present, the design of FOWTs is mainly carried out by 
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combining numerical calculation with experimental measurement. However, there are 

strong uncertainties in numerical simulation and experiments of FOWTs. For example, 

the uncertainty of FOWTs was specifically proposed in the OC6 project (hosted by 

NREL), including the coupling of multiple factors such as hydrodynamics, aerodynamics, 

and innovative platforms.  

The SADA method uses the advantages of reinforcement learning framework and 

software-in-the-loop to accumulate design experience and builds a numerical simulation 

optimization framework from dynamic response prediction and system characteristics. 

The action-value network in the reinforcement learning algorithm is used for iterative 

loop training, and a key parameter database integrating [response-design parameters-

reward and punishment] is established. In this way, data mining can be carried out in-

depth and can better meet the requirements of designers. Finally, combined with 

experiments, a unique design evaluation method can be developed for the design of 

proprietary FOWTs, and statistical models such as correlation analysis and principal 

component analysis can be used to further analyse some uncertain phenomena to provide 

reliable theory support.  

In addition, the application prospect of SADA is not limited to FOWTs. Any industrial 

design and numerical simulation that needs to optimize uncertain factors can also be 

realized with the help of SADA. For example, fixed offshore wind turbines. In the design 

of fixed offshore wind turbines, the numerical simulation results can be optimized by 

SADA by using the data collected by sensors to obtain the optimal key design parameters 

based on data. There are also some phenomena observed in the actual measurement, 

which can also be discussed through the correlation analysis of the database. Therefore, 

the concept of SADA can be combined with the integrated design of FOWT to provide 

more contributions to industry and academia in the future. 
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10.2. Novelty of the work 

From the case studies of the SADA method and long-term perspective, the novelty of the 

research work can be summarised as: 

1) Optimize existing programs DARwind and combine the AI technology to create a 

novel methodology SADA using big data and numerical simulation. 

2) Comprehensive use of aero-hydro-servo-elastic theories of FOWTs to build an 

integrated coupled dynamic model. And put forward the concept of 

interdisciplinary KDPs involved in the prediction of a full-scale Hywind FOWT. 

10.3. Future work 

The SADA method still faces many challenges. At present, only limited cases are used to 

prove its feasibility. More data and even various types of FOWTs data will be needed in 

the future.  

From the perspective of the application of AI technology, the hyperparameters involved 

have not been sufficiently analysed. The reinforcement learning framework is developing 

rapidly, and more algorithms can be used as SADA options. The most important of these 

is the reliability of DARwind as an agent. Therefore, the reliability of DARwind needs to 

be further improved. The closer its numerical results are to the target data, the more 

accurate and efficient the optimisation effect.  

It is not only dependent on the agent, in addition to the hyperparameters of the deep neural 

network, whether it is the weight of the difference, the setting of the boundary conditions 

of each KDP, or the limitation of each action, etc., there are more verifications and needs 

optimisation. Further exploration takes time and experience. For example, according to 

the designer’s needs, whether the BP optimisation in the ANN can be applied to the 

measured data. In this way, specific physical quantities in the dynamic performance of 

FOWT can be predicted more quickly. In terms of reinforcement learning, more control 
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mechanisms can be added to FOWT to improve its dynamic performance. Others include 

more specific case studies on the mooring, blades, etc. 
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Appendices 

A. Tables 

Table A.1 Different experimental methodologies of FOWTs. 

Methodologies Advantages Disadvantages 

Replace 

thrust 

Use static lines or 

cables to replace a 

static thrust from a 

given turbine’ 

thrust curve. 

Easy to simulate static 

wind loads. Easy layout 

and preparation. 

Lack of control or wind 

variability. No coupling effect 

(wind loads and the platform 

response). Inertial problems. No 

gyroscopic effects. 

Use the drag discs 

to reproduce the 

static wind loading. 

Easy to calibrate wind 

loads. Any wind turbine 

can be simulated. Easy 

to simulate steady wind 

loads for the first part of 

the thrust curve (below 

rated speed). The 

gyroscopic effect 

available by means of a 

spinning disk. 

Need a low turbulence wind 

generation system. The drag disk 

generates vortex shedding 

behind the disk induced 

vibrations. No control system. 

No negative damping (wind 

speed above the rated speed). 

Scaled 

turbine 
Use scaled turbines 

Better represents the 

real scheme. Avoid 

anomalous phenomena 

due to vortex shedding. 

Easy to simulate 

gyroscopic forces. 

Complex mechanical system 

(complex to calibrate wind 

loads). Low flexibility due to 

various blade geometry. Need a 

low turbulence wind generation 

system. Wind variability 

(intensity and directional 

variations) cannot be simulated 

with standard wind generation 

systems. Limited control 

strategies. 

Real-

time 

Hybrid  

Use synchronized 

numerical models 

and actuator (fans 

and winches) to 

replace wind 

turbine loads 

without using wind 

generators. 

The scalability and 

fidelity of basin 

experiment can be 

improved. The 

dissimilar scaling issue 

can be avoided. Any 

scale can be modelled. 

The accurate estimation of the 

influence of sensor cables. The 

quality of virtual subsystems 

will affect results. Almost all the 

theories are adopted in 

numerical simulation which 

relies on assumptions. More 

problems (design, manufacture 

and optimization) may come, 

due to the need to find 

alternatives actuation system. 

Use a hydraulic 

transmission 

system to simulate 

6DOF platform 

motions in a wind 

tunnel with a scaled 

wind turbine 

model. 
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Table A.2 The algorithm of DDPG. 
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