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Over the 50 year history of Numerical Weather Prediction (NWP), the focus

has been on the modeling and prediction of meteorological parameters such as sur-

face pressure, temperature, wind, and precipitation. However, due to concerns over

pollution and to recent advancements in satellite technologies, an increasing number

of NWP systems have been upgraded to include capabilities to analyze and predict

the concentration of trace gases. This dissertation explores some of the specific is-

sues that have to be addressed for an efficient modeling of the concentration of the

trace gases. These issues include modeling the effects of convective mixing on the

concentration of the trace gases and the multivariate assimilation of space-based

observations of the concentration of the trace gases.

In this dissertation, we assimilate observations of the concentration of trace

gases with an implementation of the Local Ensemble Transform Kalman Filter

(LETKF) data assimilation system on the National Centers for Environmental Pre-



diction (NCEP) Global Forecast System (GFS) NWP model. We use a modified

version of the NCEP GFS model that was operational in 2004 at resolution T62/L28.

We modify the model by adding parameterization for the process of convective mix-

ing of the trace gases. We consider two specific trace gases: ozone (O3) and carbon

monoxide (CO). We incorporate these gases into the model by using 3-dimensional

time-dependent O3 and CO production-loss values from the Real-time Air Quality

Modeling System (RAQMS) global chemical model. The O3 observations we as-

similate are from the Solar Backscatter UltraViolet generation 2 (SBUV/2) satellite

instrument (version 8) flown on the NOAA 16 and 17 satellites. The CO observations

we assimilate are from the Measurements Of Pollution In The Troposphere (MO-

PITT) instrument (version 3) flown on the NASA TERRA satellite. We also develop

a new observation operator for the assimilation of retrievals with the LETKF.

We carry out numerical experiment for the period between 000UTC 1 July 2004

to 000UTC 15 August in the summer of 2004. The analysis and forecast impact

of the assimilation of trace gas observations on the meteorological fields is assessed

by comparing the analyses and forecasts to the high resolution operational NCEP

GFS analyses and to radiosonde observations. The analysis and forecast impact on

the trace gas fields is assessed by comparing the analyzed and predicted fields to

observations collected during the Intercontinental Chemical Transport Experiment

(INTEX-A) field mission. The INTEX-A field mission was conducted to characterize

composition of pollution over North America, thus providing us with ozonesonde and

aircraft based verification data.

We find that adding the process of convective mixing to the parameterization



package of the model and the assimilation of observations of the trace gases improves

the analysis and forecast of the concentration of the trace gases. In particular, our

system is more accurate in quantifying the concentration of O3 in the troposphere

than the original NCEP GFS. Also, our system is competitive with the state-of-the-

art RAQMS atmospheric chemical model in analyzing the concentration of O3 and

CO throughout the full atmospheric model column.

The assimilation of O3 and CO observations has a mixed impact on the analysis

and forecast of the meteorological fields. We find that most of the negative impact on

the meteorological fields can be eliminated, without much reduction to the positive

impact on the trace gas fields, by inflating the prescribed variance of the trace gas

observations.

The appendices of this dissertation reproduces two papers on related research.

The first paper covers the northward front movement and rising surface temperatures

in the great planes. The second paper covers the assessment of predictability with

a Local Ensemble Kalman Filter
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Chapter 1

Introduction

Anthropogenic activities have been significantly perturbing the chemical com-

position of the atmosphere through emissions of trace gases. Thus, improving our

air quality modeling capabilities is important for the safety and the well-being of

the public. In particular, the improved modeling capabilities are expected to lead

to a better understanding of the chemical composition of the atmosphere and to im-

proved forecasts of the concentration of the trace gases. Chemical transport models

integrate the effects of chemical sources, chemical formation-destruction processes

and atmospheric dynamics. The quality of the representation of the meteorological

processes in the model has a significant effect on the quality of the modeling of the

atmospheric constituents (e.g., Miyazaki 2009). Thus, it is desirable to use an ad-

vanced, highly tuned Numerical Weather Prediction (NWP) model as the dynamical

component of the transport model. In addition, incorporating chemical processes

into a NWP system has the potential to improve the analysis and the forecast of

the meteorological parameters. One way to achieve this, without increasing the

computational expense to an unaffordable level, is to externally calculate the chem-

ical sources and chemical formation-destruction processes with a chemical model,

and then incorporate this information into a NWP system through a 3-dimensional

spatio-temporally varying production-loss parameter fields.
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Data assimilation is the process of obtaining the initial conditions (analysis) of

a model forecast based on observations and the model dynamics (Kalnay 2003 and

Evensen 2007). Advanced data assimilation schemes are multivariate statistical-

dynamical techniques that can take advantage of information about the covariance

between uncertainties in the forecast-based estimates of the different model vari-

ables. Such covariance is expected to exist between the concentration of chemical

constituents with long lifetimes and the meteorological variables.

The two advanced approaches for data assimilation are 4-Dimensional Vari-

ational assimilation (4D-Var) and Ensemble based Kalman Filtering (EnKF). In

this dissertation, we focus on one specific ensemble-based Kalman Filter, the Lo-

cal Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007). While other

studies have demonstrated that univariate EnKF can provide high quality analysis

of the concentration fields (e.g., Arellano et al. 2007; Constantinescu et al. 2007)

to the best of our knowledge, ours is the first successful attempt for the multivari-

ate assimilation of meteorological and chemical observation with an ensemble-based

Kalman filter. We assess the effect of the chemical data assimilation on the analysis

and the ensuing forecast of the meteorological fields with both a univariate and a

multivariate version of LETKF for the assimilation of the chemical observations.

There are several long-lived chemical constituents in the atmosphere, that are

currently being observed by satellites. The use of satellite observations in data as-

similation presents a choice of either directly using the radiance observations or using

processed retrieval observations. In NWP the direct assimilation of radiances has

replaced the assimilation of retrievals for such variables as temperature and humid-
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ity (Thepaut, 2003). The advantages and disadvantages of radiance and retrieval

assimilation are listed in Table 1.1. The primary advantages of radiance assimilation

are that A1) the results are not affected by external processes for which the error

characteristics may be poorly known and A2) the radiance observations are less af-

fected by spatially correlated errors than the retrievals. The main disadvantages of

radiance assimilation are that D1) the increased computational cost associated with

the use of a radiative transfer model in the observational operator (the observation

operator maps the model state to the observables in the data assimilation) and D2)

the cost of doing quality control for each observation. Though the assimilation of

satellite radiance observations have been embraced by the NWP community, trace

gas observations have been typically assimilated as retrievals. The main advantages

of retrieval assimilations are that A1) the observations are expressed in the form of

geophysical fields, hence, the observation operators are less computationally expen-

sive and that A2) the quality control and monitoring is handled by the experienced

organizations producing the retrievals. The main disadvantages to retrieval assimi-

lation are that D1) they are affected by external processing characteristics (such as

a priori information and smoothing) that introduce spatially correlated observation

errors with often not very well known error characteristics. In the present study, we

assimilate retrievals of the trace gases. However, we use advanced observation oper-

ators (originally proposed by Rodgers 2000 and discussed in Chapter 2) to account

for the effects of the process that produces the retrievals.

Our NWP system is based on the NCEP (National Centers for Environmental

Prediction) GFS (Global Forecast System), into which we incorporate the chem-
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Table 1.1: Advantages and disadvantages of radiance and retrieval assimilation.
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ical production-loss parameters provided by the RAQMS (Real-time Air Quality

Modeling System) (Pierce et al., 2007) chemical model. The meteorological obser-

vations we assimilate include all surface pressure, temperature, and wind meteo-

rological observations operationally assimilated by NCEP, but they do not include

the operationally assimilated radiance observations. The two chemical constituents

we assimilate are ozone (O3) and carbon monoxide (CO). The constituents have

long lifetimes in the free troposphere and lower stratosphere and are of interest to

air quality. The chemical constituent satellite observations include SBUV/2 (Solar

Backscatter UltraViolet generation 2) version 8 ozone retrievals and MOPITT (Mea-

surements Of Pollution In The Troposphere) version 3 carbon monoxide retrievals.

In what follows we refer to these species as trace gases.

To evaluate the resulting impact of multivariate data assimilation of trace

gases on the meteorological fields we compare our analyses and forecasts to the

operational NCEP GFS analyses and to radiosonde observations. To evaluate the

impact of data assimilation on the trace gas fields, we compare our analyses and

forecasts to in situ aircraft measurements and to other independent observations

collected in the INTEX-A (Intercontinental Chemical Transport Experiment) field

mission over the North Eastern United States.

Chapter 2 describes the design of our experiments. Chapters 3 and 4 present

and discuss the results of the assimilation experiments with the SBUV/2 O3 retrieval

and the MOPITT CO retrievals. Chapter 5 draws the conclusions of our research.

Appendix A reproduces a paper on northward front movement and rising surface

temperatures. Appendix B reproduces a paper on assessing predictability with a
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Local Ensemble Kalman Filter.
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Chapter 2

Background

In this chapter we discuss the experiment design to assimilate trace gas satellite

retrievals in the 2004 operational NCEP GFS using the LETKF (Local Ensemble

Transform Kalman Filter) algorithm. The design includes our modifications to

the NCEP GFS and LETKF schemes, expanding both the number of variables

modeled and observations assimilated. We also develop a modified version of the

assimilation observation operator for retrieval assimilation, a localization scheme

and a “covariance inflation” strategy for the trace gas observations.

2.1 The Model

All experiments are carried out with a version of the NCEP GFS model that

was operational at the beginning of 2004. The model is a spectral model, mean-

ing that the model state variables are height-dependent coefficients of a spherical

harmonic expansion of the atmospheric fields on the globe. The model includes the

following spectral coefficient variables: two-dimensional vorticity and divergence,

virtual temperature, logarithm of the surface pressure, specific humidity, and O3

mixing ratio. To save computational time, we use a reduced resolution of T62 in the

horizontal direction (about 150 km in the mid-latitudes) and 28 sigma levels in the

vertical direction. The full operational resolution model (whose operational anal-
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ysis is used as a verification of our meteorological field impacts in Chapters 3 and

4) in 2004 was T254 in the horizontal direction (about 35 km in the mid-latitudes)

and 64 sigma levels in the vertical direction. We made further modifications to the

NCEP GFS, adding a convective mixing scheme for the trace gases and replaced

the input based on climatology for the production and loss of the traces gases with

a formulation from the RAQMS model.

2.1.1 NCEP GFS O3 Modeling

The O3 mixing ratio is one of the prognostic variables in the operational setup

of the GFS. The primary use of O3 field in the 2004 operational NCEP GFS model

is for the computation of the stratospheric radiative processes. Thus, the model is

tuned to account for the distribution of O3 in the stratosphere, but not in tropo-

sphere.

The spatio-temporal evolution of O3 is described by a tracer equation, which

feeds back on the dynamics through stratospheric radiative processes. The O3 con-

tinuity equation is solved by first applying the transport algorithm to the O3 field,

followed by the chemistry production-loss operator. In the operational GFS, the

transport and chemistry time steps are 7.5 minutes. The continuity equation for O3

can be written as:

∂χ

∂t
= −v · ∇ (χ) + P −Dχ+ χd. (2.1)

Here χ is the O3 mixing ratio in kg/kg, v is the horizontal and vertical velocities, P

is the photochemical production rate, D is the photochemical destruction rate per
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unit O3 mixing ratio (destruction coefficient) and χd is weak horizontal and vertical

diffusion of ozone. The advection term v · ∇ (χ) is composed of the velocity vector

v and the gradient of the O3 mixing ratio field ∇ (χ) which gives the contribution

due to air motion to the local O3 mixing ratio.

The advection terms v · ∇ (χ) are evaluated to produce an intermediate con-

stituent field χ∗; the photochemical terms are accounted for by writing Equation

2.1 as a difference equation:

χ (t)− χ (0)

∆t
=
χ∗ − χ (0)

∆t
+ P − Lχ (t), (2.2)

and solving

χ (t) =
χ∗ + P∆t

1 + L∆t
, (2.3)

(Rood et al., 1991).

The production P and destruction coefficientD for the 2004 operational NCEP

GFS O3 mixing ratio variable are derived from the zonal and 10-day averages (Derber

et al., 1998) obtained from the NASA Goddard Space Flight Center offline two-

dimensional middle atmosphere model (Fleming et al., 2002). In Figure 2.1 we show

the production and destruction coefficient for 000UTC 18 July 2004 to 000UTC 28

July 2004. The model contains basic tropospheric chemical modeling with neither

daily nor longitudinal variation in the O3 production-loss parameters. Note the lack

of latitudinal variation to the O3 production parameter at the surface. Due to large

spatially (and temporally) varying surface emissions of O3 and O3 precursors in the

real atmosphere, this approach poorly represents the tropospheric O3 production.

In Figure 2.2 (a), we show the high resolution operational NCEP GFS analysis
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Figure 2.1: 2004 operational NCEP GFS O3 production-loss parameters
for 000UTC 18 July 2004 to 000UTC 28 July 2004. Panel (a) shows pro-
duction parameter (P ) in mixing ratio per second and panel (b) shows
destruction coefficient parameter (D) in per second, both from the Equa-
tion 2.1.
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for the zonally averaged total column O3 from 000UTC 1 July 2004 to 000UTC 15

August 2004. The NCEP GFS total column O3 is compared with a 45 day model

integration without assimilation of observations, initialized with the 000UTC 1 July

2004 high resolution operational NCEP GFS analysis (see Figure 2.2 (b)). From

Figure 2.2 it can be seen that the main structure of the progression of O3 over the

45-days is maintained in the model integration.

For the ozone, along with production-loss parameterization, the 2004 opera-

tional NCEP GFS model also includes Rayleigh damping and a parameterization of

some of the sub-grid scale processes, such as vertical diffusion. Rayleigh damping

is used to damp gravity waves caused by a rigid lid top boundary on the model.

Vertical diffusion is the vertical turbulent eddy diffusion of momentum, water vapor

and sensible heat. The 2004 operational O3 model does not include the sub-grid

scale process of convective mixing because, as mentioned earlier, the O3 is primarily

used for the computation of stratospheric radiative processes. However, for the as-

similation of O3 observations in the upper troposphere, the lack of convective mixing

of the O3 becomes an important issue.

2.1.2 Modified Trace Gas Convection

In the 2004 operational version of the NCEP GFS the cumulus convection is

modeled by a simplified Arakawa-Schubert scheme (Arakawa and Schubert 1974;

Grell 1993). This cumulus convection parameterization is formulated by dividing

the atmosphere into a few layers and calculating a simplified cloud model in the grid
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Figure 2.2: Zonally averaged total column O3 in Dobson units (DU) from
000UTC 1 July 2004 to 000UTC 15 August 2004. Panel (a) shows the
high resolution operational NCEP GFS analysis and panel (b) shows
the 45-day model integration without assimilation of observations ini-
tialized with the 000UTC 1 July 2004 operational NCEP GFS analysis
meteorological and O3 fields and using NCEP GFS production-loss O3

parameters.
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space to provide the statistical effects of moist convection on the model variables.

Hereafter, we refer to this parameterization as convective mixing. One of the effects

of convection on the large scale atmospheric processes is the redistribution of mo-

mentum in the vertical. However, in the operational NCEP GFS, the only tracer

affected by the cumulus convection parameterization is water vapor.

Our first modification to the 2004 operational NCEP GFS model is the ad-

dition of ozone and CO in the convective parameterization. The goal of a more

sophisticated parameterization is to produce a more realistic vertical transport of

the trace gases in the model. We implement the transport by using scalar mo-

mentum mixing as a template for the trace gas convective mixing. We discuss the

verification of the effect of the changes we make to the model in Chapters 3 and 4.

The impact of the assimilation of trace gas observations on the meteorological

fields is determined by the accuracy of the transport model, since the ensemble of

transport models build the covariances between the uncertainties in the estimation of

the meteorological variables (atmospheric flow) and the trace gases. Parameterized

sub-grid scale processes, including that of atmospheric convection, do not provide a

representation of the dynamics of the sub-grid scale process. Instead, they provide a

representation of the expected effects of the sub-grid processes on the resolved larger

scales (e.g. Emanuel 1994). Thus, we can expect to extract only limited information

about the meteorological variables from the trace gas observations.
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2.1.3 Modified O3 Modeling

In addition to including convective mixing in the model of O3, we also updated

the production P and destruction coefficient D parameters (Equation 2.1) using

the RAQMS model (Pierce et al., 2007). The RAQMS model is a state-of-the-

art unified stratosphere-troposphere global chemical model. We use the RAQMS

model reanalysis to improve upon the simple tropospheric chemical modeling of the

production-loss parameters in the 2004 operational NCEP GFS model.

The RAQMS O3 production-loss parameters are taken from the post INTEX-

A mission 1.4◦ × 1.4◦ reanalysis from 000UTC 1 July to 000UTC 15 August 2004.

RAQMS uses the UW-Hybrid dynamics at its core with the meteorological fields ini-

tialized to the operational NCEP GFS analysis every 6 hours in the reanalysis. Time

averaged RAQMS O3 production-loss parameters were archived at 6-hour intervals

and used to update the NCEP GFS production-loss every 6-hours, as opposed to

every 10 days in the 2004 operational NCEP GFS, resulting in a better modeling

of the diurnal changes of O3 (There is a large diurnal variation in O3 due to the

primary component of formation and destruction from photochemical processes).

RAMQS utilizes a unified stratosphere/troposphere chemistry module devel-

oped to represent photochemical processes governing O3 formation and destruction

from the surface of the earth up to 60 km altitude in the Earth’s atmosphere. The

chemical formulation is based upon a family approach where closely coupled chem-

ical species are handled as a unit. The partitioning of the families is based on

photochemical equilibrium approximations. The continuity equations are solved for
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each of 55 families and individual constituents. Equilibrium concentrations of 86

separate species are also determined. RAQMS includes a full treatment of tropo-

spheric Non-Methane HydroCarbon (NMHC) chemistry (Pierce et al., 2007).

For the RAQMS reanalysis the following observations were assimilated: the

Stratospheric (tropopause and above) HALogen Occultation Experiment (HALOE)

observations, Stratospheric Aerosol and Gas Experiment (SAGE) II observations,

and SAGE III (Rault and Taha, 2007) solar occultation observations. These ob-

servations were assimilated at 6 hour (0000 UT, 0600 UT, 1200 UT, 1800 UT)

intervals to provide constraints on the stratospheric O3 mixing ratios. Assimilation

of global TOMS V8 cloud cleared total column O3 observations were used to provide

constraints on the RAQMS total column analysis. All of the observations were as-

similated using a Statistical Digital Filter (SDF) assimilation system, an algorithm

is based on Optimal Interpolation (OI) data assimilation (Stobie, 2000).

In Figure 2.3 we show the zonal average of the RAQMS O3 production and

destruction coefficient parameters for the 6 hour period from 000UTC to 600UTC

19 July 2004. In contrast to Figure 2.1, this figure shows spatially varying surface

O3 production-loss distribution due to variations in precursor emissions.

The production-loss parameterization modifications are tested by performing

a 45-day integration of the model without assimilating any data. The model is

initialized from the high resolution operational NCEP GFS analysis meteorological

fields and from the RAQMS analysis O3 fields on 000UTC 1 July 2004. The re-

sults (Figure 2.4) show improved behavior of the model. The differences between

our NCEP GFS integration and the RAQMS analysis is partly due to the coarser
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Figure 2.3: RAQMS O3 production-loss parameters used in the modified
2004 operational NCEP GFS for the period of 000UTC to 600UTC 19
July 2004. Panel (a) shows production parameter (P ) in mixing ratio
per second and panel (b) shows destruction coefficient parameter (D) in
per second, both from Equation 2.1.
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stratospheric vertical resolution in our version of the NCEP GFS and partly due

to the assimilation of the HALO and SAGE measurements constraining the strato-

spheric column in the RAQMS analysis. The stratospheric O3 mechanisms used in

RAQMS are from the Interactive Modeling Project for Atmospheric Chemistry and

Transport (IMPACT) model, a model that has been known to have a climatological

low bias in the stratosphere (Al-Saadi et al., 2004).

2.1.4 Modified CO Modeling

Unlike ozone, the operational form of the NCEP GFS model has never in-

cluded carbon monoxide (CO) as a prognostic variable. We incorporated CO pre-

diction capability into the model using the same tracer formulation as for the ozone.

This includes applying the same sub-grid scale process parameterizations (Rayleigh

damping, vertical diffusion and convective mixing) to the CO as to the ozone. One

notable difference between CO and O3 in the model is that the CO field is not used

in the radiative process calculations and thus does not feedback on the meteorolog-

ical fields within the model. As for ozone, the CO production-loss parameters are

derived from the RAQMS model reanalysis and updated every 6-hours.

In the RAQMS model, climatological emissions of CO include anthropogenic

and natural sources and are largely based on 1◦ × 1◦ gridded data available from

Global Emissions Inventory Activity (GEIA, cited 2009) and Emission Database

for Global Atmospheric Research (EDGAR, cited 2009) with updates for Asian

emissions from Streets et al. (2003). To augment the biomass burning inventories,
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Figure 2.4: Zonally averaged total column O3 in Dobson units (DU)
from 000UTC 1 July 2004 to 000UTC 15 August 2004. Panel (a) shows
the RAQMS analysis and panel (b) shows the 45-day model integration
without assimilation of observations, initialized with the 000UTC 1 July
2004 operational NCEP GFS analysis meteorological fields and RAQMS
analysis O3 fields and using RAQMS production-loss O3 parameters.
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RAQMS uses a time-dependent ecosystem-based approach developed by Soja et al.

(2004) to predict wildfire CO emissions. RAQMS extends this algorithm to predict

global biomass burning emissions using MODerate Resolution Imaging Spectrora-

diometer (MODIS) thermal anomaly data to provide area burned estimates. More

details on the CO chemistry and emissions in RAQMS is found in Pierce et al.

(2007).

The sub-grid scale processes and production-loss parameterization modifica-

tions are tested by performing a 45-day integration of the model without assimilating

any data. The model is initialized from the high resolution operational NCEP GFS

analysis meteorological fields and from the RAQMS analysis CO fields on 000UTC

1 July 2004. The results of the integration are shown in Figure 2.5 along side the

results from the RAQMS reanalysis. The figure shows the time series of zonally av-

eraged total column CO. It is clear from these figures that there is good agreement

between the two panels.

2.2 LETKF Assimilation

For all assimilation experiments in this study we use the Local Ensemble Trans-

form Kalman Filter (LETKF) data assimilation system (Hunt et al., 2007) described

in Szunyogh et al. (2008). Several previous experiments have been conducted with

different implementations of this data assimilation system. An implementation of

the Local Ensemble Kalman Filter (LEKF) (Ott et al., 2004), the precursor to the

LETKF, on a reduced resolution 2001 operational version of the NCEP GFS atmo-
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Figure 2.5: Zonally averaged total column CO in molecules cm−2 from
000UTC 1 July 2004 to 000UTC 15 August 2004. Panel (a) shows the
RAQMS analysis and panel (b) shows the 45-day model integration with-
out assimilation of observations, initialized with the 000UTC 1 July 2004
operational NCEP GFS analysis meteorological fields and RAQMS anal-
ysis CO field and using RAQMS production-loss CO parameters.
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spheric model has been successfully tested using simulated observations (Szunyogh

et al., 2005). The LEKF was also used to generate initial conditions for the as-

sessment of predictability in the reduced resolution 2001 operational NCEP GFS

model (Kuhl et al. 2007/Appendix B). An implementation of the LETKF assimi-

lation scheme on a reduced resolution version of the 2004 operational NCEP GFS

model has been successfully tested for the assimilation of observation of the real

atmosphere Szunyogh et al. (2008). The same implementation of the LETKF on

the NCEP GFS was also used to study atmospheric predictability by Satterfield

and Szunyogh (2009). In addition, the implementation of the LETKF on the 2004

NCEP GFS was also used for the assimilation of microwave, AMSU-A (Advanced

Microwave Sounding Unit), radiance observations by Aravequia et al. (Submitted).

The experiments in this dissertation are an extension of the aforementioned

efforts in several aspects. First, our experiments are for the summer of 2004 while all

earlier studies were for the winter of 2004. Secondly, our study is the first attempt

to extend the LETKF-NCEP GFS analysis/forecast system to the assimilation and

prediction of trace gas concentrations.

In what follows, we first introduce the major components of the data assimi-

lation algorithm. Then, we discuss the conventional forms of retrieval observation

operators as well as the modified form we use in our experiments. We also discuss

our method for vertical localization, a key aspect of the LETKF, for retrievals, and

the covariance inflation for O3 and CO observations.
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2.2.1 LETKF Algorithm

At analysis time tn we assimilate observations from the observation time win-

dow

τn = (tn −
∆t

2
, tn +

∆t

2
), (2.4)

centered at analysis time tn and with a time window width of ∆t. We introduce the

notation γn for the state space trajectory of the model in τn, that is,

γn = x (t) , t ∈ τn, (2.5)

where the vector x (t) is the finite-dimensional representation of the atmospheric

state on the model grid. The inputs of the assimilation process are the vector of

observations yo
n, from τn, and a K-member ensemble of analyses x

a(k)
n−1, k = 1,. . . ,

K, from the previous analysis time tn−1 = tn −∆t.

As all other current data assimilation systems, the LETKF consists of a fore-

cast and a state update step. In the forecast step of the LETKF, each ensemble

member is integrated for a time interval of
3

2
∆t, using the K members of the anal-

ysis ensemble x
a(k)
n−1, k = 1,. . . , K, as initial conditions, to obtain an ensemble of

background forecast trajectories γb(k)
n , k = 1,. . . , K. In our current implementation

of the LETKF, the members of the background ensemble are six-hour forecast tra-

jectories starting at 3-hour forecast lead time and ending at 9-hour forecast lead

time relative to tn−1.

The formulation of the state update step of the LETKF, similar to that of all

other modern data assimilation schemes, is based on the assumption that we have
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the knowledge of an observation operator h (γn) that satisfies the equation

yo
n = h

(
γt

n

)
+ εn; t ∈ τn. (2.6)

Here, γt
n is the model representation of the (unknown) true system trajectory, and

εn is a vector of Gaussian random observation noise with zero mean and a known ob-

servation error covariance matrix Rn. In practice, the observation operator typically

consists of an interpolation of γn to the time and location of the observations and a

conversion of the model variables to the observed quantities. In our implementation

of the LETKF on the NCEP GFS, the time interpolation component of h (γn) for

all types of observations is performed by storing the background trajectories γb(k)
n ,

k = 1,. . . , K, with a 3-hour resolution and applying a linear interpolation to the

stored model fields to obtain the ensemble of model states at the observation time

with a one minute resolution.

In what follows, we discuss how to obtain an analysis xa
n at time tn, thus we

drop the subscript n. The LETKF obtains the vector components of the analysis

xa independently for each grid point. We define a local state vector x`, which is

composed of the model variables at model grid point `. The LETKF generates a K-

member ensemble of local analyses, x
a(k)
` , k = 1,. . . , K by computing an ensemble

of “weight” vectors w
a(k)
` , k = 1,. . . , K such that

x
a(k)
` = xb

` + Xb
`w

a(k)
` (1 + ρ)

1
2 . (2.7)

Here, xb
` is the ensemble mean of the local background state vectors x

b(k)
` , k = 1,. . . ,

K, while Xb
` is the matrix of the background ensemble perturbations, whose k-

th column is the k-th background ensemble perturbation xb(k) − xb. Hereafter, we
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denote the ensemble mean of a quantity, by simply dropping the superscript (k) that

refers to a particular ensemble member. The weights w
a(k)
` are defined in section

2.2.2 and ρ ≥ 0 is a multiplicative covariance inflation factor. In our implementation,

ρ is a smoothly varying three-dimensional scalar field. We should note that in this

implementation we are inflating the increment as well as the ensemble covariance.

Our best estimate of the state at location ` is the ensemble mean analysis

xa
` = xb

` + Xb
`w

a
` (1 + ρ)

1
2 . (2.8)

The members of the global analysis ensemble, xa(k), and the global analysis, xa, are

obtained by collecting the local analyses, x
a(k)
` and xa

` , for all locations `.

2.2.2 Conventional Observations

For the conventional (non-retrieval) observations, we compute the weight vec-

tors w
a(k)
` , k = 1,. . . , K, and their ensemble mean, wa

` , by the following procedure:

First, the observation operator h (γ) is defined. In the two horizontal spatial dimen-

sions, h (γ) is a bilinear interpolation. Since the vertical coordinate in the NCEP

GFS model is σ (defined by the ratio of the pressure to surface pressure), and the

vertical position of the observations is given in pressure, the vertical interpolation

for a given observation is carried out in three steps:

1. We calculate the pressure at each σ-level at the horizontal location of the

observation by multiplying σ by the background surface pressure interpolated

to the observational location.
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2. We define 28 σ-layers, each bounded by a pair of σ- levels (the lowest layer is

defined by the model surface and the lowest σ-level).

3. We find the σ-layer that contains the observation, and linearly interpolate the

logarithm of the pressure using the pressure values at the two σ-levels that

bound that layer.

Second, the observation operator h (γ) is applied to each member γb(k), k = 1,. . . ,

K, of the ensemble of background trajectories to obtain an ensemble yb(k), k = 1,. . . ,

K, of the observable at the observation locations. The ensemble average yb of the

ensemble yb(k), k = 1,. . . , K, is computed and the matrix Yb is constructed by tak-

ing its columns to be the vectors obtained by subtracting yb from each ensemble

member yb(k), k = 1,. . . , K.

Third, the localization is performed: for each location (grid point) `, observa-

tions are selected for assimilation within a local neighborhood. The local neighbor-

hood is defined to include all observations that are thought to have useful informa-

tion about the atmospheric state at grid point `. The selected observations form the

local observation vector yo
` . The vector yb

` and the matrixes Yb
` and R` are formed

by selecting those vector components and matrix elements that are associated with

the selected set of observations at `. In the present study, we choose the localization

neighborhood as follows:

1. In the horizontal direction, observations are considered within an 800-km ra-

dius of the location (grid point) `. The influence of observations located further

than 500 km from ` is reduced by multiplying the entries of R−1
` by a factor
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µ (r) ≤ 1, which linearly tapers from one at r=500-km radius to zero at r=800

km radius.

2. In the vertical direction, observations are considered from a layer around `.

The depth of the layer is 0.35 scale height between model levels 1 and 15

(below σ = 0.372), and starting with level 15 the depth gradually increases

with heights to reach 2 scale heights at the top of the model atmosphere

(defined by σ = 0.003). (The scale height is defined by the vertical distance in

which the surface pressure drops by a factor of e = 2.718.) Surface pressure

observations are considered from the local horizontal region when the state is

analyzed at a model grid point, that is at or below model level 15.

3. The surface pressure components of the state vector are treated differently

from the other components: to obtain the surface pressure analysis at a lo-

cation `, we use all surface pressure observations from an 800 km radius of `

and all temperature and wind observations from a 800 km radius of ` between

model levels 2 (σ = 0.982) and 5 (σ = 0.916). For all other observation types,

the influence of the surface observation is tapered beyond a 500 km radius.

Fourth, the mean “weight” vector wa
` is computed by

wa
` = Pa

`

(
Yb

`

)T
R−1

` (yo
` − yb

`). (2.9)

Here, the analysis error covariance matrix Pa
` is defined by

Pa
` = ((K − 1) I +

(
Yb

`

)T
R−1

` Yb
`)
−1

. (2.10)

Fifth, the matrix Wa
` = ((K − 1) Pa

` )
1
2 is computed.
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Sixth, the “weight” vector wa
` is added to each column of Wa

` . The columns

of the resulting matrix are the members of the ensemble of weight vectors w
a(k)
` ,

k = 1,. . . , K.

The above procedures are repeated for all `.

2.2.3 Trace Gas Observation Operator

The trace gas observation operator is similar to the conventional observation

operator. The observation operator algorithm for the O3 observations consists of

a horizontal bilinear interpolation followed by transformation of model units to

observation units followed by interpolation of the model layers to the observation

layers. The model variable units for ozone, and all trace gases in the 2004 operational

NCEP GFS atmospheric model, are in mixing ratio. The observation operator

algorithm for the carbon monoxide observations is similar, consisting of a horizontal

bilinear interpolation. However, for CO both the model units and observation units

are point measurement of the mixing ratio, therefore the observation operator is

a vertical interpolation from the model grid points to the observation locations.

Each step of the transformation operations is discussed in detail below, first for

the O3 observation operator and then for the CO observation operator. Then, we

explain how we incorporate the a priori and smoothing information from the retrieval

algorithm into the observation operators.
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2.2.3.1 O3 Observation Operator

The first step in formulating the O3 observation operator is the bilinear hori-

zontal interpolation from the model latitude-longitude to the observation latitude-

longitude. In this step, the prognostic model variable for ozone, the volume mixing

ratio, is horizontally interpolated. Volume mixing ratio is defined as the ratio of

the number density of the gas to the total number density of the atmosphere. In

other words, O3 volume mixing ratio is the density of O3 divided by the density of

all constituents in a unit volume. We assume that the horizontal model grid is fine

enough so that the O3 varies linearly.

The second step is the conversion of each of the vertical profiles of mixing ratio

into model layers in Dobson Units. The observations of retrieved SBUV/2 O3 are

reported in Dobson Units. Dobson Units (1 DU=1 mili-atm-cm or 2.68× 1016O3

molecules cm−2 at standard temperature and pressure), is the equivalent depth per

unit area of the vertically-integrated O3 number density normalized to standard

temperature and pressure. To convert between volume mixing ratio χ and Dobson

Units χDU the mixing ratio of a layer is multiplied by the thickness of that layer

and a constant conversion factor:

χDU = χ ·∆P · g · C1. (2.11)

Here, the model vertical pressure layer thickness ∆P is in Pascals, g is the gravita-

tional constant (
m

s

2

) and the conversion factor C1 is 2.1415× 10−5 (kg ·m−2 ·DU−1).

The final step is to convert the model layers to the SBUV/2 O3 retrieval

layers. A sample set of model layers compared to the observation layers is shown in
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Figure 2.6. The model grid vertical profile consists of 28 layers specified by a fixed

sigma coordinate and shown in Figure 2.6 (a) for a sample profile. The SBUV/2 O3

retrieval vertical profiles consist of 21 log-pressure distributed layers shown in Figure

2.6 (b). The SBUV/2 O3 retrieval layers are similar to the ground based Umkehr

technique (Bhartia et al., 1996). Because Dobson Units are integrated quantities,

all model layers contained within an observation layer are summed. When only

part of a model layer is contained in the SBUV/2 layer, the percentage of the layer

contained, as calculated in log pressure, is used to weight the amount of O3 in the

layer. The top model layer (layer 28) is disregarded because it extends to the top

of the atmosphere and therefore, has an indeterminate thickness. Any SBUV/2 O3

observation retrieval layer above layer 27 is not assimilated. For the model layers

shown in Figure 2.6, the top 9 observations would be rejected leaving 12 SBUV/2

O3 retrieval layers for assimilation.

2.2.3.2 CO Observation Operator

The first step in forming the carbon monoxide observation operator is the same

as that of the O3 with a bilinear horizontal interpolation from the model latitude-

longitude to the observation latitude-longitude. In this step, the prognostic model

variable for carbon monoxide, the volume mixing ratio, is horizontally interpolated.

What follows is a vertical interpolation from the model point locations to the ob-

servation point locations. Since both the model variable and the observations are

in volume mixing ratio, there is no need for unit conversion. The assimilated model
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Figure 2.6: Model layers for a sample vertical profile and observation
layers for all SBUV/2 O3 retrievals. The top four model levels are labeled
and all of the observation levels are labeled. The red line demarcates
which observation layers are accepted for assimilation and which are
rejected.
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units for CO are in mixing ratio parts per part (ppp) by volume. The MOPITT CO

data set includes retrieval profiles with 7-levels in the vertical.

2.2.4 Modified Retrieval Observation Operator

We design an observation operator h (γ) (defined in section 2.2.1 by Equation

2.6) for retrievals based on the approach described in Rodgers (2000). This ap-

proach takes into account that both the version 8 SBUV/2 O3 retrieval observations

(Bhartia et al., 2004) and the MOPITT CO retrieval observations (Emmons et al.,

2004) are produced by a vertical smoothing approach. Our redesigned observation

operators compares a properly smoothed model state to the retrieval.

Rodgers (1990) characterizes the vertical profiles retrieved from remote sound-

ing measurements using an a priori vertical profile and averaging kernel (first defined

by Backus and Gilbert 1970). We use the notation of Rodgers (2000) with the ex-

ception that we replace x with z, to avoid creating a confusion between model states

that we have been denoting with x and atmospheric profiles that we denote with z

The derivation of the modified observation operator begins with observing that

the relationship between the observed atmospheric radiance vector ξ and the state

of the atmosphere vertical profile vector z is

ξ = F
(
zt

)
+ εξ. (2.12)

In Equation 2.12 the forward model F transforms the atmospheric vertical profile zt

into a radiance ξ. The components of zt represent the true state of the atmosphere

at the vertical levels which are used in the radiative transfer model that F represents.
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The vector εξ represents the noise in the retrieval, which is due to the noise in the

observations and to the random part of the error in the forward model.

The retrieved vertical profile ẑ is obtained from the radiance ξ using the

Kalman Filter state update equation:

ẑ = za + Gξ(ξ −Kza). (2.13)

Here K is the linearization of F about z = za, where za is the a priori vertical profile,

and Gξ is the retrieval gain matrix (or Kalman gain matrix). The a priori za for the

computation of the retrieval should not be confused with the a priori (background)

xb used in the data assimilation.

It can be shown (Rodgers 2000 section 2.3.2.2) that Equation 2.13 can be

written as

ẑ = za + A(zt − za) + ε̂. (2.14)

This form assumes that F (z) is linear, i.e., F (z) = Kz. We can see that the true

state of the atmosphere zt is not directly comparable to the retrieval ẑ. Smoothing

by the matrix A (which is called the averaging kernel matrix), as well as information

from the a priori vertical profile must also be considered.

A correct formulation of the observation operator for satellite retrievals should

incorporate Equation 2.14. This modified observation operator for satellite retrievals

ĥ (γ) is:

ĥ (γ) = za + A(h (γ)− za) + ε̂. (2.15)

To illustrate the differences between the modified and the conventional observation

operators, we compute e, which is defined by the difference between the retrieval ẑ
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and the observation operator h
(
γt

)
of the model representation of the (unknown)

true system γt system trajectory. For the unmodified observation operator (defined

in section 2.2.3.1) e would be:

e = ẑ− h
(
γt

)
. (2.16)

A properly designed observation operator, on the other hand, should map the true

atmospheric trajectory to the true atmospheric profile h
(
γt

)
= zt then Equation

2.16 is equivalent to:

e = ẑ− z. (2.17)

Substituting Equation 2.14 into Equation 2.17:

e = za + A(z− za)− z + ε̂, (2.18)

that is,

e = (I −A)(za − z) + ε̂. (2.19)

When the averaging kernel is the identity, Equation 2.19 becomes e = ε̂. This

equation states, as it should always be the case, that when the observation operator

is applied to the true atmospheric trajectory, e is equal to the random observation

noise, in accordance with Equation 2.6. For any other averaging kernel, there is a

contribution of the difference between the a priori and the true state to e, which is an

undesirable behavior. Such an e would move the state estimate from the true state

towards the a priori, which typically reflects climatology. This would also have the

added negative effect of introducing strongly correlated observation errors. In the

extreme case when the averaging kernel is close to zero, which occurs when there is
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little contribution from the actual observation to the retrieval, the retrieval becomes

approximately equal to the a priori; and the difference between the a priori and the

true state dominates the retrieval. In contrast, when we apply the modified form of

the observation operator (Equation 2.15) to the true trajectory γt, Equation 2.16

becomes

e = za + A(z− za) + ε̂− (za + A(z− za)), (2.20)

that is:

e = ε̂, (2.21)

as it should be when the observation operator operates on the true state.

2.2.5 Localization

An important issue we have to address is the nonlocal nature of the observation

operator for retrievals: in contrast to the case of the conventional observations,

where the observation operator for a given observation depends on the model state

only at the nearby grid points, the retrievals depend on the smoothing and the a

priori for the entire vertical profile. This suggests that the vertical component of the

localization strategy, implemented in step three of the LETKF, should be modified

for the retrieval observations. Our modified data selection strategy is based on the

averaging kernel for each retrieval observation (the averaging kernels are the rows

of the A matrix from Equation 2.14). The averaging kernel is the sensitivity of the

retrieval to the true state and are peaked functions which peak at the level where

the retrieval is most sensitive to the true state.
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We apply a cut-off-based observation strategy similar to the one suggested

by Fertig et al. (2007) for radiances: we assimilate the retrieval at all model levels

where the averaging kernel is larger than 1/2 the peak value of the averaging kernel.

In Figure 2.7 we show the averaging kernel for a random observation of SBUV/2 O3

retrieval number 10. Since for the retrieval in Figure 2.7, the peak value is about 0.4,

we assimilate the retrieval at all levels where the averaging kernel is larger than 0.2.

This retrieval in Figure 2.7 is assimilated at model levels 26 and 27. The vertical

localization we described here replaces the third step of the LETKF algorithm for

retrieval. The horizontal localization for the retrievals is the same as that used by

the conventional observations.

2.2.6 Covariance Inflation

The multiplicative covariance inflation ρ in Equation 2.8 for the conventional

observations was determined by numerical experimentation. In Figure 2.8 we show

a map of the temporally constant ρ given in percent. This is only applied when ob-

servations are assimilated. For the trace gas retrievals the multiplicative covariance

inflation is set to be spatially and temporally constant value of 5% for both the O3

and CO observations. This value was determined by numerical experimentation by

varying the inflation factor between 2% and 10%.
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Figure 2.7: Averaging kernel for SBUV/2 O3 retrieval number 10. The
model levels are shown as black squares and the top six model levels
are labeled. Shading indicates the model layers in which the retrieval is
assimilated.
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Figure 2.8: Percent multiplicative covariance inflation for conventional
meteorological fields.
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Chapter 3

O3 Assimilation Experiments

In this chapter, we first describe the observations we assimilate and the obser-

vations we use for verification. Then, we discuss the impact of the modifications we

made to the model. Finally, we report the results from the multivariate assimilation

of SBUV/2 O3 retrievals and meteorological observations.

3.1 O3 Observations

We assimilate two sets of observations: the conventional meteorological obser-

vations which are assimilated as point measurements, and the satellite O3 observa-

tions which are assimilated as retrievals. There are four sets of data we use to verify

our analyses and forecasts. The first set of verification data is the high resolution

operational NCEP GFS analyses. The second set is the radiosonde observations

which we use only for the verification of forecasts. These two sets of data are used

to verify the meteorological fields. The third set of verification data is aircraft obser-

vations of O3 from the DC-8 flights of the INTEX-A experiment (Singh et al., 2006).

This set of data we use to verify the tropospheric O3 fields over the United States

and southern Canada. The fourth set of verification data is ozonesonde observa-

tions from the IONS (INTEX Ozonesonde Network Study) sonde network from the

INTEX-A experiment (Thompson et al., 2007a). This set of data we use to verify
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the upper tropospheric and lower stratospheric O3 fields over the United States and

southern Canada. All of these data sets are described in this section, except for

the high resolution operational NCEP GFS analyses results which were discussed in

section 2.1.1.

3.1.1 Assimilated Meteorological Observations

The conventional meteorological observations are obtained from a database

that includes all non-radiance observations operationally assimilated at NCEP be-

tween 000UTC 1 July 2004 and 000UTC 15 August 2004. We also exclude all surface

observations except for the surface pressure and the scatterometer wind measure-

ments over oceans (Szunyogh et al., 2008). These measurements were part of the

set of observations assimilated in the high resolution operational NCEP GFS analy-

sis. A map of the horizontal distribution of surface pressure, temperature and wind

observations for +/- 3-hours on 000UTC 19 July 2004 is found in Figure 3.1, Figure

3.2 and Figure 3.3.

A subset of the temperature and wind observations (see Figure 3.2 and Figure

3.3) are the radiosonde observations (Figure 3.4). The radiosonde observations are

used for the verification of the forecasts of the meteorological fields.

3.1.2 Assimilated O3 Observations

The O3 observations are from the Solar Backscatter UltraViolet generation 2

(SBUV/2) instrument O3 retrievals deployed on the NOAA-16 and NOAA-17 satel-
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Figure 3.1: Surface pressure observations +/- 3-hours 000UTC 19 July 2004.
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Figure 3.2: Horizontal temperature observation locations +/- 3-hours
000UTC 19 July 2004 including surface temperatures, radiosonde and
aircraft measurements.
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Figure 3.3: Horizontal wind observation locations +/- 3-hours 000UTC
19 July 2004 including radiosonde, aircraft and satellite-derived wind
measurements over the oceans.
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Figure 3.4: Horizontal wind and temperature observation locations +/-
3-hours 000UTC 19 July 2004 including only radiosonde measurements.
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lites between 000UTC 1 July 2004 and 000UTC 15 August 2004 (Heath et al. 1975,

Hilsenrath et al. 1995). This instrument measures the ratio of the backscattered

Earth radiances to the incident solar irradiance, or the geometrical albedo, to derive

total O3 and vertical O3 profiles. We assimilate the vertical O3 profiles produced by

the version 8 algorithm discussed in Bhartia et al. (2004). The version 6 retrieval

observations were also part of the data set assimilated in the high resolution oper-

ational NCEP GFS analysis. A map of 6 hours worth of observations is shown in

Figure 3.5. Every six hours, approximately 300 vertical profiles of O3 are retrieved

from the SBUV/2 instruments. The retrieval profiles normally consist of 12-layers

in the vertical (see section 2.2.3.1).

The observation error range on these retrievals is 5-10% of the retrieved value.

Errors were calculated through experiments comparing SBUV/2 retrievals to ozoneson-

des, LIDAR and microwave measurements, and with SAGE II and HALOE satellite

data records (McPeters et al., 2004).

Reported with the SBUV/2 O3 retrieval observations are three other important

pieces of information: the variances of the retrieval layers ε̂, the a priori vertical

profile za and the averaging kernel matrix A. We are provided with the error

variances of the SBUV/2 O3 retrieval layers but not with the covariance information.

Within the vertical profile, the covariance between the retrieval layers is significant,

thus neglecting the covariance information most likely degrades the quality of our

analyses.

The a priori vertical profile for the SBUV/2 O3 retrievals varies only by month

and latitude, with 18 latitudinal zones. The climatological SBUV/2 O3 retrieval a
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Figure 3.5: SBUV/2 O3 retrieval observations +/- 3-hours 000UTC 19
July 2004. Colored symbols show total column O3 amounts in Dobson
Units. Inset figures show Dobson Unit vertical profiles with ordinate log
pressure from 1000 to 0.1hPa and abscissa from 0 to 80DU. The inset
figures show retrievals (black), retrieval error (red), and a priori vertical
profile (green).
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priori vertical profile was constructed with a single a priori error covariance matrix

which produces averaging kernels that are minimally distorted from a Gaussian

shape and peak at the correct altitudes (Bhartia et al., 2004).

A unique averaging kernel matrix is provided for each SBUV/2 O3 retrieval.

The averaging kernel matrix A is explicitly provided for each vertical profile. The

SBUV/2 O3 retrieval averaging kernels vary very little in either the short-term or

long-term (Bhartia et al., 2004).

3.1.3 O3 Verification Aircraft Observations

In situ O3 data were obtained by instruments on board the NASA DC8 aircraft

during INTEX-A. The flight tracks are shown in Figure 3.6. The observations were

collected by M. Avery using a NO-O3 Chemiluminescesnse Detector (CLD). Certain

chemical reactions release part of their energy in the form of light, chemilumines-

cence. When nitric oxide, NO, reacts with O3 it emits red light. The measurements

are performed by combining pure reagent nitric oxide (NO) with incoming sample

air in a small volume reaction chamber, and by measuring light from the resulting

nitrogen dioxide (NO2) chemiluminescence. The system is a fast response, high

precision instrument with accuracy of 1ppb/s (Singh et al., 2006). The system is

described in Avery et al. (2001) and Avery cited 2009. The accuracy and den-

sity of this data set makes it extremely useful for tropospheric verification of our

experimental results.
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Figure 3.6: INTEX-A DC-8 flight tracks between 11 July 2004 and 15
August 2004. Flight track of 22 July 2004 is shown in red.
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3.1.4 Ozonesonde Verification Observations

The ozonesonde data during the INTEX-A mission was collected durring the

IONS project. The stations are shown in Figure 3.7. At five IONS sites (Trinidad

Head, Houston, Pellston, Narragansett, the R/V Ronald H. Brown), soundings were

made daily between noon and 1400 local time. The remaining stations launched mid-

day 1–3 times per week, except for Sable Island, where the ozonesonde accompanied

the standard 2300 UTC radio sounding. This provided multiple daily ozonesonde

launches throughout the continental United States and southern Canada. The fre-

quency and density of the data set makes it extremely useful for upper tropospheric

and lower stratospheric verification of our experimental results.

Soundings were made with ECC (Electrochemical Concentration Cell) sondes,

first developed by Komhyr (1969). The ECC sondes have an accuracy in the tropo-

sphere and lower stratosphere of about 5-10% of the measured value. The precision

of the sondes, defined as the reproducibility of a single sounding, is 5-7%. Given the

time response and ascent rate, the ECC sondes effective vertical resolution is 100m

(Thompson et al., 2007b).

3.2 Impact on O3 from Modeling Modifications

The purpose of the experiments presented in this section is to evaluate the

impact of modifications to the NCEP GFS to improve the modeling of O3 . In these

experiments, we assimilate the meteorological observations with the LETKF, but

we do not assimilate ozone. The O3 field between the analysis cycles is carried by
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Figure 3.7: Map of IONS sites in July and August 2004, with the R/V
Brown operating in the Gulf of Maine.
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the background. The initial O3 field for the experiment with the NCEP-GFS O3

production-loss terms is the NCEP analysis. The initial O3 field for the experiment

with the RAQMS O3 production-loss terms is the RAQMS analysis interpolated to

the NCEP GFS grid.

To evaluate the impact of the modifications to the model on the tropospheric

O3 field, we compare the model simulated O3 field with the aircraft data (Figure

3.8). In this figure we compare the modeled O3 field from the NCEP GFS with

the in situ O3 data collected between 10 July 2004 and 15 August 2004. The

modeled fields are compared to the measurements by interpolating the assimilated

chemical fields to the flight tracks and sampling the model at the frequency of the

in situ measurements. Both the modeled and the in situ aircraft measurements are

collected in 50 hPa pressure bins and then the median statistic is calculated for each

bin (Pierce et al., 2007).

In Figure 3.8 the blue line shows the analysis profile for the case in which the

operational NCEP GFS parameterization of O3 production-loss (see Figure 2.1) is

used. As expected, due to the lack of realistic tropospheric O3 production-loss, this

configuration does a very poor job, particularly near the surface. The green line

shows the profile using the RAQMS production-loss parameterization (see Figure

2.3). Comparing the blue and the green lines, we can see clear improvements from

the production-loss parameterization modification. The red line shows the analysis

profile result for the case in which, in addition to the use of the RAQMS provided

O3 production-loss values, convective mixing of the O3 is included in the model. It

can be seen that including convective mixing of the O3 greatly improves the vertical
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distribution of the O3 in the troposphere; when no convective mixing is included,

there is an excessive amount of O3 found in the upper troposphere. Convective

mixing transports lower concentrations of O3 at the surface to the upper troposphere.

To evaluate the model modification impact on the upper tropospheric and

lower stratospheric O3 field, we compare the model simulated O3 fields with the in

situ ozonesonde data collected by instruments launched on sondes during INTEX-A

between 1 July 2004 and 15 August 2004 (Figure 3.9). The model O3 profiles in this

figure are obtained by interpolating the O3 filed from the model to the full resolution

ozonesonde and sampling the modeled fields at the frequency of the ozonesonde

measurements. Time averaged mean, mean bias, RMS errors and correlations are

all shown in Figure 3.9.

In Figure 3.9 we show clear improvement by using RAQMS production-loss

values instead of the original NCEP GFS in the troposphere, similar to what we

saw in Figure 3.8. We also see clear improvement by including convective mixing of

O3 in the troposphere (panels (b) and (c)). In contrast, no such clear improvement

is seen in the stratosphere from using RAQMS production-loss values instead of

the original NCEP GFS. This is due to the careful tuning of the production-loss

parameterization in the 2004 operational NCEP GFS model as well as the known

bias in the RAQMS stratospheric O3 modeling (discussed in section 2.1.3).

In the experiments reported above, O3 observations were not assimilated, thus

there was no direct impact on the analysis of the meteorological fields from ozone.

However, through stratospheric radiative processes, which are included in the GFS,

there may be a potential impact of the improved O3 modeling on the analysis of
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Figure 3.8: Comparison between different model modification O3 fields
and aircraft measurements. The aircraft measurements were acquired
on 14 DC-8 flights between 10 July 2004 and 15 August 2004. Plotted
are the median profiles of: the in situ aircraft data in black (“In-situ”),
the analysis results using operational NCEP GFS O3 production-loss
parameterization and no O3 convective mixing in blue (“GFS NC”), the
analysis results using RAQMS O3 production-loss parameterization and
no O3 convective mixing in the model in green (“RAQMS NC”), and the
analysis results using RAQMS O3 production-loss parameterization and
O3 convective mixing in the model in red (“RAQMS C”). All analysis
results assimilated only conventional meteorological observations.
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Figure 3.9: Comparison between different model modification O3

fields and ozonesonde measurements. Ozonesonde measurements,
“SONDE” (black in panel (a)), were acquired from 217 launched
sondes between 10 July 2004 and 15 August 2004. In all panels,
“GFS No Conv” (blue) is analysis results using 2004 operational NCEP
GFS O3 production-loss parameterization and no convective mixing of
ozone, “RAQMS No Conv” (green) is analysis results using RAQMS O3

production-loss parameterization and no convective mixing of O3 in the
model and “RAQMS Convection” (red) is analysis results using RAQMS
O3 production-loss parameterization and convective mixing of O3 in the
model. All analysis results are with only conventional meteorological ob-
servations assimilated. Panel (a) shows the time averaged mean vertical
profiles (in ppb volume mixing ratio), panel (b) the mean bias (in per-
cent), panel (c) the RMS error (in percent), and panel (d) the correlation
between the model results and the ozonesondes.
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the meteorological fields. To further investigate this possibility, in Figure 3.10, we

look at both the impact from using RAQMS O3 production-loss values (panels (a)

and (b)) and from incorporating convective mixing of O3 (panels (c) and (d)) on

the analysis of the geopotential height meteorological field. As shown in the fig-

ure, the convective mixing of O3 has nearly no impact on the geopotential height

field (panels (c) and (d)). This is not unexpected, because O3 has a large impact

on the radiative processes only in the stratosphere. In addition, the RAQMS O3

production-loss values did have a negative impact on the meteorological fields (see

panels (a) and (b)). This can be explained by the bias seen in the stratospheric

O3 from the RAQMS production-loss values in Figure 3.9. This bias (discussed in

section 2.1.3) affects the geopotential height fields through the temperature fields,

which are affected by the modified radiative heating due to change in the O3 con-

centration. The response of the temperature field to the modified O3 modeling is

similar to that of the geopotential height (results not shown here). The 2004 opera-

tional NCEP GFS O3 production-loss parameterization has been tuned to maintain

the O3 field in the stratosphere, which may explain why it performs better for this

region than in the troposphere, as seen in Figure 3.9.

The experiments described above show that, in the troposphere, using RAQMS-

based production-loss values and a simplified Arakawa and Schubert cumulus pa-

rameterization to account for the convective mixing of O3 improves modeling of the

O3 in the NCEP GFS compared to its original configuration. In the stratosphere,

however, the RAQMS O3 production-loss parameterization is inferior to the original

parameterization of the operational NCEP GFS, which leads to a negative impact
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Figure 3.10: Comparison between different model modification geopo-
tential height fields relative to the high resolution operational NCEP
GFS analysis. Panels (a) and (b) show the difference between 2004 op-
erational NCEP GFS O3 production-loss parameterization and RAQMS
O3 production-loss parameterization. Panels (c) and (d) show the dif-
ference between no convective mixing of O3 in the model and convective
mixing of O3 in the model. Panels (a) and (c) show the difference in the
absolute value of the bias calculated relative to the high resolution opera-
tional NCEP GFS analysis. Panels (b) and (d) show the difference in the
RMS error calculated relative to the high resolution operational NCEP
GFS analysis. The statistics are averaged over 45 days from 000UTC 10
July 2004 to 000UTC 15 August 2004 in three different regions: northern
hemisphere “NH” (square) from 30N to 90N, tropics “Trop” (triangle)
from 30S to 30N and southern hemisphere “SH” (circle).
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on the meteorological fields through the stratospheric radiative processes.

3.3 Assimilation of O3 Observations

To evaluate the impact of the multivariate SBUV/2 O3 retrieval assimila-

tion we carry out two experiments: in the first experiment we assimilate only the

meteorological observations (benchmark no-ozone experiment), and in the second

experiment we assimilate both the meteorological observations and SBUV/2 O3 re-

trieval observations (ozone experiment). Both experiments use the version of the

NCEP GFS that includes our modifications to the O3 modeling and the LETKF

assimilation system.

We use three different approaches to compare the analysis and forecast errors

for the meteorological fields of the experiments. First, error statistics are computed

by comparing the no-ozone and O3 experiments to the high resolution operational

NCEP analyses. Our no-ozone experiment differs from the NCEP analyses in two

respects: (1) the modeling of ozone is different, and (2) we do not assimilate satellite

radiances and SBUV/2 O3 retrieval observations in our system. On the other hand,

our O3 experiment differs from the NCEP analysis by the modeling of O3 and,

even though we assimilate SBUV/2 O3 retrievals, we assimilate the O3 observations

multivariately, whereas NCEP assimilated these observations univariately.

The second approach to verify of the meteorological fields is to compare 48-h

forecasts started from the analyses we produce to the verifying NCEP analyses. It

should be noted that the O3 production-loss parameters used in the forecast are from
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the RAQMS analysis results. In this sense, the final product is not a true forecast

that could be produced in real time. Instead, the forecast results are a demonstra-

tion of potential forecast skill assuming that we have a good representation of the

production-loss parameters for the trace gases.

Our third approach for the meteorological field verification is based on com-

paring 48-hour forecasts to radiosonde observations. More precisely, the root-mean-

square error is estimated by comparing radiosonde observations with the forecast

field interpolated to the observational locations. The average is calculated over

observational locations instead of model grid points. While this approach has the

advantage that the verified and the verification data sets are truly independent, thus

providing a neutral verification approach for the comparison of the two systems, it

has the significant disadvantage that the radiosonde network is strongly inhomoge-

neous, and the verification results reflect forecast accuracy over highly populated

areas of the globe (see Figure 3.4).

We use two approaches for the verification of the O3 fields. The first approach

compares the analysis and short-term forecasts to the O3 measurements obtained in

the 14 INTEX-A DC-8 aircraft flights between 11 July 2004 and 15 August 2004.

The second approach compares the analysis and short-term forecasts to the O3

measurements obtained in the IONS ozonesonde project launched from 12 different

locations. For both of these approaches we compare the analysis and/or forecast

states to the verification sets at the observational locations. Similar to the verifi-

cation against radiosonde observations, this approach provides a verification with a

truly independent verification data. On the other hand, they provide verification
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data only over the continental united states and Canada (see Figure 3.6 and Figure

3.7)

3.3.1 O3 Assimilation Impact on Meteorological Fields

First, the no-ozone and O3 experiments are compared to the high resolution

operational NCEP analyses (see Figure 3.11). In Figure 3.11 we show the impact on

the meteorological fields from the multivariate assimilation of SBUV/2 O3 retrieval

observations. Shown in the figure is the difference between a 45 day assimilation

without O3 observations and an assimilation including O3 observations. Two statis-

tics are shown: the absolute value of the bias and the RMS error, both calculated

relative to the high resolution operational NCEP GFS analysis. Each of these statis-

tics are averaged in one of three regions of the globe: northern hemisphere (30N to

90N), tropics (30S to 30N) and southern hemisphere (90S to 30S). In the figure a

negative value implies that the assimilation of SBUV/2 O3 retrieval observations

has a negative impact on the field and a positive value implies that the assimilation

of O3 observations has a positive impact on the field.

It is clear from Figure 3.11 that the assimilation of O3 observations has signif-

icant negative impact on the meteorological fields. There are some areas of positive

impact in the troposphere but these are dwarfed by the negative impacts seen in

the stratosphere.

Next, we compare the 48-hour forecasts from the experimental analyses to the

high-resolution NCEP GFS analyses (Figure 3.12). It is clear from Figure 3.12 that
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Figure 3.11: SBUV/2 O3 retrieval observation assimilation impact on
the meteorological fields verified with NCEP GFS analysis. All panels
show the difference between assimilation with only conventional meteo-
rological observations and assimilation with conventional meteorological
observations as well as O3 observations. Panels (a) and (b) show the
geopotential height field, panels (c) and (d) show the meridional wind
field and panels (e) and (f) show the zonal wind field. Panels (a), (c),
and (e) show the difference in the absolute value of the bias calculated
relative to the high resolution operational NCEP GFS analysis. Panels
(b), (d), and (f) show the difference in the RMS error calculated rela-
tive to the high resolution operational NCEP GFS analysis. The statis-
tics are averaged over 45 days from 000UTC 10 July 2004 to 000UTC
15 August 2004 in three different regions: Northern Hemisphere “NH”
(square) from 30N to 90N, Tropics “Trop” (triangle) from 30S to 30N
and Southern Hemisphere “SH” (circle) from 90S to 30N.
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there is some negative impact from the assimilation of O3 observations on the 48-

hour forecast of the meteorological fields, but these degradations have significantly

reduced amplitude compared to the magnitude of the degradations in the analysis.

Also, the negative bias seen in the tropics of the geopotential height field in Figure

3.11 vanishes by the 48-hour forecast time.

Our final verification results are from the comparison of the 48-hour forecasts

to the radiosonde observations (see Figure 3.13). It is not clear, according to this

verification approach, that the O3 assimilation has a negative impact on the mete-

orological fields.

3.3.2 O3 Meteorological Field Impact Investigation

As described in the previous section, the multivariate assimilation of the O3

observations has a negative effect on the analysis of the meteorological fields. There

are three potential causes of this negative impact: O3 observation bias, deficiencies

in the O3 model and/or deficiency in the O3 observational error. In what follows we

address each of these areas.

3.3.2.1 O3 Observation Bias

Nazaryan et al. (2007) reported a bias of less than 9% in the layers from 40

to 1.5 hPa for the NOAA-11 and NOAA-16 SBUV/2 version 8 data sets. Nazaryan

et al. (2007) compared coincident measurements to the HALOE version 19 vertical

profiles between the years of 1991 to 2005. The results agreed with previous studies
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Figure 3.12: 48-hour forecast SBUV/2 O3 retrieval observation assimila-
tion impact on the meteorological fields verified with NCEP GFS anal-
ysis. All panels show the difference between assimilation with only con-
ventional meteorological observations and assimilation with conventional
meteorological observations as well as O3 observations. Panels (a) and
(b) show the geopotential height field, panels (c) and (d) show the merid-
ional wind field and panels (e) and (f) show the zonal wind field. Panels
(a), (c), and (e) show the difference in the absolute value of the bias cal-
culated relative to the high resolution operational NCEP GFS analysis.
Panels (b), (d), and (f) show the difference in the RMS error calcu-
lated relative to the high resolution operational NCEP GFS analysis.
The statistics are averaged over 45 days from 000UTC 10 July 2004 to
000UTC 15 August 2004 in three different regions: northern hemisphere
“NH” (square) from 30N to 90N, tropics “Trop” (triangle) from 30S to
30N and southern hemisphere “SH” (circle) from 90S to 30N.
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Figure 3.13: 48-hour forecast SBUV/2 O3 retrieval observation assimila-
tion impact on the meteorological fields verified with radiosonde obser-
vations. All panels show the difference between assimilation with only
conventional meteorological observations and assimilation with conven-
tional meteorological observations as well as O3 observations. Panels
(a) and (b) show the temperature field, panels (c) and (d) show the
meridional wind field and panels (e) and (f) show the zonal wind field.
Panels (a), (c), and (e) show the difference in the absolute value of the
bias calculated relative to the radiosonde observations. Panels (b), (d),
and (f) show the difference in the RMS error calculated relative to the
radiosonde observations. The statistics are averaged over 45 days from
000UTC 10 July 2004 to 000UTC 15 August 2004 in three different
regions: northern hemisphere “NH” (square) from 30N to 90N, trop-
ics “Trop” (triangle) from 30S to 30N and southern hemisphere “SH”
(circle) from 90S to 30N.
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comparing SBUV/2 version 8 retrieval observations to ECC ozonesondes, LIDAR

and microwave retrievals, SAGE II and HALOE O3 data sets (McPeters et al., 2004)

as well as Umkehr measurements from ground-based systems (Petropavlovskikh

et al., 2005). This reported bias should be compared with the 5-10% standard de-

viation observation error range reported for the SBUV/2 retrievals and used in the

assimilation. The bias is on the same order of magnitude as the standard deviation

and thus not negligible.

3.3.2.2 O3 Model Error

As discussed in section 3.2, the modeling of O3 in the RAQMS model of O3

is known to be deficient in the stratosphere. This stratospheric low bias in the

model can potentially cause the negative response in the meteorological fields to

the assimilation of SBUV/2 O3 retrievals. However, the operational NCEP GFS O3

production-loss model does not have this issue in the stratosphere, and the results

from the assimilation of SBUV/2 O3 observations using the original production-loss

values from the NCEP GFS produces similar negative results. In Figure 3.14 we

show the verification results for this experiment, which have a worse fit than those

shown in Figure 3.11 for the experiment with RAQMS production-loss values.

Also, it is known that the sub-grid scale process parameterizations, such as

convective mixing, are deficient in modeling sub-grid scale transport processes. As

discussed in section 3.1.2, this could lead to a negative impact of O3 assimilation on

the meteorological fields.
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Figure 3.14: SBUV/2 O3 retrieval observation assimilation impact on
the meteorological fields verified with NCEP GFS analysis. Same as
Figure 3.11, except here the operational NCEP GFS O3 production-loss
model is used.
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3.3.2.3 O3 Observation Error

We know that the observational error specification in the analysis is deficient

in that the covariance between the O3 observations is not considered, though the

errors of the retrieval observations are known to be strongly correlated. To account

for these strong correlations we increase the value of the prescribed O3 observational

error variance, a process which we will call O3 observation error inflation. While

not a perfect solution, accounting for the effect of neglected covariance by increasing

the variance of the observation errors is a standard practice in NWP. In essence, by

inflating the observation error variance, we give less weight to the observations in the

analysis than if they were independent measurements of the state of the atmosphere.

To investigate the origin of the negative impact of O3 assimilation on the

meteorological fields, we carry out a series of experiments inflating the prescribed

variance of the observation error of the O3 by different amounts. In these experi-

ments, the O3 standard deviation error is multiplied by a gradually increasing factor

(2, 4 and 10). This increases the observation error variance (square of the standard

deviation) by a factor of 4, 16 and 100.

Shown in Figure 3.15 is the zonal wind field verification at the analysis time

against the operational NCEP GFS analysis; in Figure 3.16 is the zonal wind field

verification at the 48-hour forecast time against the NCEP GFS analysis; and in

Figure 3.17 is the zonal wind field verification at the 48-hour forecast time against

the radiosonde observations. All figures show results for an increasing observation

error inflation factors going from the top to the bottom.
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Figure 3.15: Ozone observation error inflation impact on the zonal wind
field verified with NCEP GFS analysis. Same as Figure 3.11, except all
panels show geopotential height field and panels (a) and (b) show the
impact of 2 O3 observation error inflation factor, panels (c) and (d) show
the impact of 4 O3 observation error inflation factor and panels (e) and
(f) show the impact of 10 O3 observation error inflation factor.

66



Figure 3.16: Ozone observation error inflation impact on the zonal wind
field 48-hour forecast from the analysis and verified with the NCEP GFS
analysis. Same as Figure 3.12, except all panels show geopotential height
field and panels (a) and (b) show the impact of 2 O3 observation error
inflation factor, panels (c) and (d) show the impact of 4 O3 observation
error inflation factor and panels (e) and (f) show the impact of 10 O3

observation error inflation factor.
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Figure 3.17: Ozone observation error inflation impact on the zonal wind
field 48-hour forecast from the analysis and verified with the radiosonde
observations. Same as Figure 3.13, except all panels show geopotential
height field and panels (a) and (b) show the impact of 2 O3 observation
error inflation factor, panels (c) and (d) show the impact of 4 O3 obser-
vation error inflation factor and panels (e) and (f) show the impact of 0
O3 observation error inflation factor.
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Based on Figure 3.15, the conclusion would be to use an observation error

inflation factor between 4 and 10; however, taken together with the other two veri-

fication figures, one would favor a factor between 2 and 4.

The single meteorological variable for which we see a clear positive impact

from the assimilation of O3 observations is the geopotential height field: shown in

Figure 3.18 is the 48-hour forecast verification against the NCEP GFS analysis for

the 2 and 4 observation error inflation factors. For both the bias error and the rms

error we see a clear positive impact in the stratospheric geopotential height field.

We do not see such a dramatic positive impact on the temperature field in the

48-hour forecast verification against the radiosondes as we saw for the geopotential

height field. Nevertheless, the over all impact on the temperature forecasts is positive

(Figure 3.19). The bias reduction for the experiment in which the O3 observation

error standard deviation is inflated by a factor of 2 is nearly 0.5 K in the Northern

and the Southern Hemispheres.

3.3.3 O3 Assimilation Impact on Ozone Fields

In Figure 3.20, we compare the O3 analysis for the different error inflation

factors with the ozonesonde data. It is clear that the assimilation of SBUV/2 O3

retrieval observations reduces the bias and rms error in the stratosphere. This

is exactly what occurred with the RAQMS analysis when SAGE III and TOMS

observations were assimilated (Pierce et al., 2007). In Figure 3.20, it can also be

seen that there is a weak impact of observation error inflation factors on the O3
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Figure 3.18: Ozone observation error inflation impact on the geopo-
tential height field 48-hour forecast from the analysis and verified with
the NCEP GFS analysis. Same as Figure 3.16, except all panels show
geopotential height field and panels (a) and (b) show the impact of 2 O3

observation error inflation factor and panels (c) and (d) show the impact
of 4 O3 observation error inflation factor.
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Figure 3.19: Ozone observation error inflation impact on the temperature
field 48-hour forecast from the analysis and verified with the NCEP GFS
analysis. Same as Figure 3.17, except all panels show temperature field
and panels (a) and (b) show the impact of 2 O3 observation error inflation
factor and panels (c) and (d) show the impact of 4 O3 observation error
inflation factor.

71



field. The analogous figure for the 48-hour forecasts is very similar to Figure 3.20,

therefore, it is not shown.

In Figure 3.21 we see the effect of increasing the observation error on the ver-

ification results with in-situ aircraft data. As the inflation factor is increased, the

median value tends slightly towards the aircraft value, although, for the most part,

increasing the inflation factor has no impact on the verification results. Comparing

these results to Figure 3.8, which shows the case of no O3 assimilation, and with Fig-

ure 3.22, which shows the verification results against the high resolution operational

NCEP GFS analysis and the RAQMS analysis, we conclude that the multivariate

assimilation of O3 observations clearly improves the analysis of the tropospheric O3

vertical profile. The figure for the verification of the 48-hour forecasts is very similar

to Figure 3.21, thus it is not shown.

At the top of Figure 3.23 and Figure 3.24 we plot the time series (“curtain”)

of the O3 analysis profile for the DC-8 flight on 22 July 2004 (the flight track is

highlighted in red in Figure 3.6). The curtains are made by interpolating the O3

analysis results onto the DC-8 flight track and sampling the vertical profile of the

model at the frequency of the in situ measurements. At the bottom of Figure 3.23

and Figure 3.24 we compare the O3 analysis results (dashed red line) and the in situ

O3 observations (solid black line) for the same DC-8 flight. In Figure 3.23 we show

the results from the experiment with an observation error inflation factor of 2, and in

Figure 3.24 we show the RAQMS analysis. Comparing the two plots it is clear that

even though the median in our system is closer to the in situ measurements than

the RAQMS analysis, it does not fully capture the structure of the measurement
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Figure 3.20: Comparison between different O3 observation error inflation
and ozonesonde measurements. Same as Figure 3.9, except all analysis
results used RAQMS O3 production-loss parameterization and convec-
tive mixing of O3 in the model. In all panels “No O3 Assim” is analysis
results assimilating no O3 observations, “Obs Error x1” (blue) is analy-
sis results assimilating O3 observations with no observation error infla-
tion factor, “Obs Error x2” (Green) is analysis results assimilating O3

observations with 2 observation error inflation factor, “Obs Error x4”
(Yellow) is analysis results assimilating O3 observations with 4 observa-
tion error inflation factor and “Obs Error x10” (Red) is analysis results
assimilating O3 observations with 10 observation error inflation factor.
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Figure 3.21: Comparison between different O3 observation error inflation
and aircraft measurements. Plotted are the median profiles of: the in
situ aircraft data in black (“In-situ”), the analysis results assimilating
O3 observations with no observation error inflation factor in blue (“Ob-
sErr x1”), the analysis results assimilating O3 observations with 2 obser-
vation error inflation factor in green (“ObsErr x2”), the analysis results
assimilating O3 observations with 4 observation error inflation factor in
yellow (“ObsErr x4”), and the analysis results assimilating O3 observa-
tions with 10 observation error inflation factor in red (“ObsErr x10”).
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Figure 3.22: Comparison between different model analysis O3 results
and aircraft measurements. Plotted are the median profiles of: the in
situ aircraft data in black (“In-situ”), the analysis results from the high
resolution operational NCEP GFS analysis in blue (“NCEP GFS”), and
the analysis results from the RAMQS analysis in red (“RAQMS”).
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data (solid black line in the lower panel of both figures).

3.3.4 Impact of Modified Observation Operator on O3

In Figure 3.25 and Figure 3.26 we compare the performance of the analysis

system for two different choices of the observation operator: one of these observa-

tion operators, which is defined by Equation 2.15, is the one we have used in the

experiments we have reported on so far; the other observation operator ignores the

effects of the vertical smoothing introduced by the use of an a priori to obtain the

retrieval. The latter approach is implemented by replacing the averaging kernel

matrix provided with the data by the identity matrix. In Figure 3.25 we verify

the analyses against the aircraft measurements and find little difference between the

performance of the analysis system for the two different observation operators in the

troposphere. However, Figure 3.26, which compares the analyses to the ozonesonde

measurements, shows that using the information provided by the averaging kernel

results in more accurate analysis near the tropopause in the rms sense.

3.3.5 Multivariate vs. Univariate Assimilation of O3 retrievals

To assess the benefits of assimilating the O3 retrievals multivariately, we com-

pare the performance of the multivariate system to one in which the O3 retrievals

are assimilated univariately. The results of this comparison are shown in Figure 3.27

and Figure 3.28. In the state update step of the univariate assimilation system the

assimilation of the meteorological observations affects only the meteorological fields
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Figure 3.23: Time series of the O3 analyses with an observation error
inflation factor of 2 and the aircraft measurements. Plotted in the top
panel is the time series (“curtain”) of model analysis profiles for the DC-
8 flight on 22 July 2004. The flight track is shown as the red line and
the contours are the model analysis O3 in volume mixing ratio (ppb).
Plotted in the bottom portion of the figure is the time series comparison
between the 2 observation error inflation factor model O3 analysis results
(dashed red line) and the in situ O3 observations (solid black line) for
the same DC-8 flight. The time, longitude and latitude are included on
the plots.
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Figure 3.24: Time series of the RAQMS O3 analyses and the aircraft
measurements. Plotted in the top panel is the time series (“curtain”) of
the RAQMS analysis profiles for the DC-8 flight on 22 July 2004. The
flight track is shown as the red line and the contours are the model anal-
ysis O3 in volume mixing ratio (ppb). Plotted in the bottom portion of
the figure is the time series comparison between the RAQMS O3 analysis
results (dashed red line) and the in situ O3 observations (solid black line)
for the same DC-8 flight. The time, longitude and latitude are included
on the plots.
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Figure 3.25: The O3 analysis vertical profiles for the different choices
of the observation operator. Plotted are the median profiles of the in
situ aircraft data in black (“In-situ”), the conventional observation op-
erator for the O3 retrieval assimilation results in blue (“Conv ObsOp”),
and the modified observation operator for the O3 retrieval assimilation
results in red (“Mod ObsOp”). All analysis results are with RAQMS
O3 production-loss parameterization and convective mixing of O3 in the
model.
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Figure 3.26: Vertical profiles of the O3 analyses for the two different
choices of the observation operator. Also shown is the O3 profile based
on the 217 ozonesondes launched between 10 July 2004 and 15 August
2004. In all panels “Conv ObsOp” (blue) is analysis results using the
conventional observation operator for the O3 retrieval assimilation and
“Mod ObsOp” (red) is analysis results using the modified observation
operator for the O3 retrieval assimilation. All analysis results are with
RAQMS O3 production-loss parameterization and convective mixing of
O3 in the model. Panel (a) shows the time averaged mean vertical profiles
(in ppb volume mixing ratio), panel (b) the mean bias (in percent), panel
(c) the RMS error (in percent), and panel (d) the correlation between
the model results and the ozonesondes.
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and the assimilation of the O3 retrieval affects only the O3 fields. We compare the

two systems using the RAQMS O3 production-loss parameterization and the orig-

inal value of the observation error for the O3 retrievals. In the univariate system,

the O3 observation can have an effect on the analysis of the meteorological fields

through the stratospheric radiative processes in the model integrations that provide

the background forecasts.

In Figure 3.27 we compare the O3 analyses to the aircraft-based measurements.

We find that the multivariate assimilation of the O3 retrievals provides more accurate

analyses than the univariate assimilation at almost all atmospheric levels in the

troposphere. A similar conclusion can be drawn for the stratospheric levels based

on the verification against ozonesondes (Figure 3.28). However, the verification

against the ozonesondes also suggests that the univariate assimilation provides more

accurate results in the layers between 200 and 600hPa.

3.4 O3 Results Discussion

We have described the results of the assimilation of SBUV/2 O3 retrieval

observations. Ours is the first attempt at multivariate assimilation of SBUV/2 O3

retrieval observations into an operational model with an ensemble-based Kalman

filter.

The performance of our implementation was assessed by comparing the O3 field

analysis results to aircraft and ozonesonde observations obtained from the INTEX-

A field mission. We find that our data assimilation system provides an accurate
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Figure 3.27: Comparison of the O3 analysis profiles obtained by the
multivariate and univariate assimilation of the O3 retrievals to aircraft-
based measurements of the O3 field. Plotted are the median profiles of:
the in situ aircraft data in solid-black (“In-situ”), no O3 assimilation in
dotted black (“No O3 Assim”), multivariate O3 retrieval assimilation in
blue (“Multivariate”), and univariate O3 retrieval assimilation in green
(“Univariate”). All analysis results are with RAQMS O3 production-loss
parameterization and convective mixing of O3 in the model.
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Figure 3.28: Comparison of the multivariate and univariate analysis of
the O3 profiles to the ozonesonde measurements. Ozonesonde measure-
ments, “SONDE” (black solid in panel (a)), were acquired from 217
launched sondes between 10 July 2004 and 15 August 2004. In all panels
“No O3 Assim” (black dotted) is analysis results from no O3 observa-
tions assimilated, “Multivariate” (blue) is analysis results from multi-
variate O3 observation assimilation and “Univariate” (green) is analysis
results from univariate O3 observation assimilation. Panel (a) shows the
time averaged mean vertical profiles (in ppb volume mixing ratio), panel
(b) the mean bias (in percent), panel (c) the RMS error (in percent), and
panel (d) the correlation between the model results and the ozonesondes.
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estimate of the atmospheric state of the O3 trace gas when realistic 3-dimensional

time-dependent tropospheric background states are used. Most importantly, our

tropospheric O3 field analysis is far more accurate than that of the operational

NCEP GFS analysis system. The accuracy of our system is also better than that

of the RAQMS chemical modeling system, according to the median statistic for

the comparison against aircraft observations, and the accuracy of our system is

competitive with the RAQMS chemical modeling system when compared with the

ozonesonde observations.

The impact of O3 assimilation on the meteorological fields was assessed by

comparing the NCEP-GFS with and without the O3 observation assimilation. How-

ever, in these analysis and forecast experiments we saw, at times, a strong negative

impact on most of the meteorological fields from the multivariate assimilation of O3

observations when no observation inflation factor was applied. We cannot conclude

whether this was caused by O3 observation bias, deficiencies in the O3 model (either

from sub-grid scale processes or RAQMS O3 production-loss estimates) and/or de-

ficiencies in the O3 observational error. However, we did find that by increasing the

value of the prescribed O3 observational error by a factor of 2 or 4 we eliminated

the negative impact on the analysis and forecast of the meteorological fields, and

obtained a positive impact on the geopotential height field in the stratosphere.

We also found that our modified observation operator performed better than

the conventional form of the observation operator over the region of 200 to 100 hPa.

Over all other vertical levels, the two operators were comparable. And we also found

that the multivariate assimilation of O3 out-performed the univariate assimilation
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of ozone in both the troposphere and the upper statrosphere. Only in the region

between 200 and 60 hPa did the univariate assimilation perform better.
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Chapter 4

CO Assimilation Experiments

In this chapter, we discuss the multivariate assimilation of MOPITT CO re-

trievals. In what follows, we describe the assimilated MOPITT observations (the

conventional meteorological observations are discussed in section 3.1.1), as well as

the observations used for verification. The results of the assimilation of the MO-

PITT observations are verified in a similar manner as the experiment which we

assimilated SBUV/2 observations.

4.1 CO Observations

4.1.1 Assimilated CO Observations

The CO observations assimilated are version 3 CO retrievals derived from the

Measurements Of Pollution In The Troposphere (MOPITT) instrument deployed

on the NASA Terra satellite (Drummond and Mand 1996, Emmons et al. 2007).

We assimilate these observations for the period between 000UTC 1 July 2004 and

000UTC 15 August 2004. Vertical profiles of CO are derived from gas correlation

spectroscopy of the observed emitted and reflected radiance. As the radiance enters

the sensor, it passes along two different paths through onboard containers of carbon

monoxide and methane. The different paths absorb different amounts of energy,

leading to small differences in the resulting signals that correlate with the presence
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of these gases in the atmosphere. For a more in-depth description of the instruments,

see Drummond and Mand (1996). We assimilate the CO vertical profiles using the

version 3 algorithm discussed in Deeter et al. (2003).

MOPITT CO data is quality controlled following the approach of Arellano

et al. (2007). In particular, we limit the assimilated observation to retrievals that

are (i) not at the surface, (ii) have less than 50% contribution form the a priori and

(iii) report a mixing ratio value greater than 30ppb.

A map of 6 hours worth of MOPITT observations is shown in Figure 4.1.

Every 6 hours approximately 40,000 vertical retrieval profiles are processed. Each

of these vertical profile retrievals include up to 6-levels in the vertical. The reported

MOPITT retrieval errors are, on average, 70-80% of the retrieved level value, but

can be as low as 20% and as high as 200% of the retrieval level. In Figure 4.2 we show

the distribution of percentage observation error for a sample of 12,000 observations.

These errors were determined through a number of experiments comparing retrievals

to in situ measurements from aircraft (Emmons et al., 2007).

Provided with the MOPITT CO retrieval observations are: the variances of

the retrieval ε̂, the a priori vertical profile za and the averaging kernel matrix A.

We are also provided with the variances and covariances of MOPITT retrievals.

However, as mentioned earlier, the current version of the LETKF does not specify

the covariance information.

The a priori vertical profile for the MOPITT CO retrievals is spatially and

temporally invariant. The vertical profile is generated from 525 in situ profiles from

aircraft during eight atmospheric chemistry field campaigns. At higher levels, the
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Figure 4.1: MOPITT CO observations +/- 3-hours 000UTC 19 July
2004. Colors represent total column amounts in molecules cm−2. Inset
figures show mixing ratio vertical profiles with ordinate pressure from
1000 to 100 hPa and abscissa from 0 to 600ppb. The inset figure show re-
trievals (black), retrieval error (red), and a priori vertical profile (green).
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Figure 4.2: Histogram of MOPITT CO observation errors in percentage
of retrieval for a sample of 12,000 observations +/- 3-hours 00UTC 1
July 2004.
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in situ observations were extended vertically using the chemical transport model

“MOZART” (Deeter et al., 2003).

A unique averaging kernel is provided for each of the MOPITT CO retrievals.

It is not explicitly included with the retrievals; however, it is calculated from the

retrieved error covariance matrix and a fixed a priori covariance matrix. For more

details see Deeter et al. (2003).

4.1.2 CO Verification Aircraft Observations

The CO observations on the 13 DC-8 flights (see Figure 3.6) during the

INTEX-A experiment were collected by G. Sachse using a fast response Tunable

Diode Laser (TDL) absorption spectrometry instrument called DACOM (Differen-

tial Absorptions CO Measurement). Detection of CO is accomplished by modu-

lating the TDL wavelength across a cell containing ambient air and then detecting

the periodic attenuation experienced by the laser beam due to absorption by CO

molecules. The accuracy of the measurements are 1ppb/5seconds (+/-5%) (Singh

et al., 2006). The system is fully described in Sachse et al. (1987). The accuracy

and density of this data set makes it extremely useful for tropospheric verification

of our experimental results.

4.2 Impact on CO from Modeling Modifications

The methodology we use for the validation of the changes in the model for

CO is identical to that we described in section 3.2. In Figure 4.3 we compare the
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CO field from GFS model simulations with the in situ CO data. The comparison is

made by interpolating the chemical fields from the model simulations to the DC-8

flight track, sampling the model at the frequency of the in situ measurements, then

binning the modeled and measured values into 50 hPa pressure bins to calculate the

median statistic.

In Figure 4.3 the black line is the median profile of the in situ aircraft ob-

servation results, the green line shows the median calculated analysis profile result

without using convective mixing of CO and the red line shows the median calcu-

lated profile after adding convective mixing for CO. It can be seen that convective

mixing improves the vertical distribution of the CO in the troposphere. When no

convective mixing is included, there is an excessive amount of CO found near the

surface. Convective mixing transports higher concentrations of CO at the surface

to the upper troposphere.

There is no impact on the meteorological fields from the modifications of the

model to incorporate the CO transport into the GFS model. This occurs because,

unlike for the ozone, there is no feedback between the CO fields and the meteoro-

logical fields in the model.

4.3 Assimilation of CO Observations

In this section, we compare the performance of two different configurations

of the analysis-forecast system. In the first configuration, no CO observations are

assimilated. In the second configuration, CO observations are assimilated multivari-
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Figure 4.3: Comparison between different model modification CO fields
and aircraft measurements. The aircraft measurements were acquired on
13 DC-8 flights between 10 July 2004 and 15 August 2004. Plotted are
the median profiles of: the in situ aircraft data in black (“In-situ”), the
analysis results using RAQMS CO production-loss parameterization and
no CO convective mixing in the model in green (“RAQMS NC”), and the
analysis results using RAQMS CO production-loss parameterization and
CO convective mixing in the model in red (“RAQMS C”). All analysis
results assimilated only conventional meteorological observations.
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ately with the meteorological observations. Hereafter, we refer to the former as the

“no-CO experiment” and the later as the “CO experiment.”

4.3.1 CO Assimilation Impact on Meteorological Fields

We first compare the no-CO and CO experiments to the high resolution opera-

tional NCEP analyses (Figure 4.4). The error statistics are averaged in one of three

regions of the globe: Northern Hemisphere (30N to 90N), Tropics (30S to 30N) and

Southern Hemisphere (90S to 30S). In the figure, a negative value implies that the

assimilation of CO observations has a negative impact on the verified field and a

positive value implies that the assimilation of CO observations has a positive impact

on the verified field. Similar to the assimilation of O3 (Figure 3.11), the assimilation

of CO observations has a clear negative impact on the meteorological fields. There

is some positive impact on the Southern Hemisphere geopotential height field but

these positive impacts are dwarfed by the negative impacts on the wind. The nega-

tive impact from the assimilation of CO observations on the meteorological fields is

still present at the 48-hour forecast time (Figure 4.5). However, the magnitude of

this negative impact is smaller in comparison to analysis time.

Finally, we compare the 48-hour forecasts started from analyses that assim-

ilated CO observations to radiosonde observations (Figure 4.6). This figure does

not show the negative impact on the meteorological fields that was seen in the

comparison between the CO and no CO experiments.
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Figure 4.4: MOPITT CO observation assimilation impact on the mete-
orological fields. Same as Figure 3.11, except here CO observations were
assimilated instead of O3 observations.
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Figure 4.5: 48-hour forecast MOPITT CO retrieval observation assimi-
lation impact on the meteorological fields verified with NCEP GFS anal-
ysis. Same as Figure 3.12, except here CO observations were assimilated
instead of O3 observations.
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Figure 4.6: 48-hour forecast MOPITT CO retrieval observation assimila-
tion impact on the meteorological fields verified with radiosonde observa-
tions. Same as Figure 3.13, except here CO observations were assimilated
instead of O3 observations.
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4.3.2 CO Meteorological Field Impact Investigation

As for the ozone, we consider three potential factors that may contribute to

the negative impact of the assimilation of CO on the meteorological files: bias in

the CO observations, deficiencies in the CO modeling and misspecification of the

CO observation error.

4.3.2.1 CO Observation Bias

The average bias in the version 3 MOPITT CO data was found to be between

1.9% and 14.4% of the retrieval values over the summer of 2004. This validation

was made against the aircraft measurements from three experiments: CO2 Budget

and Rectification Airborne (COBRA), Measurement of OZone, water vapor, carbon

monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC) program,

and the INTEX-A aircraft observation (Emmons et al., 2007). This bias should be

compared with the 70-80% average reported error of the MOPITT retrievals used

in the assimilation. The average bias is at least 4 times less than the reported error,

but still not negligible.

4.3.2.2 CO Model Error

The RAQMS model of CO was found to have a bias of less than 1% of the

computed mixing ratio globally and less than 1.2% over the continental United

States (Pierce et al., 2007). However, similar to the case of ozone, it is known

that the sub-grid scale process parameterizations, such as convective mixing, are
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deficient in modeling sub-grid scale transport processes and, as discussed in section

2.1.2 this deficiency could lead to a negative impact on the meteorological fields.

This deficiency is of particular importance for CO, since this problem mainly affects

the troposphere and the errors in the wind analysis are seen in the troposphere.

4.3.2.3 CO Observation Error

The primary known deficiency of our specification of the CO observation error

in the analysis system is that we neglect the covariance between the retrievals. As

for the ozone, we account for the neglected covariance by inflating the prescribed

variance of the CO observation error. We also tested two other potential approaches:

superobing (i.e., averaging several nearby observations (Lorenc, 1981)), and thinning

the observations (i.e., using only a few observations in a given local region). The

latter two approaches did not have as clear of an impact on our results as the

observation error inflation; therefore, we do not show results from these experiments.

As for the ozone observation error inflation experiments, we multiply the standard

deviation of the CO observation error by a gradually increasing factor of 2, 4 and

10.

Shown in Figure 4.7 is the zonal wind field verified against the NCEP GFS

analysis at analysis time. In Figure 4.8 we show the zonal wind field verified against

the NCEP GFS analysis at 48-hour forecast time. In Figure 4.9 we show the zonal

wind field verified against radiosonde observations at 48-hour forecast time.

Based on Figure 4.7 the conclusion would be to use an observation error infla-
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tion factor between 4 and 10; however, taken together with the other two verification

figures one would favor a factor between 1 and 2. Although at analysis time we de-

creased the negative impact on the meteorological field by inflating the standard

deviation of the observation error by as much as a factor of 10, it is clear from the

forecast verification that the optimal inflation factor is less than 10.

4.3.3 CO Assimilation Impact on CO Fields

In Figure 4.10, we summarize the results of the observation error inflation

experiments for CO. In contrast to the behavior we observed for the ozone, as the

observation error inflation factor is increased, the analyzed median value of the

CO drifts from the in situ measurements. Comparing our results to that for the

RAQMS analysis (Figure 4.11), it can be seen that an observation inflation factor

of 2 performs better than the RAQMS analysis for most vertical levels.

4.4 CO Results Discussion

We have described the results of the assimilation of MOPITT CO retrieval

observations with an implementation of the LETKF data assimilation algorithm on

the NCEP GFS model. Ours is one of the first successful attempts at multivariate

assimilation of MOPITT CO retrieval observations with a model of operational

complexity and an ensemble-based Kalman filter. The only other similar attempt

we are aware of is by Arellano et al. (2007), who assimilated MOPITT CO data

using a global atmosphere model, the Community Atmosphere Model (CAM3).
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Figure 4.7: CO observation error inflation impact on the zonal wind field
verified with NCEP GFS analysis. Same as Figure 3.15, except here CO
observations were assimilated instead of O3 observations.
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Figure 4.8: CO observation error inflation impact on the zonal wind
field 48-hour forecast from the analysis and verified with the NCEP
GFS analysis. Same as Figure 3.16, except here CO observations were
assimilated instead of O3 observations.
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Figure 4.9: CO observation error inflation impact on the zonal wind
field 48-hour forecast from the analysis and verified with the radiosonde
observations. Same as Figure 3.17, except here CO observations were
assimilated instead of O3 observations.

102



Figure 4.10: Comparison between different CO observation error infla-
tion and aircraft measurements. Same as Figure 3.21, except here CO
observations were assimilated instead of O3 observations.
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Figure 4.11: Comparison between RAQMS analysis CO results and air-
craft measurements. Same as Figure 3.22, except here only RAQMS
analysis CO results are reported.
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The performance of our system was assessed by comparing the CO field anal-

yses to aircraft observations collected in the INTEX-A field mission. We find that

our data assimilation system provides an accurate estimation of the atmospheric

state of CO. The accuracy of our system is competitive with the RAQMS chemical

modeling system when verified against the aircraft observations. For cases of no

observation error inflation and inflation by a factor of 2, the accuracy of our system

exceeds that of the RAQMS chemical modeling system.

The impact of the assimilation of CO on the meteorological fields was assessed

by comparing the performance of the system that included the assimilation of CO

to the performance of the system that did not include the assimilation of CO. The

quality of the analysis in these experiments was assessed by verifying the analyzed

and forecast meteorological fields against the high resolution NCEP GFS analysis.

In these experiments, we found a strong negative impact of the CO assimilation

on the analysis and forecast of the meteorological fields. We cannot rule out that

CO observation bias or deficiencies in the CO model from sub-grid scale processes

contributed to this negative result. We did find, however, that by increasing the

standard deviation of the prescribed observational error by a factor of 2 we were

able to eliminate most of the negative impacts on the wind fields in the 48-hour

forecasts. Unlike the case of the O3 assimilation, we were not able to improve the

analysis or forecast of any of the meteorological parameters by the assimilation of

the CO observations.
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Chapter 5

Conclusions

We have described an implementation of the LETKF data assimilation sys-

tem on a modified form of the operational NCEP GFS model for the assimilation

and prediction of trace gas concentration. Our modifications to the NCEP GFS

include: (1) the addition of convective mixing for the trace gases to the parame-

terization package and (2) the definition of production-loss terms in the prognostic

equations for the concentration of the trace gases by the output of the state-of-

the-art atmospheric chemical model, RAQMS. Our study is the first attempt at a

multivariate assimilation of SBUV/2 O3 retrievals in an operational model with an

ensemble-based Kalman filter. In addition, the results presented in the dissertation

are one of only two successful attempts of ensemble-based Kalman filter assimilation

of MOPITT CO retrieval observations in a state-of-the-art global circulation model.

The performance of our implementation in analyzing and predicting the trace

gas concentrations was assessed by comparing the analyses and forecasts to ob-

servations collected in the INTEX-A field mission. We find that the accuracy of

our system is competitive with that of the RAQMS chemical modeling system. In

addition, our system is far more accurate than the operational NCEP system in

analyzing the tropospheric O3 concentration.

The impact of trace gas assimilation on the meteorological fields was assessed
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by comparing the results of the experiments to the results of the analysis-forecast

experiments in which no trace gas was assimilated. We find that the assimilation of

O3 has a mixed impact on the accuracy of the analyzed and forecasted meteorological

fields, while the assimilation of CO has a negative impact. We find that, by inflating

the prescribed observation error for the trace gases, we can eliminate most of the

negative impact on the analysis and forecast of the meteorological fields, without

much reduction to the positive impact on the analysis of the concentration of the

trace gases.
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Poleward Movement of Upper-Tropospheric Fronts and Regional

Surface Temperatures: A Case Study of the U.S. Great Plains, 1980

to 2001
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A.1 Abstract

This paper explores the relationship of the poleward movement of upper-

tropospheric fronts and jet streams with long-term regional temperature changes. A

case study of the United States Great Plains for 1980-2001 reveals that this region

had an average daily temperature rise over this period of 0.35◦C based on station

data. Using the total column ozone data from the Total Ozone Mapping Spectrom-

eter to identify upper-tropospheric fronts on a daily basis, this region was divided

into three meteorological regimes: (1) tropical (between the equator and subtrop-

ical jet); (2) midlatitude (between the subtropical and polar jet); and (3) polar

(between the polar jet and the polar vortex or 60N). All three regime temperatures

not only did not rise but showed a cooling trend. The regional warming was due

to a percentage increase of the average area in the tropical regime and a percentage

decrease of the average area in the midlatitude and polar regimes, consistent with
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poleward movement of atmospheric circulation patterns. Over the 22-year period,

the tropical regime expanded an additional 7.5% or 1.38× 105km2, a rate of 3.4%

or 6.26× 104km2 per decade. The results suggest that regional climate change in

the midlatitudes may be detected through trends in the average percentage areas of

ozone-defined meteorological regimes.

A.2 Introduction

Large-scale atmospheric circulation systems include the polar and subtropi-

cal jet streams, upper-tropospheric fronts, baroclinic zones, and storm tracks, all

of which are dynamically linked. These systems can be altered by global climate

change. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assess-

ment Report (AR4) stated that circulation patterns have moved poleward in both

hemispheres over the last 50 years (Trenberth et al., 2007). This shift has the poten-

tial to change climate zones by modifying regional winds, clouds, and precipitation

patterns. The question explored in this paper is whether it also may cause long-term

changes in regional surface temperatures.

There is growing observational evidence for the poleward movement of circu-

lation patterns in research too recent to have been included in AR4. Seidel and

Randel (2007) used radiosondes from 1979-2005 to show an increased frequency of

high-tropopause (> 15km) days, consistent with a widening of the tropical belt by

5◦−8◦ latitude through poleward movement of the subtropical jet. Using satellite

measurements of outgoing longwave radiation, Hu and Fu (2007) found evidence
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that the Hadley cell has expanded poleward by 2◦−4.5◦ in both hemispheres in

1979-2005. Fu et al. (2006) calculated a poleward shift of approximately one degree

for the combined jet streams using satellite-borne microwave sounding unit data.

Hudson et al. (2006) reported a poleward movement of 1.1◦ per decade latitude

for the subtropical front and 0.5◦ per decade latitude for the polar front in the

Northern Hemisphere midlatitudes (25◦−60◦N) from January 1979 to August 2003.

Wang et al. (2006), using reanalysis datasets, showed that between the 1958-77 and

1982-2001 periods, the mean zonal position of the storm track moved poleward 181

km in the North Atlantic and 259 km in central Canada.

The dynamical basis for poleward movement of upper-tropospheric fronts, jet

streams, and storm tracks is not fully understood. However, studies that use numer-

ical models to simulate global climate change suggest the poleward shift of circula-

tion patterns is a potential climate feedback related to increased greenhouse gases

(Hall et al. (1994); Knippertz et al. (2000); Geng and Sugi (2003); Fyfe (2003); Yin

(2005); Bengtsson et al. (2006); Jiang and Perrie (2007); Lu et al. (2007); Pinto et al.

(2007)). However, their predictions of the poleward shift are an order of magnitude

below the observations (Hu and Fu, 2007).

In this study, the connection between poleward movement of atmospheric cir-

culation systems and long-term changes in regional temperature is investigated by

using daily satellite measurements of total column ozone to identify the position

of upper-tropospheric fronts. Gordon Miller Bourne Dobson was the first to note

the correlation between ozone and meteorological variables, including tropospheric

temperature, pressure distribution, air density, tropopause height, and tropopause
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pressure, in a series of articles during 1926-30 (Dobson and Harrison (1926); Dob-

son et al. (1927), Dobson et al. (1928); Dobson (1930)). Melvyn A. Shapiro doc-

umented the mechanism that links abrupt changes in ozone concentrations with

upper-tropospheric fronts and jet streams (Shapiro (1978); Shapiro (1980); Shapiro

(1981); Keyser and Shapiro (1986)). He was the first to suggest the use of total

column ozone measurements from the Total Ozone Mapping Spectrometer (TOMS)

to identify daily front positions (Shapiro et al. (1982)).

Ozone can be used as a dynamical tracer because its chemical lifetime near

the tropopause is ≈ 90 days, much longer than its dynamical lifetime of a few days

(Holton et al. (1995); Zachariasse et al. (2000)). The fronts can be traced using

ozone concentrations because they are marked by the descent of a tongue containing

ozone-rich stratospheric air below the tropopause (Gill, 1982). High-ozone air from

the stratosphere is believed to enter the troposphere near upper-tropospheric fronts

and jet streams through tropopause folds associated with upper-level frontogenesis

and the statistically persistent tropospheric breaks near the jet streams, also known

as double tropopauses (Koch et al. (2005); Pan et al. (2004); Randel et al. (2007)).

Ozone mixing ratios are the highest along the tropopause fold but remain large

along the frontal zone compared to air outside the zone Hipskind et al. (1987).

When strong lee waves obscured other frontal indicators, Rao and Kirkwood (2005)

found ozone concentrations still had a good correspondence with the location of the

frontal system observed. These gradients do not dissipate quickly because of strong

dynamic resilience to cross-tropopause transport Holton et al. (1995).

It is known that there is a link between upper-tropospheric fronts and surface
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temperature. According to potential vorticity theory, the growth of baroclinic ed-

dies is due to the mutual reinforcement of a potential vorticity anomalies on the

upper-tropospheric front and surface temperature anomalies. The upper-level jet

stream triggers surface wind fluctuations which advect surface temperature anoma-

lies downstream (Takamura et al., 2004). A link has also been documented between

surface temperatures and total column ozone. Kiss et al. (2007) conclude that the

large number of local factors that could influence temperature fluctuations as well

as the complex chemistry that could influence ozone fluctuations are subsidiary and

that dynamics dominate both parameters.

Hudson et al. (2003) developed an algorithm to identify high-ozone gradients

in TOMS measurements and found that these locations agreed closely with daily

front positions in National Center for Atmospheric Research / National Centers for

Environmental Prediction reanalysis data. They used the location of subtropical and

polar fronts to divide the Northern Hemisphere into three meteorological regimes:

tropical, midlatitude, and polar regimes. These regimes can be identified by their

distinctive ozone characteristics (see Table A.1). Hudson et al. found that the

regional daily mean for total ozone value was relatively constant between the fronts

but changed abruptly in concentration and altitude at each front and that these

properties vary smoothly from day to day.

The existence of these meteorological regimes has since been confirmed by

other studies. Ozone jumps up to one percent have been observed between the

tropics and midlatitudes and up to two percent from the midlatitudes to the po-

lar regions (Coldewey-Egbers et al., 2005). Ladstatter-Weissenmayer et al. (2007)
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Table A.1: The three meteorological regimes as identified from column
ozone data.

found that the total vertical column density of ozone in the East Mediterranean

region was highly dependent on whether the area was in a tropical or midlatitude

regime. Similarly, Diab et al. (2003) analyzed 56 complete vertical ozone profiles

from throughout the year in Johannesburg, South Africa (26S) and found that the

seasonality in some of the profiles reflected the differing influences of the tropical

and midlatitude source regions. Finally, Seidel and Randel (2007) found a clear

distinction between tropical and extratropical regimes, which had a three to five

kilometer difference in tropopause height.

Using the Hudson et al. (2006) algorithm, this experiment examines whether

long-term changes in the mean latitudes of upper-tropospheric front positions may

be responsible for a portion of rising average regional surface temperatures. This

analysis focuses on the United States Great Plains during 1980-2001. The next

section describes the data and analysis methods, the third section summarizes the

temperature and area results, and the fourth section presents discussion and con-

clusions.
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A.3 Methodology

The U.S. Great Plains region was chosen for this study because it has high-

density surface temperature observations, contains all three meteorological regimes

for most of the year, and minimizes some of the more significant causes of temper-

ature variation such as large orographic or coastal effects. This study defines the

Great Plains as 30◦−48◦N and 95◦−105◦W (see Figure A.1). The Great Plains is

one of the few remaining areas in the United States that is dominated by agricul-

ture. The terrain is relatively flat with increasing elevation from east to west. The

climate is categorized as semi-arid. It has extreme and variable conditions with

strong meridional temperature gradients increasing from north to south and zonal

precipitation gradients increasing from west to east (Polsky and Easterling, 2001).

TOMS data were used to create daily ozone masks delineating the location of

fronts and the area covered by each regime in the site (TOMS, cited 2009). TOMS

uses reflected ultraviolet solar radiation to measure total column ozone and daily

data are taken over a 24-hour period. The ozone retrieval algorithm accounts for

cloudy conditions, solar zenith angle, and radiative transfer processes (McPeters

and Labow, 1996). The archived datasets used in this experiment were the version

eight, level three hierarchical data format product with improved climatology for

ozone vertical profiles (McPeters et al., 2007). Each grid square was 1.00◦ × 1.25◦

resolution and the Great Plains region contained a total of 160 grid boxes. The ozone

masks labeled each grid box by regime excluding one degree boundaries between

regimes, an average of 20 grid boxes per day (see Figure A.1). Mask data were
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Figure A.1: Division of the Great Plains region (black box) into ozone-
defined meteorological regimes for 6 August 1987. The three regimes are
tropical (red), midlatitude (green), and polar (blue).
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categorized as missing if the algorithm did not converge after five iterations, there

were no TOMS data for that day, or over 50% of the TOMS data for that day were

missing. More information on the ozone mask algorithm can be found in Hudson

et al. (2006). The study period chosen was 1980-2001 to match the availability of

these ozone masks.

Station data for daily surface temperature were obtained from U.S. Historical

Climatology Network Daily Temperature, Precipitation, and Snow Observations

from the Carbon Dioxide Information Analysis Center (CDIAC, cited 2009). Daily

resolution is preferable for studies attempting to detect regional climate change.

These data have uncorrected inhomogeneities due to changes in observing time, site

location, and instrumentation and no adjustment for heat island effects. However,

the quality of the data was assessed for completeness, reasonableness, and accuracy

before distribution. Out of the 1221 stations in the continental United States, 226

weather stations were in the designated region for the period 1980-2001.

The mean daily temperature used is the average of the daily maximum and

minimum temperatures. Daily regime areas were calculated as percentages of the

total area of the Great Plains based on a grid box count. Both the temperature and

area data were deseasonalized by subtracting a calendar day average for the month

over the 22-year period to arrive at a daily anomaly and its standard deviation.

A weakness in our data analysis is that autocorrelation is not considered and not

using a variance inflation factor may result in an overestimate of the confidence

limit (Wilks, 2006). A linear least squares trend line was fitted to the daily data

to calculate the 22-year trend. This analysis was done separately for each of the
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three regimes along with an “other” category that included regime boundaries, areas

above the polar vortex, and empty data cells.

Since the fluctuations of the surface temperature can be calculated directly

from the station data, a Monte Carlo method was employed to determine the likeli-

hood that the observed trends occurred by chance. A Monte Carlo simulation was

first recommended to establish statistically significant in atmospheric science stud-

ies by Neumann et al. (1977) and has since become a commonly used approach in

climate studies (Livezey and Chen (1983); Karl et al. (1996); Hanna et al. (1998);

Karoly and Wu (2005); Serra et al. (2006)). In the IPCC, the 90% confidence interval

is sometimes determined by a Monte Carlo simulation based on known error (Forster

et al., 2007). The standard deviation for each of the respective datasets was used

to randomly perturb the data within its one-standard-deviation band (von Storch

and Zwiers, 1999). After each iteration, a trend line was fitted to the randomized

data and the standard deviation was calculated for the slopes. After approximately

1000 iterations, the standard deviation of the slope converged to a single value. All

uncertainty ranges presented in this paper are one sigma.

The mean temperature measured over an area can be separated into a balance

between the temperatures in individual regimes and the area occupied by those

regimes:

AtTt
·
+ AmTm

·
+ ApTp

·
+ AoTo

·
= 1 (A.1)

where A is the daily fractional area covered by a regime and is the average
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daily temperature over a regime area divided by the total-area daily temperature

in Kelvin units. The subscript t represents the tropical regime, m represents the

midlatitude regime, p represents the polar regime, and o represents other. Each

term corresponds to the percentage effect each regime had on the temperature of

the total area. The time derivative of Equation A.1 can be used to investigate the

relative effects of regime temperature and regime area on the change in regional

average surface temperature:

At
∂Tt

·

∂t
+ Am

∂Tm
·

∂t
+ Ap

∂Tp
·

∂t
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∂To
·

∂t
+ Tt

·∂At

∂t
+ Tm

·∂Am

∂t
+ Tp

·∂Ap

∂t
+ To

·∂Ao

∂t
= 0

(A.2)

The first four terms on the left-hand side of Equation A.2 are the temperature

effect terms and the last four are the area effect terms.

A.4 Results

The mean daily temperature in the Great Plains averaged over 1980-2001 was

10.9◦C. As expected the highest mean temperature was 14.1◦C for the tropical

regime followed by 8.7◦C for the midlatitude regime and 6.5◦C for the polar regime

(see Figure A.2 panel a). The average percentage area for each regime shows that

the region is dominated by the tropical regime with 44% and midlatitude regime

with 37%, but only 4% in the polar regime and 15% in the “other” category (see

Figure A.2 panel b).

The data show that there was a statistically significant warming in the Great
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Plains over the 22-year period. The overall regional temperature trend for 1980-

2001 is a rise of 0.35◦ ± 0.11◦C. In contrast, trends in average regime tempera-

tures showed a decrease during 1980-2001 (see Figure A.2 panel c). The tropical

regime had a relatively small drop of −0.14◦ ± 0.09◦C as did the midlatitude regime,

which was −0.13◦ ± 0.09◦C cooler, and the polar regime had a larger decrease of

−0.71◦ ± 0.14◦C.

The percentage area occupied by each regime had a statistically significant

change over the time period. The average area of the tropical regime grew by 7.4%

± 2.7% of the total region, the midlatitude regime contracted by -10.0% ± 3.0%,

and the polar regime decreased by -1.37% ± 1.2% (see Figure A.2 panel d). Note

that the reason these changes do not offset each other is due to the variability of the

frontal boundary region, usually about 13% of the area, and the 4% rise in missing

data over the time period.

Given that the area of the Great Plains is 1.86× 106km2, it is estimated

that the tropical regime moved northward to cover on average 1.38105 km2 more

of the region during 1980-2001. Its rate of encroachment was 6.26× 104km2 per

decade. The subtropical jet shifted farther north on average than the polar jet so

the midlatitude regime was compressed on average by −1.86× 105km2 at a rate of

−8.45× 104km2 per decade. The polar regime lost a total of 2.56× 104km2 at a

rate of 1.16× 104km2 per decade.

The trend for each of the terms in Equation 1 shows the tropical regime effect

grew by 6.44% ± 0.02% over the period while the midlatitude regime effect declined

by 8.64% ± 0.02% and the polar regime effect also fell by 1.13% ± 0.01% (see
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Figure A.2: Results for the Great Plains, 1980-2001 (Error bars are for
one standard deviation): (a) mean temperature of the region as a whole
and each regime; (b) average percentages of area occupied by the three
regimes; (c) temperature trend for the region and the regimes; and (d)
area trends for the regimes.
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Figure A.3: The trend in effect on regional temperatures of the tropi-
cal regime (red), midlatitude regime (green), and polar regime (blue).
(Annual averages were used to construct this figure while the influence
trends discussed in the text were calculated on a daily basis).

Figure A.3). The results for Equation A.2 show that all the area effect terms are

two orders of magnitude larger than the temperature effect terms (see Table A.2).

The regional temperature is influenced most by changes in regime area, particularly

in the tropical and midlatitude regimes.

A.5 Discussion and Conclusion

The finding of a 0.35◦C rise in 1980-2001, 0.16◦C per decade, in the Great

Plains is in the same direction and similar in magnitude to the IPCC estimate

that the Central United States in 1979-2005 shows a temperature increase between

0.1◦−0.3◦C per decade (Trenberth et al., 2007). The warming observed in the Great

Plains is also consistent with proxy studies (Hu et al. (2005); Grundstein (2003)).
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Table A.2: The regime area influence and regime temperature influence
as calculated from Equation A.2. All results are ×10−5 and unitless.

The results show that average temperature increased in the U.S. Great Plains

despite the temperature decrease in all three of the meteorological regimes in the

region during 1980-2001. This seemingly paradoxical result can be explained by the

changing area of each of the regime (see Figure A.4). As the tropical regime occupied

a larger area, its warmer temperatures compared to the retreating midlatitude and

polar regimes resulted in an overall average temperature increase in the Great Plains.

This result is consistent with findings of the IPCC on global circulation changes

(Trenberth et al., 2007).

Seidel and Randel (2007) made a similar finding that the subtropics (28−40◦)

had one to three additional weeks in the tropical regime during recent decades in

both the Northern and Southern Hemispheres. They found a maximum in tropo-

spheric warming and stratospheric cooling in the 15◦−45◦ latitude band in both

hemispheres. There was a statistically significant correlation between poleward

movement of the subtropical jet and midtropospheric temperature (r = 0.49).

If the regional temperature rise was due solely to the direct effect of the in-

creased radiative forcing, one would expect regime temperatures to also rise. The
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Figure A.4: Illustration of how tropical (red), midlatitude (green), and
polar (blue) regime temperatures can fall but the overall temperature
can rise due to changes in regime area.

finding that regime temperatures did not rise suggests that the poleward move-

ment of the upper-tropospheric front-jet streams was responsible for the regional

temperature rise. As the IPCC noted in AR4, the response to radiative forcing

can be altered drastically if it affects the structure or circulation of the atmosphere

(Solomon et al., 2007).

The “chicken and egg” problem of which came first, poleward front movement

or rising temperature, is difficult to resolve. Warmer temperatures could cause

poleward front movement by the changes in mean stationary wave patterns caused by

higher temperatures (McCabe et al., 2001). Another theory is that the temperature

rise is due to the movement of the front. Given that the fronts separate air masses of

different temperatures, the poleward movement of the subtropical and polar fronts
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is likely to extend the influence of higher tropical regime temperatures northward

into areas that were dominated by the midlatitude regime in the past. It would also

extend the warmer temperatures of the midlatitude regime into areas previously

cooled by the polar regime. As the average latitude of the regimes moved northward,

the average solar zenith angle in the individual regimes would fall, causing a slight

drop in regime temperatures. Both scenarios are consistent with the results of this

study.

Leroy et al. (2006) identified poleward movement of the polar jet symmetrically

between the two hemispheres as the most robust indicator of climate change. One of

the reasons that a poleward movement of the polar jet is observable within 7-12 years

is that it has little natural variability. In contrast, surface temperature predictions

are poor indicators because of the large regional uncertainty among the models.

This means the relationship between poleward movement of circulation patterns and

long-term temperature change provides a rich opportunity for examining regional

variations and detecting regional climate change.

Detection of poleward front movement could be achieved through techniques

using ozone gradients to identify the daily position of upper-tropospheric fronts

and jet streams, such as the Hudson et al. (2006) algorithm used in this study. This

paper demonstrates the power of this approach and its strong relationship to regional

temperature. This technique also opens up the possibility of further work on the

relationship of poleward movement of upper-tropospheric fronts and jet streams to

other important climate variables such as precipitation patterns.

This study shows that average temperature within the meteorological regimes

124



in the U.S. Great Plains did not rise during 1980-2001 despite the overall average

temperature increase in the region as a whole. This suggests that the poleward

movement of the subtropical and polar jets was responsible for all or part of the

overall temperature rise. As the tropical regime occupied a larger area, its warmer

temperatures compared to the retreating midlatitude regime resulted in an overall

average temperature increase in the Great Plains. Given the limitations of this

study, the results observed in the Great Plains over 22 years cannot be extrapolated

to other regions but poleward front movement has been observed in throughout the

Northern and Southern Hemispheres (Trenberth et al., 2007). It is critical for climate

scientists to better understand this phenomenon and its regional implications.
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B.1 Abstract

In this paper, the spatio-temporally changing nature of predictability is studied

in a reduced-resolution version of the National Centers for Environmental Prediction

(NCEP) Global Forecast System (GFS), a state-of-the-art numerical weather pre-

diction model. Atmospheric predictability is assessed in the perfect-model scenario

for which forecast uncertainties are entirely due to uncertainties in the estimates

of the initial states. Uncertain initial conditions (analyses) are obtained by assimi-

lating simulated noisy vertical soundings of the “true” atmospheric states with the

Local Ensemble Kalman Filter (LEKF) data assimilation scheme. This data assimi-

lation scheme provides an ensemble of initial conditions. The ensemble mean defines

the initial condition of 5-day deterministic model forecasts, while the time-evolved

members of the ensemble provide an estimate of the evolving forecast uncertainties.

The observations are randomly distributed in space to ensure that the geographical

distribution of the analysis and forecast errors reflect predictability limits due to
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the model dynamics and are not affected by inhomogeneities of the observational

coverage.

Analysis and forecast error statistics are calculated for the deterministic fore-

casts. It is found that short-term forecast errors tend to grow exponentially in the

extratropics and linearly in the tropics. The behavior of the ensemble is explained

by using the E-dimension, a spatio-temporally evolving measure of the evenness of

the distribution of the variance between the principal components of the ensemble-

based forecast error covariance matrix.

It is shown that in the extratropics the largest forecast errors occur for the

smallest E-dimensions. Since a low value of the E-dimension guarantees that the

ensemble can capture a large portion of the forecast error, the larger the forecast

error, the more certain that the ensemble can fully capture the forecast error. In

particular, in regions of low E-dimension, ensemble averaging is an efficient error

filter and the ensemble spread provides an accurate prediction of the upper bound

of the error in the ensemble mean forecast.
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B.2 Introduction

In dynamical systems theory, predictability is often characterized by the largest

Lyapunov exponent of the system. This characterization is based on studying the

evolution of initially small perturbations to a nonlinear trajectory, assuming that a

numerically-computed, sufficiently long trajectory can explore the small neighbor-

hood of all possible states of the system (e.g., Ott 2003). Such a characterization

may not apply for finite time forecasts and is especially inappropriate when the di-

mensionality of the dynamics is so high that exploration of the attractor by a typical

trajectory takes a very long time. This is the case for a high-dimensional weather

prediction model that mimics the evolution of the atmosphere.

Patil et al. (2001) introduced the E-dimension (originally called BV-dimension)

to characterize the spatio-temporally changing complexity of the dynamics for a

physically extended large system, such as a state-of-the art numerical weather pre-

diction model. The E-dimension is a local, spatio-temporally evolving measure of

complexity (Patil et al. 2001; Oczkowski et al. 2005). The calculation of this mea-

sure is based on the singular value decomposition of an ensemble-based estimate of

the analysis (or forecast) error covariance matrix in a local region. Heuristically, the

E-dimension measures the evenness of the distribution of the variance between the

principal components of the ensemble-based estimate of the forecast error covari-

ance matrix. The lowest possible value of the E-dimension, which is 1, occurs when

the estimated variance is confined to a single spatial pattern of uncertainty. The

highest possible value of the E-dimension, which is equal to the number of ensemble
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members N , occurs when the variance is evenly distributed between N independent

patterns of uncertainty.

Patil et al. (2001) applied the E-dimension diagnostic to operational forecast

ensembles of the National Centers for Environmental Prediction (NCEP). They

found an intriguing relationship between the regions of low E-dimensionality and

the magnitude of the ensemble perturbations: the lowest-dimensional regions were

often the regions of largest estimated forecast uncertainties. Patil et al. (2001) hy-

pothesized that there was a large potential for analysis and forecast improvements in

the regions of low E-dimensionality due to the simple structure of potential analysis

and forecast error patterns in those area. Most importantly, this result motivated

the development of the Local Ensemble Kalman Filter (Ott et al., 2004) data as-

similation scheme.

While the results of Patil et al. (2001) with the NCEP forecast ensembles

were encouraging, they could not be considered conclusive due to some important

limitations of the ensemble used in the study. Most importantly, there were only five

independent ensemble members available for the calculation. Secondly, the NCEP

ensembles were initialized with the breeding algorithm (Toth and Kalnay, 1993,

1997), which tends to force the initial ensemble perturbations toward a few dominant

error patterns (e.g. Szunyogh et al. 1997). These limitations of the Patil et al. (2001)

study motivated Oczkowski et al. (2005) to repeat the calculations of Patil et al.

(2001) with much larger ensembles. Oczkowski et al. (2005), who also employed

local energetics diagnostics to identify the atmospheric dynamical processes that

led to the development of local low dimensionality, confirmed the earlier result that
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local low dimensionality was often the result of strong local instabilities that led to

the rapid growth of simple error patterns.

The study of Oczkowski et al. (2005) was also based on a bred-vector ensemble.

As mentioned earlier, the main problem with this approach is that extreme low-

dimensionality tends to occur in the initial ensemble as a result of the ensemble

generation technique. The main goal of the present study is to investigate the role

that changes in the complexity of the local dynamics play in predictability, using

an ensemble of initial perturbations that has high E-dimension and is consistent

with the estimated analysis uncertainties. To achieve this goal, we take advantage

of our previous work to test an implementation of the LEKF on the NCEP GFS

model (citealtSzunyogh2005; SEA05 hereafter). We investigate the evolution of the

E-dimension and the role it plays in predictability in forecasts started from analysis

ensembles of SEA05. For a 40-member bred-vector ensemble, the typical values

of the E-dimension vary between 5 and 25 (Oczkowski et al., 2005), but for a 40

member LEKF ensemble the E-dimension is never smaller than 25 and is typically

larger than 30 (SEA05).

We carry out experiments for the perfect model scenario: a “true” nonlinear

trajectory is generated by a long integration of the model from a realistic Northern

Hemisphere winter initial condition. Then, imperfect (perturbed) initial conditions

are obtained by assimilating simulated noisy observations of the “true” states with

the LEKF data assimilation system. An important feature of the hypothetical ob-

serving network is that the observations are randomly distributed. Thus, unlike a

real observing network, the simulated observing network may be assumed to have
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no effect on the geographical distribution of the analysis and forecast uncertainties

(provided that the observational network is not too sparse). Here, the focus is on

the spatio-temporal evolution of the forecasts and the forecast uncertainties started

from the analyses of SEA05. Although the unique features of the LEKF algorithm

make the close relationship between local dimensionality, error growth, and skill of

the ensemble to capture the space of forecast uncertainties especially transparent, we

believe that our results could be reproduced with any suitably formulated ensemble-

based Kalman filter scheme (e.g., Anderson 2001; Bishop et al. 2001; Houtekamer

and Mitchell 2001; Evensen 2003; Keppenne and Rienecker 2002; Whitaker and

Hamill 2002). In addition, we hope that our results help strengthen the theoretical

foundation of the operational practice of using small ensembles to predict the evolu-

tion of uncertainties in high-dimensional operational numerical weather prediction

models (e.g., Kalnay 2003).

The analysis-forecast system used in our experiments, as well as the experimen-

tal design, are described briefly in Section 2. Section 3 investigates the geographical

distribution and typical evolution of the forecast errors. This section also provides

a detailed account of a case of explosive error growth. Section 4 investigates the

relationship between the E-dimension, forecast error growth, and the skill of the en-

semble in tracking the space of the spatio-temporally evolving forecast uncertainties.

Section 5 is a summary of our main conclusions.
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B.3 Experimental design

The LEKF scheme is a model-independent algorithm to estimate the state

of a large spatio-temporally chaotic system (Ott et al., 2004). The term “local”

refers to an important feature of the scheme: it solves the Kalman filter equations

locally in model grid space. More precisely, the state estimate at a grid point P

is obtained independently from the state estimate at the other grid points, consid-

ering the observations and the background state only from a local cube centered

at P . The LEKF scheme also provides an estimate of the analysis uncertainty at

P and generates an ensemble of analysis perturbations that represent the estimated

uncertainty at P . When the LEKF is applied to the assimilation of observations of

a perfect model, we use a 4% multiplicative variance inflation (Anderson and An-

derson, 1999) at each analysis step to increase the estimated analysis uncertainty to

compensate for the loss of ensemble variance due to sampling errors and the effects

of nonlinearities. In addition to the variance inflation coefficient, the scheme has

two tunable parameters: the number of grid points in the local cube and the number

of ensemble members.

Here, as well as in SEA05, the LEKF is implemented on a reduced resolution

version of the 2001 operational implementation of the NCEP GFS model. With

the exception of the resolution, which is reduced to T62 in the horizontal direction

and to 28 levels in the vertical direction, the model we use is identical to the full

operationally implemented version of the 2001 NCEP GFS (detailed documentation

of the model can be found at http://www.emc.ncep.noaa.gov/modelinfo).
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A time series of “true” states was generated by a 60-day integration of the

model starting from the operational NCEP analysis at 0000 UTC on 1 January

2000. The two components of the horizontal wind vector and the temperature were

observed at all model levels, and the associated surface pressure was also observed.

The assumed observational errors were normally distributed with zero mean and

standard deviations of 1 m/s, 1 K and 1 hPa, respectively. Initially, observations

were generated at all 17,848 horizontal grid point locations. Then, reduced obser-

vational networks were created by gradually removing observational locations at

randomly selected grid points. This approach was applied to construct three ad-

ditional observational networks that take vertical soundings of the atmosphere at

2000, 1000, or 500 fixed locations every six hours.

In what follows, we investigate the subsequent evolution of the distribution

of the forecast errors. Most of the results presented here are for a configuration of

the LEKF that consists of a 40-member ensemble, 7× 7× v grid point local cubes

(v is the number of vertical grid points in the cube and changes with altitude; see

SEA05 for details), and 2,000 simulated vertical soundings. We note that 7 grid

points is equivalent to a distance of 13.4 degrees in the meridional direction and to

a distance of 13.1 degrees in the zonal direction. The initial ensemble perturbations

are generated by adding random noise to the operational NCEP background forecast,

truncated to the resolution used in this paper, at 0000 UTC 1 January 2000. The

distribution of the random noise is identical to that of the simulated observations.

That is, except for the effects of statistical fluctuations and truncation errors, the

initial background is identical to the operational NCEP background at 0000 UTC
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1 January 2000 and in the initial estimate of the background error covariance matrix

the error variance is about the same as the observational error variance, while the

errors of the different variables at the different grid point locations are uncorrelated.

B.3.1 Data sets

A state estimate is obtained every six hours by assimilating the simulated

observations with the LEKF scheme. Deterministic forecasts are started from the

0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC ensemble mean analyses each

day. An ensemble of forecasts is also started every 12 hours, using the analysis

ensemble provided by the LEKF as the initial conditions. Forecast error statistics

are generated by comparing the deterministic forecasts to the true states. (The only

exceptions are the results presented in section 4.3, where the ensemble mean forecast

is compared to the true states.) The forecast error statistics are computed for the

40-day period that starts at the fifteenth day along the “true” trajectory. We refer

to time using the 40-day period as reference, i.e., the first forecast that we verify

starts at 0000 UTC on day 1, and the last forecast we verify starts at 1200 UTC on

day 40. The model outputs are processed on a 2.5× 2.5 degree resolution grid. We

present error statistics in the following formats:

• Snapshots of errors are presented by mapping the difference between the fore-

cast and the true state on the grid.

• Maps of the time mean absolute error are generated by first computing the

absolute value of the difference between the forecasts and the true states at
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the grid points, then computing the 40-day mean of the absolute values.

• The error for a geographical region is obtained by computing the root-mean-

square of the error over all grid points in the geographical region. Plots showing

time series of the errors are based on this information. Errors are shown for

three geographical regions: NH extratropics (30◦N − 90◦N), tropics (30◦S −

30◦N) and SH extratropics (90◦S − 30◦S).

• The spectrally-filtered errors for a geographical region are obtained by first

spectrally filtering the grid point values along each latitude, based on the

zonal wave numbers, then computing the rms over the region.

• The time-mean absolute error for a geographical region is obtained by comput-

ing the 40-day mean of the root-mean square error for the given geographical

region.

B.4 Evolution of the forecast errors

The simulations in SEA05 found that the largest wind and temperature anal-

ysis errors were in the main regions of deep convection in the tropics, while the

smallest analysis errors were found in the mid-latitude storm track regions. Fig-

ure B.1 illustrates the rapid change in the geographical distribution of the errors as

the forecasts progress, showing the time mean of the forecast errors for the merid-

ional component of the wind vector at the 500 hPa level (the figure shows the time

mean over all 160 forecast cycles). There seems to be a relationship between the
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errors in the region of deep convection and the early amplification of the errors in

the North Pacific storm track region. Then the errors propagate westward along

the upper tropospheric waveguides. Although a clear indication of rapidly growing

errors in the North Atlantic and Southern Hemisphere storm track regions can be

seen first at the 48-hour forecast lead time, the storm track regions become the

location of the dominant error patterns in the extratropics by the 72-hour forecast

lead time.

B.4.1 Dependence on the geographical region

The difference between the error growth characteristics in the extratropics and

the tropics becomes obvious by investigating the time evolution of the root-mean-

square forecast errors for the different geographical regions (shown by closed squares

in Figure B.2 and B.3). The most striking difference between the extratropics and

the tropics is in the functional dependence of the error growth on the forecast lead

time. (Notice that while the vertical scale in Figure B.2 is logarithmic, the vertical

scale in Figure B.3 is linear.) In the extratropics, the root-mean-square of the

forecast error is approximately an exponential function of the forecast lead time for

the first 72 hours, i.e., zf (t) = zae
rt, where the scalar r denotes the exponential error

growth rate. After about 72 hours, the error growth starts slowing down, indicating

an initial stage of nonlinear error saturation. In contrast, in the tropics, the root

mean square of the forecast error, zf (t), is a linear function of the forecast lead time,

i.e., zf (t) = bt+ za, where za ≈ zf (0) is the root-mean-square analysis error and the
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scalar b is the linear error growth rate.

We obtain estimates of the parameters za and r by calculating their values for

the curves that best fit the forecast errors for the first 72 hours in the least-squares

sense. Although the initial errors are very slightly larger in the SH extra-tropics

(not shown) than in the NH extra-tropics (0.42 ms−1 versus 0.39 ms−1), the forecast

errors grow a bit more slowly in the SH (not shown) than in the NH extra-tropics;

the error doubling time T = r−1 ln 2 is 38.5 hours in the SH extratropics versus 34.7

hours in the NH extratropics.

The shape of the error growth curves indicates that the magnitude of the errors

in the first 72 hours is governed by the differential equation

dzf (t)/dt = rzf (t), zf (0) = za, (B.1)

in the extratropics and by the differential equation

dzf (t)/dt = b, zf (0) = za (B.2)

in the tropics.

Interestingly, the functional dependence of the error growth is independent

of the spatial scale in both regions: except for the zonal mean term (k = 0), the

initial error grows exponentially for all wave number ranges in the extratropics

(Figure B.2), while the error grows linearly for all wave number ranges in the tropics

(Figure B.3). The linear error growth rate b and the initial exponential growth rate

r are larger for the wave number ranges k = 1–10 and k = 11–20 than for the range

k = 21–40. Also,the errors tend to start saturating earlier for the smaller scales

(larger wave numbers).
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B.4.2 Dependence on the LEKF parameters

We have carried out experiments to test the sensitivity of the forecast results

to the free parameters of the analysis scheme (results are not shown). We find that,

within a reasonable range of the parameters, the forecast errors depend only weakly

on the parameters. More precisely, the small initial differences between the analyses

for 5×5×v, 7×7×v, and 9×9×v local cubes show negligible growth in the forecast

phase. Likewise, for a 5 × 5 × v local region size, the advantage of the 80-member

ensemble filter over the 40-member ensemble filter is negligible in the first 72 hours.

Since the dominant errors grow exponentially in the extra-tropics, our result shows

that differences in the analysis due to changes of the free parameters have only a

very small projection on the dominant instabilities. This indicates that, when the

parameters of the LEKF scheme are chosen from a reasonable range, the scheme can

efficiently remove the growing error components. This is a nontrivial result, since

the scheme corrects errors that were growing before the analysis time, while the

forecast errors are governed by errors that are growing after the analysis time. An

important practical consequence of the weak sensitivity to the tunable parameters

is that it greatly increases the generality of our predictability assessment.

B.4.3 Dependence on the number of observations

In sharp contrast to the aforementioned weak sensitivity to the tunable pa-

rameters, the observational density has a significant influence on the accuracy of the

forecasts. Increasing the number of observations substantially improves the accuracy
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of the forecasts in all geographical regions (results are not shown).

In the tropics, the improvement is essentially constant in time, due to a weak

dependence of the linear error growth rate on the number of observations. This

result suggests that increasing the number of observations in the tropics leads to

a reduction of the magnitude of the forecast errors, but it does not change the

characteristics of error growth. Likewise in the extra-tropics, the influence of the

observational density on the exponential error growth rate is modest, although the

error growth is slightly faster for the higher observational density (Table B.1).

B.4.4 Temporal variability of the forecast errors

Among the three geographical regions considered in this paper, the temporal

variability of the forecast errors is highest in the NH extra-tropics and lowest in the

tropics (Figure B.4). The high variability in the NH extratropics is due to episodes

of unusually large forecast errors. The first such episode is a pattern of extremely

large errors in forecasts started between 1200 UTC on day 4 and 0000 UTC on day 7.

We find (results not shown) that improving the accuracy of the analysis, by adding

more observations and/or increasing the ensemble size, leads to minuscule reductions

in the forecast errors at these verification times. This indicates that the unusually

large forecast errors in this case are more associated with low predictability of the

atmospheric states than with the accuracy of the analyses. An inspection of the

atmospheric flow regimes reveals that the relatively low predictability of these states

is associated with the rapid amplification of errors in the presence of an unusually
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strong jet stream in the North Atlantic storm track region (further details on this

event are provided in sections B.4.5 and B.5.2).

The second episode involves a pattern of unusually large analysis errors be-

tween about day 16 and day 24, which lead to a proportionally elevated level of fore-

cast errors at the associated verification times. An inspection of the spatio-temporal

evolution of the errors for this period (not shown) reveals that the relatively large

errors are due to exceptionally large analysis error in the region of Indonesia that

later propagate into the NH extra-tropics. The visible propagation of the time-mean

forecast errors from the tropics to the extratropics shown in Figure B.1 is associated

with this episode.

B.4.5 A case of explosive error growth

To gain a better understanding of the processes that lead to the explosive

error growth in the aforementioned first episode, we select the forecast started at

1200 UTC on day 6 for further inspection. Maps of the forecast errors show that

the explosive error growth at the 36-hour lead time occurs in a very localized region

off the coast of Newfoundland (Figure B.5).

For the next 24 hours, the dominant error pattern is characterized by an

eastward-propagating, rapidly-amplifying dipole structure. This structure and the

fast propagation speed indicate that the dominant error pattern takes the shape

of a packet of synoptic-scale Rossby waves. This conclusion can be confirmed by

calculating the packet envelope of the forecast errors for the 4- to 9-wavenumber
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range with a Hilbert transform-based method Zimin et al. (2003) and Zimin et al.

(2006). Using the technique of Zimin et al. (2006), Figure B.6 depicts an amplifying

eastward-extending envelope of errors. An inspection of the vertical cross-section

of the errors (not shown) also confirms that the error growth starts in the jet layer

with an overestimation of the wind speed in the core of the jet and a small distortion

of the upper tropospheric wave near the core of the jet. Although downstream de-

velopment (an initial divergence of the ageostrophic fluxes that triggers a baroclinic

energy conversion; see Orlanski and Chang (1993) and Orlanski and Sheldon (1995)

leads to the development of a closed low associated with the upper tropospheric

wave, the largest forecast errors occur further downstream, near the leading edge

of the wave packet shown in Figure B.6. Such propagation of the dominant errors

was documented and analyzed in detail in Persson (2000), Szunyogh et al. (2000),

Szunyogh et al. (2002), Zimin et al. (2003) and Hakim (2005) and was foreseen long

ago by the pioneers of numerical weather prediction (Rossby 1949; Charney 1949;

Phillips 1990).

In our example of rapid error growth, the atmospheric instability that drives

the propagation of the errors is a growing uncertainty in the characteristics (phase

and amplitude) of finite amplitude waves generated by an earlier downstream baro-

clinic development. (Here the term “instability” is used in the mathematical sense,

i.e., it refers to a growing uncertainty in the solution due to an uncertainty in the

initial condition.) The potential importance of an instability process, in which an

earlier baroclinic or barotropic instability leads to uncertainties in the characteristics

of the developing finite-amplitude waves, was first pointed out by Snyder (1999).
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That the dominant errors propagate along the upper tropospheric wave guides (Fig-

ure B.1 and related discussion earlier) suggests that this may be the most important

instability in the model solutions (forecasts). The importance of this instability pro-

cess, in which temporal evolution and spatial propagation play equally important

roles, reinforces our view that the atmosphere should always be approached as a

spatio-temporally chaotic system.

B.5 The role of local dimensionality

SEA05 found that the efficiency of the LEKF algorithm was inversely propor-

tional to the E-dimension. More precisely, a strong negative correlation was found

between the grid-point values of the time mean E-dimension and the grid-point val-

ues of the time mean of the explained variance. The explained variance measures

the portion of the error that is captured by the ensemble. In what follows, we inves-

tigate the relationship between E-dimension, explained variance and the magnitude

of forecast errors.

B.5.1 E-dimension, explained variance and forecast error

While the choice of the coordinates of the state vector does not affect the

state estimates, it has a profound effect on the singular value decomposition (SVD)

of the error covariance matrices. Thus, the choice of coordinates has an important

effect on such SVD-based diagnostics as the E-dimension. We follow the strategy

of Oczkowski et al. (2005) and transform the ensemble perturbations so that the
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square of the euclidean norm of the transformed perturbations has dimensions of

energy. The local state vector is defined by all grid point variables in a local volume

that contains a 5×5 horizontal grid (at 2.5-degree resolution in both direction) and

the entire model atmosphere in the vertical direction.

This definition of the local state vector differs from that used for the calculation

of the E-dimension in SEA05. There, the local volume was defined by the local

volume used in the LEKF algorithm, in which only a few model levels were included

in the vertical direction and the number of model levels in the vertical layers was

height dependent. The rationale for this change is that in SEA05, the goal was to

evaluate the assumptions made in the implementation of the LEKF on the NCEP

GFS; here, the goal is to study the role of local dimensionality in shaping the local

predictability.

As expected based on the results of SEA05, the E-dimension is typically higher

in the tropics (Figure B.7) than in the extra-tropics for the entire 5-day forecast

range. While the E-dimension decreases with increasing forecast time over the en-

tire globe, the decrease of the dimension is much faster in the storm track regions

than elsewhere. One may wonder whether this effect is associated with an inherent

property of the model dynamics or arises from an unexpected collapse of the ensem-

ble due to some unforeseen problem with the ensemble generation technique. To

answer this question, we apply the explained-variance diagnostic (see SEA05) to the

forecast error and the forecast ensemble. The explained variance diagnostic mea-

sures the portion of the forecast error that lies in the space spanned by the evolving

ensemble perturbations. (Formally, it is calculated by projecting the forecast error
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on the space of the ensemble, then taking the square of the projection, which is

finally normalized by the square of the forecast error to obtain the measure). In the

extreme cases, when the ensemble perfectly captures the space in which the fore-

cast error evolves, the explained variance is one, and when the forecast error falls

entirely outside of the ensemble space, the explained variance is zero. The close re-

lationship between the typical regions of low dimensionality and the typical regions

of high explained variance can be deduced subjectively by comparing Figures B.7

and B.8. This observation motivates us to assess the relationship between the two

quantities in a more quantitative way. In addition, we would like to know whether

such a strong relationship exists only for the temporal means of the two quantities

or whether one is also present for the spatio-temporally evolving fields. To achieve

these two objectives, we study the joint probability distribution of the E-dimension

and the explained variance in the NH extratropics (Figure B.9) and the tropics (Fig-

ure B.10). (The joint probability distribution for the SH extratropics is similar to

that for the NH extratropics, thus it is not shown.)

The joint probability distribution function is obtained by counting the number

of cases when a pair of values for the E-dimension and the explained variance falls

into a bin defined by a small interval ∆E of the E-dimension and a small interval

∆EV of the explained variance. Then the number of cases is normalized by ∆E ×

∆EV × n and the bin is color shaded based on the result. The total sample size n

is equal to the total number of grid points in the given geographical region times

the the number of verification times, 160, on which the sample is based. This

normalization ensures that the integral of the plotted values over all bins is equal
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to one.

The most important common feature of the joint probability for the NH ex-

tratropics and tropics is that the smaller the E-dimension, the larger the possible

smallest value of the explained variance. In other words, the lower the E-dimension,

the higher the confidence we can have that the ensemble captures the actual forecast

error. In addition, as the forecast time increases, the lowest possible value of the

E-dimension decreases, and the lowest values of the E-dimension become an increas-

ingly sharper predictor of a high explained variance. We also note that the boundary

between the NH extratropics and the tropics is not sharp: when the two figures are

merged (not shown) there is no visible jump in the probability distribution, since

the high E-dimension end of the distribution for the NH extratropics and the low

E-dimension end of the distribution for the tropics is populated by values from the

transient region between the two areas.

What makes the close relationship between low E-dimension and high ex-

plained variance potentially valuable from a forecasting point of view in the extrat-

ropics is that fast error growth always leads to low E-dimension. (We note that the

opposite is not true, the forecast error can be small for a case of low E-dimension

at any forecast time.) That is, we can have the highest confidence in the ability of

the ensemble to predict the space of possible errors, when the errors are the largest.

This property of the ensemble is illustrated by Figures B.11 and B.12. Figure B.11

shows the joint probability distribution for the analysis and forecast errors and the

explained variance in the NH extratropics. It can be seen, that as the forecast lead

time increases, the ensemble captures an increasingly larger portion of the forecast
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errors for the cases of large errors. This can be explained by the fact that the fast

error growth always leads to low E-dimension, that is, to high explained variance

(Figure B.12).

The picture is very different for the tropics (Figures B.13 and B.14). In this

region, the magnitude of the forecast error is more directly related to the magnitude

of the analysis error due to the linear nature of the error growth. Since the analysis

errors are smaller for the lower E-dimensions, the forecast errors are also small for

the low E-dimensions. (We can start seeing a shift of the larger errors toward the

smaller E-dimensions only after 72 hours.) Thus the highest explained variance

occurs for relatively small errors.

B.5.2 Local low dimensionality and explosive local error growth

So far we have shown that there is a close statistical relationship between

E-dimension, explained variance, and forecast error. Here we illustrate this close

relationship using the example of the explosive forecast error growth described in

Section B.4.5. In this case, the overlap between the regions of large errors and low

dimensionality is almost perfect (figure B.15), especially at and after the 36-hour

forecast lead time. Likewise, the explained variance rapidly grows in the regions of

rapidly decreasing dimensionality, where the explained variance exceeds 90 percent

at and beyond the 24-hour forecast lead time (figure B.16).
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B.5.3 Local low dimensionality and the spread-skill relationship

It has been long thought that the spread (the second moment) of a suitably-

prepared ensemble forecast can be used as a predictor of the skill of the ensemble-

mean forecast (Leith 1974). It has also been observed, however, that the positive

correlation between the spread and the forecast error is disappointingly small; even

in the perfect-model scenario, the correlation was found to be less than 0.5 (Barker

1991). The theoretical explanation for this result was provided by Houtekamer

(1993) and Whitaker and Loughe (1998) using a simple stochastic model of the

spread-skill relationship: a large correlation can be expected only when the temporal

variability of the forecast (or analysis) error is large. This rule explains the behavior

of the spread-skill relationship for the LEKF system shown in Figure 17: (i) initially

the correlation increases due to the increasing variability of the forecast errors as

the forecast time increases (see Figure B.4); (ii) the correlation peaks at a level

slightly below 0.5 at the 72-hour forecast lead time in all three geographical regions;

(iii) the maximum value of the correlation is the largest in the NH extratropics,

the region where variability of the forecast errors is the largest. The low initial

correlation can be explained by the fact that an ensemble-based data assimilation

system, such as the LEKF, is designed to remove that part of the analysis error that

is successfully captured by the ensemble. The only surprising feature in Figure 17 is

the relatively high initial correlation in the tropics. The only plausible explanation

for this is that in the tropics, the location of the dominant analysis errors is better

captured by the ensemble than the structure of the errors. This result reinforces
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our earlier conjecture, drawn in section 3.3, that the assimilation of observations in

the tropics reduces the magnitude of the errors in the state estimation but does not

change drastically the structure of the errors. This indicates that there is no strong

relationship between errors at the different grid points in the tropics.

The joint probability distribution function for the ensemble spread and the

error in the ensemble-mean forecasts is shown in Figure 18. This figure indicates

that the ensemble spread is typically smaller than the error in the ensemble mean.

This finding is not unexpected, since as was shown earlier (e.g., Figure B.8), part of

the forecast error is not captured by the ensemble. (For short forecast lead times, the

ensemble-mean forecast and the forecast started from the analysis mean are nearly

identical due to the nearly linear initial evolution of the ensemble perturbations.) In

addition, the ensemble spread predicts the upper bound of the error most reliably at

locations where the E-dimension is the smallest (Figure 19). In contrast to the case

of the single deterministic forecast, where the largest errors occur for the smallest

E-dimensions, the errors in the ensemble-mean forecast are relatively small in the

regions of the smallest E-dimensions. This is due to the efficient error-filtering effects

of ensemble averaging in regions where the ensemble efficiently captures the space

of uncertainties, i.e., in regions of high explained variance.

B.6 Conclusions

In this paper, we assess atmospheric predictability with the help of a state-of-

the-art numerical weather prediction model (at a reduced resolution) and the Local
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Ensemble Kalman Filter data assimilation scheme. Our experimental design ad-

dresses the issue of determining the degree to which uncertainty in the knowledge of

the initial state influences the predictability of a high-dimensional, spatio-temporally

chaotic system. We assume that the numerical model provides a perfect represen-

tation of the true atmospheric dynamics. Our main findings are as follows:

• For this specific choice of the model and data assimilation system, the forecast

errors grow exponentially in the extra-tropics and linearly in the tropics. As

exponential growth has been found in many previous studies that considered

different types of uncertainties in the knowledge of the true initial conditions,

the dominance of exponentially-growing features seems to be an important

property of predictability in the extra-tropics. Our earlier research indicates

that these dominant instabilities are closely related to the synoptic-scale local

generation and propagation of the eddy kinetic energy. Since these processes

can be well-simulated by the models, there are good reasons to believe that

exponentially-growing instabilities dominate real atmospheric dynamics in the

extra-tropics. The linear growth of errors in the tropics is a more unique result

of our experiments. While this result may be an artifact of the model dynam-

ics, which rely heavily on parameterized physical processes in the tropics, we

tend to believe that the real atmosphere behaves similarly.

• The explained variance is always highest for the lowest E-dimension, indepen-

dently of the geographical region and the forecast lead times. (As was shown

in SEA05, this guarantees that the analysis errors are the smallest for the
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smallest E-dimension independently of the geographical region)

• In the extratropics, large forecast errors gradually become more likely to oc-

cur in regions of low E-dimension as the forecast time increases. Thus, the

ensemble gradually becomes more likely to capture a large portion of the fore-

cast error as the forecast time increases. The larger the forecast error, the

larger the portion of the forecast error that the ensemble captures with high

certainty.

• Since the ensemble captures a larger portion of the forecast error with high cer-

tainty in the regions of low E-dimension, in those regions ensemble averaging

becomes an efficient error filter and the ensemble spread provides an accurate

prediction of the upper bound of the error in the ensemble mean forecast.

• In the tropics, due to the linear error growth, the magnitude of the forecast

error is closely tied to the magnitude of the analysis error. Since the analysis

errors are small for the smallest E-dimensions, the forecast errors are also

small for the smallest E-dimensions. In our experiments, this pattern starts

breaking up beyond a forecast lead time of 72 hours.

Do these results have any practical use when the forecast model is not perfect?

First of all, it is safe to assume that the local dimensionality of the true atmosphere

is higher than in our global forecast model. This would degrade the ability of the

model-based ensemble to capture the space of forecast uncertainties. We note that,

in principle, the LEKF algorithm could be used to estimate the effect of forecast

errors on the E-dimension. The extension of the LEKF algorithm described in Baek
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et al. (2006) provides an estimate of the model errors in addition to the estimate

of the state. More precisely, it provides an estimate of the augmented state, where

the state is augmented by the parameters that describe the model errors. The E-

dimension could be determined by using the augmented state to define the local

background covariance matrix. It is yet to be seen, however, whether the model

errors can be efficiently parameterized for a complex weather prediction model,

such as the NCEP GFS.

Local low dimensionality is a property that eventually breaks down with in-

creasing forecast lead time. Eventually, predictability is completely lost, and the

predictive value of the ensemble becomes the same as that of a set of randomly-

drawn samples from the much larger set of climatologically realizable states of the

model. The larger the magnitude of the initial ensemble perturbations, the earlier

the breakdown of local low dimensionality occurs. For instance, Oczkowski et al.

(2005) observed such breakdowns at forecast lead times of as little as 24 to 48 hours

when investigating the evolution of a set of bred vectors. In our experimental de-

sign, the magnitude of the analysis uncertainty is small (presumably an order of

magnitude smaller than in an operational weather analysis), so our results are not

affected by an overall breakdown of local low dimensionality in the first 120 hours

of model integration. Our plan is to investigate the process of the breakdown of low

dimensionality in a future paper for both simulated and real observations.
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Figure B.1: Time-mean absolute error in forecasts of the meridional wind
component at the 500 hPa pressure level at different forecast lead times.
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Figure B.2: Dependence of the time mean forecast error on the forecast
lead time for the meridional wind component at the 500 hPa level in
the NH extratropics. The evolution of the forecast error is shown for
different ranges of the zonal wavenumber k.
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Figure B.3: Dependence of the time mean forecast error on the forecast
lead time for the meridional wind component at the 500 hPa level in the
tropics. The evolution of the forecast error is shown for different ranges
of the zonal wavenumber k.
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Figure B.4: Time series of the root-mean-square forecast error for dif-
ferent forecast lead times. Shown is the forecast error for the meridional
wind component at the 500 hPa level.
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Figure B.5: Time evolution of the errors in the forecast started
at1200 UTC on day 7. Shown are the errors (color shades) and the
“true” state of the geopotential height of the 500-hPa pressure level.
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Figure B.6: Time evolution of the wave packet envelope of errors in
the forecast started at 1200 UTC on day 6. The wave packet envelope is
calculated based on errors in the prediction of the meridional component
of the wind vector in the zonal wavenumber range from 4 to 9. Notice
the change in the color scheme between the 36-hour and 48-hour forecast
lead times.
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Figure B.7: Time mean E-dimension at different forecast lead times.
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Figure B.8: Time mean explained variance at different forecast lead times.
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Figure B.9: Joint probability distribution of the E-dimension and the
explained variance in the NH extratropics. The bins are defined by
∆E = 0.2 and ∆EV = 0.005.
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Figure B.10: Joint probability distribution of the E-dimension and the
explained variance in the tropics. The bins are defined by ∆E = 0.2 and
∆EV = 0.005.
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Figure B.11: Joint probability distribution of the explained variance and
the magnitude of the error in the forecast of the meridional component of
the wind at the 500 hPa level in the extratropics. The bins are defined
by ∆E = 0.005 and ∆ER = 0.4, where ∆ER is the interval for the
forecast error.
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Figure B.12: Mean E-dimension for the bins shown in Figure B.11.
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Figure B.13: Joint probability distribution of the explained variance and
the magnitude of the error in the forecast of the meridional componet
of the wind at the 500 hPa level in the tropics. The bins are defined by
∆E = 0.005 and ∆ER = 0.4.
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Figure B.14: Mean E-dimension for the bins shown in Figure B.13

.
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Figure B.15: Shown are the E-dimension (color shades) and the geopo-
tential height forecast error at the 500 hPa level in the forecasts started
at 1200 UTC on day 6.
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Figure B.16: Shown are the E-dimension (color shades) and the ex-
plained variance (contours) in the forecasts started at 1200 UTC day-6.
The contour interval is 0.1 and values smaller than 0.7 are not shown.
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Figure B.17: Correlation between ensemble spread and error in the en-
semble mean forecast as a function of forecast time.
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Figure B.18: Joint probability distribution of the ensemble spread and
the magnitude of the error in the ensemble mean forecast of the merid-
ional componet of the wind at the 500 hPa level in the NH extratropics.
The width of the bins is 0.005 for the ensemble spread and 0.4 for the
forecast error.
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Figure B.19: Mean E-dimension for the bins shown in Figure 18

.
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Table B.1: NH-extratropics root-mean-square analysis error, za, and
error doubling time for the meridional wind component at the 500 hPa
level at different observational densities. While these values are slightly
different for the other model variables, they show the same tendencies.

number of soundings rms analysis error error doubling time

all locations 0.29 ms−1 33.3 hours

2000 locations 0.39 ms−1 34.7 hours

1000 locations 0.48 ms−1 36.7 hours

500 locations 0.64 ms−1 38.9 hours
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