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This thesis is divided into two parts covering two aspects of research in the

area of visual object recognition.

Part I is about human detection in still images. Human detection is a challeng-

ing computer vision task due to the wide variability in human visual appearances

and body poses. In this part, we present several enhancements to human detec-

tion algorithms. First, we present an extension to the integral images framework

to allow for constant time computation of non-uniformly weighted summations over

rectangular regions using a bundle of integral images. Such computational element

is commonly used in constructing gradient-based feature descriptors, which are the

most successful in shape-based human detection. Second, we introduce deformable

features as an alternative to the conventional static features used in classifiers based

on boosted ensembles. Deformable features can enhance the accuracy of human

detection by adapting to pose changes that can be described as translations of body

features. Third, we present a comprehensive evaluation framework for cascade-based

human detectors. The presented framework facilitates comparison between cascade-



based detection algorithms, provides a confidence measure for result, and deploys a

practical evaluation scenario.

Part II explores the possibilities of enhancing the speed of core algorithms used

in visual object recognition using the computing capabilities of Graphics Processing

Units (GPUs). First, we present an implementation of Graph Cut on GPUs, which

achieves up to 4x speedup against compared to a CPU implementation. The Graph

Cut algorithm has many applications related to visual object recognition such as

segmentation and 3D point matching. Second, we present an efficient sparse approx-

imation of kernel matrices for GPUs that can significantly speed up kernel based

learning algorithms, which are widely used in object detection and recognition. We

present an implementation of the Affinity Propagation clustering algorithm based on

this representation, which is about 6 times faster than another GPU implementation

based on a conventional sparse matrix representation.
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Chapter 1

Introduction to Part I: Human Detection

The problem of visual object detection is more specific than the general problem of

visual object recognition. Object detection involves determining the location of the

object in the image, not just whether it exits or not. Therefore, an object detector

can work as a recognizer. But, the opposite is not generally true.

Despite being just an instance of the general object detection problem, human

detection has received a special attention in the computer vision community. With

no doubt, humans are more difficult to detect than many other objects due to their

huge range of appearance variations. This makes the problem very challenging, and

hence interesting. It is reasonable to believe that if a satisfactory solution found

for humans, solutions for other objects would become much more tangible. Another

reason to justify the effort devoted to this problem is its many useful applications,

such as intelligent vehicles, video surveillance, and human-robot interaction.

In this part, we present techniques to enhance the speed and accuracy of

human detection. We also present an evaluation framework for cascade-based human

detectors that enhances over traditional evaluation methods in terms of reliability

and clarity of comparisons. Each of these topics is briefly introduced in this chapter

in Sections 1.1, 1.2, and 1.3, and then detailed in Chapters 2, 3, and 4, respectively.
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1.1 Fast Construction of Feature Descriptors

A significant advancement in human detection was recently made through the dis-

covery of the power of Histograms of Oriented Gradients (HOG) descriptors in

human/non-human classification [20]. Nevertheless, real time human detection is

still an unsolved problem. Construction of HOG descriptors involve computing

weighted summations over rectangular regions of the image’s gradient map, which

is a computationally expensive process. The integral images framework [98] makes

it possible to compute uniformly weighted summations in constant time. How-

ever, using non-uniformly weighted summations, e.g . bi-linear interpolation and

Gaussian weighting, in constructing HOG descriptors was shown to improve detec-

tion results [20]. In Chapter 2, we introduce kernel integral images, which is an

extension to the integral images framework that allows for constant time compu-

tation of non-uniformly weighted summations. We present two examples of using

this framework: one is computing summations with bi-linear interpolation between

neighboring cells, and the other is an approximation to computing summations with

Gaussian weighting. The two forms of summations are commonly used in construct-

ing region descriptors and appearance models in object recognition, detection, and

tracking. The kernel integral images framework allows for robust construction of

these representations without sacrificing fast computational time. A version of this

work appeared in our paper [48].
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1.2 Boosted Deformable Features

A promising class of classifiers that combines high accuracy with high classification

speed is based on building cascades of boosted features [98, 103, 109, 94, 81, 102].

A cascade classifier gains its discrimination power from its ability to incorporate

a very large number of negative examples in the training phase. It achieves high

classification speed by effectively excluding easy negative samples from complex pro-

cessing. Each layer of a cascade classifier is typically trained using boosting [36],

where a boosting algorithm selects an ensemble of object features to form a powerful

discriminative model. In this context, features are defined as subregions with fixed

relative locations and extents with respect to the object’s image window. In Chap-

ter 3, we introduce using deformable features with boosted ensembles. A deformable

feature adapts its location depending on the visual evidence in order to match the

corresponding physical feature. Therefore, deformable features can better handle

deformable objects. We empirically show that boosted ensembles of deformable

features perform significantly better than boosted ensembles of fixed features for

human detection. A version of this work appeared in our paper [50].

1.3 A Comprehensive Evaluation Framework

Despite recent advancement in the area of human detection in images, little effort

has been devoted to evaluation methodologies. In Chapter 4, we introduce a frame-

work for evaluating human detectors that considers the practical application of a

detector on a full image using multi-size sliding window scanning. Plots for cascade

4



classifiers are generated based on confidence scores instead of varying the number

of layers, which makes plots cover the same range of false alarm rates, and hence

makes comparison between methods more meaningful. To assess a method’s overall

performance on a given test and compare different methods, we introduce an aggre-

gate performance score that facilitates such analysis. To analyze the significance of

the obtained results, we conduct 10-fold cross validation experiments. We applied

our evaluation framework to two state of the art cascade-based detectors on the

standard INRIA-Person dataset, as well as another dataset of near infrared images

provided by Mitsubishi Electric Research Labs (MERL). Our experiments show the

utility of the presented framework and leads to some interesting conclusions. A

version of this work appeared in our paper [49].
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Chapter 2

Kernel Integral Images

Integral images are commonly used in computer vision and computer graphics appli-

cations. Evaluation of box filters via integral images can be performed in constant

time, regardless of the filter size. Although Heckbert [42] extended the integral im-

ages approach for more complex filters, its usage has been very limited, in practice.

In this chapter, we present an extension to integral images that allows for applica-

tion of a wide class of non-uniform filters. Our approach is superior to Heckbert’s

in terms of precision requirements and suitability for parallelization. We explain

the theoretical basis of the approach and instantiate two concrete examples: filter-

ing with bilinear interpolation, and filtering with approximated Gaussian weighting.

Our experiments show the significant speedups we achieve, and the higher accuracy

of our approach compared to Heckbert’s.

2.1 Introduction

Filtering is a fundamental image processing operation. The computational complex-

ity of image filtering depends on the complexity and size of the filter. For separable

filters, for example, efficient computation is possible by applying two consecutive

one-dimensional filters instead of the original two-dimensional filter. However, even

when taking advantage of the filter’s separability, the computational time increases

6



with the filter’s size, which is unfavorable for large filters. In some cases, we do

not even know the filter size in advance, e.g . when the filter size is determined dy-

namically based on feature values. In such cases, the separability of the filter does

not help. For box filters, which are used to compute averages and summations over

rectangular image regions, there is an elegant technique that can overcome these

difficulties. Given an integral of image features (Figure 2.1), filtering with a box

filter at any point can be performed in constant time regardless of the filter size.

Unfortunately, using pre-computed integrals is limited, in practice, to box filters. In

this chapter, we present a novel extension that makes pre-computed integrals usable

for more complex filters.

The idea of using pre-computed integrals was first introduced, with the name

summed-area tables, by Crow [18] to be used for texture mapping in computer graph-

ics. Recently, it was popularized in the field of computer vision, with the name

integral images, by Viola and Johns [98], who used it for fast computation of Haar

wavelet features. Later on, integral images were generalized by Porikli [74] to in-

tegral histograms, which allow for fast construction of feature histograms. More

recently, integral images and integral histograms were used to speed construction of

Histograms of Oriented Gradient descriptors by Zhu et al . [109], Region Covariance

descriptors by Tuzel et al . [93], and the SURF descriptors by Bay et al . [5].

To the best of our knowledge, usage of integral images in computer vision

applications has been limited to the special case of box filtering although some of

these applications can perform better when using non-uniform filters. For example,

Dalal and Triggs [20] use bilinear interpolation between neighboring cells and Gaus-

7



sian weighting of pixels within a block of pixels in constructing their histograms of

oriented gradients features for human detection. They show how these weighting

schemes enhance the detector’s accuracy. To develop a fast version of Dalal and

Triggs’ detector, Zhu et al . [109] sacrifice the benefits of these weighting schemes to

enable usage of integral images. Another example is in the work of Bay et al . [5],

where Gaussian derivative filters are approximated by box filters so that integral

images can be used. Perhaps, a better approximation would be possible if integral

images were able to handle non-uniform weighting filters. A third example is in

building appearance models for tracking, where pixels closer to the center of the

tracked region are given higher weights than pixels closer to the borders, e.g . El-

gammal et al . [28]. Consider a particle filter tracker, e.g . Zhou et al . [108], where

appearance models for hundreds of overlapping regions need to be constructed, pos-

sibly for many tracked targets, on every frame. Applying non-uniform weighting

of pixels in such a situation without the aid of a fast technique similar to integral

images can be impractical for real-time application.

Heckbert [42] introduced the theoretical foundation of the summed-area ta-

bles (integral images) technique and extended the theory to allow for more complex

filters. However, his extension required a very high precession numerical representa-

tion even for moderate image sizes [44]. Similar to Heckbert, we present an approach

to extend the integral images technique to allow for non-uniform filters. However,

our approach has lower precision requirement than Heckbert’s and is more suitable

for parallel implementation. We call our approach kernel integral images. A kernel

integral image is a group of integral images such that a linear combination of box fil-
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ters applied to them is equivalent to applying a more complex filter. We instantiate

two examples of applying our approach that are relevant to computer vision appli-

cations: feature filtering with bilinear interpolation, and approximation of filtering

with Gaussian weighting. Our experimental analysis shows the significant speedups

we achieve, and the superiority of our approach to Heckbert’s in terms of accuracy.

The rest of the chapter is organized as follows: Section 2.2 introduces notation

and explains integral images in an abstract form. Section 2.3 employs filtering with

bilinear interpolation as an example to introduce our extension, which is afterwards

formalized in Section 2.4. Then, the example of filtering with approximate Gaussian

weighting is described in Section 2.5. In Section 2.6, we compare our approach to

Heckbert’s. Empirical analysis of speedups and numerical errors are presented in

Section 3.6, followed by conclusions and future work in Section 2.8.

For clarity of presentation, we focus on one and two dimensional signals. The

extension to higher dimensions is straight forward.

2.2 Fast Filtering via Integral Images

2.2.1 Preliminaries

Let f : x → R be a function that maps a point x = (x1, x2) to a real value, where

0 ≤ xi ≤ Ni, Ni > 0, i = 1, 2. Therefore, the domain of f , Df , is a rectangle

bounded by the lines xi = 0 and xi = Ni, i = 1, 2. A rectangular region (referred

to as a region from now on) R ⊆ Df is defined by a pair of points xb and xe such

that xb,xe ∈ Df , and xb
i < xe

i , i = 1, 2. The two points xb and xe represent the two

9



Figure 2.1: An integral of image features. The value of the integral at a
point is the sum of the values of image features in the rectangular area
from the origin to the point. The sum of feature values over any axis-
aligned rectangular region (e.g . the small white rectangle) is determined
by the value of the integral at the four corners of the region.

extreme points of the region R. We refer to the ordered pair r = (xb,xe) as the

region definition. Figure 2.1 illustrates some of these definitions. In practice, the

function f represents the raw intensity value or some other feature at each point in

an image. Its domain, Df , is the set of all pixel coordinates in the image. N1 ×N2

is the image size.

A filtering of the values of f over a region R can be defined as a function

Af : R→R that maps the region to a real value. The form of the filtering function

we consider can be expressed as

Af(R) =
∑

x∈R

ar
f (x), (2.1)

where the contribution function ar
f (x) defines the contribution of the point x to the

10



filtering of the function f over the region R. In general, as the superscript of ar
f

indicates, the contribution of a point x depends not only on the point coordinates

and the function f , but also on the definition of the region, i.e. its two extreme

points. In this section we first consider the simpler case, where the contribution

of a point is independent of the region’s definition . We handle the general case

in sections 2.3 and 2.4. Thus, for now, we denote the contribution function by af

instead of ar
f . Therefore, the filtering function is redefined as

Af(R) =
∑

x∈R

af (x). (2.2)

We call such a filtering function and its associated contribution function region-

independent functions.

In its simplest form, the contribution function can be equal to the function f .

That is

af(x) = f(x) . (2.3)

But, in fact, we can use any function that can be evaluated independently from the

filtering region’s definition. For example, we can define the contribution function as

af(x) = ‖x‖f 2(x) . (2.4)

Therefore, filtering with region-independent contributions is much more gen-

eral than just summing feature values over a rectangular region.
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2.2.2 Integral Images

When filtering is computed over many regions that overlap, using equation 2.2 is

not efficient. This is because the computations performed in areas that are shared

among more than one overlapping region will be repeated for each region. Luckily,

the filtering equation has a sub structure that allows for a dynamic programming

solution. This dynamic programming solution is what we refer to as integral images.

Define the integral image of a function f , If , as a function with the same

domain and codomain as f , and of the form

If (x) =
∑

y∈Df ,yi≤xi,i=1,2

af (y). (2.5)

The value of the integral image of a function f at a point x is the sum of the

contributions of all points in the region defined by (o,x), where o is the origin or

the coordinate system.

Given this formulation of integral images, it becomes much simpler to evaluate

the filtering function over any region R. A filtering function can be written in terms

of an integral image as

Af(R) = If(x
e
1, x

e
2)− If (x

b
1, x

e
2)− If(x

e
1, x

b
2) + If(x

b
1, x

b
2), (2.6)

where (xb,xe) defines the filtering region R (Figure 2.1).

In general, having the integral image, filtering over a region R is reduced to

O(1) computations compared to O((xe
1 − xb

1) × (xe
2 − xb

2)) computations using the

original filtering function formulation, equation 2.2. However, the cost of construct-

ing the integral image itself is O(N1 × N2). Therefore, the utility of using integral
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images is realized only when we filter over many overlapping regions. In the case of

exhaustively filtering over the entire domain of regions, the speedups obtained when

using integral images were reported in Porikli [74] to be several orders of magnitude

for a broad range of parameter choices.

2.3 Extending Integral Images for Filtering with Region-Dependent

Contributions

Before discussing the formal treatment of the general case, where the contribution

functions are dependent on the filtering region’s definition, we start with a concrete

example. Consider filtering with bilinear interpolation. A practical example is

constructing the SIFT descriptor [61], where filtering is performed over adjacent

regions in a 4 × 4 grid of cells of pixels, such that each pixel contributes to more

than one cell via bilinear interpolation.

We want to define the contribution function in this case. A region R is defined

by r = (xb,xe), where xb = (xb
1, x

b
2) and xe = (xe

1, x
e
2). The center of the region is

xc = (xc
1, x

c
2) = (xb + xe)/2, half the width of the region is hw = (xe

1 − xb
1)/2, and

half the height of the region is hh = (xe
2 − xb

2)/2. The contribution function at a

point x = (x1, x2) ∈ R is defined as

ar
f(x) =

(

hw − |x1 − xc
1|

hw

) (

hh− |x2 − xc
2|

hh

)

f(x). (2.7)

Apparently, the contribution of a point is region-dependent. Hence, the simple

integral image approach presented in Section 2.2 is not directly applicable here.

For simplicity of presentation, we consider only the case when x1 ≥ xc
1 and
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x2 ≥ xc
2. The other cases can be handled similarly. By manipulating equation 2.7,

we obtain

ar
f(x) =

(

hw − x1 + xc
1

hw

)

×
(

hh− x2 + xc
2

hh

)

f(x) (2.8)

=

(

xe
1 − x1

hw

) (

xe
2 − x2

hh

)

f(x) (2.9)

=

(

xe
1x

e
2

hw × hh

)

f(x)−
(

xe
1

hw × hh

)

(x2f(x))−
(

xe
2

hw × hh

)

(x1f(x)) +

(

1

hw × hh

)

(x1x2f(x)) (2.10)

= gr
1h1f(x) + gr

2h2f(x) +

gr
3h3f(x) + gr

4h4f(x), (2.11)

where h1f = f(x), h2f = x2f(x), h3f = x1f(x), h4f = x1x2f(x), and gr
1

through gr
4 are the corresponding coefficients from expression 2.10.

Now, we have expressed the original contribution function as a linear combina-

tion of simpler functions, h1f through h4f , with weighting coefficients gr
1 through gr

4.

The interesting observation here is that all the h functions are region-independent,

and none of the g coefficients depends on the point x or the function f , they only

depend on the region’s definition. We call functions such as the g coefficients point-

independent. Substituting equation 2.11 into the filtering function, equation 2.1,

yields
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Af(r) = gr
1

∑

x∈R

h1f(x) + gr
2

∑

x∈R

h2f(x) +

gr
3

∑

x∈R

h3f(x) + gr
4

∑

x∈R

h4f(x) . (2.12)

Equation 2.12 expresses the original filtering function as a linear combination

of other filtering functions. Moreover, all of the component filtering functions in

this linear combination are region-independent. In fact, the linear combination

obtained for the filtering function is exactly the same as the linear combination

for the contribution function itself. Since each of the component filtering functions

in equation 2.12 is region-independent, each can be computed efficiently using an

integral image for its own contribution function. Then, by substituting the resulting

values in equation 2.12, we obtain the desired filtering.

In summary, to use integral images in this example we express the desired

region-dependent contribution function as a linear combination of several region-

independent contribution functions. Then, the desired region-dependent filtering is

easily computed as a linear combination of the corresponding region-independent

filtering functions, which can be efficiently computed via integral images.

2.4 Kernel Integral Images

In this section, we treat the case of region-dependent filtering functions in a more

formal way. Recall from the example of bilinear interpolation that the mechanism

used to enable usage of integral images is expressing the filtering function as a linear

combination of other region-independent filtering functions. To understand why this
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works, we rewrite the final form of the contribution function, equation 2.11, in a

more compact form as

ar
f(x) = < gr,hf(x) >, (2.13)

where

gr =

























gr
1

gr
2

gr
3

gr
4

























, (2.14)

and

hf(x) =

























h1f (x)

h2f (x)

h3f (x)

h4f (x)

























, (2.15)

In other words, we can express the contribution function as a dot product

of two vector functions: one of them is region-independent and the other is point-

independent. This is actually a necessary and sufficient condition to express the

filtering function as a linear combination of region-independent filtering functions.

We outline the proof of this fact rather informally here. The sufficiency direction

is straight forward following the same argument as in the bilinear interpolation

example. Basically, by distributing the summation of the filtering function over

terms of the dot product, as we did to obtain equation 2.12, sufficiency immediately

follows. The necessity direction is derived as follows. Starting from the linear
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combination of filtering functions, as in equation 2.12, we can express the linear

combination as a dot product. Then, by pulling the summation out, we obtain an

expression of the contribution function that is a dot product of two parts, one of

them is region-independent, and the other one is point-independent.

The dot product immediately reminds us of the kernel trick that is frequently

used in machine learning, where feature vectors are implicitly transformed into a –

typically – higher dimensional space by replacing a dot product by a kernel function

that is equivalent to a dot product in the transformed space [16]. Since applying

any transformation to the vectors gr and hf(x), in equation 2.13, will not change

their region-independence or point-independence natures, the condition we stated

above still holds on the transformed vectors. Therefore, we can generalize the form

of the contribution functions we consider to

ar
f (x) = H(gr,hf (x)), (2.16)

where H is a kernel function, i.e. a function that computes a dot product between

its two arguments possibly after mapping them to another dimensional space. We

call this generalization of integral images kernel integral images. In our case, even

if the kernel performs a dot product implicitly, to compute our filtering function we

have to perform it explicitly. Sometimes, the kernel computes the dot product in an

infinite dimensional space. In these cases, approximation of the dot product with

a small number of terms may be sufficient for the application in hand. This point

will be clarified when we use it in an example in Section 2.5.
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2.5 Filtering with Gaussian Weighting

In many applications of image feature filtering in computer vision, higher weights

are given to pixels closer to the center of the filtering region and lower weights to

pixels closer to the borders of the filtering region. That is applied, for example, in

object tracking, e.g . Elgammal et al . [28], where higher weights are given to pixels

that more likely belong to the object than the background. The same idea was

shown to improve human detection performance in Dalal and Triggs [20]. In both

cases, the weighting function used is a Gaussian weighting function.

To simplify the mathematical treatment, we consider the one dimensional case.

Consider a region R defined by the two limiting points xb and xe. The center of

R is defined as xc = (xb + xe)/2. Denote the standard deviation of the Gaussian

weighting function by σr. The contribution function in this case can be defined as

ar
f(x) = e−(x−xc

σr )
2

f(x). (2.17)

Clearly, the contribution function is region-dependent. Consider the Euler expansion

of equation 2.17

ar
f (x) =

∞
∑

i=0

(−1)i(x− xc)2i

σr2ii!
f(x). (2.18)

Equation 2.18 can be viewed as a dot product in an infinite dimensional space

between two vector functions one of them is region-independent and the other one

is point-independent. (To see this, consider expanding the expression (x − xc)2i in

each term of the power series.) Hence, the kernel integral image method applies.

But, it requires computation of an infinite number of integrals. However, we can

approximate the contribution function by taking a few of the initial terms of the
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Figure 2.2: Comparison of the Gaussian weighting function and its ap-
proximation, equations 2.17 and 2.19, when the filtering region is be-
tween 0 and 5 and σr is 5.
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Figure 2.3: Comparison of the Gaussian weighting function and its ap-
proximation, equations 2.17 and 2.19, when the filtering region is be-
tween 0 and 5 and σr is 2.5.

expansion. For example, taking the first two terms only, we obtain the contribution

function

ar
f
′(x) =

(

1−
(x− xc)2

σr2

)

f(x). (2.19)

This approximation is valid, i.e. does not give negative weights, as long as σr is

selected so that (x−xc)2

σr2 ≤ 1. Figures 2.2 and 2.3 show plots of the original Gaussian

weighting function, equation 2.17, and its approximation, equation 2.19, when xb =
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0, xe = 5, and σr = 5 and 2.5, respectively. In the case of σr = 5 plots are

very similar. However, for the case of σr = 2.5, the difference is quite large. For

applications that need weighting of pixels with respect to one another so that pixels

closer to the center get more importance, the difference between the two functions –

in case the selected value of σr makes a difference – is not expected to be important.

In general, whether the approximation is accurate enough or not, and whether it is

worth using more terms of the expansion to achieve higher accuracy or not, depends

on the value of σr and on the application itself.

2.6 Kernel Integral Images vs. Repeated Integration

Heckbert [42] presented an elegant method, called filtering by repeated integration,

to extend usage of pre-computed integrals to more complex filters. For completeness

of presentation, we briefly compare our method to his method. For details, please

refer to Heckbert [42].

Heckbert’s approach is based on the fact that more complex filters can be

constructed by convolving a box-filter with itself. For example, if we convolve a box

filter with itself once, we obtain a triangular filter, which is very similar to filtering

with bilinear interpolation in two dimensions. If we convolve a box filter with itself

twice, we obtain a quadratic filter, which is similar to the approximation we use for

Gaussian filters. In fact, convolution of a box filter with itself an infinite number

of times produces the Gaussian filter. Suppose that we want to use a filter that

is generated by convolving a box filter with itself n times. Heckbert’s approach is
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based on the fact that convolution with such a filter is equivalent to integrating the

image n times and then convolving the nth integral with the nth derivative of the

filter. The nth derivative of such a filter turns out to be a simple sparse filter, which

is very efficient to convolve with.

The main drawback of the repeated integration approach is integrating the

image several times. The required precision to represent the integration values grow

linearly with the number of integrations [44]. In our approach, we compute integrals

of several functions. But, each is integrated only once. For example, in approximat-

ing a Gaussian filter by a quadratic filter, the repeated integration method requires

integrating the image three times consecutively, while kernel integral images requires

computing nine independent integrals. Experimentally, kernel integral images in this

case produces smaller numerical errors using the standard double-precision floating

point number representation, as we show in Section 2.7.3.

Another advantage of our approach is that the integrals computed are inde-

pendent of one another. That allows for parallel computation of the integrals.

2.7 Experimental Results

2.7.1 Implementation Details

We evaluated our approach in terms of speedup by comparing to the conventional

filtering approach (equation 2.1). We implemented filtering with bilinear interpola-

tion, and filtering with approximate Gaussian weighting. Both are implemented in

two dimensions.
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For bilinear interpolation, equation 2.11 in Section 2.3 considers only the case

where x1 ≥ xc
1 and x2 ≥ xc

2. If we consider the origin at the lower left corner of

the filtering domain, then equation 2.11 considers only the case of the top right

quadrant of the filtering region. Table 2.1 lists coefficients of different terms for the

four quadrants.

Table 2.1: Coefficients of different contribution functions in the case of bilinear
interpolation, equation 2.7, for the four region quadrants. All coefficients in the
table have to be normalized by dividing by hw × hh

f(x) x2f(x) x1f(x) x1x2f(x)
Top Right Quadrant xe

1x
e
2 −xe

1 −xe
2 1

Top Left Quadrant −xb
1x

e
2 xb

1 xe
2 −1

Lower Right Quadrant −xe
1x

b
2 xe

1 xb
2 −1

Lower Left Quadrant xb
1x

b
2 −xb

1 −xb
2 1

In order to perform fast filtering in this case, we compute four different integral

images, one for each of the contribution functions. The integration itself is conducted

in four steps, since each region’s quadrant has a different coefficient for each of the

integrals, as shown in Table 2.1.

For the case of approximating Gaussian weighting in two dimensions, by ex-

panding equation 2.19 and extending the notation to two dimensions, we obtain

ar
f
′(x) =

[(

1−
xc

1
2

σr2

)

+
2xc

1

σr2
x1 −

1

σr2
x2

1

]

×

[(

1−
xc

2
2

σr2

)

+
2xc

2

σr2
x2 −

1

σr2
x2

2

]

f(x).

(2.20)

Hence, to perform fast filtering, we compute nine integral images. These are
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Figure 2.4: The slow down in setting up integrals vs the naive set up of
conventional approaches.

integral images for the contribution functions: f(x), x1f(x), x2f(x), x1x2f(x),

x2
1f(x), x2

2f(x), x1x
2
2f(x), x2

1x2f(x), and x2
1x

2
2f(x). The coefficient of each region-

independent filtering function can easily be obtained from equation 2.20. Unlike

the case of bilinear interpolation, there is no need to handle each region quadrant

separately since they all have the same coefficients.

2.7.2 Running Time Analysis

In the two filtering examples, the function filtered on, f(x), is the intensity at point

x. Since intensity values do not affect the computation time, we generate images

with a constant intensity value. Generated images are squares that differ in the

number of pixels, i.e. area. Generated image areas range from 10000 to 200000

pixels, with an increment of 10000 pixels.
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Figure 2.5: Speedups of using integral images compared to conventional
method. These plots consider speedups in filtering time only.
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Figure 2.6: Speedups of using integral images compared to conventional
method. These plots consider speedups when adding construction time
to filtering time.
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Each image is scanned with sampled region sizes and locations. The minimum

region side length was set to 5 pixels, with side length increment of 5 pixels. Images

are scanned with each region size in all possible locations with increments of 5

pixels in both directions. For each region, the two filtering types are computed

using integral images and using conventional filtering. For each image, two time

periods are measured: 1) the time to set up necessary structures, that is integral

images or just type conversion when the conventional filtering is used, 2) and the

time to scan the image and compute filtering over all scanned regions.

The plots in Figure 2.4 show the slow-downs in the setup time. In the case of

bilinear interpolation, the slow down is around 20x, and in the case of approximate

Gaussian weighting, it is around 45x. On the other hand, Figure 2.5 shows the

speedups obtained when considering only the time to scan the image and evaluate

the filtering function at all probed regions. The speedups are monotonically increas-

ing with the image size. For an image size of 200000 pixels, we achieve a speedup

of around 90x in the case of bilinear interpolation, and 220x in the case of approxi-

mate Gaussian weighting. This shows the significant benefit of using our approach,

especially in the case of Gaussian weighting. Therefore, despite the complexity

of computing more integral images during setup, filtering with Gaussian weighting

benefits more from using integral images. Finally, Figure 2.6 shows speedups when

adding the setup and filtering times together. The curves in this figure look very

similar to the curves in Figure 2.5, which consider speedups on filtering time only.

This shows that in the two weighting schemes evaluated, the setup time is almost

negligible with respect to the filtering time.
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2.7.3 Relative Error Analysis

In this set of experiments, we evaluate the two fast filtering methods, kernel integral

images and repeated integration, in terms of their relative error. The error we

measure here is the difference between the value computed by a fast filtering method

and the value computed by conventional filtering (equation 2.1). The relative error

is the ratio between this difference and the value computed by conventional filtering.

We generate 10 random images of size 1024× 1024. We evaluate the filtering

function on a region of size 31 × 31 at all possible locations in the image. For

each location we compute the relative error and plot relative error values against

the distance from the region’s top-left corner to the image’s top-left corner. The

distance measure we use is the area of the rectangle bounded by these two corners.

This distance measure is equivalent to the number of feature points that are added

to produce the integral value(s) associated with the region’s top left corner. The

error is expected to increase with this distance measure.

In the case of bilinear interpolation, relative errors are always zeros, but not so

for approximate Gaussian weighting. The problem with the approximate Gaussian

weighting is the integration of higher order contribution functions, such as x2
1x

2
2f(x).

These contribution functions require higher precision to represent. Their integrals

require even higher precision that is outside the range the double-precision floating

point representation. Figure 2.7 shows a third-degree polynomial fit of the relative

errors in the case of approximate Gaussian weighting using kernel integral images.

The figure compares two methods of computing integrals in terms of the error they
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produce. The one-pass method scans the image once and computes the value of the

integral at a pixel as a function of its three preceding pixels. The two-pass approach

scans the image twice: once integrating horizontally and once vertically. The error

generally increases with the distance from the origin. The two-pass method pro-

duces around an order of magnitude lower error than the one-pass method. That

is expected since in the one-pass method, numbers grow more rapidly allowing for

larger errors when adding two numbers that differ by many orders of magnitude.

Figure 2.7 also shows the relative errors, using two-pass integration, of the

repeated integration method when used to approximate Gaussian filters with a

quadratic filter. The error of our approach, even when using one-pass integration, is

lower than the error of the repeated integration method. Similar to our approach,

the repeated integration method produces no errors when applied to bilinear inter-

polation filtering.

In these experiments we use non-negative numbers to represent intensity and

pixel coordinate values. These values can be linearly mapped to allow for both

negative and positive numbers. In this way, the effective precision used can be

increased by utilizing the sign bit in the binary representation, and therefore the

accuracy can be enhanced, as shown in Hensley et al . [44].

2.8 Conclusion and Future Work

We presented an extension to the integral images framework that allows for fast

filtering under non-unform region-dependent weighting of feature values. We refer
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Figure 2.7: Relative errors of computing Gaussian weighted filtering as a
function of distance (area) to the origin. KII stands for Kernel Integral
Images. RI stands for Repeated Integration.

to the extended framework as kernel integral images. To show the utility of the

extension, we provided two examples of widely used non-uniform filtering: one that

can be implemented exactly via our framework, that is filtering with bilinear in-

terpolation, and one that can be approximated, which is filtering with Gaussian

weighting. Our experiments show that using our approach, significant speedups can

be achieved. The presented technique provides a higher precision and more suitabil-

ity for parallel implementation than the repeated integration approach [42], which

also extended the integral images framework for complex filters.

The limitation of our approach, especially in a case such as Gaussian weight-

ing, is the the reduction in precision may not be tolerable in high resolution images.

In the future, we are planning to address this issue by developing appropriate im-

age decomposition techniques. Another interesting future direction is to extend the
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framework further to handle regions with different shapes than the upright rectan-

gular one.
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Chapter 3

Boosted Deformable Features

It is a common practice to model an object for detection tasks as a boosted en-

semble of many models built on features of the object. In this context, features

are defined as subregions with fixed relative locations and extents with respect to

the object’s image window. In this chapter, we introduce using deformable features

with boosted ensembles. A deformable features adapts its location depending on

the visual evidence in order to match the corresponding physical feature. Therefore,

deformable features can better handle deformable objects. We empirically show that

boosted ensembles of deformable features perform significantly better than boosted

ensembles of fixed features for human detection.

3.1 Introduction

Human detection methods can be categorized into two groups based on the camera

setup. For static camera setups, object motion is considered as the distinctive fea-

ture. A motion detector, either a background subtraction or an image segmentation

method, is applied to the input video to extract the moving regions and their motion

statistics [41, 75]. A real time moving human detection algorithm that uses Haar

wavelet descriptors extracted from space-time image differences was introduced by

Viola and Jones [97], where, using AdaBoost [83], the most discriminative frame dif-
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ference features were selected, and a rejection cascade was constructed to efficiently

reject negative examples. A shortcoming of the motion based algorithms is that they

fail to detect stationary pedestrians, or when motion information is not available. In

addition, such methods are highly sensitive to view-point and illumination changes.

The second category of methods is based on detecting human shape and sil-

houette. Approaches for shape-based human detection can be further categorized

based on how the human body is modeled. In one subcategory, a holistic model

is used, where the human body is modeled as a whole without being divided into

smaller parts. Examples in this category include the hierarchical template matching

used in Gavrila and Philomin [38], and Zhao and Davis [106], and the neural network

based approach in Zhao and Thorpe [107]. In a second subcategory, a part-based

model is used, where models for parts of the body are learnt, possibly along with

global constraints, such as in Mohan et al . [65], Ioffe and Forsyth [52], Ronfard et

al . [76], Mikolajczyk et al . [64, 63], Felzenszwalb and Huttenlocher [30], and Lin

et al . [60]. Part-based models, in general, deliver better performance than holistic

models because of their ability to model deformation and occlusion. However, the

drawback of most part based models is that the number of parts and their locations

have to be manually determined.

A third subcategory of approaches addresses this problem by modeling the

body as an ensemble of local features. A feature in this context is a subregion of

an object’s image window. One way to model the human body as an ensemble of

features is through detection of local features and combining them using global ge-

ometric information [57, 71]. Another way, which is more attractive and commonly
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used, is though boosting techniques [36, 83], which select the most discriminative

features among all possibilities dynamically. Boosting techniques are more attrac-

tive because they can be used to construct fast rejection cascades of classifiers.

Following the pioneering work in this direction by Viola and Jones [97], a series of

successful approaches were introduced using different feature representations, such

as histograms of oriented gradient (HOG) [109], region covariance [94], edgelet fea-

tures [103], and shapelet features [81]. Approaches such as Dalal and Triggs [20] and

Papageorgiou and Poggio [72], where descriptors of many small blocks, overlayed on

a grid layout, are concatenated to build a large holistic representation, are often

viewed as holistic representations. We view them as static ensembles of features.

Despite their static nature, these ensembles can handle many object types due to

the large number of features and the overlap among them. Finally, it is worth noting

that the aforementioned categorization is not a partitioning of the available models.

Hybrid models also exist [103, 31].

The work presented in this chapter falls under the subcategory of feature-

based models for shape-based detection. The common drawback of feature-based

models that are built using boosting is the difficulty of handling deformation. This

is because features are passive elements who do not adapt to an object’s deformation

or shape changes. For example, they are bound to a fixed location, relative to the

object’s window. However, in highly deformable objects, this is hardly the case.

Consider for example the head part/feature in the human images in Figure 3.1,

from the INRIA Person dataset [20]. The head is a discriminating physical feature

between humans and background. A subregion that designates the head position
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in Figure 3.1a is marked with a white rectangle. But, the same subregion, marked

with dotted rectangles, in the rest of Figure 3.1 either has the head off-centered

or even off border. This problem can result in a poor fit of the models built on

such features. Felzenszwalb et al . [31] proposed deformable part models to handle

this problem. However, as other part models, this work lacks the flexibility of

automatically determining the number, locations, and sizes of parts. In this chapter,

we introduce deformable features, instead of deformable parts, to be used in boosting

ensembles.

It is also worth noting that there are approaches that combine motion and

shape to deliver better performance. The approach of Dalal and Triggs [20], which

uses HOG descriptors and SVM, was extended to optionally account for motion

by extending the histograms to include flow information in Dalal et al . [21]. In

our prior work on real time human detection in moving-camera videos [47], frame

differencing was used to detect motion areas before applying a shape-base detector.

Then, tracking and motion analysis were used to verify detections.

The rest of the chapter is organized as follows: Related work is discussed

in Section 3.2. Section 3.3 introduces deformable features. Boosting of deformable

features is explained in Section 3.4. Details of our implementation and experimental

results are provided in Sections 3.5 and 3.6. Finally, the chapter is concluded and

the future work is outlined in Section 3.7.
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3.2 Related Work

Having uncertainty in feature locations have long been used in constellation mod-

els [32, 30]. These models are primarily used for object category recognition. They

are too complex to use for object detection where multiple instances of the object

may be existing in the image and they all have to be accurately and efficiently lo-

cated. Deploying deformation in object detection have been recently introduced.

In Tran and Forsythe [92], the body configuration is estimated first. Then, gradi-

ent based descriptors for different parts are concatenated to form a descriptor for

the body, which is eventually classified using an SVM. In Felzenszwalb et al . [31],

distance transform techniques are used to efficiently find the best location for each

part. Then HOG descriptors for the parts are concatenated along with the HOG

descriptor of the whole body to form a long feature vector for SVM classification.

In both techniques, the number of parts are manually determined and each part’s

model is complex with many elements. We are interested in deforming simpler

feature descriptors.

In Lin et al . [59], and Wu et al . [105], deformation is allowed at the feature’s

level. Similar to our approach, features on a grid layout are considered. However,

different from our approach, features are not allowed to find their locations. Instead,

a global process, pose estimation and MRF inference respectively, is used to select

a subset of the features to be included in the final body descriptor based on the

likelihood of lying on the human’s silhouette. The global process in these cases does

not allow for autonomous operation of individual features, which is one of our goals.
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(a) (b) (c) (d) (e) (f)

Figure 3.1: An illustration of the desired behavior of a deformable fea-
ture for the head. The feature’s initial location is marked by a dotted
rectangle and the desired final location is marked with a solid rectan-
gle. Notice how the initial location is often not aligned with the actual
location of the physical feature (head).

3.3 Deformable Features

In the context of feature-based models for object detection, we define a deformable

feature (d-feature) as a feature that is not bound to a fixed location in the object’s

model. Rather it can move (translate) in a small neighborhood around a central

location. We would like a d-feature to be able to locate the physical feature it

represents within this neighborhood. Figure 3.1 illustrates the desired behavior of

a d-feature that represents the head of a human. Starting from an initial (typical)

location for the physical feature, illustrated as a dotted rectangle, the feature moves

to a better location to capture the physical feature. In this section, we explain how

to train a model for a d-feature. In Section 3.4, we explain how to combine models

for individual d-features to build an ensemble that represents the object as a whole.
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3.3.1 Learning Deformable Features

The main advantage of feature-based models is the automatic selection of repre-

sentative features from a very large pool. We do not even need to know what

the underlying physical features are. Therefore, our framework has to be able to

automatically learn d-features based solely on the image data.

Let F = (s, z0,Z) be a d-feature identified by its size s, its initial location z0

and a neighborhood Z relative to z0 in which the feature is allowed to move. Let

∆F(x, z) be a descriptor of the feature’s appearance in an example x at location

z ∈ Z, e.g . a HOG descriptor [109]. For simplicity, we will omit the variable x

when confusion is not expected. Let θ(∆F, z) be a scoring function that measures

the likelihood of an example being positive given the appearance of the feature F

at location z, i.e. p(O|∆F(z), z). Note that, θ depends on both ∆F(z) and z. This

allows us to model the case when the prior probability of z is not uniform.

On one hand, to learn the scoring function θ, we need to know the locations

of the feature F in the training examples. On the other hand, to estimate the

location of the feature in a given example, we need an objective function (scoring

function) to optimize (maximize) over the feature’s neighborhood Z. To break this

cycle, we can start with an approximation to the scoring function by assuming

the feature’s location in all training examples to be the initial location z0. Let θ0

be the initial estimate for the scoring function obtained based on this assumption.

Recall our prior assumption that features move within a small neighborhood around

their initial (typical) locations. If we further assume also that typically the feature is
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procedure DefRefine(F,X )

. F is a feature, X is a set of N training examples

∀xi ∈ X , zi
0 ← z0

for j = 0 to k do

Estimate θj based on zi
j , i = 1..N

zi
j+1 ← arg maxz∈Z θj(∆F(xi, z), z), ∀i

end for

end procedure

Figure 3.2: Pseudo-code for the d-feature model refinement procedure.

close to its initial location, then the initial model θ0 is expected to capture the rough

appearance of the feature. Therefore, we can use θ0 to estimate the feature location

in a given example by maximizing the function over the neighborhood Z. Given

these estimated locations, we can learn a better estimate for the scoring function

θ. We can keep iterating over these two steps to reach a refined estimate for the

scoring function θ. This procedure is illustrated in Figure 3.2.

To visualize the effect of refining the d-feature’s model, consider the toy clas-

sification task illustrated in Figure 3.3. In this task, all images are 40×40. Positive

samples contain circles with the same radius of 8 pixels. The circles can be at ran-

dom locations in the 20× 20 central square of the image. Negative images contain

random points in the same central square. We trained a Linear Discriminant Analy-

sis model on the raw binary pixel values of the internal 20×20 squares in all images.
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Figure 3.3: A toy classification task to illustrate the effect of refining
d-feature’s model. Sample positive and negative images are in the first
the second rows. The learned weight vector after 0, 1, and 2 refinement
iterations, Figure 3.2, are in the bottom row. Refinement enhances the
match to the shape of the positive object.
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In the bottom row of Figure 3.3, we show the obtained weight vectors after 0, 1,

and 2 refinement iterations. We can observe that the more we refine the model, the

better it matches the shape of the object we are training for, which is a circle in this

case.

3.3.2 Classification With Deformable Features

We explained how a d-feature learns its best location on each training example and

its object likelihood function through iteratively refining both in alternation. On a

testing example, we select the feature location, z∗, to be the location that maximizes

the scoring function, and then consider the score at that location to be the object

likelihood, equations 3.1 and 3.2.

z∗ = arg max
z∈Z

θ(∆F(z)) (3.1)

θ∗ = θ(∆F(z∗)) . (3.2)

This procedure is equivalent to finding the Maximum Likelihood (ML) estimate

of the feature location and using the corresponding object likelihood value as the

score of the feature for the given test sample. This is similar to the way parts are

deformed by Felzenszwalb et al . [31].

3.4 Boosted Deformable Features

A boosting algorithm forms a strong classification ensemble out of weak classifiers.

It adds ensemble members incrementally so that each newly added member performs

the best in the training samples that are poorly learned by the current ensemble.
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In feature-based detectors, each weak classifier is built on a single feature, and

the boosting algorithm selects one feature to add to the ensemble in every itera-

tion. There are several variants of boosting. We experimented with the LogitBoost

algorithm [36]. For completeness of presentation, the algorithm is reproduced in

Figure 3.4 with the necessary modifications to fit with our framework. The only

change is in the fitting of zi to xi, where zi is computed by the algorithm, and xi

in our case is the ∆F descriptors. In the case of d-features, we do not apply one

step of least squares regression. Instead we use the iterative procedure in Figure 3.2

to allow the feature to find its best location. An important point to make here is

that values of the θ function used to update F (x) in the final step of the for loop

of LogitBoost must be based on the estimates of the best locations z computed in

the final iteration of DefRefine in Figure 3.2. It is tempting to skip computing the z

values in the final iteration, since they are not used to update the model for θ again.

However, they are used to compute the object likelihood scores, which, in turn, are

used to update F (x) of LogitBoost.

3.5 Implementation Details

We use the HOG descriptor [109] to represent the features. The HOG descriptor of a

feature is a concatenation of four histograms, each built on one quadrant of the fea-

ture. Each histogram contains 9 bins representing 9 ranges of orientation directions.

Each pixel contributes to two bins of the histogram by linear interpolation. Each

pixel also contributes to the 4 quadrants with bilinear interpolation. Computing

40



procedure LogitBoost(F ,X )

. F : set of M features, X : set of N examples

∀xi ∈ X , wi = 1
N

, p(xi) = 1
2
, F (xi) = 0

for k = 1 to K do

Compute the working response and weights

zi =
y∗

i − p(xi)

p(xi)(1− p(xi))

wi = p(xi)(1− p(xi))

∀F ∈ F fit the function θF

by a weighted least-squares regression of zi to xi

with weights wi using the procedure in Figure 3.2.

Update F (x)← F (x) + 1
2
fk(x), and

p(x)← eF (x)/(eF (x) + e−F (x)),

where fk(x) is θF that minimizes the residual.

end for

Output the classifier sign[F (x)]

end procedure

Figure 3.4: Pseudo-code for the LogitBoost algorithm on d-features.
Note that y∗

i is set to 0 for a negative example and to 1 for a positive
example.
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these descriptors is very fast using kernel integral images [48] (Chapter 2).

The deformation neighborhood is made to be double the size of the feature in

both dimensions, with a maximum of 16 pixels away from the feature’s boundary.

On searching for the best feature location, we use 5 steps in each dimension. We

use two types of scoring functions. One is based only on the descriptor and the

other is based on the descriptor and location together. In the latter version, similar

to Felzenszwalb et al . [31], we concatenate δ = z∗ − z0 and its element-wise square

to the descriptor and estimate a function θ based on the concatenated descriptor.

Since the function θ in our case is a linear function, the concatenation of δ values to

the descriptor is equivalent to decomposing θ as θdescriptor + θdisplacement. Therefore,

this is equivalent to using an additive penalty term in the scoring function. This is

also equivalent to learning a non-uniform prior for the feature location.

We use a rejection cascade [98] of 30 layers of LogitBoost classifiers. Each

layer is adjusted to produce detection rate of 99.8% at false alarm rate of 65%.

3.6 Experimental Results

We trained and tested all our classifiers on the INRIA Person dataset [20]. In this

dataset, training and testing positive images are resized so that the human body is

around 96 pixels high. A margin of 16 pixels is added to the top and the bottom to

make the height 128 pixels and the width 64 pixels. The negative testing images are

scanned with this window size (64×128) with a step of 8 pixels in both dimensions,

to create close to a million sample negative images.
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In this section, we refer to the variant of d-features that uses an additive

penalty term in the scoring function (Section 3.5) by Max-Def-Add, and the variant

without penalty as Max-Def. We experimented with the two variants with number

of refinement steps 1 or 2, along with the conventional Non-Def features (0 re-

finements). We use DET (Detection Error Tradeoff) curves to present the detection

results, Figure 3.5, where the plots are generated by changing the number of cascade

layers. In these plots the number of refinements appears at the end of the legend,

when applicable. As the figure shows, only the Max-Def-2 and the Max-Def-Add-2

consistently outperform the Non-Def classifier. Max-Def-Add-1 compares favorably

over most of the false alarm rate’s range. Max-Def-1 is inferior to the Non-Def

classifier beyond false alarm rates of 2 × 10−3. Max-Def-Add-2 is the clear winner

among all. At a false alarm rate 3 × 10−4, Max-Def-Add-2 reduces the miss rate

compared to Non-Def by 30%, from 10% to 7%. At the miss rate of 8%, it reduces

the false alarm rate to about one third, from 8 × 10−4 to 2.5 × 10−4. These re-

sults highlight the value of d-features and the importance of performing multiple

refinement iterations during training.

In Figure 3.6, examples of detection errors obtained using Non-Def that are

successfully corrected using Max-Def-Add-2 are shown. To produce these images,

each classifier is applied to the image using a sliding window approach, where the

search step is set to 5% of the size of the search window in each dimension. The

search sizes are selected based on knowledge of ground truth annotations. The

resulting detection windows are then grouped using the mean shift algorithm on the

location and height of the windows. For each searching size, the image is resized so
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Figure 3.5: DET curves for cascaded boosted HOG features classifiers
on INRIA Person dataset with and without d-features. Using d-features
helps reduce the miss rate by up to 30% at false alarm rate of 3× 10−4,
and reduce the false alarm rate by 66% at the miss rate of 8%.

that we always search using the size used in training.
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3.7 Conclusion and Future Work

We introduced deformable Features (d-features in short) and showed how they can

be used to enhance the performance of boosted feature-based object detectors. The

advantage of d-features over the regular ones is their ability to search for the loca-

tions of the corresponding physical features before computing their matching scores.

This property makes them able to better handle complicated object structures and

deformations than fixed location features. We experimented with d-features on

human detection in a cascaded boosting framework. Our experiments showed a

consistent enhancement in performance when using d-features.

We use brute force search in our current implementation, which makes training

and testing classifiers using d-features slow. However, the distance transform tech-

niques [30] can be used to make it more efficient. This approach can be extended

in many other ways. We can apply the d-features using other common descriptors,

such as the covariance descriptors [94], and other types of ensembles, such as the

concatenation ones [20]. Other objects, rigid and non-rigid, can benefit from the

approach.
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Chapter 4

A Comprehensive Evaluation Framework

In this chapter, we introduce a framework for evaluating human detectors that con-

siders the practical application of a detector on a full image using multi-size sliding

window scanning. We produce DET (Detection Error Tradeoff) curves relating miss

detection rate and false alarm rate computed by deploying the detector on cropped

windows as well as whole images, using in the later either image resize or feature

resize. Plots for cascade classifiers are generated based on confidence scores instead

of varying the number of layers. To assess a method’s overall performance on a

given test, we use the ALMR (Average Log Miss Rate) as an aggregate performance

score. To analyze the significance of the obtained results, we conduct 10-fold cross

validation experiments. We applied our evaluation framework to two state of the art

cascade-based detectors on the standard INRIA Person dataset, and another dataset

of of near infrared images provided by MERL. We used our evaluation framework

to study the differences between the two detectors on the two datasets with differ-

ent evaluation methods. Our results show the utility of our framework. They also

suggest that the descriptors used to represent features, and the training window size

are more important in predicting the detection performance than the nature of the

imaging process, and that the choice between resizing images or features has serious

consequences.
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4.1 Introduction

Despite the difficulty of the problem of human detection, there has been a significant

advancement in this area of research recently. Nevertheless, little attention has been

given to evaluation of detectors for practical applications. First, there is a notable

mismatch between the way detectors are evaluated and the way they are applied

in real world applications, such as smart vehicle systems. At one end, detectors

are evaluated on ”ideal” windows that are cropped to have the human subjects

centered in them, and resized to match the window size used in training. However,

at the other end, detectors are applied to whole images, typically using a multiple-

size sliding-window approach, which results in probe windows that are far from

being ideal. Second, most of the evaluations are performed on a single dataset,

which leaves practitioners with uncertainty about the detection performance on

other datasets, possibly with different modalities, or the significance of one detector’s

advantage over the other. Third, for detectors based on cascade classifiers, typically

performance plots are created by changing the number of cascade layers. This

technique sometimes leads to difficulty in comparing different methods when the

resulting plots do not cover the same range of false alarm rates.

The main contribution presented in this chapter is an evaluation framework

that handles the shortcomings of the existing evaluations. The main features of our

evaluation are:

• Comparing between evaluation on cropped windows and evaluation on whole

images to get a better prediction for a detector’s performance in practice and
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how it differs from ideal settings.

• Using 10-fold cross validation to be able to study the significance of the ob-

tained results.

• Plotting DET curves based on confidence scores for detectors based on cascade

classifier instead of plotting them based on varying the number of layers.

• Introducing an aggregate performance score and using it as the main metric

to statistically compare methods.

• Comparing between building a multi-size image pyramid while fixing the scan-

ning window size, and using a single image size and changing the scanning

window size, when applying the detector on whole images. We refer to these

two choices as resizing images and resizing features, respectively. This is an

example of an implementation choice that can have a significant effect on the

detection performance depending on the evaluated detector.

• Evaluation on near infrared images as well as visible images.

The goal of our study is not to provide a performance comparison for the

state of the art human detection techniques. Instead, our goal is to introduce a

comprehensive evaluation framework and to highlight the mismatch between the

typical evaluation techniques and the practical deployment of the detectors. We

utilized the two detectors in Zhu et al . [109] and Tuzel et al . [94] to demonstrate our

evaluation framework. To the best of our knowledge, these are the best performing

human detectors based on rejection cascades. We focus on rejection cascades because
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they are appealing for practical applications, as explained in Section 4.2. Despite

that our presentation focuses on human detection, our framework and observations

apply to other objects as well.

Our experimental results show the utility of our framework in understanding

the performance of a human detector in practice. They suggest that the descriptors

used to represent features, Histograms of Oriented Gradients or Region Covariances

in our study, and the size of the training window are more important in predicting the

detection performance than the nature of the imaging process, such as the imaged

electromagnetic band. They also show that the choice between resizing images or

features can have a significant impact on the performance depending on the used

descriptor.

The chapter is organized as follows. In Section 4.2, we briefly describe the two

pedestrian detectors used in our evaluation. In Section 4.3, we explain the elements

of our evaluation framework. In Section 4.4, we introduce the two datasets we use

and how we prepared them for the experiments. In Section 4.5, we present the

results and analysis of our evaluation. Finally, the conclusion and future directions

are given in Section 4.6.

4.2 Evaluated Detectors

The two human detectors which we use in our evaluation are based on a rejection

cascade of boosted feature regions. They differ in how they describe the feature

regions and in how the weak classifiers are trained. One detector uses Region Co-
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variance to describe feature regions and uses classification on Riemannian manifolds

for the weak classifiers [94]. We refer to this detector as COV. The other detector

uses Histograms of Oriented Gradients (HOG) to describe feature regions and uses

conventional linear classification [109]. We refer to this detector as HOG. For the

sake of completeness, we briefly describe here the notion of a rejection cascade of

boosted feature regions, as well as the descriptors used by the two classifiers. The

reader is referred to the original papers for more details.

4.2.1 Rejection Cascade of Boosted Feature Regions

Rejection cascades of boosted feature regions were popularized by their success in

the area of face detection [98]. They are based on two main concepts: boosted feature

regions, and rejection cascades.

In boosting [36], a strong classifier is built by combining a number of weak

classifiers. Boosting feature regions can be understood as combining simple feature

regions to build a strong representation of the object that can be used to distinguish

the object from other stuff. Feature regions in our case are rectangular subregions

from feature maps of input images, as shown in Figure 4.1. The concept of a feature

map is explained in Section 4.2.2.

A rejection cascade is built of a number of classification layers. As shown in

Figure 4.2, a test pattern is examined by layers of the cascade one after another

until it is rejected by one of them, or until it is accepted by the final layer, in which

case it is classified as a positive example. During training of the cascade, the first
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Figure 4.1: Shaded rectangular subregions of the detection window are
possible features to be combined to build stronger boosted features.

layer is trained on all positive examples and a random sample of negatives examples.

Each subsequent layer is trained on all positive examples and the false positives of

the preceding layers. In this way, each layer handles harder negative examples than

all the preceding layers. The benefit of this mechanism is two fold. One is the

possibility of using a huge number of negative examples in training the classifier,

which is not possible in training a traditional single layer classifier. The other is

that, during testing, most negative examples are rejected quickly by the initial lay-

ers of the cascade and only hard ones are handled by the later layers. Since in our

applications, it is likely that most of the examined patterns are negative, rejection

cascades are computationally efficient since they quickly reject easy negative exam-

ples while spending more time on the hard negative or the positive examples. In our

implementation, each cascade layer is trained using the LogitBoost algorithm [36].
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Figure 4.2: A rejection cascade consists of layers. A test pattern is
examined by layers in the cascade from left to right until being rejected.
A pattern is accepted if all layers accept it.

4.2.2 Region Covariances

Region covariances were first introduced as descriptors in Tuzel et al . [93] and then

used for human detection [94], which outperformed other state of the art classifiers.

Let I be a W ×H one-dimensional intensity or a three-dimensional color image, and

F be a W ×H × d dimensional feature map extracted from I

F (x, y) = Φ(I, x, y) (4.1)

where the function Φ can be any mapping such as intensity, color, gradients,

filter responses, etc. For a given rectangular region R ⊂ F , let {zi}i=1..S be the

d-dimensional feature points inside R. The region R is represented with the d × d

covariance matrix of the feature points

CR =
1

S − 1

S
∑

i=1

(zi − µ)(zi − µ)T (4.2)

where µ is the mean of the points.

For the human detection problem, the mapping Φ(I, x, y) is defined as

[

x y |Ix| |Iy|
√

I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|

|Iy|

]T

(4.3)
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where x and y represent pixel location, Ix, Ixx, .. are intensity derivatives, and the

last term is the edge orientation. With this definition, the input image is mapped

to a d = 8 dimensional feature map. The covariance descriptor of a region is an

8× 8 matrix and due to symmetry only the upper triangular part is stored, which

has only 36 different values. To make the descriptor invariant to local illumination

changes, the rows and the columns of a subregion’s covariance matrix are divided

by the corresponding diagonal elements in the entire detection window’s covariance

matrix.

Region covariances can be computed efficiently, in O(d2) computations, re-

gardless of the region size, using integral histograms [74, 93]. Covariance matrices,

and hence region covariance descriptors, do not form an Euclidean vector space.

However, since covariance matrices are positive definite matrices, they lie on a con-

nected Riemannian manifold. Therefore, classification on Riemannian manifolds is

more appropriate to be used with these descriptors [94].

4.2.3 Histograms of Oriented Gradients

Histograms of Oriented Gradients were first applied to human detection in Dalal

and Triggs [20], which achieved a significant improvement over other features used

for human detection at that time. Histograms of Oriented Gradients were used in a

rejection cascade of boosted feature regions framework in Zhu et al . [109] to deliver

comparable performance to Dalal and Triggs [20] at a much higher speed.

To compute the Histogram of Oriented Gradients descriptor of a region, the
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region is divided into 4 cells, in a 2× 2 layout. A 9 bin histogram is built for each

cell. Histogram bins correspond to different gradient orientation directions. Instead

of just counting the number of pixels with a specific gradient orientation in each bin,

gradient magnitudes at the designated pixels are accumulated. Bilinear interpolation

is used between orientation bins of the histogram and spatially among the 4 cells.

The four histograms are then concatenated to make a 36-dimensional feature vector,

which is then normalized. In our implementation, we use L2 normalization for HOG

features.

Like Region Covariance descriptors, HOG descriptors can be computed fast

using integral histograms. Bilinear interpolation among cells is computed fast using

the kernel integral images approach [48] (Chapter 2).

4.3 Evaluation Framework

In most recent studies on human detection, evaluation results are presented in DET

(Detection Error Tradeoff) curves, which relate the false alarm rate per window to

the miss rate of the classifier in a log-log scale plot. Typically, positive examples

used in the evaluation are adjusted to have the same subject alignment and size used

in training the classifiers, and negative examples are human-free. In this section,

we identify several shortcomings of this evaluation approach. We explain how we

address these shortcomings in our evaluation framework.
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Figure 4.3: DET-Layer plots for the INRIA dataset with window size 128× 64.

4.3.1 Score Plots for Cascade Classifiers

Typically, points on DET curves of cascade classifiers are generated by changing the

number of cascade layers. The problem with this approach is that the generated

plots are not guaranteed to cover a particular range for either the horizontal or the

vertical axes, which makes it hard to compare different methods. Figure 4.3 shows

examples of such plots. To overcome this problem, in our evaluation, we compute a

confidence score for each sample and generate the plots based on these scores. We

assume that each layer of the cascade can give a confidence score ϕ(x) ∈ (0, 1) to

any given example x. The overall confidence score over an n layer cascade can be

expressed as

Φ(x) = N (x) + ϕl(x) , (4.4)
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whereN (x) is the number of layers that accepted x, and ϕl(x) is the confidence

score of the last layer that examined it. The score in 4.4 reflects the way a cascade

classifier works. It gives higher scores to examples that reach deeper in the cascade.

If two examples leave the cascade at the same layer, their confidence scores will differ

by the confidence scores assigned by the last layer. In this way, we get a real valued

score. We can create DET curves from these scores by changing the threshold above

which a test example is considered positive. At each point on the curve, we set the

threshold appropriately to generate a specific level of false alarm rate. Then, we

measure the miss rate at this threshold value. In this way, we have control over the

range of false alarm rates to cover. Figure 4.7 shows the same results of Figure 4.3

using confidence scores.

In our implementation, each layer of the cascade is a boosted classifier. The

real-valued outcome of such a classifier is proportional to the number of weak clas-

sifiers in it. Hence, we normalize this outcome by the number of weak classifiers to

produce the layer’s score in the range (−6, 6). Then this value is mapped to the

range (0, 1) using the sigmoid function exp(x)/(exp(x) + exp(−x)).

4.3.2 Evaluation on Whole Images

Evaluation on cropped windows is an optimistic estimate of the detector’s perfor-

mance in practice. Typically, detectors are applied to whole images using a multiple-

size sliding window scanning. The windows fed to the classifier in this case can rarely

have humans centered in them or have the proper size, which would yield a lower
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performance than in the case of application on cropped windows. We evaluated the

classifiers on both cropped windows and whole images to compare between them.

In the case of evaluation on cropped windows, the positive and negative examples

are well defined. However, in the case of evaluation on whole images, the situation

is different. In this case, scanned windows are not all perfect positive or negative

examples since they may contain parts of humans or full humans who are not in

the proper location or relative size. In many applications, if the detection window

is slightly shifted, or slightly smaller or larger than the subject, it is still useful.

Therefore, we should not consider such windows as negative examples and penalize

the classifier for classifying them as positives. However, if we consider all scanned

windows that are close to a human subject as positive examples, we will be penaliz-

ing the classifier for missing any of them although detecting just one is good enough

in practice.

Based on these considerations, in the case of evaluation on whole images, we

consider any scanned window that is significantly far from all annotated human

subjects in the image as a negative example. A missed detection is counted if an

annotated human subject is significantly far from all scanned windows that are

classified as positives by the classifier. In other words, a missed detection is counted

if all scanned windows that are close enough to an annotated human subject are

classified as negatives. The measure of closeness we use is the overlap ratio. Let

|R| be the area of a region R. Consider two regions R1 and R2. The overlap ratio

between them is defined as
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O(R1, R2) =
|R1 ∪ R2|

|R1 ∩ R2|
. (4.5)

This ratio is minimum (1) when the two regions are perfectly aligned and is

maximum (∞) when they have no overlap. In our evaluation, we consider a scan

window negative if its overlap ratio to the closest annotated human subject is above

16. We count a miss detection if all scanned windows within overlap ratio of 2 around

an annotated human subject are all classified as negatives. The latter threshold is

the same used in the Pascal challenge [29]. According to these thresholds, there are

windows that are not counted as positives nor as negatives. The upper threshold

is rather conservative so that we do not consider a window negative unless it is too

far from all annotated human subjects. For assigning scores to windows, negative

windows’ scores are computed as in 4.4; and, each annotated human subject is

assigned the maximum score over all positive windows associated with it.

Another option to present the performance on whole images would be to use

PR (Precision Recall) curves. It was shown [22] that PR and ROC curves are closely

related in the sense that the dominant curve in one is the dominant curve in the other

if they are generated using the same points. We preferred using DET curves, which

are the loglog version of ROC curves, so that the the performance on whole images

can be compared to that on cropped windows in our results and other published

results. Also, to generate a PR plot, nearby detection windows have to be consoli-

dated. First, we selected not to confound the detector’s performance by a particular

choice of this post processing step. Second, in our framework, consolidation will
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have to be applied at each point of the plot, which is prohibitively expensive.

4.3.2.1 Resizing Images vs. Resizing Features

An implementation choice for evaluation on whole images turns out to have a strong

effect on the detection performance. We train each classifier on single size images. In

the case of applying them on whole images, which contain humans of different sizes,

we have two options. One is to resize the images so that our scanning window size

becomes the same as the training size. We refer to this option as resizing images.

The other option is to resize the features selected by the classifier while maintaining

their relative sizes to the scan window. We refer to this option as resizing features.

Resizing features is faster since the preprocessing of the image, e.g . computing

gradients and integral histograms, is performed only once. We evaluated on whole

images using the two options to compare between them.

4.3.3 Statistical Analysis

Statistical analysis of detection performance is rarely conducted for human detec-

tion, possibly due to the long training time. To our knowledge, the only study that

provided statistical analysis was in Munder and Gavrila [67], where a confidence

interval for each point on the ROC curve was computed based on 6 observations

(3 training sets × 2 testing sets). We found it confusing to plot confidence inter-

vals with the plots since in our evaluation plots intersect and come close to one

another. Instead, we compute confidence intervals for the aggregate performance
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score ALMR, which is explained in Section 4.3.4. We conduct a 10-fold cross valida-

tion for all our experiments. Therefore, for each experiment, we obtain 10 different

curves. Each curve yields an ALMR score. To compare different experiments, we

plot the average curve for each experiment. We also present a box-plot for the mean,

confidence interval, and range of the ALMR scores for all experiments in a separate

plot. Confidence intervals are computed at the 0.95 confidence level.

4.3.4 Computing an Aggregated Performance Score

To analyze the significance of one method’s advantage over another, we need an

aggregated score that captures the difference between them over the entire curve.

The log-log plots emphasize the relative difference instead of the absolute difference

between two curves. We need a score that emphasizes the same difference in order

to be consistent with the difference perceived from the plots. For two curves a and

b, such a score can be expressed as

Rab =
1

n

n
∑

i=1

log
mra

i + ε

mrb
i + ε

, (4.6)

where mr is a miss rate value, ε is a small regularization constant, and the

sum is over the points of the DET curve. We use 10 as the logarithmic base and

ε = 10−4 in our experiments. We found the value of ε not significant in comparing

curves. If this score is positive, it indicates that curve a misses more on average,

and vice versa.

Instead of having a score for each pair of curves, it is better to have a score
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for each curve and compare the curves by comparing the scores. The score R in 4.6

can be expressed as

Rab =
1

n

n
∑

i=1

log (mra
i + ε)−

1

n

n
∑

i=1

log (mrb
i + ε) . (4.7)

This suggests that we can represent the performance of each curve as the

average of the logarithm of the miss rate values over the curve. But, this score will

be always negative. Therefore, we switch its sign to reach the following expression

for the ALMR (Average Log Miss Rate) score

ALMR =
−1

n

n
∑

i=1

log (mri + ε) . (4.8)

The higher the value of the ALMR score, the lower the miss rate over the

curve on average, i.e. the better. The ALMR score is related to the R score in 4.6

and 4.7 by

Rab = ALMRb − ALMRa . (4.9)

The ALMR is related to the geometric mean of the miss rate values. It is

also proportional to the area under the curve in the log-log domain when the curve

is approximated using a staircase plot. Since our plots are on a log-log scale and

the points are uniformly spaced, the ALMR score contains more samples from the

low false alarm rate values. This is useful since in many applications we are more

interested in the low false alarm rate range.

Finally, in our evaluation, we call the difference between the ALMR scores of
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two experiments significant when the confidence intervals of the two experiments

do not overlap. Otherwise, we call the difference insignificant.

4.4 Evaluation Datasets

We evaluated the detectors on two different datasets, INRIA-Person and MERL-

NIR. The INRIA dataset was introduced in Dalal and Triggs [20], and subsequently

used to evaluate many human detectors. The MERL-NIR dataset consists of 46000

frames from a video sequence. The video was shot from a vehicle touring an Asian

city, using a near infrared interlaced camera. From the frames that contained an-

notated human subjects, we uniformly sampled 1600 to be used as positive images.

From the remaining frames, we randomly sampled 1100 to be used as negative im-

ages. The description of the two datasets along with statistics and histograms of

human sizes are given in Table 4.1 and Figure 4.4. Sample whole images and cropped

human windows used in training and testing are shown in Figure 4.5 and Figure 4.6.

To conduct cross validation experiments, we divided the whole positive images in

each dataset into 5 sets of a roughly equal number of annotated human subjects. We

perform 10-fold cross validation by using 3 sets for training and 2 for testing in each

fold. Negative images used in training and testing are common in all experiments.

Table 4.2 describes the contents of each set and the number of negative images in

the two dataset. The number of cropped windows in the table includes the left-right

reflection of each window.
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Table 4.1: A comparison between the two datasets used in our evaluation. Tracks are
defined only in the case of MERL-NIR dataset. A track is a sequence of windows
containing the same person in consecutive frames. More than one track can be
associated with one person if she becomes partially or totally occluded and then
fully visible again.

INRIA MERL-NIR
Electromagnetic Band Visible Near Infrared

Source of Images Personal Photos Interlaced Video Frames
Total Number of Images 2572 46000

Image Size Variable 720×480
Number of Images Containing Humans 901 9823

Number of Human Samples 1825 11895
Number of Tracks N/A 285
Min Person Height 48 20
Max Person Height 832 323

Mean of Person Height 290 92.66
Standard Deviation of Person Height 147.83 59.92

Median Person Height 260 72
Mode Person Height 208 50

Table 4.2: Division of each dataset into 5 positive subsets and two common negative
sets for 10-fold cross validation experiments.

INRIA INRIA MERL-NIR MERL-NIR
Whole Cropped Whole Cropped

Positive

Set # 1 179 730 320 766
Set # 2 180 730 320 764
Set # 3 180 730 320 764
Set # 4 181 730 320 764
Set # 5 181 730 320 764

Negative
Training 1218 800
Testing 453 300
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Figure 4.4: Distribution of human height in pixels in the two datasets
used in our evaluation.

Figure 4.5: Sample whole and cropped human images from the INRIA-
Person dataset.
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Figure 4.6: Sample whole and cropped human images from the MERL-
NIR dataset.

4.5 Evaluation Results

We train the cascade classifiers to have 30 cascade layers. Each layer is trained using

the LogitBoost algorithm [36], and adjusted to produce 99.8% detection rate and

65% false alarm rate, using the algorithm in Viola and Jones [98]. The number of

positive samples in each training session can be inferred from Table 4.2 by noting

that we use three positive sets for training and the remaining two for testing in a 10-

fold cross validation setup. The number of negative samples collected for each layer

is set to 3.5 times the number of positive samples. Features are generated with the

minimum side length set to 12.5% of the corresponding window side length, with a

minimum of 8 pixels in order to have enough sample points to construct histograms

and covariance matrices. The feature location stride and side length increment are
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set to half the minimum feature side length. Every 5 boosting iterations, 5% of the

features are randomly sampled, with a maximum of 200. The limit on the number of

sampled features is for all descriptors to fit in memory instead of being re-computed

on every boosting iteration.

For evaluation on whole images, each image is scanned with 9 window heights,

starting from 75% of the training window height and using an increment of 30% of

the last height used, while preserving the aspect ratio of the training window size.

The scanning stride is set to 5% of the scanning window size in each dimension.

Our training and testing modules were run on a cluster of computers, with

about 60 active nodes. Each node contained two Intel(R) Xeon(TM) CPU 3.06GHz

processors with 512KB cache memory and 4GB RAM. The front end and compute

OS was CentOS release 4.5.

In the remainder of this section, we first present the evaluation results on the

INRIA dataset with the default training and testing window size of 128×64. Then,

we present the results on the MERL-NIR dataset, in which we use a window size

of 48 × 24. Alongside with this set of results, we present results for the INRIA

dataset with window size 48 × 24 for the sake of comparison with the results on

the MERL-NIR dataset. We present all the plots using the same limits in both

axes for ease of comparison. In each plot, curves for the COV detector are drawn

using dotted lines and curves for the HOG detector are drawn using dashed lines,

with a different marker shape for each type of experiment. The legend of each

experiment has two parts. The first is the descriptor, HOG or COV. The second

is the evaluation method, which is either Cropped, Whole-RI, or Whole-RF, for
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Figure 4.7: DET-Score plots for the INRIA dataset with window size 128× 64.

cropped windows, whole images with resizing images, and whole images with resizing

features, respectively.

4.5.1 Evaluation on INRIA 128× 64

In this set of experiments, we evaluate our two detectors on the INRIA dataset using

the original window size of 128×64, where each positive window is adjusted so that

the height of the human body in it is 96 pixels.

Figure 4.7 shows the DET score plots for this set of experiments. Each curve

is the average of the 10 curves produced by cross validation. However, the curves

often intersect one another and there is no clear winner. Therefore, we will rely

on the ALMR score statistics to compare experiments when it is hard to reach a

conclusion by inspecting the curves.

Figure 4.8 shows the statistics of the ALMR score for each curve in Figure 4.7.
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Figure 4.8: A box plot for the mean, confidence interval, and range of
the ALMR score for the plots in Figure 4.7.

Note how comparing the mean values of the ALMR scores of two curves matches well

with how the curves themselves compare to one another on average. The difference

between the mean scores of two curves reflects the average relative advantage of one

curve over the other in terms of miss rate. For example, the mean ALMR scores

for the HOG-Cropped and COV-Cropped experiments are approximately 1.6 and

1.4, respectively. This means, on average, the miss rate of the HOG detector is

100.2 ' 1.6 times the miss rate of the COV detector, which is consistent with how

the curves compare to one another.

For evaluation on cropped windows, the ALMR score shows the significant

advantage of the COV detector on average. The confidence intervals of the two

scores do not overlap. On average COV leads by around 0.2 points. Note how the

ranges of the ALMR scores are large to the extent that they overlap. This signifies
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the importance of using statistical analysis in order to have a reliable estimator for

a detector’s performance.

For evaluation on whole images, the COV detector maintains its lead over the

HOG detector. The lead this time is even more evident since the ranges of the

ALMR scores do not overlap. On average COV leads by around 0.2 points. How-

ever, the performance of the two detectors significantly deteriorates in this case by

losing around 0.3 points on the ALMR scale on average. This deterioration signi-

fies the importance of evaluation on whole images in order to predict the detector’s

performance in a typical practical setting.

Finally, for evaluation on whole images with resizing features, the picture is

totally different. Without even inspecting the ALMR score statistics, we can notice

that the HOG detector consistently outperforms the COV detector. By inspecting

the ALMR scores, we notice that this difference is significant. On average HOG

outperforms COV by around 2.5 points. The difference between the two detectors’

behavior in this case may be due to the difference between the two descriptors, or

due to the usage of learning on Riemannian manifolds in the case of COV. Further

investigation is needed to understand this phenomenon. On the other hand, com-

paring evaluation on whole images for the HOG detector with resizing images and

with resizing features, we find the difference between them insignificant. The mean

score of each experiment lies in the confidence interval of the other. This gives the

HOG detector a higher advantage over COV in terms of processing time. The COV

detector is at least 10 times slower than the HOG detector. Resizing features saves

about 40% of the processing time of the HOG detector without a significant loss

70



in detection performance. This makes the COV detector at least about 17 times

slower than the HOG detector when resizing features is used for the latter.

Despite the advantage of the COV detector in most of the experiments on

average, it is worth noting that the HOG detector often slightly outperforms the

COV detector in the very low false alarm rate range, below around 10−4. However,

the points in this range of false alarm rates are often found only in the score-based

plots and missing from the layer-based plots (compare Figure 4.7 to Figure 4.3).

This may indicate the possibility of obtaining a more consistent advantage for the

COV detector if we continue training more cascade layers to cover the entire range

of false alarm rate. However, this is difficult in practice. It takes about 4 days to

train a COV classifier for 30 layers. The bottleneck of the training process is finding

enough miss classified negative samples for each new layer to be trained, and this

time increases with the number of layers.

4.5.2 Evaluation on MERL-NIR

In this set of experiments, we evaluate our two detectors on the MERL-NIR dataset.

Due to the smaller person heights in this dataset compared to the INRIA dataset,

as shown in Figure 4.4, we have to use the reduced window size of 48×24 in this set

of experiments. All positive windows are adjusted so that the height of the human

body is 36 pixels. Because of this reduction in window size, we expect reduced

detection performance.

Figures 4.9 and 4.10 show the DET plots and ALMR score statistics for this
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Figure 4.9: DET-Score plots for the MERL-NIR dataset.
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Figure 4.10: A box plot for the mean, confidence interval, min, and max
of the ALMR score for the plots in Figure 4.9.
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Figure 4.11: DET-Score plots for the INRIA dataset with window size 48× 24.

set of experiments. Similar to the results on the INRIA 128× 64 dataset, the COV

detector’s lead over the HOG detector in the case of cropped windows and whole

images with resizing images, and the HOG detector’s lead in the case of whole images

with resizing features are significant. However, there are several differences between

the two sets of results. The first notable difference is the improved performance

for both detectors in the case of resizing features with respect to the other types

of evaluation. In the case of HOG, using resizing features became even better than

resizing images. The second notable difference is that the advantage of evaluation

on cropped windows over evaluation on whole images with resizing images is no

longer significant, with overlapping confidence intervals of the ALMR scores, and is

reversed in the case of the HOG detector.

Before attempting to explain these differences, we present another set of results

on the INRIA dataset, but, with the window size reduced to match the one used
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Figure 4.12: A box plot for the mean, confidence interval, min, and max
of the ALMR score for the plots in Figure 4.11.

with MERL-NIR. In this set of experiments, all the INRIA dataset images used

in training and testing are reduced in size with the same factor that reduces the

window size of 128 × 64 to 48 × 24. Figures 4.11 and 4.12 show the results of

this set of experiments. Comparing this set of results with those obtained on the

MERL-NIR dataset, by comparing Figure 4.12 to Figure 4.10, we find that they are

very similar. Most of the differences between them are either small or statistically

insignificant. This observation gives us a clue about the differences between the

results on the INRIA 128×64 dataset and those on the MERL-NIR dataset. It tells

us that the difference is mostly due to the window size.

The reduced window size leads to a reduced stride when scanning whole images

for evaluation since we set the stride to be 5% of the window side length. That makes

the stride just 1 or 2 pixels in each dimension for a 48× 24 window. Also, using a
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reduced minimum scanning size results in a reduced scanning size range and hence

a denser coverage of that range. These two factors could explain the reduction in

the performance gap between the evaluation on cropped windows and evaluation on

whole images. With reduced window sizes and window size range, there is a higher

chance that the scanning window becomes close to annotated human subjects while

having them centered. Also, with a smaller range of scanning window sizes, the

effect of resizing features compared to resizing images should be less significant.

Nevertheless, the enhanced performance of resizing features compared to resizing

images in the case of HOG needs further investigation.

Finally, by comparing the ALMR scores in the case of evaluation on cropped

images when using a large scan window size, Figure 4.8, versus using a small scan

window size, Figures 4.10 and 4.12, we observe that the performance on small win-

dow sizes is significantly worse. Note that evaluation on cropped windows actually

evaluates the classifier, not how it is used in the detection task. A classifier trained

on a large window size has a richer set of features to select from. Therefore, it is

expected to perform better, as the results show.

4.6 Conclusion and Future Work

We presented a comprehensive evaluation framework for object detectors that is

geared towards a typical practical deployment paradigm. We demonstrated its util-

ity on two state of the art human detection algorithms, that are based on cas-

cade classifiers, on two different datasets, covering two bands of the electromagnetic
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spectrum, visible and near infrared. In our evaluation we compare between the

typically-used evaluation on cropped windows and the more practical evaluation on

whole images. We introduced enhanced DET plot generation based on confidence

scores instead of varying the number of layers in cascade classifiers. We introduced

an aggregate performance score to summarize such plots for ease of comparison. We

used 10-fold cross validation to statistically analyze our results.

Our experiments showed the effectiveness of our framework and led to the

following findings:

• The COV detector maintains a significant lead over the HOG detector on

average. However, sometimes it is very close or slightly inferior in the very

low false alarm rate range, and it is at least 17 times slower.

• Application of detectors on whole images can yield a significant reduction in

detection performance than what can be observed upon evaluation on cropped

windows. However, when the application deploys a dense scanning in terms of

strides and window sizes, the difference between them may not be significant.

• Detection performance may not be significantly affected by applying the same

algorithm to images in the near infrared band instead of the visible band.

However, it is significantly affected by the window size used in training the

classifiers.

• Whether to use resizing images, or resizing features, when applying a detector

to whole images, can have a significant effect on the detection performance
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depending on the detector used. While the HOG detector can deliver the

same or better performance when resizing features, the COV detector delivers

significantly deteriorated performance.

Many directions can be taken for future extensions and enhancements of our

framework. It is not clear how the extended plots we obtain for cascade classifiers

using confidence scores are comparable to plots obtained by increasing the number

of layers in the cascades. The ALMR aggregate confidence score gives an overall

performance measure assuming that performance over the entire range of the false

alarm rate is important. An investigation of using a weighted or limited-range

version of the score for some applications can be useful. Comparison to PR curves

and what we learn from both DET and PR curves on evaluation on whole images

needs to be further studied. Finally, the framework in general needs to be applied to

other state of the art detectors, especially ones that do not rely on cascade classifiers.
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Part II

Visual Computing on GPUs
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Chapter 5

Introduction to Part II: Visual Computing on GPUs

In recent years, Graphics Processing Units (GPUs) have been rapidly advancing

from being specialized fixed-function processors to being highly programmable and

parallel computing devices. With the introduction of the Compute Unified Device

Architecture (CUDA), GPUs are no longer exclusively programmed using graphics

APIs. In CUDA, a GPU can be exposed to the programmer as a set of general-

purpose shared-memory Single Instruction Multiple Threads (SIMT) multi-core pro-

cessors. The number of threads that can be executed in parallel on such devices is

currently on the order of hundreds and is expected to grow further. Many applica-

tions that are not yet able to achieve satisfactory performance on CPUs can benefit

from the massive parallelism provided by such devices.

In this part, we explore the opportunity of developing very fast implementa-

tions of core algorithms used in visual object recognition on GPUs. First, we present

an implementation of the Graph Cut algorithm on GPUs. Second, we present an

efficient band approximation of Gram matrices that can be used to speed imple-

mentations of kernel-based methods on GPUs. As an application to the latter, we

present an implementation of the Affinity Propagation algorithm.

In this chapter, we first give a brief introduction to CUDA. Then, we introduce

our work on Graph Cut, and kernel-based methods in Sections 5.2 and 5.3, which
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Figure 5.1: CUDA Architecture.

are later explained in detail in Chapters 6 and 7, respectively.

5.1 Compute Unified Device Architecture

We briefly present the main features of the Compute Unified Device Architecture

(CUDA), which is the main stream architecture/model used for general purpose

computing on GPUs nowadays. For a detailed description, the reader is referred to

Nickolls et al . [68] and NVIDIA CUDA Programming Guide [69].

5.1.1 Architecture

In CUDA, a parallel compute device, such as the GPU, is referred to as a device. A

CUDA device is responsible of running CUDA kernels in parallel. A CUDA kernel is

a C function which specifies the operation performed by a single thread of execution.

Launching CUDA kernels and controlling the path of execution from one kernel to
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the next are performed by a separate serial processor, such as the CPU, referred to

as a host.

Figure 5.1 is an illustration of CUDA’s device architecture. A CUDA device

consists of a number of Streaming Multiprocessors (SMs) that ranges from 2 to 30

in the high-end models. Each SM consists of 8 core Streaming Processors (SPs).

Each SP has exclusive access to a designated number of registers in its SM’s register

file. All SP’s in the same SM have access to a low latency shared memory space.

The shared memory is organized in banks so that each bank can serve one memory

access at a time. All SPs in all SMs have access to three common memory spaces,

which are

1. Global Memory: A read/write non-cached memory space.

2. Constant Memory: A read-only cached memory space.

3. Texture Memory: A read-only cached memory space with hardware support

for filtering operations and memory access modes needed for texture fetching.

Accessing constant and texture memory spaces is as fast as accessing local

registers on cache hits. Accessing shared memory is as fast as accessing registers if

there is no memory bank conflict, i.e. if no two SPs access two different locations

within the same shared memory bank. On the other hand, accessing global memory

is typically up to two orders of magnitude slower. In fact, accessing global memory

is also two orders of magnitude slower than floating point multiply and add.
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5.1.2 Execution Model

The execution of CUDA kernels follows a Single-Instruction Multiple-Thread (SIMT)

model. Each thread executes a CUDA kernel on a single SP. Threads are virtually

organized in a three dimensional discrete space referred to as a grid. This space

is further divided into equally sized rectangular boxes called blocks. The number

of threads and dimensionality of the thread blocks and grid are specified by the

programmer depending on the operation to be performed and the size and dimen-

sionality of the input data. All threads in the same block execute on SPs of the

same SM. Therefore, threads within a block can communicate with one another

through the shared memory space in the assigned SM. Threads in the same block

can also use efficient barrier synchronization to coordinate their executions. The

execution unit of the SM executes threads in parallel in groups of 32, called warps.

Threads within the same warp need to follow the same execution path to obtain

the maximum possible performance. Otherwise, divergent execution paths within a

warp are serialized. Different warps are run in parallel by an SM in a time slicing

fashion.

5.1.3 Performance Considerations

There are several important considerations that must be taken into account in order

to maximally exploit the computational power of CUDA device. The most impor-

tant of these considerations is optimizing global memory accesses. As noted earlier,

accessing global memory is significantly slower than accessing other memory spaces
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and than compute instructions. One way to alleviate this overhead is through shar-

ing data loaded from global memory among threads by using the shared memory

space. A significant gain can be achieved also by considering how accesses to global

memory are realized by the hardware. If data is organized in a simple array struc-

ture so that each element is either 4, 8, or 16 bytes long, and threads within the

same warp access consecutive data elements, these accesses are grouped (coalesced)

in at most 2 memory access instructions in the latest Tesla devices. On the other

hand, accessing random array elements by threads in the same warp can lead to

launching a memory access instruction for each thread, which leads to a significant

slow down. Other performance considerations include fine grain parallelism, and

minimizing thread divergence and shared memory bank conflicts.

Taking these constraints into account is the key to achieving good performance

on CUDA devices. As you will see, using a data structure that can easily be ac-

cessed in a way that respects the global memory access rules can achieve significant

speedups.

5.2 Graph Cut on GPUs

The Graph Cut algorithm is a fundamental graph algorithm thereof some other

graph algorithms can be modeled as special cases, such as shortest paths, and

bipartite graph matching. It has many applications in computer vision, such as

foreground/background segmentation [9, 77], image restoration [11], stereo match-

ing [78], and multi-camera scene reconstruction [54].
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In Chapter 6, we present several parallel implementations of the Graph Cut al-

gorithm on the Compute Unified Device Architecture (CUDA). We evaluate our im-

plementations on an image-segmentation task. Our general implementation achieves

a consistent speedup compared to the best CPU implementation. We introduce two

optimizations that utilize the special structure of grid graphs, which are prevalent in

imaging applications of the algorithm. The first is lockstep BFS, which reduces the

overhead of BFS traversal, a major component in the algorithm. The second is cache

emulation, which regularizes the memory access pattern and thereby enhances the

memory access throughput. Each of the two optimizations provides a substantial

speedup over the general implementation. Using cache emulation is consistently the

best. A version of this work appeared in our paper [51].

5.3 Band Approximation of Gram Matrices

Kernel-based learning methods require O(N2) space and computational complexities

for computing the kernel (i.e. Gram) matrix, for N data points. These complexities

significantly impact the application of kernel methods to large scale problems with

millions of data points. In Chapter 7, we introduce a novel method to approximate

a Gram matrix with a band matrix. Our method relies on the locality preserving

properties of space filling curves, and the special structure of Gram matrices. Our

approach has several important merits. First, it computes only those elements of

the Gram matrix that lie within the projected band. Second, it is simple to paral-

lelize. Third, using the special band matrix structure makes it space efficient and
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GPU-friendly. We developed GPU implementations for the Affinity Propagation

(AP) clustering algorithm using both our method and the COO sparse representa-

tion. Our band approximation is about 5 times more space efficient than COO. AP

gains up to 6x speedup using our method with small degradation in its clustering

performance. A version of this work appeared in our papers [46, 45].
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Chapter 6

Graph Cut on GPUs

In this chapter, we present our results on implementing the Graph Cut algorithm

on CUDA. Our primary focus is on implementing Graph Cut on grid graphs, which

are extensively used in imaging applications. We explain our implementation of

breadth first search (BFS) graph traversal on CUDA, which is extensively used

in our Graph Cut implementation. We then present a basic implementation of

Graph Cut that succeeds to achieve absolute and relative speedups when used for

foreground-background segmentation on synthesized images. Finally, we introduce

two optimizations that utilize the special structure of grid graphs. The first one is

lockstep BFS, which is used to reduce the overhead of BFS traversals. The second is

cache emulation, which is a general technique to regularize memory access patterns

and hence enhance memory access throughput. We experimentally show how each

of the two optimizations can enhance the performance of the basic implementation

on the image segmentation application.

6.1 Introduction

The Graphc Cut problem is know in combinatoric optimization as Max-Flow/Min-

Cut. The problem is defined as follows.

Let G be a graph 〈V, E〉, where V is a set of nodes, and E is a set of links. Let
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s t

Figure 6.1: An example of an s/t cut in a graph. Terminal nodes s and
t are marked in black. The cost of the cut is the sum of the weights of
the thick links, which are the links that connect nodes in S to nodes in
T .

s and t be two designated terminal nodes in V. An s/t cut in G is a partitioning of

V into two disjoint subsets S and T such that s ∈ S and t ∈ T . Figure 6.1 shows

an example of an s/t cut of a sample graph. Let w(u, v) be a cost function that

assigns a real value to every link (u, v) ∈ E . The cost of a cut C = (S, T ) is defined

as c (S, T ) =
∑

u∈S,v∈T w (u, v) , which is basically the sum of the costs of all links

linking a node in S to a node in T . In Figure 6.1, the cost of the shown cut is the

sum of the costs of the thick links. The Graph Cut algorithm finds the minimum

cut in a graph, which is a cut with a minimum cost value. A cut in the graph defines

a binary labeling over its nodes. If we are not interested in the cost of the minimum

cut itself and interested instead in the best binary labeling of graph nodes according

to some energy function, it can be shown that Graph Cut can be used to exactly

minimize a wide class of functions of binary variables, and approximately minimize

a wide class of functions of discrete variables in general [55].
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The Graph Cut algorithm has many applications in different areas of research.

It is a fundamental graph algorithm thereof some other graph algorithms can be

modeled as special cases, such as shortest paths, and bipartite graph matching.

However, our focus is on applications related to computer vision, computer graphics,

and machine learning. For example, in computer vision, binary labeling via Graph

Cut was applied in foreground/background segmentation [9, 77], where labels are

either foreground or background. Discrete labeling was applied in many other ap-

plications such as image restoration [11], where labels are discrete intensity values,

stereo matching [78], where labels are discrete disparity values, and multi-camera

scene reconstruction [54], where labels correspond to different scene elements. In

computer graphics there are many applications as well. In Agarwala et al . [2], Graph

Cut was applied to interactive PhotoMontage, where different images for the same

scene can be combined to form a better image based on interactively determined

user’s criteria. In Kwatra et al . [56], a method for texture synthesis using Graph

Cut was proposed. Wu and Yang [104] proposed a method for labeling objects of

interest in images, called SmartLabel, based on Graph Cut. An example application

of Graph Cut in machine learning is in Blum and Chawla [8], where a method for

labeling a large unlabeled dataset based on a small labeled one, via Graph Cut,

was proposed. Among these many applications, we selected image segmentation [9]

to evaluate our implementation on. That is primarily due to the simplicity of its

implementation as well as non-reliance on field specific concepts. However, it is

important to emphasis that our implementation of Graph Cut is general and is not

targeted to any particular application.
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While fast practical parallel implementations for Graph Cut have already been

accomplished before [4, 3], to the best of our knowledge, our implementation is

the first implementation on CUDA. It is also the first implementation on graphics

processors that succeeds to achieve relative and absolute speedups for the type of

graphs targeted in this work. An implementation on CUDA is particularly important

due to the relatively low cost of CUDA-enabled devices. Moreover, many of the

applications of Graph Cut, as mentioned above, are targeted to desktop applications,

where assuming existence of many CPUs or clusters of computers is not practical,

while existence of a CUDA-enabled device is almost guaranteed. Also, some of the

applications of Graph Cut, such as in photo-editing [2, 77], produce visual outputs

to be displayed to the user. Therefore, it is more efficient to perform the processing

on the display card instead of transferring data back and forth between the GPU

and the CPU.

The simplicity of CUDA’s programming model, in fact, projects a number of

challenges on implementing Graph Cut on it compared to the other architectures on

which Graph Cut implementations were studied before. For example, mechanisms

for memory locking, to prevent concurrent updates to the same memory location

are not available on all devices. Also, multiprocessors in CUDA work in a SIMD

fashion, where best performance is achieved when all core processors perform the

same operation at the same time. Divergence among core processors in the same

multiprocessor results in serialization of the different paths taken and hence can

cause a large performance penalty.

Our implementation addresses these issues by taking a rather unusual way of
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implementing Graph Cut in parallel. Our algorithm is a push-relabel style algo-

rithm [40]. Instead of implementing the global relabeling heuristic in parallel with

push and relabel operations [4, 3], we exclusively rely on BFS graph traversals to

assign optimal labels to graph nodes, as explained in Section 6.4.

Although an implementation of Graph Cut on general graphs is our ultimate

goal, in this work we focus only on grid graphs. In fact, implementing graph algo-

rithms, such as Graph Cut, where the complexity of processing a node in the graph

is a function of its degree, is not straight forward on SIMD architectures, such as

CUDA, where divergence among different processors has to be avoided as much as

possible. Grid graphs have the attractive property of having a constant out-degree

for almost all nodes in the graph. Therefore, the number of operations performed

when processing a node in the graph is generally the same as processing any other

node, which almost eliminates divergence. Moreover, the special structure of grid

graphs allows us to apply two optimization techniques. The first technique is the

lockstep BFS, which is utilized to mitigate the overhead of our CUDA implementa-

tion of BFS traversal. The second is cache emulation, which is a general technique to

regularize memory access patterns. Restricting our implementation to grid graphs

by no means nullifies its utility. Almost all the applications of Graph Cut mentioned

above, and many others, work on grid graphs.

The rest of the chapter is organized as follows. Section 6.2 summarizes re-

lated work. Section 6.3 explains our CUDA implementation of BFS graph traversal.

Section 6.4 presents our approach for computing Graph Cut and its parallel imple-

mentation on CUDA. Then, Section 6.5 introduces performance improvements that
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utilize the special structure of grid graphs. Section 6.6 contains performance results.

Finally, the chapter is concluded and future directions are outlined in Section 6.7

6.2 Related Work

In Shiloach and Vishkin [88], the first parallel algorithm for Graph Cut was intro-

duced. It was based on the augmenting paths approach. As many other researchers,

our implementation is primarily based on the push relabel approach since it is more

natural to implement in parallel. In Goldberg [39], the first parallel algorithm based

on push-relabel techniques was introduced and was implemented on a connection

machine. The first parallel implementation on a shared memory architecture was

introduced in Anderson and Setubal [3], where they performed global relabeling

concurrently with the main push and relabel operations. Recently, an extended and

enhanced version of the same approach was implemented on a modern SMP archi-

tecture [4]. These implementations differ significantly from ours since they assume

availability of a memory locking mechanism and assume asynchronous operation of

different processors. In Dixit et al . [25], the Graph Cut algorithm was implemented

on older GPUs. However, it was much slower than the CPU implementation.

After our work, Vineet and Narayanan [96] introduced another implementation

on CUDA, which is reportedly much faster than our best implementation. The main

difference between our work and theirs is that they do not use graph traversal and

they perform both local and global relabeling. We think the simplicity of their

implementation compared to ours is the key to the performance they obtain.
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Figure 6.2: An example graph.

6.3 Parallel BFS Graph Traversal on CUDA

Let G be a graph 〈V, E〉. In breadth first search graph traversal, we start from a

designated node in the graph s ∈ V. We visit all nodes at a specific depth level from

s before visiting any node in the next depth level. The output of the algorithm is

a label for each node reachable from s, that specifies its depth level with respect to

s. In our implementation, to visit nodes at depth level k + 1, we start with a list of

nodes at depth level k. All nodes at level k are processed in parallel. In processing

each node, all its neighbors that have not been visited yet are marked to be added

to level k + 1. After finishing this process, we end up having an array of flags each

element therein indicates whether the corresponding node in the graph is added to

level k + 1 or not. The size of this array is n, the number of nodes in the graph.

To compact this list of flags and construct the list of nodes for level k + 1, we use a

parallel prefix sum operation [7]. Figure 6.3 illustrates this operation for traversing

depth level 2 of the graph in Figure 6.2

This approach is not work efficient since the work complexity of visiting one
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Figure 6.3: Traversal of depth level 2 for the graph in Figure 6.2 if
traversal starts from node 0: creation of a list of nodes visited in depth
level 2 given the list of nodes of depth level 1. Arrows at the bottom
indicate traversals. Arrows at the top indicate moving nodes to their
positions in the new list. Note that prefix sum values for traversed
nodes correspond to their locations in the newly created list.
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level of the graph is Θ(n), which is the complexity of performing the prefix sum

operation on n elements. That makes the overall complexity of the BFS traversal

O(n2). In fact, it may be much more efficient to implement the BFS traversal on

the host (the CPU) instead of performing it inefficiently on the device. But, the

overhead of transferring the results from the host to the device may be much more

significant than the overhead of performing the traversal on the device. Therefore,

we selected to implement the traversal on the device. In Section 6.5, we introduce

an optimization for grid graphs that reduces the overall complexity of the traversal

to Θ(n).

6.4 Parallel Graph Cut on CUDA

We first give an algorithmic background to Graph Cut and then explain our approach

to implement the algorithm in parallel on CUDA.

6.4.1 Background on Graph Cut Algorithms

In a fundamental theorem in graph theory, Ford and Fulkerson [33] proved the

duality between finding the maximum flow that can be pushed from a source node s

to a target node t in a graph, and finding the minimum s/t cut in that graph. Based

on this theorem, algorithms for solving the Min Cut problem typically do that by

solving the dual problem, the Max Flow problem. In the Max Flow terminology,

the cost of a link w is referred to as its capacity.

There are two main approaches to finding the maximum flow in a network,
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the augmenting paths approach [33], and the push-relabel approach [40]. We briefly

explain the basic idea of the two approaches. We elaborate more on the push relabel

approach since we believe it is more appropriate to implement in parallel, and our

algorithm is based on it. In both approaches, a residual graph is constructed and

used throughout the algorithm. A residual graph Gf of a graph G is a graph that

has the same layout as G, but the capacities of its links are residual capacities. The

residual capacity wf(u, v) of a link (u, v) after pushing flow f(u, v) through it is

w(u, v)− f(u, v), where w(u, v) is the capacity of the link (u, v).

6.4.1.1 Augmenting Paths

An augmenting-paths style algorithm tries to find a path from the source to the

target in the residual graph and then pushes the maximum possible flow through

that path. The algorithm continues until no path remains from the source to the

target. The differences between augmenting paths algorithms lie mainly in the way

they select the path through which to push.

6.4.1.2 Push Relabel

A push-relabel style algorithm assigns to each node in the graph an excess value

and a label. The excess of a node is the total amount of flow it received from its

neighbors minus the total amount of flow it sent to its neighbors. Initially all nodes

have excess 0 except for those nodes that have links coming from the source. Each

of the latter nodes initially has excess equal to the capacity of the link coming from
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the source. The label of a node is a non-negative integer that underestimates the

node’s distance to the target (in terms of link count.) Initially all nodes have label

0, except for s that is given label n, where n is the number of nodes in the graph.

The algorithm alternates between two operations, push and relabel:

• Push: The push operation applies to a node u in the graph if u has positive

excess. If u has label k, the push operation finds a neighbor v of u such that v

has label k−1 and the link (u, v) has positive residual capacity. If such a node

exists, the maximum possible flow is pushed from u to v. That push results in

updating the excesses of u and v as well as the residual capacities of the links

(u, v) and (v, u). After a push operation, either u loses all its excess or the link

(u, v) is saturated. The criterion of selecting v can be understood based on the

interpretation of a node’s label as an estimate of the distance to the target.

The push operation basically tries to push flow towards the target through a

node that is one step closer. It does that relying only on local information of

a node and its neighbors.

• Relabel: The relabel operation applies to a node u if u has positive excess and

has outgoing links but a push operation does not apply. That happens when

all outgoing links from u are towards nodes with labels greater than or equal

to that of u. The relabel operation tries to enable u to eliminate its excess by

increasing its label to the minimum possible value that makes a push operation

applicable.
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The algorithm can apply push and relabel operations in any order until none

of them applies, which happens when all nodes have 0 excess. It is guaranteed

that either of the two operations must apply for a node with positive excess [17].

Upon termination, all extra excess that was initially pushed from the source to its

neighbors and did not find its way to the target will have been pushed back to the

source. The algorithm is guaranteed to terminate in O(mn2) time regardless of the

order in which push and relabel operations are applied, where n is the number of

vertices and m is the number of links in the graph. However, it turns out that the

order of such operations has a great impact on the performance of the algorithm

in practice. Actually, the differences among push relabel methods lie mostly in the

way this order is determined and the way nodes are labeled.

6.4.2 Our Approach to Implementing Graph Cut on CUDA

One might think that a parallel implementation can process all nodes in parallel,

and for each node with positive excess if a push operation applies it is performed,

otherwise a relabel is performed. However, on CUDA, we would like to make all

processors perform the same operation at the same time to avoid divergence. Also,

a node cannot push flow and receive flow pushed to it at the same time since both

operations update its excess value. Since, we do not assume any memory locking

mechanism, we have to find a different way to prevent concurrent updates to the

same value. In the following we explain how the push and relabel operations can be

adapted to overcome these difficulties.

97



6.4.2.1 Parallel Labeling

As explained above, the label of a node is an underestimate of its distance to the

target. But, in practice, relying only on the basic relabel operation results in very

poor estimates and makes flow go back and forth between nodes many times before

eventually reaching the target. That dramatically slows down the algorithm. A

heuristic that was proposed to enhance the running time is global relabeling [40].

In this heuristic, the algorithm is frequently stopped and all nodes are labeled with

their actual distances to the target. This is accomplished using a backward breadth

first search traversal starting from the target. In our proposed algorithm, we use

this heuristic as the only labeling scheme. In other words, this is the only way nodes

get their labels. We employ the BFS traversal technique, explained in Section 6.3.

The traversal in this case starts from the target, and goes backwards in the graph.

In this way, all nodes are optimally labeled in parallel without introducing expen-

sive divergence among processors. Note that applying global relabeling on every

iteration eliminates the need for the gap relabeling heuristic that was suggested to

be combined with global relabeling in Cherkassky and Goldberg [15].

6.4.2.2 Parallel Pushing

The order of applying the push operations also impacts the performance of the

algorithm. A heuristic that is used to enhance the performance is to apply push to

nodes with higher labels before nodes with lower labels [14]. We apply this heuristic

in our implementation. During the labeling phase, we store the nodes that are
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Figure 6.4: Dividing parallel pushing into two steps.

visited at each depth level in a separate list. This comes almost for free because of

the way the breadth first search technique works (Section 6.3). We call the resulting

structure the traversal lattice. During pushing, we start from the top level of the

lattice going downwards to the target. At each level pushing is done in parallel. All

nodes in the current level in parallel push flow to their neighbors in the lower level.

Unfortunately, pushing in parallel in this way may not produce correct results.

A node cannot receive flow from more than one neighboring node simultaneously.

To resolve this problem, we divide the push operation into two phases, push and

pull. In the push phase no node updates the excess of its neighbor. Instead, each

node keeps a reservoir for each outgoing link in which it stores the amount of flow it
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procedure ParallelPush(LabelsLattice)

EmptyReservoirs

. initializes all node reservoirs to 0

Level ← PopTopLevel(LabelsLattice)

ParallelPushToLowerLevel(Level)

while NumLevels(LabelsLattice) > 1 do

Level ← PopTopLevel(LabelsLattice)

ParallelPullFromUpperLevel(Level)

ParallelPushToLowerLevel(Level)

end while

Level ← PopTopLevel(LabelsLattice)

ParallelPullFromUpperLevel(Level)

ParallelPushToTarget(Level)

end procedure

Figure 6.5: Pseudo-code for the parallel push operation.

pushes on that link in the current pushing phase. In the pull phase, all nodes at a

given depth level in parallel collect flow pushed to them from their neighbors in the

upper level by reading the values stored in the appropriate reservoirs. Each node

then updates its excess value and residual capacities accordingly. Figure 6.4 clarifies

this operation. The final parallel push algorithm is depicted in the pseudo-code in

Figure 6.5.
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6.4.2.3 Termination Criteria

After pushing flow all the way from the top level of the traversal lattice down

to the target, the layout of the graph changes due to saturation of some links.

So, the lattice has to be rebuilt before the next pushing phase. Therefore, the

whole algorithm works by alternating between parallel labeling and parallel pushing

phases. But, when should the algorithm be terminated? There are two conditions;

reaching either of them causes the algorithm to terminate.

• Failure to Construct the Lattice: That happens when all links to the target

are saturated. In this case, the resulting cut is C = (S, T ) such that T = t

and S = V − {t}.

• No Excess in Lattice: In this condition, all nodes in the lattice, i.e. all nodes

having at least a path to the target, have no excess. In this case, there is no

flow to push down to the target. The cut in such a case is defined as C = (S, T )

such that T = {u ∈ V, u has a path to t} and S = V − T .

The entire algorithm is depicted in the pseudo-code in Figure 6.6. The pseudo-

function ParallelBFS performs the BFS traversal and all proper initializations

needed for it. The variable ExcessF lag represents whether there is positive excess

at any node in the traversal lattice or not. It is set during the parallel labeling

phase.
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procedure ParallelGraphCut

InitNodeLabels . initializes all node labels to 0

ExcessF lag ← 0

LabelsLattice ← ParallelBFS

while ExcessF lag = 1 do

ParallelPush(LabelsLattice)

InitNodeLabels

ExcessF lag ← 0

LabelsLattice ← ParallelBFS

end while

end procedure

Figure 6.6: Pseudo-code for the parallel Graph Cut algorithm.

Figure 6.7: An example of a grid graph.
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6.5 Optimizations for Grid Graphs

There are two main issues with the aforementioned algorithm:

• Memory Access Pattern: Either in labeling (building the lattice) or pushing,

threads do not share data read from global memory. That is because two

adjacent threads in a block could generally be processing two nodes in the

graph that have no neighbors in common.

• Prefix Sum: During constructing the lattice, in the labeling stage, prefix sum

operations are performed over the entire set of nodes regardless of the number

of nodes actually visited.

We propose two approaches to alleviate the effect of these problems by utilizing

the special structure of grid graphs. For simplicity of presentation, we focus on two

dimensional grids. The concept can easily be extended to higher dimensional grids.

A two dimensional grid graph can be viewed as a matrix of nodes, where each node

can be uniquely identified by a two dimensional index specifying its row and column

in the graph. A general node in the graph has links with nodes only within a fixed

neighborhood surrounding it in the grid. Figure 6.7 shows a sample 4×4 grid graph.

In the following two sections, we explain the two proposed optimizations, lockstep

BFS traversal, and cache emulation.
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6.5.1 Lockstep BFS Traversal

The technique for BFS graph traversal explained in Section 6.3 utilizes an array of

flags of length n, and performs prefix sum operation on it on traversing each depth

level of the graph. That is important for general graphs, where the number of nodes

traversed at each depth level is arbitrary and does not depend on the number of

nodes in the preceding level. Also, each node can be traversed from several neighbors

at the same time. Therefore, it is important to keep a unique flag for each and every

node in the graph for the operation to produce correct results.

In grid graphs, on the other hand, each node has a fixed number of neighbors.

Therefore, the number of nodes traversed at each depth level is at most a constant

multiple of the number of nodes traversed at the preceding level. Moreover, if we

represent the graph in a way where links to neighboring nodes have a fixed order

based on their directions (e.g . left, right, top, and then bottom for a 4-connected

neighborhood graph,) and during graph traversal only a single direction is traversed

at a time, then the number of nodes traversed at a certain direction at a certain depth

level is at most the same as the number of nodes traversed at the preceding depth

level. Also, performing traversal in this way guarantees that a node is traversed-to

from exactly one neighbor. This paradigm of traversal in which only one direction

is traversed at a time is what we call the lockstep BFS traversal technique. For

example, in a 4-connected neighborhood graph, constructing a given depth level is

divided into four steps instead of being done all in one step. In each step neighbors

along one direction are traversed. Figure 6.8 gives an illustration of this operation.
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T r a v e r s e  L e f t T r a v e r s e  R i g h t

T r a v e r s e  T o p T r a v e r s e  B o t t o m

Figure 6.8: Black nodes are on the same depth level. The illustration
gives an example of how lockstep BFS traversal works to create the next
depth level from these nodes. Gray nodes are the nodes traversed in
each direction.
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Figure 6.9: A 4 × 4 grid graph divided into 2 × 2 tiles. Dotted lines
indicate tile boundaries. Active nodes and active tiles are shown in gray.
A tile is active if and only if it contains at least one active node.

When traversing nodes at depth level k from nodes at depth level k − 1,

applying the lockstep BFS traversal technique allows us to use an array of flags

whose size is equal to the number of nodes in level k − 1, nk−1. That reduces

the order of work complexity of building level k of the traversal lattice to Θ(nk−1)

instead of Θ(n). The overall complexity of the traversal becomes Θ(
∑

k nk) = Θ(n).

6.5.2 Cache Emulation

Because nodes’ data – excesses, labels, and outgoing link capacities – are updated

and then read during the pushing and labeling phases, we selected to store all nodes’

data in the global memory space, which is a read/write space 1. The problem

1In fact, since data updated during a kernel invocation are not read later on during the same

kernel invocation, texture memory space can be used as well. However, in the current CUDA

implementation this trick is restricted only to 1D arrays, which limits its utility. Also, according
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with the global memory space is that it is not cached. Moreover, threads have to

respect a specific memory access pattern in order for reads from global memory to

be coalesced (Section 5.1). Graph algorithms generally exhibit an irregular memory

access pattern, which makes requirements for coalescing not guaranteed. The cache

emulation technique aims at regularizing accesses to global memory by enforcing

memory coalescing requirements on global memory accesses. It basically works

by emulating the operation of a multi-dimensional cache memory unit. For the

technique to work, data accessed have to be structured as a one dimensional or

multi-dimensional array. For the technique to be useful, processing a data element

has to rely only on its local neighborhood in the array; hence comes the restriction

to grid graphs in this case. Unlike a hardware cache memory, whose operation

is independent of any algorithm, the cache emulation technique in fact requires

modifying the way the algorithm works in order to be used. We will explain the

technique in the context of our Graph Cut implementation on two dimensional grid

graphs. Nevertheless, we believe the technique is fairly general and deploying it in

other problems is straightforward.

Nodes’ data of a two dimensional grid graph are assumed to be stored in two

dimensional arrays. To process a node in the graph, we actually load from global

memory its data and the data of the 2D tile of nodes in which it resides, and process

all the nodes in the tile in parallel. In other words, the graph is divided into equally

sized tiles of nodes. Figure 6.9 shows a simple 4 × 4 grid graph divided into 2 × 2

tiles. The algorithm proceeds exactly as explained earlier. The only difference is

to our tentative experiments, the technique presented in this section performs much better.
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in building the breadth first search lattice. For each level of the lattice, instead of

constructing a list of nodes, a list of tiles is constructed. Each tile added to a level

of the lattice must have at least one node that belongs to that level. Figure 6.9

depicts the relationship between an active tile and an active node. Activity here

means eligibility for the currently performed operation. For example, when pushing

flow from level k of the lattice to level k − 1, nodes that belong to level k are the

active nodes, and the tiles containing them are the active tiles. Note that a node

that belongs to an active tile is not necessarily active. But, at least one node in tile

must be active for the tile to be active.

In the CUDA implementation, each block of threads corresponds to a tile of

nodes. Each thread of a block loads data of one node in the tile from global memory

to shared memory. Then, if a node is active for the current operation, its thread

proceeds and processes the node, otherwise, the thread terminates. For example, if

the operation is parallel labeling with label k, a thread processes a node only if it

has label k − 1, otherwise the thread terminates after loading the node’s data. If

the operation is parallel pushing from level k to level k − 1 in the lattice, a thread

processes a node only if it has label k.

When a thread terminates without processing a node, it actually does a useful

job before termination. Indeed it helps in the most time consuming operation. It

helps in reducing the overhead of memory access for other threads in the block that

are processing active nodes. Specifically, the benefit from this technique is two fold:

• Efficient Memory Access: Two factors enhance memory access performance
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Figure 6.10: Black circles represent active nodes. Gray circles are com-
mon neighbors to more than one active node. The illustration shows
how active and non-active nodes can cooperate and how active nodes
can share data to save memory access time.

when using cache emulation. One factor is cooperation among threads by

helping one another to achieve memory read coalescing. All threads in a

warp of a thread block read adjacent global memory addresses with proper

alignment. As explained in Section 5.1, that makes these reads coalesced

together. The other factor is sharing among threads. Data read by one thread

are stored in shared memory and become available for other threads in the

block. Figure 6.10 depicts these notions.

• Less Prefix Sum Overhead: When using cache emulation, prefix sum opera-

tions are performed over tiles not individual nodes. If each tile on average

contains b active nodes in the same level of the lattice, the number of elements

processed by prefix sums is reduced by a factor of b on average.
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Since the computations performed per node during the pushing and labeling

phases are very simple computations, the time for global memory access is much

more significant. That is proved by the superiority of the implementation that

utilizes the cache emulation technique over others, as shown below.

6.6 Experimental Results

We experimented our implementations on an image segmentation task. The seg-

mentation algorithm we use is the one in Boykov and Jolly [9]. It basically divide

pixels in the image into two partitions, foreground and background, depending on

user’s input that marks some pixels as foreground and others as background. In

the results shown here, we did not use hard constraints, i.e. enforcing some pixels

to belong to the foreground or background. We set the weights of singleton and

pairwise energy terms to 1 and 2.5, respectively, and the noise value to 50. Only

4-connected neighborhoods are used in the generated graphs.

We compare the running times of five different implementations: a CPU im-

plementation of the proposed technique, a basic CUDA implementation without any

optimization, a CUDA implementation using lockstep BFS, a CUDA implementa-

tion using cache emulation, and the CPU implementation introduced in Boykov and

Jolly[10], which is reported to be the fastest in practice for grid graphs, and whose

implementation is available online. For the CPU implementation of our technique,

BFS traversal is implemented in the regular sequential way without using prefix sum

operations.
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For all our CUDA implementations, the graph nodes’ data are stored in three

two-dimensional arrays of type float4 (a structure of four floating point elements.)

One array contains reservoirs, one array contains outgoing residual link capacities,

and the last array contains for each node its excess, label, and link capacities to

s and t. The results presented here for the proposed technique when implemented

with cache emulation are for tile size of 8×4. We experimented with tile sizes 16×8,

16 × 12, and 16 × 16 as well. The best results we got were for the tile size 8 × 4.

This is actually at odds with the recommended block sizes for CUDA devices [69].

This issue needs further investigation.

On running the algorithm on real images, it turned out not to be easy to ad-

just the user input, and weights for the singleton and pairwise terms to get desirable

segmentation results. Alternatively, we report results here for experiments on syn-

thetic images only. Each synthesized image is produced by drawing a foreground

with intensity values generated from a Mixture of Gaussian density function, on a

background with intensity values generated from a different mixture. Each mix-

ture has three components. The foreground shape of each image is a collection of

ellipses in random locations, orientations, and sizes. In each generated image, we

enforce the condition that the 32 × 32 patch at the center of the image belongs to

the foreground, and the 32× 32 patch at the top left corner of the image belongs to

the background. These are the patches based on which foreground and background

intensity histograms are constructed. The enforcement here is in the distribution

from which the random intensity values for these patches are generated. But, we

do not enforce the resulting segmentation to assign these patches specific labels.
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Figure 6.11: Left is a sample randomly generated image. Right is its
segmentation result.

Each generated image is resized to make a set of six different sizes. We compare the

segmentation results from the five implementations and make sure they are exactly

the same for each image. Each implementation is run for 10 times on each image.

An example image with the resulting segmentation is shown in Figure 6.11. The

CPU implementations are run on an Intel Xeon 3.2 GHz processor with 1GB RAM.

The GPU implementations are run on a GeForce 8800 GTX graphics card.

The plot in Figure 6.12 compares the running times of the five implementa-

tions with different image sizes. This is the time of running the Graph Cut on the

generated graph 10 times. The time to generate the graph itself is excluded. Also,

for the CUDA implementations, the time to transfer the graph data from the host

to the device and the time to transfer the result from the device to the host are ex-

cluded. That is because the input graph can actually be constructed on the device

as well, which should be much faster than constructing it on the host. But, that is

not done in our implementation. Also, the resulting cut might be postprocessed on
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the device, or directly rendered to the screen buffer in some applications.

The implementation of the proposed algorithm on CPU is not always faster

than the implementation of Boykov-Kolmogrov’s (BK) method [10]. The plot in

Figure 6.12 shows also that the basic CUDA implementation, without optimizations,

consistently outperforms the two CPU implementations. The two optimizations

proposed introduce another considerable speedup over the non-optimized CUDA

implementation. The cache emulation technique in particular is consistently the

fastest. That emphasis the importance of memory access optimization on such

devices. That is particularly important in graph algorithms in general since they

are typically memory intensive algorithms.

The plot in Figure 6.13 shows the speed up of the CUDA implementation of

the proposed algorithm with cache emulation when compared to the faster of the

two CPU implementations. The speedups gained are in the range 1.7-4.5, depending

on the image size.

6.7 Conclusion and Future Work

In this chapter, we presented our results and findings on implementing Graph Cut

on CUDA. To address the unique architectural features of CUDA, we resorted to an

unusual way of implementing Graph Cut in parallel. Our approach relies on BFS

traversals solely to assign node labels. This computationally inefficient approach

facilitates turning around limitations of CUDA, such as the simple SIMD execu-

tion model and the unavailability of memory locking constructs. Nevertheless, the
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performance of this approach provides both relative and absolute speedups when

experimented on image segmentation of synthesized images. We proposed two im-

provements to this technique that make use of the special structure of grid graphs to

deliver better performance, lockstep BFS and cache emulation. The lockstep BFS

utilizes the special structure of grid graphs to make BFS traversal implementation

on CUDA work efficient. The cache emulation technique is fairly general. It aims at

regularizing memory access patterns to enforce memory read coalescing as much as

possible through emulating the operation of a cache memory unit. The experimental

results showed that the proposed techniques indeed enhance the performance, espe-

cially the cache emulation technique. That was expected since graph algorithms in

general are memory bound and enhancing memory throughput is crucial to enhance

their overall performance.

We are investigating how to enhance the speed further by applying the global

relabeling heuristic concurrently with the push and relabel operations. We would

like also to experiment our implementation on a wider range of images and imaging

applications. In particular, having a fast implementation for Graph Cut is much

more important when the algorithm is applied to general discrete labeling, instead

of binary labeling, since in the former the algorithm is actually run for many times

until it converges. Therefore, we would like to experiment our techniques on such

applications. Finally, we are interested in extending our approach to work with

higher connectivity graphs, such as in 3D grids. In such case, finer parallelism at

the link level could deliver higher performance desirable.
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Chapter 7

Band Approximation of Gram Matrices for Kernel Methods on GPUs

Kernel-based methods require O(N2) time and space complexities to compute and

store non-sparse Gram matrices, which is prohibitively expensive for large scale

problems. We introduce a novel method to approximate a Gram matrix with a

band matrix. Our method relies on the locality preserving properties of space fill-

ing curves, and the special structure of Gram matrices. Our approach has several

important merits. First, it computes only those elements of the Gram matrix that

lie within the projected band. Second, it is simple to parallelize. Third, using the

special band matrix structure makes it space efficient and GPU-friendly. We devel-

oped GPU implementations for the Affinity Propagation (AP) clustering algorithm

using both our method and the COO sparse representation. Our band approxima-

tion is about 5 times more space efficient and faster to construct than COO. AP

gains up to 6x speedup using our method without any degradation in its clustering

performance.

7.1 Introduction

Kernel-based machine learning methods [62, 84, 85, 95] have gained significant at-

tention within the machine learning community and other applied fields for more

than a decade. They are commonly used for many purposes, such as classification
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[43], regression [89], clustering [35], and dimensionality reduction [84]. The main ad-

vantage of kernel methods is their ability to learn non-linear functions using simple

linear methods. They achieve this by implicitly mapping the input points from the

input space to a typically higher, and possibly infinite, dimensional feature space.

The mapping is realized via a kernel function, which computes a dot product be-

tween a pair of data points in the feature space without explicitly performing the

mapping to that space. This is popularly known as the kernel trick. The pairwise

dot product values are stored in the so-called Gram matrix or kernel matrix.

Given a data set of N points, computing the pairwise kernel values requires

O(N2) computations and the values are stored in an N×N matrix. For large values

of N , the time and space complexities to compute and store the Gram matrix can

be prohibitively expensive. A common solution to the space complexity problem is

to compute the elements of the kernel matrix on-demand, which trades the memory

requirements for a much longer computational time. These complexities limit the

use of kernel methods to relatively small problems. However, our era is marked with

the availability of tremendous amounts of digital data that needs to be analyzed.

Moreover, in many learning applications, increasing the number of training data

points significantly improves the model’s performance. For example, Munder and

Gavrila [67] showed that the classification error of their Support Vector Machine

(SVM) classifier, for human detection in images, was reduced by approximately a

factor of two by only doubling the size of the training data set. They also noted

that the reduction in the classification error obtained by increasing the number of

training points exceeded any reduction obtained by using better features or learning
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algorithms. A similar observation was made by Torralaba et al . [91]. Inspired by

such observations, our research focuses on enabling large scale learning with kernel

based methods.

Fortunately, the availability of massive datasets nowadays and the increased

demand and motivation for large scale learning is accompanied with the emer-

gence of several new computing architectures, such as Graphics Processing Units

(GPUs). GPUs have been rapidly advancing towards higher levels of parallelism,

and have recently become readily programmable with simple thread-based Applica-

tion Programming Interfaces (API) instead of using graphics primitives. However,

the tremendous computing power provided by such devices is both a bless and a

challenge at the same time. The virtue of parallelism offered by GPUs comes at

the expense of several restrictions on the algorithm design in order to achieve the

promised performance. One of the most critical of these restrictions is on the mem-

ory access pattern exhibited by the algorithm.

In this chapter, we present a novel approach to address the limitations of

kernel based methods for large-scale machine learning applications. Specifically, we

introduce a new method to construct a band sparse matrix approximation to the

Gram matrix. The idea is to order the input points so that the significant elements

of the Gram matrix become confined to a limited band. Having a sparse structure

for the Gram matrix is generally one of the ways to address the space complexity

problem of kernel methods. However, having a band sparse matrix structure in

particular offers more advantages. It allows for a very simple representation that

has significantly lower memory overhead than general sparse matrix representations.
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Moreover, this simple representation naturally adheres to the restrictions on memory

access patterns on GPUs for many common matrix operations. Therefore, it allows

for significantly more efficient implementations for most algorithms that operate on

the matrix.

To construct a band approximation to the Gram matrix, we order the input

points so that those that are close to one another in the resulting ordering are more

likely to be close in the Euclidean space in which they reside. To efficiently obtain

the desired ordering, we rely on the locality preserving properties of space filling

curves [82]. To construct the matrix, we evaluate the kernel function only within a

fixed neighborhood around each point in the obtained ordering. This results in a

band Gram matrix by construction. The assumptions here are that the value of the

kernel function is monotonically decreasing with the Euclidean distance between the

input points, and the significant values of the function occur between points within

the selected neighborhood size.

To illustrate the validity of the proposed approach, we use Affinity Propaga-

tion [34, 35], an unsupervised clustering algorithm, as an example of kernel meth-

ods. Affinity Propagation (AP) operates on a similarity matrix. Similar to a kernel

matrix, a similarity matrix has an element for every pair of points, whose value rep-

resents a measure of similarity between the two points. Typical choices of similarity

functions, such as the negative sum of squared differences, and its exponential, can

be shown to be dot products in higher dimensional mappings of the input points. We

developed two GPU implementations for AP: one is based on our method, and the

other is based on the COO (Coordinate) general sparse matrix representation [80].
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As a baseline for comparison, we also developed a CPU implementation for AP

based on COO. Our results show that the band matrix representation used in our

method is 5 times more space and time efficient to construct than the COO repre-

sentation on GPUs. Moreover, the GPU implementation of AP using our approach

is 6 times faster than the GPU implementation using COO and 114 times faster

than the CPU implementation. This significant speedup for AP comes with no loss

in its clustering performance despite the approximation in our approach.

The main contributions presented in this chapter are:

• An efficient method to construct a band approximation of a Gram matrix,

without having to compute all elements of the matrix first. The simplicity of

representing a band matrix allows for space efficiency and time efficiency on

processing the matrix on GPUs. Hence, our method can effectively address

the space and time complexities associated with kernel based learning methods

for large scale problems.

• An efficient GPU implementation of the Affinity Propagation algorithm us-

ing our method. This implementation achieves 114x speedup over the CPU

implementation and 6x speedup over another GPU implementation based on

the COO sparse matrix representation. These speedups are achieved without

compromising the quality of the output clustering.

The rest of the chapter is organized as follows: We briefly present the related

work in Section 7.2. We explain our method to construct band approximations to

Gram matrices on GPUs in Section 7.3. We introduce AP and its implementation
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on GPUs in Section 7.4. In Section 7.5, we present the experimental results. Finally,

we outline our conclusions and plans for future work in Section 7.6.

7.2 Related Work

The work addressing the limitations of large scale kernel methods can be broadly

classified into two main categories – (1) methods that depend on constructing low-

rank approximations of the kernel matrix and (2) efficient implementations for com-

puting the kernel matrix. Low-rank methods depend on the observation that the

eigen-spectrum of the kernel matrix rapidly decays, especially when the kernel func-

tion is a Radial Basis Function (RBF) [84, 86, 100]. Hence, for a kernel matrix

K with eigenvalues λ1 ≥ λ2 · · · ≥ λN ≥ 0 and corresponding eigenvectors vi,

K =
∑N

i λiviv
T
i . However, since the eigen-spectrum decays rapidly (i.e. most

of the information is stored in the first few eigen vectors), the kernel matrix can

be approximated by K̃ =
∑M

i λiviv
T
i , and M << N . Williams and Seeger [101]

use the Nystrom method [23] to compute the most significant M eigenvalues and

eigenvectors. The number of computed eigenvectors is inversely proportional to

the approximation error. Nystrom-based methods are O(M2N) where M is the

number of computed eignvectors. Also, Drineas and Mahoney [27], and Smola and

Schökopf [90], for example, compute a rank-k approximation of the kernel matrix us-

ing a subset of the column (or basis functions) of the kernel matrix. These methods

generally are O(N) in both space and time.

Due to the importance of kernel-based methods, they have been the target of
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prior GPU implementations. Ohmer et al . [70] use GPUs to implement the clas-

sification step of SVM classifier, in which the kernel values are computed between

the input test vector and the set of support vectors. While focusing on the clas-

sification phase rather than the training phase of the computation can be justified

by the higher frequency of using a trained model for classification in practical ap-

plications, for large scale learning the training phase becomes the main obstacle.

In SVM classifiers, for example, the number of support vectors in a trained model

can be much smaller than the training vectors used to train the model. Catanzaro

et al . [13] presented an implementation of Platt’s Sequential Minimal Optimization

(SMO) [73] on GPUs for training SVMs. In this implementation, the kernel size

issue was handled by caching recently used values and computing other values on

demand upon cache misses. For large scale problems, cache misses are more likely

to happen. Hence, computing the kernel values on cache misses is expected to be

the computational bottleneck in large scale problems.

The idea of using space filling curves to order points for efficient access on

GPUs was recently used by Leiberman et al . [58] with the similarity joint operation

and was suggested also for use to approximate k-nearest neighbor search. Our sparse

matrix representation actually uses approximate k-nearest neighbor search to obtain

the band matrix structure.

In contrast to band reduction techniques, such as the RCM algorithm [19], our

method does not start from an already constructed general sparse matrix and reduce

it to a band matrix. Instead, our method directly constructs a band matrix from the

input points. This is a fundamental difference since constructing a sparse matrix
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typically requires the computation of the full dense matrix first to determine which

elements to keep. Our method computes only the elements within the projected

band. Moreover, band reduction techniques typically use graph algorithms, which

are hard to implement in parallel. Our method can be easily implemented in parallel

in an efficient way.

7.3 Representation of Gram Matrices on GPUs

Since the Gram matrix often has a rapidly decaying eigen-spectrum, as explained

in Section 7.2, especially when using kernel functions with compact support, it is

customary to assume that the matrix is approximately sparse and use sparse matrix

structures to store (and operate on) its significant values. We are particularly seeking

a sparse matrix representation that is efficient to construct, has low space overhead,

and efficient to perform common matrix operations on when implemented on GPUs.

The Compressed Sparse Row (CSR) is a common sparse matrix representation

on GPUs [37]. It supports efficient sparse matrix-vector multiplication, and other

operations, through efficient segmented scans [26]. A closely related representation is

the Coordinate (COO) representation [80, 6]. Despite the larger spatial complexity

of COO compared to CSR, COO exhibits a better memory access pattern on GPUs

for some operations. We use COO as a baseline representation in our experiments.

Nevertheless, in the following discussions, all our arguments about COO, except for

the space complexity issue, apply equally to CSR.

COO is a general sparse matrix representation that does not assume any special
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structure for the matrix. As we will show below, due to its generality, the COO rep-

resentation has several shortcomings in terms of its space overhead and the memory

access pattern exhibited with it in common matrix operations on GPUs. To over-

come these limitations, we aim to find an approximation to the Gram matrix with a

special structure that can be represented efficiently on GPUs in terms of space and

computations. In our approach, this special structure is the band matrix structure.

In the rest of this section, we first explain the COO representation and its

limitations in Section 7.3.1. Then, we explain the band matrix structure and its

merits in Section 7.3.2. Finally, we explain how we obtain the band approximation

of the Gram matrix in our approach in Section 7.3.3.

7.3.1 General Sparse Matrix Representation Using COO

Consider the COO representation of a general sparse matrix, as shown in Figure 7.1.

In this representation, three arrays are used to store the row index, column index,

and the value of each significant element in the matrix. For m significant elements

to store, we use the space of 3m elements, which is a significant overhead factor.

Beside the space overhead of this representation, when processing each element of

the matrix depends on its row and column indices, three arrays need to be accessed

in order to process all elements, which results in a significant time overhead if the

processing is not compute intensive.

To perform a scan operation on the rows of the matrix efficiently in parallel,

the three arrays need to be sorted according to the row index values. Having ar-
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Figure 7.1: Representation of an example general sparse matrix using
the Coordinate (COO) representation. The representation consists of
three arrays to store row indices, column indices, and values of non-zero
elements. The arrays can be sorted according to either the row indices
or the column indices depending on whether we need to perform scan
over the rows or the columns of the matrix. If scanning is performed
on rows and columns interchangeably, a mapping from one ordering to
the other is retained with the structure. Finally flags arrays indicating
the beginning of each row and column is needed for the segmented scan
operation.
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rays sorted in such a way, a segmented scan operation can be used to perform the

scan operation in parallel. Fortunately, there are efficient algorithms for segmented

scans [87, 26]. However, the segmented scan operation requires as input an array

of flags, whose elements designate the beginning of each row of the matrix. This is

on top of the internal arrays used by the operation itself. Therefore, the operation

can be performed efficiently on a GPU with the usage of extra space. Similarly, if

we are to perform a scan operation on the columns of the matrix, we need to have

the arrays sorted according to column indices, and an array of flags to mark the

beginning of each column. Figure 7.1 shows the COO representations of a sample

sparse matrix with using row-based ordering and column based ordering.

Another shortcoming of this representation arises when we need to perform

the scan operation on both rows and columns interchangeably. In this case, the

COO representation must be extended. One solution is to keep the arrays sorted

according to the row indices, for example, and two extra arrays: one to store the

mapping from the row-index-based order to the column-index-based order of the

arrays, Figure 7.1, and the other is the flags array of the column-based ordering.

When we need to perform a scan operation over the columns, we use the mapping

array to reorder the values and perform a segmented scan on the reordered array.

Note that we need an extra array to temporarily store the reordered values. Finally,

the mapping from one order to the other requires random device memory access

during write, which does not respect the conditions for coalescing, as discussed in

Section 5.1.
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Figure 7.2: Representation of a band matrix using a 2D array. Each
diagonal of the matrix is stored in one row of the array. Each row is
stored in one column of the array. And each column of the matrix is
stored as a diagonal in the array.

7.3.2 Band Matrix Representation

Consider an N×N band matrix with a bandwidth k, i.e. the non-zero (or significant)

elements are confined to at most k diagonals. A simple representation of such a

matrix on the GPU is a 2D array, where each diagonal of the matrix is stored as a

row of the array, and each row of the matrix is stored as a column of the array [6], as

shown in Figure 7.2. To perform a parallel scan operation on the rows of the matrix,

we can assign each thread to a column of the representation array. Each thread

loops over the elements of its assigned column and performs the operation. Hence,

consecutive threads in a block of threads read consecutive elements in memory.

Furthermore, if the array is allocated so that each row starts at a properly aligned

memory address, and the block width is selected appropriately, all conditions for

memory access coalescing are satisfied, and hence the read operation is performed

efficiently.
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Note that in our 2D array representation, columns of the matrix are stored in

diagonals of the array, as shown in Figure 7.2. If we need to perform a scan operation

on the columns of the matrix rather than the rows, we can still assign each thread

to a column in the matrix. Each thread loops over the elements of its assigned

column. Consecutive threads still read consecutive memory addresses. However,

since columns of the matrix are stored as diagonals in the representation arrays,

looping over elements in a column require non-aligned memory access. Fortunately,

as we mentioned in Section 5.1.3, consecutive accesses, even if the addresses are

not properly aligned, can always be made to satisfy coalescing requirements either

directly through the hardware in latest models, or through software by making good

use of the shared memory space.

As we have shown, we can efficiently perform simple scan operations on the

rows or columns of a band matrix represented as a 2D array. Another advantage

of this representation is that the row and column indices of each element can be

calculated instead of being read from separate arrays, which saves a lot of time in

memory bound processing. The space overhead of the band representation depends

on the location of the significant diagonals with respect to the main diagonal. Sup-

pose that the bandwidth k = 2h + 1, so that the bandwidth is divided as the main

diagonal, and h diagonals below it and h diagonals above it. In this case, we use a

space sufficient for kN elements to actually store kN − h2 − h elements. Therefore

the space overhead is h2+h
kN

. Note that the space overhead is always smaller than 1.

The scan operations do not require any extra space in the device memory.
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7.3.3 Band Approximation of Gram Matrices

We have shown the advantages of the simple representation for band matrices over

the COO representation for general sparse matrices in terms of the space overhead

and the efficiency of the memory access pattern for performing simple scan oper-

ations over the rows and columns of the matrix. To exploit these advantages for

sparse kernel matrices, we need to find an ordering of the rows and columns that

puts most of the significant elements within a fixed number of diagonals and use a

band matrix representation for the resulting matrix. If the scan operations to be

performed are both commutative and associative, changing the order of the rows

and columns will not affect the results. We refer to this approach by BAG, for Band

Approximation of Gram matrices.

Each element of a Gram matrix is the value of a kernel function on two points.

We assume that the data points lie in a Cartesian space and the kernel value be-

tween pairs of points is inversely proportional to the distance between the points

in the Cartesian space. These assumptions are satisfied by a variety of kernel func-

tions, including the most popular RBF kernel. A typical kernel function choice in

Affinity Propagation is the negative sum of squared differences, which satisfies these

assumption too.

In order to obtain a band kernel matrix of bandwidth k, the problem is to find

an ordering of the points such that nearby points in the Cartesian space are at most

k elements apart in that ordering. This ordering may not optimally exist. Therefore,

we need an ordering that satisfies this property for most of the elements. We can
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formulate the problem of finding such ordering as an optimization problem. This is

basically the idea of band reduction techniques for sparse matrices [19]. However,

band reduction techniques require the construction of the sparse matrix first, and

are complex to parallelize as we explained in Section 7.2.

We use Space Filling Curves (SFC) [82] to obtain the desired reordering. A

space filling curve is a path through the points of a discrete Cartesian space that

passes through each point exactly once. There are many types of SFCs. Typically, an

SFC is more likely to connect points that are close to one another in the space than

to connect points that are far away in the space. However, this locality preserving

property varies from one type of curves to another. The family of Hilbert curves [12]

is known to have good locality preserving properties. However, they are complex

to construct. A much simpler curve to construct is the Z-curve [66]. Despite being

inferior to the Hilbert curves in locality preserving, it is good enough in many

applications. As we will show, it works remarkably well for kernel matrix reordering

with the affinity propagation algorithm.

The construction of the space filling curve is performed implicitly (i.e. we need

not know how exactly the curve looks like.) Given a set of points in a Cartesian

space, all what we need to know is their ordering along the curve, i.e. in which

order the points are encountered upon traversing the curve from its starting to its

ending points. For the Z-curve, this ordering is known as the z-order, or the Morton

code. The z-order can be computed very efficiently using bit interleaving of the

point coordinates in the Cartesian space [82]. For real valued data, we first map the

points to the unit hypercube. Then, we discretize the coordinates by mapping each
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Figure 7.3: An illustration of the construction of the similarity matrix
using space filling curves. The Z-curve is used in this illustration, and
in our implementation.

point to the closest cell of a discrete grid over the unit hypercube . Morton codes are

computed using the discrete coordinates of the assigned grid cells, and the points are

sorted by their ascending or descending Morton code values. Figure 7.3 shows an

illustration of these steps for a simple 2D example. In our implementation, we use

the bitonic sort algorithm [53] to sort the codes. Although the complexity of bitonic

sort is O(N log2 N), the time to compute the codes and sort them is negligible with

respect to the rest of the computations.
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7.4 Affinity Propagation on GPUs

To illustrate the effectiveness of our band approximation of the Gram matrix, we

use Affinity Propagation (AP) as an example of kernel methods. In this section, we

briefly explain the AP algorithm, and describe our GPU implementation.

7.4.1 Affinity Propagation

AP is an unsupervised data clustering algorithm introduced by Frey and Dueck [34,

35]. There are two main advantage of data clustering using AP: First, the number of

clusters K need not be a priori specified. Second, AP operates on pair-wise similarity

values which can be computed on non-Euclidean manifolds. For completeness, we

briefly describe Affinity Propagation clustering.

Let X = {xi; i = 1, 2, . . . , N} be a set of data points (i.e. observations vectors)

with unknown cluster structure and X ⊂ Rd. The objective is to find a subset

Xe = {xk; k = 1, 2, . . . , K} ⊂ X of cluster exemplars where K � N . This problem

is classically handled using the K-center algorithm in which K points are selected

at random from X and the subset is iteratively refined by minimizing the distance

between the data points and the exemplars. The procedure is usually repeated

more than once in order to converge to the best solution. AP, on the other hand,

considers all points to be possible exemplars. Based on similarity (as opposed to

distance) s(i, j) between xi and xj. Self similarity values s(k, k) are referred to as

the preference values. The higher the preference given to a sample point, the more

likely it can be selected as an exemplar by the algorithm.
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AP operates by iteratively exchanging two types of messages between data

points – availabilities and responsibilities. Responsibility r(i, k) indicates the desire

of point i to belong to a cluster for which point k is the exemplar. Availability

a(i, k) indicates the willingness of point k to serve as the exemplar of the cluster to

which point i belongs. All availabilities are initialized to zeros. Responsibilities are

updated as soft assignments using Equation 7.1.

r(i, k)←

{

s(i, k)− max
k′ s.t. k′ 6=k

(a(i, k′) + s(i, k′))

}

(7.1)

This responsibility update ensures that all potential exemplars compete for data

points. Availabilities are updated using Equation 7.2.

a(i, k)←min







0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k}

max (0, r(i′, k))







and i 6= k

(7.2)

The self-availability a(k, k) is updated differently in order to reflect the evidence

that point k can be an exemplar, as shown in Equation 7.3.

a(k, k)←
∑

i′ s.t. i′ 6=k

max (0, r(i′, k)) (7.3)

The algorithm proceeds by iterating over the responsibility and availability

update steps in Equations 7.1, 7.2, and 7.3 until convergence or the maximum

number of iterations is reached [35].

7.4.2 GPU Implementation

The dense matrix implementation of AP is O(N2) in both computational and mem-

ory requirements. In practice, the similarity values sij can be thresholded so that
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Figure 7.4: The layout of the similarity matrix, S, used in AP’s imple-
mentation with the BAG method. Each column of the matrix contains
similarities to neighbors ranging from −k to k apart from the column’s
index. The responsibilities and availabilities matrices, R and A, use
the same structure. elements in row index 0 represent preference, self-
responsibility, and self-availability values, in the S, R, and A matrices,
respectively.

small values are ignored and the pairwise similarity values can be stored in a sparse

matrix. Using the massive parallelism available in modern GPUs, we can effectively

address the computational complexity problem.

For simplicity of presentation let’s assume that full matrices are used to im-

plement AP. To store the similarity values s(i, j), and the preference values s(k, k),

we need an N × N array S. To store the availability and responsibility messages

sent from one point to another, we need another two arrays of the same size, A and

R, respectively. From equation 7.1, to update the responsibility values, we need to

scan rows of the A and S arrays. Specifically, we need two passes over each row. In

the first pass, we compute the maximum two a(i, k) + s(i, k) values in each row. In

the second pass, we compute the updated responsibility value for each element in

the row, using the two maximums computed in the first pass. From equation 7.2,
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to update the availability values, we need to scan the columns of the R array twice

as well. In the first scan pass, we compute the sum of all positive elements in the

column excluding the self responsibility values. In the second pass, we update the

availability value of each element using the sums computed in the first pass. Imple-

menting row and column scans on full matrices on the GPU is straight forward and

efficient. However, we cannot store full matrices in memory even for moderately

large problems. Therefore, we must use a sparse structure.

Both the COO and BAG representations support row and column scan op-

erations which we need to perform interchangeably in AP. We will show that the

COO representation will be highly inefficient for this purpose compared to the BAG

representation. The COO structure is constructed by first sampling random pairs of

points and computing similarity values between them. Then, we select a threshold

below which similarity values are discarded. The threshold is selected based on the

random sample and based on a pre-specified limit on the final storage size. Note

that to construct the COO structure, we need to compute the similarity values be-

tween all pairs of points in order to threshold them and keep the significant ones

only. Also, recall from Section 7.3.1 in order to support both row and column scans

in this structure, we need to keep a mapping from an ordering based on row indices

to an ordering based on column indices. In our implementation, we construct the

structure first ordered by row indices, then use bitonic sort to obtain the ordering

based on column indices, and retain the mapping between the two orderings. After

constructing the S matrix using this representation, the A and R arrays are repre-

sented only as values arrays. They share the row and column indices arrays with
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the structure for S. In our implementation, we compute a row of the full similarity

matrix at a time. Then, we threshold the values and use a compact operation to

move the significant elements to the the COO structure.

To implement the BAG structure, the data points are mapped to the unit

hypercube, discretized, converted to Morton codes, and sorted based on such codes.

Then, the similarity matrix is constructed to include only similarity values between

points that are at most h elements apart on the final SFC order, where h is 128

in our implementation. We refer to the value 2h as the neighborhood size. The

similarity matrix S is represented as a 2D array with 2h + 1 rows and N columns,

as shown in Figure 7.4. Column i of the matrix contains similarity values between

element i and elements from i − h to i + h in order. The hth row of the matrix

contains the preference values. The responsibility and availability matrices, R and

A, are constructed to have the same size and structure of the similarity matrix S.

7.5 Experimental Results

We implemented the Affinity Propagation on CUDA using both the COO represen-

tation and our BAG representation, for the similarity matrix. We also implemented

a version for the CPU based on the COO representation. We conducted our experi-

ments on randomly generated point sets. The number of points in these sets ranged

from 1K to 512K. We used an NVIDIA Tesla C1060 compute card, which has 240

core processors and 4GB RAM, installed on an Intel Xeon 3.2 GHz workstation with

3GB RAM running 32-bit Windows XP with SP3. We used CUDA version 2.2 for
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our experiments. We used the CUDA Parallel Primitives Library (CUDPP) [1] in

all scan and segmented scan operations.

Due to the limit on grid dimensions, we were not able to experiment with more

than 128K points with the COO-GPU implementation. This problem arises only

with the COO representation since we use scan operations in its implementation.

The scan operation in CUDPP creates one thread for every 4 elements of the input

array (the similarity matrix values in this case), which results in too many threads

required to process the 256K points case and beyond. While this issue can be fixed

by modifying the kernel functions for segmented scans in CUDPP, we cannot run

this implementation with more than 256K points anyways because of the memory

requirement of the COO representation exceeds the size of the device memory in

this case. For the CPU representation, we were not able to run the experiment

beyond 128K points either due to the extremely long time it requires. We used the

negative sum of squared differences as the kernel (here similarity) function. The

preference value was set to the mean similarity over the elements kept in the matrix

representation in use. We set the maximum number of iteration for the AP to 2000.

The neighborhood size was fixed at 256 for the BAG representation, which means

the bandwidth of the resulting band matrix is 257. For the COO representation,

we retain values above some threshold. To have a fair comparison, we select the

threshold value to obtain approximately the same number of elements in the BAG

representation. We compute this threshold based on a random selection of one

million pairs of points.
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Figure 7.5: This plot compares the average squared error (distance be-
tween each point and its assigned exemplar), of the clustering obtained
by affinity propagation on the COO and BAG representations, as a func-
tion of the number of exemplars. In both cases, the number of points
is fixed at 16K. The plot shows how the usage of the approximate BAG
sparse representation does not affect the clustering performance of affin-
ity propagation.

7.5.1 Error Versus Number of Exemplars

The BAG representation is an approximation to the sparse kernel matrix, which is

in turn an approximation to the full matrix. In this experiment, we want to assess

how much the performance of the affinity propagation is affected by using the BAG

representation, rather than the COO representation, in terms of the clustering error.

We do not compare to the performance using the full matrix representation since

the size of such a matrix is prohibitively huge and computing its elements upon need

is prohibitively computationally expensive.

The clustering error is measured as the average square distance between each
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point and its assigned exemplar, 1
N

∑

i s(i, ei), where ei is the index of the exemplar

assigned to point i. The closer a point on average to its exemplar the better the

clustering. However, we cannot use this measure without referring to the number

of exemplars since increasing the number of exemplars reduces this measure. In

Figure 7.5, we show the clustering error with changing the number of exemplars.

In this experiment, we fix the number of points to 16K and change the preference

value to obtain different points on the curve. We compare between the two sparse

matrix representations. The plot clearly shows that the difference between the two

representations is negligible in terms of clustering error. Therefore, the approxima-

tion introduced by the BAG representation does not have any negative effect on the

AP algorithm.

7.5.2 Time Versus Number of Points

In this set of experiments, we measure the computational time versus the number

of points. We vary the number of points from 1K to 512K, except with the COO

representation on both CPU and the GPU where the maximum is 128K. Figure 7.6

compares between the three implementations based on the convergence time of AP

clustering. The time complexity of the three implementations grow almost linearly

with the number of points. Since we fix the neighborhood size, this is consistent

with the theoretical complexity of the algorithm, which is linear in the number of

similarity values used (quadratic in the number of points for a full matrix represen-

tation). Most of the time all the implementations run until the maximum number of
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Figure 7.6: This plot compares the running times of affinity propagation,
using the COO and the BAG representations on the GPU and the COO
representation on the CPU, as a function of the number of input points.
The number of points shown is in units of K (1024). The times shown do
not include the time to construct the similarity matrix from the input
points. Neither the COO-GPU nor COO-CPU implementations handles
more than 128K points. The COO-GPU version achieves up to 18x
speedup, while the BAG-GPU version achieves up to 114x speedup over
the CPU implementation.
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Figure 7.7: This plot compares the times of constructing the similarity
matrix, using the COO and the BAG representations on the GPU and
the COO representation on the CPU, as a function of the number of input
points. The number of points shown is in units of K (1024). Neither the
COO-GPU nor COO-CPU implementations handles more than 128K
points. The COO-GPU implementation achieves up to 300x speedup,
while the BAG-GPU implementation achieves up to 1700x speedup.
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iterations, 2000. The few exceptions for this are the points that significantly deviate

from the linear trend in the plots, which are the 1K and 4K points on the BAG-

GPU curve and the 1K point on the COO-CPU curve. Excluding these points, the

two GPU implementations consistently outperform the CPU implementation, with

up to 18x speedup for the COO representation and up to 114x speedup for the BAG

representation. Figure 7.7 shows the times to construct the similarity matrix repre-

sentations for the same set of experiments. Since in the COO representation we need

to compute all elements of the similarity matrix to compare them to the threshold,

the construction of the similarity matrix on the CPU becomes the computational

bottleneck as the number of points increase, while the GPU implementations are

less affected due to parallelism. The GPU implementations score larger speedups in

this part of the computation than the AP part, with the COO achieving up to 300x

speedup, and the BAG achieving up to 1700x speedup. The simplicity of the BAG

representation is the key to this tremendous speedup.

7.5.3 Time Versus Dimensionality

In this experiment, we study the effect of point dimensionality on the time to con-

struct the kernel matrix representation. We fix the number of points at 16K points.

We change the point dimensionality from 32 to 512. Figure 7.8 shows the results of

this experiment. The advantage of using the GPU becomes more evident when the

dimensionality increases. At 512 dimensions, both GPU implementations are about

1000 times faster than the CPU. The BAG representation is at least two times faster
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Figure 7.8: This plot compares the times of constructing the similarity
matrix, using the COO and the BAG representations on the GPU and
the COO representation on the CPU, as a function of the points dimen-
sionality. As the dimensionality grows, the two GPU implementations
achieve around 1000x speedup compared to the CPU implementation.

than the COO representation on the GPU. This again emphasizes the advantage

of having a simple representation, such as the BAG over a complex representation

such as the COO.

7.6 Conclusion and Future Work

We presented a novel method to construct a band approximation to Gram matrices,

based on space filling curves. The proposed method is very simple to construct and

efficient to work with on modern graphics processing units than the conventional

Coordinate (COO) representation. We applied the new representation to Affinity

Propagation, a recently introduced unsupervised clustering algorithm. Our results

show a significant speedup, of up to 114x, when using our algorithm on the GPU
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compared to the CPU implementation, compare to 18x speedup when using the COO

representation. If we include the time to construct the sparse matrix structure, the

speedup jumps up to 330x. This speedup does not come at any expense in terms of

the clustering performance of the AP algorithm.

There are many interesting experiments to be conducted on our work, such as

studying the effect of neighborhood size on the time and clustering performance of

the algorithm, and studying the approximation error to the kernel matrix incurred

by our representation compared to the COO representation. Nevertheless, enabling

large scale clustering via an effective algorithm such as Affinity Propagation is by

itself an important achievement. We are planning on apply this method to real

world large scale machine learning applications. Given the success on AP, we are

encouraged to investigate the applicability of our approach to other kernel methods,

such as SVMs. We are also investigating other types of codes that can be used to

order input points other than space filling curves.
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Chapter 8

Future Work

At the end of each preceding chapter, we provided our vision for future research

directions in the presented topic. In this chapter, we provide our vision for long

term research based on the findings of this dissertation.

In summary, the thesis presented research in two categories. The first is hu-

man detection for video surveillance and smart vehicle systems. The second is

vision computing on Graphics Processing Units (GPUs). The presented research

in human detection covered several aspects of the problem. Particulary, it covered

feature extraction, classifier training, and evaluation of detection algorithms. The

presented research in vision computing on GPUs included development of efficient

implementations for Graph Cut and an approach for kernel based learning on GPUs.

The presented research in this thesis shapes our vision for future research. We

observed from the research in human detection the power of training classifiers with

large datasets. This observation is supported by findings of other researchers [67, 91].

From our research in vision computing on GPUs, we realized the power of parallel

computing on GPUs and how it can be harnessed to solve large scale computer

vision problems. These are the two ingredients of our future research, which is

about leveraging the power of parallel computing to enable large scale learning for

computer vision applications.
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With the popularity of image and video sharing over the Internet, and the

widespread availability of high resolution digital cameras, an important resource for

training computers how to see has become available. Much of this data is tagged

with keywords that are useful for training. On top of that, researchers have col-

lected large sets of images and developed online annotation tools to obtain rich

information about these images either by volunteer annotators [79], annotators for

enjoyment [99], or paid annotators [24]. Having this data available, it remains to

use them in training for computer vision applications.

Fortunately, this explosion of data is accompanied by an explosion in parallel

computing devices and systems. Modern graphics processing units have up to 240

cores on chip [69]. The number of cores are expected to grow according to Moore’s

law. Cluster and cloud computing have also become common in computing. Nev-

ertheless, there is a wide gap between the available data and computing power on

one side, and the algorithms that make the best use of them on the other side.

Our future research aims at closing this gap for learning problems with a focus on

applications in computer vision. Our goal is to push the state of the art in computer

vision research through harnessing the availability of large scale datasets and the

power of parallel computing. We believe that this research direction is not only

important and interesting, but, it is also necessary for the advancement of the field.
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