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Rural houses in sub-Saharan Africa are typically hot and allow malaria mos-
quitoes inside. We assessed whether passive or active ventilation can reduce
house entry of malaria mosquitoes and cool a bedroom at night in rural
Gambia. Two identical experimental houses were used: one ventilated and
one unventilated (control). We evaluated the impact of (i) passive ventilation
(solar chimney) and (ii) active ventilation (ceiling fan) on the number of mos-
quitoes collected indoors and environmental parameters (temperature,
humidity, CO2, evaporation). Although the solar chimney did not reduce
entry of Anopheles gambiae sensu lato, the ceiling fan reduced house entry
by 91% compared with the control house. There were no differences in
indoor nightly temperature, humidity or CO2 between intervention and con-
trol houses in either experiment. The solar chimney did not improve human
comfort assessed using psychrometric analysis. While the ceiling fan
improved human comfort pre-midnight, in the morning it was too cool com-
pared with the control house, although this could be remedied through
provision of blankets. Further improvements to the design of the solar chim-
ney are needed. High air velocity in the ceiling fan house probably reduced
mosquito house entry by preventing mosquito flight. Improved ventilation
in houses may reduce malaria transmission.
1. Introduction
In sub-Saharan Africa, most rural houses are built from mud [1,2] and concrete,
both materials with a high thermal mass, making them hot at night [2,3]. These
structures are even hotter if they have metal roofs [3]. Consequently, if the room
is uncomfortably hot [3,4], people may not protect themselves from malaria by
sleeping under an insecticide-treated net (ITN) [5,6], as they further restrict
air flow and potential cooling [7]. Considering that roughly 80% of malaria
transmission in the region occurs indoors at night [8,9], low use of ITNs can
increase malaria transmission. Therefore, simple and cheap methods to keep
houses cool, especially at night, while keeping out malaria mosquitoes would
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Figure 1. Air movement through the solar chimney. Where 1 = corrugated metal roof at wall level, 2 = hot air outlet, 3 = transparent corrugated sheet, 4 = wood
frame, 5 = mud-brick wall ( painted black on the outside), 6 = thatch inside plywood frames, 7 = plywood isolation frame, 8 = wall hole to allow air flow, 9 =
concrete plinth, and red arrows show circulation of hot air. Dotted lines represent section elements that are not coloured for better understanding.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220794

2

decrease malaria transmission. Ideally this should be done
without using energy expensive and greenhouse gas emitting
cooling devices like air conditioners.

Ventilation, by adding at least two large screened windows
in opposite walls of a single-room house is one method by
which rural homes can be cooled, by replacing hot, static
indoor air with cooler air flow from outdoors [10]. Improving
ventilation indoors also reduces the levels of CO2 in a room
both directly by removing the gas from the room and
indirectly by reducing the room temperature and thus lower-
ing the human metabolic activity [10]. Reducing CO2

concentrations indoors will make it more difficult for a mos-
quito to locate and feed on a person since this gas is the
major long-distance attractant for malaria mosquitoes [11,12].

For single-roomed rural houses without electricity, we
hypothesized that solar chimneys, a type of passive ventilation,
would reduce indoor temperature. Briefly, a solar chimney is a
device positioned on the sunny side of the house. The chimney,
heated by direct sunlight, warms the air in the chimney, causing
it to rise through an inlet in the bottom of the wall and out of
the top of the chimney, drawing in cooler air from the room,
increasing ventilation indoors and cooling the room (figure 1).
Passive ventilation has been used for centuries in hot climates,
including wind catcher towers in Iran [13], traditional Malay
houses [14] and, in the natural world, termite mounds [15].
Today, with increasing global temperatures, passive ventilation
strategies are gaining favour to create comfortable living and
working environments without excessive energy consumption
and expenditure [16,17]. In Venezuela, a solar chimney reduced
indoor temperature at the hottest time of the day by 2–4°C,
compared with outdoor temperature [18]. While, in Colombia,
a solar chimney combined with a ground-air heat exchanger,
a underground duct designed to move cooler air into the
house after hot air has been expelled by the solar chimney,
reduced indoor temperature by 1°C between 10.00 and 16.00
compared with the control house [19].
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Figure 2. Position of solar chimney and data loggers in experimental houses.
Where A = temperature loggers inside the solar chimney and centre of the
house, B = insulated wall, C = light trap, D = evaporimeter and E = CO2
logger. Data loggers recording ambient temperature and CO2 were placed
in a Stevenson screen between the two experimental houses (not shown).
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One alternative cooling strategy is to use active venti-
lation. For houses with electricity, bedrooms can be made
cooler by using a fan that increases air flow across the
body, helping to keep the body cool. Although ceiling fans
are common in modern houses in the tropics and sub-tropics,
studies on their effect on indoor temperature are scarce. In
Singapore, office workers were more comfortable at 26°C
with fan-assisted air movement compared with 23°C without
fans [20]. Although there is anecdotal evidence that strong
ceiling fans prevent mosquitoes flying, this has not, to our
knowledge, been tested experimentally.

In the present study, we assessed whether passive and
active ventilation would make a typical rural Gambian
house more comfortable at night and reduce mosquito house
entry, by lowering indoor CO2 concentrations, making it less
likely that a malaria mosquito would enter a house. Construct-
ing houses that are well ventilated and cooler could contribute
to a reduction in malaria transmission by (i) increased human
comfort indoors leading to earlier entry into the house in the
evening (and avoidance of outdoor biting malaria mosquitoes)
and increased use of ITNs, and (ii) reduction in indoor CO2

concentrations, reducing attraction of malaria mosquitoes to
the house.
2. Methods
2.1. Study design
This was an experimental study using two identical single-
roomed experimental houses, each occupied by two adults. We
conducted two experiments comparing: (i) a house with a solar
chimney and one without, and (ii) a house with a ceiling fan
turned on and one with a fan turned off. Each experiment
lasted 32 nights. In both experiments, house treatments were
rotated every four nights. The initial allocation of treatment or
control to houses was random. Sleeper pairs were rotated nightly
between houses for the duration of the experiment.

2.2. Study area
The study was conducted in Wali Kunda field station (13° 3400250

N, 14° 5500280 W), located in the Central River Region, The Gambia.
This is an area of flat Sudanese savannah, close to a large rice-
cultivated area. The study took place in 2021 during the rainy
season, from 23 July to 24 October, when the density of Anopheles
gambiae sensu lato, the primary malaria vector, is the highest [3].

2.3. Experimental houses
Two experimental houses were used as described previously [7].
Briefly, both houses were the average size of a modern single-
roomed house in rural Gambia and their construction reflected
common practices in the country with a metal roof, closed
eaves and two badly fitting doors. The two experimental
houses were located 10.0 m apart and were 4.20 by 4.20 m in
floor area, with walls 2.20 m high. They were constructed from
sun-baked mud-blocks and corrugated metal roofs with no
eave gaps. Each house had two 1.80 m high and 0.80 m wide
doors located in the northeast and southwest facing walls of
the house. Each door had narrow horizontal slits, each 20 ×
800 mm, above and below the door, to simulate badly fitting
doors, common in the region, and to allow mosquitoes to enter
the building. The houses had two 0.65 m high and 0.65 m
wide windows screened with PVC-coated fibreglass netting
with a mesh size of 42 holes per cm2 (Vestergaard-Frandsen
group, Kolding, Denmark) located on the northwest façade of
the house at 1.20 m from the ground. Each house had two
beds, located parallel to one another and with the head end of
the bed closest to the wall with the screened windows (figure 2).

2.4. Interventions
2.4.1. Solar chimney
A panelled solar chimney was built on the southeast facing façade
of the experimental houses to maximize solar radiation (figure 3).
It was a lean-to structure made of two 2.15 m panels and two
0.80m triangular lateral panels. Each module had a timber
frame (2.15 × 1.70 m) supporting transparent corrugated polycar-
bonate panels (1.00 m× 2.40 m× 6 mm). Panels were fixed on a
concrete base (0.30 m high and 0.30 m wide) which had four
slits (0.08 by 0.04 m) on the longest side to prevent rainwater
accumulating during a heavy downpour. The panels were
sealed on the frame using expanding foam and silicone sealant
(Transparent Acetci Silicone Sealant, INGCO, Ghana) to prevent
leakage of hot air. At the top of the solar chimney there was a
30 mm gap between the panels and wall to allow hot air to
leave the chimney. The wall on which the solar chimney was
fixed was painted with matt black water-based paint (National
Paints, Abu Dhabi, UAE) to increase heating within the solar
chimney. When the house was acting as the control, we painted
the wall using a wall-coloured (grey/brown) water-based paint
(National Paints, Abu Dhabi, UAE) to restore the regular colour.
There were four rectangular holes, made in the base of the wall
of the house, each 0.19 × 0.37 m in area, 0.20 m above the floor.
Each hole was made by removing a single mud-brick and repla-
cing it with a 12 mm plywood frame to support the wall while
the experiment was taking place. The holes were unscreened
since we did not want to restrict air flow into the solar chimney
and the holes were covered with pieces of 12 mm plywood
when the house was acting as the control. On the internal face
of the wall with the solar chimney we built a 0.30 m wide insula-
tion layer made with eight plywood frames (0.95 by 1.17 m on top
and 0.95 by 1.22 m at the bottom) filled with thatch to prevent the
wall radiating heat into the room. The frames at the bottom of the
wall had holes aligned with the holes in the house wall that
allowed air movement from the room into the solar chimney
(figure 1). As well as installing the solar chimney, we extended
the metal roof on the northwest elevation by 0.80 m to shade
the screened windows (figure 3). The roof extension panel was
removed when the house was acting as control.
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Figure 3. Experimental house with solar chimney on southeast facing wall (a) and extended roof on northwest elevation (b).
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2.4.2. Ceiling fan
One ceiling fan (F-56MZ2 5600 Ceiling Fan, 220 V, 14–70 W at
50 Hz, Panasonic, Japan) with 1.42 m blades and a diameter of
1.40 m was installed in each house and powered by 220 V
mains electricity. Each fan was positioned in the centre of each
room, anchored to an existing steel beam supporting the metal
roof, 2 m above the floor. At 21.00 one of the fans was switched
on at the highest speed of 268 revolutions per minute and
switched off at 07.00 the next day. In the control house the fan
was not connected to the power supply. Any power outages
during the experiment were recorded.
2.5. Human subjects
The study was explained in a community meeting with male vil-
lagers in Mandinka, the local language. Four healthy adult men
(greater than 18 years old) provided signed-witnessed consent
and were hired to sleep four nights a week for the duration of
the study. Women were excluded from the study due to cultural
and religious reasons. Every night each pair of men slept, with
their heads pointing northwest, under an ITN (Olyset Net, Sumi-
tomo Chemicals, Japan; 1.3 m wide × 1.8 m long × 1.5 m high),
from 21.00 to 07.00 the following morning. Two field assistants
were posted outside the experimental huts throughout the
study to assist the sleepers if they needed to briefly leave the
house during the night and to ensure the men were sleeping
under the ITNs. Each pair of sleepers were rotated each night
so that at the end of the experiment each pair had slept 16
nights in each one of the experimental houses.

2.6. Entomology
Mosquitoes were collected indoors using CDC light traps (Cen-
ters for Disease Control and Prevention, Miniature light trap
model 512, US John W. Hock Ltd, Gainesville, USA) operating
from 21.00 to 07.00. After collection, any mosquitoes still alive
were knocked down in a −20° C freezer and identified using
standard morphological identification keys [21,22]. A random
subsample of An. gambiae complex specimens were further
identified using polymerase chain reaction (PCR) [23–25].

2.7. Environmental measurements
Indoor temperature and relative humidity were measured in
each experimental house for the duration of the study every



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220794

5
30 min using a data logger (Tiny Tag, TGU 4500), positioned in
the centre of the room, 1 m above the floor, and inside the
solar chimney, 1 m above the floor of the house. Evaporation
was measured from 21.00 to 07.00 with a Piche evaporimeter
(Casella, Sycamore, USA) located 1.20 m from the floor in the
middle of the room hanging from the roof structure. CO2 was
recorded every 30 s from 21:00 to 07:00 nightly with a data
logger (1% CO2 + Rh/T Data Logger GasLab, accurate to
±30 ppm ±3% of measured value) located between the beds,
near the head of the bed, 1.2 m above the floor (figure 2).

Outdoor temperature and relative humidity were recorded
every 30 min and CO2 every 30 s with a data logger (Tiny Tag,
TGU 4500 and 1% CO2 +Rh/T Data Logger GasLab, accurate to
±30 ppm ±3% of measured value) installed in a Stevenson
screen positioned midway between the two experimental
houses. A Stevenson screen is a white louvred box approximately
1.2 m above the ground used to shelter data loggers from precipi-
tation and direct heat radiation, while still allowing air to circulate
freely around them. Outdoor wind speed and wind direction were
recorded with an automatic weather station (MiniMet, Skye
Instruments, Llandrindod Wells, UK) every 30 min, located
northeast of the two houses, 10 m from each house.

2.8. Cost of intervention
The cost of materials for the two interventions were estimated,
excluding labour and operating costs. Costs were extracted from
study records and were recorded in the currency of expenditure
(Great Britain Pounds, GBP or Gambian dalasi, GMD). Costs
were converted to United States Dollar (USD) using the mean
exchange rate for the study period (29 June 2021) of 1 GMD=
0.019571 USD and 1 GBP= 1.3844 USD. Materials purchased for
the construction of the solar chimney were locally available in the
capital city of Banjul and transported to Wali Kunda.

2.9. Statistical analysis
The primary outcome was the indoor density of An. gambiae s.l..
The sample size was estimated via simulation based on a previous
experiment done in the same area in 2018, where the mean
number of An. gambiae s.l. collected in metal-roofed houses with
two windows and badly fitting solid and screened doors was
29.3 An. gambiae s.l./night (standard deviation = 20.1). To detect
a 50% reduction in mosquitoes caught in the house with improved
ventilation, at the 5% level of significance, with 80% power would
require 31 nights of collection (rounded up to 32 nights). The same
number of nights was also considered sufficient to show a signifi-
cant difference in the other study outcomes. Temperature, relative
humidity and CO2 concentration were analysed for two periods,
from 21.00 to 23.30 (23.59 for CO2), the time most people go to
bed and decide whether to use a bed net or not and from 00.00
to 07.00, when they are asleep [26].

Statistical analysis was performed using Stata version 15 (Sta-
taCorp., College Station, TX, USA). Mosquito collections are
presented as means with 95% confidence intervals and analysed
separately for each major taxon. We assessed the effect of house
treatment on indoor climate and mosquito house entry using
generalized linear modelling, using a negative binomial model
with a log link function for mosquito count data, while compari-
sons of temperature, relative humidity, evaporation and CO2

were made using linear regression. In addition to house treat-
ment, we included house position, sleeper pair and night in
the models as fixed effects. We calculated protective efficacy
(1−mean ratio × 100) of each intervention to reduce mosquito
house entry. Evaporation was calculated nightly for each house
by subtracting the level of water recorded at 07.00 from that
recorded at 21.00.

We used polar plots to depict the direction and strength of
the wind during the day and night.
Computational fluid dynamics (CFD) modelling was used to
simulate CO2 concentrations and indoor temperature distribution
using Ansys Fluent (v. 19). Model assumptions and set-up con-
figurations were as follows: (i) the house was based on the
structure of an experimental house and was assumed air-tight,
except for gaps at the top and bottom of the doors, and the
screened windows, (ii) two men were modelled as geometrically
simplified mannequins with rectilinear body shapes, (iii) exhala-
tion velocity of the mannequins was 0.77 m s−1 upwards, with
40 000 ppm of CO2, (iv) the temperature of exhaled breath was
33°C and body temperature 36°C, (v) background CO2 was
555 ppm, and outdoor air temperature 25°C (based on data col-
lected in this study, table 2), (vi) since the outdoor night wind
speed in the study site was measured by the weather station as
close to zero most of the time, a wind speed of 0.1 m s−1 was
applied (vii) bed nets and screened windows were assumed to
attenuate air flow by 64% [4], (viii) air is incompressible, and air
flow is steady turbulent flow, (ix) we used realizable k – ε turbu-
lent models with scalable wall functions since they best matched
field data, and (x) the entire model had 4.1 million polyhedral
cells, with 1 mm cells for the mouths and 10 mm for the nets.
CFD simulations were verified against: (i) detailed field data col-
lected in Tanzania during the rainy season [10], and (ii) CO2

and temperature data logger recordings made in this study. The
average indoor temperature and CO2 distributions inside the
houses during sleeping hours were studied based on the measure-
ments at 02.00 and the data logger (probe) position was assumed
to be in the centre of the house 1 m above the ground.

Human comfort was assessed using the software package
Ladybug (Ladybug Products, Athol, ID, USA), which was used
to estimate the proportion of time occupants of various house
typologies spent in the ‘comfort zone’. The comfort zone is
defined by the comfort polygon for temperature and relative
humidity and provides an estimated proportion of people satis-
fied with the indoor climatic comfort. We assumed that from
21.00 to 23.59 men were seated and quiet and wore trousers,
briefs and T-shirts. From 00.00 to 07.00 the men were sleeping.
Human comfort analysis for the ceiling fan experiment assumed
an air velocity (derived from CFD modelling) of 0.36 m s−1, while
air velocity was assumed to be 0.0 m s−1 in control houses and
the solar chimney house. For each house treatment, we calculated
the proportion of time the indoor climate was in the comfort zone
for two periods: 21.00 to 23.59, when people retire to bed, and
00:00 to 07:00, when people are usually sleeping [26].
3. Results
3.1. Solar chimney (passive ventilation)
3.1.1. Entomology
A total of 2558 female mosquitoes were collected in the light
traps during the study, of which 10% (246/2558) were An.
gambiae s.l., 88% (2239/2558) Mansonia spp., 1.8% (47/2558)
Culex spp. and the rest were other anophelines and Aedes
aegypti (electronic supplementary material S1, table S2).
Female An. gambiae s.l. specimens identified using PCR com-
prised An. coluzzii (67%, 20/30), An. arabiensis (23%, 7/30)
and inconclusive (10%, 3/30) in the house with the solar
chimney installed, and as An. coluzzii (73%, 22/30) and An.
arabiensis (27%, 8/30) in the control house.

Unadjusted analysis showed mean nightly female An.
gambiae s.l. numbers of 3.6 (95% CI 2.2 to 4.9) in the solar
chimney house and of 4.1 (95% CI 2.8 to 5.4) in the control
house (figure 4). For Mansonia spp. the mean number in the
solar chimney house was 38.5 (95% CI 26.3 to 50.7) and
31.5 (95% CI 20.9 to 42.1) in the control house per night.
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Figure 4. Mean mosquito numbers per night recorded for solar chimney experiment. For female An. gambiae s.l., female Mansonia spp. and all female mosquitoes
(Anopheles spp., Mansonia spp., Culex spp. and Aedes spp.).

Table 1. Female mosquitoes collected from houses with and without a solar chimney and with and without operating ceiling fans. Generalized linear modelling
results, adjusted for house position, sleeper pair and night. CI = confidence intervals.

house typology
total number of
mosquitoes

mean/night
(95% CI)

mean ratio
(95% CI)

protective
efficacy (95% CI) p value

female An. gambiae s.l.

solar chimney experiment

control 132 4.1 (2.8–5.4) —

chimney 114 3.6 (2.2–4.9) 0.72 (0.37–1.39) 28% (−39%–63%) 0.32

ceiling fan experiment

fan off (control) 101 3.5 (2.1–4.9) -

fan on 37 1.1 (0.3–1.8) 0.09 (0.03–0.28) 91% (72% - 97%) <0.001

Mansonia spp.

solar chimney experiment

control 1008 31.5 (20.9–42.1) —

chimney 1231 38.5 (26.3–50.7) 1.30 (0.77–2.22) −30% (−122%–23%) 0.33

ceiling fan experiment

fan off (control) 2491 85.9 (56.0–115.8) —

fan on 978 27.9 (14.9–41.0) 0.29 (0.16–0.52) 71% (48% - 84%) <0.001

all female mosquitoes (Anopheles spp., Mansonia spp., Culex spp. and Aedes spp.)

solar chimney experiment

control 1171 36.6 (25.4–47.8) —

chimney 1387 43.3 (30.2–56.5) 1.22 (0.72–2.06) −22% (−106%–28%) 0.46

ceiling fan experiment

fan off (control) 2638 91.0 (60.3–121.6) — —

fan on 1032 29.5 (15.7–43.3) 0.28 (0.15–0.49) 72% (51%–85%) <0.001
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There was a nightly average of 43.3 (95% CI 30.2 to 56.5)
female mosquitoes in the solar chimney house and 36.6
(95% CI 25.4 to 47.8) female mosquitoes in the control house.

Analysis adjusted for confounders (house number, sleeper
pair and night) did not identify a significant difference
between mosquito numbers caught in the house with the
solar chimney compared with the control house (An. gambiae
s.l.: protective efficacy (PE) = 28%, 95% CI =−39%–63%,
p = 0.32; Mansonia spp.: PE =−30%, 95% CI =−122%–23%,
p = 0.33; all female mosquitoes: PE =−22%, 95% CI =−106%–
28%, p = 0.46; table 1).
3.1.2. Environmental measurements
Between 07.00 and 20.30 the average temperature was 30.5°C
in the house with the solar chimney and 30.4°C in the control
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house, 1.1°C and 1.2°C lower than outdoor levels (figure 5,
table 2). During the day, the chimney had a mean tempera-
ture of 35.0°C, 4.6°C higher than the mean indoor
temperature of both houses and 3.4°C higher than the outside
average for the same period. Around 18.30 the chimney
stopped being warmer than the adjoining house, a trend
that was maintained until around 07.30. Between 21.00 and
23.30, the unadjusted average temperature was 29.6°C
inside the house with the solar chimney and 29.5°C inside
the control house, 3.5°C and 3.4°C higher compared with out-
door levels (figure 5). The mean temperature inside the solar
chimney from 21.00 to 23.30 was 28.4°C, 1.1°C lower than the
adjoining house but 2.3°C higher than outdoor levels. During
the second part of the night between 00.00 and 07.00 the aver-
age temperature in both houses was 28.1°C, 3.2°C higher than
outdoors. At this time, the unadjusted average temperature
inside the chimney was 27.1°C, 1.0°C lower than inside the
houses and 2.2°C higher than outdoors.

Mean indoor temperature in the house with the solar
chimney was similar to the control house during the night
(table 2). During the day, however, the house with a solar
chimney was slightly hotter than the control house. Relative
humidity levels were similar between house types (electronic
supplementary material S1, table S1).

Indoor evaporation was higher at night (21.00 to 07.00) in
the house with a solar chimney (mean 1.9 ml, 95% CI 1.5 to
2.2) compared with the control house (mean 1.4 ml, 95% CI
1.0 to 1.8), although the result was non-significant (p = 0.08)
(table 3).

Wind was predominantly from the northwest during the
first part of the night (21.00 to 23.59) and from the northwest
and southeast during the second part of the night (00.00 to
07.00). Mean wind speed was 0.10 m s−1 (95% CIs 0.07 to
0.12) from 20.00 to 23.59 and 0.07 m s−1 (95% CIs 0.6 to 0.8)
from 00.00 to 06.59 (electronic supplementary material S1,
figure S2).

CO2 levels increased immediately after the sleepers
entered the experimental houses peaking at around 22.00.
Thereafter, CO2 levels slowly declined before rising sharply
after 06.30 when the sleepers woke (figure 6). CO2 levels
were consistently higher inside than outside throughout the
night. There was a lower CO2 concentration in a house with
a solar chimney than a house without a solar chimney in
both parts of the night, although the result reached statistical
significance only after midnight (table 2). From 21.00 to 23.59
CO2 levels were 667 ppm in the house fitted with the chim-
ney and 690 ppm in the control house ( p = 0.29), while
outside it was 555 ppm. From 00.00 to 07.00 CO2 levels
were 645 ppm in the house fitted with the chimney and
686 ppm in the control house ( p = 0.009), while outside it
was 547 ppm. Across the entire night (21.00 to 07.00), CO2

levels were significantly lower in the house fitted with
the chimney (653 ppm) than the control house (683 ppm;
p < 0.001).

3.1.3. Human comfort
During the first part of the night, psychrometric analysis indi-
cated that the solar chimney house was less comfortable than
the control house, with a human comfort index of 14% in the
solar chimney house compared with 23% in the control house
(figure 7). During the second part of the night, both the con-
trol and solar chimney house were uncomfortable, with a
human comfort index of 16% in the solar chimney house
and 13% in the control house.

3.1.4. Computational fluid dynamics simulations
Simulated temperature and CO2 at the probe locations closely
matched the field data. The simulated indoor temperatures of
the two houses at the probe location were similar at 27.6°C in
the house with solar chimney and 27.3°C in the control house
(figure 8). The average indoor temperature at the vertical
height of the sleepers was 27.0°C in the house with solar
chimney and 27.4°C in the control house. The indoor CO2 dis-
tributions were simulated with around 10% average
discrepancy against the field data at the probe location.
There was a negligible difference in the simulated CO2 con-
centration between the two houses at 627 ppm in the solar
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Table 3. Indoor evaporation during both experiments. Linear regression adjusted for house position, sleeper pair and night. CI = confidence intervals.

house typology
mean / night (95% CI) coefficient (95% CI) p value

solar chimney control 1.4 (1.0–1.8) — —

intervention 1.9 (1.5–2.2) 0.48 (−0.06–1.03) 0.08

ceiling fan control 1.3 (0.9–1.7) — —

intervention 2.6 (2.2–3.0) 1.43 (0.85–2.01) <0.001
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Figure 6. Average indoor and outdoor night-time CO2 concentrations recorded during the solar chimney experiment. Where outdoor levels = dotted line, control
house = turquoise line and house with solar chimney = orange line.
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chimney house and 620 ppm in the control house. The simu-
lation results show that the CO2 concentration around the
sleeper near a door in the house with the solar chimney
was higher by about 100 ppm than the control house.

3.1.5. Cost of intervention
Materials for construction of the solar chimney cost 517.2
USD.

3.2. Ceiling fans (active ventilation)
3.2.1. Entomology
A total of 3670 female mosquitoes were collected during the
ceiling fan study, of which, 3.8% (138/3670) were An. gambiae
s.l., 94.5% (3469/3670) Mansonia spp., 1.1% (42/3670) Culex
spp. and the rest were other anophelines and Ae. aegypti (elec-
tronic supplementary material S1, table S1). Specimens
identified as female An. gambiae s.l. were identified by PCR
analysis as An. coluzzii (83%, 25/30), An. arabiensis (10%, 3/
30) and An. gambiae s.s./coluzzii (3%, 1/30) and inconclusive
(3%, 1/30) in the house with the working fan, and as An. coluz-
zii (80%, 24/30), An. arabiensis (17%, 5/30) and An. gambiae
s.s./coluzzii hybrids (3%, 1/30) in the house with the fan off.

Unadjusted analysis of the mean number of female An.
gambiae s.l., Mansonia spp. and female mosquitoes showed
that there were fewer mosquitoes in the house with the ceil-
ing fan than in the control house (figure 9). The mean
number of female An. gambiae s.l. in the house with the work-
ing fan was 1.1 (95% CI 0.3–1.8) and 3.5 (95% CI 2.1–4.9) in
the control house (table 1). Mean numbers of Mansonia spp.
in the house with working fan was 27.9 (95% CI 14.9–41.0)
and 85.9 (95% CI 56.0–115.8) in the control house. The
mean numbers of total female mosquitoes in the house
with a working fan was 29.5 (95% CI 15.7–43.3) and 91.0
(95% CI 60.3–121.6) in the control house.

Analysis adjusted for confounders (house number, sleeper
pair and night) showed a 91% (95% CI 72%–97%, p < 0.001))
reduction in An. gambiae s.l. and 71% (95% CI 48%–84%,
p < 0.001) reduction in Mansonia spp. in houses with operat-
ing fans compared with the control house (table 1). Similar
reductions were seen with all female mosquitoes combined.

3.2.2. Environmental measurements
The average temperature between 21.00 and 23.30 was 29.6°C
inside the house with the fan and 29.7°C inside the control
house, around 4.0°C higher than outdoor levels. Between
00.00 and 07.00, the mean temperature was 27.9°C in the
house with the fan and 28.0°C in the control house, around
3.5°C higher than outdoor levels (figure 10). There was no
significant difference in temperature after adjusting for
house position, sleeper pair and night (table 2). Relative
humidity was also similar between the two houses (electronic
supplementary material S1, table S3).

Evaporimeter measurements showed the water volume
decreased by 2.6 ml (95% CI 2.2–3.0) in the house with a
working fan compared with 1.3 ml (95% CI 0.9–1.7) in the
control house ( p < 0.001) (table 3).

Wind was predominantly from the north during both
parts of the night (21.00 to 07.00) and mean wind speed
was 0.03 m s−1 (95% CIs 0.01–0.04) from 20.00 to 23.59 and
0.07m s−1 (95% CIs 0.05 to 0.08) from 00.00 to 06.59
(electronic supplementary material S1, figure S3).
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Figure 7. Psychrometric charts showing the human comfort index of adults in houses with and without a solar chimney, and with and without a ceiling fan. (a)
Readings, shown as coloured polygons, made from 21.00 to 23.59. (b) Readings made from 00.00–06.00. Human comfort analysis for the ceiling fan assumes an air
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During the ceiling fan experiment, CO2 levels peaked
around 22.00, shortly after the sleepers entered the house
(figure 11). Thereafter, CO2 levels declined until 05:30,
when there was an increase. This same pattern was observed
in both the intervention and control house. During the night
CO2 concentrations were substantially higher indoors than
outdoors. Indoor CO2 concentration at night was lower in
the house with the ceiling fan than in the control house.
During the first part of the night, the house with the fan
had significantly lower CO2 levels at 752 ppm (95% CI =
729–775) compared with the control house at 793 ppm
(95% CI = 761–826, p = 0.03), while the outdoor CO2 concen-
tration was 648 ppm (table 2). During the second part of
the night, CO2 levels were also lower in the house with the
fan (698 ppm, 95% CI = 675–721) than in the control house
(721 ppm, 95% CI = 687–755), although the difference was
non-significant ( p = 0.1). The outdoor CO2 concentration
during the second part of the night was 624 ppm. Over the
whole night, CO2 levels were lower in the house with the
fan (713 ppm) than in the control house (736 ppm, p < 0.001).
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3.2.3. Human comfort
During the first part of the night, the human comfort
index reached 35% in the house with the ceiling fan but
fell to 20% during the second part of the night when it
became too cold ( figure 7). The human comfort
index was similar in the control house during the first
and second parts of the night, at 29% and 24%,
respectively.
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3.2.4. Computational fluid dynamics simulations
The simulations show the fan’s effect on circulating indoor air
with a maximum downward speed of 2.69 m s−1. However,
the air velocity drops as the flow hits the bed nets, resulting
in the reduced air speed that eventually reaches the sleepers
(electronic supplementary material S1, figure S4). The aver-
age air velocity around the sleepers (under the bed net) in
the house fitted with the ceiling fan was around 0.36 m s−1

(maximum 0.67 m s−1), while it was 0.16 m s−1 (maximum
0.38 ms−1) in the control house. In respect of thermal con-
dition, temperature at the probe position was 28.9°C with
the ceiling fan operational which was higher than in the con-
trol house at 27.3°C (figure 12) according to the simulations.
CO2 concentration at the probe position was 655 ppm in the
house with the ceiling fan operational and 713 ppm in the
control house.
3.2.5. Cost of intervention
The ceiling fan cost 22.1 USD.
4. Discussion
Our pilot study established how passive and active venti-
lation affects indoor mosquito density, temperature,
humidity, evaporation, CO2 concentrations and human com-
fort in modern single-roomed rural Gambian houses with
metal roofs, closed eaves and badly fitting doors. The proto-
type solar chimney did not affect indoor mosquito density,
temperature, humidity or evaporation. The almost identical
indoor temperatures are probably due to two reasons: (i)
while the solar chimney was hotter than the adjoining room
during the day, the decline in temperature in the solar chim-
ney after sunset was faster than indoors, resulting in no air
movement across the room at night, (ii) the air flow through
the windows is close to zero, owing to the minimal outdoor
wind during sleeping hours (less than 0.1 m s−1). Although
we measured a small (30 ppm) reduction in the CO2 concen-
tration in the solar chimney house compared with the control
house this was within the bounds of accuracy of the
data logger (±30 ppm ±3% of measured value), and CFD
modelling showed a negligible difference of around
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10 ppm. Since CO2 is a major mosquito attractant [11], the
lack of difference in CO2 concentration between the solar
chimney house and the control house probably explains the
lack of impact on mosquito density. CFD simulation also
indicates that there was a 100 ppm higher CO2 concentration
close to the sleeper near the door in the solar chimney house
than the control house. The reason for this is unclear since air
flow can be affected by multiple parameters.

The design of the solar chimney can be improved by alter-
ing the orientation of a house or the chimney, clearing
obstructions around the house and using different construc-
tion materials. For example, orienting the house and
chimney to receive more direct sunlight and removing shade
trees will increase the temperature within the chimney. The
solar chimney was built with lightweight material of low ther-
mal mass, whereas a similar structure made from thick glass
and higher thermal mass materials may have retained the
heat for longer enabling the chimney to operate after sunset.
Even though we painted the outside wall matt black to
increase solar heating and added an insulation layer indoors
to prevent heat transfer from the external face into the room,
the substantial heating of the indoor air caused by the metal
roof nullified this effect. Painting the roof white [27], adding
a green roof (roof of a building that is partially or completely
covered with vegetation and a growing medium, planted over
a waterproofing membrane) or adding a ceiling could increase
the cooling effect of solar chimneys by reducing the tempera-
ture of the room during the day.

Ceiling fans reduced indoor density of An. gambiae s.l., by
91%. Although there was no difference in indoor nightly
temperature or relative humidity, the evaporation rate in the
house with the ceiling fan was double that in the control
house. The increase in evaporation was most likely due to
the high indoor air velocity caused by the rotating fan. The
average nightly CO2 concentration was 23 ppm lower in the
house with the ceiling fan compared with the control
house, although again this difference was probably within
the bounds of accuracy of the data logger. The air velocity
near the fan was 2.69 m s−1 while it was 0.36 m s−1 near
the sleeper due to attenuation of air flow by the bed net
[4]. Published literature suggests that high air velocity dis-
rupts normal flight and host-seeking behaviour and it is
probable that the higher air velocity in the house with the
ceiling fan was the main factor contributing to the decreased
indoor vector density. A field experiment in which mosqui-
toes approaching a host were exposed to different air
velocities found that at air velocities above 0.8 m s−1 mos-
quito catches begin to drop off, with no mosquito flight
observed when air velocity was 2.0 m s−1 [28]. In the labora-
tory, mosquitoes fly at a speed of 0.25 m s−1 when following
an odour plume [29], suggesting a higher air velocity would
restrict host location. Ceiling fans are also likely to disrupt the
normal host-seeking behaviour of An. gambiae which specifi-
cally target the roof of bed nets due to the rising odour plume
[30–32].

Night-time outdoor CO2 levels of around 550 ppm in the
solar chimney experiment and 650 ppm in the ceiling fan
experiment are high, reflecting the increased respiration
from the soil and vegetation during the rainy season, where
measurements are made close to the ground in a situation
where there is low turbulent air.

Unexpectedly, the CFD modelled temperature at the probe
position was higher in the house with the ceiling fan compared
with the control house. It may be that hot air normally
accumulating under the roof of the house was pressed down-
wards towards the sleeper. While ceiling fans improved
human comfort in the first part of the night, they were con-
sidered too cool in the second half of the night when
ambient temperature dropped. In practice, being too cold is
not problematic since sleepers can be easily covered with a
sheet or blanket. Keeping house inhabitants cool is more
difficult.

CFD simulations allow us to model indoor climate and air
flow in silico and support a more detailed understanding of
air flow in the house than would be possible using data log-
gers positioned at fixed points in the house. For example,
CFD simulation allowed us to understand the air velocity
and movement under the fan including how the hot air
was being pressed down and how the air velocity experi-
enced by the sleeper was attenuated by the bed net. CFD
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simulation was used both during the design of the solar
chimney and after the conduct of the experimental study
when the model was parametrized with field data. The earl-
ier simulations included construction details, which were
different to what was eventually constructed on site. In
addition, the physical properties of the construction materials
had to be estimated, introducing further difficulties to match
the real conditions. After the experimental study, the CFD
models were reconstructed to better match the site conditions
such as total number, and the dimensions of the openings in
the solar chimney wall, ambient temperature and geometrical
specifications of the thatch-filled insulation boxes.

There were several limitations to our study. Firstly, these
are pilot studies using only two experimental houses. Sec-
ondly, two adults slept in a single-roomed house, while the
median density of people in such houses in The Gambia is
four adults and children (M Pinder 2022, personal communi-
cation). Thirdly, some rural houses in the Gambia are line
houses, where single rooms are split in two by a dividing
wall, where the dynamics of heating and CO2 may differ
from this experimental set-up. Finally, we did not assess the
impact of the water-based paint on mosquito attraction. We
do not think this would have impacted the results because
the paint was odourless and mosquito entry into the control
and intervention house would have been impacted similarly.

Using active and passive methods to increase ventilation
and indoor comfort levels in the tropics has been studied pre-
viously [33–35]. There are, however, to our knowledge, no
experiments using solar chimneys to reduce mosquito num-
bers and keep the house cool at night. There have been
several studies reporting the use of fans for reducing mos-
quito biting, although these were anecdotal, and for cooling
indoors to increase bed-net use. In Kolkata, India, an observa-
tional study found that 53% of respondents reported not
using a bed net and 80% used fans instead to avoid mosqui-
toes [36]. In Ghana, a trial of a small fan placed inside a bed
net did not increase bed-net use, although the study did not
have sufficient statistical power to detect a difference in bed-
net use between the study arms [37].

While ceiling fans reduced mosquito entry and increased
human comfort, there is still a pressing need to develop natural
ventilation strategies because those at highest risk of malaria
and heat stress do not have access to electricity. Air condition-
ing is not a good solution since it contributes to greenhouse
gas emissions, which drive climate change and increase the
risk of future extreme heat events. The 7% increase in renewable
energy deployment, particularly solar power, between 2010 and
2020 in Africa [38] and improvements in battery storage could
lend itself to battery-powered ceiling fans. The solar chimney
was substantially more expensive than the ceiling fan at 517.2
USD compared with 22.1 USD, although the solar chimney
was a prototype design needing further refinement and
would benefit from economies of scale. The community accept-
ability of passive ventilation methods such as the solar chimney
would also need to be explored.
5. Conclusion
The passive ventilation design tested was not able to reduce
indoor temperature or mosquito density. Nevertheless,
active ventilation using ceiling fans increases indoor air vel-
ocity, resulting in fewer mosquitoes entering these houses.
Whether an optimized passive ventilation design would be
able to achieve similar air velocities would need to be evalu-
ated. Besides reducing mosquito ingress, improved house
ventilation may increase bed-net use and thus protection
from malaria mosquitoes. Changes to indoor ventilation
could reduce indoor malaria transmission and maintain the
gains in countries that have achieved elimination.
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