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ABSTRACT

In the last decade, blockchain technology has undergone a strong evolution.
The maturity reached and the consolidation obtained have aroused the inter-
est of companies and businesses, transforming it into a possible response to
various industrial needs. However, the lack of standards and tools for the de-
velopment and maintenance of blockchain software leaves open challenges and
various possibilities for improvements. The goal of this thesis is to tackle some
of the challenges proposed by blockchain technology, to design and implement
analysis, processes, and architectures that may be applied in the real world. In
particular, two topics are addressed: the verification of the blockchain software
and the code optimization of smart contracts.

As regards the verification, the thesis focuses on the original developments
of tools and analyses able to detect statically, i.e. without code execution, issues
related to non-determinism, untrusted cross-contracts invocation, and numerical
overflow/underflow. Moreover, an approach based on on-chain verification is
investigated, to proactively involve the blockchain in verifying the code before
and after its deployment.

For the optimization side, the thesis describes an optimization process for the
code translation from Solidity language to Takamaka, also proposing an efficient
algorithm to compute snapshots for fungible and non-fungible tokens.

The results of this thesis are an important first step towards improving
blockchain software development, empirically demonstrating the applicability
of the proposed approaches and their involvement also in the industrial field.
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Chapter 1
INTRODUCTION

In 2008, the publication of the manuscript “Bitcoin: A Peer-to-Peer Electronic
Cash System” [142] starts the blockchain era. The author proposes a new
paradigm to process financial transactions in a decentralized way, based on a
consensus mechanism able to avoid intermediaries, third parties, and issues re-
lated to digital cash such as double-spending [13, Chapt. 1]. The core underlying
this paradigm is precisely the blockchain, a collection of concepts and technolo-
gies deriving mainly from the fields of cryptography and distributed systems [13,
Chapt. 9]. Blockchain technology has undergone a sudden evolution thanks to
its growing popularity in different areas: from financial transactions [3] to insur-
ance refunds [113], supply chain management [172], anti-piracy campaigns [207],
self-sovereign identity [140], etc.

In recent years, the increased knowledge and awareness of the blockchain
potential has aroused the interest of companies and businesses, transforming it
into a possible response to various industrial needs [128]. Thus, the number of
companies using blockchain technology continues to grow.

However, the engineering and tools related to the development and integra-
tion of software solutions based on blockchain technology progressed at a lower
pace [29, 162]. The development process is far from being standardized in this
context. There are currently no proven guidelines for implementing software suit-
able for blockchain solutions. Traditional software paradigms, such as Software
Development Life Cycle (SDLC), fail to guarantee adequate processes for the
blockchain development requirements [127]. Therefore, several of these processes
are not optimal nor fully automated. Hence, resources such as human effort and
time are increased while programming errors are not minimized, worsening the
security and quality of the code.
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1.1 Research Objectives and Contributions

The purpose of this thesis is to provide solutions for verification and optimiza-
tion issues related to blockchain software. The analysis and development of these
topics are motivated by the lack of significant analyses, processes, and architec-
tures able to face the challenges proposed by blockchain technology in the state
of practice.

The first main contribution is the development of two tools to define static
analyses for the verification of Go and Michelson languages. These tools are
based on the abstract interpretation theory in order to pursue a sound approach
and to prove the absence of malicious behaviors in the code. Given the rapid
evolution of blockchain technology, the state of practice lacks tools capable of
guaranteeing the safety and quality of blockchain software.

In this direction, we propose analyses related to non-trivial issues: non-
determinism, untrusted cross-contract invocations, and numerical overflows. For
the detection of these problems, we analyzed the program semantics without
limiting the analyses to syntactic checks only, as is the case in most blockchain
framework analyzers instead. In this way, it is possible to design more precise
analyzes that allow one to reduce false positives in comparison with other tools
used for the detection of the same issue. Moreover, to the best of our knowledge,
some of these analyses are novel implementations for Go and Michelson.

Another contribution is related the on-chain verification. We describe an al-
ternative paradigm for blockchain verification, where the nodes of the blockchain
verify the code being deployed, in order to guarante that all code executed in
the blockchain has been successfully verified over time.

Finally, regarding code optimization, we propose snapshot algorithm opti-
mizations to reduce the gas and time costs of executions of token standards
within the JVM.

1.2 Thesis Structure

The first part of the thesis provides background on blockchain technology, paying
attention to the terminology and defining the concepts discussed in the rest of
the thesis:

– Chapter 2 introduces the basic foundations needed to understand the work
and the notations adopted in the rest of the thesis, providing a gentle intro-
duction to blockchain technology.

– Chapter 3 investigates the meaning of blockchain software. Moreover, it of-
fers an overview of the programming languages involved in blockchain soft-
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ware development, focusing on their diffusion and proposing a taxonomy
of general-purpose languages about smart contracts, decentralized ap-
plications, and underlining the related challenges and problems.

The second part of this thesis deals with the verification of blockchain software:

– Chapter 4 describes the importance of software verification in blockchain
context, with attention to code immutability and its decentralized distribu-
tion. It introduces static analysis by abstract interpretation as a means of
formal verifying software. Moreover, it summarizes the basic concepts related
to LiSA, a library to facilitate the development of verification tools on which
we relied for the realization and implementation of the analyzers proposed
in this thesis.

– Chapter 5 presents GoLiSA, a static analyzer for the Go language. We de-
signed and developed a tool based on abstract interpretation theory able
to support several industrial blockchain frameworks and analyze real-world
code. To the best of our knowledge, it is the first analyzer based on LiSA
applied to the industrial context. Moreover, it supports the most popu-
lar blockchain frameworks for Go and it is able to perform semantic analyses
on real-world applications.

– Chapter 6 describes the design and implementation of MichelsonLiSA, a
static analyzer for Tezos smart contracts written in the Michelson language.
The analyzer implements an intermediate representation based on the
static single-assignment form and a symbolic stack, to manage the
peculiarities of the memory model of Tezos, and domain-specific instructions.

– Chapter 7 presents a method for the detection of issues related to
non-determinism in blockchain software based on information flow
analyses. The proposed analyses allow one to significantly reduce the false
positives generated compared to state-of-the-art tools. This chapter also con-
tains a GoLiSA evaluation and an industrial case study related to Commer-
cio.network.

– Chapter 8 deals with the issues of untrusted cross-contract invocations. It
also reports our approach based on taint analysis for the detection
of untrusted cross-contract calls.

– Chapter 9 introduces an on-going work related to the detection of numer-
ical issues, investigating and comparing some numerical abstract domains.
Experimental results empirically show the applicability of specific nu-
merical domains on software blockchains, which otherwise may be im-
practical in other software contexts.

– Chapter 10 proposes a definition of on-chain code verification paradigm,
i.e. an approach that involves the blockchain nodes in the code verification.
Furthermore, a lazy re-verification approach is described to cope with
the evolution of code verification rules. Then, the chapter describes an actual
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implementation of a blockchain with on-chain verification based on
the Tendermint and Takamaka frameworks, including also governance for
tool upgrade management.

The third part of this thesis describes blockchain software optimizations. In par-
ticular, it focuses on optimizing standards for tokens by focusing on translations
from one programming language to another.

– Chapter 11 introduces the benefits of code optimization in blockchain and
introduces two standards for fungible and non-fungible tokens.

– Chapter 12 presents a process for a literal translation from Solidity to
Takamaka, then describes novel implementations for making snap-
shots of tokens, based on tree maps, that is possible in Java, but not in
Solidity.

The fourth part concludes the thesis:

– Chapter 13 summarizes the work done in the thesis and investigates future
research directions.
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Part of the results presented in the thesis have been already published or are
under publication in:

– [147] Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro. On-Chain Smart
Contract Verification over Tendermint. 5th Wokshop on Trusted Smart Con-
tracts (WTSC’21), pages 333–347, Springer, 2021 .

– [51] Marco Crosara, Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro. Re-
engineering ERC-20 Smart Contracts with Efficient Snapshots for the Java
Virtual Machine. 3rd International Conference on Blockchain Computing
and Applications (BCCA’21), pages 187–194, IEEE, 2021.

– [148] Luca Olivieri, Fabio Tagliaferro Vincenzo Arceri, Marco Ruaro, Luca
Negrini, Agostino Cortesi, Pietro Ferrara, Fausto Spoto, and Enrico Talin.
Ensuring Determinism in Blockchain Software with GoLiSA: An Industrial
Experience Report. 11th ACM SIGPLAN International Workshop on the
State Of the Art in Program Analysis (SOAP’22), pages 23–29, ACM, 2022.

– [50] Marco Crosara, Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro.
Fungible and non-fungible tokens with snapshots in Java. Cluster Computing,
Springer, 2022.

– Luca Olivieri, Thomas Jensen, Luca Negrini, Fausto Spoto. MichelsonLiSA:
A Static Analyzer for Tezos. Accepted paper at 4th Workshop on Blockchain
theoRy and ApplicatIoNs (BRAIN’23), 2023.
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– Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Fer-
rara, Agostino Cortesi, Fausto Spoto. Information Flow Analysis for Detect-
ing Non-Determinism in Blockchain. Accepted paper at European Confer-
ence on Object-Oriented Programming (ECOOP’23), 2023.

Other side studies are published in:

– [74] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. BackFlow: Backward
context-sensitive flow reconstruction of taint analysis results. 21st Interna-
tional Conference on Verification, Model Checking, and Abstract Interpre-
tation (VMCAI’20), pages 23–43, Springer, 2020.

– [30] Marco Bozzetti, Luca Olivieri, and Fausto Spoto. Cybersecurity Impacts
of the Covid-19 Pandemic in Italy. Italian Conference on Cybersecurity 2021
(ITASEC’21), pages 145–155, CEUR Workshop Proceedings, 2021.

– [75] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Static Privacy Analysis
by Flow Reconstruction of Tainted Data. International Journal of Software
Engineering and Knowledge Engineering, 31(7):973–1016, 2021.

Collaborations

The research done in this thesis is joint work with several teams. Professor Fausto
Spoto and his team at the University of Verona introduced and supported me
in the blockchain research field. GoLiSA and related analyses were developed in
collaboration with Agostino Cortesi, Pietro Ferrara, Luca Negrini, and Vincenzo
Arceri (SSV team of the Ca’ Foscari University of Venice, Italy). Moreover, the
tool was tested on real-world code by the company Commercio.network. The
design and implementation choices of MichelsonLiSA have been extensively dis-
cussed with Thomas Jensen, Thomas Genet, and Delphine Demange (Celtique
project-team of the University of Rennes 1, France).





Part I

Background





Chapter 2
BLOCKCHAIN OVERVIEW

This chapter provides an overview of the main concepts related to blockchain
technology used throughout the thesis. In particular, we introduce the compo-
nents of the blockchain data structure, how consensus mechanisms work, which
ones are the most popular, and the difference among blockchain networks. The
chapter concludes by describing how blockchain technology is evolving over time.

2.1 Blockchain Structure

A blockchain is an abstract shared data structure that is immutable, distributed,
and decentralized. Figure 2.1 shows its structure in a general shape. It is literally
a chain of blocks. The information is regrouped and collected in blocks, each of
which contains a certain bounded amount of data records. When a new block is
added, it is concatenated with the previous one, thus creating a chain of linked
blocks.

To understand how this technology works it is important to know the three
main components contained in each block:

� hash code of block : an alphanumeric value with a fixed length that uniquely
identifies the block. If any of the data related to the block is changed, then
the block’s hash code also changes.

� previous hash code: a reference to the hash code of the previous block.
� timestamp: a field specifies the moment in which the block was created and
helps to maintain the chronological order of the chain. Typically, it is an
incremental numerical value such as a counter.

These three components combined together make the blocks of blockchain
tamper-proof. Indeed, modifying a block would also change the hash and times-
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Figure 2.1: Structure of a generic blockchain. The construction of the structure
can undergo forks such as what is coming in the blocks after the Block N+1.

tamp of that block. As a result, this leads to a mismatch between the hash codes
stored in the blocks to which it is linked, making it immediately apparent that
the chain has been altered.

However, the only data structure of the blockchain is not enough to guaran-
tee the security and reliability properties. Hence, it is shared in a peer-to-peer
network, a.k.a. blockchain network, where it is possible to add new data through
transaction requests, in order to achieve:

� Distributability of the data: each peer of the network can keep a copy (full
or partial) of the blockchain and approve transaction requests through a
consensus mechanism.

� Decentralization of the data: the network peers are located in different geo-
graphic areas, avoiding single points of failure.

� Immutability of the data: the anti-tampering properties, together with the
distributability and decentralization, make the data become “immutable”
(or hardly tamperable).
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2.1.1 Consensus Mechanisms

In distributed contexts, it is common to find cryptographic infrastructure algo-
rithms such as PKI s (Public Key Infrastructures) used for the secure exchange
of information. In addition, about distributed data, it is fundamental to achieve
a consensus among network peers to avoid inconsistency and to decide what
data can be validly added and what data cannot be stored among peers.

The main technological innovation brought by blockchain networks compared
to traditional ones is the introduction of an incentive system that allows peers
to act collectively in order to guarantee the integrity and security of the net-
work. Blockchain is based on the principle of trustless, in which, no one must
necessarily trust third parties or individual peers. Trustless does not mean com-
pletely eliminating the trust, but rather distributing it in a type of economy
that encourages certain behaviors, and punishes the unfair ones [121]. In this
way, it added a social component (i.e. a component not related to a computer
algorithm, but related to a human peer) that allows one to solve any stalemates
and conflicts related to the trust.

The consensus mechanism with rewards and disincentives is the backbone of
blockchain technology because it ensures the validity and authenticity of the data
stored in blockchain. There are several fault-tolerant mechanisms [1, Chapt. 11]
that can be exploited by consensus-based systems, in order to reach a consensus
on a single state of a network among distributed peers. Nowadays, the main
challenge is to improve the trustness, efficiency, and effectiveness of consensus
mechanisms [209] [14, Chapt. 14]. Currently, the most popular paradigms for
the blockchain context are Proof-of-Work and Proof-of-Stake.

Proof-of-Work

The Proof-of-Work (PoW) incentivizes the peers called miners to compete with
each other in processing transaction requests, receiving a reward in return (a.k.a.
mining) [13, Chapt. 10] [14, Chapt. 14]. The competitions consist in solving hard
computational problems1 to validate a new block. At the end of each competi-
tion, the winner has the right to add the block to the blockchain and get a reward
to incentivize the continuation of the work. In PoW, the punishment consists of
the cost of energy required to participate in mining, because computing an hard
problem is extremely energy expensive. If participants do not follow the rules
and earn the reward, they risk the funds they have already spent on electricity
to mine, thus forcing the participants to behave honestly out of self-interest.

1 Typically, the challenge is to compute an NP-complete problem, where it is easy to check
the result is correct, but computationally expensive to calculate the result in the first place.
The difficulty of the challenge can also be parameterized by changing over time [19].
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Proof-of-Work Proof-of-Stake

The probability of validating a
block depends on the computa-
tional work performed by a miner

The probability of validating a
transaction depends on the stake
held by a validator

The first miner that solves the
block’s challenge gets the reward

There is no block reward, valida-
tors earn transaction fees

Miners tend to increase their
computational power

Validators tend to increase their
stake amount

Table 2.1: Comparison between Proof-of-Work and Proof-of-Stake.

Proof-of-Stake

The Proof-of-Stake (PoS) incentivizes a subset of peers called validators, who
have the task of validating and creating new blocks. A peer to become a validator
must freeze an economic asset that takes the name of stake, such as a certain
amount of currencies [14, Chapt. 14]. The consensus algorithm randomly gives
the possibility to some validators to validate a block. After an individual check,
these validators compare the result with each other and a majority agree on a
common result, then earn the transaction fees. Generally, the higher the stake
value, the more likely it is that a validator will be selected. Conversely, if a
validator submits incorrect results or fraudulent transactions, it will be punished,
losing part or all of its stake.

Proof-of-Work vs Proof-of-Stake

Table 2.1 summarizes the main differences in these consensus mechanisms. In
recent years, for ecological reasons and to reduce resource consumption [176],
the trend is to adopt a PoS in blockchains implemented from scratch and in
many other cases to migrate the consensus from PoW blockchain to PoS, such
as the migration of Ethereum [78].

2.1.2 The Choice of the Blockchain Network

A critical aspect of enterprise decision-making certainly lies in the network.
Blockchain networks are mainly divided into two types of paradigms: permis-
sionless and permissioned.

Permissionless blockchains (a.k.a. public blockchains) provide open networks,
have no reference property or actor, and are designed not to be controlled and
managed. The peers can join the network without previous authorizations and
they can be directly involved in the consensus and data validation process.
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Typically, the characterization of these networks is to have a high decentraliza-
tion, full transparency of transactions, and no central authorities. This implies
that these networks provide greater security in terms of points of failure and in
terms of consensus as it will be difficult to corrupt most of the networks as they
grow. Notable examples are Bitcoin [13,142], Ethereum [14,33] and Tezos [6,85]
blockchains.

Permissioned blockchains (a.k.a. corporate or private blockchains) provide
closed networks composed of known peers, such as members of a consortium,
which interact and participate together or partially in consensus and data val-
idation. Typically, decentralization is limited in the sense that it is distributed
across a restricted number of parties rather than an unknown and potentially
unlimited number of participants, as in permissionless blockchains. The key
characteristic of these networks is to have the lack of a central authority, which
is replaced by a private decentralized group, that has network administrator
privileges. In this way, it is possible to achieve greater control of the network,
improve blockchain performances, and apply patches and fixes faster than in a
permissionless blockchain. Notable examples that allow implementing this type
of network are Hyperledger Fabric [12,102] and Tendermint [31,190] blockchains.

Both network paradigms allow for similar value propositions. However, their
differences make them more suitable for some use-cases and less suitable for
others. Permissionless blockchains tend to be used in contexts with a strong
financial component or that require highly decentralized blockchains such as
cryptocurrency exchanges, digital assets, crowdfunding, donations, and decen-
tralized autonomous organizations. Instead, permissioned blockchains are fa-
vored for applications that depend on confidential data such as supply chain
provenance tracking, claims settlement, and identity verification.

2.2 Evolution of the Technology and Historical
Outline

The idea behind blockchain technology has been strongly inspired by Haber et.
al. [21, 92]. The problem to be faced by the authors was how to certify when
a document was created or lasted modified. In [92], as solution, they theorized
the first primordial description of cryptographically data structure that chained
together (i.e. a chain) the hash values of a digital document and time-stamping
service, ensuring the immutability of data. Haber et. al [21] introduce Merkle
tree [132] within the data structure, merging many unnoteworthy time-stamping
events into one noteworthy event, like merging data within a single block.

The first application of blockchain technology as it is known today is to
be attributed to the implementation of Bitcoin [13, 142], in 2008. The platform
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allows exchanging digital currency called bitcoin through a peer-to-peer network,
using a blockchain-based on PoW consensus as a distributed ledger where to
store and track transactions. A Turing-incomplete low-level language specifies
Bitcoin’s transactions. It can be seen as a limited scripting language for smart
contracts, i.e. contracts implemented through a programming language and run
as distributed software.

In 2013, the second killer application of blockchain is born, namely Ethereum
[14,33]. It introduced a Turing-complete bytecode for smart contracts, develop-
ing decentralized applications [14, Chapt. 12]. Turing-completeness allows one
to express the power of modern programming languages, thus increasing the
potential and the use of smart contracts. Ethereum smart contracts can be
programmed in high-level languages such as Solidity, the most popular one, and
run on the Ethereum Virtual Machine (EVM). Also, it introduces the concept of
gas [14, Chapt. 1], a parametric transaction fee paid to execute a smart contract
within the blockchain network and avoid non-termination. About the consensus
mechanism, Ethereum uses PoW but is currently switching to PoS [78].

The third technological evolution still underway begins in the following
years. Blockchains, such as Tendermint Core [31, 117] (recently rebranded as
Ignite [106]) and Polkadot [159], expands the concept of blockchain network
to real ecosystems populated by different blockchain networks capable of inter-
acting with each other, implementing common inter-blockchain communication
protocols [164]. Another interesting contribution of Tendermint Core is to pro-
vide a generic and customizable infrastructure, leaving the notion of transaction
unspecified. The infrastructure is split into three layers (application, consensus,
and networking) and a Byzantine Fault Tolerant (BFT) middleware separates
the application logic from the consensus and networking layers. This allows one
to develop blockchain applications written in any programming language (that
supports Remote Procedure Calls), and replicate them on many machines [32].
About the transaction notion, programmers can develop an application layer
specifying programmatically which transactions exist and which are their se-
mantics, redefining them according to the use-cases.

2.3 Conclusions

In this chapter, we explained how blockchain technology works and has evolved.
Furthermore, to create trustless networks for blockchains, it is necessary to ap-
ply both software and economic techniques to guarantee the network’s security
through consensus mechanisms based on incentives and disincentives. Moreover,
in addition to being a data collection, the blockchain is also a technology capa-
ble of running software uploaded by the participants and users of the blockchain
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network, thus significantly increasing its versatility and potential. In the next
Chapter, the issue of blockchain software is addressed.





Chapter 3
BLOCKCHAIN SOFTWARE

Many people use the term blockchain software for different things. The first that
comes to mind for blockchain software is smart contracts, i.e. programmable and
executable code within the blockchain. However, this is only a small part of it
and there are several software definitions that may take the name of blockchain
software. For this reason, it is necessary to initially define the various types
of software involved in blockchain technology on their own terms. In addition,
some of these misuse terms help to confuse the reader. This chapter defines the
various types of software involved in blockchain technology in their own terms.

3.1 What is Blockchain Software?

Blockchain can be thought of as a complex ecosystem, where the software is
the component used to build the system and to implement interactions with
it. In this context, the software can be categorized in blockchain software and
blockchain-oriented software. As recalled by the names, both categories involve
blockchain technology. The main differences are where the software is located
and executed, as well as having a different purpose.

Blockchain software includes all the code present within the blockchain, i.e.
the implementation code of the blockchain itself and the one contained in the
database of blocks. Even if there is not always a clear distinction the code related
to blockchain implementation can generally be divided into five layers:

� the Hardware layer contains the software to work at a low-level with the
hardware of devices. The blockchain network consists of different devices
supported by heterogeneous hardware. Typically, the code of this layer can
be involved to virtualize the hardware and making the blockchain software
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platform independent. Otherwise, it is exploited to optimize the performance
of an ad-hoc hardware architecture such as in the case of Internet-of-Things
devices [131].

� the Data layer contains the implementation of a database of blocks with
its primitives. Here the data and block structure, how to add the data,
and any additional information to be included in the data collection are
programmatically defined.

� the Network layer deals with the communications of the blockchain network,
such as the P2P protocols, etc. It allows one to connect the various peers,
handle transactions, and propagate information across the network.

� the Consensus layer implements the logic of the chosen consensus mechanism
in order to validate or reject the data to store in the blockchain agreeing with
the blockchain network.

� the Application layer contains the code to manage the content of transac-
tions, propose the updating of the database of blocks with new data, and
perform additional operations.

Smart Contract means different things depending on the context. As reported
in [14], the term was coined by Nick Szabo and defined as a set of promises,
specified in digital form, including protocols within which the parties perform on
the other promises. However, its original meaning is blurred given the genericity
of the software that can run within modern blockchains. Hence, we use the
term smart contracts to refer to immutable computer programs that run within
a blockchain. A smart contract is also considered part of blockchain software.
Indeed, it needs to be deployed in the blockchain before being executed, i.e.
stored in the database of blocks. Then, the contract can only be run when
called by a transaction request. Typically, the execution is performed by a smart
contract framework located in the application layer.

Blockchain-Oriented Software (BOS), according to Porru et al. [162], includes
all software working with an implementation of a blockchain. That is software
that interacts directly or indirectly with the blockchain but is located and ex-
ecuted outside the blockchain. Here, for example, the software can range from
generic applications that use blockchain only as data storage, to applications
that actively interact with smart contracts, e.g. wallets, crypto-currency, asset
exchangers, etc.

Decentralized Application (DApp) refers to an application that is executed
by multiple users over a decentralized network, such as the blockchain network.
This definition broadly includes both blockchain software and the BOS defi-
nitions. Indeed, users are not necessarily peers of the blockchain network. In
general, the decentralized application has an external interface with which it
can communicate and receive information. For instance, in blockchain, popu-
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lar DApps are decentralized autonomous organizations [93] and decentralized
games [135,136].

3.2 Programming Languages and Blockchain
Development

The popularity and widespread diffusion of a programming language have fun-
damental implications in the economic context. In general, it means reducing
costs and saving time, because fluent developers can quickly apply their exper-
tise to a different domain. Several programming languages are involved in the
blockchain context, both DSLs and GPLs.

However, the adoption of GPLs must be considered with care. The familiarity
of a programmer with a language is not sufficient to justify the adoption of GPLs
in the programming of blockchain software. Indeed, it is a weak assumption to
argue that it is an advantage if developers write software in the language they
already know. Nowadays, applications are implemented with multi-language so-
lutions and senior developers are proactive in learning new languages. Moreover,
according to Deursen et al. [60], DSLs are typically able to ensure some guaran-
tee (restrictions, expressiveness, abstractions, etc.) on a specific problem domain
that might not be reached using the full features of a GPL.

In blockchain technology, the payoff is minimal in terms of cost if the language
exposes the company to severe economic consequences, such as the immutable
deployment of a vulnerable contract that manages cryptocurrencies or financial
transactions. Indeed, although only the code of the smart contracts is immutable,
the remaining blockchain software, i.e the code of all layers, is also difficult to
patch because it is still part of a distributed and decentralized environment
formed by a network of potentially untrusted peers. Therefore, every blockchain
software update could be critical.

The choice of the language should be based on the project to be implemented
or on the type of functionality that the language makes available to extend,
maintain and evolve the code repository. According to Deursen et al. [60], the
adoption of DSLs leads to benefits and disadvantages.

A critical point is surely the difficulty of balancing between DSLs and GPLs
constructs and guarantees. Let us consider Solidity for the Ethereum blockchain,
one of the most known DSLs in the blockchain context for smart contracts. The
purpose of Solidity was to create a DSL that could be safer and more easily
verifiable than a GPL. However, its naive design exposed it to multiple vulner-
abilities [15], which were exploited to perform fraudulent actions such as in the
case of the DAO attack [161]. Solidity is a high-level language with syntax and
semantics that are very close to programming languages such as Java, C++,
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and Go. However, Solidity is not specialized enough and also not high-level
(abstracted) enough. Furthermore, its specialization can be easily replicated in
GPLs, such as using Java [51, 188]. Hence, if DSLs and GPLs are similar, it
is easier for developers to choose the latter. In that sense, a widespread GPL
is often supported by wider communities, which consequently leads to many
studies, research, and development of many tools (debugging, monitoring, an-
alyzers, etc.), libraries, software utilities, and IDEs. Nevertheless, as we will
see in Section 3.4, this leads to other challenges. Therefore, it is not surprising
that various industrial blockchain solutions, such as Hyperledger Fabric [103],
Cosmos SDK [144], and Tendemint [31] use mainly the GPLs.

Another key concept to highlight is that there is nothing similar to a stan-
dard DSL for programming smart contracts and DApps. For instance, in the
database context, there are several Relational Data Base Management Systems,
but most of them use the same Structured Query Language (SQL) as the stan-
dard language for database development. The various development frameworks
can contain many variants of SQL (such as MySQL, PostgreSQL, etc.), which
implement additional methods, instructions, and macros to facilitate the devel-
oper, yet maintain the common features of the language. However, by providing
the same common instruction set of SQL, they make it easy to migrate the
code to other systems, with minor changes. In industrial realities, the code has
to be reused or the code has to be migrated from one system to another. The
same occurs in the BOS, i.e. software working with an implementation of a
blockchain [162]. Indeed, the target blockchain could change in favor of another.
This can happen for many reasons, for example changing the visibility con-
text of the blockchain such as from a private or corporate to a public one, or
vice versa. The visibility change can drastically impact the performance of a
blockchain network. For instance, frameworks like Hyperledger Fabric, designed
for private or corporate solutions, are generally better performing than public
ones such as Ethereum [17]. But the formers require fewer guarantees and fewer
constraints in terms of network reliability, availability, and peer trust. In the ab-
sence of standards, GPLs allow one to facilitate the portability and re-usability
of code. As shown in Table 3.2, there are many frameworks targeting different
blockchains that are covered by the same GPL. Although each framework has
certain differences, the core logic of smart contracts is typically implemented in
the same way by using the same programming language, or at most, it requires
only small tricks and fixes to be re-used in other frameworks.

In the enterprise field, the trend that leads to the use of GPLs for the devel-
opment of blockchain software is therefore not attributable to a simple answer.
Currently, the mix between the still low maturity of blockchain DSLs, the lack
of standards, the scarcity of supporting tools, and the need for custom require-
ments bring the cost/benefit ratio towards GPLs.
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Blockchain Target Languages

Algorand [36] Transaction Execution
Approval Language (TEAL)

Cosmos [118] Any language

EOSIO [66] WebAssembly

Ethereum [14] Ethereum Bytecode

Hotmoka [96] Java

Hyperledger Fabric [103] Go, Java, Javascript

IOTA [160] WebAssembly

Lisk [125] JavaScript

Neo [143] Neo Execution Format (NEF)

Polkadot [159] WebAssembly

Solana [204] Solana BPF Bytecode

Tezos [6] Michelson language

Table 3.1: Target languages for some popular blockchains.

3.3 A Taxonomy of General-Purpose Languages For
Smart Contracts

Regarding smart contracts and DApps implementations, GPLs are exploited in
different ways depending on the blockchain.

It is necessary to consider the language in which the code is written by
developers and which will be the language that gets executed in a distributed
manner within the blockchain. Indeed, many programming languages can be
used at a high-level, but blockchains could support only a few target languages
for executing programs on the network (Table 3.1).

In order to reason about that, it is possible to classify the various GPLs
involved in the development of smart contracts and DApps into three macro
categories:

� Full language: the code is written in a GPL without restrictions and the
blockchain uses the same GPL as the target language during the code exe-
cution.

� Restricted language: the code is written using a restricted subset of a GPL
and it is the same restricted target language used by the blockchain during
the code execution.

� Meta-programming language: the code is written in a language that gener-
ates a program in another language. Basically, this happens when a code is
written in a GPL and after a framework or a compiler translates/compiles
it to another language used by the blockchain as the target language.

Table 3.2 shows a classification of GPLs in the blockchain context based on
these macro categories. For instance, the GPLs involved in the development of
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Blockchain Framework/SDK Languages Typology

Algorand PyTeal Python Meta-programming

Cosmos Tendermint Core Any language Full language
Cosmos SDK Go Full language
CosmWasm Rust Meta-programming

EOSIO EOSIO Contract C++ Meta-programming
Development Toolkit
EOSIO SDK Javascript, Swift, Java Meta-programming

Ethereum Ethereum SDKs Dart, Delphi, C#, Meta-programming
Go, Java, JavaScript,
Python, Ruby, Rust

Hotmoka Takamaka Java Restricted language

Hyperledger Fabric Hyperledger Go, Java, Javascript Full language
Fabric SDKs

IOTA IOTA Rust, Go Meta-programming

Lisk Lisk SDK JavaScript Full language

Neo Neo SDK Python, C#, Go, Meta-programming
TypeScript, Java

Polkadot Ink! Rust Meta-programming

Solana Solana SDK Rust, C, C++ Meta-programming

Tezos SmartPy Python, OCaml, Meta-programming
TypeScript

LIGO OCaml, Javascript, Meta-programming
Pascal, ReasonML

Table 3.2: Blockchain classification based on the proposed taxonomy.

smart contracts and DApps in Hyperledger Fabric are classified as full languages,
because they allow one to write and execute code by using the same language,
without any restriction or modifications. While for Hotmoka, the GPL is Java
but Takamaka allows one to use only a restricted subset of its features and
instructions, in order to guarantee some properties to the code execution [187].
Next, other blockchains such as Tezos allow one to write code in a high-level
GPL and run a compiled version of it in another target language supported by
the blockchain. There are also cases like Polkadot with Ink!, that use a subset of
Rust, i.e. a GPL that compiles into another target language, i.e. WebAssembly.
In terms of behavior, this is much closer to the meta-programming language
than to a restricted language.

3.4 Limitations and Challenges

Despite GPLs being more mature in terms of development and support, the main
problem is that they were not initially designed for the development of smart
contracts and DApps, exposing developers to several limitations and challenges.
This section proposes some food for thought related to the given taxonomy.
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3.4.1 Full and Restricted Languages

The classification of using full and restricted languages arises from two different
schools of thought. The first one argues that it is the developer that should be
in charge of the quality and safety of the code and, in turn, the implications it
may have while using the language at its full expressiveness. Instead, the second
one applies restrictions to the full language in such a way that the developer
is protected from unexpected behaviors or known vulnerabilities that may arise
when using the full language. However, these restrictions could limit develop-
ment by denying useful implementations. Full languages are typically involved
in controlled environments such as permissioned blockchains, where only iden-
tified users can perform only specific actions granted to them by the blockchain
administrators. Instead, restricted languages can be involved also in permission-
less blockchains, where peers can develop and deploy code without asking for
any permission since the restricted language forbids a priori specific features of
the full language and it is more likely to prevent the blockchain compromise.

New Issues Related to Full Languages

The use of a full language in the frontier of smart contracts and DApps de-
velopment leads to the emergence of new and challenging issues, which usually
do not affect DSLs because they have already been taken into consideration in
their design phase. For instance, let us consider the problem of non-determinism.
Intuitively, a non-deterministic value involved during the update of the global
state of the blockchain leads to a consensus issue. Specifically, the involved trans-
action fails because the blockchain validators are unable to agree on a common
value that should be updated in the blockchain. This is the case of code invo-
cations that return the current time of the local machine, since this value may
vary between the different blockchain validators, leading to a consensus failure.
For instance, both Ignite and Hotmoka support the GPL Java, where several
APIs can be non-deterministic. Hotmoka allows the usage just of a restricted
subset of Java libraries, forbidding the use of features not suitable for smart
contracts [187], such as random value functions, disk writing, reading, internet
connections, etc. These restrictions are applied a priori and developers will not
be able to lift them. However, as argued in [148], non-determinism is unsafe
in the blockchain context only if it is global, that is if it can affect the global
state of the blockchain. This means that certain use of non-determinism is still
safe even in blockchain software development. For instance, let us suppose that
something must be logged on a blockchain node in your local machine, while
the software is running. In the case of Hotmoka smart contracts, this will not
be possible since the use of local time is not allowed due to the imposed restric-
tions, while it would be possible in the case of Cosmos, where developers are
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allowed to use the full expressiveness of the Go language. However, in Ignite and
also in Cosmos DApps, developers have to worry about verifying, in a similar
case, that the time plotted in the log does not end up in the global state of the
blockchain. Tools using formal verification techniques can be used to detect this
kind of problem.

Code Re-engineering

Given the flexibility and maturity of GPLs, it is possible to re-engineer the
code and standards already implemented using DSLs to obtain technological
advantages and develop a more efficient code in terms of performance and gas
consumption in other blockchains. A trend in the blockchain is to apply stan-
dards from platform to platform, easing the design challenges with trusted and
widely-used specifications. In particular, in [51], we show how re-engineering, in
an efficient way for the Java Virtual Machine, an implementation of the ERC-20
standard with snapshot for fungible tokens from Solidity to Takamaka (restricted
language based on Java) using a data structure based on tree maps. However,
this approach is typically possible only using restricted or full languages, be-
cause, in meta-programming, the high-level optimizations have no effect unless
supported by the target language.

3.4.2 Meta-programming Languages

Meta-programming is widely used in several blockchains because typically it
allows one to program in several popular high-level languages and then compile
or translate them into a single target language, generally at low-level.

Information Loss

The switch from a high to a low-level language can imply a loss of informa-
tion, leading to difficulties in understanding, reverse engineering, analyzing, and
verifying blockchain software. The high-level languages for their nature tend to
abstract semantics through compact instructions, types, annotations, etc. In-
stead, low-level languages have a restricted set of instructions and must explicit
all the operations to perform during the execution, losing expressiveness and
increasing the code verbosity. For instance, this is a well-known problem in We-
bAssembly, because the recovery of high-level function types from WebAssembly
binaries are challenging [122].

Translation and Semantic Issues

As already reported above, meta-programming involves at least two languages,
a source, and a target language. If the languages are different, then translation
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problems may occur, as the semantics of certain operations may not be translat-
able from one language to another. In this scenario, an interesting case of study
is SmartPy and the Michelson language. SmartPy is a framework to develop
Tezos smart contracts in Python. While it supports many Python APIs, there
is no direct compilation to Michelson from them. Hence, within the compilation
into Michelson, to overcome this problem, these functions are resolved [183] and
the results are hardcoded in the Michelson compiled program. Let us explain
the problem by means of the example reported in Figure 3.1a, which reports
a smart contract example written using SmartPy v0.11.1. The smart contract
allows to be initialized with a numerical parameter myParameter1 using the
function init at Line 6, and after can change that value using the func-
tion myEntryPoint at Line 11. However, the myEntryPoint function relies on
random.randint at Line 13, a standard Python API that cannot be translated
in Michelson, since it does not support instructions to generate random numer-
ical values. In this case, the SmartPy framework allows the compilation of this
Python contract without any warning message. Figure 3.1b shows the Michel-
son code retrieved after the compilation of the Python smart contract reported
in Figure 3.1a. It is worth noting that random.randint is resolved within the
compilation and its evaluation, in this case, the value 7, is hard-coded in the
Michelson compilation output, at Line 8. The problem here is that, when run-
ning the Michelson code in the blockchain, it will not add a random value, as
expected by the Python program, but it will always add the constant value 7.
It is worth noting the compiled Michelson program may differ from one compi-
lation step to another one; the value to which a random function used in the
Python code is resolved by the compiler and may vary at each compilation step.
Moreover, this makes complex reverse code engineering because pieces of Python
information are lost during the compilation process.

Target Language Issues

Another issue concerning meta-programming is related to the fact that the tar-
get language might not be a DSL designed for the blockchain context. Hence,
it does not necessarily place guarantees on the execution of the code, which is
not checked during the meta-programming phase and can lead to issues, bugs,
and vulnerabilities. Let us consider the case of WebAssembly. As reported in
the documentation [202], it is designed to enable high-performance applications
on the Web. It was later adopted to run on different blockchain platforms for
the following key factors: a high-performance execution, a compact representa-
tion, and platform independence. Although it has several positive sides to being
adopted in the blockchain context, the language is still exposed to potential risks,
such as non-determinism [200] or numerical overflow [135, 136]. Another pitfall
of meta-programming includes the fact that a certain program that is compiled
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import smartpy as sp

import random

# A class of contracts

class MyContract(sp.Contract):

def __init__(self ,

myParameter1):

self.init(myParameter1=

myParameter1)

# An entry point , i.e. a

message receiver

# (contracts react to messages

)

@sp.entry_point

def myEntryPoint(self):

self.data.myParameter1 +=

random.randint (0 ,10)

(a) Python code

parameter (unit %myEntryPoint)

;

storage int;

code

{

CDR; # @storage

# == myEntryPoint ==

# self.data.myParameter1 +=

7 # @storage

PUSH int 7; # int : @storage

ADD; # int

NIL operation; # list

operation : int

PAIR; # pair (list

operation) int

};

(b) Michelson Code

Figure 3.1: Issues related to meta-programming using SmartPy.

from a GPL to the target language may not preserve the same semantics. For
instance, suppose to use the Python3 language for the meta-programming and
WebAssembly or Ethereum Bytecode as the target language. Python3 allows
one to represent integers potentially in an unlimited range [79]. Instead, We-
bAssembly and Ethereum Bytecode support a priori bounded integers [77,201].
This means that the translation or compilation of some instructions related to
integer values could fail, or in the worst case the compilation could be successful
but the execution of arithmetic operations could be subject to vulnerabilities,
as happened in the case of the EOSIO blockchain [135,136], which was affected
by such an integer overflow vulnerability.

3.4.3 Limitations of the Tool Belts

According to Destefanis et al. [59], compared to traditional software, smart
contracts and blockchain software engineering is not yet sufficiently developed.
Contracts and DApps rely on a non-standard software life-cycle [127], because
of the main peculiarities of the blockchain (immutability, decentralization, and
distributability) which make bug fixing and code patching more difficult. More-
over, although the GPLs have wide toolbelts, often these tools are designed for
general use and do not include specific features for the blockchain context. In
addition, the use of these tools in the blockchain context without supporting
its peculiar features may lead to critical implications. Let us consider the ver-
ification phase of a software life-cycle. If a verification tool does not properly
model blockchain software, it cannot best detect issues related to the blockchain
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context, leading to incomplete or incorrect checks. According to Section 7.7.2,
the risk of using unsuitable tools is to give a false sense of trust to the devel-
opers, which could let their guard down. At best this will be detected in later
stages, however creating delays and increasing the costs for the fix. In the worst
case, the deployment in blockchain could occur and the vulnerability could be
exploited maliciously without any possibility of a fix.

3.5 Related Work

The aim of this chapter is to classify and discuss languages for blockchain soft-
ware development. To the best of our knowledge, there are very few academic
studies that classify blockchain programming languages, especially with regard
to GPLs. Foschini at el. [76] provide an overview of GPLs involved in the develop-
ment of chaincodes (also known as smart contracts) for Hyperledger Fabric, from
the point of view of performance. Varela-Vaca at el. [196] propose a mapping
study and a general snapshot of the languages for smart contracts, emphasiz-
ing the importance of grey literature (i.e. white papers, reports, documentation,
working papers, etc.).

Some research papers investigated and surveyed DSLs, which we present in
the following, without explicitly referencing GPLs. Halder et al. [2] investigate
state-of-art DSLs introduced in literature since 2015, also providing a compar-
ative analysis based on their application target, development stage, and offered
features. In [155], the authors provide a survey on programming languages used
for smart contract development, focusing on three DSLs, namely Solidity, Pact,
and Liquidity, focusing on their usability and security aspects. Seijas at el. [177]
overview scripting languages used in existing cryptocurrencies, focusing on the
ones of Bitcoin, Nxt, and Ethereum. Zou et al. [210] analyze the current state
and potential challenges developers are facing in developing smart contracts on
blockchains, highlighting the limitations of DSLs such as Solidity.

Even if it does not explicitly investigate programming languages used to
build blockchain software, the research community had proposed several studies
and surveys about the security of blockchain. In the following, we report some
related work on this topic. In [91], the authors discuss different and present
technologies embedded in blockchains, such as consensus algorithms, public key
cryptography, and hash functions used in the blockchain, with a focus on their
security aspects, providing a survey about the types of attacks that had affected
blockchains, the state-of-art analysis tools that have been proposed during the
years for those attacks, and qualitative comparison between these tools, based
on the number of vulnerabilities detected. Similarly, the authors of [82] surveyed
the blockchain technologies until the end of 2019, presenting also the more pop-
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ular blockchain context applications. Even [24] proposes a survey paper about
security aspects of blockchain, such as blockchain availability and integrity, but
the survey focuses on the use of blockchain within information systems. As far
as information systems are concerned, [123] reviews blockchain security in this
context at three different stages, at the process, data, and infrastructure levels,
drawing future research directions on blockchain security, with a particular focus
on business and industrial-related issues.

3.6 Conclusions

This chapter sheds more light on the definition of blockchain software, clas-
sifying it and adding a taxonomy of the programming languages involved in
the development of smart contracts. In addition, it discusses the strengths and
weaknesses of each category of smart contract languages.

In the rest of the thesis, we focus only on blockchain software re-
lated to application layers, smart contracts, and DApps. In particular,
we deal with the blockchain platforms and frameworks Hyperledger Fabric, Ten-
dermint Core, Cosmos SDK, Tezos, and Takamaka. Chapters 5, 7, 8, 9 propose
a verification tool and analyses for blockchains written in Go. Chapters 6, 8 deal
with the Michelson language. Chapters 10, 12, respectively, describe a verifica-
tion architecture and optimization processes applied to Java smart contracts.
While, Chapters 11, 12 deal with token optimizations and translations from
Solidity language.



Part II

Blockchain Software Verification





Chapter 4
BUG FIXING AND SOFTWARE
VERIFICATION IN BLOCKCHAIN

Blockchain software is executed by a network of mutually distrusting peers,
without any external trusted authority. For this reason, the implementations
must be secure against attacks and bugs which lead to data tampering, system
instability, and unexpected execution behaviors. In this thesis, we focus only on
the verification of blockchain software at the application layer (Section 3.1),
because it is the one that generally requires more custom development and also
includes the smart contract part. In this chapter, we describe the differences
between the verification of blockchain code and the traditional one, focusing on
static analysis techniques that allow one to analyze the code before its execution,
i.e. before deploying it on the blockchain. We also introduce LiSA, a framework
to build verification tools from scratch.

4.1 Blockchain and Traditional Software Verification

Traditional software might not be written by taking complete care of quality
and safety, but it can still be assessed and improved later. However, this is not
practicable in the blockchain, which is distributed with immutable data. For this
reason, it is recommended to apply software verification by design. Moreover,
this factor gets more problematic by the lack of best practices and standard
architectures [29,127,162].

In the case of permissionless blockchain, when a bug is found and faults
happen because of it, the caused problems are generally immutable and cannot
be fixed. This immutability is achieved through a consensus mechanism that
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makes it difficult, or impossible, to withdraw transactions from the blockchain.
In practice, the network majority should agree on rolling back to the state
before an incident, effectively rewriting the history of the blockchain. However,
the more a blockchain network increases in popularity, the more it is tricky to
undertake such a turnaround. Part of the network may be interested in ignoring
to resolve the consequences of a fault and continuing as if nothing happened,
leading to an independent blockchain, also known as a hard fork. For instance,
this happened in Ethereum blockchain because of the DAO attack [161].

In the case of permissioned blockchains, it is possible to patch a buggy code
through network governance. Typically, there is a limited subset of peers, with
the power to propose a plan for halting, modifying, and restarting the blockchain
with updated software, carefully migrating the state of the previous version. This
kind of blockchain solution is often adopted in the industrial field, especially for
enterprise or consortium blockchains. However, enforcing an update leads to
a stop of services and data management problems. For instance, a blockchain
such as Cosmos to mitigate these problems offers an automatic process to ap-
ply blockchain upgrades, improving the synergy between the on-chain module
upgrade, responsible for halting the chain, and an off-chain daemon capable of
installing a new binary of the node software at the right time and autonomously
restarting the node.

In any case, it is of substantial importance to detect any kind of problem
as soon as possible and, above all, before the software is used by the peers of a
blockchain network.

4.2 Verification Techniques

Code verification is a process that is applicable since the beginning of implemen-
tation and reduces the issues of the final software product. Programming bugs
are unavoidable and it is not advisable to rely only on the skill of the program-
mer who is prone to errors (e.g., lack of information, knowledge, distractions,
etc.). In blockchain, it becomes more significant meaning because it applies be-
fore the deployment in blockchain and therefore before the code is immutable
or difficult to patch.

According to Chess et al. [38], the most used approach to find bugs is dy-
namic testing which executes the software and compares the output and the
expected results. However, this type of dynamic analysis has several drawbacks.
Creating test cases is not trivial activity and can require a lot of effort since
developers need to compute the expected results on each input case. This is also
associated with unit testing and goes to verify small portions of code (i.e. the
units), with normal and special inputs that could generate errors. According
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to Rival et al. [169, Chapt. 1.4.1], testing can observe only a finite set of finite
program executions. For instance, it is not feasible to test a program that takes
an arbitrary natural value as input for each input value, because natural values
are infinite and the test would not terminate. Hence, this solution can be used
only to show the presence of bugs, but never to show their absence [53, Part I,
Chapt. 3]. In addition, dynamic analysis is applicable from an advanced stage
of development as it needs to be executed, increasing the cost of bug fixing in
case of multiple bugs.

A complementary approach to dynamic analysis is static analysis. It automat-
ically verifies the properties of computer programs before their execution [169].
This solution reduces the cost of bug fixing for developers, giving them the
chance to fix bugs and code smell in an early stage [38].

For software coverage and to prove the presence or absence of a property,
such as a bug, it is necessary to use formal methods based on mathematical
frameworks [41,47,115].

4.3 Static Analysis by Abstract Interpretation

This section introduces the basic concepts of static analysis by abstract interpre-
tation, as well as common notations used in the rest of this thesis. More in-depth
introductions to abstract interpretation have been written by Cousot [158] and
Rival et al. [169].

According to Cousot [158, Chapt. 1.2], abstract interpretation [47, 48] is a
unifying theory of formal methods that proposes a general methodology for
proving the correctness of computing systems. In addition to the formalization
of systems, it also allows one to discuss the guarantees they provide, such as
soundness and completeness (Section 4.3.1).

Abstract interpretation is based on approximations. In static program analy-
sis, it is used to approximate concrete behaviors of a program (concrete seman-
tics), by an abstract version of them (abstract semantics). It also formalizes the
intuition that semantics are more or less precise depending on the abstraction
level. The idea behind abstract interpretation is that reasoning on the abstract
properties implies some reasoning on the concrete ones. The abstraction is a
necessary step to perform analyses that are able to detect properties in the
concrete world. Indeed, as proved by Rice’s theorem [168], it is undecidable to
reason about non-trivial program properties on concrete semantics. Therefore,
reasoning by abstraction allows one to acquire decidability while sacrificing the
precision of observed concrete objects.
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Figure 4.1: The left column contains the real program points that hold the
property of interest in a program, while the right column contains the real ones
that do not hold the property. The first row contains the program points reported
by the analysis as holders of property, while the second row contains the ones
considered by the analysis as non-holders.

4.3.1 Classification of Alarms

Analyzers based on static analysis issue alarms at program points where the
property chosen for the analysis might occur at runtime, such as when a secu-
rity vulnerability might be exploited, a specific bug occurs during the program
execution, etc. However, the analysis results must be checked to confirm whether
they are correct or not in reality. Figure 4.1 proposes a classification of possible
behaviors:

� true positives: the property is held in reality and the analysis reports the
property (the analysis detects correctly the property)

� false negatives: the property is held in the reality, but the analysis does not
report the property (the analysis miss to detect the property)

� false positives: the property is not held in the reality, but the analysis reports
the property (the analysis produces a wrong report)

� true negatives: the property is not held in reality and the analyzer does not
report the property (the analysis correctly does not detect the property).

Ideally, a verification tool should feature true positives and true negatives
only. However, this is not computationally possible in general [168]. This implies
that a tool has to sacrifice one of the two goals.

A static analyzer is sound with respect to a program and a property of
interest when it considers all possible program executions and is thus able to
give definite guarantees on the property of interest. Thus, if it does not issue any
alarm, the property is guaranteed to hold on to any possible execution. In other
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Figure 4.2: Approximation schema.

words, sound analyzers have no false negatives. Instead, a static analyzer is
complete with respect to a program and a property of interest, when it considers
the subset of all program executions where it is able to prove the presence of
the property. Hence, if at least one alarm is issued, the property is guaranteed
to be detected in at least one execution. That is, complete analyzers have
no false positives.

In terms of abstract interpretation, over-approximations can guarantee to
keep the analyses sound while under-approximations can be used to achieve
complete analyses (Figure 4.2).

In this thesis,we are interested in pursuing a sound approach and the
implementation of the analyzers proposed in this thesis are all sound.
According to B. Meyer [133], it is generally better to use sound yet incomplete
techinques, since false negatives can lead to critical bugs whose mitigation might
be impracticable in some contexts (e.g. blockchain).

4.3.2 Soundness, Abstractions, and Precision

Theoretically, developing a sound tool is straightforward. All that is required is
for the tool to trigger an alarm for each program point. In this way it always
guarantees to verify the property of interest for the analysis, avoiding false neg-
atives. However, in practice, users will perceive the tool as useless because they
still have to check all the code to figure out which alarm is a true positive or a
false positive. For this reason, a sound tool should reduce the number of false
positives as much as possible. Regarding the tools based on abstract interpreta-
tion, their analyses can be more or less precise depending on the abstractions.
Typically, the higher the level of abstraction, the more over-approximation will
be produced which will lead to more false positives. However, abstractions trade
precision for computational complexity. Hence, it is necessary to find a trade-off
between performance and the number of false positives to develop a valuable
tool for the users.
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Figure 4.3: LiSA overall architecture.

4.4 How to Build a Static Analyzer From Scratch

Static analysis based on formal methods requires a non-trivial theoretical back-
ground and development skills. Before being able to design and implement a new
analysis, it is often necessary to have an infrastructure capable of providing the
basic features (parser, control flow graphs (CFG) representation [5], fixpoint
algorithms, etc.). Hence, the development of even a toy static analyzer from
scratch requires a lot of effort.

In this thesis, the implementations of analyzers proposed have relied on LiSA
(Library for Static Analysis) [72]. LiSA is an open-source platform developed in
Java with the purpose to reduce the technological gap and favor the creation
and implementation of static analyzers based on the abstract interpretation the-
ory. In this section, we recall the main concepts and the architecture of LiSA.
The information provided is strongly referenced by the official Lisa’s documenta-
tion [184] and by the teaching experience report of Ferrara et al. [72]. Instead, we
discuss the challenges faced during the implementations of two analyzers based
on LiSA for the analysis of programs written in Go and Michelson language,
respectively in Chapter 5 and in Chapter 6.

The main components provided by LiSA are the following: (i) an internal and
extensible CFG representation, (ii) an algorithm for the fixpoint computation on
CFG representations, (iii) a common analysis framework for the development
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of new abstract domains, and (iv) interfaces for the development of common
analyses, such as non-relational, data flow analysis [178], type analysis [47], etc.

LiSA is agnostic from the target languages to analyze, thus each component
is designed to be as versatile and flexible as possible. Figure 4.3 describes the
general architecture of LiSA. As input, LiSA expects a program model which
contains a set of LiSA CFGs and the analysis settings. They are generated by a
front-end which usually generates them from source code. On each CFG, LiSA
applies the typical worklist fixpoint algorithm on CFG nodes. At the end of
analysis computation, LiSA produces entry and exit abstract states for each
node of the CFGs, which can be exploited for instance to generate warnings
using checkers or to dump analysis information.

Given the general nature of LiSA, the front-ends are additional components
to manage the translation from a program P written in a programming language
L to LiSA CFGs. The first step of a LiSA front-end is to extract each syntax
element from P and verify if the code is well-written. In this phase, the main
components involved are the lexer and the parser, which are built starting from
a grammar of L. Given P , the lexer spots the lexemes, i.e. words in the source
code, and returns the corresponding tokens. Then, the parser takes them as input
and builds an abstract syntax tree (AST) that reflects the grammar. In case of
failure, the analyzer aborts the execution with a syntax error [158, Chapter 5].
The AST is a structure that is used by several analyzers. However, it has limited
expressiveness. For instance, it cannot represent program details such as paths
or intraprocedural views of subroutines. Anyway, the AST is also a good starting
point to build a CFG and add the missing expressiveness. At this point, a CFG
builder can visit the syntax trees and converts the syntax elements into a CFG
representation. Each node corresponds to a statement implementation, which
expresses its custom semantic, i.e. the semantic relating to L, through symbolic
expressions [72] in order to be understandable after by LiSA. The symbolic
expressions can be considered as an internal language of LiSA to generalize the
semantics of a node. While, the connections between one statement and another
are indicated through edges. Ideally, the LiSA CFGs express the syntax of the
program of interest, while the LiSA symbolic expressions express the semantics
of CFGs, specifying the meaning of statements for each CFG node. At the end
of CFGs computation, an instance of the program will be created.

LiSA provides two interfaces for the implementation of syntactic and seman-
tic checkers, respectively. Intuitively, a syntactic checker performs checks only
purely based on the syntax of a program (e.g., a function/method with a cer-
tain name and parameters is declared in the program). Instead, for semantic is
able to exploit both the syntactic structure of the program and the semantic
information produced with the fixpoint iteration.
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4.5 Conclusions

Verification is a fundamental phase of software development. In blockchain soft-
ware, the code is hardly patchable and bugs can become potentially immutable
and exploitable by any attacker. Through the use of formal methods, it is possi-
ble to prove the absence of malicious properties in the code, while it is possible
to detect these properties without executing the code with the static analysis,
thus in the early stages of development and reduce the costs and timing of bug
fixing during development. However, the implementation of tools based on for-
mal methods is not trivial and requires technical skill and often considerable
effort. For this reason, it is advisable to use extensible frameworks or tools,
which facilitate their development, such as LiSA.

In the next chapters, we propose tools and analyses based on static ap-
proaches and the abstract interpretation theory. In particular, chapters 5 and 6
present two LiSA-based analyzers for Go and Michelson languages, respectively.
While chapters 7, 8, 9 propose analyses implemented in LiSA-based analyzers
able to scale on real-world software.



Chapter 5
A PARAMETRIC STATIC
ANALYZER FOR GO

This chapter presents GoLiSA, an open-source tool developed in Java for the
code analysis of programs written in Go. Its primary goal is to reduce the tech-
nological gap and facilitate the creation and implementation of highly customiz-
able static analyses for Go, pursuing a sound approach [158, Chapt. 1.2]. Some
contents of this chapter have been published in [148]. The implementation of
GoLiSA is available at [8]. To the best of our knowledge, this is the first ana-
lyzer based on LiSA applied to the industrial context and also the first analyzer
for Go that supports analyzing different blockchain frameworks.

5.1 The Go Language

Go [63] is a general-purpose programming language, conceptualized at Google,
whose aim is to speed up software development in a simple, reliable, and effi-
cient way. It is inspired by various programming languages such as C and Java,
but with some specific differences related to memory safety, garbage collection,
structural typing, and concurrency. As reported in the official survey [28], Go is
particularly suited for developing software like API/RPC services, runnable/in-
teractive programs (CLIs), data processing, and web services. This success has
generated many Go frameworks for heterogeneous application contexts.

In the blockchain context, Go has been widely adopted for the creation of
several platforms and is also used as the language for the development of smart
contracts and DApps. Listed below are the most popular blockchain frameworks.
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Cosmos [118] is a framework to build ecosystems of independent intercon-
nected blockchains, which support both public and permissioned Proof-of-Stake
(PoS) networks. The blockchain nodes are built using Tendermint Core [31], re-
cently rebranded as Ignite [106], a BFT middleware that separates the applica-
tion logic from the consensus and networking layers. This allows one to develop
blockchain applications written in any programming language that supports
remote procedure calls, and replicate them on many machines [32]. However,
the application development, although it supports many different languages, is
mainly oriented toward Go. Indeed, the recommended development involves the
use of Cosmos SDK, an open-source framework written in Go that abstracts
away the machinery needed to set up a network running through the consensus
mechanism. Calls to Tendermint Core are managed at high-level while sup-
porting the interconnection with the IBC (Inter-Blockchain Communication)
protocol. The programming style of Cosmos SDK follows the object-capability
model where the security of subcomponents is imperative, especially those be-
longing to the core library. Cosmos SDK is not a smart contract framework
but a real framework for DApps supporting different functionalities through
highly customizable modules, that can also manage smart contracts such as
CosmosWasm [45].

Hyperledger Fabric [103] is a permissioned blockchain framework, designed to
be adopted in the industrial context. It is supported by The Linux Foundation
and other contributors such as IBM, Cisco, and Intel. In this blockchain, smart
contracts and DApps are called chaincode and can be implemented using the full
set of instructions and features of popular GPLs such as Go, Node.js, and Java.
In most cases, chaincode interacts only with the world state database component
of the ledger, and not with the transaction log [102]. Go is currently the most
popular language on GitHub related to chaincode1, as chaincodes written in Go
are the most performant [76].

5.2 An Overview of GoLiSA

We developed GoLiSA based on LiSA [72] to support the standard components
of abstract interpretation. It is the first LiSA-based project which, in addition
to its scholarly purpose, is also involved in the analysis of industrial code and
the detection of real-world issues (Section 7.7).

It models the Go language, its memory model, the implementations and rep-
resentation of Go instructions with their semantics, supports the various Go

1 Querying the keyword chaincode on GitHub (https://github.com/search?q=chaincode)
results in almost 2000 repositories and half of them are written in Go, as of 04/2022.

https://github.com/search?q=chaincode
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Figure 5.1: GoLiSA overall execution.

frameworks, provides interfaces and classes to build analysis specific to Go, and
creates Go program instances enriched with additional information for the anal-
yses. Indeed, as already reported in Section 4.4, LiSA is a generic framework for
abstract interpretation and is agnostic from the analyzed language. Then, LiSA
does not handle the peculiarities of Go, and for this reason, it needs GoLiSA
components to model it.

5.2.1 Parsing and CFG Construction

Figure 5.1 shows the overall high-level architecture of GoLiSA. The execution
flow starts with the Go front-end, which takes a Go program as input. It trans-
lates Go applications into a set of LiSA CFGs, later inspected and analyzed by
LiSA. First, it extracts each syntax element from the file and verifies if it is syn-
tactically correct. In this phase, the main components involved are a lexer and a
parser, developed from the grammar of Go, as provided by ANTLR4 [157]. Given
a Go program, if it is syntactically correct, the parser produces an AST of the
program of interest. From that, GoLiSA builds a set of CFGs, whose nodes im-
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plement the source statements in terms of an analysis-independent intermediate
language of LiSA symbolic expressions, that LiSA understands.

The generation of the CFGs takes also into account language-specific issues,
such as, in the case of Go, the possibility of variable shadowing2. A variable is
said to be shadowing another variable if it overrides the variable in a more spe-
cific scope. In Go, a variable can be re-defined within each new block and restores
its value once closed the block. The operations, including the assignments, will
only affect the last visible redefinition of that variable. The value of the other
definitions will be restored as soon as the block of the nested redefinition is
closed. Figure 5.2 shows some examples of shadowing in Go. In particular, the
operator:= defines a variable declaration with an assignment, while = defines
a variable assignment only. The language-specific aspects are of fundamental
importance for Go code analyses. In the absence of this variable information, a
conservative analysis, to be sound, over-approximates the propagation results,
leading to the generation of false positive warnings. GoLiSA during the building
of the program collects all this information and passes it for each statement to
LiSA

Going on with the execution flow, at this point, CFGs with additional in-
formation are passed to an interprocedural analysis that uses a call graph to
resolve calls and compute their results. LiSA provides a set of interprocedural
fixpoint algorithms over the CFGs, that interprets the abstract semantics of
the symbolic expressions by using an abstract state, including a heap domain
(to model the dynamic memory of the program) and a value domain (to track
the abstract values of variables and dynamic abstract locations). The fixpoint
computes a sound over-approximation of the CFG node’s semantics of the sym-
bolic expressions, according to the specific logic of the node’s semantics. Once a
fixpoint is computed, it can be used by a set of checkers to verify the properties
of interest and possibly trigger warnings.

5.3 Related Work

The range of analysis tools for Go is mainly oriented toward generic issues and
code smells detection [94,141,185]. In most cases, these are linters3 or enterprise
tools, therefore subject to limited analysis potential or extension difficulty for
custom analyses, respectively. Moreover, although the generic nature of these
tools can be useful in most implementations written in Go, they can fail and
generate critical problems if applied to specific contexts. Indeed, even if to a
much more limited extent, it is possible to find specialized tools in particular

2 https://stackoverflow.com/questions/38697987/golang-function-contains-anonymous-scope
3 https://en.wikipedia.org/wiki/Lint_(software)

https://stackoverflow.com/questions/38697987/golang-function-contains-anonymous-scope
https://en.wikipedia.org/wiki/Lint_(software)


5.3 Related Work 43

v := 0 // v <- 0

{

v := 1 // v <- 1

foo(v) // v <- 1

}

foo(v) // v <- 0

(a)

v := 0 // v <- 0

{

v = 1 // v <- 1

foo(v) // v <- 1

}

foo(v) // v <- 1

(b)

v := 0 // v <- 0

{

v := 1 // v <- 1

{

v = 2 // v <- 2

foo(v) // v <- 2

}

foo(v) // v <- 2

}

foo(v) // v <- 0

(c)

Figure 5.2: Example of shadowing in Go. (a) A re-declaration of v in the block.
(b) An assignment to v in the block. (c) An example with multiple blocks.

contexts. For instance, Gobra [203] is a modular, deductive program verifier
based on separation logic that proves memory safety, crash safety, data-race
freedom, and user-provided specifications. Its implementation translates an an-
notated Go program into the Viper intermediate verification language and uses
an existing SMT-based verification backend to compute and discharge proof
obligations. While, in [34], Chabbi et al. propose strategies based on dynamic
analysis for detecting data races on industrial code.

About blockchain, in recent years, new verification tools have been developed
that allow the modeling of smart contracts and their properties [193]. Unfortu-
nately, concerning Go, aside from GoLiSA, only a few tools are specialized in
the blockchain field. Moreover, they are tailored exclusively to specific smart
contract frameworks and cannot analyze other blockchain frameworks support-
ing Go. Chaincode Analyzer [119] is a static analyzer proposed by Fujitsu in the
Hyperledger Labs. ReviveˆCC [180] is an extension of the revive analyzer [134],
specific for chaincode. Both extract the abstract syntax tree from the source
code and perform their checks on it. The checks performed by these tools are
almost exclusively syntactic with the addition of minor reasonings about types.
According to [126], also their tool is similar to Chaincode Analyzer. The main
differences are that Chaincode Analyzer covers a minor set of issues, while,
their tool is more accurate, i.e. it syntactically checks the signature functions
instead of just triggering a warning on black-listed imports. Instead, HFCon-
tractFuzzer [62] applies go-fuzz [87] to discover a vulnerability on Go smart
contracts for HF. ZEUS [112] is a framework for the verification of smart con-
tracts written for Ethereum and Hyperledger Fabric. It converts source code
into LLVM bytecode and exploits abstract interpretation and symbolic models
to detect vulnerabilities. However, Kalra et al. [112] does not explain in detail
the analysis to make a comparison and the tool is not available. Moreover, there
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are no works nor benchmarks about ZEUS for Go, although it would seem to
support it.

5.4 Conclusions

Go is a versatile programming language applied to different contexts. However,
this exposes it to multiple vulnerabilities when applied to blockchain scenar-
ios, being a GPL and then not conceived by design for the blockchain context.
In this chapter, we have presented a LiSA-based tool capable of verifying soft-
ware implemented using popular blockchain frameworks in Go. In particular,
it allows performing non-trivial semantic analyses that many of the state-of-
practice tools for blockchain do not have. About the analyses treated in the
thesis, Chapters 7, 8 and 9 describe the detection of issues respectively re-
lated to non-determinism, untrusted cross-contract invocation and numerical
overflow/underflow using GoLiSA.



Chapter 6
A PARAMETRIC STATIC
ANALYZER FOR TEZOS SMART
CONTRACTS

This chapter introduces MichelsonLiSA, a prototype of a static analyzer based
on abstract interpretation for the verification of Tezos smart contracts written in
the Michelson language, which is the low-level language of the Tezos blockchain.
The implementation of MichelsonLiSA is available at [11]. To the best of our
knowledge, this is the first analyzer based on LiSA with an intermediate rep-
resentation based on the static single-assignment form and a symbolic stack.
Some contents of this chapter are under publication at Workshop on Blockchain
theoRy and ApplicatIoNs (BRAIN’23).

6.1 The Michelson Language

The Tezos community has made several tools for implementing smart con-
tracts at high-level, supporting popular programming languages such as Python,
OCaml, and Javascript, among others [124,182]. However, despite this large lan-
guage support, the only native smart contract language of the Tezos blockchain
is the low-level Michelson language: high-level code is translated into Michel-
son and the latter is deployed in the blockchain. Michelson is a domain-specific
language, statically typed, and whose only variables are the stack elements:
there are no fields and no global variables. It supports low-level instructions
only, enough to implement Turing-complete smart contracts, whose structure is
specified by three components:
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parameter (pair int int) ; # Parameter declaration: two integers

storage int ; # Storage declaration

code { # Code declaration

CAR ; # Push the input parameter to the stack and discard the

current storage value

UNPAIR ; # Pop the input pair from the stack , split it into two

integers and push them on the stack instead

ADD ; # Pop the two integers and push their sum instead

NIL operation ; # Push an empty list of operations required to end

the contract

PAIR ; # Build the final stack: a pair consisting of a list of

operations and the value to keep in storage (in this case , the

result of addition)

}

Figure 6.1: A Michelson smart contract that adds two input integers and stores
the sum in the blockchain.
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Figure 6.2: An example of the execution of the smart contract in Figure 6.1.

Parameter declaration: explicitly typed input.
Storage declaration: explicitly typed blockchain store locations.
Code declaration: sequence of instructions, similar to bytecode.

Technically, the input is a single value that specifies the required code execution.
However, the use of aggregate types, such as pair and or, allows one to provide
more than a single input value to a contract, as Figure 6.1 shows.

The execution of a Michelson contract is stack-based: instructions pop and/or
push stack elements. In the Tezos blockchain, a smart contract execution request
(invocation) specifies the address of the smart contract in blockchain and its in-
put1. The execution starts from a stack whose only element is the pair of the
input and the current value of the storage of the contract. Figure 6.2 shows an
example: for the execution of the contract in Figure 6.1 with input Pair(5,9)
and assuming that the current value of the storage of the contract is the integer
0, the initial stack contains a singleton value Pair(Pair(5,9),0). Note that
the user provides the input, while the blockchain protocol retrieves the stor-
age value from the blockchain state. The first instruction in this example, CAR,
splits the pair and projects it on its first component Pair(5,9) (the input),

1 https://tezos.gitlab.io/michelson-reference/#execution

https://tezos.gitlab.io/michelson-reference/#execution
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Instruction Description

ADDRESS pop a contract value and push the address of that contract

AMOUNT push the amount of the current transaction

BALANCE push the current amount of mutez of the executing contract

CHAIN ID push the chain identifier

CONTRACT replace the top of the stack after cast to a contract type

CREATE CONTRACT push a contract creation operation

IMPLICIT ACCOUNT push the address of a new implicit account

LEVEL push the current block level

NOW push block timestamp

SELF push the current contract

SELF ADDRESS push the address of the current contract

SENDER push the contract that started the current internal transaction

SET DELEGATE push a delegation operation

SOURCE push the contract that initiated the current transaction

TOTAL VOTING POWER push the total voting power of all contracts

TRANSFER TOKENS push a transaction operation

VOTING POWER push the voting power of a contract

Table 6.1: Domain-specific operations of Michelson.

which pushes on the stack instead: the current storage value is discarded. The
subsequent UNPAIR instruction decomposes Pair(5,9) into its two components
5 and 9 which pushes on the stack instead. The ADD instruction computes their
sum (14), that pushes on the stack instead. At this point, the core execution of
the smart contract is done. In Tezos, to successfully terminate the execution of
the contract, it is always necessary to return a pair containing a list of operations
(internal values pushed by instructions such as TRANSFER TOKENS, SET DELEGATE

and CREATE CONTRACT) and a value typed as reported in the storage declaration.
In the example, the NIL instruction pushes an empty list of operations (opera-
tions are optional, but the list is always required) to perform at the end of the
execution and the final PAIR instruction boxes the list and the result into a pair:
the latter is the result of the execution. The blockchain protocol will take that
second component (14) and store it in the storage of the contract, for future
use.

Michelson consists of around 100 instructions2: for stack manipulation (PUSH,
DROP, SWAP, . . . ); for creation and management of high-level data structures
(MAP, UPDATE, SIZE, . . . ); for arithmetic (SUM, SUB, AND, . . . ); for control flow
(IF, LOOP, . . . ) and for blockchain-specific operations (see Tab.6.1).

2 https://tezos.gitlab.io/michelson-reference

https://tezos.gitlab.io/michelson-reference
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Figure 6.3: MichelsonLiSA architecture.

6.2 An Overview of MichelsonLiSA

MichelsonLiSA is a static analyzer based on abstract interpretation [47,48], for
Tezos smart contracts written in the Michelson language. It relies on LiSA [72], a
library that provides a complete infrastructure for the development of static an-
alyzers. In particular, LiSA implements several standard components of abstract
interpretation-based analyzers [158], such as an extensible CFG representation,
a common analysis framework for the development of new static analyses, sev-
eral built-in standard static analyses (such as type analysis [46], information
flow analyses [47, Chapt. 47], etc.) and fixpoint algorithms on LiSA CFGs. To
analyze smart contracts with LiSA, MichelsonLiSA needs to design and imple-
ment additional components, that manage the translation from the Michelson
source code to the intermediate representation (IR) supported by LiSA. The
next section presents these components and the challenges faced to support the
Michelson language. Figure 6.3 shows an overview of MichelsonLiSA.
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6.2.1 Parsing and CFG Construction

The first step of the Michelson front-end, in order to verify and analyze a smart
contract, is to define the language syntax, i.e, a specification of how the code
must be written. The syntax of the Michelson language is specified by a gram-
mar3. However, that grammar lacks some syntactic sugar (such as annotations,
use of brackets, smart contract structure, macros, etc.) widely used in real-world
Tezos contracts. Hence, we enriched that grammar and implemented it4 in the
ANTLR v4 format. ANTLR [157] is a popular tool that, starting from a gram-
mar, builds a lexer and a parser for the grammar. Then, the CFG building
phase starts after the parsing of the Michelson source code into AST. The CFG
builder translates the code into an IR based on Static Single Assignment (SSA)
form [52,170] and builds the LiSA CFGs.

MichelsonLiSA analyses the SSA code once it is put inside a CFG, that
expresses the control structure of the code. Each node contains symbolic expres-
sions, that is, expressions in the internal language of LiSA, used to implement
the semantics of the statements, in a language-independent way. Namely, such
symbolic expressions are low-level instructions that can be used to compile many
source languages. The abstract semantics of a CFG is defined as a fixpoint, that
will be reached in a finite number of iterations if the abstract domain has finite
height [70]. The abstract states computed during that fixpoint computation are
a sound over-approximation of the semantics of the symbolic expressions, that a
checker can use to issue warnings. For instance, the v21 = SUB(v10, v11) SSA
instruction in Figure 6.5b is translated into a symbolic binary expression that
performs subtraction, whose semantics is implemented in Figure 6.4, paramet-
rically wrt. the abstract state.

6.2.2 Intermediate Representation in SSA Form

Michelson is a low-level, stack-based language. According to Demange et al. [55],
the use of a stack makes it difficult to apply standard static analysis techniques.
Therefore, an IR is necessary to provide an efficient model for the analysis, in
terms of transformation time and produced code. LiSA is designed to handle
a generic program language but is currently variable-oriented. For this reason,
we translate the stack-based representation into a variable-based IR, by using
the SSA form. The translation maps each Michelson instruction5 into a list of
MichelsonLiSA instructions, by using new fresh variables. It tracks, abstractly,

3 https://tezos.gitlab.io/active/michelson.html#full-grammar
4 https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/

src/main/antlr
5 https://tezos.gitlab.io/active/michelson.html#core-instructions

https://tezos.gitlab.io/active/michelson.html#full-grammar
https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/antlr
https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/antlr
https://tezos.gitlab.io/active/michelson.html#core-instructions
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public class MichelsonSub extends BinaryExpression

implements StackConsumer , StackProducer {

public MichelsonSub(CFG cfg , String sourceFile , int line , int col ,

Expression left , Expression right) {

super(cfg , new SourceCodeLocation(sourceFile , line , col), "SUB",

computeType(left.getStaticType (),right.getStaticType ()), left ,

right);

}

@Override

protected <A extends AbstractState <A,H,V,T>,

H extends HeapDomain <H>,

V extends ValueDomain <V>,

T extends TypeDomain <T>>

AnalysisState <A,H,V,T> binarySemantics(

InterproceduralAnalysis <A,H,V,T> interprocedural ,

AnalysisState <A,H,V,T> state ,

SymbolicExpression left , SymbolicExpression right ,

StatementStore <A,H,V,T> expressions) throws SemanticException {

return state.smallStepSemantics(

new BinaryExpression(getStaticType (), left , right ,

NumericNonOverflowingSub.INSTANCE , getLocation ()),

this);

}

}

Figure 6.4: Generic implementation of the SUB symbolic expression of LiSA.
MichelsonSub is a binary expression with components left and right.
It is both a stack consumer and a stack producer. The template method
binarySemantics implements its semantics, parametrically wrt. the abstract
domain.

the values on the stack through a symbolic stack of such variables6. In this way,
it tracks the stack elements by using symbolic names only, and not their exact
values. Figure 6.5 shows the translation of a Michelson contract into SSA and
the corresponding symbolic stack. Given a parameter, the contract performs an
addition if the first component of the input pair is larger than the second one;
otherwise, it performs a subtraction. At the end of the contract, the result is
encapsulated in a pair, consisting of an empty list of internal operations and the
new value for the storage data.

Instructions that push values on the stack are translated into variable assign-
ments, with fresh variables standing for stack elements, each assigned exactly
once. Instructions that pop from the stack are translated into MichelsonLiSA
instructions taking those variables as parameters. Some instructions can be both

6 https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/

src/main/java/it/unive/michelsonlisa/frontend/visitors/MichelsonStack.java

https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/java/it/unive/michelsonlisa/frontend/visitors/MichelsonStack.java
https://github.com/lisa-analyzer/michelson-lisa/tree/master/michelson-lisa/src/main/java/it/unive/michelsonlisa/frontend/visitors/MichelsonStack.java
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parameter (pair int int);

storage int;

code {

CAR;

DUP;

UNPAIR;

COMPARE;

GT;

IF

{ # True branch

UNPAIR;

ADD;

}

{ # False branch

UNPAIR;

SUB;

}

NIL operation;

PAIR;

}

(a) Michelson code

v0 = parameter_storage ();

v1 = CAR(v0);

v2 = DUP(v1);

v3 = get_left(v2);

v4 = get_right(v2);

v5 = COMPARE(v3, v4);

v6 = GT(v5);

IF(v6)

{ # True branch

v7 = get_left(v1);

v8 = get_right(v1);

v9 = ADD(v7, v8);

}

{ # False branch

v10 = get_left(v1);

v11 = get_right(v1);

v12 = SUB(v10 , v11);

}

v13 = phi(v9 , v12);

v14 = NIL(operation);

v15 = PAIR(v14 , v13);

(b) SSA Form representation

Figure 6.5: A Michelson smart contract and its translation into SSA form.

producers and consumers. Figure 6.6 shows an example of translation in SSA
for some common instructions. PUSH <type> <data> pushes a constant of the
declared type: it is translated with a fresh new variable that gets assigned a
constant of a declared type. SUB consumes its two operands from the stack and
pushes their difference instead: it is translated as a function that receives the
operands as arguments and yields their difference. DROP pops and discards the
top of the stack: it is translated with a function with no return value. PAIR con-
sumes the two topmost stack elements and packs them into a pair that pushes
on the stack instead: it is translated as a function with two arguments that
yields the pair. UNPAIR pops a pair, splits it, and pushes its two components
instead: it is translated with two functions, that select the two components and
store them into fresh new variables.

Some Michelson stack-modifying instructions perform relatively complex
stack operations. Namely, SWAP exchanges the topmost two elements of the stack;
DIG n shifts the stack element at depth n into the top of the stack, while DUG n

does the converse. All these instructions can be translated into SSA. Figure 6.7
shows an example of translation for DIG n.

Michelson includes instructions for conditionals, such as IF, and for iteration,
such as LOOP, both leading to branches and junction points. For junctions, SSA
reconciles distinct values of the same variable, arising along different paths,
through ϕ-functions [52]. The idea is to translate instructions separately along
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0: PUSH

int

23;

1: PUSH

int

13;

2: SUB;

3: DROP;

4: PUSH

int

23;

5: PUSH

int

13;

6: PAIR;

7: UNPAIR;

8:

(a) Michelson code

0: []

1: [v1]

2: [v1,v2]

3: [v3]

4: []

5: [v4]

6: [v4,v5]

7: [v6]

8: [v7, v8

]

(b) Symbolic stack

0: v1 = PUSH(int , 23)

;

1: v2 = PUSH(int , 13)

;

2: v3 = SUB(v1,v2);

3: DROP(v3);

4: v4 = PUSH(int , 23)

;

5: v5 = PUSH(int , 13)

;

6: v6 = PAIR(v4,v5);

7: v7 = get_left(v6);

v8 = get_right(v6);

8:

(c) SSA form

Figure 6.6: Example of transformation into SSA form.

0: PUSH nat 5;

1: PUSH nat 3;

2: PUSH nat 2;

3: DIG 2;

4: DROP;

5:

(a) Michelson code

0: []

1: [5]

2: [5, 3]

3: [5, 3, 2]

4: [3, 2, 5]

5: [3, 2]

(b) Execution stack

0: v1 = PUSH(nat , 5);

1: v2 = PUSH(nat , 3);

2: v3 = PUSH(nat , 2);

3: DIG(2);

4: DROP(v1)

5:

(c) SSA form

0: []

1: [v1]

2: [v1, v2]

3: [v1, v2, v3]

4: [v2, v3, v1]

5: [v2, v3]

(d) Symbolic stack

Figure 6.7: Michelson code using a DIG n instruction and its SSA form repre-
sentation.

each path, using disjoint sets of variables, and merge, at the junction point, into
a new unique fresh variable, the distinct variables standing, along distinct paths,
for the same stack element. Figure 6.8 shows an example.

Michelson has stack-protecting instructions, such as DIP n, that temporarily
freeze the topmost n elements of the stack, keeping them unaffected during the
execution of a specified group of subsequent instructions. Figure 6.9a shows a
snippet of code that uses DIP 2 at Line 3. There, the stack holds [5, 3, 4]

(from bottom to top), as reported in Figure 6.9b. DIP 2 freezes its topmost
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0: IF

1: { #

True

branch

2:

PUSH

int

-1;

3: }

4: { #

False

branch

5:

PUSH

int

7;

6: }

7:

(a) Michelson code

0: stack [v0]

1: stack []

2: stack1 []

3: stack1 [v1]

4: stack1 [v1]

5: stack2 [v2]

6: stack1 [v1],

stack2[v2]

7: stack [v3]

(b) Symbolic stack

0: IF(v0)

1: { # True

branch

2: v1 = PUSH(

int , -1);

3: }

4: { # False

branch

5: v2 = PUSH

(int , 7);

6: } v3 = phi(

v1, v2) #

Junction

point

7:

(c) SSA form

Figure 6.8: Example of transformation of a conditional into SSA form, with a
junction point. The ϕ-function is written as phi.

two elements (3 and 4) during the execution of the instructions specified inside
the curly braces. Namely, PUSH nat 1 pushes 1 immediately below the frozen
elements, instead of on top of the stack, leading to the stack [5, 1, 3, 4].
Similarly, ADD pops the two topmost, unprotected stack elements 5 and 1 and
pushes their addition immediately below the frozen elements. This behavior
is reflected in the SSA translation (Figure 6.9c): PUSH nat 1 becomes v1 =

PUSH(nat, 5), with v1 pushed on top of the symbolic stack (Figure 6.9d).
Similarly for the two subsequent PUSH instructions. At Line 3, the symbolic
stack will be [v1, v2, v3] and v2 and v3 will become protected. Consequently,
at Line 4, the PUSH instruction is translated into v4 = PUSH(nat, 1), with v4

placed below the protected area of the symbolic stack, which becomes now [v1,

v4, v2, v3]. The subsequent ADD instruction will operate on the unprotected
elements v1 and v4 and gets translated into v5 = ADD(v1, v4), with v5 pushed
immediately below the protected values.

Michelson smart contracts interact with the context of Tezos where they ex-
ecute. For instance, at the beginning of their execution, the stack holds a pair
of the input value and the current storage value. This must be made explicit
in the SSA translation, as in Figure 6.5, with v0 = parameter storage(). In-
strumentation is needed for data structures as well. Namely, Michelson supports
high-level data structures (sets, lists, maps, optionals) and has specific instruc-
tions to operate on them, such as ITER, LOOP LEFT and IF CONST. These typically
push additional elements on the stack. For instance, ITER consumes a collection
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0: PUSH nat 5;

1: PUSH nat 3;

2: PUSH nat 4;

3: DIP 2 {

4: PUSH nat 1;

5: ADD;

6: }

7:

(a) Michelson code

0: []

1: [5]

2: [5, 3]

3: [5, 3, 4]

4: [5, (3, 4)]

5: [5, 1, (3, 4)]

6: [6, (3, 4)]

7: [6, 3, 4]

(b) Execution stack

0: v1 = PUSH(nat , 5);

1: v2 = PUSH(nat , 3);

2: v3 = PUSH(nat , 4);

3: DIP(2) {

4: v4 = PUSH(nat ,

1);

5: v5 = ADD(v1, v4)

;

6: }

7:

(c) SSA form

0: []

1: [v1]

2: [v1, v2]

3: [v1, v2, v3]

4: [v1, (v2, v3)]

5: [v1, v4, (v2, v3)]

6: [v5, (v2, v3)]

7: [v5, v2, v3]

(d) Symbolic stack

Figure 6.9: Michelson code that uses a DIP n instruction and its corresponding
stack execution. Round brackets highlight the protected area of the stack.

from the stack and applies a set of instructions to each of its elements. These
gets simulated, in SSA, by using assignments to additional variables.

6.3 Related Work

The formal verification of smart contracts is a crucial issue in the blockchain
context. Several tools are developed in this regard [193]. However, only a few of
them are involved in verifying the Michelson language. Bernardo et al. propose
Mi-Cho-Coq [25, 26], a Coq framework for verifying the functional correctness
of Michelson contracts. They also introduce an intermediate language called
Albert [27], which provides a high-level stack abstraction based on linearly typed
records that can be exploited by Mi-Cho-Coq. In [166], Reis et al. describe an
intermediate representation called Tezla that abstracts the stack usage through
the usage of a store and can be combined with SoftCheck analyzer to perform
data-flow analyses. Arrojado et al. propose a proofer in Why3 for the deductive
verification of the Michelson contract called WhylSon [95]. Instead, Bau et al.
describe a static analyzer for Michelson [20] based on abstract interpretation
and implemented within MOPSA [137].
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Our transform function for the intermediate representation is similar to
BC2BIR [55], which transforms Java bytecode into variable assignaments, in-
cluding exception flows, and is based on a symbolic stack execution. However,
BC2BIR is variable-based without being in SSA form. Indeed, it does not guar-
antee SSA of variables in linear code, it does not consider ϕ-functions and vari-
ables are assigned several times at predecessors of junction points.

6.4 Conclusions

Michelson is the low-level language for Tezos blockchain. Its peculiarities of DSL
and its memory management based solely on the stack, make it a challenging
language for traditional verification tools. Our solution proposes a tool based on
LiSA, which computes the program model using the SSA form and an abstract
symbolic stack for the intermediate representation. As far as we know, this is
the first proposed SSA-based intermediate representation for LiSA and may be
used in the future as a starting point for supporting other languages. Several
analyses are introduced in the next chapters. In particular, Chapter 8 deals with
the detection of untrusted cross-contract invocations by using MichelsonLiSA.





Chapter 7
ENSURE DETERMINISM IN
BLOCKCHAIN SOFTWARE

A mandatory feature for blockchain software is determinism. When determinism
is not met it can lead to serious implications in the blockchain network while
compromising the software development, release, and patching processes.

Typically, DSLs for blockchain software ensure determinism by simply avoid-
ing non-deterministic language features, as happens for Michelson language.

However, this is not the case with GPLs, such as Go. They are adopted in
the industrial context for developing blockchain solutions (Section 3.2), but they
allow one to implement software containing non-deterministic behaviors, being
these programming languages not originally designed for blockchain.

By the way, our perspective is that not all non-deterministic behaviors are
critical for blockchain. Indeed, only those that affect the state or the response of
the blockchain can cause problems, i.e. observable and shared by the network,
as other uses are only visible by the single peer that executes the application
and not by others.

This chapter describes the problem in detail, proposing a flow-based ap-
proach to detect non-deterministic vulnerabilities which could compromise the
blockchain. This led to the implementation of an analysis for GoLiSA and the
experimental results show that GoLiSA is able to detect all vulnerabilities re-
lated to non-determinism on a significant set of real-world programs written
in Go, with better results than other open-source analyzers. To the best of our
knowledge, this is the first application of information flow analysis for the detec-
tion of issues related to non-determinism in blockchain software. Some contents
of this chapter are published in [148] and also they are under publication at
European Conference on Object-Oriented Programming (ECOOP’23).
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7.1 Non-Determinism in Blockchain

The software deployed into a blockchain is distributed and decentralized in differ-
ent peers of the blockchain network. The consensus mechanism is the component
that checks the results of blockchain software, and the state of peers involved
in the consensus and allows or not to update the global state of the blockchain.
If a certain threshold of commonly committed states among peers is reached,
the common state is used to update the global state, i.e. consensus is reached,
otherwise it is discarded, i.e. consensus is not reached, avoiding updating the
state differently among the nodes of the blockchain network.

In this scenario, the non-deterministic response of the blockchain network
may lead to a discard of updates because they could produce different states
among the blockchain network participants. Hence, deterministic execution is
required for software that runs in a blockchain, since it guarantees that, starting
from a common state, the same result is reached with the same response in any
distinct blockchain node, avoiding inconsistency among peers and consensus
failures.

Moreover, these issues related to non-determinism are subtle and do not
necessarily implicate an attack from an unknown enemy. In fact, the developer
is often the worse enemy of himself. Indeed, this can also happen in a network
where all the participants are trusted and it is unrelated to the majority attack
(51% attack) [206], in which most of the network is considered compromised by
malicious peers. Indeed, according to [64], non-determinism is “most often the
result of a mistake on the part of the programmer”. Non-determinism can have
a critical impact on the peers and the network:

– Deny of Service. The software of a smart contract that contains this issue
could cause the failure of all transaction requests, making the contract in-
accessible. Furthermore, in the worst-case scenario, if the problem affects
the entire application layer, it could totally deny transaction requests across
the entire network, making the blockchain unable to perform write or exe-
cute operations. In addition, as already reported in Section 4, depending on
the type of blockchain, patching could take a long time and also lead to a
blockchain fork.

– Economic loss. The blockchain uses the economic factor as a deterrent, to
discourage inappropriate behavior. It is managed by a consensus algorithm,
which is not generally able to recognize that the problem is due to an un-
wanted non-determinism problem. Therefore the penalties will still be ap-
plied to the components of the blockchain network. The transaction fee is a
mechanism normally used both to reward validators to mitigate DoS attacks
and to discourage the overflow of transaction requests. However, users lose
transaction fees for failed transactions due to non-determinism issues. While,
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Level Category Package Statements/Methods
Framework Map iteration - range on map
and Language Parallelization

-
go (go routine),

and concurrency <- (channel)
Random value math/rand,

*
generation APIs crypto/rand

Environment File system APIs io, embed,
*

archive, compress
OS APIs os, syscall,

*
internal, time

Database APIs database *
Internet APIs net *

Table 7.1: Overview of non-deterministic behaviors in Go. Most of the APIs
contained in these packages lead to non-deterministic behaviors, but some can
be considered safe for determinism.

in a PoS blockchain, the validator nodes can be indicated by the consensus
algorithm as being cheaters due to the different (non-deterministic) results.
Therefore, they could lose partially or fully the amount of stake.

– Exclusion from validation. In addition to the economic and stake loss, and
in the worst case even the validator nomination can be lost and the peer
is marked as malicious or banned from the blockchain network. Consen-
sus algorithms are not able to understand the difference between intention-
ally cheating behavior and unintentional behavior caused by issues of non-
determinism. Hence, they can apply even the most severe penalties.

7.1.1 Sources of Non-Determinism

The sources of non-determinism can be categorized into two main families. The
first one is related to the blockchain framework and the programming language
adopted to develop the software. This family comprises a set of constructors or
APIs allowed by the framework that may break the consensus during the exe-
cution of smart contracts or DApps. Examples are non-deterministic iterations,
parallelization or concurrency statements, and random value generators1.

The second family is trickier since it involves statements related to the un-
derlying environment, such as file systems, operating systems, databases, and
Internet connections. For instance:

1 Random numbers are allowed in smart contracts [35], but they are strictly related to the
semantics of the methods that generate them. Usually, standard methods of general-purpose
languages to generate random values do not satisfy such semantics, i.e. they generate random
values that compromise the consensus algorithm.
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– File systems: if a program needs to handle a certain file on a node, the same
file may not exist in all nodes involved in the consensus protocol — at each
validation round the nodes could be different and the file might have been
deleted, edited, moved, or any kind of operation might fail due to insufficient
space on the disk;

– Operating systems: the blockchain protocol may operate on different oper-
ating systems (OS) and some language APIs could return different results
if called from a different OS, for instance when low-level calls occur during
contract execution — common APIs such as time and date methods could
return different values if nodes are not synchronized;

– Databases: database records could be deleted or edited, and the database
state could be different in the nodes or the access could be denied during
the consensus phase;

– Internet connections: some Internet addresses could be unreachable from
some nodes of the network, or the messages exchanged during the connection
could be different.

7.1.2 Sinks of Non-Determinism

The sinks of non-determinism, i.e. the statements that are sensitive to non-
deterministic behaviors, can be categorized into two families. The first one is
related to the blockchain state. This family includes a set of constructors or APIs
with the ability to modify the common state of the blockchain and therefore in-
volved in the consensus mechanism. The second one is related to the response
of blockchain networks. The execution of code within the blockchain does not
necessarily change the state of the blockchain (e.g., functions that simply read
a value). However, the execution may lead to non-deterministic transaction re-
sponses, compromising the consensus of the network.



7.2 Non-Determinism in Go 61

1 func (g Grant) ValidateBasic () error {

2 if g.Expiration.Unix() < time.Now().Unix() {

3 return sdkerrors.Wrap(ErrInvalidExpirationTime , "Time can’t be in

the past")

4 }

5 // [...]

6 }

Figure 7.1: Cosmos SDK code affected by CVE-2021-41135.

1 func transfer(from , to Address , value int64 , stub *shim.

ChaincodeStub) {

2 start := time.Now()

3 //... transfer operations that takes some milliseconds ...

4 elapsed := time.Now().Sub(start)

5 log.Println("Time elapsed for the transfer operations: ", elapsed)

6 }

Figure 7.2: Example of safe use of time APIs in blockchain software.

1 func transfer(from , to Address , value int64 , stub *shim.

ChaincodeStub) {

2 t := time.Now()

3 //... transfer operations ...

4 err := shim.PutState("transaction -time", t)

5 //... other operations ...

6 }

Figure 7.3: Example of issue of non-determinism with time APIs in blockchain
software.

7.2 Non-Determinism in Go

Unlike DSLs such as Michelson, where there are only deterministic language
features, Go is a GPL that contains methods and instructions of general use and
is not specific to the blockchain context. Nevertheless, GPLs provide several com-
ponents that can explicitly lead to non-determinisms, such as (pseudo-)random
values generators or external computations. Furthermore, even some methods
that are explicitly sequential and deterministic pose a threat when executed
on different nodes, such as the time.Now() call from Figure 7.1. Despite these
threats, popular blockchain frameworks such as HF and Cosmos SDK do not
enforce particular restrictions on the usage of non-deterministic methods and
components.

A first solution that comes to mind is to restrict the usage of some APIs
known to introduce non-deterministic behaviors or, conversely, only allow a sub-
set of the language that is known to be deterministic [187]. While this can fix
the problem, it also forbids the usage of development tools that could be useful
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in non-harmful contexts. Consider the Go snippets reported in Figure 7.2 and
Figure 7.3. Both fragments rely on the time API for retrieving a timestamp from
the system. In general, the effects of the time APIs execution are subjective to
the node and might lead to non-deterministic behaviors in blockchain, because
each node of the network could have different system settings (e.g., time, date,
time zones) or execute the code at slightly different instants. Figure 7.2 shows
a safe use of the time APIs, as the timestamp is only used for logging with no
consequences on the blockchain state or the execution result. Instead, Figure 7.3
reports a problematic usage of non-determinism, since the timestamp is stored
in the blockchain using PutState, a specific function of the HF framework that
updates the common state. Since timestamps could differ on the various nodes,
or the nodes might have different time settings, this might potentially lead to
inconsistent states or results at each execution, thus causing the transaction to
fail.2

In the rest of this section, we identify, for each blockchain framework pre-
sented in Section 5.1, the sources of non-determinism, and the blockchain state
modifiers and the response builders (that is, statements that make a transaction
succeed or fail, as in the case of Figure 7.4), namely sinks. This will prepare the
ground for the core contribution of this chapter: a static flow-based approach
for detecting critical usage of non-determinism in blockchain software reported
in Section 7.4.

Regarding the sources, Table 7.1 summarizes the Go instructions and li-
braries that we considered as causes of potential non-determinism. For the sake
of simplicity, the table reports instructions and packages omitting the signa-
tures of every single method. Only a few methods within those packages lead to
non-deterministic behaviors. For instance, the package time contains different
methods to handle dates and times. Most of them are not potentially risky and
common in smart contracts and DApps. However, getting the current time of the
OS (i.e. methods Since, Now, Until) is highly dangerous because the execution
of the contract may differ from a peer machine to another one, depending on
when a certain node executes the contract. The full list of sources is available
at [7]. Regarding sinks, Table 7.2 summarizes the main instructions and compo-
nents, grouped by framework, that are sensitive to non-deterministic behaviors.

Hyperledger Fabric v2.4. In HF, the world state may be changed using specific
APIs. In the HF framework for Go, the interface ChaincodeStubInterface is
the main component involved in the access and modification of the blockchain
state. Table 7.2 reports the current elements involved in the data-write pro-

2 In this case, the developer should have used the method GetTxTimestamp instead of
time.Now, that is provided by HF framework for returning a safe timestamp shared by
the nodes.
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func (s *SmartContract) transaction(APIstub shim.

ChaincodeStubInterface) sc.Response {

if rand.Int() % 2 == 0 {

return shim.Error("Fail")

} else {

return shim.Success(nil)

}

}

Figure 7.4: Example of issue of non-determinism related to response in
blockchain software.

Framework Package Type/Interface Statements/Methods Critical point

HyperLedger Fabric shim ChaincodeStubInterface PutState parameters
DelState parameters
PutPrivateData parameters
DelPrivateData parameters
Success statement
Error statement

Tendermint Core abci/types Application ResponseBeginBlock instance returned
ResponseDeliverTx instance returned
ResponseEndBlock instance returned
ResponseCommit instance returned
ResponseCheckTx instance returned

Cosmos SDK types KVStore Set parameters
Delete parameters

kv, dbadapter, gaskv, iavl, Store Set parameters
listenkv, prefix, tracekv, Delete parameters
types/errors ABCIError statement

Redact statement
ResponseDeliverTx statement
ResponseCheckTx statement
WithType statement
Wrap statement
Wrapf statement

Table 7.2: Main sinks for blockchain software written in Go. The Critical point
column describes the sensitive point of the method where non-determinism may
lead to different executions in different nodes (i.e. in parameters, returned value,
or the full statement).

posal. According to the execution model, the semantics of these elements do
not affect the blockchain state until the transaction is validated and successfully
committed. Hence, if these components provide different results (e.g. changes to
the shared state with different values) due to non-determinism, the consensus
mechanism will not validate the transaction proposal and no new state will be
committed. Regarding the response statements, HF provides the Success and
Error methods to get respectively successful and failed transaction responses.

Tendermint Core v0.35. Tendermint Core is a middleware that allows develop-
ers to create custom blockchain application layers as long as specific methods
declared in the Application BlockChain Interface (ABCI) are implemented. Fig-
ure 7.5 reports a flow diagram of the consensus process used to validate and store
a transaction using the ABCI methods. Although the logic of these methods is
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Figure 7.5: ABCI methods and consensus flow [107].

different, the structure is similar. All of them receive as input a request ob-
ject and return a response object (ResponseBeginBlock, ResponseDeliverTx,
ResponseEndBlock, ResponseCommit) that must be deterministic. As reported
in the official documentation of Tendermint [191], among these methods, only
BeginBlock, DeliverTx, EndBlock, and Commit must be strictly deterministic
to force determinism of the code execution over the consensus connection.

Cosmos SDK v0.35. In Cosmos SDK applications, both the application and the
blockchain state are handled through the store component3, a set of key-value
pairs used to store and retrieve data. However, the nature of this component can
also be multistore, i.e. a store of stores, as shown in Figure 7.6. In this way, it is
possible to encapsulate multiple states enabling the modularity of the Cosmos
SDK. The idea is that each module may declare and manage its own subset of
the state with specific keys, typically held by Cosmos SDK abstractions called
keepers. The store components are defined by Store types, which are declared in
several packages such as kv, tracekv, gaskv, and ival. Each of these definitions
also implements the KVStore interface, which provides common APIs to access
and modify the state of blockchain using the methods such as Set and Del.
Regarding the response statements, Cosmos proposes several methods in the
package types/errors to return failed transaction responses such as ABCIError,
Wrap, and ResponseDeliverTx.

3 https://docs.cosmos.network/master/core/store.html

https://docs.cosmos.network/master/core/store.html
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Store 1 - Manage by keeper of 
Module 1 

Store 2 - Manage by keeper of 
Module 2 

…

Main Multistore

Figure 7.6: Main store of Cosmos SDK.

7.3 An Information Flow Analysis Approach

In this section, we introduce and discuss our purpose for detecting non-determini-
stic behaviors in blockchain software. In particular, we consider a non-determinis-
tic behavior as critical only if a non-deterministic value can affect the blockchain
state, either directly (i.e. being stored inside the state) or indirectly (e.g., guard-
ing the execution of state updates). Any other usage of non-determinism is con-
sidered safe, as it does not affect the blockchain state or response. As such, when
mentioning non-determinism in the remainder of the chapter, we refer to this
critical kind. We rely on information flow analysis for detecting when values
originating from sources of non-determinism affect the state of the blockchain.
We only focus on static analyses, that soundly over-approximate all possible
behaviors of target programs and can thus give guarantees about the absence of
non-deterministic behaviors. We instantiate two types of analyses: a taint anal-
ysis, able to capture the so-called explicit flows, and a non-interference analysis,
that can also detect implicit flows.

7.3.1 An Overview on Information Flow

Information flow analyses [56,171] address the problem of understanding how
information flows within the program during its execution. According to [57],
information flows from an object x to object y, whenever information stored in x
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var x, y

y := x

(a)

var y, x

if x = true

then

y := 7

else

y := 13

(b)

var y, x

if x = 1 then

(* do some

time -

consuming

work *)

y := 0

(c)

Figure 7.7: Example of (a) explicit, (b) implicit, and (c) side channel flows.

is transferred to, or used to derivate information transferred to, object y. Hence,
these analyses are involved to detect program executions where information flows
from one partition to the other. Flows can be classified into three types:

– explicit flow : when the information in object x flows is transferred explicitly
to object y (Figure 7.7a);

– implicit flow : when an the information of object y implicit depends on in-
formation of object x (Figure 7.7b);

– side channel : when some observable property of the execution, for instance,
the amount of computational resources used, depends on the information in
object x (Figure 7.7c).

Traditionally, the objects holding values that one wants to track along pro-
gram executions are called source, while the locations where information coming
from sources should not flow are described with the term sink. This general ter-
minology may be used to map different properties. For instance, if we are inter-
ested in ensuring the integrity of secret variables, information flow analyses can
be instantiated by using public variables as sources and private ones as sinks,
respectively. In this way, it is possible to detect when a possibly corrupted value
provided by a malicious attacker could be stored in variables whose content is
supposed to be safe. Otherwise, if we are interested in ensuring the confiden-
tiality of secret variables, then the same analyses can be recast with private
variables acting as sources and public ones as sinks, thus looking at flows in the
opposite direction. In this case, the analysis goal is to detect all possible private
data disclosures to external entities.

For non-deterministic behaviors in blockchain environments, we are in-
terested in ensuring the integrity with respect to non-deterministic behav-
iors. Hence, information flow analyses may be exploited to detect when non-
deterministic values flow into critical components for blockchain environments.
As such, we mark the components that are initialized to non-deterministic values
as sources, while the critical ones as sinks.
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In this kind of analyses, we are interested only in explicit and implicit flows,
in order to identify non-deterministic information that is either used to update
the blockchain’s state or a transaction’s result, or that governs their execution
flow. The reason is that side channels are typically studied to detect secret
information leaking through, for instance, execution time, thus violating the
confidentiality of that information instead of its integrity.

In the following, we describe two well-established information flow analyses
that we applied for the detection of non-determinism issues.

7.3.2 Non-interference

Non-interference [83,84] captures the intuition that if computations over private
information are independent of public information, then no leakage of the former
can happen. This notion is often instantiated in language-based security where
the space of variables of a program (denoted by P) are partitioned into low
(denoted by L, referred to as private or secret), and high (denoted by H, referred
to as public or available to anyone). The non-interference property is satisfied
if changes in the high variables do not affect the observable (i.e. public) values
of low variables in the program:

∀vL ∈ L,∀vH , v′H ∈ H. P(vL, vH) = P(vL, v
′
H)

Given the non-interference, it is possible to design an information flow anal-
ysis able to find instances of explicit and implicit flows between low and high
partitions. For each program point, the analysis computes a mapping from vari-
ables to the information level they hold (low or high), while also keeping track
of an execution state depending on the information level of boolean conditions
that guard the program point. Whenever an assignment to a variable in H either
assigns a low value (that is, an expression involving variables in L), or happens
with a low execution state (that is, guarded by at least a boolean condition that
involves variables in L), a non-interference property violation occurs and the
analysis can report it.

7.3.3 Taint Analysis

Taint analysis [67, 194] is an instance of information flow analysis that can be
seen as a simplification of non-interference considering only explicit flows. In
this context, variables (denoted by V) are partitioned into tainted (denoted by
T) and untainted (denoted by U), where V = T ∪ U and T ∩ U = ∅.

The variables contained in T represent those that can be tampered with by an
attacker and the variables contained in U represent those that should not contain
tainted values across all possible program executions. Roughly, taint analysis
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corresponds to the language-based non-interference instantiation without the
execution state, thus unable to detect implicit flows.

This generic schema has been instantiated to detect many vulnerabilities in
real-world software (e.g., SQL injection, cross-site scripting, redirection attacks),
achieving significant practical results (see [71] as an example). Recently, we
applied taint analysis to injection and privacy issues [75], also related to GDPR
compliance [73].

7.4 Detection of Non-Determinism with GoLiSA

The main idea of our approach is to track with GoLiSA the values generated by
the sources identified in Table 7.1 during the execution of a program using either
taint analysis or non-interference. Similarly, after the analysis completes, we use
a GoLiSA semantic checker to inspect the provided information by abstract
computations, checking if any of the sinks specified in Table 7.2 receives one
such non-deterministic value as a parameter or, in the case of non-interference,
if the sink is found in a low execution state. In this way, it is possible to detect
only potential harmful non-deterministic behaviors, allowing those which do not
effect the blockchain consensus.

In GoLiSA, the analyses are instantiated as follows:

� taint analysis and non-interference are implemented as value domains, both
of them being non-relational domains (i.e. mapping from variables to ab-
stract values — taintedness and integrity level respectively — with no rela-
tions between different variables), with non-interference keeping track of the
abstractions for each guard;

� field-insensitive program point-based heap domain [169, Chapt. 8.3.4], where
any concrete heap location allocated at a specific program point is abstracted
to a single abstract heap identifier;

� context-sensitive [114, 178] interprocedural analysis, abstracting full call-
chain results until a recursion is found;

� run-time types-based call graph, using the run-time types of call receivers to
determine their targets;

� two semantic checkers, for taint analysis and non-interference, that scan the
code in search for sinks, checking the taintedness or integrity level of each
sink and triggering an alert when an issue of non-determinism is detected.

The choice of domain and checker is left to the user and can be done with a
specific option flag. Given an input program, the analysis begins detecting the
statements annotated as sources and propagating the information from them.
The analyses produce, for each program point, a mapping stating if each variable
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is the result of a non-deterministic computation. These mappings consist of
abstract computations that are used by our semantic checkers. At this point,
the checkers visit the program in search for statements annotated as sinks. When
one is found, the mappings are used to determine if values used as parameters
of the call are critical or, in the case of non-interference, if the call happens in
a critical state. Then, a warning will be triggered in case of non-determinism
detection.

For instance, let us consider the fragment reported in Figure 7.2. At Line 5,
despite variable elapsed being marked as tainted, no warning is raised by
GoLiSA regardless of the chosen analysis, as it does not reach any sensitive
sink. Instead, the analysis of the fragment from Figure 7.3 results in the follow-
ing alarm:

The value passed for the 2nd parameter of this call is tainted ,

and it reaches the sink at the parameter "value"

The warning is issued with both analyses, since variable t is marked as tainted
and reaches a blockchain state modifier through an explicit flow.

Consider now the example reported in Figure 7.1. Here, no explicit flow
happens at Line 3, which contains the blockchain state modifier Wrap, but its
execution depends on the non-deterministic value used in the condition at Line 2,
that is, time.Now().Unix(). As this is an implicit flow, the taint analysis is not
able the detect it. However, GoLiSA will discover it with non-interference, raising
the following alarm:

The execution of this call is guarded by a tainted condition ,

resulting in an implicit flow

7.4.1 Detection of Sources and Sinks with GoLiSA

As already reported in Section 7.3.1, the information flow analyses that we
designed to detect non-deterministic issues must know which are the sources
and sinks of the program. In this regard, GoLiSA provides a solution based on
annotations, marking the corresponding statements as sources and sinks. Tables
7.1 and 7.2 show these components, while in the following, we describe how
GoLiSA detects them.

Methods and functions. GoLiSA contains a full list of the signature of functions
and methods to be annotated and it automatically annotates the corresponding
calls in the program by syntactically matching them. As shown in Tables 7.1
and 7.2, all sinks and several sources correspond to functions and methods of
APIs from either the Go run-time or the blockchain frameworks.

For instance, considering the following code snippet, GoLiSA is able to match
the call to time.Now, that gets annotated as source, and the one to PutState,
whose parameters get annotated as sinks:



70 Chapter 7. Ensure Determinism in Blockchain Software

1 key := "key123"

2 tm := time.Now()

3 stub.PutState(key , []byte(tm))

Then, the flow analysis propagates information from the return value of time.Now
to the second parameter of PutState, thus issuing an alarm at Line 3.

Map Iterations. The iterations on the maps are detectable by identifying the
instructions that allow one to iterate data and by checking the type of the
iterated object. In Go, the statement which makes iterating of data structures
possible is range. GoLiSA exploits semantic reasoning about run-time types to
be inferred by the analysis when the object in a range statement is inferred to
be a map. Then, GoLiSA marks as sources the variables used to store keys and
values of the map. Consider as an example the following code snippet:

1 s := ""

2 mymap := map[string]string{"1": "Hello", "2": "World!"}

3 for key , value := range mymap {

4 s += value

5 }

6 stub.PutState("key", []byte(s))

Analyzing the code, GoLiSA matches the range instruction at Line 3 and checks
the type of its target parameter. GoLiSA annotates as sources both key and
value, as mymap is inferred to be a map, while the sink at Line 6 is detected
through already discussed method annotations. Flow analyses can then propa-
gate the information from value to s, that in turn flows to the second parameter
of PutState, issuing an alarm at Line 6.

Global variables. GoLiSA annotates every global variable syntactically matching
them over all program components. The reason is global variables may be modi-
fied independently on each peer leading to non-deterministic issues, such as due
to differences in the endorsement policy of each peer [126]. For instance, in the
following code snippet, the value of global variable glb could differ from peer
to peer depending on the number of times function concat has been executed.
In fact depending on the policies of a peer concat could be performed or not.

1 var glb string

2 func concat () {

3 glb += "Hello World!"

4 }

5 func (s *SmartContract) transaction(stub shim.ChaincodeStubInterface) sc

.Response {

6 stub.PutState("key", []byte(glb))

7 }

Analyzing the code, GoLiSA iterates over all program components, annotating
glb as a source. The PutState at Line 6 is annotated as sink as previously dis-
cussed for methods. Then, the information flow analysis propagates taintedness
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from glb to the second parameter of the call to PutState, raising an alarm at
Line 6.

Go routines. GoLiSA inspects the code of Go routines, checking the scope of
variables they use. If these are defined outside the routine using them, they are
effectively shared among threads, potentially leading to race conditions and non-
deterministic behaviors. Hence, GoLiSA annotates such variables as sources. For
instance, the following snippet defines and invokes two simple Go routines that
modify a variable defined in an enclosing scope:

1 s:= ""

2 wg.Add(2) //set a waitgroup for two go routines

3 go func(){

4 for i := 1; i <= 10000; i++ {

5 s += "0"

6 }

7 }

8 go func(){

9 for j := 1; j <= 10000; j++ {

10 s += "1"

11 }

12 }

13 wg.Wait() // waits until all the two go routines are done

14 stub.PutState("key", []byte(s))

Analyzing the code, GoLiSA detects the Go routines at Lines 3 and 8. It checks
the scopes of each variable, inferring that s is declared outside the routines
themselves. Hence, GoLiSA annotates s at Line 1 as a source, while the sink at
Line 14 is annotated as previously discussed. Then, the flow analysis propagates
the information from s to the second parameter of PutState, issuing an alarm
at Line 14 since the value of s depends on the execution order of Go routine
loop bodies, which it is non-deterministic because go routines run independently
in parallel and without any check on the shared variable.

Go channels. Channels are pipes that connect concurrent Go routines through
the operator <-. The allow blocking interaction among Go routines . GoLiSA
annotates as sources the instructions reading values from channels, as the order
in which these are written is intrinsically non-deterministic. As an example,
consider the following code snippet:

1 s := make(chan string)

2 go routineA(s)

3 go routineB(s)

4 x, y := <- s, <- s

5 stub.PutState("key", []byte(x))

Analyzing the code, GoLiSA detects the occurrences of the operator <-. Hence, it
annotates variables x and y as sources, because they receive a value from channel
s. The sink at Line 5 is detected as previously discussed for the methods. Then,
the flow analysis propagates the information from x to the second parameter of
PutState, resulting in an alarm at Line 5.
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7.5 Related Work

Non-determinism is a well-known issue in the development of smart contracts
written in GPLs [126, 205]. Restricted languages such as Takamaka [187, 188]
enforce determinism allowing only fully deterministic APIs. The white-listing
approach ensures safe development while preventing API extensions coming
with new language versions can bypass the check. However, a restricted lan-
guage also severely limits the exploitable features of the GPL. On the other
hand, black-listing undesired APIs is a much harder approach to maintain, but
it seems the most widespread technique in Go analyzers. For instance, Chain-
Code Analyzer [119] and ReviveˆCC [180] detect mainly black-listed imports
related to non-deterministic APIs using a syntactical approach. Besides, they
can detect non-deterministic map iterations by AST traversal with minimal syn-
tactic reasoning. Signature of invoked functions can also be black-listed instead
of imports [126]. These tools and frameworks inherently limit API usage, sensi-
bly reducing the benefits of adopting a GPL even when the code poses no harm
to the blockchain.

7.6 Experimental Evaluation

We experimentally evaluated the analyses implemented in GoLiSA to detect
non-determinism issues in blockchain software. First, we studied them quanti-
tatively, on a set of almost 300 real-world HF smart contracts retrieved from
public GitHub repositories. Then, we evaluated the quality of our results on
two applications, to show how the analyses work and how the information is
propagated in programs. In particular, we selected the first application from
the HF benchmark, while the second one is the Cosmos SDK code reported in
Figure 7.1.

We chose HF framework for the quantitative evaluation compared to the
other because it is the only framework supported by several static analyzers
detecting non-determinism issues, and in particular by the ones involved in our
comparison with GoLiSA. Furthermore, HF is currently the most popular and
widespread blockchain framework among public GitHub repositories, with most
chaincodes written in Go.

Environment Setup. All the experiments have been performed on a HP Elite-
Book 850 G4 equipped with an Intel Core i7-7500U at 2,70/2,90 GHz and 16
GB of RAM memory running Windows 10 Pro 64bit, Oracle JDK version 13,
and Go version 1.17.
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7.6.1 Quantitative Study: Hyperledger Fabric Benchmark

We created a benchmark of HF smart contracts written in Go, retrieving arti-
facts from 331 GitHub repositories. The artifacts have been selected by querying
the keyword chaincode (i.e. the wording for smart contracts in HF) and selecting
only non-forked Go repositories4. Then, we filtered out files unrelated to smart
contracts, such as client software, build scripts, etc. We have kept only the Go
files, and their dependencies, that use the shim package5, because this package
imports APIs able to access the blockchain state, the transaction context and
to call other chaincodes. Hence, it contains critical components for the analysis
of non-determinism. This resulted in 298 files (∼74685 LoCs), that we refer to
as ND.

We first evaluate our semantic analyses (taint and non-interference), both
from a precision and performance point of view, also showing a specific case
study taken from ND. Then, we compare GoLiSA with two open-source static
analyzers: ReviveˆCC and ChainCode Analyzer, which are also discussed in
Section 6.3. The first evaluation runs over ND, showing that GoLiSA is able
to semantically analyze over 95% and 93% of files with taint analysis and non-
interference, respectively, with the other ones failing due to missing/incorrect
handling of some language constructs or failures during the analysis. The com-
parison experiments, instead, run over a subset of ND, corresponding to the com-
mon set of smart contracts that ReviveˆCC and ChainCode Analyzer are able
to analyze. With these experiments, we will show that GoLiSA produces more
precise alerts, outperforming the current state of static analyzers for blockchains
targeting Go.

Table 7.3 reports the results of the experimental evaluation of GoLiSA over
the benchmark ND, where AT is the average execution time on each file, #W
is the total number of warnings issued by the analysis, #TP is the number of
true positives among the raised warnings, #FP is the number of false positives
among the raised warnings. The column of false negatives is not specified because
analyses performed are sound (Section 4.3.1). Note that they are sound with
respect to the property considered during the analysis while they check the
same sources and sinks. Indeed, if Taint is used to detect every possible flows
of non-determinism it would no longer sound, as the property it models focuses
on explicit flows only and not implicit ones, leading the analysis to generate
possible false negatives. Instead, Non-interference detects both types of flows.
Nevertheless, only explicit flows were detected into ND thus no differences in
the warning results were specified.

4 https://api.github.com/search/repositories?q=chaincodes+fork:false+language:

Go+archived:false&sort=stars&order=desc. Accessed: 12-10-2021.
5 Available at https://github.com/hyperledger/fabric-chaincode-go/shim

https://api.github.com/search/repositories?q=chaincodes+fork:false+language:Go+archived:false&sort=stars&order=desc
https://api.github.com/search/repositories?q=chaincodes+fork:false+language:Go+archived:false&sort=stars&order=desc
https://github.com/hyperledger/fabric-chaincode-go/shim
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Analysis AT #W #TP #FP

Taint 44.42s 2 2 0
Non-Interference 44.64s 2 2 0

Table 7.3: Evaluation of analysis for non-determinism detection.

In particular, GoLiSA is able to semantically analyze more than 280 Go files
of the benchmarks, namely over 93% of them6. In terms of execution time, the
analyses took on average under 45 seconds per file. Taint analysis is shown to
be powerful enough on this benchmark, as it can detect all real issues with no
false positives. Note that files were manually checked to ensure that no critical
non-determinism was missed by the analysis. In fact, a syntactic analysis was
performed on all the files to detect sources of non-determinism, identifying 1232
components. Each such component was manually checked to correctly classify
the results of GoLiSA.

Tool Comparison

We compared GoLiSA with the available static analyzers described in Sec-
tion 7.5, namely ChainCode Analyzer and ReviveˆCC.

The benchmark used for the comparison is limited to a subset of ND consist-
ing of 46 smart contracts. This limitation is due to the ingestion problems found
in the analyzers ChainCode Analyzer and ReviveˆCC, which did not allow us
to correctly analyze a large part of the benchmark ND. Then, the 46 smart con-
tracts are the contract that can be analyzed by all tools (Table 7.4). Moreover,
to avoid unsupported APIs and checks, the evaluation considers as sources only
the categories Random API, File system APIs, OS APIs, Database APIs, In-
ternet APIs, as these are the ones recognized by all analyzers. Table 7.5 shows
the comparison between the tools, where AT is the average execution time on
each file, #W is the total number of warnings issued by the analysis, #TP is
the number of true positives among the raised warnings, #FP is the number
of false positives among the raised warnings, and #FN is the number of false
negatives that were not warned.

As reported in Section7.5, ChainCode Analyzer [119] and ReviveˆCC [180]
use a conservative approach denying every possible import contained in a black-
list. This approach is thus sound when the black-list is exhaustive. However,
the black-list of ChainCode Analyzer misses some harmful imports compared to
ReviveˆCC and the sources considered by GoLiSA. For this reason, we classified
ChainCode Analyzer as an unsound tool.

6 GoLiSA fails to analyze the remaining smart contracts due to missing support to calls to C
code via the built-in Go cmd/go package.
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Tool Analyzed files ND Coverage

GoLiSA - Taint 284/298 95.30%
GoLiSA - Non-Interference 280/298 93.96%
ChainCode Analyzer 46/298 15.44%
ReviveˆCC 78/298 26.18%

Table 7.4: Coverage percentages of different static analyzers.

Tools #W #TP #FP #FN

GoLiSA - Taint 1 1 0 0
GoLiSA - Non-Interference 1 1 0 0
ChainCode Analyzer 0 0 0 1
ReviveˆCC 25 2 23 0

Table 7.5: Warnings triggered by the analyzers on the 46 files.

Regarding the results, GoLiSA finds the only true issue without noise (i.e.
false positives), achieving the best and most accurate result. ChainCode Ana-
lyzer does not trigger any warning, missing one true vulnerability because not
considered in the black-list. Instead, ReviveˆCC triggers 25 warnings out of
which 96% are false positives with only two real issues reported. Note that the
difference in true positives between GoLiSA and ReviveˆCC is due to GoLiSA
issuing warnings on the sink rather than the source: in fact, the two ReviveˆCC
warnings are reported on two different sources of non-deterministic values, but
those are consumed by the same sink that corresponds to the one GoLiSA re-
ports the warning on.

7.6.2 Qualitative Study

Explicit Flow: the Boleto contract. The boleto contract7 is part of ND. It
seems to be a proof of concept application handling tickets in an e-commerce
store, with the method registrarBoleto used to register a ticket (Figure 7.8).
In particular, this method contains a real non-determinism issue that has been
detected by GoLiSA and also by ReviveĈC during the tool comparison.

Analyzing the code of boleto, GoLiSA identifies the explicit flow leading to a
non-deterministic behavior with both taint and non-interference analyses. The
affected method is registrarBoleto, which contains two different sources of
non-determinism that directly flow into the same sink. The first is the gener-
ation of random values to generate a barcode at Line 3, through the method
rand.Intn (Random API ). Instead, the second source is the usage of the lo-
cal machine’s time to set a date at Line 4, through the method time.Now (OS

7 https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go
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1 func (s *SmartContract) registrarBoleto(APIstub shim.

ChaincodeStubInterface , args [] string) sc.Response {

2 // [...]

3 objBoleto.CodigoBarra = strconv.Itoa((rand.Intn (5) + 10000000 + //

[...]

4 var notExpiredDate = time.Now()

5 objBoleto.DataVencimento = notExpiredDate.Format("02/01/2006")

6 // [...]

7 boletoAsBytes , _ := json.Marshal(objBoleto)

8 APIstub.PutState(args[0], boletoAsBytes)

9 // [...]

10 }

Figure 7.8: Method registrarBoleto of boleto contract.

API ). The information from both sources flows to the fields of objBoleto, then
to boletoAsBytes as well. Finally, the information tracked by the analysis flows
into the second parameter of PutState. As reported in Table 7.2, GoLiSA con-
siders the PutState’s parameters as sinks, then after the analysis computation,
the checker will trigger an alarm at Line 8. Note that, according to the official
documentation of HF8, the PutState method does not affect the ledger until
the transaction is validated and successfully committed. However, a transaction
needs to produce the same results among different peers to be validated, thus
causing the transaction to fail in case of non-deterministic values.

Implicit Flow: Cosmos SDK v.43. In the official release v. 0.43.x and v.
0.44.{0,1} of Cosmos SDK, as reported by the NIST database [145], there is
a bug related to non-determinism. Analyzing the code in Figure 7.1, GoLiSA
is able to detect an implicit flow that leads to a non-deterministic behavior,
that can only be detected using non-interference. The ValidateBasic method
was designed to validate a grant to ensure it has not yet expired. However, the
implementation naively used the local machine time to perform the operation.
In this case, GoLiSA detects the time.Now as source OS API at Line 2. By
propagating the information, GoLiSA infers that the expiration check governs
the execution of the return statement. Since the Wrap method is annotated as a
sink, GoLiSA raises an alarm at Line 3 because it is contained in a block whose
guard depends on non-deterministic values.

7.6.3 Limits

We conclude this section by highlighting the limits of the proposed approach.
Our experimental results may be surprising, given the absence of false pos-

itives and the few true positives detected by GoLiSA, especially for a fully-

8 https://github.com/hyperledger/fabric-chaincode-go/blob/

1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go.

https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go


7.7 The Industrial Case of Study: Commercio.network 77

based static analysis approach, being the analyses proposed based on over-
approximations. Although few true alarms have been detected, nondeterminism
is an issue that should not be underestimated and is also clearly felt by the
communities of the blockchain frameworks covered in this chapter. As a repre-
sentative example, the Tendermint Core documentation [108], while discussing
non-determinism, reports:

While programmers can avoid non-determinism by being careful, it is
also possible to create a special linter or static analyzer for each language
to check for determinism. In the future, we may work with partners to
create such tools.

Nevertheless, the low ratio of true positives and the absence of false positives
reported by our experimental evaluation was at first surprising even to the au-
thors of this chapter. We justify this by highlighting the context of applications of
the blockchain frameworks discussed here, such as HF. Unlike some frameworks
and GPLs used in other blockchains, these are used to develop permissioned,
and often private, blockchains, meaning that the related software is not publicly
available or released with open-source licenses. This is also the reason why the
benchmark ND crawled from GitHub consists of a few hundred chaincodes, a
number that is not comparable with smart contract benchmarks obtained inves-
tigating other (public and permissioned) blockchains. For instance, [198] collects
3075 distinct smart contracts from the Ethereum blockchain, resulting in a wider
benchmark.

The proposed solution for detecting non-deterministic behaviors is fully
static. It is well known that static analysis is intrinsically conservative and may
produce false positives. Even if none have been raised by GoLiSA on the selected
benchmark, one should expect false positives when applying our approach to ar-
bitrary DApps.

7.7 The Industrial Case of Study: Commercio.network

This section studies the impact of non-deterministic behaviors in a blockchain
from an industrial perspective analyzing the code of the open-source software
provided by the Commercio.network company. Besides identifying these issues, it
also discusses the implications during the development phase, such as mitigating
risks before release and problems related to a possible patch.
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7.7.1 The Blockchain Application of Commercio.network

Commercio.network [42] is an open-source decentralized application provided
by the homonymous company9. As a blockchain, it can be described as a per-
missioned Proof-Of-Stake network, where a validator must join a consortium
for being able to participate in the consensus. It can be described also as public
since anyone can set up a node10 and synchronize it with the Commercio.network
main-net. The main purpose of this blockchain is to exchange electronic docu-
ments in a legally binding way thanks to the eIDAS Compliance11, while follow-
ing the principles of Self-Sovereign Identity [4].

As shown in Figure 7.9, the architecture of Commercio.network is based on
the Cosmos SDK and its functionalities are contained in modules. A module
conventionally revolves around the keeper, a package and entity implementing
its core functionalities. The Cosmos SDK can also be seen as a collection of
modules, that can be used to build custom ones, following the object-capability
model [58]. For example, the Commercio.network module commerciokyc uses
the keeper of another custom module, commerciomint, along with other modules
coming from the library of Cosmos SDK.

7.7.2 Limits of the Cosmos SDK Toolbelt

A toolbelt is a set of applications useful for code development and software
maintenance.

For the Cosmos SDK, there is a limited number of tools tailored to the
framework. For instance, Ignite CLI 12 (formerly known as Starport) is the most
popular platform to build, launch, and maintain blockchain applications based
on Cosmos SDK. Although it facilitates software development, it has limitations.
One of its most used features is to start a blockchain node in development with
live reloading, i.e. when Ignite CLI detects that the source code of a Cosmos
application has changed, it restarts the build process, and then it launches a net-
work using the updated software. However, at the time of writing, developers
using it cannot observe non-determinism problems while testing the application.
In fact, the execution happens on a single node network and therefore the un-
derlying consensus mechanism will never conflict as a cause of non-deterministic
executions. Hence, some kinds of issues related to non-determinism are really
difficult to be detected during the development phase, since there is only one
participant. Still, it is possible to use the Go toolbelt for testing a Cosmos SDK
application. But this leads to limitations in the development since the testing
and verification phase have not been designed ad hoc for blockchain frameworks.

9 https://commercio.network/
10 https://github.com/commercionetwork/commercionetwork
11 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
12 https://github.com/ignite-hq/cli

https://commercio.network/
https://github.com/commercionetwork/commercionetwork
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://github.com/ignite-hq/cli


7.7 The Industrial Case of Study: Commercio.network 79

 

State

Consensus and Networking
Layers

 

Database of blocks

Messages

TCPTCP

ABCI
via

TCP

Commercio 
Network

Cosmos SDK

Application Layer

 Commercio 
Module 1

 Commercio 
Module 2

...

Figure 7.9: Commercio.network architecture.

As reported by the company, determinism is hard to ensure also after a com-
plete test cycle, without the help of formal verification. Moreover, the complete
test cycle is expensive in terms of resources and requires tools able to simu-
late the blockchain consensus. First, testing happens on a local-net. That is,
a lightweight network running in a sandbox environment, is destroyed and re-
launched before each test. Commercio.network relies on a containerized local-net
solution. Then, at least one network exposed to the public is required. These
are fully-fledged networks, mirroring the functionalities of the current main net-
work version (test-net) or featuring experimental features (dev-net). Similarly
to a main-net, these networks should be composed of a diversified ecosystem of
devices with a significant amount of nodes, different operating systems, system
settings, geolocations, and so forth. However, also this level of testing does not
guarantee the detection of faults, because it is not a sound procedure. If it is
based on a limited number of transactions, then the problems might exist but
remain undetected, since the conditions required to spot them have not been
reached.

Regarding analysis and verification tools, it is possible to start verifying Cos-
mos SDK applications with tools for the Go language, to check the code quality
and detect issues. For instance, the Commercio.network company performs dif-
ferent iterations with Go analyzers on its code and publicly shares the results
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Analysis #A #U AT #W #TP #FP

Non-interference 2 files 246 files 13.17s 2 2 0

Table 7.6: Analysis evaluation.

with the community using a Go Report Card13. However, as reported by the
Commercio.network company, the code coverage reached by dynamic testing is
limited because the standard Go test suite has not been designed for blockchain
development. Nevertheless, the advancement of coverage gets publicly reported,
too14.

We should recall that bugs in the testing tools exist, too, along with incorrect
test design and malformed testware. Incomplete or incorrect sets of test cases
that do not fail, displaying the green OK flag, add a false sense of trust to the
programmer, which could let their guard down. Therefore, it is important to
apply formal verification to detect problems from the early stages of implemen-
tation. Indeed, these tools are not enough to guarantee the safety of blockchain
software because, while analyzing generic properties for Go, they do not take
into account the particularities of blockchain development nor specifically the
problems related to the Cosmos SDK framework. Hence, the need to develop
customized tools for the framework of interest, as in our case the analysis on
determinism with GoLiSA.

7.7.3 Code Evaluation

Our target application is Commercio.network v2.2.015, and in particular the
evaluation is performed on the 248 Go files (14961 LoCs) contained in the repos-
itory.

Environment Setup. All the evaluations have been performed on a HP Elite-
Book 850 G4 equipped with an Intel Core i7-7500U at 2.70/2.90 GHz and 16
GB of RAM memory running Windows 10 Pro 64bit, Oracle JDK version 13,
and Go version 1.17.

Table 7.6 shows the result of the analysis performed by GoLiSA, #A is the
number of affected files (i.e. files where at least a warning was issued), #U is
the number of unaffected files (i.e. files where no warnings were raised), AT is
the average execution time on each file, #W is the total number of warnings
issued by the analysis, #TP is the number of true positives among the raised
warnings, #FP is the number of false positives among the raised warnings.

13 https://goreportcard.com/report/github.com/commercionetwork/commercionetwork
14 https://app.codecov.io/gh/commercionetwork
15 https://github.com/commercionetwork/commercionetwork/tree/v2.2.0

https://goreportcard.com/report/github.com/commercionetwork/commercionetwork
https://app.codecov.io/gh/commercionetwork
https://github.com/commercionetwork/commercionetwork/tree/v2.2.0
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The analysis highlighted two problems regarding the same insidious issue.
Something similar affected an older version of the Cosmos SDK, which was
reported by the NIST database as “vulnerable to a consensus halt due to non-
deterministic behavior” [145] caused by the use of the local clock time, obtained
with the Go library time.

Bug Discussion

Bug #1. The bug appears in the keeper package of the module commerciokyc,
in the method Membership. It is located at Line 89 of file keeper.go16. In a
nutshell, the method allows assigning a Commercio.network membership of the
given type to the specified user. As shown in Figure 7.10, the issue involves two
main components: the method time.Now and the return of an error wrapped
error. The first is a standard API of the Go language providing the current time
of the device on which it runs. The second returns an error (wrapped with the
Wrap method of the Cosmos SDK library17) to the method caller, leading to a
transaction failure. Transaction executions among nodes must return a common
result to achieve an update of the global status of the blockchain through the
consensus mechanism. However, the current time provided by time.Now could be
different from device to device because of custom settings (e.g. unsynchronized
time, different time zones, etc.). Then, the same code execution on the nodes of
the blockchain network could result in different values, breaking the consensus.

An invocation to the buggy method may return an error or not depending
on the result of the following guard:

expited at.Before(time.Now())

Inspecting the invocations of AssignMembership, it can be found that the input
variable expited at is a timestamp computed with a support function that adds
one year to the block time. Nodes with the current local time set to a timestamp
that makes the guard evaluate to true (a timestamp bigger than expited at is
enough) will mark transactions invoking this code as failing since it returns
an error. If the majority of nodes behave in this way, a denial of service may
occur and block the assignment of new memberships. However, in this case, the
blockchain is not compromised only if malicious actors control the majority of
the nodes, but the problem is due to a code bug during software development
that does not allow it to reach a majority on the blockchain with the same result.
Because of these reasons, AssignMembership does not ensure determinism, and
its invocation might break the consensus mechanism.

16 Source code available at: https://github.com/commercionetwork/commercionetwork/

blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.

go#L89
17 https://docs.cosmos.network/master/building-modules/errors.html

https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciokyc/keeper/keeper.go#L89
https://docs.cosmos.network/master/building-modules/errors.html
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func (k Keeper) AssignMembership(ctx sdk.Context , /*[...] */,

expited_at time.Time) error {

/* [...] */

if expited_at.Before(time.Now()) {

return sdkErr.Wrap(sdkErr.ErrUnknownRequest , fmt.Sprintf("Invalid

expiry date: %s", expited_at))

}

/* [...] */

}

Figure 7.10: Bug #1. A snippet of the AssignMembership method not ensuring
determinism in the commerciokyc module.

Bug #2. The bug appears in the keeper package of the commerciomintmodule,
in the method BurnCCC. It is located at Line 174 of file keeper.go18. In a
nutshell, this method allows burning (i.e. removing) an amount of currency to
the conversion rate stored in a position, retrievable from the keeper’s store with
a user account address and an id. If successful, BurnCCC gives back to the user
the collateral amount, then updates or deletes the considered position but only
if enough time, called freeze period, has passed since its creation. Similarly to
Bug #1, as shown in Figure 7.11, also this issue involves two main components:
the non-deterministic method time.Now and the return of a wrapped error.

An invocation to the buggy method may return an error or not depending
on the result of the following guard:

time.Now().Sub(pos.CreatedAt) <= freezePeriod

The pos variable represents a position stored in the module’s keeper and it is
used to read its self-documenting field CreatedAt. The timestamp freezePeriod
is read from the store of the module, too. Nodes with the current local time set
to a timestamp that makes the guard evaluate to true (a timestamp in the past
is enough) will mark transactions invoking this code as failing since it returns an
error. If the majority of nodes behave in this way, a denial of service may occur
and block the redemption of funds in the positions. This is not caused by mali-
cious actors but is due to a code bug during software development, similar to the
previous case. Because of these reasons, BurnCCC doesn’t ensure determinism,
and its invocation might break the consensus mechanism.

18 Source code available at: https://github.com/commercionetwork/commercionetwork/

blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.

go#L174

https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
https://github.com/commercionetwork/commercionetwork/blob/3e02d5e761eab3729ccf6f874d3c929342e4230c/x/commerciomint/keeper/keeper.go#L174
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func (k Keeper) BurnCCC(ctx sdk.Context , user sdk.AccAddress , id

string , burnAmount sdk.Coin) error {

pos , found := k.GetPosition(ctx , user , id)

if !found { /* [...] */ }

// Control if position is almost in freezing period

freezePeriod := k.GetFreezePeriod(ctx)

if time.Now().Sub(pos.CreatedAt) <= freezePeriod {

return sdkErr.Wrap(sdkErr.ErrInvalidRequest , "cannot burn position

yet in the freeze period")

}

/* [...] */

}

Figure 7.11: Bug #2. A snippet of the BurnCCCmethod not ensuring determinism
in the commerciomint module.

Bug patching

After a deep investigation, the company reports that no incidents or transaction
failures happened because of these bugs during the live period of the release
V2.2.0. Both bugs were patched in the major release v3.0.0. Then, we performed
the analysis on this release and we could not find problems. The issue has been
resolved by getting the time directly from the current Tendermint block header,
a source that is both deterministic and supported by consensus. More in detail,
the Cosmos SDK context method ctx.BlockTime() has been used instead of
time.Now() when the current time was needed.

Dynamic Testing Considerations

The packages containing the bugs were tested with the standard Go testing
framework and the libraries supported by Cosmos SDK, obtaining a satisfying
level of code coverage. In particular, for the keeper packages of commerciomint
and commerciokyc at version v2.2.0 test coverage is respectively 83.9% and
91.9%. However, both defects could not be detected by the test cases. In partic-
ular, these tests are not based on formal methods and cannot ensure the absence
of bugs. Moreover, the high scores returned by those tools gave a false sense of
security, which led to the deployment of buggy software in the real world.
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7.8 Conclusions

The issues related to non-determinism are non-trivial and subtle. Several sources
lead to these behaviors, and many are often overlooked by programmers, leading
them to be the worse enemy of themselves. For this reason, it is necessary to
apply automatic tools for verification. Furthermore, attention must also be paid
to the choice of these tools, both from the point of view of covering the problems
and the quality of the results. Indeed, an inadequate tool can give a false sense
of security, while a large amount of false positive warnings could discourage
programmers or cause them to let their guard down during bug fixing.

The analyses proposed in this chapter allow one to take a step forward in the
state of the art and practice regarding non-determinism problems in blockchain
software, empirically proving their applicability and their accuracy on real-world
software. Information flow techniques are used in various fields for tracking in-
formation within the software, but to the best of our knowledge, they have never
been applied so far to track non-determinism properties on blockchain software.
In addition, we think the intuition of “only those that affect the status or re-
sponse of the blockchain can cause problems within the blockchain” may also be
used to increase the accuracy of other analyses for blockchain software, or at
least set a different severity for warnings (e.g. high if it affects blockchain state
or responses, otherwise low) helping developers in bug fixing activities.

The next chapter deals with another possible application of information flow
analysis for the detection of problems related to untrusted cross-contract invo-
cation issues.



Chapter 8
UNTRUSTED CROSS-CONTRACT
INVOCATION DETECTION

When deployed in blockchain, smart contracts are immutable programs with
parametric inputs given by transactions. Although the code cannot be changed,
they are subject to different execution behaviors depending on the inputs re-
ceived. Indeed, it is possible to use particular inputs, depending on how a con-
tract is implemented, to trigger harmful and potentially unexpected behaviors.
In this chapter, we introduce the issues related to untrusted cross-contract invo-
cation (UCCI) and we provide an analysis based on taint analysis able to detect
this kind of issues. To the best of our knowledge, this chapter proposes the first
analysis for UCCI detection for Go and Michelson based on information flow
approach. Some contents of this chapter are under publication at Workshop on
Blockchain theoRy and ApplicatIoNs (BRAIN’23).

8.1 Untrusted Cross-Contract Invoking

The methods of a smart contract C deployed in blockchain can be executed
directly, with a call originated from outside the blockchain, or indirectly, as
an internal cross-contract call (a.k.a. delegate call or external contract call)
from inside another contract. This latter case is used for instance to query the
state of C or to execute one of its external methods. A typical example is the
execution of a token transfer call on C, where C is passed as input to another
contract. However, the input coming from outside the blockchain is untrusted:
any user can provide it, also anonymously, at least in permissionless blockchains.
This is fine as long as the method of C that gets invoked is not redefined.
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1 // Get the args from the transaction

2 args := stub.GetStringArgs ()

3
4 contract := args [0]

5 /* [....] */

6 queryArgs [0] = "my-method"

7 queryArgs [1] = myasset

8 response := stub.InvokeChaincode(contract , queryArgs , "main -channel")

Figure 8.1: A simplified smart contract for Hyperledger Fabric containing an
UCCI.

Otherwise, it is possible to induce the execution of the arbitrary code placed in
its redefinition [39, 44, 181]. That code could move assets or currencies among
contracts, in a way that was not expected. This issue affects both GPLs and
DSLs, including Go and Michelson languages.

Consider for instance the Go smart contract snippet in Figure 8.1. At Line 2,
it retrieves the input of a transaction request with function GetStringArgs. At
Line 4, it stores the first element of the input in variable contract, later used at
Line 8 as receiver of a cross-contract invocation of method my-method contained
in queryArgs with some arguments. This is a security problem since the user
controls contract. Since there is no check in the smart contract, the user can
send execution requests on the channel main-channel to any deployed contract,
including a contract not provided by the developer of the snippet in Figure 8.1.
For instance, contract might be a malicious contract and one of its methods
could unexpectedly transfer the ownership of myasset.

8.2 Detection by Taint Analysis

The detection of UCCIs can be mapped as a tainteness problem. As reported
in Section 7.3.3, taint analysis allows one to detect if information from a source
explicitly flows to critical program points called sinks. Likewise, we can assume
as sources the input parameters given by the users through the transactions.
The parameters of cross-contract calls specifying a contract are sinks. In this
way, by performing a taint analysis, it is possible to trace arbitrary input values
within a smart contract and check if there are flows that lead to cross-contract
calls, then execute an arbitrary contract.

Note that we have specifically chosen taint analysis to detect only explicit
flows. The reason is that attackers have rarely exploited implicit flows to arbi-
trarily change a contract. Even the side channels are not of interest as they do
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not affect the type of attack. Moreover, the identification of implicit flows leads
to very conservative results, i.e. too many false alarms.

The main idea of our approach is to track with GoLiSA and MichelsonLiSA
the values generated by the sources identified in Tables 8.1 and 8.2 during
the execution of a program using taint analysis. Similarly, after the analysis
completes, we use semantic checkers to inspect the provided information by
abstract computations, checking if any of the sinks specified in Tables 8.1 and
8.2 receives one such untrusted input value as parameter.

GoLiSA and MichelsonLiSA analyses are instantiated as follows:

� taint analysis is implemented as non-relational value domains (i.e. mapping
from variables to abstract value taintedness with no relations between dif-
ferent variables);

� field-insensitive program point-based heap domain [169, Chapt. 8.3.4], where
any concrete heap location allocated at a specific program point is abstracted
to a single abstract heap identifier;

� context-sensitive [114, 178] interprocedural analysis, abstracting full call-
chain results until a recursion is found;

� run-time types-based call graph, using the runtime types of call receivers to
determine their targets;

� semantic checkers for taint analysis to scan the code in search for sinks,
checking the taintedness of each sink and triggering an alert when an issue
of UCCI is detected.

Given an input program, the analyses begin by detecting the statements
annotated as sources and propagating the information from them, through a
fixpoint algorithm. After the fixpoint converges, the analyses produce, for each
program point, a mapping stating if each program variable is the result of an
untrusted input computation or not. At this point, the checkers visit the program
in search of statements annotated as sinks. When one is found, the mappings
are used to determine if the values used as parameters of the call are critical.
Then, an alert will be triggered in case of UCCI detection.

8.2.1 Detection of Sources and Sinks with GoLiSA and
MichelsonLiSA

The first step before performing a taint analysis is the identification of sources
and sinks of the target blockchain framework.

Table 8.1 summarizes the Go instructions and libraries that we considered
as causes of arbitrary inputs and cross-contract invocations. Currently, GoLiSA
supports three different blockchain frameworks, i.e. Hyperledger Fabric, Cosmos
SDK, Tendermint Core. As described in Section 5.1, only HF provides natively
smart contract APIs written in Go. The others do not provide official APIs to
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Framework Package Type/Interface Statements/Methods Critical point Category

HyperLedger Fabric shim ChaincodeStubInterface GetArgs return value Source
GetStringArgs return value Source
GetFunctionAndParameters return value Source
GetArgsSlice return value Source
InvokeChaincode 2nd parameter Sink

Table 8.1: HF methods of interest for the detection of UCCIs.

Framework Michelson IR Statement Critical point Category

Michelson parameter storage return value Source
TRANSFER TOKENS 3rd parameter Sink

Table 8.2: MichelsonLiSA statements of interest for the detection of UCCIs.

perform cross-contract invocation, although they may support smart contract
frameworks with custom or third-party implementations. For sake of simplicity,
we cover only HF but the same approach can be applied to any other smart
contract framework. Anyway, in HF, all sources are methods that return the
arguments of the transaction invocation. Instead, the method InvokeChaincode

allows one to request the execution of another installed contract.
For Michelson, Table 8.2 summarizes the instructions in MichelsonLiSA IR

form. Michelson retrieves inputs implicitly, i.e. pushes them directly on the stack
at the start of execution without an explicit call to some instruction, which
in our MichelsonLiSA IR is explicitly reported as parameter storage() (Sec-
tion 6.2.2). It provides only an explicit sink called TRANSFER TOKENS. This in-
struction consumes three stack elements, including the contract to be executed,
and pushes a transfer operation element emitted by the contract.

Methods and functions. As shown in Tables 8.1 and 8.2, all sinks and sources
correspond to functions and methods. GoLiSA and MichelsonLiSA contain a
full list of the signature of these instructions. They automatically annotate the
corresponding calls in the program by syntactically matching them.

8.3 Related Work

Verification tools can prevent untrusted cross-contract invocations before soft-
ware deployment.

For instance, ContractFuzzer [111] generates fuzzing inputs and defines test
oracles to detect security vulnerabilities including problems related to delegate
calls in Solidity. The tool contains an offline EVM instrumentation and an online
fuzzing tool. The offline EVM instrumentation process is responsible for moni-
toring the execution of smart contracts to extract information for vulnerability
analysis. The online fuzzer analyses the smart contract under test with addi-
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tional information, such as its ABI interface. SolGuard [163] detects untrusted
external call issues at compile time in Ethereum and focuses mainly on smart
contract-based multi-agent robotic systems. It implements the analyses using
AST traversing and semantic flow checking.

Mythril [154] bases the analyses on symbol execution and concrete execu-
tion techniques to discover vulnerabilities including which untrusted external
and delegate calls. It combines static execution with dynamic execution to im-
prove path coverage and detection accuracy. Note that the symbolic execution
approach does not guarantee the exploration of all program paths, leading po-
tentially to false negatives.

SMARTSHIELD [208] dynamically highlights state changes and alterations
after external calls. It analyses both the AST and the unrectified EVM byte-
code of each contract to extract its bytecode-level semantic information. Then,
the tool fixes insecure control flows and data operations through control flow
transformation and the insertion of instruction sequences that perform certain
data validity checks.

The tools described up to this point are all related to Ethereum smart con-
tracts. To the best of our knowledge, only Wang et al. [199] propose a general
platform to detect UCCI issues for smart contracts written in other program-
ming languages. They describe a general platform that builds the ASTs for each
smart contract and obtains the semantic descriptions of corresponding functions
and variables. Hence, it generates assertions by knowledge of security model li-
braries and semantic descriptions of ASTs, and expressions, and then detects
the defects of smart contracts. However, as also stated by the authors, there are
still some problems that need further research and improvement. In particular,
they use manual assertions, which in case of implementation errors can lead to
omissions.

However, specifically for Go and Michelson, as far as we know, this chapter
proposes the first analysis for UCCI detection for smart contracts written in
these languages.

8.4 Experimental Evaluation

This section experimentally evaluates the analyses implemented in GoLiSA and
MichelsonLiSA to detect UCCI issues in smart contracts. The evaluation is
performed on a set of real-world smart contracts.

We created the HF benchmark of HF smart contracts written in Go, re-
trieving artifacts from 954 GitHub repositories. The artifacts have been selected
querying for the chaincode keyword (the term used for HF’s code) and selecting
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Analysis HF Coverage AT #W #TP #FP Timeout (over 10 min)

Taint 93.66% 21.56 sec 46 46 0 5 chaincodes

Table 8.3: UCCI analysis evaluation for GoLiSA.

Analysis TZ Coverage AT #W Timeout (over 10 min)

Taint 100% 20.89 sec 3063 0

Table 8.4: UCCI analysis evaluation for MichelsonLiSA.

smart contracts from unforked Go repositories only1, that include the Invoke

and Init methods2: these are the transaction requests’ entry points. HF consists
in 962 chaincodes, ∼272307 LoCs.

For MichelsonLisa, 1000 smart contracts written in Michelson and containing
the instruction TRANSFER TOKENS from [165] were randomly taken. This resulted
in a benchmark of 770060 LoCs, which we refer to as TZ.

Environment Setup. All the experiments have been performed on a MacBook
Air equipped with an Intel Core i5 dual-core at 1.6 GHz and 8 GB of RAM,
macOS Big Sur 11.5.2, Oracle JDK version 11, and Go version 1.17.

8.4.1 Experimental Result Discussion

Table 8.3 and Table 8.4 report the evaluation results for GoLiSA and Michelson-
LiSA, respectively, where AT is the average execution time on each file, #W
is the total number of warnings issued by the analysis, #TP is the number of
true positives among the raised warnings, #FP is the number of false positives
among the raised warnings. Note that the column of false negatives is not spec-
ified because the UCCI analyses performed are sound (Section 4.3.1) for the
detection of explicit flows that leads to UCCIs considering the sources and sinks
of Section 8.2.1.

Comparing the data of Table 8.3 and Table 8.4, it can be noted that the use
of cross-contract calls is much more frequent in the blockhain of Tezos than in
HF. The main reason is that in public permissionless blockchains it is the only
method to perform automatic interactions between peers and blockchain com-
ponents. In addition, being a trusted environment, the peers of a permissionless
blockchain want to operate almost exclusively on-chain, in order to avoid fraud
or misconduct. Instead, HF is most involved in permissioned blockchains which
are generally private or consortium. Here, the tendency is to use the blockchain
as a means of support, preferring other off-chain software channels to perform

1 https://api.github.com/search/repositories?q=chaincode+fork:false+language:

Go+archived:false&sort=stars&order=desc. Accessed: 17-10-2022.
2 See https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim.

https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim
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complex operations that do not strictly require the guarantees provided by the
blockchain.

The type of problem as already mentioned depends on the semantics of the
contract and its functional requirements in the design phase. Indeed, they could
be safely used to query information from another contract or to execute a safe
function. However, not knowing whether the cross-invocation requirement was
expected or not, in the benchmarks, we considered true positive warnings all the
cross-contract call that receives as target contract information from an untrusted
user input. In general, this analysis is designed for those who need to ensure that
an UCCI does not take place before deploying or run-timing a contract code.

Experimental Results of GoLiSA

Table 8.3 shows the results of the cross-contract invocation analysis checker
over HF. GoLiSA works for 901 chaincodes (93.66% of HF) by using Taint.
Analysis time is a few seconds per chaincode, on average. We found that in
the benchmark there are 186 sinks distributed in 72 chaincodes. In total, the
checker issues warnings for 46 of these sinks. After manual investigation, all
are true positives. This result is exciting, especially because it is well known
that the taint analysis is subject to over-approximation and the production of
false positives since it only tracks binary information (taint/untaint) among the
program. We remember that static analysis can still generate false positives on
other examples of code.

Investigating the reasons for this precision, we realized that it is mainly due
to the adoption of best practices and principles of good programming in the
blockchain software development by developers:

� Design interactions a priori. During the design phase, it is common to
decide the interactions that a contract will have both with users and with
deployed contracts within the blockchain, in order to avoid unexpected be-
haviors. Many sinks in HF take hardcoded strings as target contracts, lead-
ing them to make invocations only to known contracts already present in the
blockchain. In terms of analysis, this allows reducing the over-approximations
because a hardcoded constant string will be untainted if not modified by
other untrusted statements.

� Keep contracts simple. The complexity increases the likelihood of errors
and the cost of failure can be high in blockchain, given the code’s immutabil-
ity. Hence, the code is modularized to keep contracts and functions small
(e.g., in HF each chaincode is ∼283 LoCs on average). This leads to propa-
gating less information than in traditional software, thus limiting the possi-
ble over-approximations in the analysis due to a greater number of inference
passages. Moreover, in HF, the information is propagated mainly through
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1 func (t *UnionLoanChaincode) Invoke(

2 stub shim.ChaincodeStubInterface) pb.Response {

3 function , args := stub.GetFunctionAndParameters ()

4 if function == "offer" {

5 return t.offer(stub , args)

6 /* [....] */

7 }

8
9 func (t *UnionLoanChaincode) offer(

10 stub shim.ChaincodeStubInterface , args [] string) pb.Response {

11 /* [....] */

12 var chainCodeToCall = args [0]

13 var loanId = args [1]

14 /* [....] */

15 var participants [10] Participant

16 /* [....] */

17 invokeArgs := util.ToChaincodeArgs(f,

18 participants[i].BankName , customer ,

19 strconv.FormatFloat(participants[i].Balance ,

20 ’f’, 0, 64))

21 response := stub.InvokeChaincode(chainCodeToCall , invokeArgs , ""

)

22 /* [....] */

23 }

Figure 8.2: Simplified code from chaincode union loan.

local assignments of simple types, then even the approximations of complex
data structures are limited. As reported in [126], the use of external libraries
is also discouraged, therefore the approximation due to lack of external code
is avoided.

An example of true positive is in the chaincode union loan contract in Fig-
ure 8.2, a proof of concept implementation of bank loans in the blockchain.
Users call the method offer to offer a loan. GoLiSA detects a flow that
leads to an untrusted cross-contract invocation on tainted data about loan
participants. Namely, at Line 3 of the method Invoke, GoLiSA considers
GetFunctionAndParameters as a tainted source since it yields a function name
and arguments provided as part of the transaction request, hence under user con-
trol. This tainted data propagates, through args, to method offer at Line 5,
later to chainCodeToCall at Line 12, until it reaches InvokeChaincode at
Line 21, where GoLiSA issues a warning. Good practice avoids this real issue
by hardcoding chainCodeToCall at Line 21, or at least by checking it against a
constant list of allowed targets. However, note that in the case of allowlist, the
untrusted flow would remain, but it would be harmless, leading the analyzer to
give a false alarm.
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Experimental Results of MichelsonLiSA

Table 8.4 shows the results of the cross-contract invocation analysis checker
over TZ. MichelsonLiSA works for 1000 smart contracts (100% of TZ) by using
Taint. Analysis time is a few seconds per chaincode, on average. In total, the
checker issues 3063 warnings, distributed in 843 smart contracts. Unlike bench-
mark HF, in this case, it was not possible to carry out a deep investigation of
the warnings by dividing them into categories (#TP, #FP). At the end of the
analysis, MichelsonLiSA can provide additional reports containing the analyzed
CFGs in various formats (html, dot, etc.) with details about the computed ab-
stract states. This allows one to check, for each program point, which variables
the analysis infers as tainted and which it does not. However, for a deep manual
investigation capable of identifying any over-approximations and false positives,
one should manually recompute the entire execution stack for every single in-
struction and check if its execution in the real world can lead to a tainted value
or not compared to the MichelsonLiSA report. This activity is time-consuming
given the poor readability of Michelson, the difficult to reverse engineer a pro-
gram because high-level information is lost after compilation (Section 3.4.2),
and the complexity of some contracts. For this reason, we could not manually
investigate each of these files and compute the rate of true and false positives.

1 parameter address ;

2 storage unit ;

3 code {

4 DUP ;

5 CDR ;

6 SWAP ;

7 CAR ;

8 DUP ;

9 NIL operation ;

10 SWAP ;

11 CONTRACT unit ;

12 { IF_NONE { PUSH unit Unit ;

FAILWITH } {} } ;

13 AMOUNT ;

14 PUSH unit Unit ;

15 TRANSFER_TOKENS ;

16 CONS ;

17 SWAP ;

18 DROP ;

19 PAIR }

20 }

(a) Michelson smart contract

v0 = parameter_storage ();

v1 = DUP(v0);

v2 = CDR(v1);

SWAP();

v3 = CAR(v0);

v4 = DUP(v3);

v5 = NIL();

SWAP();

v6 = CONTRACT(v4);

IF v7 = extract_value(v6) {

v8 = PUSH("Unit");

FAILWITH ();

}

v9 = AMOUNT ();

v10 = PUSH("Unit");

v11 = TRANSFER_TOKENS(v10 ,v9,v7);

v12 = CONS(v11 , v5);

SWAP();

DROP();

v13 = PAIR(v12 , v2);

(b) Michelson IR in SSA form

Figure 8.3: Smart contract expruqYPRHnQyNih8sK1vhNLRBLx37VeuZ3T58SWax-
Pj5WwbCQJb2V.tz.
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Figure 8.3 shows a smart contract of TZ affected by the UCCI issue.
MichelsonLiSA detects a flow that leads to an UCCI. It begins from v0

= parameter storage(), the information is propagated into v3 = CAR(v0),
then v4 = DUP(v3). At this point, the untrusted information flows in v6 =

CONTRACT(v4) as the contract address, making the target contract untrusted.
Finally, the contract is propagated into v7 = extract value(v6), to after flow
in TRANSFER TOKENS(v10,v9,v7), where the analysis detects that an untrusted
contract is invoked to transfer, without any check, the amount of currency loaded
by v9 = AMOUNT().

1 parameter unit ;

2 storage unit ;

3 code {

4 CDR ;

5 NIL operation ;

6 PUSH address "tz1RwoEdg4efDQ ...

UYvg278Gv1ir" ;

7 CONTRACT unit ;

8 IF_NONE { FAILWITH }

9 { BALANCE ;

10 UNIT ;

11 TRANSFER_TOKENS ;

12 CONS ;

13 PAIR }

14 }

(a) Michelson smart contract

v0 = parameter_storage ();

v1 = CDR(v0);

v2 = NIL();

v3 = PUSH("tz1RwoEdg4efDQ ...

UYvg278Gv1ir");

v4 = CONTRACT(v3);

IF v5 = extract_value(v4) {

FAILWITH ();

} ELSE {

v6 = BALANCE ();

v7 = UNIT();

v8 = TRANSFER_TOKENS(v7 ,v6,v5);

v9 = CONS(v8,v2);

v10 = PAIR(v9 ,v1);

}

(b) Michelson IR in SSA form

Figure 8.4: Smart contract exprthPm93Nt4TBdDSd9LVG829YcgbK9VKE4TRDXt-
ZiU8Fv7gFEBod.tz

Instead, Figure 8.4 shows a smart contract of TZ with a safe token trans-
fer. MichelsonLiSA does not detect any untrusted flow that leads to an UCCI.
The analysis starts by propagating the parameter and storage inputs in v0

= parameter storage(). The untrusted value of v0 is used only after the
TRANSFER TOKENS (sink for the analysis), then it cannot affect the cross-contract
invocation. Indeed, this sink targets only a contract derived by the hardcoded
address declared in v3 = PUSH("tz1RwoEdg4efDQ...UYvg278Gv1ir"), there-
fore the address cannot be changed by any arbitrary input ensuring its safety
from UCCI.
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8.5 Conclusions

The issues related to UCCI have dangerous consequences in blockchain software.
It is important to predict by design the possible interactions of contracts once
deployed, to use appropriate evolution standards such as EIP-2535 [139] or EIP-
1822 [80], and to apply verification tools to prove the absence of unwanted
behaviors. In this chapter, we proposed an analysis for the detection of the
UCCI exploiting taint analysis. Furthermore, as far as we know, these are the
first implementations based on information flow analysis for UCCI detection
available for those languages.

The next chapter will discuss abstract interpretation techniques different
from information analysis. Abstract domains will be used to detect numerical
problems.





Chapter 9
NUMERICAL ISSUES
DETECTION

In mathematical theory, there are infinite numbers between −∞ and +∞. How-
ever, computers have a finite memory capacity, and there is a limit to the num-
bers that can be represented. When this limit is breached a condition called
numerical overflow/underflow occurs. This chapter deals with an unpublished
work in progress which as a first purpose has to empirically demonstrate the
applicability of non-trivial abstract numerical domains for the verification of
numerical issues, using numerical overflow/underflow as a case study.

9.1 Numerical Overflow/Underflow

When an arithmetic operation attempts to create a numeric value that exceeds
the bound that can be represented with a given numerical type, it can lead to
unintended behaviors. If the numerical value exceeds the maximum value a nu-
merical overflow occurs; if it exceeds the minimum value a numerical underflow
occurs.

These behaviors can sometimes be exploited in a harmful way by programs
to revert to an initial state or recalibrate, such as for timers and clocks. How-
ever, in general, overflows and underflows may have critical consequences in
blockchain. For instance, an attacker can exploit it by repeatedly invoking a
smart contract function with a numerical overflow bug that increases a value, to
drain more money than it should as in the case of EOSFomo 3D’s [135,136] and
the Ethereum ERC-20 token used in the Beauty Chain economic system [54].
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1 var c int8 = math.MaxInt8 - 3

2 for i := int8 (0); i < 10; i++ {

3 c = c + i

4 }

Figure 9.1: Go fragment affected by integer overflow.

These issues affect both DSLs and GPLs. However, the program behavior can
be different when these issues occur. For instance, Michelson triggers by default
a run-time error overflow/underflow. Instead, Go does not raise any run-time
error and just lets the execution proceed [86].

In the Go fragment of Figure 9.1, variable c defined at Line 1 has type int8,
hence it can contain integers from −128 to 127, and it is initialized to 124. Go
adopts a wrap-around semantics, meaning that if a certain integer value exceeds
its largest possible value (specified by its type), it continues from its smallest
possible one. Thus, at Line 3, when i holds 3, the variable c overflows. The
current value of c is 127, the addition of 3 exceeds the maximum value for int8,
and the value assigned to c is, unexpectedly, −125.

This default behavior of Go is critical for blockchain software and also affects
all the blockchain frameworks discussed in Section 5.1. Below, we propose several
approaches to detect these issues using GoLiSA.

For sake of simplicity, we do not provide analyses for MichelsonLiSA because,
when an overflow happens, Michelson mitigates the problem triggering run-time
errors and thus blocking fraudulent transactions. However, the same analyses
can be implemented in MichelsonLiSA.

9.2 Detection by Numerical Abstractions

Syntactic checks cannot help in detecting overflow problems because they involve
program semantics. Hence, abstractions are needed. There are many studies
related to numerical abstractions [37, 40, 47, 49, 88, 89, 138, 179]. According to
Miné [110], they vary in expressiveness and in the performance/precision trade-
off. However, some abstract domains have no publicly available implementation
while others lack operators to be useful in more general settings. Below, we will
describe the most popular abstractions.

Interval Domain. The Interval abstract domain is one of the first numerical
domains proposed in abstract interpretation. The idea of the interval domain [47]
is to abstract a set of numerical values by using the least single interval enclosing
them. For instance, a set S of integers is approximated with the interval [a, b],
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where a is the minimum value in the set S, and b is the maximum value in
the set S. However, it is not always possible to compute the upper/lower limit
of a numerical set, thus it is necessary that a may be −∞ and b may be +∞.
According to Cousot [47], this domain is a lattice then we can define an ordering
relation ⊑ such that [a, b] ⊑ [c, d] ⇐⇒ a ≥ c∧b ≤ d, i.e. the whole interval [a, b]
is contained in [c, d]. The bottom element ⊥ corresponds to an empty interval
without any value. The top element ⊤ corresponds to the interval (−∞,+∞),
i.e. the widest in which all the other intervals can be contained. The main
drawback is related to precision. For instance, consider the set {−1000, 1000},
that it is composed of two values. This set will be approximated by the interval
[−1000, 1000], thus undergoing a large over-approximation involving thousands
of values. Therefore, this excessive approximation will potentially lead to the
generation of numerous false positive alarms.

Polyhedron Domain. The abstract polyhedron domain [49] denotes abstractions
based on polyhedra [173, 174]. The elements of this domain are the ⊥ element
that corresponds to an empty set ∅ and the conjunctions of linear inequality con-
straints over the program variables to constraint sets of memory program states.
This domain guarantees a high level of analysis precision even if it features no
best abstraction function, although certain concrete sets do have best abstrac-
tion [169, Chapt. 3.2]. The main drawback is that when the number of variables
increases the domain has a significant memory cost because its complexity is
exponential in the number of variables [138].

Octagon Domain. According to Miné [138], the purpose of the octagon domain
is to be a numerical abstract domain that, in terms of expressiveness and cost,
stage between the interval and the polyhedron domains. This domain allows
one to manipulate invariants of the form (±x ± y ≤ c), where x and y being
numerical variables and c a numeric constant. These invariants are a special
kind of polyhedra called octagons because they feature at most eight edges in
dimension 2 (Figure 9.2c). The elements of this domain are the ⊥ element that
corresponds to an empty set and the conjunctions of linear inequality constraints
of the form ±x± y ≤ c or ±x ≤ c.

Performance vs Precision

While the interval domain allows one to track the approximation of a variable in
isolation, octagon and polyhedron domains track the relation between program
variables. For this reason, the interval domain is a non-relational analysis, while
octagon and polyhedron domains are relational analyses. There exists a precision
relation between the aforementioned analyses: polyhedron is more precise than
octagon that is more precise than interval. A graphical representation is shown
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Figure 9.2: A set of points (a), and its best approximation in the interval (b),
octagon (c), and polyhedron (d) abstract domains [138].

in Figure 9.2. As typical in static analysis, more precise means also less efficient,
as our experiments confirm (Section 9.4).

9.2.1 Implementation in GoLiSA

Some numerical abstractions require a lot of implementation effort. As GoLiSA
is extensible, it can be configured to use additional frameworks which support
them, such as Apron [110].

Apron is a library offering a suite of advanced numerical abstractions to
implement sound analyses:

� Box: using interval domain at a specific program point, it approximates each
numerical variable x as the interval of numerical values (e.g., [1, 7], [0,+∞])
that x may contain;

� Octagon: at a specific program point, it approximates numerical variables
by using the octagon domain as a conjunction of constraints of the form
±x ± y ≤ c, where x and y are numerical variables, and c is a numerical
constant;

� ConvPoly: at a specific program point, it approximates numerical variables by
using the polyhedra domain as a conjunction of linear inequalities of the form
c0x0±c1x1 · · ·±cnxn ≤ c, where ∀i ∈ [0, n] xi is a numerical variable and ci is a
numerical constant. Apron provides two different implementations for convex
polyhedra. We used the one built on the Parma Polyhedra Library [16].
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var c int8 = -(127,3)

c -124.0 = 0

i:=0

c -124.0 = 0;

i = 0

<(i,10)

c -124.0 >= 0;

i >= 0

C = +(c,i)

c -124.0 >= 0;

i >= 0

i = +(i,1)

c -124.0 >= 0;

i >= 0

c = +(c,i)

c -124.0 >= 0;

i >= 0

a)

[‘example.go’:4] on 

‘LiSAProgram::main’

the variables c and i may overflow.

b)

Figure 9.3: (a) CFG with interval analysis result of Figure 9.1. (b) Overflow
checker report file for the exit node.

In GoLiSA, to detect numerical issues, we have adopted in semantic checkers
the abstractions provided by Apron. If a warning about the overflow of a certain
variable is raised by the checker, the overflow may not occur, but, conversely, if
it is not raised, the overflow surely does not occur. Given a numerical variable
x at a certain program point, let us denote by maxtype(x) and mintype(x) the
maximum and minimum value for the type of x.

of +(x) ≜ x > maxtype(x) (positive overflow check)

of −(x) ≜ x < mintype(x) (negative overflow check)

These checks are performed for each program point to detect if an overflow
occurs there. Given a certain program point and a numerical variable x, the
warning generation may lead to one of the following results: (i) a definite alarm
is raised if the analysis infers that surely an overflow occurs at the given program
point for the variable x; (ii) a possible alarm is raised if the analysis infers that
an overflow may occur at the given program point for x. Typically this happens
when the analysis goes to ⊤; (iii) no alarms meaning that no other cases can
occur since, as we have already mentioned before, the analyses provided by
Apron are sound.

In GoLiSA, the numerical overflow checkers are supported by the abstract
domains Box, Octagon, and ConvPoly. For instance, let us consider the Go frag-
ment reported in Figure 9.1. If we run GoLiSA with the interval analysis and the
semantic checker described above, we obtain the CFG reported in Figure 9.3a,
where each node is labeled with the interval analysis results (expressed as a set
of linear inequalities). Figure 9.3b reports the warning raised by the checker
for the return node. Note that the warning raised for the variable i is a false
alarm, since it does not overflow, while the one concerning the variable c is a
true alarm.
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9.3 Related Work

Numerical issues have plagued smart contracts on blockchain since the dawn of
their implementation, as in the case of Ethereum. Although the problem was
known, for several years the fixes developed in Solidity language, the most pop-
ular for Ethereum, were left to the discretion of developers. During this period,
third-party libraries such as SafeMath [14, Chapt. 9] have been involved to solve
these problems. However, this was not enough to reduce the risk of developing
and deploying buggy contracts. Only since v.0.8.0 [68], released five years af-
ter the first version of Solidity, the language has taken official countermeasures.
This release allowed arithmetic operations to be reset by default when a numeric
overflow/underflow occurs. This was possible by applying low-level checks when
compiling arithmetic operations from the Solidity language to Ethereum byte-
code. This default behavior allowed developers to deny untrusted executions and
increase code readability, even if it led to increased gas costs (more bytecode
statements are executed). However, the problem remains that previous versions
and in different languages at a low level compile vulnerable Ethereum bytecodes.

As for numerical analyses through abstract interpretation in the blockchain
context, there are only a few uses. The Securify [195] analyzer extends the
ELINA library [81] to perform analyses on Ethereum by using abstract domains
and by checking numerical properties, including overflows. In [20], Guillaume et
al. suggest the possibility of using the MOPSA [137] analyzer and Apron [110]
to investigate numerical properties on the Michelson language. The ZEUS [112]
analyzer allows one to perform the verification of smart contracts written for
Ethereum and Hyperledger Fabric, by converting source code into LLVM byte-
code and by exploiting abstract interpretation and symbolic models to detect
vulnerabilities. However, in [112], there is no detail about the abstractions used
for numerical issues detection.

For other approaches, HFContractFuzzer [62] applies fuzzing techniques using
go-fuzz [87] to detect integer overflow on Go chaincodes. Lai et al. [120] pro-
pose a static detection tool inspired by SmartCheck [192] and based on XPath
patterns for integer overflow of Solidity smart contracts in Ethereum. However,
this pattern-matching approach does not give formal guarantees, so it is subject
to true positives and false negatives.

9.4 Experimental Evaluation

Table 9.1 reports the results of the experimental evaluation of the semantic
module of GoLiSA, over the benchmark HF. In particular, GoLiSA is able to
semantically analyze up to 895 chaincodes of the benchmarks, namely 93.03% of
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Analysis HF Coverage #W #DW #PW AT Timeout (over 10 min)

Box 93.03% 12408 1505 10903 24.84 sec 4 chaincodes
Octagon 92.93% 12398 1541 10857 22.75 sec 5 chaincodes
ConvPoly 82.23% 10156 1223 8933 87.13 sec 51 chaincodes

Table 9.1: Results of overflow checker.

Analysis #W #DW #PW

Box 10157 1212 8945
Octagon 10151 1212 8939
ConvPoly 10146 1213 8933

Table 9.2: Numerical comparison between common results.

them. Table 9.1 reports the evaluation for each numerical analysis implemented
in GoLiSA, namely Box, Octagon, and ConvPoly, where #W is the total number
of warnings issued by the analysis,#DW is the number of definite warnings
among the raised warnings and#PW is the number of possible warnings among
the raised warnings, and AT is the average execution time on each file.

Instead, Table 9.2 shows a numerical warning comparison, on the 791 chain-
codes that are the intersection where all three domains work. The high number
of warnings is due to chains of mathematical operations sharing the same vari-
ables. If one of them seems to overflow, GoLiSA will reach the same conclusion
for the subsequent operations as well, which results in a sequence of alarms.
This will require GoLiSA to focus on more likely warnings in the future.

The evaluation does not highlight a big difference between interval and
octagon-based analyses. In terms of execution time, Octagon takes a little longer
because it computes relations between components to increase precision. How-
ever, the computed relations are not sufficient in this case to improve the results
by discarding false positives. Let us consider instead the ConvPoly-based anal-
ysis. Even if the number of smart contracts potentially affected by overflow
vulnerabilities is almost unaltered, the total number of potential warnings is
decreased in comparison to the previous analyses. Being ConvPoly more precise
than Octagon and Box. Indeed, the ConvPoly analysis triggers fewer warnings
than others, and missing ones correspond to false positives. ConvPoly is consid-
ered one of the most precise numerical analyses, but the performances in terms
of time and space could become exponential in the worst-case scenario. How-
ever, smart contracts allow one to scale with ConvPoly, because in general they
are simple (reduced number of LoC) in comparison to industrial software (more
than 100K LoCs). As expected, ConvPoly leads to an increment of the execution
time, which is clearly higher than that of Box and Octagon. Nevertheless, the
execution time on HF is still reasonable and benchmark coverage remains high,
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1 func (t *Transfer) invoke(

2 stub shim.ChaincodeStubInterface ,

args [] string) pb.Response {

3 var A, B string

4 var Aval , Bval , X int

5 /* [....] */

6 Avalbytes , err := stub.GetState(A)

7 /* [....] */

8 Aval , _ = strconv.Atoi(string(

Avalbytes))

9
10 Bvalbytes , err := stub.GetState(B)

11 /* [....] */

12 Bval , _ = strconv.Atoi(string(

Bvalbytes))

13 X, err = strconv.Atoi(args [2])

14 /* [....] */

15 Aval = Aval - X

16 Bval = Bval + X

17 err = stub.PutState(A,

18 []byte(strconv.Itoa(Aval)))

19 err = stub.PutState(B,

20 []byte(strconv.Itoa(Bval)))

21 /* [....] */

22 return shim.Success(nil)

23 }

(a)

Aval = Aval - X

if Bval > 0 && X > 0 && Bval + X >

Bval {

Bval = Bval + X

} else {

return shim.Error(err.Error ())

}

(b)

Figure 9.4: (a) A simplified chaincode of invoke. (b) Patch for Lines 15–16.

with an average per smart contract under two minutes and HF coverage over
80%, respectively.

We highlight that the trade-off between precision and performance is jus-
tified: GoLiSA can detect the aforementioned vulnerabilities since its checkers
are based on an underlying semantic analysis (that would be impossible by just
analyzing the source code), as witnessed also by the case study reported below.

9.4.1 Case Study

We conclude this section by discussing the overflow checkers implemented in
GoLiSA over a case study taken from HF. In particular, we discuss a banking
solution1, that allows banks and users to conduct cross border transactions
in real-time without the need of central authorities. In particular, its smart
contract contains the method invoke to make a payment of X units from the
account A to the account B. As shown in Figure 9.4a, the balances of A and
B are stored in the variables Aval and Bval at Lines 6 and 10, respectively.

1 https://github.com/deenario/Banking-System-Blockchain/blob/master/fabric/

chaincode/chaincode_example02/go/chaincode_example02.go

https://github.com/deenario/Banking-System-Blockchain/blob/master/fabric/chaincode/chaincode_example02/go/chaincode_example02.go
https://github.com/deenario/Banking-System-Blockchain/blob/master/fabric/chaincode/chaincode_example02/go/chaincode_example02.go
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The requested transfer amount is then stored in the variable X at Line 13,
subtracted from Aval at Line 15, and added to Bval at Line 16. Finally, the state
is updated with the value of Aval and Bval at Lines 17 and 19, respectively.
Note that the mathematical operations at Lines 15–16 are executed without
any preliminary checks and transactions with a very large value of X may get
declined by the application due to endorsement policy failure. Thus, this smart
contract is vulnerable to numerical overflow. Therefore, faulty smart contracts
badly affect the performance of the application and in the worst case can cause
huge losses for the organizations. Unlike traditional software where patches are
built to mitigate the detected errors, smart contracts cannot be easily patched
due to the immutability feature of blockchain, and consensus algorithms require
the consent of all concerned peers.

Let us focus on Lines 15–16. Running GoLiSA with any of the numerical
analyses among Box, Octagon, and ConvPoly raises warnings at Lines 15–16,
concerning the variables Aval and Bval, respectively, since the overflows may
arise depending on the values Avalbytes and Bvalbytes read from the state.
Nevertheless, let us consider a slightly different case in order to show the differ-
ence between Box (that is a non-relational analysis) and Octagon and ConvPoly
(that are relational analyses). Let us suppose to patch Lines 15–16 with the
fragment reported in Figure 9.4b. In this case, the overflow may still occur
for variable Aval, while for Bval, at Line 2, there is a simple overflow protec-
tion pattern that protects the variable from overflow: if Bval and X are posi-
tive values and Bval+ X does not exceed math.MaxInt64, the sum is safe and
Bval is correctly updated, otherwise, an error is returned. If we analyze the
function with Box, the semantic checker still raises an overflow warning for
Bval, which, in this case, is a false alarm. This happens because Box is not pre-
cise enough to track that Bval+ X does not exceed math.MaxInt64. Conversely,
if we analyze the function with Octagon or ConvPoly, the analyses track that
Bval+ X− math.MaxInt64 < 0, and consequently the semantic checker does not
raise any alarm when Bval is updated.

9.5 Conclusions

In this chapter, we provided several abstract domains used to prove numer-
ical properties such as overflow/underflow in smart contracts written in Go.
Although the analysis produces a considerable amount of warnings, the experi-
mental evaluation has empirically demonstrated the applicability of non-trivial
domains such as those based on polyhedra, which, due to the large consumption
of resources and time, preclude their usability in other software contexts. To
the best of our knowledge, this is the first evaluation for Go smart contracts of
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abstract numerical domains based on abstract interpretation. This is intended
to be a starting point for any analyses that increase the accuracy of the results
towards better verification of numerical issues related to blockchain software.

This chapter concludes the topic of analyses and tools based on abstract in-
terpretation. Next, the last chapter about the verification part describes an
on-chain architecture capable of performing verification directly within the
blockchain.



Chapter 10
ON-CHAIN VERIFICATION OF
SMART CONTRACTS

In this chapter, we define the on-chain code verification paradigm, i.e. an ap-
proach which involves the blockchain to verify the code being deployed. The
chapter describes an implementation of a blockchain with on-chain verifica-
tion, built as a Tendermint application that runs smart contracts written in
the Takamaka framework. Currently, the implementation includes 26 on-chain
checks, that mostly verify the correct use of Takamaka’s primitives and code
annotations and the use of a deterministic subset of Java. To the best of our
knowledge, this is the first paradigm for blockchain verification ables to verify
and to guarantees that all code executed in the blockchain has been successfully
verified over time. On-chain verification architecture has been developed before
GoLiSA and MichelsonLiSA, and has thus been experimented using a custom
Java static analyzer for Takamaka framework. The architecture is however inde-
pendent from the analyzers and the smart contract framework used. Therefore,
it can also be used to perform the analyzes proposed in the previous chapters.
Some contents of this chapter are also published in [147].

10.1 On-Chain Code Verification

Given the immutability of data in the blockchain, it is of the utmost importance
to apply software verification in the development process to ensure the security
and quality of the code, in order to avoid the presence of immutable bugs that
can be exploited with malicious intent. In addition to those already treated, not
surprisingly, Turing-completeness for smart contracts introduces the risk of all
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sorts of bugs [15, 161, 205]. Since smart contracts deal with money and cannot
be replaced, it is paramount to deploy only correct code in the blockchain. For
this reason, many analyzers are involved in vulnerability and bug detection. Fur-
thermore, there are companies that provide code audit services, using both au-
tomatic tools and human investigation. A limit of these approaches is that they
are optional and external to the blockchain (hence off-chain), i.e. programmers
are not forced to use them and thus do not actively protect themselves against
the deployment of bugged or dangerous code. Moreover, traditional software
paradigms, such as Software Development Life Cycle (SDLC), fail to guarantee
the blockchain development requirements [127].

We propose a general architecture able to perform a mandatory code ver-
ification directly on the blockchain, i.e. on-chain, and to approve the analysis
results through the consensus mechanism.

10.1.1 The Architecture over Tendermint

This section describes the architecture of a blockchain node with on-chain code
verification, built on Tendermint. The choice of the Tendermint platform is due
to the ease of implementing a blockchain from scratch and because it separates
the logic of the application layer from the rest. Nevertheless, the architecture is
platform-independent and can also be deployed on other blockchains.

Tendermint’s Node Structure

Each node of a blockchain based on Tendermint is structured on three layers:

– Networking: discovers and connects nodes with each other, propagates re-
quests for transactions, and collects their responses from other nodes.

– Consensus: compares and approves/rejects the responses obtained by exe-
cuting the requests on the nodes.

– Application: specifies which requests are valid, how their responses are
computed, and how the application’s state consequently evolves.

The implementation of networking and consensus, without any application layer
(its distribution includes a few toy applications, irrelevant for our purposes)
is provided by the component Tendermint Core. Programmers develop their
own application layer and plug it into Tendermint Core via its Application
BlockChain Interface (ABCI). Tendermint Core replicates the application state
on each machine of the network.

Figure 10.1 shows a detailed picture of Tendermint Core and of an application
connected through its ABCI. It shows that Tendermint Core keeps the blocks
of the blockchain in its own database, that need not be the same used to hold
the application’s state. For instance, the latter holds the smart contracts code
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Figure 10.1: Tendermint Core and a Tendermint application, with their respec-
tive databases.

installed in the blockchain and the value of their state variables. Tendermint
Core needs only the hash of the application state, for consensus, to ensure that
all nodes have reached the same application state.

One can define the application state as a map σ from the hash of the requests
that the blockchain has executed to the responses that have been computed for
them. The application state contains the full responses, but only the hash of
the requests. Hence, it can be implemented as a Merkle-Patricia trie. The full
requests are contained in the database of blocks of Tendermint Core instead
since they are needed to replay the transactions in all nodes of the network.

Code Verification over Tendermint

The application level is responsible for managing transaction requests and cus-
tom logic. In the case of smart-contract support, it contains a framework to
execute the contract code. Hence, this layer will also include code verification
(Figure 10.2). Indeed, the verification must check the code from requests before
code deployment or code execution.

Assume that a request , whose hash is requesth, reaches the blockchain, re-
quiring to install, in blockchain, the code of some smart contracts, reported
inside request . Figure 10.3 shows the sequence diagram for the execution of
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Figure 10.2: High-level architecture of an application running on Tendermint
Core and performing on-chain verification.
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Figure 10.3: Sequence diagram for code verification and installation in the
blockchain.

request . Namely, Tendermint Core routes request through networking and con-
sensus up to the application, that uses its verification module to either approve
or reject the code. If approved, the application includes the code in a response
and updates its state σ with a new binding: σ(requesth) = response. The hash
requesth is an immutable, machine-independent reference to this code, used later
to instantiate and execute smart contracts. If the code is rejected, instead, the
application state is expanded with a failure response, that does not contain any
code.

Figure 10.4 reports an example of application state evolution. It reports
the requests in full, for readability, but remember that only the hash of the
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Figure 10.4: The evolution of the application state during a sequence of requests.

requests is kept in the application state. Figure 10.4a shows the application
state after the execution of a code installation request for which verification
succeeds. The code is Java bytecode, packaged into a jar, i.e., a zipped container
of Java bytecode. The response contains the same jar (i.e., the same code as the
request1). In terms of Java, the hash of the request is the classpath of subsequent
code executions. Figure 10.4b reports, instead, a request whose code fails to
verify. The response does not include any code installed in the blockchain. This
shows that the verification rules are part of the consensus rules that determine
which code installation request is valid and which must be rejected instead
(Figure 10.4a and 10.4b). Hence they must be the same in every node of the
network and must be deterministic.

1 The response might also contain instrumentation of the code, as it is the case for the Java
subset for programming smart contracts called Takamaka, which we use in our implemen-
tation. This is irrelevant here and we refer the interested reader to [188].
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On-chain verification performs code verification statically, only once, when
the code is installed in the blockchain. For instance, Figure 10.4c shows a sub-
sequent request that asks to instantiate a smart contract whose code has been
installed by the request in Figure 10.4a. The request in Figure 10.4c uses the
hash of the request in Figure 10.4a as its classpath and contains the parameters
for calling the constructor of the smart contract. The execution of the request
runs that constructor, without code verification: it has been already performed
in Figure 10.4a. The immutable reference hash of request#0 is used later to re-
fer to the new smart contract instance2. The state of the new smart contract is
reported in the response as a set of updates, that is, instance fields modified dur-
ing the execution of the request, including those of the smart contract instance
hash of request#0 that has been created in blockchain. Finally, Figure 10.4d
shows the execution of a request asking to call a method on the instance of
smart contract hash of request#0. This last request refers to both the classpath
and the target instance smart contract. Its execution, in general, modifies some
instance fields of objects in the blockchain, that are reported as updates in its
response. This last request does not verify the code either, since it is not a code
installation request.

The rules of on-chain verification are part of the consensus rules of the
blockchain since they determine if the response of a request to install code
in the blockchain is successful or failed. Hence, they determine the evolution of
the state of the application layer and its hash, which is reported in the blocks
of the underlying Tendermint blockchain, that uses it for consensus. This is the
standard way of working for Tendermint. Hence, all nodes must use the same
verification rules. Nodes that use different rules will be automatically excluded
from the Tendermint blockchain.

10.2 Implementation

We have implemented on-chain verification for smart contracts written in the
Takamaka subset of Java [188] (the lazy re-verification technique of Section 10.4
is still under development and we leave it for future work). The goal of Taka-
maka is to write smart contracts in a well-known programming language, lever-
aging expertise and existing mature development tools. The application layer
of Takamaka is a state machine (the Tendermint application in Figure 10.1)
that executes transactions from request to response. Requests can specify the
addition of a jar in the permanent state of the application, or the execution of a

2 The index #0 refers to the first object created during the execution of a request. In general, a
request can instantiate many objects, depending on the code that it executes. For simplicity,
this example assumes that only one has been instantiated.
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constructor, or of an instance or static method of code previously installed in the
state. Responses include the effects of the transaction, as a set of field updates
(see Figure 10.4). Updates can be computed since the jar of the Java code is in-
strumented before being installed in the blockchain, with extra code that keeps
track of the affected fields of objects [188]. Determinism is ensured since only a
deterministic subset of Java is allowed, restricted to a deterministic API of the
Java library [187]. The state machine of Takamaka is implemented in Java and
runs on a standard Java virtual machine. The state is kept in a Merkle-Patricia
trie that implements a map from the hash of requests to their corresponding
response (Figure 10.4). This trie is kept in the Xodus transactional database by
JetBrains3.

The verification module is implemented as a sequence of checks performed on
methods and classes. Since the request of installing new code in the blockchain
contains the compiled bytecode only, such checks run at Java bytecode level, by
using the BCEL library for Java bytecode manipulation4. The source code is
simply not available in the blockchain. Currently, Takamaka’s on-chain verifica-
tion performs 26 checks on every jar that gets installed in the blockchain. They
must all pass, or otherwise, the jar will be rejected. Figure 10.5 describes some
of them.

Next, we show a specific example of a check. It verifies that method caller()

is used in the right context. That method corresponds to msg.sender in Solidity:
it allows programmers to get a reference to the contract that calls a method or
constructor X.

The method caller() can be used inside the code of X only if X satisfies
two constraints5:

1. X is annotated as @FromContract(class), for some class;
2. the invocation of caller() occurs on this.

The rationale of Constraint 1 is that @FromContract(class) guarantees that X
can only be called from a contract of type class, or subclass, or from an external
wallet whose paying account has type class, or subclass. Hence the caller exists.
For instance, the following contract stores its creator in field owner. The use of
caller() is correct here, since it occurs inside a @FromContract constructor:

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C1 extends Contract {

private C1 owner;

3 https://github.com/JetBrains/xodus
4 https://commons.apache.org/proper/commons-bcel
5 @FromContract and, later, @Payable are Java annotations, that is, a mechanism for adding
metadata information to source and compiled code. They are irrelevant to the code executor,
but can be used by code analysis and instrumentation tools.

https://github.com/JetBrains/xodus
https://commons.apache.org/proper/commons-bcel
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Correct context for @FromContract

@FromContract is only applied to instance
methods or to constructors of storage
classes (i.e., classes whose instances can
be kept in the blockchain).

Correct calls to @FromContract
@FromContract methods or constructors
are only called from instance methods or
constructors of contracts.

Correct context for @Payable

@Payable is only applied to
@FromContract methods or construc-
tors of contracts (since only contracts
have a balance).

Correct fields in storage classes
Classes whose instances can be kept in
blockchain can only have a restricted set
of types for their fields.

Correct context for caller() See the description in this work.

No finalizers
Since their execution is non-deterministic
in Java.

Only white-listed Java APIs To enforce determinism (see [187]).

Figure 10.5: Some of the 26 on-chain verifications currently performed by Taka-
maka.

public @FromContract(C1.class) C1() {

owner = (C1) caller (); // ok

}

}

Instead, it is incorrect to invoke caller() in a method or constructor not an-
notated as @FromContract, since its caller is not necessarily a contract and
caller() would be meaningless in that case:

import io.takamaka.code.lang.Contract;

public class C2 extends Contract {

public void m() {
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/* [....] */ = caller (); // error at deployment time

}

}

The reason of Constraint 2 is that its violation lets one access the caller of
other contracts, with possible logical inconsistencies and security issues. For the
same reason, the use of tx.origin is normally an antipattern in Solidity (see
Tx.origin Authentication in [14]). Constraint 2 holds in classes C1 and C2 above,
but is violated below:

import io.takamaka.code.lang.Contract;

import io.takamaka.code.lang.FromContract;

public class C3 extends Contract {

private C3 owner;

public @FromContract(C3.class) C3() {

owner = (C3) caller (); // ok

}

public @FromContract void m() {

/* [....] */ owner.caller () /* [....] */; // error at deployment -

time

}

}

Figure 10.6 reports our implementation of a check that verifies if a method
satisfies constraints 1 and 2 above. The code has been simplified for readabil-
ity: its complete version can be found in the repository of the distribution of
our implementation of the runtime of Takamaka (see Section 10.3). Full under-
standing of the code in Figure 10.6 requires knowledge about Java bytecode and
BCEL, which are outside the scope of this study. Nevertheless, it is possible
to understand the structure of the code: the constructor of the check scans the
stream of Java bytecode instructions of the method (instructions()), filters
those that call a method named caller that returns a contract, and checks two
conditions for each of them (with the two if statements inside the forEach):
the method must be annotated as FromContract (Constraint 1 above) and the
invocation must be immediately preceded by an aload 0 bytecode instruction.
The latter is Java bytecode for pushing this on the stack, as receiver of the
call to caller() (Constraint 2 above). If any of the if statements is satisfied,
an issue is generated, which will later reject the installation of the code in the
blockchain.

10.3 Experimental Evaluation

We have implemented the on-chain verification for the Takamaka subset of
Java, inside its runtime that works as a Tendermint application. It is an ac-
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public class CallerIsUsedOnThisAndInFromContractCheck extends Check

{

public CallerIsUsedOnThisAndInFromContractCheck () {

boolean isFromContract = annotations.isFromContract

(className , methodName , methodArgs , methodReturnType);

instructions ()

.filter(this:: isCallToCaller)

.forEach(ih -> {

if (! isFromContract)

issue(new CallerOutsideFromContractError(inferSourceFile (),

methodName , lineOf(ih)));

if (! previousIsLoad0(ih))

issue(new CallerNotOnThisError(inferSourceFile (), methodName ,

lineOf(ih)));

});

}

private boolean previousIsLoad0(InstructionHandle ih) {

Instruction ins = ih.getPrev ().getInstruction ();

return ins instanceof LoadInstruction && (( LoadInstruction) ins)

.getIndex () == 0;

}

private final static String TAKAMAKA_CALLER_SIG = "()Lio/takamaka/

code/lang/Contract;";

private boolean isCallToCaller(InstructionHandle ih) {

Instruction ins = ih.getInstruction ();

if (ins instanceof InvokeInstruction) {

InvokeInstruction invoke = (InvokeInstruction) ins;

ReferenceType receiver;

return "caller".equals(invoke.getMethodName ())

&& TAKAMAKA_CALLER_SIG.equals(invoke.getSignature ())

&& (receiver = invoke.getReferenceType ()) instanceof

ObjectType

&& classLoader.isStorage ((( ObjectType) receiver).getClassName

());

}

else

return false;

}

}

Figure 10.6: The on-chain check for a correct use of caller().

tual blockchain running on Tendermint, that can be programmed with smart
contracts written in Java. Our implementation is part of a larger project, called
Hotmoka, whose long-term goal is to use the Takamaka language for program-
ming both blockchains and IoT devices.
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Environment Setup. All the experiments have been performed on a machine
equipped with an Intel Core i3-4150 at 3.50 GHz and 16 GB of RAM memory
running Ubuntu Linux 20.04.1 64bit, Oracle JDK version 13, and Go version
1.17.

We have created three scripts that request to install in the blockchain the
examples from Section 10.2. We have also created a test that installs a smart
contract and uses it to run many transactions, to check the scalability of the
technique and evaluate the difference when on-chain verification is on or off. The
implementation is available at [98]. That repository contains also the code of
the 26 checks of on-chain verification (including that in Figure 10.6).

The first experiment starts a blockchain of a single node and runs a script
that connects to the node and installs a jar containing class C1 from Section 10.2.
The result is successful:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C1 in the node... done (on-chain verification succeeded)

C1.jar installed at address ee848b5bc7fd8283ab01b5977970e71f548...

The subsequent experiment installs C2 instead. The attempt to install the code
in the blockchain will fail since on-chain verification fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C2 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C2.java:8

caller() can only be used inside a @FromContract method or constructor

The third experiment performs the same operation with class C3. This attempt
will fail since on-chain verification fails:

Connecting to the blockchain node at localhost:8080... done

Installing the Takamaka runtime in the node... done

Installing C3 in the node...

Exception in thread "main" io.hotmoka.beans.TransactionException:

io.takamaka.code.verification.VerificationException: C3.java:14

caller() can only be called on "this"

In order to evaluate the scalability of the technique, we have created a smart
contract that creates and funds a pool of 500 externally-owned accounts and al-
lows one to determine which is the richest among them (has the highest balance).
We have written a JUnit test that installs that smart contract in blockchain and
uses it to create and fund the 500 accounts, execute 1, 000 random money trans-
fers between them and asks for the richest. This process is repeated ten times.
The execution time of this test is 158.19 seconds. In total (including code in-
stallation and account creation) the test runs 10, 020 transactions, that is, it
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performs 63.34 transactions per second. By turning on-chain verification off, the
same test runs in 156.95 seconds, that is, it performs 63.84 transactions per sec-
ond. These numbers have been computed as an average of over five executions
of the test. This shows that on-chain verification increases the execution time
of the test by only 0.79%.

10.4 Evolution of Code Verification

This section shows that a change in the verification rules requires to re-verify
all code installed in the blockchain and that this can be performed lazily, on-
demand.

Section 10.1 stated that code verification is only performed when code is
installed in the blockchain. However, that is true only under the unrealistic
assumption that the verification module never changes. In practice, that module
will be updated eventually, to include new verification rules or to improve the
precision of already existing rules. When a new version is deployed, it becomes
necessary to update all nodes to that version (or at least all validators), or
otherwise, consensus might be lost. A change in the verification rules, if deployed
on a subset of the network only, entails that the updated nodes might accept a
request that the non-updated nodes might reject instead or vice versa.

All approaches to a network update can be used here. The novelty, however,
is that some code that was successfully verified with the previous version of
the verification module might be rejected with its current version or vice versa.
Hence, there must be a mechanism that enforces that the execution of some code
in the blockchain occurs only if that code passes the current verification rules.
Conceptually, this means that an update of the verification module triggers a
re-verification of all code previously successfully installed in the blockchain. In
practice, this cannot be performed, since it would be extremely expensive and
would hang the nodes for a long time. Our solution, which we are going to
describe, is to lazily re-verify the code on-demand when it is asked to run. This
amortizes the cost of re-verification. Moreover, [146] shows that only 0.05% of all
contracts installed in Ethereum are involved in 80% of the transactions. Hence,
a lazy approach avoids the re-verification of code that might actually never run
again.

In order to implement this lazy re-verification approach, we expand the infor-
mation in the response of a successful code installation request (Figure 10.4a).
Namely, together with the installed code, response is enriched with a numerical
tag τ(response), i.e., the version of the verification module that has been used
to verify the code inside response. The sequence diagram in Figure 10.7 shows
the workflow for lazy code re-verification. Assume that a request arrives, that
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Figure 10.7: Sequence diagram for lazy code re-verification.

requires running code referred with the hash requesth of a previous, successful
code installation request (as in Figure 10.4c and 10.4d). The node finds out that
σ(requesth) = response has a verification tag τ(response) and compares it with
the current version τ of the verification module. There are two possibilities:

1. τ = τ(response): the code was verified with the current version of the verifi-
cation module, it does not need re-verification and can be run immediately;

2. τ > τ(response): the code was verified with an old version of the verification
module; it must be re-verified before being run.

In the second case, the node verifies the code again, using the current version
τ of the verification module. This is possible since response includes that code
(Figure 10.4a). A new response response ′ will be computed (successful, having τ
as verification module version, or failed), and the application state is updated as
σ(requesth) = response ′. The use of requesth in future requests will not re-verify
the code until a newer version of the verification module is installed. The update
is possible since it occurs in the state, not in the blockchain, whose blocks are
immutable.

It is important to note that response ′ might state that re-verification failed,
because the old code passed the previous verification rules but not the new
ones. In that case, the execution of the code will fail, since its classpath is
not valid anymore. This means that a smart contract might work today, but
might stop working tomorrow if updated verification rules reject its code. In
theory, the converse is also possible: the same contract might be reactivated
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Figure 10.8: Schema for new verification rule upgrade.

after another change in the verification rules replaces a failed response with a
successful response. However, we have decided to forbid this second scenario,
since it might be surprising to users.

10.4.1 Governance for Tool Upgrade

New vulnerabilities are discovered every day and the verification tools need
to be upgraded periodically to ensure sufficient security standards, as well as
to improve the accuracy and performance of any existing analyses. However,
in a decentralized and distributed system, there is a need for the majority of
the network to agree. Different versions of tools may generate different results
causing the consensus algorithm to conflict. In on-chain architecture, we govern
this behavior through a poll consisting of a smart contract implementing a
permissioned vote with custom attributes such as vote threshold, duration of
time window, and optionally a weighted vote. In this way, the poll is on-demand
and it allows one to be independent from blockchain protocol and verification
tools because handled at the application level by the smart contract. Figure 10.8
shows a general schema of the process. The idea is that any validator or even
stakeholder can propose an upgrade by deploying a poll in the blockchain. The
contract can be voted on by other validators and stakeholders. If the threshold
is exceeded, the upgrade will be made according to the terms of the contract,
otherwise, at the expiry of the time window it will no longer be valid and the
proposal will be rejected. In case of a positive poll, the current version of the
verification module will be increased and the upgraded tools. Whoever does not
carry out the operations will be excluded from the network.
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10.5 Related Work

To our knowledge, this is the first work about on-chain verification. Similar
techniques are related to continuous integration, which allow one to build and
deploy code only if it passes all compilation and testing requirements. For in-
stance, Marchesini et al. [130] describe a software development process called
Agile Block Chain Dapp Engineering (ABCDE) to gather the requirements, to
analyze, design, develop, test and deploy blockchain-oriented software. ABCDE
complements the incremental and iterative development through boxed itera-
tions, typical of agility, with more formal tools. Besides modeling interactions
among BOS using UML, it also provides practices, patterns, and checklists to
promote and evaluate the security of a DApp written in Solidity [129]. Further-
more, ABCDE was also applied in DApp development for HF [18]. However, the
main difference with our approach is that smart contracts cannot be replaced
or debugged once installed in the blockchain. In [127], there is a comparison be-
tween traditional SDLC models that highlights their inadequacy for blockchain
software development, due to the immutability of blockchain data.

Even if it deviates slightly from the topic, it may be useful to mention the
work of Beller and Hejderup [22] about how to use blockchain technology to
solve continuous integration and package management in traditional software
engineering. They sketch how this approach promises to solve fundamental issues
plaguing software engineering such as quality, and trust.

Another concept often associated with blockchain verification architectures is
that of transparency [146]. It is applied to some blockchains, including Ethereum,
and consist in storing in blockchain the source code of the smart contracts, to
guarantee that it actually compiles into their bytecode. This is only an optional
technique that ensures that bytecode and source code match. However, there is
no evidence or certainty that the code has been verified.

Lastly, about verification rule updates (Section 10.4), the specific updating
technique related to the consensus layer is orthogonal to our work. In Cosmos,
the government module supports such an update, with (dis-)incentives to min-
imize misconduct within the participants. In Polkadot, the stakeholders6 are
involved in periodic referendums to vote update proposals. Algorand [36] trig-
gers a software update if a large majority of block proposers declare to be ready
for that. Therefore, it does not require a predefined voting period.

6 See https://wiki.polkadot.network/docs/en/learn-governance

https://wiki.polkadot.network/docs/en/learn-governance
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10.6 Conclusions

In this chapter, we defined and provided a general architecture for the on-chain
code verification of smart contracts. In this way, it is possible to make mandatory
software verification and avoid untrusted smart contract executions. This archi-
tecture allows the same blockchain to reject the code that does not pass a set of
checks. Therefore, the verification becomes part of the consensus mechanism, to
ensure that all network nodes have reached the same verification result. A lazy
re-verification approach is also proposed to re-check the code already deployed
before its execution when the verification rules are updated.



Part III

Blockchain Software Optimization





Chapter 11
CODE OPTIMIZATIONS IN
BLOCKCHAIN

This chapter introduces code optimization in blockchain software. Furthermore,
it describes the case study which is optimized in the Chapter 12. Some contents
of this chapter are also published in [51] and [50].

11.1 Blockchain Optimizations

According to Sedgewick [175], code optimization is the process of refactoring
software to make some aspects of it work more efficiently or use fewer resources.

In blockchain software, the optimization goals are the same as traditional
software, distributed and decentralized systems. In addition, specific to the
blockchain context, there are also optimizations related to gas consumption.

The gas mechanism is a workaround to the problem of non-termination in the
code execution. Gas is a resource that is typically declared prior to the execution
of a smart contract. During the execution, the blockchain will consume units of
gas for each instruction or set of instructions executed, depending on the gas
model. The idea is that the code execution proceeds as long as gas is available. If
the amount of gas is sufficient for termination, the execution will be completed
successfully. Otherwise, the run will be aborted if there is not enough gas. It
is also common for blockchains to place a limit on the maximum usable gas
per transaction. Moreover, gas often corresponds to a cost in terms of crypto-
currency. Therefore, the more the code is optimized with respect to the gas
model, the cheaper execution will be depending on the gas model and gas limit.
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It is also possible to perform out-of-gas attacks to provoke unwanted behavior
in a victim’s smart contract, e.g. wasting or blocking funds of the victim [90].

11.2 Optimize Code Migration and Translation

As argued in Section 3.2, in the enterprise scenario, it is common that the
code is reused or migrated from one system to another. Code migration be-
tween different programming languages can be tricky, also for relatively simple
code. There is no formal way that one can follow to perform such a translation.
Therefore, the optimizations are based on re-engineering approaches and trans-
lation patterns. Languages might have different semantics for apparently similar
constructs or might require different coding styles, for efficiency, which is more
often the case if they compile towards different virtual machines. For instance,
Vyper [189] and Solidity compile for the same EVM and the translation from
Solidity to Vyper [197] is almost immediate. Differently, a translation from So-
lidity to Takamaka [188], since this latter compiles to Java bytecode for the Java
virtual machine (JVM). In addition, some instructions could not be translatable
from one language to another because they could be no equivalent semantics.
Anyway, it is also possible that the target language for the translation provides
data structures and algorithms, not present in the source language, able to im-
prove the performance of blockchain software. Therefore, a literal translation
does not necessarily lead to the best optimization.

11.3 Case of Study: Blockchain Token Standards

The purpose of a standard is to provide a reference model for the people to
uniform a given data, method, activity, or process. In the context of blockchain,
this also includes providing a secure and reliable way to exchange things between
actors of the blockchain network, with the intention of making transactions less
expensive and more secure at the same time.

What is exchanged is commonly referred to as a token [14, Chapt. 10], which
is a blockchain-based abstraction that can be owned and that represents assets,
currency, or access rights. A trend in blockchain is to apply standards for to-
ken interoperability, unchanged, from platform to platform, easing the design
challenges with trusted and widely-used specifications.

In this section, we introduce the two main token standards and describe
their most popular implementations, Chapter 12 deals with optimizations from
Solidity to Takamaka.
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A few standards have emerged for fungible and non-fungible tokens, that
should guarantee correctness [156], accessibility, interoperability, management,
and security of the smart contracts that run the tokens. Among them, the
Ethereum Request for Comment #20 (ERC-20 [69]) and #721 (ERC-721 [65])
are the most popular fungible and non-fungible tokens, respectively, also outside
Ethereum [104,105,116]. They provide developers with a list of rules required for
the correct integration of tokens with other smart contracts and with applica-
tions external to the blockchain, such as wallets, block explorers, decentralized
finance protocols, and games.

The most popular implementations of the ERC-20 standard are in Solidity,
by OpenZeppelin [149], a team of programmers in the Ethereum community who
deliver usefully and secure smart contracts and libraries, and by ConsenSys [43],
later deprecated in favor of OpenZeppelin’s. OpenZeppelin extends ERC-20 with
snapshots, i.e. immutable views of the state of a token contract, that show
its ledger at a specific instant of time. They are useful for investigating the
consequences of an attack, for creating forks of the token and for implementing
mechanisms based on token balances such as weighted voting. Snapshots are
essential also to provide an immutable view of the ledger that can be queried by
a client without the risk that it changes during the query, which would result in
a race condition.

In the case of ERC-721, the standard implementation is in Solidity, again by
OpenZeppelin [150]. That implementation does not provide a snapshot mecha-
nism, despite the usefulness of such feature. The reason is that the already very
tricky implementation in Solidity of snapshots for ERC-20 becomes intractable
for the more complicated ERC-721 standard.

11.3.1 ERC-20 and its OpenZeppelin Implementation

The ERC-20 standard [69] defines an interface containing nine functions and two
events, i.e. immutable marks saved in blockchain to attest some logical turning
points. In Solidity, the owners of tokens are uniquely identified by addresses,
which are untyped pointers to (i) externally owned accounts or to (ii) contracts.
The firsts are a sort of bank accounts controlled by external applications and
humans. The seconds are objects geared by their code. In principle, contracts
can hold tokens. However, this could be problematic if their code is not pro-
grammed to deal with such tokens. In such a case, the tokens could remain
stuck forever, since only the contract can transfer them but the code of the
contract does not deal with token transfers. Therefore, it is normally assumed
that only externally owned accounts own tokens, but the implementations of
ERC-20 do not check this constraint and do not forbid to transfer tokens to
contracts, even inadvertently. Section 11.3.2 will show that the same problem
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occurs for ERC-721 tokens, whose implementations have tried to solve the issue
in a cumbersome and finally ineffective way.

The functions of the ERC-20 standard have three purposes:

1. Direct transfers
– totalSupply() yields the integer total amount of tokens in circulation.
– balanceOf(address owner) yields the amount of tokens that owner

owns.
– transfer(address to, uint value) transfers value tokens from the
balance of the caller to the balance of to (uint is an unsigned integer of
256 bits). This function must emit a Transfer event.

2. Delegated transfers
– approve(address delegate, uint cap) allows delegate to transfer
up to cap tokens on behalf of the caller. It must emit an Approval event.

– transferFrom(address owner, address to, uint value) transfers a
value tokens from owner to to, but only if owner has approved the caller
to do so. This function must emit a Transfer event.

– allowance(address owner, address delegate) yields the amount of
tokens that delegate has been approved to transfer on behalf of owner.

3. Optional info
– name() yields the name of the tokens.
– symbol() yields the symbol of the tokens.
– decimals() yields the number of decimal digits of the tokens.

Figure 11.1 shows the main parts of the implementation provided by Open-
Zeppelin’s team. The first part of this interface is just the API of a dynamic
ledger of token balances. Not surprisingly, the code stores the user’s balance in
a field balances1 of type mapping (address => uint), that binds each ad-
dress to the amount of tokens it holds, and with an integer field totalSupply,
assigned at contract creation time.

The second part of the interface allows token owners to delegate, to other
participants, the transfer of a capped amount of tokens. OpenZeppelin imple-
ments this through a field allowances of type mapping (address => mapping

(address => uint)): a map from each token owner to another map from each
delegate to its allowed cap.

The third, optional part is just manifest information about the tokens.
Both transfer and transferFrom use an internal function transfer, that
shifts the tokens from the owner to the destination to, calling the handler
beforeTokenTransfer. This does not do anything by default, but subclasses
can redefine it to add extra functionalities to the contract. Function transfer

checks, defensively, for missing values (address(0)) that might arise from the

1 It is customary in Solidity to start non-public properties with underscore.
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incorrect use of the contract. Function transferFrom additionally checks if the
owner of the tokens has actually delegated msg.sender (the caller of the func-
tion) to transfer at least value tokens on its behalf. This check occurs after the
call to transfer, which is fine since Solidity’s functions do not commit their
side-effects if they fail. The code of transferFrom ends with a call to approve

(not shown), which reduces the allowance. OpenZeppelin adds a mint function
that initializes the total supply of the token: it is internal since it is meant to
be called from the constructors of subclasses that deploy actual instances of
the contract. This function uses address(0) to represent the fact that minted
tokens come from nowhere.

Snapshots of ERC-20 Ledgers

OpenZeppelin has subclassed its ERC20 implementation (Section 11.3.1) to
provide extra functionalities, for instance for tokens that can be (further)
minted, burned, capped or paused. Among them, this section focuses on the
ERC20Snapshot subclass only, which supports snapshots, shown in Figure 11.2.
Namely, it adds a snapshot function that performs a snapshot of the ledger
and yields its progressive identifier (starting at 1). Then it overloads meth-
ods balanceOf and totalSupply from Figure 11.1 with variants that receive a
snapshot identifier and yield the balance and the total supply at the time of that
snapshot (Figure 11.2). For that, it stores the modification history of an integer
variable by using the following data structure:

struct Snapshots {

uint[] ids;

uint[] values;

}

For instance, if a variable v is associated with a Snapshots structure with fields
ids={5,8,15} and values={6,7,20}, then the value of v was 20 for snapshot
identifiers from 9 to 15; it was 7 for snapshot identifiers from 6 to 8; it was
6 for snapshot identifiers from 1 to 5; for snapshot identifiers after 20, the
value of v is v’s current value in the ledger. A function valueAt (not shown
in Figure 11.2) reconstructs the value of a variable at a snapshot. There is one
Snapshots instance for each address that takes part in the token, inside a new
field mapping (address => Snapshots) private balancesSnapshots, and
for totalSupply, with a new field Snapshots private totalSupplySnapshots.
Such structures are allocated and populated whenever a balance gets updated
or the total supply changes (the latter situation occurs if mints or burns
are allowed). This is achieved through the override of the internal function
beforeTokenTransfer (see Figure 11.2).

The code of ERC20Snapshot, that is very technical and consequently we
omitted for sake of simplicity, has good computational complexity: it creates
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snapshots in O(1); since the ids fields are sorted, it retrieves balances and total
supply at each given snapshot in O(log n), by binary search, where n is the
number of snapshots already performed. Nevertheless, it has some drawbacks:

– It is complex and tricky. We found it very hard to reach a sufficient trust in
its correctness. It is so complicated and specific to ERC-20 that its extension
from ERC-20 to ERC-721 tokens has never been done.

– It induces a significant overhead for the manipulation of the Snapshots, also
because it needs the extra balancesSnapshots map.

– All participants pay the overhead of the previous point when they transfer
tokens, not just those who create snapshots. That is, if a participant creates
a snapshot, then the other participants will later pay the overhead during
transfers, even though they were not interested in the snapshot.

– If a large number of snapshots is generated, arrays ids and values might
become so long that their manipulation exceeds the maximal gas (metering
of code execution) allowed for Ethereum transactions, which is the perfect
surface for a denial of service attack. That is why function snapshot is in-
ternal: subclasses must implement some security policy to control its access.

11.3.2 ERC-721 and its OpenZeppelin Implementation

The ERC-721 standard [65] defines an interface with ten functions and three
events. As for the ERC-20 standard, token owners can be both externally owned
accounts and contracts, but contracts should be avoided, unless they have been
explicitly programmed to deal with ERC-721 tokens. We will be back on this
issue in a moment.

The functions of the ERC-721 standard are for:

1. Direct transfers
– balanceOf(address owner) yields the amount of tokens that owner

owns.
– ownerOf(uint tokenId) yields the owner of the given token, if any.
– transferFrom(address from, address to, uint tokenId) transfers
the given token from from to to. In general, the caller of this function
must coincide with from, or at least be authorized to transfer the given
token on behalf of from (see later). This function does not even try to
check that to is an externally owned account or a contract that will
be able to deal with the token. If that is not the case, the token will
be transferred to to and stuck forever. Because of that, this function is
considered to be unsafe. This function must emit a Transfer event.
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– safeTransferFrom(address from, address to, uint tokenId) behaves
like transferFrom, but additionally tries to ensure that to is an exter-
nally owned account or a contract able to deal with the token. In this
sense, it is considered to be safe.

2. Delegation: function
– approve(address delegate, uint tokenId) allows delegate to trans-
fer the given token on behalf of the caller of the function, that must be
the owner of the token or itself an authorized operator for the token. The
previous delegate (if any) loses its delegation after this function has been
called. This function emits an Approval event.

– setApprovalForAll(address operator, bool approved) allows the
operator to transfer all tokens owned by the caller of the function (if
approved is true) or removes that right (if approved is false). It is pos-
sible to allow more operators per token owner. This function emits an
ApprovalForAll event.

– getApproved(uint tokenId) yields the delegate for the given token, if
any.

– isApprovedForAll(address owner, address operator) determines if
operator has been authorized to transfer all tokens owned by owner.

3. Optional info:
– name() yields the name of the tokens.
– symbol() yields the symbol of the tokens.

OpenZeppelin’s implementation of the ERC-721 standard is relatively long,
so we only report a portion of the code in Figure 11.3. Most information is
kept in four maps: owners specifies who is the owner of each given token;
balances tells how many tokens each given owner owns; tokenApprovals

specifies which delegate has been authorized for each given token (if any); and
operatorApprovals yields the set of approved operators for each token owner.
Note that mapping (address => bool) is actually a set of approved operators:
Solidity has no set type, hence sets are encoded as their characteristic map.

Figure 11.3 shows that transferFrom calls an auxiliary function transfer

that decreases the balance of the sender, increases the balance of the receiver,
and assigns the token to the receiver (to). There is no check on the fact that
to is actually an externally owned account, or a contract, able to deal with the
token it receives. This check exists for function safeTransferFrom (not shown
in Figure 11.3). The idea is that contracts ready to receive ERC-721 tokens must
be explicitly labeled by their programmer as implementing an IERC721Receiver

interface, whose only method onReceive is called when the contracts receive an
ERC-721 token. In general, it would be enough to check that to instanceof

IERC721Receiver in order to be sure that the programmer was actually expect-
ing the contract to receive ERC-721 tokens and to call onReceive in that case.
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But this is not possible in Solidity, since that language lacks the instanceof

operator and, in general, it misses any way to check the dynamic type of values.
This is not just a missed feature: it is actually impossible to implement such a
check in Solidity, since Ethereum implements data as unboxed values, so that
their dynamic type is not available and no instanceof operator can ever be
implemented. Because of this limitation, Solidity programmers use a very cum-
bersome technique, based on the ERC-165 standard [167], consisting in adding
a function that yields a hash of the signatures of the methods implemented by
a contract. By calling that function, it is possible, at run time, to guess the
interfaces implemented by a contract. This technique (that we have highly sim-
plified but is much more complicated than what we could express here) is very
weak, since contracts are free to cheat and pretend to implement an interface
that they actually do not implement. However, it is the best that a programmer
can do in Solidity. There is an even weaker approach to cope with this problem.
Namely, the ERC-223 token standard [61] requires to cast the token receiver
to an interface IERC223Recipient and then call its tokenReceived method. If
the receiver does not implement such method, the transaction fails. This is even
weaker than ERC-165 since it makes no attempt to guarantee that the receiver
was actually declared to implement IERC223Recipient: casts are unchecked in
Solidity, they are pure decorations to make the compiler accept the code, but
they are not verified at run time.

11.4 Conclusions

The code optimization of smart contracts leads to both the improvement of
performance and the reduction of the waste of computational resources, but also
to the reduction in terms of financial costs related to gas cost. In this chapter,
we have covered some popular token standards that if optimized would benefit
blockchain peers. In the next chapter, we deal with the migration from one
blockchain platform to another, focusing on the optimization of tokens proposed
in this chapter from Solidity to Takamaka language.
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contract ERC20 is IERC20 {

mapping (address => uint) private _balances;

mapping (address => mapping (address => uint)) private _allowances;

uint private _totalSupply;

string private _name;

string private _symbol;

constructor(string name_ , string symbol_) {

_name = name_; _symbol = symbol_;

}

function totalSupply () public view virtual override returns (uint) {

return _totalSupply;

}

function balanceOf(address owner) public view virtual override

returns (uint) {

return _balances[owner ];

}

function transfer(address to, uint value) public virtual override {

_transfer(msg.sender , to, value);

}

function allowance(address owner , address delegate) public view

virtual override returns (uint) {

return _allowances[owner][ delegate ];

}

function transferFrom(address owner , address to, uint value) public

virtual override {

_transfer(owner , to, value);

uint currentAllowance = _allowances[owner ][msg.sender ];

require(currentAllowance >= value , "transfer excess");

_approve(owner , msg.sender , currentAllowance - value);

}

function _transfer(address owner , address to, uint value) internal

virtual {

require(owner != address (0), "transfer zero address");

require(to != address (0), "transfer to zero address");

_beforeTokenTransfer(owner , to , value);

uint senderBalance = _balances[owner ];

require(senderBalance >= value , "transfer excess");

_balances[owner] = senderBalance - value;

_balances[to] += value;

emit Transfer(owner , to , value);

}

function _mint(address account , uint amount) internal virtual {

require(account != address (0), "mint to zero address");

_beforeTokenTransfer(address (0), account , amount);

_totalSupply += amount;

_balances[account] += amount;

emit Transfer(address (0), account , amount);

}

function _beforeTokenTransfer(address from , address to, uint amount)

internal virtual {

}

}

Figure 11.1: A portion of OpenZeppelin’s ERC-20 implementation in Solid-
ity [152].
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abstract contract ERC20Snapshot is ERC20 {

Counters.Counter private _currentSnapshotId;

struct Snapshots {

uint[] ids;

uint[] values;

}

mapping (address => Snapshots) private _balancesSnapshots;

Snapshots private _totalSupplySnapshots;

function _snapshot () internal virtual returns (uint) {

_currentSnapshotId.increment ();

uint currentId = _getCurrentSnapshotId ();

// ... emit Snapshot event ...

return currentId;

}

function balanceOfAt(address account , uint snapshotId) public view

virtual returns (uint) {

(bool snapshotted , uint value) = _valueAt(snapshotId ,

_balancesSnapshots[account ]);

return snapshotted ? value : balanceOf(account);

}

function totalSupplyAt(uint snapshotId) public view virtual

returns (uint) {

(bool snapshotted , uint value) = _valueAt(snapshotId ,

_totalSupplySnapshots);

return snapshotted ? value : totalSupply ();

}

function _beforeTokenTransfer(address from , address to, uint

amount) internal virtual override {

super._beforeTokenTransfer(from , to, amount);

if (from == address (0)) { // mint

_updateAccountSnapshot(to);

_updateTotalSupplySnapshot ();

} else if (to == address (0)) { // burn

_updateAccountSnapshot(from);

_updateTotalSupplySnapshot ();

} else { // transfer

_updateAccountSnapshot(from);

_updateAccountSnapshot(to);

}

}

// _valueAt , _updateAccountSnapshot , _updateTotalSupplySnapshot

not shown

}

Figure 11.2: A portion of OpenZeppelin’s Solidity ERC-20 contract with snap-
shots [153].
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contract ERC721 is IERC721 {

string private _name , _symbol;

mapping(uint => address) private _owners; // Mapping from token ID to owner address

mapping(address => uint) private _balances; // Mapping owner address to token count

mapping(uint => address) private _tokenApprovals; // Mapping from token ID to approved

address

mapping(address => mapping(address => bool)) private _operatorApprovals; // Mapping from

owner to approved operators

constructor(string name_ , string symbol_) {

_name = name_;

_symbol = symbol_;

}

function balanceOf(address owner) public view virtual override returns (uint) {

return _balances[owner ];

}

function ownerOf(uint tokenId) public view virtual override returns (address) {

return _owners[tokenId ];

}

function name() public view virtual override returns (string) {

return _name;

}

function symbol () public view virtual override returns (string) {

return _symbol;

}

function approve(address to, uint tokenId) public virtual override {

address owner = ownerOf(tokenId); require(to != owner , "approval to current owner");

require(_msgSender () == owner or isApprovedForAll(owner , _msgSender ()), "caller is not

owner nor approved");

_approve(to, tokenId);

}

function getApproved(uint tokenId) public view virtual override returns (address) {

return _tokenApprovals[tokenId ];

}

function isApprovedForAll(address owner , address operator) public view virtual override

returns (bool) {

return _operatorApprovals[owner ][ operator ];

}

function transferFrom(address from , address to , uint tokenId) public virtual override {

require(_isApprovedOrOwner(_msgSender (), tokenId), "caller is not owner nor approved");

_transfer(from , to , tokenId);

}

function _isApprovedOrOwner(address spender , uint tokenId) internal view virtual returns (

bool) {

address owner = ownerOf(tokenId);

return spender ==owner or isApprovedForAll(owner , spender) or getApproved(tokenId) ==

spender;

}

function _transfer(address from , address to, uint tokenId) internal virtual {

require(ownerOf(tokenId) == from , "transfer from incorrect owner");

require(to != address (0), "transfer to the zero address");

_beforeTokenTransfer(from , to, tokenId);

_approve(address (0), tokenId); // Clear approvals from the previous owner

_balances[from] -= 1; _balances[to] += 1; _owners[tokenId] = to;

emit Transfer(from , to, tokenId);

}

function _approve(address to, uint tokenId) internal virtual {

_tokenApprovals[tokenId] = to; emit Approval(ownerOf(tokenId), to, tokenId);

}

}

Figure 11.3: A simplified portion of OpenZeppelin’s ERC-721 implementation
in Solidity [151].





Chapter 12
OPTIMIZATION OF TOKEN
STANDARDS

OpenZeppelin’s implementations of ERC-20 (Figure 11.1) and ERC-721 (Fig-
ure 11.3) are only around a few hundred non-comment lines of Solidity. Years of
exposure to the open-source community and 35 Github contributors give some
confidence in OpenZeppelin’s code. This chapter presents a re-engineering of
OpenZeppelin’s implementation of the ERC-20 standard for fungible tokens on
Takamaka. It starts with a literal translation from Solidity to Takamaka, but
then describes a novel implementation for making snapshots of tokens, based
on tree maps, that is possible in Java, but not in Solidity, and shows that it is
much more efficient than the literal translation in Java from Solidity, within the
Java Virtual Machine. Some contents of this chapter are also published in [51]
and [50].

12.1 From Solidity to Takamaka

In this section, we propose a process to translate as literally as possible a pro-
gram written in Solidity to the Takamaka language.

Takamaka compiles for the JVM and the translation from Solidity to Taka-
maka is more difficult. In many cases, different programming languages have
specific solutions that cannot be translated literally: for instance, Java has an
instanceof operator, hence it is pointless to translate the ERC-165-based tech-
nique used in Solidity to allow contracts to hold ERC-721 tokens only if they
explicitly declare to implement a specific interface. Just use instanceof in Java
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public class ERC20 extends Contract implements IERC20 {

private final UnsignedBigInteger ZERO = new UnsignedBigInteger("0");

private final StorageMap <Contract ,UnsignedBigInteger > _balances = new StorageTreeMap <>();

private final StorageMap <Contract ,StorageMap <Contract ,UnsignedBigInteger >> _allowances =

new StorageTreeMap <>();

private UnsignedBigInteger _totalSupply = ZERO;

private final String _name , _symbol;

public ERC20(String name , String symbol) { _name = name; _symbol = symbol; }

public final @Override @View UnsignedBigInteger totalSupply () {

return _totalSupply;

}

public final @Override @View UnsignedBigInteger balanceOf(Contract owner) {

return _balances.getOrDefault(owner , ZERO);

}

public final @Override @FromContract void transfer(Contract to, UnsignedBigInteger value)

{

_transfer(caller (), to, value);

}

public final @Override @View UnsignedBigInteger allowance(Contract owner , Contract

delegate) {

return _allowances.getOrDefault(owner , StorageTreeMap ::new).getOrDefault(delegate , ZERO)

;

}

protected final void transferFrom(Contract owner , Contract to, UnsignedBigInteger value) {

_transfer(caller (), to, value);

_approve(caller (), owner , allowance(owner , caller ()).subtract(value , "transfer excess"))

;

}

protected void _transfer(Contract owner , Contract to, UnsignedBigInteger value) {

require(owner != null , "transfer from null account");

require(to != null , "transfer to the null account");

require(value != null , "value cannot be null");

_beforeTokenTransfer(owner , to , value);

_balances.put(owner , balanceOf(owner).subtract(value , "transfer excess"));

_balances.put(to, balanceOf(to).add(value));

event(new Transfer(owner , to, value));

}

protected void _mint(Contract account , UnsignedBigInteger amount) {

require(account != null , "mint to the null account");

require(amount != null , "amount cannot be null");

_beforeTokenTransfer(null , account , amount);

_totalSupply = _totalSupply.add(amount);

_balances.put(account , balanceOf(account).add(amount));

event(new Transfer(null , account , amount));

}

protected void _beforeTokenTransfer(Contract from , Contract to, UnsignedBigInteger amount)

{

}

}

Figure 12.1: A portion of our ERC-20 implementation in Takamaka [99].

instead. Nevertheless, our investigation of both languages highlights some trans-
lation patterns from Solidity to Takamaka, as shown below.

Visibility modifiers. Solidity’s public and private have direct Java equivalents.
Solidity’s internal corresponds to Java’s protected, but the latter grants ac-
cess also to code in the same package of the class C where protected is used,
which is not the case for internal (Solidity has no packages). This might be
dangerous since an attacker might place a new class in C’s package and get access
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to C’s methods that were meant to be C’s implementation details. To avoid this
scenario, the verifier of Takamaka code, that Hotmoka runs before installing code
in blockchain, rejects split packages, i.e. does not allow two classes in the same
package to occur in different jars (Java archives) in the classpath (Java enforces
the same constraint only from Java 9). Thanks to this constraint, internal can
be safely translated into Java’s protected. Solidity’s external grants access to
a function only to other contracts and, in this sense, it is used to specify the
public API of a contract. There is no such visibility notion in Java. However,
Takamaka introduces the @FromContract annotation, which restricts the callers
of a method or constructor to contracts. Hence external can be translated into
public @FromContract.

The following table summarizes the translation:

Solidity Takamaka (Java)

public public

private private

internal protected

external public @FromContract

view modifier. In Solidity, this states that a function (such as balanceOf in
Figure 11.1) has no side effects and can consequently be executed outside of
transactions, in every single node of the blockchain. This translates into Taka-
maka’s @View annotation, with the same semantics.

override and virtual modifiers. Solidity and Java take opposite approaches to
non-privatemethods redefinition. Namely, methods can be redefined in Solidity
only if they are marked with virtual and redefinitions must be marked with
override. In Java, methods can always be redefined unless they are marked with
final and redefinitions do not need any special syntactical mark, although the
@Override annotation has become customary. Consequently, the translation of
these modifiers from Solidity to Takamaka is the following:

Solidity Takamaka (Java)

virtual f(args)

returns T
T f(args)

override f(args)

returns T
@Override T f(args)

f(args) returns T final T f(args)

uint type. Solidity uses uint (short form of uint256) to represent unsigned,
potentially very large integers (up to 2256−1). For instance, ERC-20 implemen-
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tations use uint to represent token balances (Figure 11.1). This type suffers
from (silent) underflows and overflows. To cope with this problem, Solidity code
can use the SafeMath library that provides arithmetic functions with defensive
checks against underflows, overflows, and divisions by zero. The latest versions
of Solidity implement such checks in the language, natively, at an increased gas
cost. Takamaka code can use UnsignedBigInteger for that, a wrapper of Java’s
BigInteger class, from Takamaka’s support library, whose operations include
defensive checks, with the extra advantage that they are unbounded unsigned
integers, hence do not suffer from overflows.

mapping type. Solidity uses the mapping type for maps between values, as for
field balances in Figure 11.1. These are not data structures, but rather an
algorithm that spreads the bindings of the mapping in the key/value store of
Ethereum (with an unlikely risk of hash collision). Takamaka can use an actual,
generic data structure StorageTreeMap<Key,Value> instead, an implementa-
tion of the interface StorageMap<Key,Value>, from Takamaka’s support library.
Solidity’s maps default to 0, hence one must use getOrDefault(index, 0) calls
on StorageTreeMap in Takamaka. If mapping is used in Solidity as a trick to im-
plement a set (as in the codomain of operatorApproval in Figure 11.3), then
in Takamaka it is simpler and more efficient to use a StorageTreeSet<Value>

instead, that is an implementation of the interface StorageSet<Value> from
Takamaka’s support library.

msg.sender. This Solidity expression refers to the contract that calls a function.
In Takamaka, this corresponds to caller() inside a @FromContract method.

address(0). This Solidity expression refers to a contract or account at address 0.
It is assumed that nobody controls that contract or account. Hence, traditionally,
it stands for a missing value or for the sign of missing information in a transaction
request. In Takamaka, the same can be achieved with null.

Figure 12.1 shows our manual translation in Takamaka of the Solidity code
for ERC-20 in Figure 11.1, by following the heuristics above. The translation
is almost literal, with a few exceptions. For instance, function transferFrom

in Figure 11.1 enforces a non-negative allowance through a require assertion.
In Figure 12.1, that same check is moved inside the subtract method of the
UnsignedBigInteger class.

Figure 12.2 shows our manual translation in Takamaka of the Solidity code for
ERC-721 in Figure 11.3. Also, this translation is almost literal. We observe that
the operatorApprovals field uses a StorageSet in Takamaka, instead of the
Solidity trick of using a map to represent a set. Token instances are represented
as BigInteger in Takamaka, hence they are more general than in Solidity, where
they are limited to be uint, hence 256 bits only. The balances field uses
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public class ERC721 extends Contract implements IERC721 {

private final StorageMap <BigInteger ,Contract > _owners = new StorageTreeMap <>();

private final StorageMap <Contract ,BigInteger > _balances = new StorageTreeMap <>();

private final StorageMap <BigInteger ,Contract > _tokenApprovals = new StorageTreeMap <>();

private final StorageMap <Contract ,StorageSet <Contract >> _operatorApprovals = new

StorageTreeMap <>();

private final String _name , _symbol;

public ERC721(String name , String symbol) { _name = name; _symbol = symbol; }

public final @Override @View BigInteger balanceOf(Contract owner) { return _balances.

getOrDefault(owner , ZERO); }

public final @Override @View Contract ownerOf(BigInteger tokenId) { return _owners.get(

tokenId); }

public final @View String name() { return _name; }

public final @View String symbol () { return _symbol; }

public @Override @FromContract void approve(Contract to, BigInteger tokenId) {

Contract owner = ownerOf(tokenId); require(owner != to, "approval to current owner");

Contract caller = caller ();

require(caller == owner or isApprovedForAll(owner , caller), "caller is not owner nor

approved");

_approve(to, tokenId); }

public @Override @View Contract getApproved(BigInteger tokenId) { return _tokenApprovals.

get(tokenId); }

public @Override @View boolean isApprovedForAll(Contract owner , Contract operator) {

StorageSet <Contract > approvedForAll = _operatorApprovals.get(owner);

return approvedForAll != null && approvedForAll.contains(operator); }

public @Override @FromContract void transferFrom(Contract from , Contract to, BigInteger

tokenId) {

require(_isApprovedOrOwner(caller (), tokenId), "caller is not owner nor approved");

require(to instanceof ExternallyOwnedAccount or to instanceof IERC721Receiver ,

"transfer destination must be an externally owned account or implement IERC721Receiver")

;

_transfer(from , to , tokenId); }

protected boolean _isApprovedOrOwner(Contract spender , BigInteger tokenId) {

Contract owner = ownerOf(tokenId);

return spender == owner or isApprovedForAll(owner , spender) or getApproved(tokenId) ==

spender;

}

protected void _transfer(Contract from , Contract to , BigInteger tokenId) {

require(ownerOf(tokenId) == from , "transfer from incorrect owner");

require(to != null , "transfer to null");

_beforeTokenTransfer(from , to, tokenId); _approve(null , tokenId);

_balances.put(from , balanceOf(from).subtract(BigInteger.ONE));

_balances.put(to, balanceOf(to).add(BigInteger.ONE)); _owners.put(tokenId , to);

if (to instanceof IERC721Receiver) (( IERC721Receiver) to).onReceive(this , from , to,

tokenId);

event(new Transfer(from , to, tokenId)); }

protected void _approve(Contract to , BigInteger tokenId) {

if (to == null) _tokenApprovals.remove(to); else _tokenApprovals.put(tokenId , to);

event(new Approval(owner , to, tokenId)); }

}

Figure 12.2: A portion of our ERC-721 implementation in Takamaka [100].

BigInteger to represent the balance of each token holder. This is cheaper than
UnsignedBigInteger and has been preferred in this case since the code of the
contract guarantees such values to be non-negative, hence the run-time checks
of UnsignedBigInteger are not useful here. Maps in Takamaka cannot use the
handy indexing notation of Solidity and do not use null to represent a missing
binding. This explains why the Takamaka code is sometimes a bit more verbose
(see for instance the methods isApprovedForAll and approve). In Takamaka,
both methods transferFrom and safeTransferFrom have been collapsed into
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contract ERC20 is IERC20 {

mapping (address = > uint) private _balances;

uint private _totalSupply;

struct SnapshotImpl {

immutable mapping (address => unit) public balances;

immutable uint public totalSupply;

}

function snapshot () public returns (SnapshotImpl) {

return (immutable clone of _balances , copy of _totalSupply) }

}

Figure 12.3: The pseudocode of an alternative implementation of snapshots in
Solidity, that its compiler does not accept.

a single method transferFrom that safely checks if the receiver of the token is
an externally owned account or a contract that implements IERC721Receiver.
In this latter case, its onReceive method is called. The check on the type of the
receiver is sound in Takamaka and doesn’t need the tricky and fragile ERC-165
machinery, since Java has an instanceof operator that fails if the test is false.

12.1.1 Snapshot ERC-20 in Takamaka

We have translated in Takamaka the Solidity code from Figure 11.2. The re-
sult of this translation is at [101]. It works perfectly but suffers from the same
issues highlighted above for its Solidity counterpart. Hence, it is interesting to
investigate whether a better implementation of ERC-20 contracts with snap-
shots exists, at least in Takamaka, which is our target language. Moreover, it
is interesting to see if that implementation can also work for ERC-721 tokens,
currently missing the snapshot feature in Solidity.

12.2 An Efficient Algorithm for Snapshots

By looking at OpenZeppelin’s code in Figure 11.1, it would be convenient to
implement the snapshot function in a way completely different from that de-
scribed in Section 11.3.1: it should return an actual snapshot (not its identifier),
i.e. a data structure containing an immutable view of the ledger. This new imple-
mentation does not increase the length of any array and can be safely public.
In Solidity-like code, this would look like in Figure 12.3. However, this code
cannot be written in Solidity. The main reason is that Solidity maps cannot be
cloned, since they are not data structures, but just an algorithm for distributing
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public class ERC20 extends Contract implements IERC20 {

private UnsignedBigInteger _totalSupply = ZERO;

private final StorageMap <Contract , UnsignedBigInteger > _balances =

new StorageTreeMap <>();

public final IERC20View snapshot () {

class SnapshotImpl extends Storage implements IERC20View {

private final UnsignedBigInteger totalSupply = _totalSupply;

private final StorageMapView <Contract ,UnsignedBigInteger >

balance = _balances.snapshot ();

public @Override @View UnsignedBigInteger totalSupply () {

return totalSupply;

}

public @Override @View UnsignedBigInteger balanceOf(Contract

account) {

return balances.getOrDefault(account , ZERO);

}

// the snapshot of a snapshot is itself

public @Override @View IERC20View snapshot () {

return this;

}

}

return new SnapshotImpl ();

}

}

Figure 12.4: The snapshot method added to the code in Figure 12.1.

key/value pairs in the storage of Ethereum. Solidity maps do not even know
their set of keys, whose iteration would at least allow a (very expensive) clone
of the map. Moreover, at the time we conducted the analysis and experiments,
Solidity functions could not return a struct (from Solidity v0.8, ABIEncoderV2
implements that feature). This is why we talk about pseudocode in Figure 12.3:
it does not really compile.

Figure 12.4 shows that the corresponding code can well be written in Taka-
maka instead. The local inner class SnapshotImpl plays the role of the struct in
Solidity. At creation time, it clones fields totalSupply and balances from the
outer ERC20 object. Class SnapshotImpl actually implements a new superinter-
face IERC20View of IERC20, that has only the read-only methods of ERC-20, i.e.
totalSupply and balanceOf. Figure 12.5 shows the UML diagram of these in-
terfaces and classes. It shows that there is no special class for ERC-20 contracts
with snapshots anymore: all ERC-20 contracts can be snapshotted.

The core idea of this Java code is that, in Takamaka, an immutable clone of
balances is simply balances.snapshot() (the snapshotmethod of StorageMap),
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Figure 12.5: The UML class diagram of the IERC20View and IERC20 interfaces,
implemented by the ERC20 class. The IERC20View interface is a very abstract
view of a ledger: it has methods for read-only access and for creating snapshots.

that runs in O(1). Therefore, the problem is now to understand how the class
StorageTreeMap and its snapshot method work. They exploit the same idea
used, for instance, in the Git version control system and in the storage of
Ethereum, allowing one to check out their full history of states, by simply
swapping a root pointer. They favor the re-creation of immutable data struc-
tures instead of updates to mutable data structures. More in detail, in our
case class StorageTreeMap<K,V> implements red/black trees [175], a special
kind of balanced binary search trees that orders keys of type K by their stor-
age reference, i.e. a machine-independent pointer to the keys in the memory of
the blockchain [188]. Such references are 32 bytes long, i.e. 256 bits. Since a
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red/black tree is balanced, the length of a path from root to leaf is 256 at most
and get and put operations run in O(256), i.e. in O(1). Figure 12.6a shows
a StorageTreeMap<Contract,UnsignedBigInteger> balances that imple-
ments the mapping with the following insertion order: 81af ↦→ 14, 77b1 ↦→ 18,
da89 ↦→ 14, 71a0 ↦→ 19, fa31 ↦→ 35 and 9100 ↦→ 5 (for simplicity, this example
assumes that storage references are only two bytes long, i.e. four hexadecimal
digits or 16 bits). We remember that the O notation states a worst-case scenario.
Namely, the cost for get and put is often smaller than 256 operations, being in
general dependent on the number of elements in the tree. We are not stating
that get and put cost always exactly 256 operations, which would need the Θ
notation instead. What we are stating is that it is never higher than 256, which
is the meaning of the O notation. The fact that get and put run in constant
worst-case time is made possible by the choice of a particular kind of keys, whose
size is fixed a priori. The situation here is similar to the use of Merkle-Patricia
tries for implement the storage of Ethereum, whose get and put operations are
considered to run in constant time as well since their cost increases with the size
of the trie but is bounded from above by a constant [14,33]. Also, in that case,
constant worst-case time is possible since keys are Ethereum addresses, hence
of fixed size.

Figure 12.6a shows also the computation of a clone of balances: it is another
StorageTreeMap whose root is the same root of balances. The independence
between balances and its clones is obtained by making the nodes of the trees
immutable data structures: destructive updates of the tree actually create new
nodes instead of modifying old nodes. For instance, Figure 12.6b shows an up-
date to balances, that changes the value bound to da89, from 14 to 30. It shows
that both nodes for 81af and da89 are recreated (darkened in the figure), and
the root of balances is updated. The clone’s root remains unchanged instead
and points to the old tree. Note that computing a clone means just creating
a new root cell that points to the current root of the tree. Hence, a clone is
computed in O(1). The idea of creating independent clones of a tree by using
immutable nodes and a new root pointer is not new. We have borrowed this idea
from the way the Git version control system works internally. Git allows very
inexpensive creation of branches of a repository in O(1), since a branch is just
a moving reference to the root of the repository.

The code in Figure 12.4 has the same asymptotical complexity as Open-
Zeppelin’s ERC-20 contracts with snapshots, but overcomes all its drawbacks
reported at the end of Section 11.3.1:

1. It is simple and intuitive. Class StorageTreeMap might look complex but
comes with the support library of Takamaka and needn’t be re-implemented.

2. It has no overhead because of snapshots and no balancesSnapshots map
exists anymore.
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Figure 12.6: A red/black tree with immutable nodes, with snapshots in O(1).

3. Who creates a snapshot pays gas. The other participants can transfer coins
without paying any overhead because of that snapshot.

4. There are no arrays that grow in size when snapshots are created, hence a
denial of service attack is not possible.

Moreover, the same technique can be used to implement a snapshot of an
ERC-721 token ledger as well. There is no extra difficulty in comparison with
ERC-20 ledgers. The only difference is that the snapshot must be performed
for two maps this time: for the balances and for the owners maps of the
implementation in Figure 12.2. The snapshot method added to the code in
Figure 12.2 is shown in Figure 12.7. Also, in this case, there is an IERC721View

interface that collects the read-only methods of IERC721.
The same technique can be applied to generate snapshots of other data struc-

tures. The idea is always that described above, based on the snapshot method
of the underlying components of the data structure. For instance, we have im-
plemented snapshots also for shared entities [23], that represent objects divided
in many, dynamically changing shares, such as a private company, a DAO or
the set of validators of a blockchain.
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public class ERC721 extends Contract implements IERC721 {

public final IERC721View snapshot () {

class SnapshotImpl extends Storage implements IERC721View {

private final StorageMapView <BigInteger ,Contract > owners =

_owners.snapshot ();

private final StorageMapView <Contract ,BigInteger > balances =

_balances.snapshot ();

public @Override @View BigInteger balanceOf(Contract owner) {

return balances.getOrDefault(owner , ZERO);

}

public @Override @View Contract ownerOf(BigInteger tokenId) {

return owners.get(tokenId);

}

// the snapshot of a snapshot is itself

public @Override @View IERC721View snapshot () {

return this;

}

}

return new SnapshotImpl ();

}

}

Figure 12.7: The snapshot method added to the code in Figure 12.2.

12.3 Related Work

The ERC-20 standard [69] for fungible tokens was originally defined for initial
coin offers and for the definition of new kinds of tokens supported by the underly-
ing, native token of the blockchain. The ERC-721 standard [65] for non-fungible
tokens has experienced an impressive success, mainly for the definition of NFTs
for art and, in general, for representing things having a specific value. Their
OpenZeppelin implementations [149] and [150], respectively, are currently the
de facto standard implementations for Ethereum-like blockchains. The impor-
tance of such standards is growing with the progressive application of blockchain
technology beyond its original context of cryptocurrency. Different application
contexts also involve different programming languages, systems, and platforms,
which must implement and support these standards. For instance, Hyperledger
Fabric proposes some sample implementation in Java, Go, Javascript [104,105].
Instead, for Cosmos, there are implementations written in Rust [109]. How-
ever, they limit themselves to proposing minimal versions of these standards
by omitting valuable features, like snapshots, without offering improvements by
exploiting the target languages.
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12.4 Performance Evaluation

This section compares the performance of the literal translation into Takamaka
of OpenZeppelin’s ERC-20 contracts with snapshots (Section 11.3.1) against
that of our implementation in Takamaka that uses a more efficient snapshot
algorithm (Figures 12.1 and 12.4), which we call Native, in terms of gas con-
sumed for code execution. Gas is the standard cost measure for smart contracts,
since it reflects the actual number of resources (CPU cycles, RAM allocations,
storage slots) that each node of a blockchain must consume. However, gas is
a low-level and is a bytecode-specific measure. Solidity and Takamaka use two
completely different bytecode languages. Because of that, what we are actually
going to compare is OpenZeppelin’s ERC-20 contract with snapshots translated
in Takamaka (end of Section 11.3.1), that we call OpenZeppelin, against our
Native. Both are written in Takamaka and both are compiled into Java byte-
code. Hence, the comparison gives a measure of the relative efficiency of the
two algorithmic solutions, which is what we are looking for. Instead, this is not
a comparison between OpenZeppelin’s Solidity code and our Takamaka code,
or more generally between Solidity and Takamaka, that would be meaningless
and that we cannot provide, since they compile into distinct bytecode languages,
have different gas models and do not allow the same algorithmic solutions: maps
can be cloned in Takamaka but not in Solidity.

We have written a JUnit test case that simulates a typical usage scenario
for an ERC-20 contract: it creates the contract in blockchain, spreads its tokens
among a set of investors (some random externally owned accounts), plays for
some time with the ERC-20 contract (we assumed for ten days), performing
random token transfers between them, burning some random tokens or minting
new random tokens. At the end of each day, it takes a snapshot. The test case
is implementation-agnostic: given an implementation of ERC-20 with snapshots
(such as OpenZeppelin or Native), the test case will reproduce the scenario
and report the gas consumption. Moreover, in order to be deterministic and fair,
the test case uses a fixed seed for random choices. Hence its execution is exactly
the same at each run, with both OpenZeppelin and Native. Similarly, the
number and kind of transactions executed by the test case do not change. The
implementation is available at [97].

Environment Setup. All the experiments have been performed on a machine
equipped with an Intel Core i5-8259U 2,30/3,80 GHz and 16 GB of RAM mem-
ory running Ubuntu Linux 20.04.2 64bit, Oracle JDK version 13.

Table 12.8 shows the results. It reports the result of running our test that
simulates ten days of interaction with an ERC-20 contract, performing a snap-
shot at the end of each day. Implementation is the implementation under test:
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Implementation Investors Transfers Mints Burns Txs CPU RAM Storage Time

Native 100 219 103 99 433 2326293 3589999 66336137 1.98

OpenZeppelin 100 219 103 99 433 4020320 5808375 130334125 2.02

Native 200 832 205 194 1243 7636110 11627281 285906113 4.61

OpenZeppelin 200 832 205 194 1243 13766079 19617649 529992972 5.86

Native 300 1776 302 316 2406 15645862 23705622 655534336 9.82

OpenZeppelin 300 1776 302 316 2406 28372984 40299922 1216043831 12.43

Native 400 3260 383 411 4066 27995748 42184186 1272430439 16.22

OpenZeppelin 400 3260 383 411 4066 51587088 72881258 2332030574 24.02

Native 500 5170 512 506 6200 43846203 65859592 2086138985 27.68

OpenZeppelin 500 5170 512 506 6200 81836726 115260504 3801993384 43.42

Native 600 7326 590 599 8527 61657573 92597805 3064332633 44.20

OpenZeppelin 600 7326 590 599 8527 115871428 163144629 5600364411 68.47

Native 700 10038 738 710 11498 85337821 127833698 4327160882 68.61

OpenZeppelin 700 10038 738 710 11498 160102275 225029886 7815254989 107.20

Native 800 12896 759 871 14538 110260986 164858626 5673424050 98.56

OpenZeppelin 800 12896 759 871 14538 208781103 293035390 10340769047 160.49

Native 900 15939 884 901 17736 137069383 204568208 7154706461 144.09

OpenZeppelin 900 15939 884 901 17736 261476515 366375520 13058660548 231.03

Native 1000 20390 939 1031 22372 175274120 261148704 9282181878 223.00

OpenZeppelin 1000 20390 939 1031 22372 333622702 467160332 16925335716 344.23

Figure 12.8: Result of test simulating ten days of interaction with proposed
ERC-20 contract implementations.

native Takamaka with efficient snapshots or translated from OpenZeppelin into
Takamaka. Investors is the number of accounts that invest in the ERC-20 con-
tract. Transfers, Mints and Burns are the number of transfer, mint and burn
transactions performed during the test, respectively. Txs is the total number
of transactions performed by the test, including those for the creation and ini-
tialization of the ERC-20 contract and for the computation of its snapshots.
CPU, RAM, and Storage are the gas units consumed for CPU execution, RAM
allocation, and persistent storage in blockchain, respectively. Time is the time
for the execution of the test, in seconds.

For instance, the test with 1000 investors generates 22372 transactions.
With our Native contract, it consumes a total of 9718604702 units of gas
(CPU+RAM+Storage) and takes 223 seconds. With the OpenZeppelin con-
tract, it consumes 17726118750 units of gas (CPU+RAM+Storage, almost twice
as Native) and takes 344 seconds.

This experiment shows that our Native solution with efficient snapshots
(Figure 12.4) saves gas units (hence money) and reduces the overall time for
the execution of the test case. This time reduction is more apparent when there
are many investors, as the overhead of OpenZeppelin’s solution consequently
grows.

12.5 Conclusions

This chapter proposed a translation process from the Solidity language to the
Takamaka (Java) language, providing the implementation of specific standards
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for fungible and non-fungible tokens. Next, snapshot algorithm optimizations
are applied to reduce the gas and time costs of our implementations within
the JVM. These optimizations are based on maps with immutable clones, not
available in Solidity but implementable in Java. Experimental results report an
improvement compared to literal translations.

The same approach may be also applied to other blockchain languages and
platforms, which can support the proposed data structures. Furthermore, the
snapshot function may be included in other standards, such as our ERC-721
contracts, where snapshots were previously lacking in the Solidity version of
OpenZeppelin.



Part IV

Conclusion





Chapter 13
FINAL CONCLUSIONS AND
FUTURE DIRECTIONS

This thesis has investigated two challenging topics concerning blockchain: soft-
ware verification and code optimization. We proposed generic approaches to
analyze and optimize blockchain software. We implemented and applied them
to real-world contexts.

Static Analyzers for Blockchain Software

We deal with the design and development, from scratch, of tools to define static
analyses for the Go and Michelson languages. Although the challenges related to
language modeling have been different, thanks also to the support of LiSA [72], it
has been possible to reduce the technological gap and the development times. In
this direction, we also proposed the first IR for LiSA to handle only stack-based
languages exploiting SSA form and a symbolic stack. Moreover, we have empir-
ically demonstrated for the first time the use of LiSA in the industrial field. In
the future, we will improve the coverage of the analyzable code and in the case of
Go, support new frameworks not necessarily related to the blockchain scenario.
Furthermore, the development of these analyzers has allowed us to acquire skills
for the creation from scratch of analyzers both on high and low-level languages,
modeling GLPs and DSLs. A next step will be the creation of a new analyzer
for other popular languages such as Python [10], Rust [9], etc. Moreover, given
the peculiarity of LiSA, the topic of multi-language analysis between blockchain
software layers with different languages will also be addressed.

Analyses for Blockchain Software

Regarding the analyses proposed for these analyzers. We described how to de-
tect non-determinism issues exploiting information flow analyses. To the best
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of our knowledge, these techniques have never been applied so far to track non-
determinism properties on blockchain software. Furthermore, they have allowed
us to reduce the number of false positives compared to other tools used for the
detection of the same problem. Moreover, we think the intuition of “only those
that affect the status or response of the blockchain can cause problems within the
blockchain” may also be used to improve other analyses for blockchain software.
Furthermore, we investigate the issues related to UCCI, proposing an analysis
based on the information flow that has allowed the detection of behaviors that
lead to the execution of arbitrary code. Also in this case, as far as we know,
it is the first implementation based on flow analysis for the detection of this
issue in Go blockchain frameworks and smart contracts written in Michelson.
For numerical issues, we describe a preliminary study regarding abstract numer-
ical domains. Future work will improve the accuracy of the analysis and reduce
false positive warnings, especially with regard to numerical issues. An additional
idea regarding information analysis could be the implementation of a backward
analysis for the reconstruction of the single source-sink paths as we have done
in BackFlow [74] reconstructor. Indeed, the information flow analyses proposed
for non-determinism and UCCI are forward : they start from a source and they
trigger an alarm when the information flows into sinks. Hence, the end user will
only know the sinks, but may not have clear evidence of how the information
flowed at that point and from what source.

On-chain Verification Architecture

We introduced an alternative paradigm for blockchain verification, where the
nodes of the blockchain verify the deployed code. That is, the same network,
internally, runs a mandatory code verification step and rejects code that does
not pass it. As a consequence, on-chain verification is a defensive, proactive
technique that guarantees that all code executed in the blockchain has been
successfully verified. On-chain verification must be efficient, in order not to block
the nodes of the network. Our experiments show that the time of analysis is
largely dominated by the time of block creation, also because smart contracts
are typically small. In the future, we will also make other investigations on
the proposed analyzers based on LiSA. Nevertheless, the on-chain application
of powerful static analyses, such as those currently running, for instance, on
Java desktop applications [186], seems challenging. Moreover, the re-verification
of code already in the blockchain might not be the best choice, since it might
disable some smart contracts already in the blockchain and lock their funds. A
change in the verification rules might be opposed by a large number of users if
it affects some highly popular contracts.
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Smart Contract Code Optimization

We proposed a translation process from Solidity to Takamaka. Then, we pro-
vided the translation of ERC-20 and ERC-721 standards for fungible and non-
fungible tokens, respectively. Next, snapshot algorithms have been applied to
reduce the gas and time costs within the JVM. These algorithms use data struc-
tures that are not possible in Solidity but are implementable in Java, signifi-
cantly optimizing the code. Currently, the translation and optimization are not
automated. It will be considered in the future whether to automate the process
at least in part.
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