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Historically, decision-makers have used expert opinion to supplement lack of data.  

Expert opinion, however, is applied with much caution.  This is because judgment 

is subjective and contains estimation error with some degree of uncertainty.            

The purpose of this study is to quantify the uncertainty surrounding the unknown 

of interest, given an expert opinion, in order to reduce the error of the estimate.  

This task is carried out by data-informed calibration and aggregation of expert 

opinion in a Bayesian framework.  Additionally, this study evaluates the impact of 

the number of experts on the accuracy of aggregated estimate.  The objective is to 

determine the correlation between the number of experts and the accuracy of the 

combined estimate in order to recommend an expert panel size.   
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Chapter 1: Introduction 

 

Historically, decision-makers have utilized expert judgment to supplement 

insufficient data or carry out a task proficiently.  A major source of information in 

estimating parameters of risk and reliability models is expert knowledge.         

Cases involving new design, very rare events, and proceedings that are beyond our 

direct experience, call for the use of expert opinion as a surrogate source of 

information.  Experts can extensively influence key decisions in the political, 

financial, legal, and social arenas.   

Although, expert estimate is treated as scientific data, it is applied with 

much caution.  This is because an opinion is not a fact, verified by an experiment; 

it is a person's assessment or judgment about a specific subject.   

According to the RAND Corporation, opinion is a blend of knowledge and 

speculation (Forrester, 2005).  In the Oxford English dictionary, speculation 

denotes assumptions with minimum or no supporting evidence and knowledge is 

defined as the theoretical or practical understanding of a subject.  Considering 

these definitions, uncertainty in judgment simply translates into a range of 

possible outcomes, given the current state of expert knowledge.  Though, it can be 

argued that other types of data can also be uncertain, the human psyche introduces 

a unique category of complications by itself.  This means that there are degrees of 

inherent variation in the expert judgment.  Problems in expert judgment studies 

begin with the identification of attributes by which one can qualify an individual 

as an ‘expert’.  There is no established intra- or interdisciplinary taxonomy based 

on the relation between the expert qualifications and the accuracy of judgment.   
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Expert selection is often founded on uncorroborated ideas or subjective 

criteria, such as sufficient knowledge or experience in a discipline.   Of course, 

this kind of general approach is subject to interpretation, which in turn, results in 

inconsistencies across the board.   

Additionally, the majority of the developed models used for the 

assessment of expert accuracy are based on historical performance of the 

individual expert.  Therefore, decision makers need to be aware of the prior 

performance of the expert.  When such information is not available, analysts are 

puzzled about the quality of opinion or the degree of confidence to place on the 

judgment.  In practice, decision makers remain uncertain about the proper 

procedure to evaluate the expert judgment accuracy.   

In contrast to many studies revealing deficiencies in the expert judgment, 

this research study assesses how well experts are able to make predictions.         

This task is carried out by data-informed calibration of experts in a Bayesian 

framework.   

Bayesian method begins with the analyst prior belief of an unknown.  

Once the expert estimate is obtained, this prior belief is renewed using Bayes’ 

method to establish a posterior, describing the analyst updated knowledge of 

unknown of interest.   

The main problem in applying Bayesian method is the complications 

associated with the development of a proper likelihood function.  This distribution 

is a probabilistic model for data and must capture the interrelationships among 

estimates and the unknown.  The first part of this research is dedicated to 

development and validation of proper likelihood functions.   
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In the beginning, a comprehensive database of observed relative errors of 

experts in various fields is assembled to determine the distribution of errors.  

Realizing the norm and the spread of errors, a totally unique generic likelihood is 

developed, independent of discipline, capable of improving the expert estimate.  

The generic likelihood along with case-specific likelihood distributions developed 

by Droguette and Mosleh (2003) is then tested using empirical data to reveal their 

ability in reducing future error of prediction.  To the author’s best knowledge, 

there has not been any study conducted, in comparison with this comprehensive 

research, employing such sizeable empirical data from various fields.   

This study also considers the impact of the number of experts on the 

accuracy of aggregated estimate in a Bayesian framework.  Because expert 

opinion is considered uncertain, it seems logical to consult multiple experts in an 

attempt to have a more inclusive database or at least gather more information.  

Speculations about the positive correlation between the prediction accuracy and 

the number of experts, assert that the more experts are elicited, the higher the 

accuracy of the combined estimates achieved.  Question still remains whether 

empirical data actually support this assertion, and if so, to what extend this link 

has an impact on practical cases.  The second part of this study answers this 

question.   

Collected expert judgments are combined in a Bayesian framework using 

likelihood distributions developed in the first part of the research study.              

Total number of estimates with reduced errors is depicted against corresponding 

expert panel size.  The objective is to determine the correlation between the 

number of experts and the accuracy of the combined estimate to recommend an 

expert panel size.   
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The material presented in this research begins with a comprehensive 

literature review in eliciting and aggregating of expert opinion in Chapter 2.        

Chapter 3 characterizes the collected empirical data and explains the rationale of 

selection of the forecast accuracy measure.  An introduction of Bayesian 

methodology as well as detail mathematical formulation of likelihood functions 

and posterior distributions are presented in Chapter 4.  Chapter 5 is dedicated to 

the result of calibration studies as well as performance evaluation of the developed 

generic likelihood function.  Chapter 6 presents the result of aggregation analysis 

via empirical data.  In this chapter, Bayesian mathematical aggregation method is 

evaluated and compared with representative models of axiomatic methods. 

Additionally, expert panel size is suggested based on the accuracy of aggregated 

estimate achieved using likelihood functions formulated.  The last chapter, 

Chapter 7, wraps up the topics discussed in this research and summarizes the 

results of the study for a quick reference. 
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Chapter 2: Literature Review 

 

In the absence of complete scientific information, decision-makers have to 

rely on their own intuition or on expert opinion (Baldwin, 1975).                       

Expert judgment represents the expert state of knowledge at the time of response 

to a question (Keeney and von Winterfeldt, 1991).   

According to Booker and Meyer (1996), expert opinion is used in the 

structuring of technical problems including the determination of relevant 

information for analysis.  It is also used in direct qualitative or quantitative 

estimates of uncertainties and probabilities. 

Lannoy and Procaccia (2001) assert that recourse to expert judgment is 

required in the completing, validating, interpreting and integrating the existing 

data as well as predicting the rate of future events and the consequences of a 

decision.  Other situations requiring expert judgment include determining the 

present state of knowledge in one field and providing the basis for decision-

making in the presence of several options.   

Issues surrounding the use of expert opinion fall into two broad categories 

of eliciting and utilizing the opinion, which includes selection of experts, 

determination of expert panel size, ascertain calibration and aggregation methods, 

and so on.  In line with the scope of this research, a brief review of the literature 

related to eliciting and aggregating of expert opinion is presented in this chapter.   
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2.1 Eliciting Expert Opinion 

DeGroot (1988) believed that the range of people who can be considered 

as expert includes “anyone or any system that will give you a prediction” to 

“someone whose prediction you will simply adopt as your own posterior 

probability without modification”.  Nevertheless, expert judgments should be used 

with caution, not to replace ‘‘hard science” (Apostolakis, 1990).   

The poor quality of expert judgment can be broadly classified as those 

associated with the individual expert (i.e. attributes, expert definition or 

distinction), the actual estimates or judgments as well as the elicitation process                   

(formal vs. informal elicitation), aggregation or combining estimates, calibration 

(performance measures of experts and expertise), and available technical 

documents (Mosleh and Forrester, 2005).  According to Garthwaite et al. (2005), 

the quality of expert judgments can be controlled by a formal procedure of expert 

elicitation and documentation.   

Application of formal elicitation processes have been recommended by 

Hora and Iman (1989), Keeney and von Winterfeldt (1991), among many others.  

The formal elicitation of expert judgment started with the establishment of the 

RAND Corporation in the United States after Word War II (Cooke, 1991).  

RAND developed two formal methods for eliciting expert opinion, Delphi and 

Scenario Analysis through the collaborative project with U.S. Air Force and 

Douglas Aircraft in 1946 (Ayyub, 2001).   

Herman Kahn is regarded as the father of scenario analysis (Cooke, 1991). 

In this method, scenarios or hypothetical sequences of events are set forth to 

concentrate on decision-making processes (Kahn and Wiener, 1967).   
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Helmer and Dalkey were founders of Delphi method (Günaydin, 2009).  

According to Helmer (1977), Delphi method facilitates level communication 

among experts and therefore assists the formation of a group judgment.    

Wissema (1982) states Delphi procedure is developed in order to make discussion 

between experts possible without permitting a certain social interactive behavior. 

By 1974, the Delphi study count exceeded 10,000 (Linstone and Turoff, 1975).  

Delphi method has been widely used to generate forecasts in technology, 

education, and other fields (Cornish, 1977).   

Delphi is based on a structured process for collecting and refining data 

from a group of experts by means of a series of questionnaires interspersed with 

controlled opinion feedback (Adler and Ziglio, 1996).  Many researchers have 

suggested that performance feedback is a particularly effective method for 

improving calibration (e.g., Fischhoff, 1982).  Perhaps the most intensive study 

using performance feedback was conducted by Lichtenstein and Fischhoff (1980).  

Subjects completed 11 training sessions of 200 general knowledge questions.           

At the completion of each training session, they were given personalized 

feedback, including performance measures in calibration and overconfidence.  

This feedback was then discussed with all the subjects for about 5 to 10 minutes. 

There result of the training was clear improvement in calibration (Stone, 2000).   

In some fields, experts have shown relatively well-calibrated judgments.  

The typical example is meteorology, where forecasts of precipitation and of 

maximum and minimum daily temperatures have been shown to be well calibrated 

(Murphy and Winkler, 1977).  In contrast, financial analysts have been shown to 

significantly overestimate corporate earnings growth (Chatfield et al., 1989; 

Dechow and Sloan, 1997).   
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In the context of environmental risk analysis, Hawkins and Evans (1989) 

found that industrial hygienists provided reasonably accurate estimates of the 

mean and 90th percentile of a distribution of personal exposure to chemical-

industry workers.  Walker et al. (2003) found that experts provided reasonably 

well calibrated estimates of mean and 90th percentile ambient, indoor, and 

personal exposures to benzene.   

Human decision is a function of heuristics and biases (Tversky and 

Kahneman, 1974).  An important point to consider is when eliciting from an 

expert who has some sort of personal interest in the prediction outcome (Kadane 

and Winkler, 1988).  Also, experts and novices may experience the same biases in 

decision-making (Ericsson and Staszewski, 1989).   

Perhaps the most widely used heuristic is judgment by anchoring and 

adjustment (Tversky and Kahneman, 1974). With this strategy, an expert 

estimates an unknown with an initial value.  This estimate is then adjusted to 

obtain a nominal value.  The adjustment of the initial value (which is named the 

anchor) is usually too small (Slovic, 1972), a phenomenon called anchoring.        

An experiment conducted by Tversky and Kahneman (1974) demonstrated 

this problem.  Subjects were asked to estimate various quantities, stated in 

percentages (e.g. the percentage of African countries in the United Nations).   

They were given randomly chosen starting values and had to adjust it to their best 

estimate. Subjects whose starting values were high ended up with substantially 

higher estimates than those who started with low values.  For example, the median 

estimates of the percentage of African countries in the U.N. were 25% for subjects 

who received 10% as their starting point and 45% for those who received 65%.   
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Another aspect of using expert judgment is the problem of adjusting for 

the overconfidence (Alpert and Raiffa, 1982; Morgan and Henrion, 1990).  

Shlyakhter et al. (1994) has developed an empirical model for adjusting individual 

expert distributions to account for overconfidence.  The model uses a single 

parameter to calibrate the spread of an expert distribution.  Hammitt and 

Shlyakhter (1999) use this model in their study of expert assessments related to 

global climate change.  Other situations to consider include convergence and 

conflict among experts (Hynes and Vanmarke, 1977).   

Expert elicitation has been criticized in many ways as well, such as 

selection method of experts and accurate expression of expert knowledge 

(O’Hagan and Oakley, 2004).   

Simon and Chase (1973) suggest that for most domains it takes a minimum 

of ten years of experience to gain expertise.  According to Ericsson, Krampe, and 

Tesch-Römer (1993), expert knowledge is only achieved through continuing 

involvement in the subject matter.  Wilson (1994) states that expert knowledge is 

more coherent and structured than novice knowledge.  Although there are 

certainly instances of positive correlations between experience and expertise, there 

is little reason to expect this relation to apply universally (Shanteau, 2002).  

Vegelin (2003) states that experience significantly influences accuracy.   

In the context of Bayesian analysis, elicitation arises often as a method for 

specifying the prior distribution for an unknown of interest (O'Hagan et al, 2004).  

Eliciting a prior distribution is difficult due to the subjectivity nature of the prior 

(O'Hagan, 1998).  An excellent literature review of the elicitation of prior beliefs 

in the Bayesian framework is presented by Kadane and Wolfson (1998).   



 10 

The expert elicitation has been applied to many studies, such as future 

climate change (Arnell et al., 2005; Miklas et al., 1995), performance assessment 

of proposed nuclear waste repositories (Hora and Jensen, 2005; McKenna et al., 

2003; Draper et al., 1999; Hora and von Winterfeldt, 1997; Zio and Apostolakis, 

1996; Morgan and Keith, 1995; DeWispelare et al., 1995; Bonano and 

Apostolakis, 1991; Bonano et al., 1990), estimation of parameter distributions 

(Parent and Bernier, 2003; Geomatrix Consultants, 1998; O’Hagan, 1998), 

development of Bayesian network (Pike, 2004; Stiber et al., 1999, 2004; 

Ghabayen et al., 2006), and interpretation of seismic images (Bond et al., 2007).  

Another question in elicitation is to determine number of experts needed.  

Ashton and Ashton (1985) studied judgmental forecasts of the number of 

advertising pages in Time magazine.  The conclusion was that by combining the 

forecasts of four experts, error of estimates is reduced by 3.5%.  Study reported 

that accuracy improved by increasing the panel size up to 13 experts.            

Hogarth model (1978) showed using at least six experts but no more than 20.  

Libby and Blashfield (1978) showed improvement in accuracy of forecasts when 

increasing the size of the expert panel from one to three, but recommended the 

optimum size between five and nine.  Batchelor and Dua (1995) showed increase 

in accuracy from 10 to 22 economists.  Their study also revealed a small 

improvement from 22 to the remaining 12.   
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2.2 Utilizing Expert Opinion 

In uncertain situation, combining data can reduce error (Armstrong, 2001). 

For example, Klugman (1945) found that combining judgments led to greater 

improvements for estimates of heterogeneous items (irregularly-shaped lima beans 

in a jar) than of homogeneous items (identically-sized marbles in a jar).  

Krishnamurti et al. (1999), in a study of short-term weather forecasts, concluded 

that accurate predictions are needed from combining of six or seven estimates.     

Winkler and Poses (1993) examined physician’s predictions of survival for 231 

patients who were admitted to an intensive care unit. Physicians sometimes 

received unambiguous and timely feedback, so those with more experience were 

more accurate. They grouped the physicians into four classes based on their 

experience, 23 interns, four fellows, four attending physicians, and four primary 

care physicians. The group averages were then averaged. Accuracy improved 

substantially as they included two, three, and then all four groups. The error 

measure dropped by 12% when they averaged all four groups across the 231 

patients (compared to that of just one group).  

The two well-established mathematical approaches to aggregate opinions 

are axiomatic and Bayesian models (Boring, 2007; Clemen and Winkler, 1997).  

Many different methodologies have been developed for axiomatic aggregation.  

Previous research has considered simple averaging as a mental model of the 

aggregation process (Anderson, 1981; Dawes, 1979; Einhorn and Hogarth, 1975; 

Einhorn, Hogarth, and Klempner, 1977; Hastie, 1986; Sniezek and Henry, 1989).  

Many studies have suggested simple averaging of individual opinions as a method 

for improving the accuracy of predictions (Armstrong, 1985; Ashton, 1986; Hill, 

1982; Hogarth, 1978; Zajonc, 1962; Zarnowitz, 1984).   
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Stone (1961) proposed a linear opinion pools in which the aggregation 

result is expressed as a linear combination of estimates.  A linear opinion pool 

provides a very simple mechanism for representing unequal degrees of expertise.  

The determination of expertise (weight) can be a subjective matter and prone to 

numerous assumptions and interpretations (Genest and McConway, 1990).  

Cooke’s classical method is a linear opinion pool, applied widely in Europe 

(Clemen and Winkler, 1993), including major studies of nuclear-power risks, 

among others (Cooke, 1994; Goossens and Harper, 1998; Jones et al., 2001).  

Morris (1983, 1986) introduced an axiomatic approach to expert aggregation.  

French (1985) and Genest and Zidek (1986) provide critical reviews of axiomatic 

aggregation literature.   

The first formal proposal to apply the Bayesian method in expert judgment 

study was offered by Morris (1974, 1977).  Since original research by Morris, 

many forms of Bayesian procedures have been introduced in various papers.  

Mendel and Sheridan (1989) developed a Bayesian model that allows for the 

aggregation of non-normal probability distributions.  Clemen and Winkler (1993) 

proposed subjective aggregation of point estimates using ‘influence diagram’.  

Bayesian hierarchical model (where prior depends on parameters not addressed in 

the likelihood) was presented by Lipscomb, Parmigiani, and Hasselblad (1998).  

Wisse, Bedford and Quigley (2005) introduced ‘moment method’ to avoid the 

computational complications of continuous probability distributions.  In addition, 

Genest and Schervish (1986) consider the problem of aggregating expert 

judgments when the decision maker does not provide complete probabilistic 

assessments of the required distributions, but instead offer certain moments of the 

distributions.   
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A major issue in aggregation is the problem of dependence among experts.  

Judgments of multiple experts about a parameter can be extremely informative 

when experts are probabilistically independent, conditional on the “true” value.  

Clemen and Winkler (1985) reveal the number of independent experts whose 

combined data is equivalent to that of a larger number of dependent experts.  

Dependence is both central to proper combination of expert judgments and 

difficult to evaluate (Kallen and Cooke, 2002).   

Jouini and Clemen (1996) propose a copula-based approach to combining 

distributions. This approach provides a flexible method for representing 

dependence among experts.  A copula function (e.g., Nelsen, 1999) provides a 

way to write a joint distribution function as a function of its marginal 

distributions.  Hammitt and Shlyakhter (1999) and Lacke (1998) use the copula 

aggregation models in the contexts of global climate change and colon cancer risk 

modeling, respectively.  Clemen and Reilly (1999) suggest using the multivariate 

normal copula, which does not require that experts be treated symmetrically and 

so permits greater flexibility in modeling dependence.     

Overall, identifying a likelihood function for expert probability 

assessments is considered as one of the actual difficulties in using Bayesian.  

Some of the recent research studies such as Mosleh and Forrester (2005) indicate 

multiple attempts to tackle the problem of developing proper likelihood functions.  

The appropriate likelihood model in which each expert provides a normal 

distribution for the target parameter developed by Winkler (1981) and studied by 

Winkler and Makridakis (1983), Clemen and Winkler (1985), Schmittlein et al. 

(1990), Chhibber and Apostolakis (1993), and Chandrasekharan et al. (1994).    
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Difficulties with the axioms themselves are discussed by French (1985) 

and Genest and Zidek (1986). Lindley (1985) gives an example of the failure of 

both axioms.  Genest and Zidek (1986), Winkler (1968), French (1985), and 

Lindley (1985) all ruled for Bayesian approach.  The limited available evidence 

on relative performance of combination methods suggests that simple averages 

often perform nearly as well as the theoretically superior Bayesian methods 

(Clemen and Winkler, 1999; Kallen and Cooke, 2002).  A comprehensive review 

of aggregation literature, including dependence, can be found in French (1985), 

Ouchi (2004), Genest and Zidek (1986), French and Ríos Insua (2000).   
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Chapter 3: Data Collection and Characterization 

 

3.1 Data Collection  

Generally, in assessing uncertainty about an unknown of interest, 

information can come in form of existing evidence about the unknown, evidence 

on the credibility of the expert’s estimate, evidence on the applicability and 

relevance of judgment, and data provided by the expert (Droguette and Mosleh).  

Experts provide qualitative information or quantitative estimates in form of a 

probability distribution, point estimate, range, statement or partial evidence of the 

unknown.  

In classical mathematics, data refers to a collection of organized 

information, which is often the result of experience, observation or experiment.   

In this research, data is subjective information and refers to expert point estimate 

in discrete or continuous form.  Estimates are generated by experts or produced by 

forecasting models using expert input, review or final adjustment.     

A data collection plan is first established to populate a database with large 

number of expert estimate with corresponding seed (calibration), target 

(acceptance criterion or specification), true (real), or observed (as a result of 

experiment) values in different disciplines.   

The search for evidence on expert accuracy began with a general survey of 

the literature, internet publications, books, refereed and non-referred sources.  

Additionally, a broad exploration of the relevant Dissertation Abstracts database 

was performed to identify work across expert judgment studies and disciplines. 
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The wide literature search included databases such as Econpapers, Elsvier, 

PubMed, IEEE Digital Library, University of Maryland Digital Library, Medline, 

TU Delft Database, DOE’s Information Bridge, ACM Digital Library, WorldCat, 

CE Database, and Waste Management Research Abstracts.   

Over 2000 sources and publications since 1930s were initially flagged for 

general relevance.  Of these sources, approximately 500 were selected. Each 

source was examined for significance to the elicitation and aggregation of expert 

judgment. Additionally, TU Delft expert judgment database was used, which 

reports the assessment of over 800 experts on over 4000 variables, representing 

80,000 elicited questions.  From the selected sources in this stockpile, over 1900 

point estimates were collected in more than 60 different disciplines.  In the next 

section, data sources  utilized in this research are introduced.   
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3.2 Description of Case Studies 

In this section, a brief description of case studies used as data source is 

presented.  An attempt is made to echo the objective of each case and convey any 

explanations or rationale offered by the authors to address the expert error. 

3.2.1 Case #1 

This study was conducted by National Human Exposure Assessment 

Survey (NHEXAS) using the estimates of seven experts to obtain exposure 

assessment in residential ambient, residential indoor and personal air 

Benzene concentrations (µg/m3) in United State Environmental Protection 

Agency (U.S. EPA's Region V), experienced by the nonsmoking, non-

occupationally exposed population.  These experts were selected by a peer 

nomination process.  Individually elicited judgments were gathered from 

the experts during a 2-day workshop. (Walker, K. et al. Use of expert 

judgment in exposure assessment - Part 1. Characterization of personal 

exposure to benzene. Journal of Exposure Analysis and Environmental 

Epidemiology, 2003 (11):308-322 and Part 2. Calibration of expert 

judgments about personal exposures to benzene. Journal of Exposure 

Analysis and Environmental Epidemiology, 2003 (13):1-16) 

3.2.2 Case #2 

This study focus on value-added forecasting.  It claims that due to internal 

politics, personal agendas, and financial performance requirements that 

skew the process, much of the management effort directed toward 

forecasting actually makes the forecast worse.  (Gilliland, M. Is 

Forecasting a Waste of Time? Supply Chain Management Review, 2002) 
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3.2.3 Case #3 

This article examins weather trends for eight locations in Kansas to 

determine the relationship between rainfall, yields, and farm 

income.  Wheat, grain sorghum, corn and soybean yields are 

predicted using the yield prediction formulas and historical 

monthly precipitation.  The predicted yields are then compared to 

the actual county average yield for a given crop and year.                

Data is obtained from Kansas Agricultural Statistics for the years 

1970-2001 in Colby, Tribune, Garden City, Hays, Hutchinson, 

Manhattan, Ottawa, and Parsons Counties. (Dumler, T. J. Rainfall 

and Farm Income. Risk and Profit Conference, 2003) 

3.2.4 Case #4 

This study lists the criteria for selecting an appropriate error 

measure in forecast of hotel occupancy.  The reported data are 

taken from a 166-room hotel in the mid-west of United State.             

It contains two sets of figures, the predicted and the actual daily 

occupancies for the month of September 1996.  The predicted 

figures are the combined product expert predictions and input of 

hotel managers based on their experience and expectations. 

(Schwartz, Z. Monitoring the Accuracy of Multiple Occupancy 

Forecasts) 
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3.2.5 Case #5 

The objective of this study is to compare the clinical acumen of 

paediatric cardiovascular examination between various hospital 

paediatrician grades.  Pre-echocardiography clinical diagnoses are 

compared with echocardiography results according to grade of 

referring hospital doctor (ranging from houseman to consultant). 

The results show that Echocardiographers had the highest clinical 

accuracy and the highest attempts at reaching a clinical diagnosis. 

Accuracy and attempts at diagnosis decreased as doctor’s hospital 

grade decreased, from consultant to houseman.  It is reported that 

the echocardiographers are the most accurate in the clinical 

detection of cardiac pathology, or its absence due to the fact that 

echocardiographers have the greatest experience.  It is stated that 

Doctors with less paediatric cardiology exposure naturally 

experience more difficulty and housemen or senior house officers 

attempted the least diagnoses.  Study concludes that experienced 

doctors are more likely to differentiate between normal and 

abnormal hearts. (Spiteri, A. Torpiano, J. Bailey, M. Mercieca, V. 

& Grech, V.  A comparison of clinical paediatric murmur 

assessment with echocardiography. Malta Medical Journal, 

November 2004, (16):4) 
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3.2.6 Case #6 

A weather precipitation case study among expert meteorologists at 

the University of Maryland, College Park was performed.              

The objectives of the study were to predict the APE of experts 

given their estimates and to determined the effect of expertise on 

expert performance.  The study involved four experts who were 

asked to make 48-hour precipitation forecasts projections.                 

In the field of meteorology, a 48-hour forecast of precipitation is 

considered moderately difficult, and requires specialized skills.  

The forecast were conducted on three different days for cities of 

Orlando, Seattle, San Francisco, New Orleans and Detroit. 

(Forrester, Y. 2005. The Quality of Expert Judgment: An 

Interdisciplinary Investigation. Weather precipitation research 

study among expert meteorologists at UMCP) 

3.2.7 Case #7, 8, 9, 10 

This study describes an evaluation of forecasting model accuracy 

and induced demand representation over a 10-year period in the 

integrated land use and transportation model, the 2000 Sacramento 

MEPLAN model.  It is reported that error may be due to a 

developer model with limited sensitivity to process set too low or 

large zones in the outer regions which tend to underestimate the 

travel time. (Rodier, C. J. 2005. Verify the accuracy of land use 

model used in transportation and air quality planning: a case study 

in Sacramento, California region, MTI Report 05-02) 
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3.2.8 Case #11 

This article evaluates the labor force, employment by industry, and 

occupation projections that BLS made in 1989 for the year 2000. 

The different causes of forecast errors, such as participation rate, 

are reported.  The results show that in most cases, the accuracy of 

the BLS projections is comparable to estimates obtained from 

naïve extrapolative models, and hence, are of low accuracy.           

(Stekler, H. O. & Thomas, R. Evaluating BLS Labor Force, 

Employment and Occupation Projection for 2000) 

3.2.9 Case #12 

The Bureau of Labor Statistic (BLS) has made labor force 

projections since the late 1950s.  Beginning in 1968, the Bureau of 

Labor Statistics has not considered the projection process complete 

until it assesses the accuracy of its projections.  This article 

examines the errors in the labor force projections to 1995 and the 

sources of the errors.  The analysis compares projected and actual 

(most recent Current Population Survey estimate) levels of the 

labor force.  The different causes of error are reported which 

includes immigration, projection period, or participation by age, 

sex, and race.  The analysis also shows that gradual improvement 

in the accuracy of projections occurs over time. (Fullerton, H. N. 

BLS. Evaluation the 1995 BLS labor force projection) 
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3.2.10 Case #13 

This study analyzes the accuracy of the United Nations’ (UN) 

population forecasts in the past, based on six Southeast Asian 

countries: Indonesia, Malaysia, Singapore, Philippines, Thailand, 

and Vietnam.  The study uses available projected and estimated 

age-structured data published by the UN from 1950 onwards.                  

The study reveals that there is inconsistancies in the accuracy of 

the UN projections for different countries and the errors are age 

specific.  The analysis also shows that gradual improvement in the 

accuracy of projections occurs over time.  The fluctuation in error 

amount is reported to be due to the wrong assumptions made in 

various past projections. (Abdullah Khan, H. T. A Comparative 

Analysis of the Accuracy of the United Nations’ Population. 

Projections for Six Southeast Asian Countries. IR-03-015) 

3.2.11 Case #14 & 15 

In this study, census 2000 counts are used to measure forecast error 

in projections for April 1, 2000.  The different causes of error are 

reported includes up and down swings in population growth, 

projection outliners, or forecast evaluation of the detailed 

demographic components.  The analysis also shows that gradual 

improvement in the accuracy of projections occurs over time. 

(Campbell R. Evaluating Forecast Error in State Population 

Projections Using Census 2000 Counts. U.S. Bureau of Census, 

Population Division Working Paper Series No. 57, 2002) 
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3.2.12 Case #16 

In this article, a number of forecasts as well as actual data are 

provided for a monthly electric bill from January, 1991, through 

December 2000 for educational purposes.  Paper claims that the 

values provide a real dataset to use for applications ranging from 

simple graphical analysis through a variety of time series 

forecasting methods. (McLaren, C. H. & McLaren, B. J. 2003. 

Electric Bill Data. Journal of Statistics, Ed. [Online], 11,  1) 

3.2.13 Case #17 

This work involves forecasting the number of domestic and 

international airline passengers in Saudi Arabia.  Annual data from 

1975 to 1986 was used and categorized into 16 variables.                 

The forecast was obtained using the Model Quest Miner package, 

using some historical data for developing the model then proceeds 

to an evaluation phase.  The period used for developing the model 

for the number of passengers was 18 years, while the period used 

for evaluation was 6 years for the five cities of Cities of Dhahran, 

Madina, Riyadh, Jeddah and Taif in Saudi Arabia. (BaFail, A. O. 

Applying Data Mining Techniques to Forecast Number of Airline 

Passengers in Saudi Arabia, Domestic and International Travels. 

King Abdul Aziz University, 2004) 
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3.2.14 Case #18 

These data are obtained from Dr. Ali Mosleh from the University 

of Maryland, Mechanical Engineering Department, Reliability 

Engineering Program, reporting repair time for mechanical and 

electrical equipment. (Forrester, Y. The Quality of Expert 

Judgment: An Interdisciplinary Investigation, 2005) 

3.2.15 Case #19 

The case study contains experts’ responses to 11 questions on 

Adult Weight Management, and the completion of a brief inquiry 

about experts’ expertise.  The entirety of experts attributes is used 

to predict the performance of experts.  A weight management 

survey instrument is administered to registered dieticians with 

varying degrees of expertise.  Experts are given a clinical nutrition 

diagnostic problem regarding the recommended “very low calorie 

diet” for an obese girl.  Experts wereasked to make a judgment 

about maximum recommended Kcal per day. (Forrester, Y.              

The Quality of Expert Judgment: An Interdisciplinary 

Investigation, 2005) 
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3.2.16 Case #20 

A) In this study,  the Foodborne Illness Risk Ranking Model 

(FIRRM) is developed, which is a decision-making tool that 

quantifies and compares the relative burden to society of 28 

food-borne pathogens.  An  expert elicitation survey was 

designed and implemented, in which experts were asked to 

estimate, for each pathogen, the percentage of illnesses 

attributable to each food vehicle.  The survey was developed, 

with the aid of Dr. Paul Fischbeck, Carnegie Mellon 

University, a recognized authority in the field of expert 

elicitation, using standard methodologies found in the literature 

(Morgan et al. 1990; Cooke 1991).  The survey included 11 

major pathogens and elicited uncertainty bounds around 

responses.  The survey was sent to a peer-reviewed list of 101 

scientists, public health officials, and food safety policy 

experts; and received 45 responses.  The data include experts’ 

best judgment estimates of attribution percentages for 

Campylobacter and Listeria and outbreak data.  

(Batz, M. B., et al. Identifying the Most Significant 

Microbiological Food-borne Hazards to Public Health: A New 

Risk Ranking Model, Food Safety Research Consortium. 

Discussion Paper Series Number (1) - FIRRM Food Attribution 

Percentages for Illnesses from Foodborne Campylobacter and 

Listeria monocytogenes, 2004) 
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B) Hoffmann et al. develops a formal protocol for expert 

elicitation with large, cross-functional expert panels and uses 

formal survey methods to take advantage of variation in 

individual expert uncertainty and inconsistancy among experts 

as a means of quantifying and comparing sources of 

uncertainty about parameters of interest. The pool of 

respondents represent a broad range of workplaces; three 

respondents reported having significant work experience in 

multiple institutional settings and the remainder were evenly 

distributed among government, academia, and industry.  It is 

reported that experts’ backgrounds and experiences as well as 

self-reported pathogen expertise help explain variation in 

individual experts’ ranges.  Respondents who identify 

government as their primary career setting have tighter ranges 

than those whose careers have been primarily in academia, 

industry, or multiple sectors.  Those with significant career 

experience in multiple sectors have the largest ranges, followed 

by those in industry, and followed by academia. Highest degree 

also explains variation in range.  Those with master’s degrees 

have the least confidence in their best estimates, and Doctors of 

Veterinary Medicne or DVMs have the most.  

(Hoffmann, S., et al. Eliciting Information on Uncertainty from 

Heterogeneous Expert Panels: Attributing U.S. Foodborne 

Pathogen Illness to Food Consumption. RFFDP6-17, April of 

2006) 
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3.2.17 Case #21 

This research, employing 11 experts who estimated an exposure 

parameter (the percentages of four nickel species) in 12 workplaces 

in a nickel primary production industry, providing a large dataset 

from which useful inferences can be drawn about the quality of 

expert judgments and the variability among the experts.                    

It describes the application of Bayesian ideas to the comparison of 

expert opinions, mathematically combining expert opinions and 

refining these combined expert opinions with actual workplace 

measurements.  The study reports that expertise does not 

necessarily require intimate familiarity with the workplace, 

however, the expert judgment knowledge has indeed enhanced the 

quality of the combination of expert judgment. (Ramachandran, G. 

et al. Expert Judgment and Occupational Hygiene: Application to 

Aerosol Speciation in the Nickel Primary Production Industry) 

3.2.18 Case #22 

The accuracy of cause-specific mortality by physician review is 

reported in this article. Data is drawn from a multi-center 

validation study of 796 adult deaths that occurred in hospitals in 

Tanzania, Ethiopia, and Ghana.  Study reveals that the physician 

review shows a high diagnostics accuracy. (Quigley, M. A., et al. 

Diagnosis accuracy of physician review expert algorithms and 

data-derived algorithms in adult verbal autopsies International 

epidemiological Association, International Journal of 

Epidemiology, 1999(28): 1081-1087) 
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3.2.19 Case #23 

In this article, four forecasts are evaluated for relative forecast 

accuracy by examining their performance over specified period of 

time.  The reported actual price data and individual forecast series 

extracted are quarterly observations on and forecasts of the USDA 

seven-market-average hog price for barrows and gilts (200-220 lb.) 

from the third quarter of 1973 through the second quarter of 1986.  

According to this article, the individual forecast data are an expert's 

forecast and the expert's forecasts are for one-quarter-ahead cash 

prices made by Glen Grimes, professor of Agricultural Economics.  

The futures forecast prices would correspond directly to the expert 

forecasts.  The futures forecasts for each period are the closing 

price quoted in the annual Yearbook of the Chicago Mercantile 

Exchange for the day Grimes' forecast is published and for the 

contract that would expire as close as possible to the end of the 

one-quarter lead time.  The results of this study reveals that the it 

would have been better for analyst to use a composite forecast 

rather than tempting to identify a "best" individual value obtained 

from each of the forecast. (McIntosh, S. & Bessler, A. Forecasting 

Agricultural Prices Using a Bayesian Composite Approach. 

Southern Journal of Agricultural Economics, December of 1988)  
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3.2.20 Case #24 

In this article, AEPCO and the University of Arizona, Department 

of Agriculture and Resource Economics (AREC) collaborate 

during the fall semester 2005 on a project to improve forecasts of 

next-day electricity load reported in Mega-Watt.  The project is 

conducted as part of an AREC graduate class in applied 

econometrics. Mr. Cathers of AEPCO developed a detailed 

proposal outlining specific objectives for improving forecast 

accuracy.  Dr. Gary Thompson of the University of Arizona, 

AREC, agreed to coordinate the department’s efforts and conduct 

the project in connection with his graduate course, Advance 

Applied Econometrics. Students developed econometric models for 

forecasting next-day hourly load profiles.  The particular 

econometric models developed are known as ARIMA 

(autoregressive, integrated, moving average) models.                         

It is concluded in this paper that existing methods using expert 

judgment appear to have been sufficiently accurate for AEPCO’s 

current load levels and thus it is suggested that AEPCO may 

continue to employ expert judgment methods while comparing 

their daily forecasts to those derived from statistical models. 

(Cathers, C. A. & Thompson, G. D. 2006. Forecasting Short-Term 

Electricity Load Profiles. Sierra Southwest Cooperative Services, 

Inc. The University of Arizona, Cardon Research Papers)  
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3.2.21 Case # 25 & 26 

Tennessee Valley Authority produces its own forecasts of regional 

economic activity based on forecasts of the national economy 

developed by a forecasting service, Global Insight.  These forecasts 

are publicly distributed throughout the Tennessee Valley.                 

The reported data are TVA Economic Forecast Five-Year Forecast 

Gross Product in Billions of Dollars from 1980 to 1995.  It is stated 

in the study appendix that the regional economic forecast 

performance improvement can be attributed, in part, to the better 

performance of the national forecasts and to improvements in the 

TVA economic forecasting process, including validation 

procedures. (Tennessee Valley Authority (TVA). Appendix B – 

Methodology and Results from Socioeconomic Modeling. Final 

Environmental Assessment) 

3.2.22 Case #27 

This paper considers a dilemma an analyst faces as influential 

forecaster.  It states that clients request an unbiased forecast but 

pressures sometimes exist to provide a bias forecast.  The impact of 

these pressures on the quality of forecasts is evaluated and the 

different causes of error are reported such as the difference 

between forecasting and decision-making or lack of control on new 

product launches. (Ehrman, C. M. & Shugan, S. M. 1995.                  

The Forcaster’s Dilemma. Marketing Science, 14(2): 123-127, 

Springer) 
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3.2.23 Case #28 

Over the last fifteen years, the Delft University of Technology 

(both the Safety Science Group and the Department of 

Mathematics of TU Delft) has developed methods and tools to 

support the formal application of expert judgment.  Over 800 

experts assessed over 4000 variables, in total representing more 

than 80,000 elicited questions.  Applications were made in a 

variety of sectors, such as nuclear, chemical and gas industries, 

toxicity of chemicals, external effects (pollution, waste disposal 

sites, inundation, volcano eruptions), aerospace and aviation sector, 

occupational sector, health sector, and the banking sector.                 

Expert judgment data provided by Dr. R. M. Cooke on 2009. 

(Goossens, L. H. J.; Cooke, R. M.; Hale, A. R. & Rodic´-Wiersma, 

Lj. Fifteen years of expert judgement at TU Delft. Safety Science 

46 (2008) 234–244) 
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3.3 Data Characterization  

 In the expert judgment case studies, where empirical data is collected, 

there is a range of reasons explaining the expert error.  This includes, but not 

limited to, career affiliation, academic degree, field of expertise, or years of 

experience.  The errors of expert estimates vary by subject matters as well.           

For example, the study conducted by Hoffmann, Fischbeck, Krupnick, and 

McWilliams (2006) show that variability in best estimates does differ by 

professional background and discipline as well as expert characteristics.                              

Respondents who identify government as their primary career setting have smaller 

ranges than those whose careers have been primarily in academia or industry; 

individuals with significant career experience in multiple sectors have the largest 

ranges, followed by those in industry and academia.   

 For the forecasts obtained by model, in addition to model inputs and 

assumptions, there is a range of reasons listed to explain the error of forecasts 

such as model types, forecast period and projection horizon, forecast accuracy 

measures used, additional information that becomes available, the size of the 

error, seasonal and geographical errors, and so on. 

Overall, there are many factors affecting the estimate accuracy such as 

expert attributes, calibration method, decision processes, aggregation procedure, 

and so on.  Inconsistencies caused by these elements are accepted as inherent 

variation in the modeling and assessment processes in this research study.             

The purpose is to capture actual errors (though the sources of these fallacies 

remain unknown) and examine the formulated likelihood functions in dealing with 

these variations.   This is especially true for generic likelihood function which is 

domain independent, but is made from a pool of data from different fields.   
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A question may arise as how to draw a conclusion from information 

without any boundaries.  It should be noted that there are circumstances that 

expert previous performance is not entirely realized.  There are also events that are 

beyond our direct experience.  In these cases, decision makers are indeed puzzled 

about the quality level of the opinion, or in other words, the degree of confidence 

to place in the judgment.   The generic likelihood function developed in this study 

can justly be used to update the expert estimate when facing with lack of such 

information.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 34 

3.4 Selection of Forecast Accuracy Measure 

According to Armstrong and Fildes (1995), the objective of a forecast 

accuracy measure is to provide information about the error distribution.                   

It has been shown by Chen and Yang (2004) that Mean Square Error (MSE) is the 

optimal selection when the errors are normally distributed.  However, MSE and 

similar measures are not suitable for this study since they are not unit-free.  

Absolute performance measures such as simple difference between the estimate 

and true value may produce very big numbers due to outliers, which can make the 

comparison of different estimates not feasible.   

It is generally accepted that there is no single best accuracy measure, and 

selecting an assessment method is essentially a subjective decision.  Figure 1 

depicts the logic of selecting the forecast accuracy measure in this research.          

As reflected in this diagram, general and specific provisions were first defined.  

Among the most popular measures listed, relative error measure is chosen since it 

is scale-independent, interpretable, minimally impacted by outlier observations or 

errors and can eliminate the bias introduced by possible trends, and seasonal 

components.  Amongst the relative error candidates, the simplest form was 

selected since it seemed to be able to satisfy the majority of established 

requirements, while being easy enough for numerical calculations: 

u

u
E

′
=        Equation 1 

u : is the quantity of interest,  

'u : is the expert opinion and  

E : is the relative error. 
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Figure 1. Process of Selecting Forecast Accuracy Measure 
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The unit of measurement has minimum impact on the development of the 

domain-independent (generic) likelihood function.  For illustration purpose, 

consider an expert predict, i.e., tomorrow’s temperature to be 78ºF.                            

If the observed temperature turns to be 85ºF, the relative error of estimates 

becomes 0.88.  One may argue that the prediction under same conditions results in 

relative error of 0.92 in Celsius scale.  Therefore, unit of measurement still plays a 

role in calculations despite the fact that the dimensionless relative error is selected 

as the accuracy measure of estimate.  However, it should be noted that first, the 

impact of this types of errors on the desired outcome where they are used in the 

research (distribution identification of expert relative errors) phases out as the 

population of data gets larger.  Additionally, an expert should have the same 

accuracy in predicting a same unknown in different measuring systems (i.e. in 

temperature estimation example, expert relative error should be 0.88 in Fahrenheit 

and Celsius systems).  This is because expert knowledge or expertise (or any other 

attributes qualified one as an expert) does not change from one measuring system 

to another.  Even if estimates do change in various measuring systems, these kinds 

of inconsistencies are accepted as inherent variation in modeling and assessment 

processes o test the capability and robustness of formulated likelihood functions in 

tolerating variations.   
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Chapter 4: Bayesian Formalism 

 

4.1 Introduction 

Conceptually, the formulation of the Bayesian method for use of expert 

opinion is quite simple.  The expert estimate is treated as a piece of evidence 

about the unknown quantity of interest.  This evidence is then used to update the 

analyst’s or decision maker’s own (prior) knowledge through Bayes’.   

  ( ) ( ) ( )
( ) ( )∫

=
duuuuL

uuuL
uu

o

o

π

π
π

'

'
'               Equation 2 

u : is the quantity of interest,  

'u : is the set of the experts’ opinions,  

( )uoπ : is the decision maker’s prior or initial state of knowledge about the 

unknown quantity u (prior to obtaining the opinion of the experts).                         

Prior distributions are used to describe the uncertainty surrounding the unknown.   

( )uuL ' : is the likelihood of the evidence 'u  given that the true value of the 

unknown quantity is u.  The likelihood function asks this question: If the true 

value is u, what is the probability that the expert estimates it as u’?  As such, the 

likelihood function is a statement on the accuracy and credibility of the expert as 

viewed by the decision maker. 

( )'uuπ : is posterior distribution representing the decision maker’s updated state of 

knowledge about the unknown quantity, u'.  After observing the data (in this case 

expert opinion), the posterior distribution provides a coherent post data summary 

of the remaining uncertainties.   
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The first formal framework of the Bayesian methods for use of expert 

opinion was presented by Morris (1974, 1977).  Morris’s work fully establishes 

the foundations for the Bayesian paradigm in the analysis of expert judgment.      

Building on Morris’s method, Mosleh and Apostolakis (1986) proposed the use of 

‘Additive’ and ‘Multiplicative’ error models for constructing the likelihood 

functions, expressing the experts’ assessments as the sum (or ratio) of the true 

value of unknown and an ‘error’ term.  Mathematically speaking: 

1) Additive error model: Euu += '     Equation 3 

2) Multiplicative error model: 
u

u
E

'=  (refer to Equation 1) 

Still, the main problem in applying the Bayesian technique remains as 

complications associated with the development of a suitable likelihood function.  

This distribution is a probabilistic model for data and must capture the 

interrelationships among estimates and the unknown of interest.  Particularly,            

it must account for the bias of the individual estimate, represent expert expertise 

and be able to model dependencies among experts.   
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4.2 Governing Model 

The prior knowledge of u is updated using the likelihood function 

developed by relative errors.  The error distribution can be marginalized in terms 

of a finite set of parameters (θ ) or epistemic uncertainty, which by itself is a 

variable symbolized by a population variability distribution of g(θ) or aleatory 

uncertainty.  Using likelihood averaging technique:  

( ) ( ) ( ) θθθ
θ

dEguuLEuuL ∫ ′=′ ,,
   Equation 4 

Applying Equation 2: 

( )
( ) ( ) ( )

( ) ( ) ( )∫ ∫

∫

′

′

=′

u

duudEguuL

udEguuL

Euu
0

0

,

,

,
πθθθ

πθθθ
π

θ

θ
   Equation 5 

Where, 

u : is the quantity of interest 

u′ : is expert estimate 

( )nEEE ...1= : is evidence or relative error of estimates                    

( )nθθθ ...1= : reflects that parameters of error distribution   

In the next sections, the likelihood functions and posterior distributions are 

constructed for homogenous, nonhomogenous and hybrid pools of data.               

The hybrid or mixed case has been formulated in this research only.   
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4.3 Construction of the Likelihood and Posterior: Homogenous Pool 

As represented in Table 1 and illustrated in Figure 2, the available 

information regarding the quantity of interest (u ) is comprised of expert’s 

estimates ( nuu '...'1 ) and evidence in form of error of estimates ( nEE ...1 ).                   

The overall distribution of errors of estimates, f(E), can be characterized in terms 

of a finite set of parameters.  Postulating a lognormal distribution: 

( )EE σθ ,50=  

( 50E ): is the median of the error distribution 

( Eσ ): is the standard deviation of the error distribution 
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The probability distribution of errors also represents the likelihood of errors given 

the distribution parameters.  Assuming independence among experts: 
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Estimating the set of likelihood parameters: 

( ) ( ) ( )
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σπ  Equation 8 

The term ( )EE σπ ,500  is the prior which is assumed to be a lognormal distribution 

as well.  A generic likelihood function,( )Ef , can be formulated by de-

conditioning the posterior (Equation 8) using: 

( ) ( ) ( ) E

E

nEE ddEEEEEEfEf

E

σσπσ
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5015050
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...,,∫ ∫=   Equation 9 
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To construct the likelihood function,( )uuL ' , based on the likelihood of relative 

errors ( )uEL , the relation between the distribution of relative errors, f(E), and the 

distribution of estimates, f(u'), must be established.   

udu

dE
duudE

u

u
E

1

'
'

' =⇒=⇒=      Equation 10 

( ) ( ) ( ) ( )Ef
du

dE
ufdEEfduuf

'
''' =⇒=     Equation 11 

 ( ) ( )Ef
u

uf
1

' =        Equation 12 

Therefore the likelihood function ( )uuL '  can be linked to( )uEL  as: 
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e
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The above equation is the first term in Equation 4.  Estimating the epistemic 

uncertainty of θ: 

g θ E( )=
L Eθ( )π 0 θ( )
L Eθ( )π 0 θ( )dθ

θ
∫

     Equation 14 

Where, 

 ( ) ( )∏
=

=
n

i
iiELEL

1

θθ      Equation 15 

The new expert estimate can now be updated using Equation 5.  The mean or 

median of the posterior, both shown with symbol (µ) in figures, as the distribution 

marker, is compared with the true value (µ/u) in order to determine if and how 

much the formulated likelihood function has been able to reduced the error of 

estimates.  This process is depicted in Figure 3.   
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Table 1. Representation of Homogenous Data 
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Figure 2. Construction of Likelihood Functions for Homogenous Data 
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Posterior Marker (µ)

Model Error: (µ/u)
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(µ/u) vs. (u’/u)
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Figure 3. Treatment of Homogenous Data  



 44 

4.4 Construction of Likelihood and Posterior: Nonhomogenous Pool  

As represented in Table 2 and Figure 4, the information regarding true 

values of ( nuu ...1 ) is comprised of expert’s estimates ( nuu '...'1 ).  The error 

distribution can be marginalized in terms of a finite set of parameters (θ ), which 

by itself is a variable symbolized by a population variability distribution of g(θ).  

This ‘hyper’ distribution can be characterized by a set of ‘hyper-parameters’( )ω : 

( )nωωω ...1=        Equation 16 

)()( ωθθ gg =       Equation 17 

The likelihood function for the data point (iu' , iu ) and therefore iE  is estimated by 

eliminating the epistemic uncertainty over θ: 

 ( ) ( ) ( ) θωθθω
θ

dgELEL ii ∫=      Equation 18 

Under the assumption of independence among experts: 

( ) ( ) ( )∏∫
=

=
n

i
i dgELEL

1

θωθθω
θ

    Equation 19 

Estimating the ‘hyper-parameters’ using likelihood function ( )ωEL : 
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The posterior expected distribution as ( )Eg θ  is estimated by eliminating the 

aleatory uncertainty over ω: 

 ( ) ( ) ( ) ωωπωθθ
ω

dEgEg ∫=     Equation 21 
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The new expert estimate can be updated using general Bayesian procedure: 

( )
( ) ( ) ( )
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Table 2. Representation of Non-Homogenous Data 

Estimate (i = 1...n) True Value (i = 1...n) Expert’s Error (i = 1...n) 
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Figure 4. Treatment of Non-Homogenous Data 
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It can be shown that homogenous is an especial case of nonhomogenous, 

when evidence provides perfect knowledge of the parameter set θ.  Additionally, 

error distribution parameters (θ ) have no aleatory variability.  The distribution 

( )ωθg  turns to a Dirac Delta function and hence in Equation 20: 

 ( )
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∏ ∫








 −








 −
=

=

=

ω θ

θ

ωωπθωθδθ

ωπθωθδθ
ωπ

ddEL

dEL

E
n

i
i

n

i
i

0
1

0
1   Equation 23 

Since for Dirac Delta function we have  

 ( ) ( ) ( )dxxxxfxf 00 −= ∫ δ      Equation 24 

Then Equation 23 changes to: 
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From Equation 21, we have: 
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Applying Equation 24, which is the same equation as for homogenous data: 
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4.5 Construction of Likelihood and Posterior: Hybrid Pool  

In the case of mixed or hybrid data, for each instance of (k =1...N),                

the estimate ( )kMi ...1=  of (uk) is ( )kiu' , representing evidence ( )kiE . Therefore,         

as represented in Table 3, the relative error term has two dimensions of (i, k) to 

cover all k instances:  

π ω E( )=
L Eik θ( )θ∫ g θ ω( )dθ

i=1

M k

∏
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g θ E( )= g θ ω( )ω∫
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As we can see the homogenous and non-homogeneous cases are special case of 

the mixed pool.  For example Equation 28 is reduced to Equation 20 when for 

each true value we have only one estimate, that is when MK = 1 for all k.  

 
 
Table 3. Representation of Hybrid Data 
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Chapter 5: Data-Informed Calibration of Expert Opinions  

 

5.1 Introduction 

The objective of this section is data-driven expert calibration within the 

Bayesian formalism.  Calibration is defined as the degree of agreement between 

the estimates of an event compared to its actual occurrence value.   

In some fields, experts have been shown to make relatively well-calibrated 

judgments.  The typical example is meteorology (Murphy and Winkler, 1977).          

In contrast, financial analysts have been shown to significantly overestimate 

corporate earnings growth (Chatfield et al., 1989; Dechow and Sloan, 1997).          

Hawkins and Evans (1989) found that industrial hygienists provided reasonably 

accurate estimates of the mean and 90th percentile of a distribution of personal 

exposure to chemical-industry workers.  

An investigation of several practical questions is conducted regarding the 

calibration of expert judgment using empirical data.  The objectives are: 

[1] Measuring the uncertainty surrounding the unknown of interest in the 

Bayesian framework, given an expert estimate 

[2] Formulate a ‘generic’ likelihood function based on large numbers of 

observed expert relative errors in different domains, and  

[3] To explore whether use of generic likelihood would reduce future 

prediction errors  

[4] Performance comparison between posterior mean and median in reducing 

the overall errors of experts when using generic likelihood distribution  
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5.2 Methodology 

Likelihood functions for homogenous, nonhomogenous, and hybrid data 

have been developed in Chapter 4.  The further steps taken to conduct the study in 

this chapter include: 

I. Descriptive statistics of empirical errors are produced to quantitatively 

summarize the data. 

II.  Relative errors are fitted into matching probability distributions to select 

the form of the likelihood function.   

III.  A generic error likelihood distribution for use in Bayesian assessment of 

expert opinion is developed using empirical data. 

IV.  Bayesian method is employed to update the expert estimate using: 

i. Case-specific likelihood function 

ii.  Domain-independent or generic likelihood function 

To perform the analyses flat or noninformative priors are used.                  

This approach can provide a basis for defining knowledge or expertise of 

information sources (in the matter of estimating true value) relative to the analyst.  

Additionally, if the decision maker or analyst believes, as would normally be the 

case in consulting experts, that prior information should have little or no impact 

on the posterior, a noninformative prior of true value would be a proper modeling 

choice (Edwards, 1963).     

In the Bayesian method, the posterior marker or estimator is compared 

with the true value to assess the error of updated estimate.  According to 

Christensen and Huffman (1985), the most often used posterior markers have been 

the mean, median, and mode, with no consensus among experts on which is the 

most appropriate.   
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Barnett (1982) believes that there would be no useful criterion for 

choosing a single value than to use the most likely value, unless further 

information on the consequences of incorrect choice is incorporated.                

Berger (1980) states the mean and median are often better values than the mode.  

According to Cox and Hinkley (1974), if it is required to summarize the posterior 

distribution in a single quantity, mean is frequently the most sensible.                    

In particular, if the prior density is exactly or approximately constant, the use of 

the mean of the likelihood function with respect to the parameter is indicated.         

For illustration purposes, step by step numerical calculations of posterior markers 

for an example of each data type are presented.  The steps to numerical execution 

of the first part are depicted in Figure 5.   
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Figure 5. Process Flow of Bayesian Treatment 
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5.3 Performance Assessment of Case-Specific Likelihood Functions  

Assessment in Bayesian framework was performed by ‘Uncertainty 

Modeling’ software released and validated by ‘The Center for Risk and  

Reliability (CRR)’, Droguette and Mosleh (2003).  Evaluation of the data included 

descriptive data generation and distribution analysis by Mathwave Easyfit™ and 

MINITAB ®.   

Table 4 shows empirical data reported in the Benzene concentration case 

study (case #1) used as an example of a homogenous pool.  It is shown that 

Bayesian treatment of the homogenous data improves 62% of the estimates on 

average.  For nonhomogenous data, an example of study can be found in Table 5 

(case #1).  For nonhomogenous pool, the percentage of improved estimates 

increases to 71%.  Case #1 is also used for an example of hybrid data.                  

The percentage of improved expert estimates is 71%, as shown in Table 6.   

The histogram of relative errors of two homogenous and nonhomogenous 

cases, Figure 6, shows that over 57% of relative errors of estimates are between 

(0.5 – 0.8), and about 71% of data points fall between (0.5 – 1.0). The average of 

relative errors is 1.3 with standard deviation of 0.5.  Figure 7 shows best-fitted 

distributions to all relative errors.  Considering the producer risk of 5% (α = 0.05), 

lognormal is among the top three fitted distributions.   
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Table 4. Bayesian Treatment of Homogenous Pool Using Case-Specific Likelihood Function  
 

True 
Value 

Expert  
Estimate 

Expert  
Relative Error 

Bayesian  
Mean 

Bayesian Mean 
Relative Error 

Error Reduction: + 
Error Increase: - 

No change: 0 

3.6 3.9 1.083 3.3 0.917 0 

3.6 3.2 0.889 3.1 0.861 - 

3.6 4.6 1.278 3.3 0.917 + 

3.6 7.8 2.167 3.8 1.056 + 

3.6 5.8 1.611 4.8 1.333 + 

3.6 3.2 0.889 3.1 0.861 - 

3.6 3.7 1.028 3.5 0.972 0 

 

7.2 5.5 0.764 5.1 0.708 - 

7.2 6.2 0.861 5.4 0.750 - 

7.2 6.5 0.903 6.7 0.931 + 

7.2 16.2 2.250 8.7 1.208 + 

7.2 15.6 2.167 9.5 1.319 + 

7.2 11.2 1.556 10.8 1.500 + 

7.2 6.0 0.833 7.5 1.042 + 

 

7.5 13.9 1.853 11.5 1.533 + 

7.5 7.0 0.933 6.4 0.853 - 

7.5 8.6 1.147 6.5 0.867 + 

7.5 11.2 1.493 5.8 0.773 + 

7.5 21.7 2.893 7.9 1.053 + 

7.5 12.1 1.613 8.3 1.107 + 

7.5 7.9 1.053 9.2 1.227 - 

Average 1.394  1.038  

Standard Deviation 0.587  0.237  

% of Estimates Improved 62% (13 out of 21)   
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Table 5. Bayesian Treatment of Non-Homogenous Pool Using Case-Specific Likelihood Function 
 

True  
Value 

Expert 
Estimate 

Expert  
Relative Error 

Bayesian  
Mean 

Bayesian 
Relative Error 

Error Reduction: + 
Error Increase: - 

No change: 0 

90 115 1.278 111 1.233 + 

110 95 0.864 93 0.845 - 

90 95 1.056 91 1.011 + 

105 110 1.048 93 0.886 - 

100 115 1.150 101 1.010 + 

115 125 1.087 120 1.043 + 

130 145 1.115 134 1.031 + 

Average 1.085  1.008  

Standard Deviation 0.125  0.125  

% of Estimates Improved 71% (5 out of 7)   
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Figure 6. Histogram of Accumulated Homogenous and Nonhomogenous Data  
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Table 6. Bayesian Treatment of Hybrid Pool Using Case-Specific Likelihood Function 
 

True  
Value 

Expert  
Estimate 

Expert  
Relative Error 

Bayesian 
Update 

Bayesian 
Relative Error 

Error Reduction: + 
Error Increase: - 

No change: 0 

3.6 3.9 1.083 5.0 1.389 - 

3.6 5.8 1.611 4.6 1.278 + 

7.5 13.9 1.853 4.9 0.653 + 

7.5 21.7 2.893 8.7 1.160 + 

7.5 8.6 1.147 7.3 0.973 + 

7.2 5.5 0.764 5.4 0.750 - 

7.2 11.2 1.556 8.0 1.111 + 

Average 1.558  1.045  

Standard Deviation 0.695  0.270  

% of Estimates Improved 71% (5 out of 7)   
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Figure 7. Distribution Identification for Accumulated Expert Relative Errors  
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The above demonstrated courses of actions for example case studies are 

repeated for all empirical expert judgment data (1922 data points) collected.       

As reflected in Table 7, the study reveals an average of 77% of estimates 

improved, applying the case-specific homogenous and nonhomogenous likelihood 

functions.  The graphical presentation can be found in Figure 8.   

The histogram of expert relative errors depicted in Figure 9 shows that 

over 45% of relative errors are equal or close to one (expert estimate ~ true value), 

about 45% of data points fall between (1 – 2) and about 5% falling in the range of 

(2 – 3).  The average relative error is 1.2 and only 5% among all empirical relative 

errors data are greater than 3.  

Table 8 shows the best-fitted probability distributions for relative errors, 

considering the producer risk of 5% (α = 0.05).  Lognormal is among the top 

fitting distributions, since it arises when independent random variables are 

combined in a multiplicative fashion, as relative error or ‘E’ is selected for the 

accuracy measure.   

The distribution fitting tests also point to Wakeby and Cauchy 

distributions as the two first best fits.  This fit seems logical since they are also 

ratio distributions.  The random variable associated with ratio distribution comes 

about as the proportion of two Gaussian distributed variables with zero mean (the 

Cauchy distribution is also called the normal ratio distribution).  The other best 

fits are Log-Logistic, Burr, and Dagum distributions, which are continuous 

probability distributions for a nonnegative random variable.  The Pearson 

distribution is a fit since it can visibly contain skewed observations.   
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Among the above discussed distribution, lognormal seems a better choice 

for Bayesian models due to ease of use, flexibility to fit many types of data, and 

wide-spread application in many fields (i.e. environmental application of 

lognormal distribution, Ashok et al., 1997), and great utility in decision science 

(Johnson et. al, 2003).  Johnson et al. note that some practitioners maintain “that 

the lognormal distribution is as fundamental as the normal distribution” and that 

the lognormal distribution has found applications in fields including the physical 

sciences, life sciences, social sciences, and engineering.  He continues, 

“practitioners find few – if any – tables of its cumulative distribution function 

available to support their work”.  Additionally, distribution of the data seems to be 

positively skewed and for non-negative values, suggesting more reasons to select 

lognormal distribution as the choice. The lognormal (3P) distribution of expert 

relative error is depicted in Figure 10. 
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Table 7. Bayesian Treatment of Non-Homogenous (NH), Homogenous (H) and Hybrid Pools 
Using Case-Specific Likelihood Function 
 

Case # - H/NH %Estimates Improved 

1 H 62% 

2 NH 71% 

3 NH 100% 

4 NH 100% 

5 NH 71% 

6 NH 67% 

7 NH 67% 

8 NH 67% 

9 NH 100% 

10 NH 71% 

11 NH 100% 

12 NH 57% 

13 NH 71% 

14 NH 100% 

15 NH 86% 

16 NH 100% 

17 NH 57% 

18 NH 86% 

19 H 80% 

20 NH 57% 

21 NH 86% 

22 NH 57% 

23 NH 86% 

24 NH 86% 

25 NH 57% 

26 NH 100% 

27 NH 57% 

28 H (multiple cases) 63% 

Average 77% 

Minimum 57% 

Maximum 100% 
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Figure 8. Improvement by Bayesian Treatment in All Empirical Cases 
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Descriptive Statistics: Relative Error (Minitab®) 
Variable                    N       Mean     StDev     Median            Min        Max 
Relative Error      1922            1.2         1.5            1.0        0.0003        21.3 

 

Figure 9. Histogram of All Relative Errors  

 

Min: 57% 
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Table 8. Best Fitted Distribution for Expert Relative Errors 

Kolmogorov Smirnov Anderson Darling Chi-Squared 
Best Fitted Distribution  

(MathWave-EasyFit) 
Rank Rank Rank 

Wakeby 1 1 1 

Cauchy 2 2 2 

Dagum (4P) 3 5 5 

Log-Logistic (3P) 4 4 4 

Burr (4P) 5 3 3 

Burr 6 7 7 

Dagum 7 6 6 

Pearson 6 (4P) 8 8 8 

Lognormal (3P) 9 9 9 

 

 

Figure 10. Lognormal (3P) Distribution of for All Relative Errors 
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5.4 Performance Assessment of Generic Likelihood Functions  

The entire process of updating estimates was also repeated, using a generic 

likelihood function.  If ‘E’ is a lognormally distributed, its expected value is:  
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1
,;


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 −−
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E

e
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Ef     Equation 30 

From Figure 10: 

 µ = 0.24  

σ = 0.46  

50ln E=µ        Equation 31 

Median: 27.124.0
50 === eeE µ

    Equation 32 

The above parameters are prior and should be updated using hybrid formulations.  

From Equation 13: 
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It can be shown that the parameters of the above posterior distribution can be 

calculated as (Mosleh, 1981): 

nn

i

i

E

u
u

1

1 50
50 ∏

=







 ′
=       Equation 36 

n
E

2
2 σσ =        Equation 37 

2
50

2σ

µ eu ×=       Equation 38 

u50: is the posterior median 

σ: is the posterior standard deviation 

n: is the number of estimates or experts 

µ: is the posterior mean 

Mean and the median of the posterior are compared with the true value to explore 

whether the formulated likelihood distribution is able to reduce the expert error.  

An example is presented in Table 9 and Table 10 using TU Delft data (case 28).                 

The complete study for all data tested reveals an overall improvement in the 

accuracy of expert, applying the formulated generic likelihood function 

considering available case-independent evidence.          
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Table 9. Numerical Example to Measure Performance of Generic Likelihood Function Using 
Mean (µ) of Posterior 
 

u' u 
Other Available Experts 
Estimates on True Value 

µ = u50 Exp(σ2/2) u'/u µ/u 
Error Reduced: + 
Error Increased: - 

0.019 0.027 (0.05, 0.02, 0.02, 0.035) 0.023 0.704 0.866 + 

0.05 0.027 (0.019, 0.02, 0.02, 0.035) 0.018 1.852 0.680 + 

0.02 0.027 (0.019, 0.05, 0.02, 0.035) 0.023 0.741 0.855 + 

0.02 0.027 (0.019, 0.05, 0.02, 0.035) 0.023 0.741 0.855 + 

0.035 0.027 (0.019,0.05, 0.02, 0.02) 0.020 1.296 0.743 + 

 

 
Table 10. Numerical Example to Measure Performance of Generic Likelihood Function Using 
Median (u50) of Posterior 
 

u' u 
Other Available Experts 
Estimates on True Value 

u50=∏(u'/E50)
1/n u'/u u50/u 

Error Reduced: + 
Error Increased: -  

0.019 0.027 (0.05, 0.02, 0.02, 0.035) 0.023 0.704 0.844 + 

0.05 0.027 (0.019, 0.02, 0.02, 0.035) 0.018 1.852 0.662 + 

0.02 0.027 (0.019, 0.05, 0.02, 0.035) 0.022 0.741 0.833 + 

0.02 0.027 (0.019, 0.05, 0.02, 0.035) 0.022 0.741 0.833 + 

0.035 0.027 (0.019,0.05, 0.02, 0.02) 0.020 1.296 0.724 + 
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5.5  Conclusion  

The questions answered include empirical assessment of expert errors and 

to explore whether the use of formulated likelihood functions would reduce future 

prediction errors.  The empirical assessment of data revealed that approximately: 

1. 45% of errors were close to one (expert estimate ~ true value) 

2. 45% of data points were between (1 – 2)  

3. 5% of relative errors were falling in the range of (2 – 3) 

4. 5% among all empirical errors data was greater than 3 

5. Lognormal was identified as one of the best fitted distributions 

6. The average error was 1.2  

7. The standard deviation was 1.5 

             Applying the case-specific likelihood function developed by relative 

errors showed:  

• 77% of estimates improved 

Application of generic likelihood function using the posterior mean and 

case-independent evidence revealed: 

• 50% of estimates improved      

Application of generic likelihood function using the posterior median and 

case-independent evidence showed: 

• 52% of estimates improved           

Results confirm that the developed generic likelihood function, in 

conjunction with available evidence, is able to update at least half of the estimates.     
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Chapter 6: Data-Informed Aggregation of Expert Opinions  

 

6.1 Introduction   

In uncertain situation, combining data can reduce error (Armstrong, 2001).  

Speculations made about the correlation between accuracy of expert estimates and 

the number of experts elicited, have led many to conclude that the more experts 

are elicited, the higher accuracy of estimates can be reached.  This may seem 

similar to increasing the sample size in an experiment.  Ashton and Ashton (1985) 

studied judgmental forecasts of the number of advertising pages in Time 

magazine.  The conclusion was that by combining the forecasts of four experts, 

error of estimates is reduced by 3.5%.  Batchelor and Dua (1995) showed increase 

in accuracy from 10 to 22 economists.  Their study also revealed a small 

improvement from 22 to the remaining 12.   

The two well-established mathematical approaches to aggregate opinions 

are axiomatic and Bayesian models (Boring, 2007; Clemen and Winkler, 1997).                

The first formal framework of the Bayesian methods for use of expert opinion was 

presented by Morris (1974, 1977).  French (1985), Lindley (1985), and Genest and 

Zidek (1986) all conclude that a Bayesian updating scheme is the most appropriate 

method when a group of experts provide information for a decision maker.                 

A comprehensive review of aggregation literature, including dependence, can be 

found in French (1985), Ouchi (2004), Genest and Zidek (1986), French and Ríos 

Insua (2000).  
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The objectives of this part of the research are to: 

1. Investigate whether mathematical aggregation of expert opinions 

reduce the error of aggregated estimate 

2. Assess the correlation between the number of experts and the 

accuracy of estimates through Bayesian aggregation.   

The above questions are addressed, using empirical data in the Bayesian 

framework, applying likelihood distribution formulated in Chapter 4 by 

considering: 

o Case-specific likelihood function 

o Generic likelihood function  

In this chapter, mathematical formulas for generic aggregation are 

presented.  Using empirical data, aggregation performance and number of experts 

for optimum accuracy are determined in each method based on the results 

obtained.   
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6.2 Mathematical Model  

Expert opinions are aggregated in the Bayesian framework using the 

likelihood function formulated by relative error of estimates as well as generic 

likelihood function developed.   Postulating independent experts with lognormal 

likelihood distributions with parmaters (µi, σi) we have (see Chapter 4):  
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ln µi = ln ui- ln E50  

iu' : is the ith expert estimate 

u : is the unknown of interest 

'u : set of expert estimates 

Expanding the above equation and rearranging the terms as a function of ‘u’: 
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Using the above likelihood in Bayes’ theorem the posterior distribution of the 

unknown of interest given set of errors: 
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For the generic likelihood formulated by relative errors in Chapter 5,          

(E50  = 1.2 and σE = 0.69).  The assumption is that E50 and σE are the same for all 

experts. Therefore for expert ‘i' :  
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Postulating independence among experts, as in equation 31: 
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This results in posterior distribution for this case: 
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It can be shown that the median of this posterior distribution can be calculated as: 
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The mean of the posterior is 

2
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µ eu ×=       Equation 48 

The relative error of aggregated value (mean and median of posterior), 

u

u
E Aggregate

Aggregate

'
= , is compared with the expert’s relative error, 

u

u
E i

i

'
= .           

The number of estimates improved is monitored as the number of experts (n) 

increases in order to uncover whether this boost reduces the overall error of 

estimates and to unveil the minimum number of experts needed to obtain 

maximum accuracy.   
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6.3 Aggregation by Simulation  

In this section, simulation-based performance assessment of Bayesian and 

representative models of axiomatic aggregation of point estimates is conducted.  

In addition, the impact of the number of experts on Bayesian aggregation 

performance is assessed through replication.   

Simulation is carried out considering both cases of independence and 

dependence (for Bayesian method) among experts.  The simulation process flow is 

depicted in Figure 11.   

There are two loops constructed.  Model inputs and random true values are 

produced in the first loop using sampling of lognormal distributions.                        

In the second loop, expert estimates are generated within the same data range and 

aggregation is performed.  The process is repeated in each of the loops for the 

calculated number of iteration.   

The simulation loop iteration is calculated based on the formula proposed 

by Winston (2001): 

2

2
2

2
4

D

z
m

σα 







=       Equation 49 

In this formula,  

m is the number of iterations needed,  

σ is the estimated standard deviation of the output, and  

D is the desired width of the confidence interval.  Simulation is first run with just 

100 iterations (α = 0.05, and therefore 
2

αz =1.96) to obtain an estimate for the 

standard deviation.  The number of iterations can then be calculated using the 

same formula and calculated standard deviation.    
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The selected axiomatic aggregation methods are arithmetic weighted sum 

and weighted geometric mean:  

I. Arithmetic Unweighted Sum: this is just an unweighted linear combination 

of ‘n’ expert estimates (u': expert estimates). 

 ∑
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1      Equation 50 

II. Unweighted Geometric Mean: An unweighted geometric mean is obtained 

as the product of the estimates raised to the power equal to one over the 

number of estimates (n) (u': expert estimates). 
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For the Bayesian aggregation simulation, posterior distribution is formed.  

The mean of the posterior, as the aggregated estimate and expert estimates are 

compared with the true value (refer to Chapter 4) imported from the first loop.   

To address dependency among experts, choices of copulas are used for 

likelihood functions as listed in the following.  The basis of applying a copula 

distribution is that a copula-based model is constructed by joining the copula 

function with the marginal distributions.  According to Sklar’s Theorem (1959), 

given a joint cumulative distribution function F(x1, …, xn) for random variables 

(x1…xn) with marginal cumulative distribution F1(x1)…Fn(xn), F can be written as 

a function of its marginal distributions:  

( ) ( ) ( )[ ]nnn xFxFcxxF ...... 111 =      Equation 52 

The function ‘c’ is called a copula. This means that the joint density f(x1…xn) can 

be written as:  

( ) ( ) ( ) ( ) ( )[ ]nnnnn xFxFcxfxfxxf ......... 11111 =    Equation 53 
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It is clear that the above copula density ‘c’  captures information about the 

dependence among the Xs, and therefore, it is called a dependence function.  

There are many families of copulas which typically have several parameters 

related to the strength and form of the dependence.  More discussion and 

properties of these selected copula functions can be found in Clayton (1978), 

Frank (1979), Gumbel (1960), Hougaard ( 2000), Silva and Lopez (2008).              

The selected families of copulas are: 

1. Gaussian – Multivariate normal copula: this copula captures dependence 

like the multivariate normal distribution, by using only pair wise 

correlations among the variables.  It accomplishes the task for variables 

with arbitrary marginal distributions.  Moreover, the normal copula 

permits the use of any positive-definite correlation matrix, meaning that it 

is not limited to intra class correlation matrices. 

2. Archimedean  

2.3 Frank: Frank can be used to capture positive dependence among 

random variables.          

2.4 Clayton: In the Clayton copula, the random variables are 

statistically independent.   

2.5 Gumbel: The Gumbel copula is asymmetric, with more weight in 

the right tail.  

The simulation process for dependent experts is depicted in Figure 12.                   

The simulation is executed using MATLAB® software produced by                      

‘The Mathworks™’.  MATLAB® is a technical computing language for algorithm 

development and numerical computation.  
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Loop 2: Aggregation Assessment

F) Develop Posterior

A) Identify Number of Experts (n)

B) Define Distributions and Range of Data

     I)  µ
1
...µ

n 
(µ

i
 = u+bias

i
)

     II) σ
1
...σ

n

C) Generate True Value (u)

Loop 1: Define Model Inputs

Change σ
1
...σ

n
?

Change n?

D) Sample Distributions: (u'
1
...u'

n
)

G) Calculate Posterior Mean (µ)

Simulation Results:

   1. Bayesian Model Performance (µ/u) vs. Expert Performance (u'/u)

   2. Axiomatic Model Performance (u’
ax

/u) vs. Expert Performance (u'/u)

   3. Bayesian Model Performance (µ/u) vs. Axiomatic Model Performance (u'
ax

/u)
   4. Assessment of Number of Experts (n) on Error Reduction of Aggregated Estimate

Bayesian

Aggregation
YesNo
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Axiomatic Aggregation
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)

E) Dependent Experts?

N
o

Yes

2

 
 

Figure 11. Aggregation Simulation Approach  
 
 

 
 

Figure 12. Aggregation Simulation for Dependent Experts 
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6.4 Simulation Results  

6.4.1 Aggregation Performance 

Simulation shows that Bayesian aggregation method results 

in less aggregation error than Axiomatic procedures, as depicted in 

Figure 13.  In this graph, the x-axis is the number of experiments or 

cases simulated, unique to their generated inputs in both loops.  

The y-axis is the relative errors or
u

u
E

'= , where u’ is the estimate 

and u is the true value.  The spikes which can be noted in the 

graphs show selection of high standard deviations (low expert 

expertise), which clearly reveals that the decrease of expertise 

increases the error.    

6.4.2 Dependent Experts Performance 

For dependent experts, Gaussian, Frank, Clayton and 

Gumbel copula families are used and minimum improvement 

among these choices are reported.  Model error shows about 80% 

overall reduction in error of aggregated estimate compared to the 

mean of all expert errors with correlation of 0.25, about 75% with 

correlation of 0.50, and finally about 70% with correlation of 0.75.  

This means that the more independent experts are; the more 

accurate aggregated estimate becomes, however, the amount of 

improvement is not significant. 
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6.4.3 Size of Expert Panel 

The simulation reveals that there is not a strong correlation 

between accuracy of aggregated estimate and the number of 

experts.  As depicted in the Figure 14, about 50% of estimates are 

improved by increasing the number of experts to two.  It seems that 

selecting more than two experts can lead to more improved 

estimates (over 60%).  However, it can be noted that from 3 to 10 

experts, the percentage of improved estimates is not noteworthy 

(less than 10%).        
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Figure 13. Performance of Aggregation Methods 
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Figure 14. Simulation Results: Expert Panel Size vs. % Estimates Improved 
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6.5 Aggregation Using Empirical Data 

In this section aggregation is performed using empirical data to assess: 

(a) The Bayesian aggregation performance and  

(b) Impact of number of experts on aggregation in a real world application.   

Expert opinions are combined in a Bayesian framework using likelihood 

function formulated by relative error of estimates, considering independence 

among experts.  The relative error of aggregate is compared with the expert error.  

This procedure is illustrated using sample data, reflected in Table 11.   

 

Table 11. Numerical Example for Aggregation Procedure Illustration  
 

Expert ID Estimate True Value 

A 0.019 0.027 

B 0.05 0.027 

C 0.02 0.027 

D 0.02 0.027 

E 0.035 0.027 

 
 

The available evidence to update the estimate of expert B is the relative error of 

expert A.  The posterior is developed, and the average of this distribution is 

calculated as the Bayesian update.  The result can be found in Table 12. 

 

Table 12. Bayesian Update and Relative Error for Aggregation Example 
 

Expert ID Estimate True Value 
Bayesian 
Update 

Expert Relative 
Error 

Bayesian 
Relative Error 

A 0.019 0.027  0.704  

B 0.05 0.027 0.06 1.852 2.222 
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In the next step, the first two expert relative errors are considered available 

evidence to update the estimate of expert C, as reflected in Table 13.                    

The aggregated estimate is compared with all three expert estimates, revealing 

reduction in error.  From the results obtained for this set of data, going from one to 

two experts increases the error for both estimates released by expert A and B.  

However, increasing the number of experts from two to three reduces the error for 

all experts A, B, and C. 

 

Table 13. Continuation of Aggregation Example 
 

Estimate 
True 
Value 

Bayesian 
Update 

Expert 
Relative 

Error 

Bayesian 
Relative 

Error 

%
 R

ed
u

ced
 E

rror (+
)                                

                                                   
                                                   

                                              
%

 In
creased

 E
rro

r (-) 

%
 R

ed
u

ced
 E

rror (+
)   
                                                   

                                                   
                                                   

                        
%

 In
creased

 E
rro

r (-) 

Expert 
ID 

0.019 0.027  0.704  - + A 

0.05 0.027 0.06 1.852 2.222 - + B 

0.02 0.027 0.023 0.741 0.852  + C 

 

This process is continued to include all experts in the data set, as shown in 

Table 14. 
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Table 14. Aggregation Results for Example Data 
 

Estimate True Value Bayesian Update 
Expert Relative 

Error 
Bayesian Relative 

Error 

0.019 0.027  0.704  

0.05 0.027 0.06 1.852 2.222 

0.02 0.027 0.023 0.741 0.852 

0.02 0.027 0.025 0.741 0.926 

0.035 0.027 0.039 1.296 1.444 

 

Aggregate ID A & B A, B & C A, B, C & D A, B, C, D & E 

Bayesian Aggregate Relative Error 
ID Expert Relative Error 

2.222 0.852 0.926 1.444 

A 0.704 - + + - 

B 1.852 - + + + 

C 0.741  + + - 

D 0.741   + - 

E 1.296    - 

Estimates Improved 0 3 4 1 

Total (Expert Panel Size) 2 3 4 5 

 

To treat the data completely random, another step is taken where a sample of 10% 

of the data sets are used for calculations out-of-reported order.  Rearranging the 

raw data in previous example (Table 11) is shown in Table 15. 

 

 Table 15. Example for Aggregation Procedure: Out-of-order data 

Expert ID Estimate True Value 

A 0.019 0.027 

D 0.02 0.027 

C 0.02 0.027 

B 0.05 0.027 

E 0.035 0.027 
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The same process as described before in the example is repeated for this random 

set and results are shown in Table 16. 

 

Table 16. Aggregation Results for Example: Out-of-order data 
 

Estimate True Value Bayesian Mean Expert Relative Error Bayesian Relative Error 

0.019 0.027  0.704  

0.02 0.027 0.029 0.741 1.074 

0.02 0.027 0.024 0.741 0.889 

0.05 0.027 0.040 1.296 1.481 

0.035 0.027 0.069 1.852 2.556 

 

Aggregate ID A & D A, D & C A, D, C & B A, D, C, B & E 

Bayesian Aggregate Relative Error 
ID Expert Relative Error 

1.074 0.889 1.481 2.556 

A 0.704 + + - - 

D 0.741 + + - - 

C 0.741  + - - 

B 1.296   - - 

E 1.852    - 

Estimates Improved 2 3 0 0 

Total (Expert Panel Size) 2 3 4 5 

 

These calculation steps are executed for empirical data sets.  The number 

of improved estimates is monitored as the number of experts increase for 

estimates involving 2 to 10 experts to: 

3. Investigate whether mathematical aggregation of expert opinions reduce 

the error of aggregated estimate 

4. Assess the correlation between the number of experts and the accuracy of 

estimates through Bayesian aggregation.   
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Bayesian calculations were performed by ‘Uncertainty Modeling’ software 

released and validated by The Center for Risk and  Reliability (CRR), Droguette 

and Mosleh (2003).     

The improvements (reduction in error) in all data sets per expert panel size 

are listed in Table 17 using case-specific likelihood.  Additionally, the correlation 

between percentages of error reduction with the increase of the number of experts 

is investigated using best-fitted line, as depicted in Figure 15.  The best fitted line 

reveals a positive correlation, but with a moderate adjusted coefficient of 

determination (R2 = 63%).  The computation was also performed using mean and 

median of the generic likelihood function, summarized in Table 18 and Table 19. 
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Table 17. Aggregation Performance: Case-Specific Likelihood 

Expert Panel Size Total Data  No. of Estimates Improved % of Estimates Improved 

2 98 52 53% 

3 147 91 62% 

4 184 109 59% 

5 225 144 64% 

6 240 160 67% 

7 259 193 75% 

8 152 100 66% 

9 72 51 71% 

10 60 42 70% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Fitted Line Plot: Improvement vs. Experts Panel Size 
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Table 18. Aggregation Performance Summary: Generic Likelihood – Mean  

Expert Panel Size Total Data  No. of Estimates Improved % of Estimates Improved 

2 70 25 53% 

3 105 50 59% 

4 140 76 60% 

5 175 92 58% 

6 192 108 52% 

7 203 115 51% 

8 128 70 55% 

9 45 16 44% 

10 40 12 43% 

 

Table 19. Aggregation Performance Summary: Generic Likelihood – Median 

Expert Panel Size Total Data No. of Estimates Improved % of Estimates Improved 

2 70 41 46% 

3 105 62 52% 

4 140 87 57% 

5 175 111 54% 

6 192 113 49% 

7 203 118 46% 

8 128 100 66% 

9 45 26 42% 

10 40 24 38% 
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6.5.1 Aggregation Performance  

Bayesian aggregation resulted in less relative error on average.  

Application of the likelihood function developed by relative errors revealed on 

average 65% of estimates improved.  Application of generic likelihood for 

homogenous data using posterior mean revealed on average 53% of estimates 

improved.  Application of generic likelihood for homogenous data using posterior 

median showed on average 50% of estimates improved.     

6.5.2 Expert Panel Size 

Best-fitted line graphs for case-specific events, Figure 15, reveal that 

increasing the number of experts is positively correlated with the accuracy of 

aggregated estimate.  The moderate coefficient of determination (R2 = 63%) 

suggests that this association is not very strong.  It seems that eliciting two experts 

(instead of one) can lead to reduction in error for more than 50% of estimates.            

It can be seen that increasing the number of experts from two to three, reduces the 

error for approximately 60% of estimates.  However, from 3 to 10 experts, the 

percentage of improved estimates is not significant.   
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Chapter 7: Summary of Results 

 

7.1 Research Contribution 

This research contributes to the body of knowledge of expert judgment.   

In contrast to many studies revealing shortcoming in the expert judgment, this 

research reports how well experts are able to make a prediction in real world.  

This task was carried out by data-informed calibration and aggregation of experts 

in the Bayesian framework.   

A generic likelihood was developed, which showed the ability to update 

the expert estimates.  Additionally, specific likelihood distributions for 

homogenous, nonhomogenous and mixed data were formulated using expert 

relative errors of estimates, revealing that formulated likelihood functions can 

reduce future prediction errors.   

To study the impact of number of experts on the accuracy of aggregated 

estimate collected expert judgments were combined in a Bayesian framework 

using likelihood distributions developed in the first part of the research study.              

Total number of estimates with reduced errors was depicted against corresponding 

expert panel size.  The objective achieved was the determination of the correlation 

between the number of experts and the accuracy of the combined estimate to 

recommend an expert panel size.  The result of the study showed weak to 

moderate correlation between the expert panel size and the accuracy of aggregate. 

It was noted that eliciting two experts (instead of one) could lead to reduction in 

relative error of estimates. 
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7.2 Data-Informed Calibration of Expert Judgment 

The objective of this section was empirical assessment of expert judgment 

in different disciplines as well as feasibility and value of data-driven expert 

calibration within the Bayesian formalism.   

The result of the conducted study revealed: 

1. 45% of errors are close to one (expert estimate ~ true value) 

2. 45% of data points are between (1 – 2)  

3. 5% of relative errors are falling in the range of (2 – 3) 

4. 5% among all empirical errors data are greater than 3 

5. Lognormal is identified as one of the best fitted distributions 

6. The average relative error is 1.2 with standard deviation of 1.5 

Applying the case-specific likelihood function developed by relative error 

for homogenous and nonhomogenous cases showed:  

• 77% of estimates improved 

Application of generic likelihood function using posterior mean, 

considering the existing evidence revealed: 

• 57% of estimates improved      

Application of generic likelihood using posterior median, considering the 

existing evidence showed: 

• 52% of estimates improved           
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7.3 Data-Informed Aggregation of Expert Judgment 

The objective of this section was: 

1. to determine if mathematical aggregation reduces the error of aggregate, 

2. to explore the correlation between the number of experts and accuracy of 

aggregated estimate in order to recommend an expert panel size  

Figure 16 gives a quick overview of the results obtained: 

1. Mathematical aggregation reduces the error of estimate. 

2. The accuracy of the aggregate increases by adding to number of experts.   

3. The optimum expert panel size is 3, if the improvement of 50-60% of 

estimates is satisfactory.   

Overall, the decision of eliciting more experts can be properly made, 

considering governing circumstances of the case on-hand.  If possible, the panel 

should be large enough to capture complementary expertise and achieve diversity 

of opinion, to ensure a balanced and broad spectrum of viewpoints, expertise, and 

technical points of view.  The decision-maker should assess if targeted 

improvement pays off the cost of hiring more experts.   
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Figure 16. Bayesian Treatment vs. Expert Panel Size 
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7.4 Research Limitations  

Reader should be aware of the limitations and restrictions encountered in 

conducting this research to have a complete picture of this study:   

• Besides expressing their subjective judgments directly, experts in this 

study could use prototypes, models, destructive and nondestructive 

tests (among other tools) to gather data, gain practical knowledge to 

estimate the unknown. 

• This study only focused on expert point estimates in discrete or 

continuous forms.   

• The estimates provided by forecasting models were considered ‘expert 

data’.  This was because of expert input into construction of the model, 

or expert review and adjustment of the output. 

• Experts were considered independent in model development and 

numerical calculations. 

• Inconsistencies among experts were accepted as inherent variation in 

modeling and assessment processes.  Inherent variation could help to 

capture real-world error causes (though the sources of these fallacies 

remain unknown) and examine the formulated likelihood functions in 

dealing with these variations.     

• The focus of this research was on mathematical procedures for 

calibration and aggregation of expert point estimates.  Specially, 

Bayesian method was the central point of the study.    
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7.5 Future Research 

There are many factors which can impact the accuracy of expert judgment 

such as expert attributes, elicitation and aggregation methods and so on.                 

This research focused on calibration and aggregation of expert judgment in a 

Bayesian framework, considering independent experts.   

Dependency is a major factor affecting the quality of judgment.              

Future research using methods presented in this research should consider the case 

of dependence in both calibration and aggregation procedures and address the 

pertinent issues. 

Additionally, the empirical data available for collection allowed this 

research to only consider up to 10 experts.  If data is available, the study should 

continue to larger expert panel size, and perhaps, determine the variations seen in 

the % of improved estimates as number of expert increases. 
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