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             The dimerization initiation site (DIS) is an essential RNA element responsible for 

dimerization of HIV-1 genomic RNA through a kissing loop interaction.  The DIS loop 

contains six auto-complementary nucleotides stabilized by 5'- and 3'-flanking purines.  

NCp7 chaperone protein catalyzes conversion of an intermediate DIS kissing dimer to a 

more thermodynamically stable extended duplex dimer in the presence of Mg2+.  

Sequence constructs intended to model the extended duplex, (DIS 21), and the kissing 

dimer, DIS23(GA)•DIS23(HxUC), were designed to examine the structural information 

and biochemical behaviors during maturation.    We introduced the fluorescent labeling, 

2-aminopurine (2-AP) into these RNA constructs, to finely probe structural transition and 

local dynamics accompanied by the formation of the DIS dimer.   The 2-AP nucleotides 

were inserted either in the DIS loop or junction to study loop-loop interaction or purine 

base stacking conformation at the junction responding to the metal ion effect.   High 

resolution NMR methods were then used to probe structural changes associated with 

mono versus divalent cation binding to the DIS dimers and also determine the Mg2+ 



  

binding sites.  Significant chemical shift perturbations (CSP) were found upon Mg2+ 

binding and used to map structural changes.  Further Mn2+ paramagnetic relaxation 

enhancement (PRE) experiments provided evidence for specific Mg2+ ion binding are 

localized around the 5' purine bases in both the extended duplex and kissing dimers with 

profound line broadening effects.   Mapping the CSP and PRE data onto the available X-

ray crystal and NMR solution structures allowed localization of specific Mg2+ ions at 

binding sites on the DIS dimers created by the unpaired flanking DIS loop purine 

nucleotides.  Our data indicates that the conformations that are metal cation dependent.  

These findings are consistent with previous results that suggested a role for divalent 

metal cations in stabilizing the DIS kissing dimer structure and influencing its maturation 

to an extended duplex form through interactions with the DIS loop.   
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Chapter 1   Introduction 
 

1.1  Overview of HIV-1 Biology            

1.1.1   Replication Cycle 

           
           Human immunodeficiency virus type I (HIV-1) is a retrovirus, meaning that RNA 

carries its genetic information.  Retroviruses use reverse transcriptase to convert RNA 

into DNA, which is then integrated into the host cell’s genome.  The genomic RNA in 

HIV-1 is composed of three main genes encoding Gag (core protein), pol (enzymes), and 

Env (envelope glycoproteins).   Other accessory gene products, Tat, Rev, Vif, Vpu, Vpr, 

and Nef, are also encoded in the HIV-1 genome and carry out important functions in HIV 

replication.  Gag functions as a core protein which is comprised of capsid protein (p24), 

matrix, and nucleocapsid.  Pol encodes the viral enzymes protease, reverse transcriptase, 

and integrase.  Env consists of the structural proteins such as an external glycoprotein 

(gp120) and a transmembrane glycoprotein (gp41).  Rev is essential for nuclear export of 

viral RNA and binds to the Rev responsive element (RRE) RNA.  Tat is a transcriptional 

regulator interacting with the transactivating responsive (TAR) RNA element.   

           During the initial stages of viral infection, the envelope protein, gp120, of HIV 

binds to the CD4 receptor on the surfaces of the helper T cell.   Two copies of the HIV 

genome, as well as various enzymes such as a reverse transcriptase, are then fused from 

virons into the host’s cell in a process mediated by HIV gp41 protein which is bound to 

the cell membrane.   Viral genomic RNA is used as a template by the viral reverse 

transcriptase (RT) to produce a single stranded DNA.  Single stranded DNA subsequently 

serves as a template to produce a cyclic double stranded DNA which then enters the 
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host’s nucleus and is integrated into the host’s DNA.  The viral DNA that is integrated 

into the host’s DNA is termed a provirus and integration is catalyzed by the viral enzyme 

integrase.  The provirus is transcribed into mRNA which is then exported out of the 

nucleus and translated into viral proteins in the cytoplasm.  The new generation of HIV 

core proteins, enzymes, and genomic RNA associate together and assemble to form a 

new virus particle near the cell surface.  The newly formed virus is released by budding 

from the host’s cell as an immature viral particle which then undergoes further structural 

changes, in a process termed maturation, to become a fully infectious virus.  Maturation 

involves HIV-1 protease processing of the gag polyprotein to release the structural 

domains (matrix, capsid, etc.) and the nucleic acid chaperone protein NCp7.  NCp7 

release is postulated to be involved in many viral functions among which is RNA genome 

refolding associated with genome dimer stabilization (1). 
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Fig 1.1.  The HIV-1 life cycle (reprinted with permission (2)).    

 

1.1.2   Genomic RNA Dimerization and Maturation 

1.1.2.1  Dimerization Initiation Site (DIS) Structure 

 
             The DIS RNA sequence, which is primarily responsible for initiation of the 

dimerization of genomic RNA, forms a stem-loop secondary structure in the dimer 

linkage structure (DLS) (3-5).  The DIS stem-loop can form a non-covalent kissing loop 

dimer through its autocomplementary hexanucleotide loop.  Two specific hexanucleotide 

sequences, GUGCAC (Mal variant or subtype A) and GCGCGC (Lai variant or subtype 
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B), are observed for DIS with one 3' and two 5' unpaired flanking purines (Fig 1.2).  Two 

steps have been proposed for the dimerization mechanism.  First, recognition binding 

occurs through the two self-complementary hexanucleotide palindromic sequences to 

form a metastable kissing loop dimer (6).  Second, the DIS dimer matures to form the 

extended duplex complex by a strand exchange (7).  Structural isomerization and thermal 

stability of the RNA dimers at two different temperatures have been determined from 

analyzing complex stability using 1.5% agarose gel electrophoresis as a function of 

temperature (8).   The results imply dimer isoforms at 37 ºC and 55 ºC are kinetic and 

thermostable isomers, respectively.  At temperature 37 ºC, a less stable complex, the kissing 

complex, is formed via base pairing of the complementary loop sequences.  At temperature 

55 ºC, the Watson-Crick stem base pairs in the kissing dimer are broken and form an 

extended double stranded dimer which is denatured only at temperature greater than 75 ºC.   
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Fig 1.2.     The secondary structure of DIS Mal variant and DIS Lai variant of HIV-1 RNA.  
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            In order to understand the relation between the structure of DIS and its function, 

several methods have been used, including obtaining the crystal structure of the DIS stem 

loop dimer in both the kissing and mature forms.  The X-ray structures of two truncated 

DIS dimers, a kissing-loop complex and an extended duplex, were determined from 

crystals grown at 293 and 303 K, respectively (9).   The crystal structures of both the 

kissing complex and the extended duplex in DIS subtype B show that the unpaired purine 

adenosines (A272, A273) on the two strands of the duplex bulge out of the helix (10).   

Similarly, the 5' flanking purines A272, A273 in DIS subtype B (Lai variant) or A272, 

G273 in DIS subtype A (Mal variant) form bulge out and stack in crystal structures of the 

kissing complexes ((11, 12), Fig 1.3).   
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Fig 1.3.  X-ray crystal structures of the (A) DIS kissing-loop complex and (B) extended 

duplex. The complexes are composed with two RNA strands represented in red and 

green.  A272 and A273 (for subtype DIS-B) or G273 (for subtype DIS-A) are found in a 

bulge-out conformation in crystal structures of the kissing complexes.  The conserved 

purines, A272 and A/G273, are stacked in a bulged-out conformation in the crystal 

structure of the extended duplex.   

 

           While the crystal structure has provided important insights into the conformation 

of the DIS dimers, this technique is limited in explaining function of dynamic biological 

molecules, especially flexible loops which are static within a lattice.  In the RNA crystal, 

one typically observes only one possible structure while the structure may fluctuate from 

 

A272 

A272 

A272 

A/G273 

A.  B.  
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one metastable state to another state under physiological conditions in solution.  The X-

ray crystal structures also do not directly indicate how RNA refolding occurs during 

dimer maturation.  In order to address these questions, complementary NMR and 

fluorescence techniques can be used in solution to probe the RNA structure, dynamics 

and folding.  In this respect, unlike the 5' flanking purines which are bulged- out and 

stack in pairs in both duplex and kissing X-ray structures, all available NMR structures 

for DIS isomers show that the flanking 5' purines are bulged within the helix stem (13-

16).  Further NMR studies by Takahashi et al. revealed that the stem bulge on DIS plays 

an important role in the packaging of the viral replication (17).   Deletion of the bulge 

residues from DIS reduces the ability to form extended duplex DIS dimer.  These results 

suggest that the bulge destabilizes the stem as part of the initiation of strand exchange 

during the two-step dimerization process with the stem-bulge-stem loop motif including 

NCp7 (17).             

            Modeling studies can further complement experimental results by providing 

information on structure, dynamics, and conformational transitions of RNA (18, 19).  The 

CHARMM (Chemistry at HARvard Molecular Mechanics) simulations program provides 

a wide range of molecular simulations.   CHARMM27 is especially useful for studying 

molecular dynamics of DNA, RNA, and lipids in solution (20).  Solvent molecular 

dynamics (MD) simulations with the CHARMM force field showed that 5' flanking 

purines tend to be in bulged-in conformation, which is consistent with NMR solution 

structure (21).  The simulations suggest that in solution the flanking purines are flexible 

due to molecular dynamics with different conformational states which are bulged-in and 

bulged-out conformations.   
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1.1.2.2    Packaging and Assembly 

            The packaging of retroviral genomes, such as HIV-1, as dimers is known to be 

important for various critical events in the viral life cycle.  RNA genome dimerization 

has been shown to increase the rate of genomic recombination (22) and has been 

suggested to increase the genetic diversity and adaptability of retroviruses (23).   

Dimerization of retroviral RNA genomes occurs prior to packaging into virons (7, 24) 

and is a central feature of all retroviruses involved in encapsidation, reverse transcription, 

and translation.   Retroviral genome dimers are linked primarily through noncovalent 

interaction between 5' leader RNA sequences.  The 5'-leader untranslated sequences of 

HIV-1 contains TAR, poly A signal, primer binding site (PBS), dimerization initiation 

site (DIS), splice donor (25), core packaging signal (ψ) and AUG initiation codon of the 

gene Gag  ((26), Fig 1.4). 
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R U5 SD
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Fig 1.4.  The sequence (A) and the secondary structure schematic (B) of the 5' end of 

HIV-1 genomic RNA. Dimerization initiation site is highlighted in a red box.  

 

           The sequences responsible for the RNA dimerization initiation overlap with the 

viral packaging element sequences.  Specifically, the dimer initiation site stem-loop (so 

called DIS or SL1) of HIV-1 is located within the Ψ- packaging signal.  The dimerization 

of two copies of the RNA genome for packaging is initiated by the DIS stem-loop which 

contains a G + C rich loop sequence (13).   The deletion of both SL1 and SL3 also 

reduces genomic packaging more significantly than the deletion of either SL1 or SL3 

alone.  In addition, any mutations of each stem-loop SL1, SL2, SL3, or SL4 has been 

found to have significant effects on packaging and dimerization ((27), Fig 1.5).   
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Fig 1.5. The dimerization initiation site (DIS) with the palindromic sequence (blue) 

nucleotides, major splice-donor (SD, red), gag start codon AUG (orange) are all located 

within the Ψ-site packaging sequence in the HIV-1 genomic RNA (28).               

   

           Packaging of viral RNA and associated proteins of new HIV-1 virons takes place 

in the final step of the viral cycle.  The new viral particles are released from the plasma 

membrane of the host cell (29, 30).  The assembly of retroviral particles depends mainly 

on gag protein which is composed of matrix (MA), capsid (CA), nucleocapsid (NC), and 

protease (PR) ((31), Fig 1.6).   

 

MA (p17) CA (p24) NC (p7) p6 
Gag

NC (p7)p2 p1

 

 

Fig 1.6.  The fragments of gag protein including matrix (MA), capsid (CA), and 

nucleocapsid (NC) (31).  
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           The C terminal domain of CA, p1 (spacer peptide), and NC are the most important 

structural sequence regions in assembly. The assembly process starts by formation of a 

Gag p55 complex (Gag multimerization) which requires the NC region, the C-terminal of 

CA and the spacer peptide p2.  Then, the Gag p55 complex binds to genomic RNA and is 

followed by formation of Gag/Gag-Pol complexes.  The complexes of Gag, Gag-Pol and 

RNA form preassembled complexes containing small viral proteins (Vif and Vpr) and 

host cell proteins.  Finally, preassembled complexes are transported to the plasma 

membrane of host cells for budding.   

 

1.1.2.3  Nucleocapsid Protein (NCp7) 

            The multifunctional nucleocapsid protein (NCp7) is involved in several different 

steps in the HIV-1 replication cycle and has been shown to enhance the efficiency of 

reverse transcription, to accelerate the rate of genomic RNA dimerization, and to 

incorporate genomic RNA into virons for correct assembly and maturation.   During viral 

maturation, NCp7 is cleaved from the gag protein by the retroviral protease before acting 

as a nucleic acid chaperone of the DIS dimer structural isomerization (31).  NCp7 is a 

prime target for antiviral therapy due to its crucial role involved in many stages of viral 

replication cycle. 

            NCp7 domain is also responsible for annealing tRNA(Lys) with one specific 

amino acid residue, lysine, to the primer binding site (PBS) on the genomic RNA in 

reverse transcription.  The interaction between tRNA(Lys) and the primer binding site 

during annealing has been measured directly by fluorescence energy transfer (FRET) by 

introducing fluorescence probes in the tRNA acceptor stem.  Based on Förster theory, the 
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requirement of dipole-dipole interaction between donor and acceptor leads to a strong 

dependence of energy transfer on the distance between the two fluorophores.  The 

efficiency of the energy transfer is then obtained from the peak fluorescence intensity of 

donor in the absence of the acceptor and donor in the presence of acceptor.  The ends of 

tRNA spread out to 40 Å when tRNA anneals to PBS (32).  Comparing the distance of 

donor and acceptor in tRNA before and after binding to PBS implies conformational 

change during annealing.  Heteronuclear NMR spectroscopy has also been used to study 

the mechanism of tRNA binding to PBS by monitoring the step by step process of 

forming complexes in real time.  For example, Heteronuclear Multiple Quantum 

Correlation (HMQC) spectroscopy has been used to compare shifting and/or 

disappearance of imino resonances before and after tRNA binds to PBS.  It was then used 

to detect NCp7 interactions with the tRNA and the initiation of melting two base pairs, 

G6-U67 and T54-A58, which are the starting points in the unwinding of tRNA that is 

required for binding to the PBS (33).   

           The structure of NC contains two zinc finger motifs, Cys-X2-Cys-X4-His-X4-Cys, 

where X is variable amino acids.  This zinc finger motifs of NCp7 are essential for 

packaging, annealing a primer tRNA to the viral RNA primer binding site, and 

maturation of viral RNA (Fig 1.7).   
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Fig 1.7.  The sequence and secondary structure of NCp7 protein with the two zinc 

finger motifs Cys-X2-Cys-X4-His-X4-Cys indicated.  The X2 and X4 represent the 

consensus spacing between the conserved Cys and His residues in the zinc finger motif 

(31). 

 

            While NC interacts with stem-loops (SL) in the Ψ site including DIS, SD, ψ, and 

gag initiation condon (AUG) during packaging of viral RNA, it is found to interact 

particularly tightly with the G-rich SL3 (ψ).  The dissociation constant of a 1:1 complex 

composed of a 20-nucleotide ψ containing sequence of SL3 and NCp7 is 100 nM.  

Furthermore, the binding site of the N-terminal domain of NC from Lys3 to Arg10 forms a 

310 helix which binds in the major groove of the RNA stem and the C-terminal zinc finger 

binds to the loop region of the stem-loop (34).  Mutations of zinc binding amino acids or 

alterations in the linker sequences in the CCHC motifs in both sites result in reduced viral 

infection, showing that the specific sequences of the zinc finger motifs are required.  For 

example, mutation of His to Cys in the first zinc finger and replacement of Trp37 with 

Leu decreases infectious activity.  The decreased infectivity of the Trp37 mutant suggests 

X2 

X4 

X4 
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that the indole group on tryptophan suitably orients NC and makes important nucleic 

acids contacts to NC that are spatially optimized (35).   

            In maturation, gag is cleaved by protease to produce NC, which then acts as a 

nucleic acid chaperone of the DIS dimer structural isomerization.  Under physiological 

salt and pH conditions at 37 °C in vitro, the kissing-loop dimer is a kinetically stable 

complex.  The rate of structural isomerization is increased at higher temperature and/or in 

the presence of NCp7 at 37 °C, allowing to overcome the activation energy barrier 

between these two isomers.  This result can be shown by examining the effect of 

dimerization process as a function of the temperature with or without NCp7 (8). 

 

1.1.2.4  DIS Kissing Dimer – Extended Duplex Conversion 

             The mechanism of kissing loop to duplex conversion has been studied by a 

combination of gel electrophoresis, fluorescence, UV melting, and NMR.  Dimerization 

is initiated via loop-loop interaction of the 6-base pair palindromes within the kissing 

loop dimer (36).  The ratio of DIS dimer to monomer has been found to be a function of 

ionic strength.   The higher the ionic concentration, the more the equilibrium shifts to the 

dimer state, since higher salt concentrations shield the negative charges on phosphate 

backbones to relieve the electrostatic repulsion between two complementary strands in the 

DIS dimer.  Typically, mono and multivalent cations are crucial to stabilize the RNA 

structure (37).   The formation of the kissing dimer is metal ion dependent (17, 38) and the 

binding of NCp7 chaperone protein facilitates its conversion into the extended duplex 

dimer (8).  Gel electrophoresis showed that the formation of the kissing – loop dimer 

depends on the RNA concentration and the Mg2+ concentration (17).  The kissing-loop 
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dimer is relatively unstable in the absence of Mg2+ at submillimolar RNA concentration.  

This result reinforces that the kissing-loop dimer with Mg2+ is a kinetically trapped 

dimer.  In contrast, the extended duplex dimer can be formed without Mg2+ because of 

higher stability from the large numbers of interstrand base pairs.   

 

1.2   Role of Metal Ions in RNA Structure and Function                  

1.2.1   Di- versus Mono-Valent Cation Interactions 

           Metal ions are required for RNA folding and catalysis (39, 40).  RNA molecules 

are negatively charged polyelectrolytes due to the negatively charged backbone 

phosphate.  Metal cations act as counter cations to neutralize the multiple charges during 

the process of RNA folding.  Metal ions are also required for stability and activity of 

RNA enzymes.  For example, divalent metal cations in group I self-splicing introns play a 

structural role as a catalytic metal (41).  The most commonly used ions in RNA folding 

are mono-valent and di-valent metal ions, such as K+ (42) and Mg2+ (43).  Na+ is known 

to be important for stabilizing the tertiary structure of tRNA (44).   The radius of group II 

(alkaline earth) ions is smaller than the group I (alkali metal) ions.   Due to the smaller 

radius and higher positive charge, group II metal ions have the greater charge density and 

a stronger stabilizing effect on RNA tertiary structure compared to monovalent ions.   In 

physiological conditions, multivalent ions (~2 mM) stabilize folding the HDV and 

Tetrahymena ribozmes more efficiently than monovalent ions (~200-500 mM) (45, 46).    

Transition metal ions, such as Mn2+ and Cd2+ can substitute for Mg2+.  Some of these 
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transition metals, like Mn2+, are paramagnetic and can induce significant line-broadening 

of resonances in NMR experiments.                   

           One example of a tertiary structure that is stabilized by chelated K+ at specific 

binding sites is the structure of a variant of a 58-nucleotide E. coli rRNA fragment (42).  

The stabilization ability of a monovalent cation depends on its unhydrated ionic radius.   

            Mg2+ has much greater affinity for oxygen binding than for sulfur.  Mg2+ is a hard 

metal ion which forms more stable complexes with ligands containing the hard donor 

oxygen.  The coordination geometry is an octahedron with the common arrangement, 

hexa-aqua magnesium (Mg[H2O]6
2+).   Manganese (Mn2+) has very similar chemical 

characteristics and hexa-aqua coordination.  It has been used as a Mg2+ analogue in 

spectroscopic studies due to its paramagnetic properties.  Mn2+ is considered a soft metal 

as it has a greater affinity for nitrogen and tends to form inner-sphere coordination (47).  

Zinc (Zn2+) ions have approximately the same size as Mg2+ but different coordination 

behavior.  Unlike Mg2+, Zn2+ tends to form 4-, 5-, and 6- coordinate complexes with 

equal stabilities.  When the coordination number is 4 or 5, zinc binds nitrogen and sulfur,  

whereas with a coordination number of 6, oxygen is a preferred ligand (48).  

           From the thermodynamic point of view, three energetic factors are considered to 

discriminate among mono and divalent ions.  The dehydration energy of divalent ions is 

about four times larger than monovalent ions with the same radius.  The repulsion 

between a divalent chelated ion and other RNA-associated ions is more unfavorable.  At 

the same position in an electrostatic field, the electrostatic free energy of a divalent ion 

gains two times more than the energy of a monovalent ion.   The compensation of the 

more intense electrostatic field is required due to the large dehydration and ion repulsion 
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penalties for divalent ions (49).  It explains that the most electronegative RNA ligands, 

oxygen atoms, from non-bridging phosphate oxygens are bound to Mg2+ more than K+ or 

Na+.   

          

1.2.2    Metal Binding Pockets versus Diffuse Cloud Interactions 

            Several factors affecting the relative affinity of different metal ions for a specific 

ion binding pocket are ionic radius, hardness of ions, types of coordinating ligands, 

coordination geometry, and hydration number of ions (50).  There are two distinct modes 

of binding: diffuse binding and site specific binding.  In diffuse binding, hydrated 

monovalent and divalent metal ions bind to the RNA through long range electrostatic 

interactions (51).   The positively charged layer provides charges to screen the repulsion 

between RNA backbone and phosphodiesters.  Outer-sphere and inner-sphere interactions 

are two different types of site binding modes that depend on the hydration state of the 

metals.  Outer-sphere interaction is when metal ions bind to specific sites without direct 

contacts to RNA (52).  Outer-sphere bound metal ions are strongly attracted to nearby 

electronegative RNA ligands where they share solvation shells.  In inner-sphere binding, 

metal ions interact directly with RNA such that at least one metal-bound water is replaced 

by a ligand from RNA.   Outer-sphere binding is considered to be nonspecific binding, 

whereas inner-sphere binding of partially dehydrated metal ions localize in specific 

binding pockets.  The common binding sites on RNA are phosphoryl oxygens, the ribose 

2’-OH, N7 of purines, and base keto groups, especially O6 of guanosine and O4 of uracil 

(39).   
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           In outer-sphere binding, nucleobases coordinate to metal ion via a water-bridge.  

Softer Lewis acids, such as Mn2+, tend to exhibit more inner-sphere interactions than 

Mg2+ (53).  A Mn2+ ion directly coordinates with two phosphate oxygens and with 

nitrogen atoms of one nucleobases (54).  Typically, the change of chemical shift upon 

metal cation binding to labeled nitrogen (15N) in nucleobase and the J-coupling (1JM 
(n+)

-N) 

between the metal and coordination site on labeled nitrogen atoms can be used to detect 

formation of an inner-sphere coordination of the metal (55).   

           Three approaches have been mainly used to study ion-RNA interactions: direct 

structural methods (X-ray crystallography and NMR), replacing the metal ion with an 

analog which is more sensitive to a biophysical technique, and changing the local metal-

binding characteristics by specific modifications of the RNA.  While it can provide the 

highest resolution for describing metal coordination, one limitation of crystallography is 

that may provide only a limited picture of RNA associated ions.  For example, in the 

haloarcula 50S ribosome subunit, only a limited number of mono- and divalent ions can 

be identified in the crystal structure, enough to neutralize only about 11% of the 

phosphate charges.  In these cases, the crystallographic picture can’t describe the 

importance of the ‘invisible’ metal ions and how these ions reduce the RNA electrostatic 

free energy compared to the resolved ions (56).  Solution NMR technique can provide 

additional insight in these cases and allow identification of metal sites.   
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Chapter 2    2-AP Fluorescence Detection of RNA Structural 

Changes in Response to Metal Binding the Dimerization 

Initiation Stem-Loop Kissing Complex 

2.1     Abstract 

            2-Aminopurine (2-AP) fluorescence detection methods have been used in this 

study to characterize metal binding in the dimerization initiation stem-loop kissing 

complexes.  The fluorescence quantum yield of 2-AP is sensitive to its microenvironment 

and can be a generally non-perturbing nucleotide analogue when inserted at a specific site 

in nucleic acids.  Therefore, 2-AP fluorescence detected methods can be ideal for 

studying the DIS isomerization chaperoned by NCp7, secondary structure transition of 

DIS stem-loop denaturation, and loop-loop dissociation.  In this chapter, fluorescence 

methods will be described to detect the structural transitions and local dynamics 

associated with DIS dimer formation and structural conversion chaperoned by 

nucleocapsid protein.   

 

2.2 Introduction 

2.2.1   Fluorescence Emission / Quenching Experiments 

           Fluorescence spectroscopy is a useful method to study conformational changes, 

binding interactions of ligands, and determination of stoichiometry for a complex.  

Fluorescence occurs when a molecule relaxes to the ground state after being excited.  

Fluorescence quenching is a non-radiative relaxation in which the excitation energy is 
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released as heat instead of light to a ground state.  Fluorescence quenching is a process 

which decreases the fluorescence intensity.  Interaction between a fluorophore and its 

corresponding quencher usually perturbs the fluorescence intensity.  Fluorescence 

quenching results from the changes in its microenvironment.  Several fluorophore and 

quencher combinations have been used to study long range interactions in 

biomacromolecules.  Formation of a complex between two molecules can result in static 

quenching.   However, direct physical interaction between a fluorphore and a ligand is 

not necessary to cause fluorescence quenching.  Fluorescence resonance energy transfer 

(FRET) relies on the distance between a donor fluorophore and an acceptor fluorophore.  

A FRET transfer occurs when a donor fluorophore is excited by incident light and an 

acceptor is in close proximity to receive this nonradiative energy (57).  The energy can be 

transferred over a distance range from 10 to 100 Å (58).   

           Fluorescent probe, 2-AP, which has been selectively incorporated at an adenosine 

position can be statically quenched through titration of a known molecular quencher, like 

acrylamide.  Fluorescence quenching can take place when a non-fluorescent complex is 

formed at the ground state without emission of a photon from the ππ* excited state (59).  

The association constant for complex formation is given by,  

Ks  =
[F - Q]

[F][Q]
(1)

 

Where [F] is the concentration of the fluorphore not a complex, [Q] is the concentration 

of the quencher, and [F-Q] is the concentration of the complex with no fluorescence. 

The total concentration of the fluorophore is [F0].   

[F0] = [F] + [F – Q]      (2)  

Then, the association constant can be rearranged as follows,  
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Ks  =
[F0] - [F]

[F][Q]
=

[F0]

[F][Q]
-

1

[Q]
(3)

 

The fluorophore concentration can be substituted for fluorescence intensities.  Rearrange 

equation 3 yielding 

I0

I
= 1 + Ks[Q]      (4)

 

 

2.2.2  Fluorescence versus UV Detected Thermal RNA Melting Curves 

          Melting transitions can be detected by UV absorbance, circular dichroism (CD), 

NMR, and differential scanning calorimetry.  UV melting is by far the most commonly 

used technique to monitor the transition in solution.  RNA undergoes the unfolding 

process as a function of temperature under quasi-stationary conditions from native to 

denaturing states.   The temperature at the midpoint of the transition is called Tm.  Upon 

unfolding of the RNA, UV melting shows hyperchromicity of unstacked bases with 

results in an increasing UV absorbance.  Many UV melting curves can consist of more 

than one transition which results in a complex melting profile.   In this case, the low 

temperature transition is usually attributed to the unfolding of the tertiary structure.  In 

contrast, to unfold secondary structure helices, higher thermal energy is required to unzip 

stacked bases resulting in higher temperature transition.  The ideal buffer used for 

melting curves should not absorb UV light and the pKa should not change with 

temperature.  For example, the typical standard buffer for RNA samples is sodium 

cacodylate at pH 7.  The advantage of using UV detection is its high sensitivity which 

means only small amount of sample is required.  The enthalpy (∆Ho) and entropy (∆So) 

of the transition can be derived from UV-detected melting curves using the van't Hoff 
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equations.  However, UV melting examines the global melting process as an ensemble 

average of the whole nucleic acid structure.   

2.2.3  Sample Preparation & 2-AP Labeling 

          2-Aminopurine (2-AP) is a fluorescent nucleotide base analog of adenine (60).   

The nucleotide 2-AP can form base pairs with cytosine in a wobble configuration (RNA 

and DNA) (61, 62), Watson-Crick type base pairs with either uracil (RNA) or thymidine 

(DNA) (63, 64). The comparison of the Watson-Crick adenosine-uracil base pair and the 

2-aminopurine-uracil base pair are shown in Fig 2.1.  Site-specific labeling with 2-

aminopurine (2-AP) has been widely used to study the folding, structural dynamics, and 

molecular interactions of nucleic acids (38).  The application of fluorescent probe 2-AP 

to monitor local melting process can overcome the ambiguity in the UV melting profile 

observed for complex nucleic acid structures which contain numbers of secondary 

structure motifs (65).  2-AP has a red shifted absorption spectrum which can be 

distinguished from the excitation of other nucleic acids and proteins. The changes of 

fluorescence intensities monitor the secondary structure transitions as a function of 

temperature including hairpin melting, loop opening, and base stacking, etc.  The 

quantum yield of 2-AP is extremely sensitive to its microenvironment.  2-AP is highly 

quenched due to stacking interactions with neighboring nucleotide bases (66), but its 

fluorescence intensity can increase dramatically if the 2-AP base is flipped out of the 

RNA helix and exposed to solvent.   In our laboratory, 2-AP has been incorporated into 

specific sites of the dimerization initiation site (DIS) dimers to serve as a fluorescence 

probe to examine the structural conversion of the DIS dimer from a kissing to an 

extended duplex mediated by NCp7 (67, 68).   The fluorescence response of 2-AP to 
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local conformational changes in RNA has also been utilized to distinguish thermal 

melting transitions of the DIS dimer and to  characterize local structural conformations of 

unpaired dynamic bases including  stacked positions in the DIS loop. 
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Fig 2.1.  Comparison of the Watson-Crick adenosine-uracil base pair with the 2-

aminopurine-uracil base pair.   

 

2.3     Material and Methods 

            Synthetic RNA Oligonucleotides. The chemical synthesis of RNA is more difficult 

than DNA due to its reactive 2’OH group which introduces chemical interactions that can 

lead to RNA decomposition.  In this regard, RNA nucleotides must be protected during 

chemical synthesis.  The method to synthesize the RNA oligonucleotides is essentially 

described by Rist and Marino (38). 2-Aminopurine 2’-O-methylriboside (2-AP) 

incorporated at adenosine positions in RNA oligonucleotides are synthesized on solid 

phase via standard [(triisopropylsilyl)oxy]methyl (69)-protected phosphoramidite 

U ••• A 

U ••• 2-AP 
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chemistry to prevent partial formation of 2’-5’-linked phosphodiesters bonds on a 

MerMade6 DNA/RNA Olugonucleotide Synthesizer (Bioaoutomation, Plano, TX  (70)).  

The standard MerMade6 synthesis was followed by the procedures from Glen Research 

(Sterling, VA).  De-blocking is carried out to remove DMT resulting in a free 5’ hydroxyl 

group on the first base.  Ethylthiotetrazole (ETT) was used as activator in a 3 minute 

coupling time (3 consecutive 1 minute cycles).   Nucleoside phosphoramidites including 

2-aminopurine riboside were purchased from Glen Research (Sterling, VA).  

Deprotection of the TOM group at the end of synthesis is achieved without affecting 

RNA integrity for RNA fluorescent labeling.  The synthesis of unlabeled samples 

prepared by in vitro T7 polymerase run-off transcription and purification of both 2-AP 

fluorescent labeled and unlabeled samples are mentioned in chapters 1 and 3.   

           Sample Preparation. Oligonucleotide concentrations were derived from extinction 

coefficients at 260 nm of 231400 L / (mole·cm) for DIS24(GA)-9ap, 10ap, and 12ap and 

208900 L / (mole·cm) for DIS23(HxUC) (OligoAnalyzer: IDT, Coralville, IA).     RNA 

oligonucleotides with  hairpin secondary structures were prepared by heating at 90 ºC for 

3 min followed by snap-cooling in ethanol with dry ice to bring them to  – 70 ºC for 5 

min and then left at room temperature for 20 min before use.   
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2.3.1    Design of the DIS RNA Hairpins 

            The DIS kissing loop complex can rearrange to form a more thermodynamically 

stable duplex via base pairing between complementary nucleotides in each stem-loop.  In 

addition, RNA concentrations and specific experimental conditions can result in different 

secondary structures and dimeric conformations.  The idea of using heterodimer-forming 

DIS stem-loops was therefore introduced by our laboratory (38) to allow a finer control 

of dimer state to allow examination of the structural characteristics and biochemical 

behaviors of kissing loop and duplex individually.  To inhibit the tendency of 

interconversion between kissing loop complex and extended duplex, two unique DIS 

stem-loops have been designed through point mutations in the palindromic sequence 

[U275 to A275 and A278 to G278 to form the DIS(GA) stem-loop and U275 to C275 and 

A278 to U278 to form the complementary DIS(HxUC) stem-loop with base sequence 

swapping on the DIS stem helix (Fig 2.2)].  This design favors the formation of a hetero-

kissing complex by DIS23(HxUC) and DIS24(GA) as the predominant conformation in 

the solution.   The higher stability of these heterocomplexes through complementary 

hexamer loop sequences ensures that stable formation of homodimers such as DIS 

(HxUC-HxUC) is less favored due to the mismatches in these loop-loop interactions (67, 

71).  The distinction between the DIS monomer and dimer states can be performed by 

native polyacrylamide gel electrophoresis (PAGE).  However, standard gel 

electrophoresis is unable to easily distinguish between two DIS dimer isomers, kissing 

and extended duplex dimers, due to their similar conformations and same molecular 

weight (10, 11).  Distinctions using PAGE can be made based on the fact that both 

kissing and extended duplex dimers are stably formed in the presence of Mg2+, while the 
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kissing dimer formed in the absence of Mg2+ is not observed on gels.  The design of 2-AP 

labeled DIS stem-loop provides an alternative and more robust method to distinguish 

these two isomers. 
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Fig 2.2. (A) RNA sequence and secondary structure of the wild type DIS (SL1) stem-  

loop from subtype-A of HIV-1 (38). (B) RNA sequence and secondary structure of the 

DIS stem-loop with point mutations in the hexanucleotide sequence [U12 to A12 and 

A15 to G15 to form the DIS(GA) stem-loop and U11 to C11 and A14 to U14 to form the 

complementary DIS(HxUC) stem-loop].  The sequence in the shaded grey box 

corresponds to the modified stem sequence that disfavors the formation of an extended 

duplex.  Nucleotide positions in the DIS(GA) stem-loop replaced by the fluorescent 

probe 2-AP are circled in black.  (C) RNA sequence and secondary structure of the DIS 

stem-loop at two specific fluorescent labeled positions, DIS24(GA)-9ap and DIS24(GA)-

10ap.   Nucleotide G10 was substituted with 2-AP circled in black.   

A.  
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2.3.2   Fluorescence Experiments 

           2-AP labels were inserted at three specific positions in the DIS24(GA) stem–loop.  

DIS24(GA)-12ap was substituted with 2-AP at the A12 loop position. DIS24(GA)-9ap 

was labeled with 2-AP at the A9 DIS junction and the nucleotide 10G was replaced by 2-

AP on the DIS junction to make DIS24(GA)-10ap stem–loop.  Three hetero-kissing 

complexes with 2-AP labels on different nucleotide positions coupled with the exchanged 

stem helix of DIS23(HxUC)  were formed under different metal ion conditions.  Based 

on the preliminary results, the DIS hetero- and homo- kissing dimers were both found to 

form kinetically trapped complexes in the presence of Mg2+ (~ 5 mM) without further 

conversion to the DIS duplex form.  Based on the preliminary data, the empirically 

equivalent concentration of Na+ to Mg2+ is around 300 mM under standard buffer 

conditions where kissing complexes were created.  However, mixtures of kissing and 

duplex homodimers were found in the presence of Na+ where the conversion reaction 

occurred spontaneously.  

             Fluorescence-Monitored Melting — The fluorescence melting curves of the AP-

containing RNA oligonucleotides samples (100 nM) were performed using a Fluoromax -

2 spectrofluorometer (Jobin Yvon-Spex, a division of Instruments SA) with an excitation 

wavelength at 310 nm and emission wavelength from 330 nm to 460 nm in 1 nm 

increments.  Melting curves generated by heating the RNA from 20 to 80 ºC at the rate of 

1 ºC /min were measured for the change in 2-AP fluorescence intensity as a function of 

temperature.  All thermal melts of the 2-AP labeled RNA samples were recorded in a  

1 cm quartz cuvette.  The RNA solutions in the cuvettes were allowed to reach thermal 

equilibrium in a programmable thermal bath at 20 ºC for 15 minutes before initiation of a 



 

                                                                      29 
   
 

temperature gradient occurred.  The local melting temperature (Tm) of each transition was 

derived from the derivative curve of the melting curve using KalediaGraph fitting.    

            Fluorescence Spectra Measurements — Fluorescence spectra of the RNA 

samples were measured on a SPEX Fluoromax-3 spectrofluorometer recorded between 

330 and 460 nm.  The excitation and emission wavelengths were 310 nm and 370 nm, 

respectively with an interval of 1 nm.  Microcuvette (light-path: 3 mm × 3 mm) with a 

volume of 150 µL was used in fluorescence measurements.  Fluorescence experiments 

were performed at a constant temperature with a thermostated controlled water bath 

between 10 ºC and 37 ºC.   

 

 

2.4    Results  

 

2.4.1   Fluorescence Melting Curve Analysis of the DIS Kissing Complexes — 

Distinguishing Different Helical and Junction Melting Events 

 

            To specify the individual transition corresponding to a particular structural change 

within a complex RNA molecule, a fluorescence melting curve analysis with  

2-AP labels is an ideal method.  A 2-AP probe was inserted into the complementary loop 

on the hetero-kissing complex DIS24(GA)-12ap • DIS23(HxUC) as shown in Fig 2.2.  

Using this construct, the melting of the loop- loop helix in the DIS hetero-dimer was 

examined under varied metal ion and pH conditions.  

                



 

                                                                      30 
   
 

           Effect of different metal ions— The Na+ and Mg2+ stabilized DIS kissing dimers 

were used to examine different metal ion effects on the DIS dimer stability.  The melts of 

DIS hairpin stem-loop and DIS kissing complex dissociation were monitored with mono- 

and di-valent metal ions in standard buffer using a construct with 2-AP at position A12 of 

DIS24(GA). 

 

(1) DIS stem loop melting — Initially, the 2-AP labeled DIS(GA) stem-loop was  

measured as the change in 2-AP fluorescence intensity with increasing temperature from 

20 to 80 ºC in the presence of Na+ or Mg2+.  Next, melting profiles for a mixture of the 

DIS24(GA)-12ap and DIS23(HxUC) stem-loops without metal ions at pH 6.5 as well as 

the DIS24(GA)-12ap hairpin in the presence of Mg2+ or Na+ were acquired.  These 

melting curves were broad and did not indicate a melting of a distinct secondary structure 

element as would be expected for the transition of a base in a loop sequence as the 

hairpin unfolds.  The melting curve for DIS24(GA) hairpin stabilized by either Na+ or 

Mg2+ represents a single strand melt.  Without metal ions, stable formation of kissing 

dimer is not observed.  Instead, a linear like melting curve was observed (Fig 2.3) 

comprised of a mixture of two DIS hairpin loops corresponding to the melting transition 

of the loop as the hairpin unfolds.  
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Fig 2.3. Plot of the fluorescence melting curves of 100 nM DIS24(GA)-12ap stem-loop 

(filled black circle) monitored by change in emission at 371 nm as a function of 

temperature in standard buffer (0.5 mM Mg2+, pH 6.5); 100 nM DIS24(GA)-12ap stem-

loop in the presence of 200 mM Na+ (open circle); and 100 nM DIS24(GA)12ap• 

DIS23(HxUC) kissing complex in the absence of metal ions (filled diamond).                        

 

 
(2) Kissing complex melting curves containing loop-loop denaturing and stem-loop 

 melting — In the presence of Mg2+, the DIS kissing dimer is found to be kinetically     

 trapped.  An approximately 3 fold decrease in 2-AP fluorescence emission occurs  

 upon the formation of a kissing complex where the 2-AP substituted base is well  

 stacked in the kissing loop-loop region before initiation of a temperature gradient  

  from 20 ºC (data not shown).  As the temperature rises up to 71 ºC, the  
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     fluorescence intensity of the 2-AP probe of DIS24(GA)-12ap is found to increase  

     around 2.5 fold followed by quenching of fluorescence (Fig 2.4).  To distinguish the  

     fluorescence changes resulting from the loop-loop thermal denaturation from the  

     melting of the DIS stem-loop, the kissing dimer melting curve which is comprised of  

     these two transitions needs to be normalized by taking the ratio of the intensity at each  

     point in the melting curves from the melting curve of the individual DIS stem-loop  

     (Fig 2.5).  This sigmoidal melting curve represents the main melting transition from     

     the kissing complex to the loop-loop dissociation. The approach to acquire the melting  

     Tm is to take a first derivative of the sigmoidal melting curve which is the normalized  

     fluorescence intensities.  Two melting transitions (Tm) are observed from the  

     derivative plot at ~29 ºC and 48 ºC, respectively (Fig 2.6).   
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Fig 2.4. Fluorescence melting curve of 100 nM DIS24(GA)-12ap•DIS23(HxUC) kissing 

complex in the presence of 0.5 mM Mg2+ in standard buffer at pH 6.5.   

 

● 0.5 mM Mg2+ 

     pH 6.5 



 

                                                                      34 
   
 

20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

 

F
3
7
1
 (

K
is

s
in

g
) 

/ 
F

3
7

1
 (S

te
m

-l
o

o
p

)

Temperature (
o
C)

 

Fig 2.5. The sigmoidal curve pertaining to the loop-loop thermal denaturation process of 

100 nM DIS24(GA)-12ap • DIS23(HxUC) kissing complex with 0.5 mM Mg2+ in 

standard buffer at pH 6.5.    
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Fig 2.6. Normalized derivative of melting curve of 100 nM DIS24(GA)-12ap• 

DIS23(HxUC) kissing complex in the presence of 0.5 mM Mg2+ in standard buffer at  

pH 6.5.   

 

           The DIS Stem-loops are also observed to associate as kissing dimers in the 

presence of monovalent cations with the mismatched stem-loop DIS23(HxUC) to form a 

hetero kissing complex (67). As shown in Fig 2.7, the melting curve in the presence of 

200 mM Na+ exhibits a different behavior in stabilizing DIS kissing complex.   One 

lower temperature transition corresponding to the loop-loop dissociation at 27 ºC is 

around the same range compared to the complex with 0.5 mM Mg2+ (29 ºC).  In contrast, 

the main transition temperature referring to the melting of the stem-loop is shifted to ~ 

33.5 ºC indicating that the behaviors of DIS junctions of the hairpins are different with 

● 0.5 mM Mg2+ 

     pH 6.5 
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mono-and di-valent cations (Fig 2.8).  In addition, the initial fluorescence quenching 

from DIS24(GA)-12ap stem-loop to heterodimeric DIS24(GA)-12ap • DIS23(HxUC) 

with 0.5 mM Mg2+ has a more significant change than Na+ ( ~ 1.4 fold).   
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Fig 2.7. Fluorescence melting curve of 100 nM DIS24(GA)-12ap•DIS23(HxUC) kissing 

complex with  200 mM Na+ in standard buffer at pH 6.5.   

● 200 mM Na+ 

     pH 6.5 
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Fig 2.8.  Normalized derivative of melting curve of 100 nM DIS24(GA)-12ap• 

DIS23(HxUC) kissing complex with 200 mM Na+ in standard buffer at pH 6.5.   

 

          Effect of metal ion concentration — The fluorescence melting transition of the 

heterodimeric kissing complex is dependent on the metal ion concentration. As the 

concentration of Mg2+ increases to 5.0 mM, a shift in the melting curve of DIS24(GA)-

12ap•DIS23(HxUC) kissing dimer is found in Fig 2.9.  The denaturation of the DIS stem-

loop of kissing complex with 5.0 mM Mg2+ is shifted to 65 ºC (Fig 2.10).  This would be 

expected based on the general stabilization of cations by Mg2+ on RNA structures.   

● 200 mM Na+ 

     pH 6.5 
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Fig 2.9.  Plot of the fluorescence melting curves of 100 nM DIS24(GA)-12ap• 

DIS23(HxUC) kissing complex in the presence of 0.5 mM Mg2+ (filled circle) was 

monitored by change in emission at 371 nm as a function of temperature and the kissing 

complex with 5.0 mM Mg2+ (open circle) in standard buffer (pH 6.5). 

● 0.5 mM Mg2+ 

○
  5.0 mM Mg2+ 
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Fig 2.10.  Normalized derivative of melting curve of 100 nM DIS24(GA)-12ap• 

DIS23(HxUC) kissing complex with 0.5 mM Mg2+ (filled circle) and 5.0 mM Mg2+ (open 

circle) in standard buffer at pH 6.5.   

 

           Effect of pH — A proton-coupled dynamic conformational switch has been 

identified in the DIS kissing complex at near-physiological pH which modulates the rate 

of conversion of the dimerization initiation site and the purine junction stability (71). 

Despite this observation, protonation/deprotonation on the DIS purine junction of kissing 

complex doesn’t have a profound effect on the melting transitions of the stem-loop and 

loop-loop dissociation in the presence of either Mg2+ or Na+ (Fig 2.11, Fig 2.12).   

● 0.5 mM Mg
2+ 

○
  
5.0 mM Mg

2+
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Fig 2.11.   Fluorescence melting curve of 100 nM DIS24(GA)-12ap•DIS23(HxUC) 

kissing complex with 0.5 mM Mg2+ in standard buffer at pH 6.5 (filled circle) and pH 8.0 

(open circle).  

● pH 6.5 

○
  pH 8.0 
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Fig 2.12.   Fluorescence melting curve of 100 nM DIS24(GA)-12ap•DIS23(HxUC) 

kissing complex with 200 mM Na+ in standard buffer at pH 6.5 (filled circle) and pH 8.0 

(open circle).  

 

2.4.2   Measurement of the Site Specific 2-AP Responses to Metal Ion Interactions: 

Response of the Two Unpaired Purine Bases on the 5' Side of DIS Loop in Kissing 

Complex 

               
           2-AP is commonly used to study local base stacking and dynamics inserted within 

the loop, unpaired base, or inside base paired nucleotides.  To probe changes in stacking 

behavior in response to metal ion perturbation and pH dependence, the two purine 

junction nucleotides at position 9 and 10 were substituted with 2-AP, respectively (Fig 

2.13). It has been found that the rate of NCp7 catalyzed maturation of the DIS kissing 

● pH 6.5 

○
  pH 8.0 

   



 

                                                                      42 
   
 

dimer is directly correlated with a proton-coupled conformation dynamics localized 

around these bases (71).  Consequently, to probe the dynamics and stacking of these 

purine nucleotides becomes crucial to characterize their structural roles in stabilizing the 

kissing dimer and facilitating NCp7 conversion.    

 

B.A.

DIS Kissing dimer
2-AP at position 9

*

DIS Kissing dimer
2-AP at position 10

**= 2-AP

 

Fig 2.13.  The secondary structure of the DIS kissing complexes with 2-AP labeling at 9 

and 10 on DIS24(GA) side (72).   

 
            In these experiments, 2-AP fluorescent bases were found to become more 

unstacked in the kissing complexes which lead to the increase in fluorescence emission 

intensity compared to the conformation found in the stem-loop.   The fluorescence 

intensity of the 2-AP inserted at the position 10 of the DIS24(GA) loop increases more 

than the position 9 right on the top of the DIS stem.  A series of experiments have been 

obtained to examine the pH dependency and metal ion dependence on these two purine 

nucleotides on the DIS junction.  In Fig 2.14 and Fig 2.15, a comparison of fluorescence 

measurements between at pH 6.5 and pH 8.0 in the presence of 0.5 mM Mg2+ has been 

performed.  To investigate whether the specific protonation of the N1 base nitrogen of the 

DIS loop results in a fluorescence change that may be related to 2AP unstacking 

occurring in the formation of the kissing complex, a comparison of pH measurement in 
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the presence of 200 mM Na+ at pH 6.5 and pH 8.0 is shown in Fig 2.16 and Fig 2.17.  

Overall, the magnitude of fluorescence increase obtained with Na+
 is smaller than that 

obtained with Mg2+ in the kissing complex.   
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Fig 2.14.  Plot of the fluorescence increase in the formation of kissing complex, 100 nM 

DIS24(GA)-10ap • DIS23(HxUC) with 0.5 mM Mg2+ at pH 6.5 (25ºC) in standard 

buffer condition.  The order of addition each species in the solution is as follows: 

DIS24(GA)-10ap (black solid line), DIS23(HxUC) (blue solid line), and 0.5 mM Mg2+ 

(red solid line).   The black arrow indicates that the increase in fluorescence emission 

intensity upon the formation of the kissing complex. 

DIS Kissing dimer
2-AP at position 10

*

 

0.5 mM Mg
2+

 
pH 6.5 
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Fig 2.15.  Fluorescence increase in the formation of kissing complex, 100 nM 

DIS24(GA)-10ap • DIS23(HxUC) with 0.5 mM Mg2+ at pH 8.0. The order of addition 

each species in the solution is as follows: DIS24(GA)-10ap (black solid line), 

DIS23(HxUC) (blue solid line), and 0.5 mM Mg2+ (red solid line).   The increase in 

fluorescence emission intensity is labeled with the black arrow after formation of the 

DIS kissing complex.   
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2-AP at position 10
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   0.5 mM Mg
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Fig 2.16.  Fluorescence increase in the formation of kissing complex, 100 nM 

DIS24(GA)-10ap • DIS23(HxUC) with 200 mM Na+ at pH 6.5. DIS24(GA)-10ap (black 

solid line), DIS23(HxUC) (blue solid line), and 200 mM Na+ (red solid line).   The 

increase in fluorescence emission intensity is labeled with the black arrow after formation 

of the DIS kissing complex.   
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Fig 2.17. Fluorescence increase in the formation of kissing complex, 100 nM 

DIS24(GA)-10ap • DIS23(HxUC) with 200 mM Na+ at pH 8.0. DIS24(GA)-10ap (black 

solid line), DIS23(HxUC) (blue solid line), and 200 mM Na+ (red solid line).   The 

increase in fluorescence emission intensity is labeled with the black arrow after 

formation of the DIS kissing complex.   
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            The heterokissing complex with 2AP labeling at the A9 loop position 

DIS24(GA)-9ap basically follows a similar trend although with a smaller increase of 

fluorescence intensity when compared to the A10 loop position substituted with 2AP.  

The increase of fluorescence intensity in the presence of 200 mM Na+ with pH 6.5 (Fig 

2.18 (A)) and pH 8.0 (Fig 2.18 (B)) are presented.   
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 Fig 2.18.  The increase of fluorescence intensity after the addition of 200 mM Na+ to 

form the kissing complex, DIS24(GA)-9ap • DIS23(HxUC) at different pH. (A) pH 6.5 

and (B) pH 8.0 DIS24(GA)-9ap (black solid line), DIS23(HxUC) (blue solid line), and 

200 mM Na+ (red solid line).    

B.  

A.   

DIS Kissing dimer
2-AP at position 9

*

 
    
   200 mM Na

+
 

   pH 6.5 

 

DIS Kissing dimer
2-AP at position 9

*

 
    
   200 mM Na

+
 

   pH 8.0 
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2.5     Discussion 

            Metal ion dependence, concentration dependence of metal ions, and pH effect 

have been studied in this fluorescence melting curve analysis with the fluorescent probe 

2-AP inserted at different positions in the DIS loop.   pH effect doesn’t effect the stability 

of the kissing dimer as measured by loop-loop dissociation and stem-loop denaturation in 

the presence of mono- (Table 2.1 (d and e)) and di-valent metal ions (Table 2.1 (a and b)) 

since there is only a subtle change in each melting temperature. At higher magnesium 

concentration, the major melting transition corresponding to the DIS loop-loop 

dissociation is increased by ~17 ºC (Table 2.1 (a and c)).  As might be expected, the 

higher magnesium concentration stabilizes the kissing dimers in solutions.   Based on two 

distinct derivatives of fluorescent melting curves (Fig 2.6, Fig 2.8), Mg2+ and Na+ appear 

to play different roles in stabilization the structures of kissing complexes.  The higher 

melting temperature for loop-loop thermal denaturation implies that the extra stability of 

the RNA secondary structure in the presence of 0.5 mM Mg2+ compared to 200 mM Na+ 

(Table 2.1 (a and d)).  
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Table 2.1.  The melting temperatures of 100 nM DIS24(GA)-12ap • DIS23(HxUC) 

kissing complex corresponding to the local transitions monitored using fluorescence 

melting to summarize the effects of metal ions, metal ion concentration, and pH 

dependence.   

 

           Table 2.2 shows the different fluorescence responses to kissing dimer formation of  

2-AP at the position 9 and 10 on the 5' end of the DIS loop in the presence of 0.5 mM 

Mg2+ and 200 Na+ at pH 6.5 and 8.0.  For both positions with 2-AP insertion, the increase 

observed in the fluorescence emission spectrum suggests that both bases become more 

unstacked in the complex when compared to the conformation found in the stem-loop, 

with AP10 showing a more profound difference when compared to AP9 which is the first 

base on the 5' side of DIS loop.   In addition, it is consistently found that the fluorescence 

intensities increase more when the kissing complexes are stabilized by Mg2+ for both 

positions and different pH (Table 2.2).  Noticeably, the purine junction which is the 

 
  Kissing complex                    
                                                        Tm / ºC (minor)                         Tm / ºC (major) 
                                         
                                                                           Loop-Loop dissociation                         

  (a) 0.5 mM Mg2+ (pH 6.5)                      29                                              48 

  (b) 0.5 mM Mg2+ (pH 8.0)                      29                                              47 

  (c)   5  mM Mg2+  (pH 6.5)                     30                                              65 

  (d) 200 mM Na+   (pH 6.5)                     29                                              33.5 

  (e) 200 mM Na+   (pH 8.0)                      27                                              35 
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position AP9 has been identified to be stacked into the helix in the NMR solution 

structures.  However, the X-ray structures show that this purine is bulged-out.  Our 

fluorescence observation supports a model wherein these bases on the DIS junction are 

likely in a conformationally dynamic exchange with a stacked-in conformation being 

dominant in the solution state.   

 
 
 
 
 
  
 
 
 
 
 
 
 
Table 2.2.  Summary of fluorescence increase regarding to metal ion dependence and pH 

effect of the kissing complexes, DIS24(GA)-9ap • DIS23(HxUC) and DIS24(GA)-10ap • 

DIS23(HxUC). 

 

 

 

 

 

 

 

 

      DIS24(GA)-Xap • DIS23(HxUC)                  pH 6.5                         pH 8.0    
      FL (fold, 371 nm, 298K)     

 
       ap10 + 0.5 mM Mg2+                                                       2.9                               2.6 

       ap10 + 200 mM Na+                                      1.9                               2.0 

       ap9   + 0.5 mM Mg2+                                                       1.7                               1.9                                      

       ap9   + 200 mM Na+                                      1.4                               1.7 
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2.6      Conclusion 

          2-AP fluorescence methods have been used to investigate local structural stability 

for the DIS kissing dimer.  Fluorescence melting curves with 2-AP labeled nucleotide on 

the DIS loop show each local transition of DIS kissing dimer denaturation.  Overall, the 

smaller change in intrinsic fluorescence upon the formation of kissing dimers with 2-AP 

labeled on unpaired junction base right on the top of the stem (AP9) suggests that it is 

more stacked in the helix compared to the second position in AP10.  These results 

somewhat contradict the x-ray structures where both bases are observed to be 

extrahelical and unstacked. The fluorescence is however consistent with a poorly 

stacked, but conformational bulged in observed by solution NMR.  Mg2+ has more 

profound effects on stabilizing both two positions in the kissing dimer compared to Na+.   
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Chapter 3  Resonance Assignment of the DIS Extended Duplex  

and Kissing Dimer Structures Using High-Resolution NMR 

3.1   Abstract  

          The HIV-1 dimerization initiation site is primarily responsible for initiation of 

dimerization of the HIV-1 genomic RNA via a loop-loop kissing complex formation.  To 

study this RNA-RNA interaction, we have used model RNA hairpin constructs that form 

homo and hetero dimeric DIS complexes and compared the structures of DIS extended 

duplex and kissing dimers as a function of mono- versus divalent metal ions.  DIS 

sequence constructs capable of forming homodimeric kissing and extended duplex dimers 

as well as heterodimeric kissing complexes, have been constructed as models for the DIS 

stem loop complexes.  All DIS complexes have the same sequence at and around the DIS 

junction where the largest response to metal ion binding was expected.  As a first step in 

our studies, the resonance assignments of the extended duplex homodimer DIS21 and the 

kissing dimer DIS23(GA)•DIS23(HxUC) in the presence of Mg2+ are discussed in this 

chapter and compared with assignments for the Na+ stabilized RNA structures.  The 

sequence specific resonance assignments were carried out to allow atomic level 

resolution probing of divalent metal binding sites in the DIS dimer structures by utilizing 

NMR methods, including chemical shift perturbation and paramagnetic relaxation 

enhancement.     
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3.2   Introduction 

3.2.1     Nuclear Magnetic Resonance Spectroscopy Applied to RNA 

3.2.1.1   Sample Preparation & Isotope Labeling 

            Enzymatic in vitro transcription using with T7 RNA polymerase and chemically 

synthesized DNA as a template is used to synthesize unlabeled and uniformly isotope 

labeled 13C and 15N oligonucleotides (73, 74).  T7 RNA polymerase transcription is a 

standard method to produce a high yield of RNA oligonucleotides.   Normally, a 5 ml 

scale transcription can produce milligram amounts of RNA. The polymerase requires G- 

rich sequences on the 5' end of the templates such as GGG or GGA to increase the 

transcription yield.  The technique of isotope labeling has been utilized to resolve 

overlapped resonances in multidimensional spectra due to a narrow chemical shift range 

for the sugar proton resonances.   For instance, isotope edited multidimensional 

experiments allow selective observation of sequel in the intermolecular complexes of the 

labeled or unlabeled subdomain (75).  In this reaction, additional non-templated 

nucleotides may be added (N+1 and N+2) beyond the desired sequence (N) and small 

abortive initiation products are also observed.  This can be typically separated from the 

desired product by using preparative polyacrylamide gel electrophoresis (PAGE).  

Overall, the desired uniformly labeled RNA products can be synthesized by enzymatic 

transcription with high yield.  
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3.2.1.2  NMR Experiments for Resonance Assignment in RNA 

           Nuclear magnetic resonance (NMR) spectroscopy has been used as a premier 

analytical tool for analysis of RNA structures, dynamics, and RNA-ligand interactions.    

NMR is a physical phenomenon to measure nuclear magnetic moments.  Those nuclei 

with an odd number of protons or odd number of neutrons have nuclear spin, such as 1H 

(99.98 %), 2H (0.01 %), 13C (1.11%), 15N(0.37%), 19F (~100%), and 31P (~100%).   

Ribonucleic acids (RNA) are composed of nucleotides which consist of a nucleobases, 

ribose sugars, and phosphates.   Structure determination has been explicitly studied by a 

series of NMR experiments.  The molecular mass limit of RNA NMR analysis is up to 

100 kDa complex of packaging  (76). 

            Initially, the base pairing pattern is identified by 1D proton spectroscopy to 

examine the guanines and uracil imino proton resonances, which are from exchangeable 

protons and are located in the spectral region from 10 to 15 ppm.  The number of imino 

proton resonances corresponds to the number of base pairs in RNA complexes (Table 3.1 

and Fig 3.1).  Homonuclear 2D Nuclear Overhauser Enhancement Spectroscopy 

(NOESY) provides further information about base paring from sequential assignment of 

imino proton resonances in water.  The NOE is a through space correlation (i.e. dipole-

dipole interaction).  The NOE depends on the inverse of the distance to the sixth power 

between two spins and is therefore typically observed for protons that are within 6 Å of 

each other.  The chemical shifts of the imino proton resonances of the RNA are 

predominantly influenced by base stacking, aromatic ring current effects, and chemical 

environment of the imino protons having hydrogen bonding to solvent molecules (77).  

A:U base pairs are readily identified with strong NOE cross peak intensities between the 
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H2 proton of adenine and the uracil H3 imino proton.  In G:C base pairs, the H1 imino 

proton of guanine has a strong NOE interaction with amino protons on the base paired 

cytosine.   Additional information from NOESY cross peaks contains guanine H1 imino 

protons and cytosine H5 protons due to spin diffusion.  The cytosine H5 protons can be 

further used to identify the H5-H6 correlation on non-exchangeable spectra in helical 

RNA.  The NOE magnetization is transferred between protons during mixing time in two 

dimensional experiments. In general, mixing times are around 200 to 400 msec 

depending on molecular weight of molecules for NMR structural assignments.   If the 

NOEs are used for quantitative distance restraints for use in structural calculations, then 

mixing time can’t be too long because of spin diffusion (78).   

           NOE based-assignment which is based on a structural model is not sufficient to 

fully assign the RNA resonances.  Triple resonance, heteronuclear multi-dimensional 

experiments are essential to provide data for correlating different protons within 

individual nucleobases, correlating all sugar resonances, connecting ribose sugar and 

nucleobase resonances, and connecting sequential resonance in the phosphodiester 

backbone (79, 80).  Assignments and correlations of resonance in the spectrum to 

particular nuclei can be used to identify residue specific base and sugar spin systems.   

The nucleobase spin system includes NH2, H2, H5, H6, and H8.  The aromatic 

resonances including purine H8, pyrimidine H6, and adenosine H2 are located between 

6.5 and 8.5 ppm.  Pyrimidine H5 resonances generally appear between 5 and 6.3 ppm 

(Table 3.2).   However, unstacked pyrimidine H5 resonances which are on the terminal or 

in bulge and loop of RNA tend to be shifted downfield of this range (81).   
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Base pair Base-pair atoms Chemical-shift 

regions [ppm] 

Distance [Å] 

 

G:C 

 

 

 

G N1-H1 ••• N3 C 

G N2-H2 ••• O2 C  

G O2 ••• H4-N4 C  

G N2-H2 

C N4-H4 

12-13.5 

8-9 

8-9 

6.5-7 

6.5-7 

1.89 

2.08 

1.71 

- 

- 

U:A U N3-H3 ••• N1 A 

U O4•••H6-N6 A 

A N6-H6 

13-15 

7.5-8.5 

6.5-7 

1.93 

1.82 

- 

G:U G N1-H1•••O2(O4)U 

G O2•••H3-N3 U 

10-12 

11-12 

1.76 

1.96 

 

Table 3.1.  Chemical shift (δ) range for imino and amino resonances in Watson-Crick and 

wobble base pairs (82). 

 

 

 

Fig 3.1.  Typical 1H chemical shift ranges for exchangeable imino and amino protons and 

non-exchangeable base and ribose protons are indicated (83). 
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Table 3.2. Chemical shift (δ) range for non-exchangeable proton and 13C resonances (82). 
 

            2D DQF-COSY (Double Quantum Filtered Correlation SpectroscopY), TOCSY 

(TOtal Correlation SpectroscopY), and NOESY experiments can detect non-

exchangeable proton H5 and H6 correlation. Magnetization is transferred by scalar 

coupling (through bond coupling) in COSY experiments.  The essential phenomenon 

detected using the DQF-COSY technique is double quantum filtered single quantum 

coherence.  Being a phase sensitive experiment, DQF-COSY can adjust absorption line 

shape for both diagonal and cross peaks in order to obtain more refined spectra (84).  In 

the TOCSY experiment, all protons of a coupled spin system are correlated.  One 

important feature of TOCSY is the use of a spin lock, a continuous low-power pulse of 

constant phase applied in a period of time, to transfer magnetization between coupled 

proton pairs through bond correlation.   As the size of a biological molecule increases, the 

line widths become larger as a result of the slower correlation rate.  Partial cancellation of 

the cross peaks result in weak signals from anti-phase COSY spectrum.  Unlike COSY, 

 

Atoms 

 

δ
1H [ppm] 

 

δ
13C [ppm] 

C1'H1' 

C2'H2' 

C3'H3' 

C4'H4' 

C5'H5' 

C2H2 

C5H5 

C6H6 

C8H8 

4.4-6.5 

4-5 

3.8-5 

3.8-4.8 

2.5-5 

6.5-8.5 

5.0-6.3 

7.0-7.7 

7.0-8.0 

89-95 

70-80 

70-80 

81-86 

62-70 

150-154 

167-170 

137-140 

133-140 
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TOCSY techniques provide a net transfer of in-phase magnetization with stronger cross 

peak intensities (85).   The 2D CT-HSQC (Constant Time – Heteronuclear Single 

Quantum Coherence) experiment is used to identify adenine H2 resonances from 13C-1H 

correlation spectra.  C2 signals resonate between 145 and 155 ppm and are separated 

from other carbon resonances.  H2 resonances also show on NOESY spectra in D2O.  H2-

H8 correlation can be achieved by HCCH-TOCSY spectroscopy (86).  C6 and C8 

resonances in HSQC spectra are found between 135 and 145 ppm and they both appear as 

singlets which are easy to distinguished two types of resonances (Table 3.2).   

            The protons of the ribose sugar are H1', H2', H3', H4', H5', and H5''.  The 

anomeric H1' proton appears at 6.25-5.25 ppm, where H5 resonances also appear.  

TOCSY or DQF-COSY can eliminate the ambiguity between H5 resonances and ribose 

protons.  In a fully 13C labeled sample, the H1'-C1'-C2'-H2' spin systems of ribose sugars 

can be assigned using an HCCH-COSY experiment.  3D HCCH-COSY-TOCSY 

experiment is used to assign crowded ribose spin systems with uniformly labeled 

samples.   Base to base protons can be assigned using a combination of HNCCH and 

HCCNH-TOCSY experiments.  These experiments correlate non-exchangeable proton 

resonances with exchangeable imino and amino proton resonances.  Base to ribose 

experiments such as H(C)N-type experiments correlate H1’ to N1/N9-C8/C6-H8/H6 (87).  

Ribose to phosphate backbone H(C)P type experiments give rise to sequential assignment 

of adjacent nucleotides (88). Magnetization is transferred from 3’end correlating 

H3'iC3'i/H4'iC4'i with Pi+1 to 5' end H5'iH5''C5'i/H4'iC4'i to Pi correlation.  3D HCP 

experiments can couple with HCCH-TOCSY to have further correlation of phosphorous 

and C1'H1' resonances (89).  Combinations of isotope-filtered/ edited NOESY 
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experiments and nucleotide specific isotopically labeled RNA can be utilized to further 

identify and assign resonances (90).   

 

3.2.1.3   NMR Structure Determination of RNA 

           RNA structure determinations benefits from the availability of methods for isotope 

labeling that allow heteronuclear experiments to be applied to mitigate cross peak overlap 

found in the proton spectra.  After the sequence specific assignments of RNAs are 

obtained, NOESY experiments can be utilized to obtain proton-proton distance restraints 

for determination of the structure of RNA.  Structure calculation based on NOE-derived 

distance restraints are generally defined based on the intensity of NOESY cross peaks, 

strong, medium, and weak to very weak.  The distances are typically set from 3.0 Å for 

the most intense NOEs to 7.0 Å for the weakest NOEs in H2O experiments.        

            Five backbone torsion angles define the ribose sugar (α, β, γ, ε, and ζ).  Torsion 

angle restraints can be obtained from scalar coupling constants.  Usually, ribose sugars in 

A-form RNA helices adopt the C3' endo pucker, with small coupling constants (~1 Hz) 

(91).  The α (O3'-P-O5'-C5') and ζ (C3'-O3'-P-O5') dihedral angles can’t be determined 

using J-coupling measurements, since 16O nuclei which have no spin (1/2) isotope to 

allow the measurements.  31P chemical shifts are the main source for structure 

calculation, but the correlations between 31P chemical shifts and the phosphodiester 

backbones are not well determined due to the loose constraints on these torsions (92). 

The β (P-O5'-C5'-C4') and ε (C4'-C3'-O3'-P) torsions can be constrained by measuring 

13C-31P and 1H-31P coupling constants. 3
JH4’H5’ and 3

JH4’H5” couplings are used to define γ 

(O5'-C5'-C4'-C3') torsion (93).                    
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            Hydrogen bond restraints are usually applied as a pair of distance restraints.  With 

15N labeled RNA samples, heteronuclear 2D HSQC and HNN-COSY experiments can 

distinguish base pairing and clarify scalar spin-spin couplings, respectively.  Since uracil 

and guanine imino resonances are spaced apart by 10 ppm, it becomes easier to 

distinguish two imino resonances in 2D 15N HSQC experiments.  Trans H-bond, scalar 

spin-spin couplings, 2J(N,N) and 1J(H,N) can be measured by HNN-COSY experiments (94).  

Base paring can be confirmed and distance information obtained from these hJ(D,A) (D: 

hydrogen bond donor; A: hydrogen bond acceptor) couplings which are observed 

between the nitrogen nucleus and proton of the hydrogen bond donor and the nitrogen 

nucleus of the hydrogen acceptor (95).  Scalar couplings across a second type of 

hydrogen bonds N-H ••• O = C can also be measured (96), however, the magnitude of 

this type of scalar couplings is much smaller than N-H ••• N type hydrogen bonds, 

making observation and precise measurement more challenging (Fig 1.9).               

         

15N H 15N

2
J(N,N)

1
J(H,N) Hydrogen bond

                

              

Figure 3.2.  The typical representation of J-couplings through bonds is shown in this 

geometry.      
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           A limitation in nuclear overhauser effects, scalar coupling distance, and angular 

measurements is that these restrains are restricted to defining local geometry < 6 Å (97).  

In this respect, Residual Dipolar Coupling (RDC) measurements provide an ideal tool for 

determining global conformations such as the orientation of two helical axes of RNA 

stems.  The specific mutations causing conformational change can be probed by RDCs 

(98).  RDCs for RNA samples are typically measured using Pf1 phage to generate partial 

alignment, since principally the 1H-1H, 1H-13C, and 1H-15N couplings are averaged to zero 

in isotropic solution (99).  Projection restraints, relative to a global alignment tensor, can 

be determined from dipolar coupling data when the distance for a directly bonded pair of 

nuclei is known.   

 

3.2.2 Analysis of the DIS Extended Duplex and Kissing Dimer Structures Using 

High- Resolution NMR 

 
           The dimeric retroviral RNA genome is crucial in the HIV-1 life cycle.  

Dimerization is initiated via a loop-loop kissing interaction between the two monomers 

facilitated by the dimerization initiation site located near the 5' end of the viral RNA. The 

formation of a kissing loop-loop complex is a necessary intermediate prior to duplex 

formation (10).  Maturation is primarily dependent on the structure and dynamics of the 

DIS kissing dimer and results in the conversion of DIS through stem strand exchange to 

form extended duplex dimers.  To fully understand the structural differences between 

both the DIS duplex and kissing dimers in response to mono- and divalent metal ions, the 

homodimeric duplex dimer formed by a 21-mer DIS stem-loop, as well as a 
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heterodimeric kissing complex formed by DIS(GA) and DIS(HxUC) (Fig 3.4), have been 

designed for NMR studies.  The isomerization of DIS21 homodimers involved in 

conversion of the DIS21 kissing loop dimer to extended duplex isoforms is shown in Fig 

3.3 (B).  Kinetic analysis of DIS dimerization and maturation from our lab showed that in 

the presence of monovalent ions (Na+ and K+) or Mg2+, the structures of DIS kissing 

complexes are differentand and interact differently with NCp7.  DIS kissing dimers are 

generated upon snap-cooling and kinetically trapped in the presence of Mg2+.  The 

heterokissing dimer, DIS23(GA)•DIS23(HxUC), is formed by RNA hairpins with point 

mutations in the autocomplementary loop sequence and non-complementary stems.  The 

creation of the heterokissing dimer with altered sequences inhibits structural 

interconversion of the DIS isomers between duplex and kissing dimers.  Both homo- and 

hetero- kissing dimers containing the same sequence on the DIS junctions are designed to 

study localized conformational dynamics upon metal ion binding to obtain a detailed 

understanding of  structural rearrangement from kissing to duplex dimers.  Moreover, 

protonation of the DIS purine junctions results in the dynamic conformation of DIS 

kissing complexes that promotes maturation. The different pKa values of the DIS purine 

junction determined from the C8 carbon chemical shift as a function of metal ion indicate 

that different structures occurred in the conformation of the junction purines are metal ion 

dependent (71).  In this chapter, high-resolution NMR methods will be used to obtain 

sequence specific resonance assignment of the homo and hetero DIS dimers in the 

presence of Na+ and Mg2+ cations to characterize the functional role for the structural 

rearrangement of DIS dimers pertaining to metal binding.  
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Fig 3.3.  (A) Secondary structure of DIS21 stem-loop.  (B) The structural conversion of 

the DIS (45) homodimer from a kissing-loop complex to extended duplex conformation.  

Two identical DIS 21 RNA strands are shown in red and blue for both conformations.   
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Fig 3.4.  Schematic diagram of the formation of the heterodimer, DIS23(GA)• 

DIS23(HxUC), with the palindromic hexanucleotide DIS loop sequence of the Mal 

variant and exchanged stem sequence in DIS23(HxUC).  
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3.3   Material & Methods  

          RNA Preparation — RNA samples were prepared by in vitro transcription with T7 

RNA polymerase using chemically synthesized DNA templates containing top strand and 

bottom strand.  Unlabeled and isotope 13C and 15N labeled RNA samples can be made by 

enzymatic in vitro transcription with T7-RNA polymerase using chemically synthetic 

DNA as templates containing top strand and bottom strand (73).  The template top strand 

contains the -17 to -1 of the promoter region and the bottom strand contains both 

promoter and templates.  DNA templates were prepared by heating two top and bottom 

DNA strands together at 90 ºC for 3 minutes and then cooling slowly for 20 minutes.  

The optimal concentration of Mg2+ needs to be determined before large scale synthesis of 

RNA samples.  The concentrations of Mg2+ used in several small scale reactions were 20 

mM, 25 mM, 30 mM, and 35 mM (40 µL).  The standard transcription was performed in 

40 mM Tris buffer [pH 8.3], 1 mM spermidine, 5 mM DTT (dithiothreitol), and 0.01 % 

(v/v) Triton X-100.  Each NTP is added to a final concentration of 4 mM (3 mM 13C and 

15N labeled NTP), DNA template to a final concentration of 0.8 µM and T7 polymerase 

to a final concentration of 0.1 mg/mL, with water added to the final volume of the large 

scale reaction (5 mL) incubated overnight at 37 ºC.  All the stock solutions must be 

brought to room temperature prior to addition of T7 polymerase in order to avoid 

precipitation of the DNA template with spermidine and MgCl2.  Addition of EDTA at 

twice the concentration of Mg2+ was used to quench the reaction.   The RNA sequence 

started with one or more guanine residues at the 5' end to increase the efficiency of T7 

polymerase transcription.  Preparative denaturing polyacrylamide gel electrophoresis 

(PAGE) containing 8 M urea is used to purify the desired RNA from abortive 
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transcription products and N+1, N+2 extension products.  The RNA samples are 

recovered by excision of gel bands followed by electrophoretic elution.   Microdialysis 

(Pierce Instruments, Rockford, IL) was the final step to provide further purification and 

exchange into standard buffer (1 mM cacodylate, pH 6.5, 25 mM NaCl) through 

extensive dialysis.  

           Commercial 13C15N-rATP, -UTP, -CTP, and -GTP nucleotides (Sigma-Aldrich, St. 

Louis, MO) were used to synthesize a uniformly 13C15N- labeled DIS23(GA) stem-loop.    

The DIS homodimer duplexes were formed either without MgCl2 or stabilized by 2 mM 

MgCl2.  For the DIS homo-dimeric kissing-loop dimer, the RNA solution was diluted to 

10 µM followed by snap-cooling and MgCl2 was added at 5 mM to kinetically trap the 

kissing dimer.  Then the RNA sample was reconcentrated to 0.4 mM followed by 

microdialysis against NMR buffer with 100 µM MgCl2 at pH 6.5 for a final 250 µL 

volume for the RNA sample Shigemi susceptibility matched NMR tubes (Shigemi, 

Allison Park, PA).  The 13C15N-DIS23(GA) and DIS23(HxUC) stem-loops were snap-

cooled separately before mixing the two hairpins in a 1:1 ratio.  The DIS kissing complex 

was stabilized by using 200-250 mM NaCl and 200 µM MgCl2.  The final concentration 

of the DIS kissing complex was around 0.3 mM.   

          NMR Spectroscopy — NMR spectra were collected on Bruker DRX 500 and DRX-

600 NMR instruments at 298K.  Spectrometers are equipped with a z-gradient triple-

resonance cryoprobe or with a triple resonance 3-axis gradient probe.    Samples were in 

H2O (90% H2O/10% D2O) or D2O (99.96% D2O, Cambridge Isotope Laboratories).  1D 

proton spectra were collected by using a jump-and-return pulse sequence or 15N-selected 

jump-and-return pulse sequence.  Assignments of the imino proton resonances were 
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performed by 1H, 15N-HSQC (100), 2D 2JNN-HNN-COSY, and 2D 15N/14N edited / 

filtered NOESY spectra (71).  Most spectra were recorded in States-TPPI mode using a 

gradient water flip-back pulse for solvent suppression in D2O samples (101).  Two 

dimensional NOESY spectra of D2O samples were collected with sweep widths of 5389.9 

Hz in the t2 and 5400.3 Hz in the t1 dimensions, 4096t2 by 400t1 complex points, and 250 

ms mixing time.  The 2D 1H13C Constant-Time HSQC (CT-HSQC) experiments on the 

DIS21 homoduplex and 13C15N-DIS23(GA)•DIS23(HxUC) heterodimeric kissing 

complex were recorded with 128 scans of 2048 points in the acquisition dimension and 

64 increments in the indirect dimension. The constant time evolution period was set to 25 

ms to have the same sign of the cross peaks (102).  2D 1H13C-HCCH-COSY   spectra 

were collected with 1H and 13C spectral widths of 6068 Hz and 5999 Hz, respectively, 

and 1024 t2 by 108 t1 complex points (103).  Three dimensional HCCH-TOCSY 

experiment was collected with spectral widths of 10.1, 39.8, 8.0 ppm (f3, f2, f1) and 1024t3 

х 48t2 х 48t1.   
13C-edited / 12C-filtered 2D NOESY was recorded with 192 scans with a 

mixing time of 250 ms. Spectra were processed with nmrPipe (104) and analyzed with 

Sparky (105).  
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3.4   Results and Discussion 

3.4. 1    Structural Assignments 

            The strategy to assign specific resonances of particular interest involves the 

performance of homonuclear and heteronuclear NMR experiments.  Exchangeable 

resonance assignments can be obtained from 2D NOE experiments in H2O and provide 

information about imino-imino correlations, imino-amino correlations, and imino-H5 

correlations due to spin diffusion.  Non-exchangeable resonance assignments relying on 

13C and 15N based correlations which are through-bond can be recorded with labeled 

RNAs.  Through-space correlations from the NOESY experiments can also be used to 

obtain aromatic and ribose resonance assignments in regions of canonical A-form 

structure where NOE patterns have been well established.  The experiments 

corresponding to certain correlations and assignments are listed in Table 3.3.  
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Experiment (unlabeled 
RNA samples) 

Correlations Assignments 

2D NOESY (H2O) 1H-1H Imino N1H, N3H 

Amino H41, H42 

Pyrimidine H5 

Purine H2 

2D NOESY (D2O) 1H-1H Aromatic H2, H8 

Pyrimidine H5, H6 

Ribose H1’ 

2D DQ-COSY 1H-1H Pyrimidine H5, H6 

2D TOCSY 1H-1H Pyrimidine H5, H6 

 

Experiment (13C15N-labeled 

RNA samples) 

Correlations Assignments 

13C-CT-HSQC (ribose) 1H-13C Ribose 1H, 13C 

13C-CT-HSQC (aromatic) 1H-13C Base 1H, 13C 

2D HCCH-COSY 1H-13C-13C-1H Ribose 1H, 13C 

2D HCCH-COSY 1H-13C-13C-1H Ribose 1H, 1H and 

Pyrimidine H5, H6 

3D HCCH-TOCSY 1H-13C-13C-1H Ribose 1H, 13C, 1H 
1H15N-HSQC 1H-15N Imino 1H, 15N 

 

Table 3.3.  The assignments of homonuclear and heteronuclear correlations refer to 

corresponding experiments.  

  
          For homodimers and heterokissing complexes, all RNA samples are initially 

saturated by Na+ as reference data and Mg2+ is then added empirically to occupy the 

higher affinity divalent binding sites without causing overall line broadening.   
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DIS21 Extended Duplex Homodimer Mg
2+

 Free State Versus Mg
2+

 Bound State 

            Three states of the DIS21 homo-complexes were analyzed: (1) The DIS21 

extended duplex without Mg2+ (50 mM Na+), (2) the DIS21 extended duplex with Mg2+ at 

concentrations of 0.1 mM (13C and 15N labeled sample) and 2.0 mM as well as 50 mM 

Na+, and (3) DIS21 kissing dimer in the presence of 0.1 mM Mg2+ and 50 mM Na+.  Two 

identical  DIS 21mer stem-loop strands (Fig 3.3 (A)) can form a mature homodimeric 

duplex (Fig 3.3 (B)) either with Mg2+ or without Mg2+ in the presence of Na+ at lower 

concentration (~ 50 mM).  In 50 mM NaCl, the energetically favorable formation of the 

homoduplex occurred spontaneously and depends on the RNA concentrations.  Because 

the DIS21 duplex is a symmetric homodimers, the number of observable resonances is 

cut in half due to the symmetry relationship which simplifies assignment problem.   

           Significant chemical shift perturbations are found in the DIS complexes as a result 

of Mg2+ binding (Fig 3.5).  The imino proton signal for G6 disappeared upon Mg2+ 

addition, which suggests that the binding of Mg2+ to the DIS 21 duplex causes dynamics 

near the DIS junction (Fig 3.5 (B, C)).  That is, the apical stem G-C base pair appears to 

be disrupted, or at least destabilized, in the presence of Mg2+. The difference in chemical 

environment of the imino protons leads to more well separated resonances of U5 and U10 

with 5 mM Mg2+.  In addition, in the presence of Mg2+ the imino resonance of G9 appears 

to be shifted and becomes to be overlapped with G11 (Fig 3.5 (C)).  Overall, the changes 

of imino resonances indicate that the structure of the DIS21 duplex is significantly 

perturbed upon Mg2+ binding, and the perturbation is localized to the unpaired bases at 

the junctions.   
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A.  

G1  G2  G3 C4  U5  G6
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A7 G8
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5'

3'

 

B. 

                 
 

Fig 3.5.  (A) The sequence of DIS21 homo duplex (B) 1D imino proton spectra of the 

DIS21 mature homodimer in the presence of 50 mM NaCl and (C) 5 mM MgCl2 and  

50 mM Na+ (Mihailescu & Marino, unpublished data).  The shifted resonances are 

indicated by arrows.  

 C.  

50 mM Na+ [pH 6.5] 

5 mM Mg2+ and  
50 mM Na+ [pH 6.5] 
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Comparison of Resonance Assignments of DIS21 Extended Duplex Homodimer in 

the Presence of Na
+
 versus Mg

2+ 

           Assignments of Exchangeable Protons — The assignments of exchangeable 

protons were measured by 2D NOESY with a jump-and-return pulse sequence to obtain 

good water suppression.  The imino proton resonances of guanine and uracils appear 

between 10-15 ppm.  The 1D imino proton resonances match the diagonal proton peaks 

of the 2D NOESY spectrum.  The noncanonical base pair, GU wobble pair, has the most 

upfield chemical shift at 11.2 ppm (Fig 3.6).  The strong intensity of G3 and U19 cross 

peaks connecting to two diagonal peaks suggests that two imino protons are within 5 Å.  

G6 cross peak was not observed in the presence of Mg2+ upon binding.   Imino resonance 

of the terminal nucleotide, G1, was not detectable in 2D NOESY due to the fast exchange 

of the imino proton with the bulk water solvent (97).  
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   A.  

 

 
 
Fig 3.6.  (A) The 1D imino proton and  (B) 2D NOESY spectrum of the DIS21 

homodimer duplex in NMR buffer with 2.0 mM Mg2+ and 50 mM Na+ (298K, pH 6.5).      
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          Assignments of Non-Exchangeable Protons — The assignments of non-

exchangeable protons and carbon resonances of the DIS21 duplex were derived from 2D 

DQ-COSY, 2D TOCSY, 13C-CT (constant time) HSQC —aromatic and ribose regions, 

HCCH-COSY — ribose proton resonances, 2D NOE connectivity walks, 3D NOESY, 

and 3D HCCH-TOCSY with  13C15N-DIS21 duplex at 298K and pH 6.5 in NMR buffer.  

            First, individual base hydrogen spin systems (pyrimidine H5/H6) were identified 

by 2D DQ-COSY and 2D-TOSCY experiments.   Presence of 50 mM Na+, nine H5-H6 

correlation cross peaks were observed in the 2D DQ-COSY spectrum in the fingerprint 

region, as would be expected for a C-2 symmetric homodimer (Fig 3.7 (A)).  Upon Mg2+ 

addition, the anti-phase peaks were found to have weaker cross peak intensities due to the 

cancellation effects from anti-phase peaks in COSY experiment (data not shown).  In this 

regard, 2D TOCSY experiment was performed to obtain correlations through an in-phase 

magnetization and avoid anti-phase signal cancellation associated with COSY(85).  The 

binding of Mg2+ to the DIS21 duplex causes dynamics at the G6-C16 junction (Fig 3.7 

(B)) as evidenced by the fact that the intensity of the C16 cross peak was weaker 

compared to the Na+ (50 mM) bound state of DIS21.   
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Fig 3.7.  Fingerprint H5-H6 region of a 2D DQ-COSY spectrum in the presence of 50 

mM Na+ (A) and a 2D TOCSY spectrum in the presence of 2.0 mM Mg2+ and 50 mM 

Na+ (B) of the DIS21 duplex (298K, pH 6.5).   
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           The aromatic, ribose hydrogen, and carbon spin systems were identified by the 

13C-constant-time HSQC (CT-HSQC) experiments, which give better resolution by 

removing heteronuclear C-C coupling along the F1 indirect domain (102, 106).  

Moreover, in the experiment with 0.1 mM Mg2+ addition, it was found to produce the 

best spectra allowing occupancy of the higher affinity sites without overall broadening.  

Adenine H2 (AH2) protons of A•U pairs were obtained using these experiments to 

further confirm NOE assignments (Fig 3.8 (B)).  The aromatic H6-C6 and H8-C8 

resonances fall between 132 – 142 ppm.  In the presence of 0.1 mM Mg2+ and 50 mM 

Na+, the H6-C6 and H8-C8 correlations of G6, A7, G8, G9, and C16 bases are weak or 

absent in 1H, 13C-HSQC spectrum.  Three cross peaks were unassignable due to 

broadening effect (Fig 3.8 (A)).   
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Fig 3.8.  1H13C-HSQC spectrum showing the aromatic (A) H8-C8 and H6-C6 (B) H2-C2  

correlation of DIS21 duplex in the presence of 0.1 mM Mg2+ and 50 mM Na+ (pH 6.5, 

298K). 
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           The CH groups of individual ribose spin systems, C1'-H1', C1'-H2', C2'-H1', and 

C2'-H2', were linked using 2D HCCH-COSY experiments on the 13C-labeled DIS21 

duplex with 0.1 mM Mg2+ and 50 mM Na+ (Fig 3.9).  A7, G8, and G9 purine base 

resonances were overlapped with other resonances, which presented assignment.  The 

same pattern of the ribose H1' to C1' correlated region of the DIS21 duplex was acquired 

by both 1H13C HCCH-COSY and 1H13C CT-HSQC (data not shown).  Ribose protons 

were correlated via the 2D HCCH-COSY experiment to obtain H1'-H2' correlations (Fig 

3.10).  
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Fig 3.9.  The H1'-C1', H2'-C1', and H1'-C2' spin systems of the sugar specific 2D HCCH-

COSY spectrum of the 13C-DIS21 duplex with 0.1 mM Mg2+ and 50 mM Na+ at 298K 

and pH 6.5.   
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Fig 3.10.  The 2D HCCH-COSY experiment for the assignment of ribose H1'-H2' 

correlation of the DIS21 duplex with 0.1 mM Mg2+ and 50 mM Na+ (pH 6.5, 298K).   

 
 
 
          The nucleoside spin systems were mapped onto the sequence to obtain sequential 

assignments via through-space correlated NOESY spectroscopy (78, 107).   The 

pyrimidine H6-H5 cross peaks observed from the DQ-COSY and TOCSY experiments 

also appeared in NOESY spectrum in D2O at 250 ms mixing-time and could be 

immediately identified (Fig 3.11).    These cross peaks were more resolved in the 
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presence of 2 mM Mg2+ than in the presence of 0.1 mM Mg2+ in the NOESY spectrum 

(Fig 3.11 (B)).   The results are summarized in Fig 3.11 (A) in the presence of 50 mM 

Na+ and Fig 3.11 (B) for the presence of 2 mM Mg2+ and 50 mM Na+, with NOE walks 

obtained for the A-form RNA helical regions of the structure.  An example of NOE walk 

connecting two residues A15 and C16 involved in intra- and inter-residue NOE 

interactions was shown in Fig. 3.11 (B) with annotated blue lines.  Sequential purine H8 

or pyrimidine H6 to the H1' assignments were determined by the NOE walks along the 

backbone of the DIS21 helix from 5' to 3'.  These protons are closest in an A-form helix 

within 5 Å.    Table 3.4 and Table 3.5 summarize the assignments of the DIS21 duplex in 

the presence of 50 mM Na+ and with the addition of 2 mM Mg2+, respectively.   
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Fig 3.11.   Sequential assignments for the DIS21 duplex in the presence of 50 mM Na+ 

(A) as well as in the presence of 2 mM Mg2+ and 50 mM Na+ (B) were obtained using the 

NOESY spectrum in D2O with a mixing time of 250 ms.  Assignments based on NOE 

walks are annotated for two residues, A15 and C16, with inter-and intra connectivities 

shown in blue lines.   
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Table 3.4.   Assignments (1H and 13C, ppm) for the DIS21 duplex in the presence of 50 

mM Na+.  “-“ represents cross peaks that are not observed and “u.a.” is noted as 

unassigned peaks.  

 
 
 
 

Base H1'    H2'    H2     H5    H6   H8     C1'      C2’      C2        C6       C8      

5.7     4.9                               8.1       -          -                                138.0               

5.9     4.6                               7.6     90.0    73.4                            134.5 

5.7     4.6                               7.2     91.1     u.a.                            133.9 

5.5     4.3            5.3     7.6              91.8    73.3                 137.5      

5.5     4.5            5.3     7.7              91.7     u.a.                 138.7      

5.5     4.4              -       7.6              90.5     72.9                                - 

5.8      -      7.9                       7.9       -           -        153.3               

5.7     4.7                               7.8     91.2    72.9                               u.a. 

5.7     4.4                               7.8     89.8    73.6                               u.a. 

5.5     4.6             5.0     7.7             91.2     u.a.                 139.1       

5.7     4.4                               7.3     90.4    73.0                               u.a. 

5.3     4.4             5.1    7.6              91.3    72.9                 137.8        

5.8     4.5    7.2                      7.9     90.5    73.2     150.3               

5.3     4.4             5.1    7.3              91.0    73.1                 137.4        

5.9     4.4    7.2                      7.8     90.5    73.5     150.9               

5.2     4.3             5.2    7.3              91.4    72.8                     -             

5.8     4.6    7.0                      7.9     90.3    73.2      149.7                

5.5     4.4                               7.1     90.5    72.9                            132.8 

5.4     4.0             5.3    7.6              91.5    73.4                  139.1          

5.6     4.2             5.6    7.9              91.6    73.2                  139.7          

5.7     3.9             5.5    7.6              90.5    76.7                  138.1         
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Table 3.5.  Assignments (1H and 13C, ppm) for the DIS21 duplex in the presence of 2 mM 

Mg2+ and 50 mM Na+.  “-“ represents cross peaks that are not observed and “u.a.” is 

noted as unassigned peaks.  

 

 

5.7     4.8                                8.1        -         -                               138.0               

5.9     4.6                                7.6    91.8     75.1                           134.5 

5.7     4.5                                7.2    92.8                                       133.9 

5.5     4.2             5.3    7.6              93.3                            137.5       

5.4     4.3             5.3    7.8              93.1                            138.7       

 -         -                                    -         -          -                                     - 

5.7       -      8.1                      7.9        -          -        153.3                

5.7       -        -                        7.8     92.9       -                                     - 

5.7       -                                 7.8     91.9     u.a.                                 - 

5.5     4.5             4.9     7.7             92.6     u.a.                 139.1      

5.7     4.3                                u.a.   91.7    74.6                                 - 

5.3     4.3             5.1     7.6             92.7    74.4                 137.8       

5.8     4.4    7.2                       7.9    92.0    74.8     150.3               

5.2     4.3             5.1     7.4             92.6    74.6                 137.4      

5.8       -      7.8                                92.5     u.a.     150.9            

5.1     4.1             5.2     7.4             92.9    74.4                    -          

5.8       -      7.0                       7.9    92.0    74.8     149.7               

5.5     4.4                                7.1    91.8    74.5                           132.8 

5.4     4.0             5.3    7.6              92.9    74.9                 139.1        

5.6     4.2             5.6    7.9              93.2    74.8                 139.7        

5.7     3.9             5.5    7.6              92.2    76.7                 138.1        

Base    H1’    H2'    H2    H5    H6    H8      C1'     C2'       C2        C6      C8      
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DIS21 Kissing Homodimer 

           The DIS homo-dimeric kissing-loop dimer was diluted to 10 µM then snap-cooled, 

and MgCl2 to 5 mM was added to kinetically trap the kissing dimer.  The RNA sample 

was then reconcentrated to 0.4 mM followed by microdialysis against NMR buffer with 

100 µM MgCl2 and 50 mM Na+ at pH 6.5.  As judge from the imino and other 1H 2D 

spectra, particularly U5, U10, and G18 resonances, a mixture of homodimeric kissing and 

duplex dimers was obtained using this procedure (Fig 3.12 (B, D)).   The heterokissing 

dimers with altered stem sequences were therefore used to model the kissing heterodimer.   
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Fig 3.12.  The secondary structure of DIS21 duplex (A) and kissing dimer (B).  1D imino 

proton resonances of DIS21 duplex (C) and mixture of duplex and kissing dimer (D) in 

the presence of 0.1 mM Mg2+ and 50 mM Na+ at pH 6.5 and 298K.     
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13
C 

15
N-DIS23(GA) Hairpin 

           Assignments of Exchangeable Protons — Uracil and guanine imino resonances 

involved in hydrogen bonds in base pairs were obtained from 1H, 15N-HSQC spectrum of 

the uniformly labeled DIS23(GA) (Fig 3.13).   The U N3-H3 resonances appear at upper 

field (~13.4-13.8 ppm).   

 

 

 

Fig 3.13.  1H, 15N-HSQC of the uniformly labeled 13C15N-DIS23(GA) hairpin loop 

recorded in NMR buffer in the presence of 200 mM Na+ at 298K.  A and G nucleotides 

which are point mutations in the loop are highlighted in blue.  Purine bases on the DIS 

junction are highlighted in red.   
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           The H5-H6 cross peaks of DIS23(GA) hairpin loop were identified by a COSY 

experiment shown in Fig 3.14.  As expected, seven H6-H5 cross peaks in the stem of the 

hairpin are found.  Two loop bases, C13 and C15, are downfield shifted.   

 

 

 

Fig 3.14.  Chemical shifts of pyrimidine H5-H6 proton cross peaks of the DIS23(GA) 

hairpin loop.  The lower case “a” refers to DIS23(GA) side.  

 

 

 

 

 

1H
 [p

p
m

] 

1H [ppm] 

  C C A C G A C23 22 21 20 19 18 17

  G G U G C U G1  2 3 4  5  6  7

3'

5' G9

A

G

G
C

C

A

G

A8

16 



 

                                                                      90 
   
 

DIS23(HxUC) Hairpin 

          Assignments of Exchangeable Protons — In order to avoid a mixture of monomer 

and homodimer in the DIS23(HxUC) sample, a diluted RNA sample was made followed 

by snap-cooling and then concentration, to give predominantly the hairpin-loop 

conformation in low salt NMR buffer. (A minor fraction of homodimers is still 

observed).  2D-NOE spectroscopy was employed using a jump-and-return pulse sequence 

to obtain NOE interactions between amino-imino region and pyrimidine H5-imino region 

of DIS23(HxUC) hairpin as shown in Fig 3.15.  Spin diffusion through the amino proton 

resonances can provide the connection to individual cytosine H5-H6 resonances on the 

DIS stem.   
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Fig 3.15.  Amino-imino proton region of the DIS23(HxUC) hairpin loop in a 2D NOESY 

spectrum in NMR buffer at 298K and pH 6.5.  The lower case “u refers to DIS23(HxUC) 

side. U and C nucleotides which are point mutations in the loop are highlighted in blue.  

Purine bases on the DIS junction are highlighted in red.   
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           Assignments of Non-Exchangeable Protons — The positions of pyrimidine H5-H6 

cross peaks were confirmed by the TOCSY experiment to provide a starting point for 

NOE sequential assignment.  Three cytidine cross peaks on the loop are downfield shifted 

in the DIS23(HxUC) hairpin (Fig 3.16). 

 

 

 

Fig. 3.16.  2D TOCSY experiment was used to reveal H5-H6 connectivities for DIS23 

(HxUC) in NMR buffer (25 mM Na+, pH 6.5, and 298K).   
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13
C

15
N-DIS23(GA)•DIS23(HxUC) Heterokissing Complex 

NMR studies for identification of the Mg2+ binding sites on the DIS stem-loop kissing 

complex were carried out by forming a kissing dimer with uniformly 13C15N-labeled 

DIS23(GA) and unlabeled DIS23(HxUC).  The assignments of the 1D imino proton 

resonances of 13C15N-DIS23 (GA) and DIS23(HxUC) are shown in Fig 3.17 (B) and (C), 

respectively.   The complete assignment of the imino proton spectra obtained at pH 7.5 

shows that the imino resonances of G10, G12, and G14 (in red, 13C15N-DIS23(GA) side) 

and G10, G12, and U14 (in blue, DIS23(HxUC) side) are associated with new base pairs 

in the loop-loop of the DIS kissing dimer.  The heterokissing complex is stabilized with 

high concentration of Na+ (200 mM) to saturate the non-specific metal binding sites.  The 

chemical shifts of the rest of resonances from the stems also varied upon the formation of 

the kissing complex (Fig 3.17 (D)).    The resonances of 13C15N-labeled DIS23(GA) of 

the DIS kissing complex can be easily observed by 2D heteronuclear experiments (Fig 

3.17 (E)). 

 

 

 

 

 

 



 

                                                                                                             
   
 

 

A. 

B. 

C. 

D. 

E. 

Fig. 3.17.  Sequence and secondary structure of the DIS23(GA)•DIS23(HxUC) heterodimeric kissing complex formed by 

uniformly 13C15N-labeled DIS23(GA) in red and unlabeled DIS23(HxUC) with mismatched stem sequence in blue.  

Assigned imino proton resonances (B) DIS23(GA); (C) DIS23(HxUC); (D) [DIS23(GA) in red and DIS23(HxUC) in blue] 

of the DIS kissing dimer ; and (E) the 1st FID of a 2D 1H, 15N-HSQC experiment on 13C15N-labeled DIS23(GA) site of the 

DIS kissing complex in NMR buffer at pH 7.5 and 200 mM Na+ (298K).   

94 
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13
C 

15
N-DIS23(GA)•DIS23(HxUC) Kissing Complex 

          Assignments of Exchangeable Protons —— The imino nitrogen atoms 

corresponding to the complete 13C15N-labeled DIS23(GA) resonances in the 13C15N-

DIS23(GA)•DIS23(HxUC) kissing complex was obtained by the 1H, 15N-HSQC 

experiment shown in Fig 3.18 (A).  The comparison of two 1H, 15N-HSQC spectra 

between 13C15N-DIS23(GA)•DIS23(HxUC) kissing complex and 13C15N-DIS23(GA) 

hairpin is shown in Fig 3.18 (B) in the presence of 200 mM Na+.  The amino-imino 

resonances of G10, G12, and G14 were associated with formation of base pairs in the 

loop-loop of the DIS kissing dimer on the DIS23(GA) hairpin.  In addition, the amino-

imino resonances of U3, U6, and G7 were found to be downfield shifted in the formation 

of the heterokissing complex.  The addition of 200 µM Mg2+ allows Mg2+ to substitute 

for Na+ at the higher affinity divalent binding sites without overall line broadening (Fig 

3.18 (C)).  The unambiguous assignments of all the imino proton resonances and 

associated adenine resonances (H2, data not shown) were obtained from the unlabeled 

kissing complex in the presence of 200 mM Na+ (Fig 3.19).   

 
 
 
 
 
 
 
 
 
 
 
  



 

                                                                      96 
 

 

 

 

 

 

1
5N

 [p
p

m
] 

1
5N

 [p
p

m
] 

1
H [ppm] 

B. 

A. 



 

                                                                      97 
 

 

 

 

Fig 3.18.  (A) 1H,15N-HSQC of the uniformly labeled 13C15N-DIS23(GA)• 

DIS23(HxUC) kissing complex was recorded in NMR buffer in the presence of  

200 mM Na+ (298K, pH 7.5).  The lower case “a” denotes DIS23(GA) in the kissing 

complex. (B) Overlay of two 1H, 15N-HSQC spectra of the 13C15N-DIS23(GA)• 

DIS23(HxUC) kissing complex (labeled in blue) and 13C15N-DIS23(GA) DIS hairpin 

(labeled in red). (C) Overlay of two 1H, 15N-HSQC spectra of 13C15N-DIS23(GA)• 

DIS23(HxUC) kissing complex with 200 mM Na+ (labeled in blue) and 13C15N-

DIS23(GA)•DIS23(HxUC) kissing complex with 200 µM Mg2+ and 200 mM Na+ 

(labeled in red).   
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Fig 3.19.  The imino-imino proton cross peak region and of the DIS23(GA)• 

DIS23(HxUC) kissing complex in a 2D NOESY spectrum in NMR buffer in the presence 

of 200 mM Na+ (298K and pH 7.5).  The lower case “a” denotes DIS23(GA) and “u” 

denotes DIS23(HxUC)  in the kissing complex. 
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          Assignments of Non-Exchangeable Protons — The assignments of pyrimidine H5-

H6 cross peaks are shown in the TOCSY experiment (Fig 3.20).  H2, H6, and H8 

resonances obtained from 1H,13C CT-HSQC aromatic region were used to assign the 

cross peaks from 2D NOESY experiment (Fig 3.21).  The cross peaks corresponding to 

NMR active isotope (13C) labeled DIS23(GA) were obtained by 13C edited 2D NOESY 

experiment (Fig 3.22 (A)), whereas, the unlabeled DIS23(HxUC) hairpin in the kissing 

complex was measured by 12C filtered 2D NOESY experiment (Fig 3.22 (B)).  A 

combination of isotope editing and filtering spectra presents the cross peaks conforming 

to the DIS23(GA)•DIS23(HxUC) kissing complex (Fig 3.23).  In the case of severe 

signal overlap, it can allow the resolution of signals from the labeled DIS23(GA) from 

the  unlabeled DIS23(HxUC).   The sequential assignments for labeled DIS23(GA) were 

simplified by extracting correlations from the selective observations in this filter 

experiment applied to the partially labeled kissing complex (Fig 3.23).  A summary of 

resonance assignments of the labeled DIS23(GA) kissing loop in the heterokissing 

complex was presented in Table 3.6.  
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Fig 3.20.  H5-H6 cross peaks of unlabeled DIS23(GA)•DIS23 (HxUC) kissing complex 

in the TOCSY spectrum in the presence of 200 mM Na+ and 200 µM Mg2+ at 298K and 

pH 7.5.   
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Fig 3.21.  A 2D CT-HSQC experiment shows (A) H8-C8 and H6-C6  (B) H2-C2 

correlations of 13C15N-DIS23(GA)•DIS23(HxUC) kissing complex in the presence of 200 

mM Na+ and 200 µM Mg2+ (pH 7.5, 298K). 
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Fig 3.22.  (A) 13C edited 2D NOESY spectrum of labeled DIS23(GA); (B) 12C filtered 2D 

NOESY spectrum of unlabeled DIS23(HxUC) in the 1 3C1 5N-DIS23(GA)• 

DIS23(HxUC) kissing complex.   
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Fig 3.23.  The sequential assignments of DIS23(GA) side in the DIS23(GA)• 

DIS23(HxUC) kissing complex.  The assignments were retrieved from a 13C edited 2D 

NOESY experiment in the presence of 200 mM Na+ and 200 µM Mg2+ (pH 7.5, 298K).  

by sequential NOE contacts.  
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U3a                   5.5                  5.1       7.8                             138.5       

G4a                   5.7                                         7.6                            133.2 

C5a                   5.3                  5.2       7.6                             138.4       

U6a                   5.4                  5.0       7.7                             138.5       

G7a                   5.7                                         7.5                            134.2 

A8a                   5.8       -                                           152.6                  

G9a                   5.7                                         7.8                            137.7 

G10a                 5.8                                         7.7                            135.4 

A11a                 5.9      7.2                              7.7      150.2                  

G12a                 5.6                                         7.1                            132.8 

C13a                 5.5                  5.0      7.4                              138.1        

G14a                 5.8                                         8.1                            136.6 

C15a                  -                     5.1      7.2                             137.2        

A16a                  -         7.0                                         150.9                   

C17a                 4.9                  5.3       7.4                            137.3       

A18a                 5.8      7.0                              8.0      149.7                  

G19a                 5.6                                         7.3                            132.9 

C20a                 5.4                  5.1       7.6                            138.0       

A21a                 5.9       7.4                               8.0     150.7                

C22a                 5.4                  5.1        7.6                           138.1       

 

Table 3.6.  The assignments of the DIS23(GA) side in the 13C15N-DIS23(GA)• 

DIS23(HxUC) kissing complex for each base in the presence of 200 mM Na+ and  

200 µM Mg2+ (pH 7.5, 298K).  “-“ represents cross peaks that are not observed. 
 
 
 
 
 

Base H1'     H2      H5        H6       H8       C2       C6       C8      
Atom 
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3.5   Conclusion 

          The resonances of two model RNA hairpin system for the extended duplex as well 

as kissing DIS complex [DIS23(GA)•DIS23(HxUC)] were assigned by NMR methods in 

the presence of Na+ and Mg2+.  Homonuclear and heteronuclear experiments were 

utilized to measure aromatic and ribose proton resonances.  Specifically, isotope labeled 

DIS23(GA) was used the kissing complex in order to solve the spectral overlap problem.  

In the case of the mature DIS21 duplex dimer and DIS23(GA)•DIS23(HxUC) 

heterokissing complex, the apical stem G-C base pairs appear to be disrupted in the 

presence of Mg2+.  Upon Mg2+ binding, distinct structural changes were found in homo 

and hetero dimers.  Based on these assignments, we can use complementary NMR 

methods such as chemical shift perturbations and paramagnetic relaxation enhancement 

to probe specific Mg2+ binding sites on the DIS complexes.  
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Chapter 4:   Characterization of Mg
2+

 Binding and Associated 

Conformational Changes in the DIS Extended Duplex and 

Kissing Dimer Structures  

4.1     Abstract 

           The assignments of the extended duplex (DIS21) and the kissing dimer 

(DIS23(GA)•DIS23(HxUC)) have been described in Ch 3.  In this chapter, NMR 

methods are described which probe for divalent metal binding sites in the DIS dimer 

structures.  We describe Mg2+ induced chemical shift perturbations (CSP) that were used 

to detect structural changes in the RNA in response to the metal binding.  We also present 

paramagnetic relaxation enhancement (PRE) technique observed using Mn2+ substitution 

to localize Mg2+ binding sites in the DIS complexes.  Our results suggest that the 

unpaired purine bases in the DIS loop junction in the DIS extended duplex form a 

primary Mg2+ metal binding site through a bulged in conformation.  The heterokissing 

complex, purine bases in the DIS junction are found to have a similar geometry, stacking 

between the stem loop and kissing loop-loop helix and form an analogue pocket for Mg2+ 

ion binding.  
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4.2   Introduction 

4.2.1  Detecting Metal Binding to RNA 

          Several techniques have been used to identify metal-binding sites including X-ray 

crystallography and NMR methods.   Metal ion-induced cleavage experiments can also 

be used to probe higher affinity ion binding sites (108).   NMR spectroscopy provides 

dynamic information about metal ion-RNA interactions in solution.   Metal-ion binding 

can be characterized by the information of chemical shift changes, paramagnetic line 

broadening, and intermolecular NOE contacts from NMR spectroscopic approaches.  

Mn2+ is known to compete with Mg2+ due to its greater electron density.    Mn2+ is more 

readily identified in the electron density maps which provide additional information for 

assigning Mg2+ chelated peaks (109).   

 

4.2.1.1  Chemical Shift Perturbation 

          The chemical shifts of RNA resonances can change upon metal binding.   Upon 

introduction of only one species, Mg2+, to the system, chemical shift perturbations (CSP) 

can be used to directly monitor the response of the RNA to this ion.  Chemical shifts can 

provide information not only on specific metal ion binding but may also detect 

conformational changes induced upon addition of Mg2+ to RNA.    The resonances of the 

proton, nitrogen, carbon, and phosphorus nuclei can all report chemical shift changes 

induced by metal ion association with RNA.  For example, one of the Mg2+ binding sites 

with higher affinity in hammerhead ribozyme has been identified by 31P NMR (110).  In 

order to detect  direct interactions among metal ions and nucleobases, manganese induced 
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paramagnetic relaxation enhancement (PRE) and NOE based detection using cobalt 

hexamine are often complementary methods to chemical shift mapping to probe specific 

Mg2+ binding sites in bound states.   

 

4.2.1.2  Paramagnetic Relaxation Enhancement (Manganese Based PRE-NMR) 

          A common NMR approach is to use the paramagnetic metal Mn2+ as an analogue 

to compete with Mg2+ at specific binding sites.  Paramagnetic Mn2+ ion has five unpaired 

d electrons (S = 5/2) with high spin ligands (H2O) in a weak-field octahedral complex.  

Mn2+ can displace Mg2+, resulting in paramagnetic line broadening for NMR signals in 

close proximity to divalent metal binding sites with a distance dependence of r-6 (111).  

Three types of the relaxation of the nuclear spin by the paramagnetic ion include Fermi 

contact, dipolar coupling, and Curie relaxation (112).  The Curie spin relaxation also 

called magnetic susceptibility relaxation is usually more important for T2 than for T1 and 

thus leads to line broadening.  Due to the high number of unpaired electrons at the 

paramagnetic metal center, such as Mn2+ (S=5/2), Curie relaxation dominates.  The 

observed relaxation rates which depend on the dipolar coupling between the unpaired 

electrons are different in the presence and absence of paramagnetic ions.  The 

paramagnetic ion will cause an enhancement in 13C or 15N T1 and T2 relaxation rates, 

which is the reciprocal of the 6th power of the metal ion and heteronuclei distance 

dependent in the presence of paramagnetic metal ions (69).  Therefore, the distance 

between a specific metal binding site and surrounding heteronuclei can be extracted from 

the information of this relaxation time based on detectable paramagnetic effects.  

Notably, paramagnetic relaxation enhancements are quite similar to NOE restraints with 
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respect to this distance information.  Transverse nuclear relaxation rate (T2) also has been 

used for structural calculation in spin-labeled RNA to determine the structure of protein-

RNA complexes (113).  

           In addition to the paramagnetic line broadening, the observed chemical shift 

affected by the presence of unpaired electrons also can provide an important source of 

information regarding to spin density distribution from metal center and the dynamic 

behavior of the binding site (114).  Mn2+ titrations can be performed to discover the 

potential binding sites by chemical shift analysis and the chemical shift changes for imino 

resonances as a function of Mn2+ concentration can be fit to determine a binding isotherm 

(115). 

 

4.2.1.3  Cobalt Hexammine 

          Cobalt hexammine is a second useful magnesium analog that can be used to locate 

specific metal binding sites in RNA.  It provides the opportunity for direct measurement 

of intermolecular NOE contacts between the hexammine ligand protons and RNA 

because the amino groups of cobalt hexamimne do not exchange with the bulk solvent.   

The coordinate geometry is octahedral via outer-sphere coordination.   The modeling of 

the exact metal ion binding position from NOE contacts between ammine protons and 

RNA are more precise than X-ray structures in the major groove of the RNA (50).  Due 

to the strongly positive charge on Co (III), the same octahedral geometry as 

[Mg(H2O)6]
2+, and the inert ammonium ligands which resemble water ligands in 

magnesium hexahydrate, [Co(NH3)6]
3+ is considered to be an ideal mimic for Mg2+ to 

detect the metal binding sites directly in solution (116).   
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           In solution studies of the P5b helix and stem loop, Kieft et al. (1997) determined 

through observation of NOE cross peaks between the ammine protons and RNA protons 

in the major groove that  cobalt  (III) hexammine is located in a specific binding pocket 

(117).    The NMR solution technique is an ideal tool to detect the dynamic behavior of 

metal-RNA complexes compared to crystal structures.   The single cobalt (III) 

hexammine proton resonance is at 3.65 pm, and all RNA proton resonances are sharp in 

the presence of Co3+.  These observations suggest that there is a fast equilibrium between 

bound and unbound states.  In addition to intermolecular NOE contacts, Co3+ induced 

chemical shift changes provide an additional information to characterize metal ion 

binding sites.  For instance, the apparent chemical shifts are located around the G-U base  

pair in the P5b stem loop implies that Co3+ ion may bind to this region (117).  

 

4.2.2  Identification and Comparison of Sites Found for High-Affinity Mg
2+

 Binding 

on the DIS Extended Duplex and Kissing Dimer Structures 

 
           Mg2+ ions bind to specific sites on RNA and neutralize the phosphate charges of 

RNA backbone to help form more compact RNA structures.  Previous kinetic analysis of 

DIS dimerization and maturation showed that DIS kissing complexes are structurally 

different in the presence of monovalent and divalent cations.  The first objective in this 

study is to analyze the metal dependence of the DIS kissing loop and mature duplex 

structures.  The other objective is to identify Mg2+ binding sites in the two DIS dimer 

conformations using the DIS21 extended duplex and DIS23(GA)•DIS23(HxUC) 

heterokissing complex.    Our focus is on the local conformational dynamics upon metal 

binding and the sequence dependence at the DIS unpaired junction bases (A, G, and A).  
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Fig 4.1 illustrates a scheme for the identification of Mg2+ binding sites of the DIS 

heterokissing complex using chemical shift perturbations and paramagnetic relaxation 

enhancement methods. The hetero-kissing complex is initially stabilized with Na+ to 

saturate nonspecific divalent metal binding sites.  Mg2+ is then added to compete with 

Na+ at the sites with higher affinity for divalent ions.  The unique Mg2+ induced chemical 

shift perturbations identify sites involved in conformational change and metal binding.  

Mn2+ is finally added in the complex to substitute for Mg2+ at the specific binding sites 

with the same affinity.  The ratio of metal ion concentration is Na+:Mg2+:Mn2+ = 

20000:20:1.  The paramagnetic relaxation effect results in selective line broadening 

allowing specific divalent metal binding sites to be identified.  A rapid exchange between 

Mn2+ and Mg2+ exists exchange rate ~ 10,000 s-1 and results in a mixture of Mn2+ and 

Mg2+ bound states of the DIS heterokissing complexes.   
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Fig 4.1.  A model of Na+-Mg2+-Mn2+-Mg2+ competition at the specific metal ion binding 

sites on the DIS stem-loop kissing complex, DIS23(GA)•DIS23(HxUC). 
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             In the previously obtained X-ray crystal structures of homodimeric DIS extended 

duplex and kissing dimers, unpaired purine bases in the DIS loop junction of the DIS 

duplex and kissing dimers adopt a flipped out conformation soaked in Mg2+.  However, 

the NMR solution structures in the absence of Mg2+ have shown as a bulged-in 

conformation for the same nucleotides.  By using chemical shift perturbation and 

paramagnetic relaxation enhancement methods in our NMR studies, the Mg2+ ions are 

found to stabilize the DIS loop junction via specific binding.  It has already been found 

that the rate of structural NCp7 (nucleocapsid protein) maturation is 10-20 fold faster for 

the divalent metal ion stabilized DIS kissing dimer than the monovalent metal ion 

stabilized kissing structure.   Mg2+ plays a unique functional role in structuing the RNA 

for interaction with NCp7 to promote structural isomerization.  

 

4.3     Material and Methods 

           RNA Preparation — DIS 21 homodimer and both labeled and unlabeled 

DIS23(GA)•DIS23(HxUC) RNAs were transcribed from chemically synthesized DNA 

templates in vitro by using T7 RNA polymerase as described in Chapter 3.3.  The RNA 

hairpin loop conformations are made by the heat and snap-cool method.  For the hetero 

kissing complex, the same annealing procedures were followed before mixing unlabeled 

and labeled RNAs in a 1:1 ratio.    

            NMR Spectroscopy — NMR spectra were recorded on Bruker DRX 500 and 

DRX-600 NMR instruments.  Spectra were processed using NMRPipe (104) and were 

assigned by Sparky (105).  The experiments were described in Chapter 3.3.  
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4.4     Results and Discussion 

4.4.1    NMR Methods to Identify and Compare Sites Found for High-Affinity Mg
2+

 

Binding Sites on the DIS Extended Duplex and Kissing Dimer Structures 

4.4.1.1   Chemical Shift Perturbation (CSP) 

            Two complementary techniques to characterize divalent cation-binding sites in 

the DIS complexes have been used in this study: (1) chemical shift perturbation (CSP) 

and (2) paramagnetic relaxation enhancement (PRE) using Mn2+ ion as a probe (Fig 4.1).  

Secondary structures and a schematic diagram of the formation of both homo and 

heterokissing complex are shown in Fig 3.3 and Fig 3.4.  Previous data collected on both 

the homodimeric mature duplex formed by the 21-mer DIS stem-loop and the 

heterodimeric kissing complex formed by DIS23(GA) and DIS23(HxUC) in the presence 

of Mg2+ display significant changes in chemical shift upon Mg2+ binding.  Mg2+ not only 

coordinates the unpaired purine binding pockets but also stabilizes the loop-loop helix to 

make DIS complexes more stable.  In the DIS21 homoduplex dimer, the 1D imino 

protons in the presence of Mg2+ showed that the apical stem G-C base pair appeared to be 

disrupted (Fig 3.5).  In addition, the imino protons G9, G11, U5, and U10 experienced 

different coordination environments with Mg2+ addition, resulting in significantly 

different imino resonances.  To limit the nonspecific aggregation, the optimized 

concentration of magnesium ion was added within the range of 0.1 – 5 mM in order to 

acquire good quality on NMR data.  The non-hydrogen bonded imino protons of the 

junction guanine bases are not observed in 1D imino spectrum.  The data of chemical 

shift perturbations of non-exchangeable protons from DIS21 duplex were collected 
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through 2D-TOCSY (H6/H5 correlations), 2D NOESY (H8, H6, H5, H2, and H1' 

resonances), 2D HCCH-COSY/HCCH-COSY (C1', C2', H1', and H2' resonances), and 

13C CT-HSQC (ribose region) experiments to compare bound and unbound Mg2+ 

complexes.    Mg2+ induced chemical shift perturbations suggest not only metal ion 

binding but also structural changes.  In 2D NOESY spectrum, the effect of Mg2+ induced 

chemical shifts on overall conformation of the RNA appears to be selective.  The titrated 

sample of the DIS21 duplex with Mg2+ results in shifting certain cross peaks while other 

cross peaks remains unchanged.  One example of significant chemical shift of A15H8-

H1' cross peak induced by Mg2+ was shown in Fig 4.2, while C12H6-H5 resonance didn’t 

show significant shift upon addition of 2 mM Mg2+.    
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Fig 4.2.  Mg2+ induced chemical shift perturbations associated with DIS21 duplex.  

Overlay of the non-exchangeable proton region of 2D NOESY spectra.  Free Mg2+ bound 

duplex and 2 mM Mg2+ bound DIS21 duplex are labeled in black and red, respectively.          
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            The significant chemical shift perturbations of non-exchangeable protons induced 

by Mg2+ with respect to each nucleobases are summarized in Fig 4.3 and Table 4.1.  The 

average difference in chemical shifts of proton resonances resulted from Mg2+ 

perturbation is diminished due to the negative and positive values of chemical shift 

cancellation.  A root mean square calculation is therefore used to obtain the magnitude of 

chemical-shift difference.  The differences in chemical shifts of ribose and base proton 

resonances were analyzed separately for each nucleobase.  H1' and H2' are taken into 

account for chemical-shift difference of ribose protons.  H2, H5, H6, and H8 protons are 

utilized to compare the difference in chemical shifts of nucleobase protons.  A significant 

chemical shift perturbation upon addition of 2 mM Mg2+ to the DIS 21 duplex showed 

that G6 cross peaks were missing beyond detection. This result was consistent with the 

absence of imino resonance of G6-C16 base pair in the presence of Mg2+.   G-U wobble 

base pair is well known as an excellent binding site for a Mg2+ in the major groove (118).  

Both root mean square of chemical shifts of ribose and base proton resonances were 

observed to shift significantly for G3-U19 wobble base pair. It suggests that GU 

mismatch is potential for creating metal ion binding site in the DIS21 homodimer helix 

(119).  Significant chemical shift perturbation for base protons were also observed for the 

junction base A7 and stem-loop junction base C16.   Significant CSP for base proton 

resonance was also identified for U5 located in the helix loop next to the stem-loop 

junction (Fig 4.4).  
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Fig 4.3.  The summary of Mg2+ induced chemical shift perturbations in DIS21 duplex 

with respect to each nucleobase. Comparisons of the root mean square difference in 

chemical shifts for base protons and ribose protons are highlighted in blue and red, 

respectively.  The cross peaks of G6 were broadened beyond detection (green).  The 

chemical shift changes of base proton resonances of U5, A7, and C16 were the most 

significant (highlighted in orange).  

 

Root Mean Square (RMS) of  
Mg2+ induced chemical shift 
perturbations (ppm) 

Base Protons 
Ribose Protons 
 

The cut-off 
point is 0.05 

G1  G2  G3   C4   U5   G6   A7  G8  G9  U10  G11 C12  A13 C14 A15  C16 A17 G18  U19 C20 C21 
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DIS21 Duplex 
(Base) 

RMS of aromatic 
proton resonances: 
H2, H5, H6, and H8 

RMS of ribose proton 
resonances: H1' and H2' 

 

G1 — 0.022 

G2 0.003 0.011 

G3 0.035 0.051 

C4 0.027 0.037 

U5 0.074 0.020 

G6 — — 

A7 0.157 0.021 

G8 0.045 0.037 

G9 0.029 0.043 

U10 0.015 0.055 

G11 0.033 0.039 

C12 0.016 0.029 

A13 0.012 0.018 

C14 0.033 0.040 

A15 0.023 0.042 

C16 0.101 0.060 

A17 0.033 0.042 

G18 0.009 0.042 

U19 0.022 0.030 

C20 0.031 0.016 

C21 0.024 0.024 
 
 
Table 4.1.  The summary of the RMS (root mean square) of difference in chemical shifts 

for base protons and ribose protons induced by Mg2+ in DIS21 duplex with respect to 

each nucleobase.  “—“ represents cross peaks that are not observed.   
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Fig 4.4.  Schematic representation of bases which are perturbed upon Mg2+ binding in 

DIS21 duplex.  The resonances of G6 highlighted in green were broadened beyond 

detection.  Mg2+ binding causes dynamics with disruption G6 and C16 base pair.  The 

base proton resonances of U5, A7, and C16 highlighted in red were perturbed more 

profoundly by Mg2+.  The GU wobble base pair is a well known Mg2+ binding site.  Base 

and ribose proton resonances of G3 were perturbed less than bases on the DIS junction.   
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4.4.1.2  Paramagnetic Relaxation Enhancement –NMR 

           DIS21 homo-duplex dimer — PRE NMR methods were used to probe for divalent 

metal binding sites in the DIS dimer structures.  The paramagnetic ion, Mn2+, was used to 

substitute for Mg2+ at the higher affinity divalent metal binding sites, leading to line 

broadening of resonances in close proximity.  The enhanced relaxation rates which have a 

1/r6 dependence on the distance between the heteronucleus and the ion are induced by 

Mn2+ (120).  Initially, DIS21 duplex is saturated with Mg2+ to occupy the non-specific 

and specific divalent metal ion binding sites.  By performing Mn2+ titration experiments, 

the empirically determined optimal concentration of Mn2+ ion for PRE is obtained.  The 

ideal rates which depend on metal concentration binding limit showed result in selective 

line broadening effects rather than non-specific binding of the paramagnetic ion.  After 

the DIS21 duplex free form saturated with 2 mM Mg2+, the end point of Mn2+ titration 

was determined by the selective broadening of the imino protons.  The ratio of Mn2+ 

addition to Mg2+ is around 1: 37 for the DIS21 duplex.    Ideally, the effect of 

paramagnetic line broadening is to compare the absolute values of either linewidth 

increases (119) or peak broadening in terms of volume changes induced by Mn2+.  Line 

width is characterized by the full width at half maximum of a resonance.  Peak volumes 

are determined by using Sparky, a spectral display and analysis program, to integrate 

peak volumes in 2D NMR spectra.  However, due to extensive overlap of signals caused 

by paramagnetic line broadening, it is difficult to fit the peak volume in Sparky by 

Gaussian or Lorentzian lineshape fitting (25).   To calculate the absolute values 

concerning to the peak broadening, the peak height which is proportional to the intensity 

can be fit by Sparky quantitatively to each proton resonance from a 2D NOE experiment.  
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The peak height ratio is determined by comparing the peak height before and after 

addition of 54 µM Mn2+ to the DIS21 duplex in the presence of 2 mM Mg2+ in Fig 4.5.  

All the imino signals were broadened considerably.  The U19 imino proton resonance in 

the G3-U19 wobble was more significantly broadened (~ 31%) than the G3 (~70%).  

Selective peak broadening with Mn2+ addition is more profound for the U imino proton 

than for the G imino proton in GU wobble base pairs (121).  The major groove side of a 

GU wobble pair is the most common divalent cation binding site (Fig 4.6). 

           The paramagnetic line broadening of the non-exchangeable resonances provides 

further investigation for the bases in the junction.  Fig 4.7 presents examples of line 

broadening due to Mn2+.  In the presence of Mn2+, the U10 H6-H5 resonance was 

broadened beyond detection, whereas a significant line broadening of the G11 H8-H1’ 

cross peak was not found.  In this regard, the selective line broadening induced by Mn2+ 

suggests that Mn2+ can displace Mg2+ from the higher affinity binding sites of the DIS21 

duplex.  2D NOE in H2O, 2D TOCSY, and 2D NOESY in D2O were performed to 

identify the specific divalent ion binding sites in the presence of Mn2+ at the atomic level.   
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Fig 4.5.  Imino proton region of the 1H-NMR spectra of the DIS21 duplex  without Mn2+ 

(blue) and with 54 µM Mn2+ (120) DIS21 duplex (2 mM Mg2+, duplex concentration 275 

µM, pH 6.5, 298K).    The peak height ratio is given by comparing two peak heights 

before and after addition of Mn2+ as shown with double arrows and the fit baseline.   
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Fig 4.6.  GU wobble base pair is commonly observed in RNA helices.  Mg2+ cations bind 

to the major groove at the GU pairs (122). 
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Fig 4.7.  Overlay of the non-exchangeable proton resonances of a 2D NOESY spectrum 

of the DIS21 duplex with 2 mM Mg2+ (black) and in the presence of 2 mM Mg2+ and 54 

µM Mn2+ (120). The examples of the paramagnetic line broadening effect by Mn2+ are 

labeled with open green circles.  U10 resonance was broadened in the presence of Mn2+.  
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           In order to obtain the more accurate peak height extracting from 2D NOESY 

spectra, the fit height is determined after integrating by fitting the peak positioned at the 

local maximum from Sparky.  Each cross peak referring to each proton resonance was fit 

to obtain the peak height in the presence of 2 mM Mg2+ comparing to the spectrum in the 

presence of both 2 mM Mg2+ and 54 µM Mn2+.  The peak height ratio is as follows,  

  
 

 

The G6, A7, G8, G9, and U10 cross peaks broadened beyond detection upon addition of 

Mn2+ (Fig 4.8).  These cross peaks were substantially weak compared to other 

nucleobases.  Mn2+ ions compete selectively to the above binding sites.    

 

 

 

 

 

 

 

 

 

 

 
 

Peak height ratio = 
Peak height (Mn2++ Mg2+) 

Peak height (Mg2+) 
(4.1) 
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Fig 4.8.  The summary of peak height ratio for each nucleobase considering each proton 

resonance from 2D NOESY spectra.  G6, A7, G8, G9, and U10 (highlighted in red) were 

broadened beyond detection by Mn2+.  G3-U19 (highlighted in green) was found to be the 

Mg2+ binding site from chemical shift perturbation experiment and 1D imino Mn2+ 

titration.   
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            The results of paramagnetic relaxation measurements have great potential for the 

precise localization of metal binding sites at the atomic level.  The displayed contour 

level from Sparky, a graphical NMR assignment and integration program, was adjusted to 

the lower order to examine individual atom localized on the base from G6 to U10 as well 

as two junction bases A15 and C16 which were observed with more significant chemical 

shift perturbations induced by Mg2+.  Peak height ratios are summarized in Table 4.2 and 

Fig 4.9.  Although, the displayed contour level was adjusted to the lower level, G6 and 

A7 cross peaks were still undetectable due to selective paramagnetic line broadening.  G8 

(H1'), G9 (H8 and H1'), U10 (H6 and H5), and A15 (H2) have more significant 

broadening effects in the close proximity to the Mn2+ ion with smaller peak height ratio.  

Two NMR methods, CSP and PRE, suggest that a Mg2+ binding site is localized around 

G6 and A7 nucleotides since these display the most significant perturbations that might 

be expected due to direct binding of a divalent cation.  Mg2+ binding disrupts G6-C6 base 

pairing and causes dynamics in the stem helices.   Here, we use the solution and X-ray 

structures of the DIS duplex as templates for mapping Mg2+ ion binding sites based on 

the CSP and PRE results at the atomic level.  The solution structure containing the loop-

stem region was determined using NMR methods.  It also indicates that the junction 

purine A7 adopts a stacked in geometry towards the stem loop helix and metal binding 

pocket in the solution structure (Fig 4.10 (A); solution structure is in the absence of 

Mg2+).  Eight Mg2+ sites have been identified in the DIS duplex crystal structures which 

were grown in 5 mM magnesium (Fig 4.10 (B)).  Four magnesium cations symmetrically 

localize around G6, G8, G9, and A15.  The PRE results showed that Mg2+ ions are bound 

around these residues with more significant line broadening effects.  One magnesium 
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binding site localized around U10 is consistent with the PRE data.  Interestingly, one 

Mg2+ binding site in the crystal structure is around the purine junction where A7 was 

identified in a bulged out position.  The flanking purine, A7, was found to be close to 

Mg2+ ions based on the significant CSP and selective PRE results which suggest 

exhibiting a bulge-in conformation.    
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H (Mn2++Mg2+)/H (Mg2+)        

H1' H2 H5 H6 H8 

G6H8-H1'                            
—    — 

A7H8-G6H1' —    — 

A7H8-H1' —    — 

A7H2-G8H1' — —    

G8H8-H1' 1.10    0.71 

G9H8-H1' 0.65    0.70 

U10H6-G9H1' 0.88   0.80  

U10H6-H5   0.40 0.15  

U10H6-H1' 0.98   0.85  

A15H8-C14H1' 0.83    1.15 

A15H8-H1' 0.81    1.14 

A15H2-C16H1' 0.67 0.50    

A15H2-G9H1' 0.58 0.91    

C16H6-A15H1' 0.89   2.00  

C16H6-H5   1.40 0.72  

C16H6-H1' 0.81   0.72  

 
 

Table 4.2.  The summary of peak height ratios.  “H” represents the peak height of the 

resonances. The peaks broadened beyond detection by Mn2+ are denoted with “—“.  The 

estimate error based on S/N is (~ 0.09).  Three random positions in the NMR spectra in 

Sparky with where there are no resonance signals were chosen.   Take the average of 

these three noise positions for the error determination associated with the average peak 

height of resonance signals.   

 
 
 
 



 

                                                                      131 
 

 

 
 

G1  G2  G3 C4  U5  G6

C21C20U19G18A17C16

A7 G8

A15

G9  U10 G11 C12  A13 C14

C14 A13  C12 G11 U10 G9

A15

G8 A7

C16 A17 G18 U19 C20 C21

G6  U5   C4   G3   G2  G1

3'

5'

5'

3'

 
 

Fig 4.9. Two levels of gradation of line broadening effects were shown here.  The cross 

peaks of G6 and A7 were completed broadening away in the presence of Mn2+ displayed 

at the lower order of contour level from Sparky (highlighted in dark blue). G8, G9, and 

U10 experienced lesser paramagnetic line broadening compared to G6 and A7 (light 

blue).   
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Fig 4.10.  (A) NMR solution structure of DIS extended duplex in the absence of Mg2+.  

The conserved purine A7 at the 5' side was suggested to be a bulged-in orientation 

(highlighted in cyan; PDB code: 2D19).  (B) X-ray structure of DIS extended duplex with 

the purine bulged out residues (A7: a bulged out purine highlighted in yellow; G8: purine 

base at the junction highlighted in cyan).  Eight Mg2+ ions were found in the structure 

(PDB code: 1Y99).  (C) Divalent metal cation-binding sites in solution mapped on the X-

ray structure of DIS junction.  G6 and A7 (highlighted in cyan) were found to be close to 

the Mg2+ binding sites due to paramagnetic line broadening effect in the solution 

structure.  The Mg2+ binding sites represented as yellow spheres are most consistent with 

the PRE data.  The Mg2+ ions represented as yellow spheres were bound around G8 and 

G9 (highlighted in green).  However, A7 adopts a bulged geometry which is not  

consistent with CSP and PRE data.  

G6 
A15 

G8 
G9 

U10 

A7 purine  
junction 

C. 

G8 



 

                                                                      135 
 

 

13
C 

15
N-DIS23(GA)•DIS23(HxUC) hetero-kissing complex —Both Na+ and Mg2+ can 

stabilize DIS complexes.  Na+ at high concentrations can saturate nonspecific divalent 

metal binding sites.  The hetero-kissing complex was initially saturated with 200 mM 

Na+.  200 µM Mg2+ (Na+:Mg2+=1000:1) was then added to occupy the high affinity 

divalent binding sites.  Then, 10 µM Mn2+ was added in the complex to substitute for 

Mg2+ at the specific binding sites.  Mg2+ and Mn2+ bind with about the same affinity.  The 

paramagnetic relaxation effect can be identified.  Initially, the experiment was performed 

in the addition of 200 mM Na+ followed by small amount of Mn2+.  However, there was 

almost no line broadening effect observed.  It suggests that Na+ could not compete the 

divalent sites even at 200 mM concentration (data not shown).  In addition, there are no 

significant Mg2+ induced chemical shift perturbations in the hetero-kissing complex 

compared to homodimers duplex (Fig 4.11).   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

                                                                      136 
 

 

 

 

 

 

 

 

Fig 4.11. 1D imino proton Mg2+ induced chemical shift perturbation of the imino proton 

resonances of 13C15N-DIS23(GA)•DIS23(HxUC) kissing complex (298K and pH 7.5).   

Overlay of the imino region of 1D spectra in the presence of 200 mM Na+ (pink) and 

both 200 mM Na+ and 200 µM Mg2+.  
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            To identify the specific Mg2+ binding sites on the DIS stem-loop kissing complex, 

the paramagnetic Mn2+ as an analogue was used to displace Mg2+.   The ratio of species 

in the mixture is DIS kissing complex:Na+:Mg2+:Mn2+= 25:20000:20:1.  The DIS stem-

loop kissing complex is fully saturated with Na+.  The specific divalent metal binding 

sites were occupied by Mg2+ with higher affinity.  Small amount of Mn2+ was added to 

swapped Mg2+ ions on the specific binding sites on the DIS stem-loop kissing complex.  

The summary of peak height ratio respecting to each nucleobase on the DIS23(GA) side 

in the kissing complex was compared before and after addition of Mn2+ (Fig 4.12).  The 

cut off point was 0.5 suggesting that at least 50 % peaks were broadened by the presence 

of Mn2+.  Seven resonances showed selective paramagnetic line broadening induced by 

the presence of Mn2+ including G7a, A8a, G9a, G10a, C13a, A16a, and C17a (Fig 4.13, 

Table 4.3).  Specific divalent metal binding identification with PRE measurements 

suggests bases A8a, G9a, and A16a have the greater effect of divalent metal interaction.  

Interestingly, in the protonated state of the kissing complex, the observed exchange 

broadening of resonances were involved in A8a, G9a, and A16a.  G10a was also found 

broadening in the 1H13C-HSQC experiment due to protonation of residue A8a resulting in 

dynamics in the DIS kissing complex purine junction (71).  Fig 4.14 presents X-ray and 

NMR solution structures displaying two different conformations (14).  The crystal 

structure of the kissing loop complex was obtained by fast-cooling method and then 

crystallization at 37 ºC without nucleocapsid protein.  In the X-ray crystal structure, the 

unpaired purines, A8 and G9, at the 5' side in DIS-A form are in a bulged-out 

conformation (12).  Two bases are stacking through the π-π interaction between two 

aromatic rings (Fig 4.14 (A)).  Three Mg2+ ions binding sites are around residues G7, 
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G10, and A16.    Our NMR data also show the same divalent metal binding sites.  NMR 

structure adopting a bulge-in conformation in the absence of Mg2+ ions (14) was found to 

be consistent with our results.  Mg2+ ions were localized in the purine junction around 

A8, G9, and A16 based on PRE data which are consistent with the solution structure 

where these purine bases stack in the helix (Fig 4.14 (B)).  The solution structure 

obtained by Baba et al. (2006) was in the absence of Mg2+.    
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Fig 4.12. The summary of peak height ratio respects to each nucleobase considering the 

average of aromatic and ribose proton resonances (H2, H5, H6, H8, H1') from 2D 

NOESY spectra on the DIS23(GA) side.    

 

 

 

 

 

Peak height ratio = 
Peak height (Mg2++Na+) 

Peak height (Mn2++ Mg2++ Na+) 

The cut off point: 0.50 

(4.2) 
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H(Na++Mg2++Mn2+)/H(Na++Mg2+) H1' H2 H5 H6 H8 

G7aH8-U6aH1' 1.11    0.81 

G7aH8-H1' 0.59    0.7 

A8aH8-G7aH1' —    — 

A8aH8-H1' 0.78    0.88 

G9aH8-A8aH1' —    — 

G9aH8-H1' 0.88    0.79 

G10aH8-G9aH1' 0.69    0.76 

G10aH8-H1'  —    — 

C13aH6-G12aH1' —   —  

C13aH6-H5   0.69 0.62  

C13aH6-H1' 0.9   0.49  

A16aH8-H1' —    — 

A16aH2-C17aH1' 0.79 0.79    

C17aH6-A16aH1' 0.75   0.63  

C17aH6-H5   0.93 1.48  

C17aH6-H1'    — — 
 

Table 4.3.   The summary of peak height ratio considering each broadening effect of the 

individual atom localized on the DIS junction of DIS23(GA) side in the kissing complex.  

“H” represents the peak height of the resonances. The missing peaks beyond detection 

induced by the presence of Mn2+ are denoted with “—“.   
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Fig 4.13.  The divalent metal binding sites including G7a, A7a, G9a, G10a, C13a, A16a, 

and C17a on the DIS23(GA) side in the kissing complex, indicating greater line 

broadening in the presence of Mn2+.   
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Fig 4.14.  (A) X-ray structure of DIS kissing dimer structure with a bulged out purine (A8 

and G9) conformation (12).  Three Mg2+ ions are represented as yellow spheres. The 

NMR data characterized from PRE to identify the Mg2+ binding sites around or formed 

by bases G7, G10, and A16 (highlighted in cyan) are consistent with crystal structures. 

(B) Solution RNA structure model of the DIS kissing loop dimer with a bulge in 

conformation (without metal ions).   Purine bases, A8 and G9/A9, are stacked towards 

the stem helix (PDB code: 1XPF).  Our PRE NMR data showed that A8 and G9 

(highlighted in cyan) were found to be close to the Mg2+ binding sites adopting the same 

geometry with the NMR solution structure. 
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4.5   Conclusion 

          The divalent metal ion binding sites in solution were identified initially by Mg2+ 

induced chemical shift perturbations which suggest conformational changes in the DIS 

structures as well as direct binding effect.  Paramagnetic line broadening induced by 

Mn2+ leads to the identification of the specific binding sites.  In DIS21 homodimer 

duplex, G3, U5, G6, A7, and C16 are perturbed upon addition of Mg2+, suggesting in 

long range conformational change and metal binding.  The specific divalent binding sites 

were identified by Mn2+ resulting in line broadening on G6, A7, G8, G9, and U10.  These 

resonances were missing beyond detection upon Mg2+ binding.  The specific divalent 

binding sites on the DIS23(GA) side in the hetero DIS stem-loop kissing complex, 

13C15N-DIS23(GA)•DIS23(HxUC), G7a, A8a, G9a, and G10a from 5' end of the RNA; 

C13a in the loop; and A16a and C17a from 3' end of the complex were found selective 

line broadening induced by the presence of Mn2+.  Mg2+ ions specifically localize in this 

region to stabilize these junction bases.  DIS 21 duplex and hetero kissing complex show 

that purine bases are stacked in the stem helix resulting from the direct Mg2+ binding.   
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Chapter 5   Concluding Remarks 
 
            Understanding the mechanism of dimerization of HIV-1 RNA is essential since it 

is involved in various critical events in the HIV life cycle.  Each HIV virus carries two 

identical copies of the single-stranded (+) RNA.  The advantage of the two copies is for a 

higher rate of recombination during infection and consequently an increase in genetic 

diversity of HIV.  Dimerization is initiated through loop-loop kissing interaction between 

two genomic RNA strands associated by six self-complementary base pairs on the 

dimerization initiation site (DIS) within the 5' end of retroviral genomes.  The wild type 

of DIS is a highly conserved hairpin containing a bulge and an apical loop consisting of 

nine bases with six palindromic bases.  Mutation in the DIS results in a reduction of the 

replication rate, the infectivity of the HIV-1 (26, 123), and the level of genomic RNA 

packaging (7).  Additionally, the deletion of the stem-loop structure reduces the 

infectivity of the HIV-1 up to 1000 fold (124).   Therefore, the kissing-loop complex has 

been considered to be a potential target for anti-HIV drugs.  For example, 

aminoglycosides, widely used antibotics, block mRNA and tRNA translocation and 

inhibit ribosome recycling (125).  The unpaired purine residues of the loop are essential 

to the dimerization process especially for divalent metal ion binding.       

           The dimeric nature of the RNA genome also plays a structural role in regulating 

specific stages of replication.  Dimerization is required for proper RNA packaging with 

the assistance of viral nucleocapsid protein (NCp7), which binds to SL1 (stem-loop, 

DIS), SL2 (stem-loop, SD: splice donor), and SL3 of the ψ signal (126).  The highly 

basic NCp7 protein containing two CX2CX4HX4C-type zinc fingers activates refolding of 

DIS from metastable kissing complex to thermodynamically stable extended duplex.  
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NCp7 protein plays a critical role in virus assembly and infection by chaperoning RNA 

dimerization and packaging.  NCp7 accelerates the rate of strand exchange between the 

two hairpin stem helices with a 2:1 stoichiometry for NCp7 binding to the DIS kissing 

dimer (38).    

            2-Aminopurine, a fluorescent base analog, has been used to study the mechanism 

of nucleocapsid protein catalyzed structural isomerization of the DIS in our group.  The 

2-aminopurines were inserted either on the DIS stem or the loop to unambiguously 

distinguish their different fluorescent properties corresponding to mature duplex and 

kissing dimer, respectively.  The identification of the activity of nucleocapsid protein was 

characterized by using 2-AP labeled sequence on the stem of DIS hairpin associated with 

fluorescence quenching when the DIS mature duplex dimer is formed.  In the addition of 

NCp7, the rate of isomerization from the Mg2+ stabilized DIS kissing dimer to the 

extended duplex is 10-20 fold faster than the Na+ stabilized metastable DIS kissing 

dimer.  The observed mechanism using the stem-inserted 2-AP fluorescent probe proves 

that the isomerization is involved in melting of intramolecular stem base pairs and 

reannealing of intermolecular base paring to form a duplex.  Moreover, the NCp7 

catalyzed maturation rates are found to be faster when A272 is protonated at pH 6.0 

compared to pH 7.2.  The flanking purines at the DIS junction are dynamic in solution 

having fluctuational motility.   It leads to base pair opening at the junction stimulated by 

interaction with the NCp7 protein to unwind two complementary strands within the stem 

in the kissing complex at low Mg2+ concentration.   

             To better understand the role of metal ions in HIV-1 genomic RNA dimerization 

and maturation facilitated by the NCp7 chaperone protein, 2-AP labeled fluorescence and 
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high resolution NMR experiments were carried out to examine the local transition of DIS 

kissing dimer at the purine junction.  Metal ions are essential for the folding of RNA into 

a stable and compact conformation when the dimerization and maturation take place.  

The first stage is the formation of RNA secondary structure referring to the DIS hairpins 

stimulated by the presence of monovalent and divalent cations.  The second stage is the 

formation of RNA tertiary structure including DIS kissing and extended duplex dimers.  

The RNA molecules in the folded conformation are readily stabilized by interacting with 

Mg2+ based on our fluorescence and NMR results.  Fluorescence melting curve analysis 

corresponding to a 2-AP probe inserted into the DIS loop of the kissing complex 

confirmed that the Mg2+ stabilized conformation is more stable than the Na+ stabilized 

RNA structure.  Additionally, pH had little effect of the kissing dimer with respect to 

dissociation in the presence of Na+ or Mg2+.  Two unpaired junction bases with 2-AP 

labeling on DIS loop, AP9 and AP10, showed that AP9 is more stacked in the helix in the 

formation of kissing dimer with a smaller increase in fluorescence in comparison with 

AP10.  The Mg2+ ion is likely to bind at the highly conserved stacked AP9 purine base in 

the DIS loop.  Overall, Mg2+ ions stabilize DIS kissing complexes more than Na+ ions 

accompanied with the higher increase in fluorescence for both unpaired 2-AP labeled 

bases.  The different conformations are expected to contribute to the different NCp7 

binding interaction and chaperone activity with these two fluorescent labels at the purine 

junction.   

            After characterizing the fluorescence properties in terms of metal ion binding on 

DIS purine junction, NMR studies were used to specifically identify the local Mg2+ 

binding on DIS dimers.  Homo and hetero DIS complexes with stem-loop secondary 
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structures were designed to examine the structural information depending on metal ions 

and Mg2+ binding sites.  The conformations of DIS complexes in the presence of 

monovalent and divalent metal ions are different.  Mg2+ binding not only stabilizes DIS 

complexes more than Na+ but also facilitates RNA strand annealing stimulated by NCp7 

chaperone protein (127).  Our data showed that Mg2+ ion binding results in specific 

proton chemical shift changes at DIS21 homo duplex. Three junction bases, G6, A7, and 

C16, are close to Mg2+ binding sites with significant chemical shift perturbations.    

Paramagnetic line broadening by Mn2+ suggests that Mg2+ ions are localized in G6, A7, 

G8, and G9 on the 5' end of the DIS duplex.    Hetero DIS stem-loop kissing complex 

was designed by constructing with an exchanged stem sequence, DIS23(HxUC).  

Likewise, the selective paramagnetic line broadening has a stronger effect on G7a, A8a, 

G9a, A16a, and C17a of the DIS23(GA) side in the kissing complex.  In conclusion, 

Mg2+ ions are localized around the 5' purine bases in the extended duplex, whereas the 

Mg2+ binding pocket is near both 5' and 3' purine bases in the kissing-loop dimer.   

            The X-ray crystal structures and NMR solution structures of DIS have been 

solved from group Ennifar et al. (10) and Kawai et al. (14), respectively.  The Mg2+ 

dependent crystal structures of DIS kissing-loop dimers showed that the unpaired purines 

(A8 and G9) on the junction are flipped out, whereas the purine bases are stacked within 

the helical stem in solution structures in the absence of Mg2+.   The adenine base, A16, 

was found to be perfectly stacked within the helix in crystal and solution structures.  The 

discrepancy between crystal and solution structures of DIS centers is primarily on 

difference in the observed A8 and G9 stacking conformation at the loop junctions.   Our 

DIS extended duplex and kissing dimers were analyzed in the presence of Mg2+ in 
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solution.  The Mg2+ dependent crystal structures and Mg2+ free solution structures were 

used as templates for mapping ion binding sites with the CSP and PRE results.  From our 

results, major Mg2+ binding sites are localized in the DIS junction around A8, G9, and 

A16 in the kissing dimer.  This is in agreement with the NMR solution structures.  

Although A8 and G9 might be flexible and dynamic in solution and flip out of the helix 

in the absence of Mg2+, our data suggest that these two bases are stacked in the helix 

upon Mg2+ binding.  Similarly, a divalent metal binding site localized around A8 base in 

the Mg2+ stabilized extended duplex is found to be consistent with the solution structure.     

            Mg2+ binding interaction affects not only the conformation but also dynamics at 

the purine junctions in the kissing dimer.  These flanking purine bases are believed to 

stabilize the kissing dimer and assist the initiation of maturation stimulated by NCp7 

chaperone protein.  In the case of the extended duplex, Mg2+ binding effect results in the 

significant chemical shift changes.  Mg2+ ions also stabilize the unpaired purines as part 

of maturation of the RNA or as part of NCp7 binding during maturation.  Although the 

sequence of purine bases are the same around the DIS junction in both the extended 

duplex and kissing-loop dimers, the backbone trajectory around the junctions is 

particularly different in the structure.  The different Mg2+ binding effects in these two 

dimers are likely to explain the differences associated with NCp7 chaperone activity in 

the dimerization.   
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