
Abstract

Title of dissertation
Using Internet Geometry to Improve End-to-End

Communication Performance

Cristian Lumezanu, Doctor of Philosophy, 2009

Directed by Professor Neil Spring

Department of Computer Science

The Internet has been designed as a best-effort communication medium between

its users, providing connectivity but optimizing little else. It does not guarantee

good paths between two users: packets may take longer or more congested routes

than necessary, they may be delayed by slow reaction to failures, there may even

be no path between users. To obtain better paths, users can form routing overlay

networks, which improve the performance of packet delivery by forwarding packets

along links in self-constructed graphs. Routing overlays delegate the task of se-

lecting paths to users, who can choose among a diversity of routes which are more

reliable, less loaded, shorter or have higher bandwidth than those chosen by the

underlying infrastructure. Although they offer improved communication perfor-

mance, existing routing overlay networks are neither scalable nor fair: the cost of

measuring and computing path performance metrics between participants is high

(which limits the number of participants) and they lack robustness to misbehavior

and selfishness (which could discourage the participation of nodes that are more

likely to offer than to receive service).

In this dissertation, I focus on finding low-latency paths using routing overlay

networks. I support the following thesis: it is possible to make end-to-end commu-

nication between Internet users simultaneously faster, scalable, and fair, by relying

solely on inherent properties of the Internet latency space. To prove this thesis, I

take two complementary approaches. First, I perform an extensive measurement

study in which I analyze, using real latency data sets, properties of the Internet

latency space: the existence of triangle inequality violations (TIVs) (which expose

detour paths : “indirect” one-hop paths that have lower round-trip latency than

the “direct” default paths), the interaction between TIVs and network coordinate

systems (which leads to scalable detour discovery), and the presence of mutual

advantage (which makes fairness possible). Then, using the results of the mea-

surement study, I design and build PeerWise, the first routing overlay network

that reduces end-to-end latency between its participants and is both scalable and

fair. I evaluate PeerWise using simulation and through a wide-area deployment on

the PlanetLab testbed.

Using Internet Geometry to Improve End-to-End
Communication Performance

by

Cristian Lumezanu

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2009

Advisory Committee:

Professor Neil Spring, Chair

Professor Bobby Bhattacharjee

Professor Samir Khuller

Professor A. Udaya Shankar

Professor Mark Shayman

c© Copyright by

Cristian Lumezanu

2009

To Mihaela, of course.

ii

Acknowledgments

My journey into computer science began twelve years ago, almost to the day.

Along the way, many people offered me their trust, friendship and advice. I am

here because of them.

I learned from Neil the most: from thinking about research problems (big),

to writing papers (no more “respectively” or “optimal”), to presenting my work.

He would always proofread every piece of writing I would give him, send me to

expensive conferences, and never let me slip away from the right path. He made

me the researcher that I am now. Bobby trusted me unwaveringly (even when I

myself did not). He allowed me to use my hands in a noble way and significantly

decreased the frequency of contractions (the grammatical kind) from my life (and

still has not collected).

I had the privilege of working and interacting with many other great researchers

and professors. Katherine Guo was a wonderful mentor and provided me with even

greater (and never redundant) moral support. I published my first paper with

Sumeer Bhola and Mark Astley, who showed me the good sides of working in a

research lab. Nick Feamster appeared at the right moment in my career. Adam

Porter and Jeff Foster showed me that software engineering and programming

languages can be a lot of fun. Irina Athanasiu encouraged me to come to Maryland,

quickly dismissing my fears of catching the impostor syndrome. Samir Khuller,

Udaya Shankar and Mark Shayman kindly agreed to serve on my thesis committee

and listen to me ramble on about fast, fair and scalable routing overlay networks.

For the last five years, the lab was the perfect environment to work, learn, and

have fun. Dave was my brother in arms, always ready to discuss new research

ideas, resurrect old ones, eat, teach me the intricate ways of the English language,

or watch clips from “The Office”. I doubt I could have found a better friend, here

or at any other school. Randy helped me with the PeerWise project, but more

importantly, showed me that, to fight any carmichael in life, you start with a smile.

iii

iv

Adam has always tirelessly answered my questions about cycling or American

football. If only he would defeat resistance and realize which is the real football.

Rob was always ready to have conversations on the most diverse topics, from TCP

congestion control to the different types of poker. Aaron is never afraid to be

wrong. Justin, Katrina, Bo, Ruggero and Vijay have not spent nearly enough time

in the lab, but they offered me first-hand examples of success.

It has been difficult enough to find the right words to acknowledge the people

that helped me grow professionally. It is almost impossible to describe the gratitude

that I feel towards my family. My parents, sister, aunt, and grandparents teach me

everyday the meaning of love and help me constantly grow as a person. Above all,

my wife has never left my side. This thesis would not have been possible without

her support. I dedicate it to her and to that little person that she is carrying.

Contents

Acknowledgments iii

Contents v

1 Introduction 1

1.1 PeerWise Goals and Challenges . 3

1.2 From Internet Geometry to PeerWise 6

1.3 Thesis and Contributions . 10

1.4 Roadmap . 12

2 Background and Related Work 14

2.1 Routing in the Internet . 15

2.1.1 Inter-domain routing . 16

2.1.2 Intra-domain routing . 18

2.2 Triangle inequality violations . 20

2.2.1 The triangle inequality . 20

2.2.2 Research on TIVs . 21

2.3 Alternatives to Routing . 23

2.3.1 Changes to BGP . 24

2.3.2 Source Routing . 25

2.3.3 Overlay Networks . 26

3 Measuring Triangle Inequality Violations 29

3.1 Pitfalls of measuring TIVs . 31

3.2 New measurements . 32

3.2.1 King . 32

3.2.2 Data Sets . 34

3.3 Latency variability . 36

v

Contents vi

3.3.1 Measurements Vary Over Time 37

3.3.2 Causes of Variations . 38

3.4 Triangle inequality variations . 45

3.4.1 TIVs vary over time . 46

3.4.2 Longevity . 48

3.4.3 Alternative ways to compute TIVs 49

3.5 Summary . 52

4 Using Triangle Inequality Violations 53

4.1 Data sets . 54

4.1.1 Latencies . 54

4.1.2 AS Paths . 57

4.2 TIVs and latency reduction . 59

4.2.1 TIVs are important . 59

4.3 TIVs and BGP . 62

4.3.1 How Impossible Are the Impossible Paths? 66

4.3.2 Possible Paths . 67

4.4 Summary . 70

5 Discovering detours with network coordinates 72

5.1 Network coordinates . 73

5.1.1 Internet modelling and space selection 74

5.1.2 Probing and data collection 75

5.1.3 Positioning . 76

5.2 Network coordinates and TIVs . 78

5.3 Evaluation . 81

5.3.1 Vivaldi . 82

5.3.2 Methodology . 83

5.3.3 TIVs impact the accuracy 84

5.3.4 Embedding errors indicate TIVs 87

5.4 Summary . 89

6 Mutual advantage 90

6.1 Motivation . 91

Contents vii

6.2 Limitations of Mutual Advantage 93

6.2.1 Methodology . 94

6.2.2 Is There Mutual Advantage in the Internet? 94

6.2.3 Detours to Nearby Destinations 96

6.2.4 Multiple-IP Websites . 97

6.2.5 Simulation Limitations . 100

6.3 Summary . 101

7 Designing a Latency-Reducing Routing Overlay Network 102

7.1 Mechanisms . 103

7.1.1 Network Coordinates . 103

7.1.2 Neighbor Tracking . 106

7.1.3 Pairwise Negotiation and Maintenance 107

7.2 Policies . 112

7.2.1 Choosing Neighbors . 113

7.2.2 Choosing Relays . 116

7.2.3 Deciding Whether to Relay 118

7.3 Summary . 122

8 Implementation and Evaluation 123

8.1 Finding Detours . 123

8.1.1 Implementation . 124

8.1.2 Deployment . 125

8.1.3 PeerWise finds detours . 127

8.1.4 PeerWise finds detours quickly 127

8.1.5 PeerWise offers significant latency reduction 128

8.1.6 Longevity and variability . 129

8.2 Using Detours . 131

8.3 Summary . 134

9 Conclusions and Future Work 135

9.1 Thesis and contributions . 135

9.2 Future work . 137

9.2.1 Extensions to PeerWise . 137

Contents viii

9.2.2 Social map of the Internet 141

9.2.3 Node location framework . 142

Bibliography 146

List of Figures

2.1 Policies for selecting and exporting BGP routes can lead to cir-

cuitous paths . 18

2.2 Early-exit routing can lead to inflated paths 19

2.3 Example of triangle inequality violation 22

3.1 Median values can create the illusion of TIVs 30

3.2 How King works . 33

3.3 Cumulative distributions for standard deviation and interquartile

range for the data sets in Table 4.1 36

3.4 Examples of latency variations between pairs of nodes 39

3.5 Cumulative distribution of sample correlation between 1-hop and 2-

hop latencies for all pairs and only the top 5% of pairs when ordered

by the interquartile range. 40

3.6 Cumulative distribution of the average difference between consecu-

tive latency measurements. 42

3.7 Median standard deviation and interquartile range among the pairs

in each subset in the K200-1000pairs-5min data set 43

3.8 Cumulative distributions for standard deviation and interquartile

range for data sets collected simultaneously from University of Mary-

land, USA and Max Planck Institute for Software Systems, Germany 44

3.9 Percentage of TIVs of the total number of triangles for the K200-

allpairs-1h data set. 46

3.10 Cumulative distribution of the longevity of TIVs in the K200-allpairs-

1h data set. 47

ix

List of Figures x

3.11 Probability and cumulative distributions of the fraction of TIVs that

appear during the measurement and are preserved when computed

on the aggregate data using one of the four methods: all-median,

all-min, short-sides-min, long-side min. 48

4.1 Cumulative distribution of potential latency reduction from TIVs,

for the five data sets in Table 4.1 60

4.2 Allowing one-hop detours achieves good latency in a) PeerWise-PL

and b) PeerWise-King. 62

4.3 Examples of impossible detour AS paths. 65

4.4 Possible detour AS paths have bigger path length and transit cost . 69

5.1 Embedding three points that form a TIV into a metric space intro-

duces inaccuracies. 80

5.2 Cumulative distributions of absolute and relative errors for the PeerWise-

King and PeerWise-PL data sets 84

5.3 Cumulative distributions of absolute and relative errors for the PeerWise-

King-Filt and PeerWise-PL-Filt data sets 85

5.4 Average number of TIVs versus estimation error 88

6.1 Finding mutually-advantageous detours 93

6.2 Distribution of the fraction of destinations reachable through mu-

tually advantageous peerings for the PeerWise-PL-Dest data set . . 96

6.3 PeerWise-PL-Dest: When a detour exists, density plot of detour

path RTT versus the direct path RTT (top), and PDF of direct

path RTTs (bottom). 97

6.4 Detours to mirrored websites . 98

7.1 Computing network coordinates for PeerWise and non-PeerWise nodes104

7.2 Neighbor tracking . 108

7.3 Detour requests and advertisements 109

7.4 Neighbor selection algorithms . 114

7.5 Relay selection algorithms . 116

7.6 As the latency to a destination increases, so does the probability

that there is a detour. 119

List of Figures xi

8.1 Fraction of the popular destinations reachable through mutually

advantageous detours from PlanetLab. 128

8.2 Wget latency reduction versus PeerWise latency reduction: 58% of

all PeerWise detours achieve latency reduction in real life. 132

8.3 Distributions of average server wait times, relay times, and differ-

ence between wget and PeerWise RTTs for all detour transfers. . . . 133

9.1 Nearest neighbor is not enough . 143

List of Tables

3.1 Measuring TIVs: Latency data sets 35

3.2 Percentage of TIVs preserved or added by the four aggregation

methods . 50

4.1 Latency data sets for evaluating TIVs. 55

4.2 Latency improvement achieved with one-hop and multiple-hop paths. 61

4.3 Possible and impossible detour paths 63

5.1 Summary of prediction errors of network coordinates 86

6.1 Percentage for potential peerings for each node 95

6.2 Detours to mirrored websites . 99

7.1 Predicting whether to use PeerWise 121

8.1 Characteristics of PeerWise detours: latency reduction. 129

8.2 Characteristics of PeerWise detours: longevity and variability. . . . 130

xii

Chapter 1

Introduction

The Internet has been designed as a best-effort communication medium for its

users, limited to a most basic role: providing connectivity [15]. It is composed

of thousands of interconnected and independently administered networks operated

by Internet Service Providers (ISPs). ISPs cooperate and compete with each other

to route traffic between users. They select paths based on their own cost, policies,

past performance or even which route they learn first, and do not allow users to

express choice in the routes taken by their packets.

Not surprisingly, ISPs do not guarantee good paths between users. Oftentimes,

packets may take longer [86] or more congested [5] routes than necessary, they may

be delayed by slow reaction to failures [41], there may even be no paths between

users [29]. With thousands of users joining the network every day [33] and new

applications being constantly deployed, the diversity of interests and requirements

becomes increasingly important. Finding any path is not sufficient anymore; users

need paths that are better tuned to their needs.

Several solutions have been proposed to overcome the inefficiencies of Internet

1

2

routing and improve end-to-end communication. Their arsenal includes diverse

strategies such as upgrading [96], modifying [107], or completely redesigning [108]

current routing protocols. However, one of the most attractive means for users to

obtain better paths does not require any changes to the infrastructure: routing

overlay networks.

Routing overlay networks are virtual networks of nodes and logical links (or

edges) built on top of the existing routing infrastructure. Internet users join routing

overlays and forward traffic between themselves along the virtual links. Although

packets still traverse the underlying routing infrastructure, their path is constrained

by the logical edges. Routing overlays improve the performance and robustness of

packet delivery by delegating the task of selecting paths to users, who can choose

among a diversity of routes which are more reliable [29], less loaded [5], shorter [86]

or have higher bandwidth [31] than those selected by the ISPs.

In this dissertation, I present PeerWise, a latency-reducing routing overlay

network. PeerWise finds detour routes between its participants. A detour is an

“indirect” one-hop path that has lower round-trip latency than the “direct,” ISP-

provided path. Latency, the time required for a packet to travel from one end

to the other and back, is an important metric for measuring the quality of a

path. The performance of many distributed applications depends on finding low

latency paths. For example, the playability of online games, such as first-person

1.1 PeerWise Goals and Challenges 3

shooters, hinges on low-latency updates between players [10, 9, 70]. Services that

provide rapidly changing content, such as sports scores, real-time bus status or

stock quotes depend on propagating the content as fast as possible to users [56].

VOIP applications that need to bypass firewalls could benefit from relaying traffic

on low latency paths [92].

Unlike existing routing overlays [5, 86, 29, 97], PeerWise transcends its simple

role of finding better paths and provides both scalability and fairness. Scalability

means that the process of finding detours performs similarly when the number of

users increases, while fairness encourages participation of honest users and discour-

ages freeloaders and adversaries. Next, I discuss the three main goals of PeerWise,

low-latency paths, scalability, and fairness, and address the challenges in achieving

them.

1.1 PeerWise Goals and Challenges

I discuss the three main goals of PeerWise along with the challenges that each of

them brings. In the next section, I describe how properties of the Internet latency

space help address the challenges.

1.1 PeerWise Goals and Challenges 4

Low-latency paths

The paths provided by PeerWise must have lower latency than those offered by the

underlying routing infrastructure.

This is the most simple and basic requirement of PeerWise. Before designing

a system that offers paths that are shorter than those provided by ISPs, several

questions need answers. Do lower-latency paths even exist? Of course, we know

that Internet routing is not based on latency (more on this in Chapter 2), therefore

we can assume that it yields paths that are not shortest. But how many are there?

And how much shorter are they than the corresponding direct paths? Can many

nodes benefit from them or are they available to only a chosen few? Can we design

an entire system based on their existence?

Scalability

PeerWise must be scalable: its ability to provide lower-latency paths should not

suffer as the number of participants increases.

That there exist detours for the paths provided by ISPs leads to a logical

question: How do we find them? A simple way of finding detours from node

S to node D is to measure the latency on all possible paths between S and D.

However, the probing and monitoring would severely limit scalability and consume

resources even when not needed. Many of the measured paths are useless: they

1.1 PeerWise Goals and Challenges 5

have higher latencies than the default path between S and D. Existing routing

overlays are limited to small number of nodes and use all-to-all probing to discover

better paths does not pose any significant resource constraints [5]. However, when

one increases the number of participants to the order of hundreds, the challenge is

how to discover detours while minimizing the number of measurements.

Fairness

PeerWise must be fair to its participants: everybody should be compelled to provide

nearly as much service as they receive.

The Internet is a heterogeneous communication medium, filled with freeload-

ers, adversaries, and miscreants. The heterogeneity of connectivity means that

well-connected nodes are more likely to provide service, while poorly connected

nodes are more likely to request service [85]. This asymmetry could discourage the

well-connected nodes from joining—they have little to gain and would pay highly.

The presence of freeloaders and adversaries implies that routing overlay designs

should include an incentive mechanism: a means by which nodes compel each

other to provide nearly as much service as they receive. Without such incentive

in PeerWise, the overlay nodes that are intermediate hops in detours may provide

transit for others without benefiting from any detours. Existing routing overlays

were designed with cooperative, selfless participants in mind. They focus exclu-

1.2 From Internet Geometry to PeerWise 6

sively on performance and do not consider fairness among nodes. My challenge is

to construct PeerWise as a fair routing overlay, robust to misbehavior and malice,

but still offer participants the benefits of improved end-to-end communication.

1.2 From Internet Geometry to PeerWise

Geometry is the study of the properties and relationships between points, lines

and figures in space. Most commonly, geometry studies metric spaces, which are

spaces where a distance function is defined between any two points. The well-

known two-dimensional Euclidean space is an example of metric space.

I define the Internet geometry to be the study of properties and relationships

between nodes in the Internet. In particular, Internet geometry deals with the

Internet latency space, the space defined by the nodes in the Internet with the

latency as the distance between them. I use Internet geometry to derive the tech-

niques and mechanisms that allow PeerWise to provide lower-latency paths, while

being scalable and fair.

Low-latency paths

Triangle inequality violations expose detours.

An important characteristic of the Internet latency space is the existence of

triangle inequality violations (TIVs). There exist triples of nodes such that the

1.2 From Internet Geometry to PeerWise 7

latency between two of them is larger than the sum of latencies from these two

nodes to the third. Triangle inequality violations are a natural and persistent

consequence of routing in the Internet [111], as I describe in Chapter 2, and they

become an excellent opportunity to expose detours.

To grasp the effect of TIVs on latency reduction and their suitability as a

building block for PeerWise, I found it necessary to better understand TIVs. In

Chapters 3 and 4, I examine TIVs by collecting and analyzing latency measure-

ments between thousands of Internet hosts over the course of several weeks. My

measurement study shows that TIVs are important for latency reduction: they

are a prevalent and lasting feature of the Internet, they offer significant latency

reduction, and many users can benefit from them.

Scalability

Network coordinates predict detours.

Network coordinates [69, 22] associate nodes in the Internet with coordinates

in a metric space such that the coordinates of a node reflect its location in the

Internet. With little or no measurement, one can then estimate the real latency

between two nodes as the distance between their coordinates in space.

Because TIVs are not allowed in metric spaces, estimated distances between two

nodes in a TIV may differ greatly from the real latencies. In particular, when the

1.2 From Internet Geometry to PeerWise 8

estimated distance is much smaller than the real distance, the nodes have a higher

chance of benefitting from a detour; conversely, when the estimated distance is

much larger than the real distance, the nodes are more likely to be part of detours.

In Chapter 5, I prove the relationship between TIVs and network coordinates and

show that, by using the simple rules, described above, the number of measurements

required to discover detours is greatly reduced.

Fairness

Mutual advantage provides fairness.

The final missing piece is fairness. I introduce mutual advantage as a funda-

mental design principle in PeerWise. Overlay edges exist only between nodes that

can help each other find detours: each node is an intermediate hop on a detour of

the other. Mutual advantage is possible due to another property of the Internet

latency space: that there exist pairs of nodes in the Internet such that each benefits

from a TIV where the other is the intermediate node.

Before applying the principle of mutual advantage in the design of PeerWise,

I wanted to study its potential and limitations. In Chapter 6, I show, using col-

lected real-world latencies, that many pairs of nodes have mutually-advantageous

relationships in the Internet latency space, and that mutual advantage reduces the

number of detours that a node can find by only half.

1.2 From Internet Geometry to PeerWise 9

Building and evaluating PeerWise

The properties of the Internet latency space described above inspire the design

of PeerWise. PeerWise has three main components: network coordinate system,

neighbor tracking and pairwise negotiation, described in detail in Chapter 7. Each

participant must compute its network coordinate before searching for detours. One

challenge was how to scalably discover detours to non-participating nodes, such

as web servers. Because these destinations do not maintain network coordinates,

I could not readily predict detours for them. With colleagues, I implemented a

virtual coordinate system through which a PeerWise node can become responsi-

ble and compute coordinates for any host in the Internet. The neighbor tracking

component identifies other participants in PeerWise that are more likely to pro-

vide good detours. Finally, pairwise negotiation establishes connections based on

mutual advantage. In Chapter 8, I describe the implementation and deployment

of PeerWise on the PlanetLab testbed. I show that nodes quickly find detours

to popular destinations, that these detours are stable and that they offer signif-

icant latency reductions. I then confirm that user-level applications such as web

transfers can benefit from the network-level detours of PeerWise.

1.3 Thesis and Contributions 10

1.3 Thesis and Contributions

In this dissertation, I support the following thesis: It is possible to make end-

to-end communication between Internet users simultaneously faster, scalable, and

fair, by relying solely on inherent properties of the Internet latency space. To prove

this thesis, I take two complementary approaches. First, I perform an extensive

measurement study in which I analyze, using real latency data sets, properties

of the Internet latency space: the existence of triangle inequality violations, the

interaction between TIVs and network coordinates, and the surprising presence

of mutual advantage. Then, using the results of the study, I design and build

PeerWise, a routing overlay network that reduces end-to-end latency between its

participants and is both scalable and fair.

I bring the following contributions:

Measurement study on triangle inequality violations. I present the first

extensive study on triangle inequality violations in the Internet and on their suit-

ability for detour routing. For this, I collected six latency data sets of various sizes

and at various times. I show that TIVs are not measurement illusions but real

properties of Internet latencies. Although the number of TIVs varies with time,

aggregating measurements using medians provides a conservative data set for eval-

uating detour routing. Further, I demonstrate that, although the number of TIVs

1.3 Thesis and Contributions 11

is small, they account for significant detours, benefitting many. Finally, I explore

the negative consequences of TIVs and present their interaction with policy routing

and BGP, the interdomain routing protocol: using the detours provided by TIVs

will likely violate routing policies of ISPs. However, the extent of these violations

is not as high as previously believed, and I show that finding short routes that

abide by routing policies is possible.

Scalable detour detection. I study the interaction between triangle inequality

violations and network coordinates and develop a scalable technique to detect TIVs

with few measurements. My technique relies on measuring the difference between

the real latency between a pair of nodes and the distance estimated with network

coordinates. If the difference is positive, it is more likely that the pair of nodes is

part of a detour; if the difference is negative, the pair of nodes is likely in need of

a detour.

Mutual advantage in overlay routing. I introduce mutual advantage as a

novel principle in the construction of overlay networks: overlay edges should exist

only between nodes that benefit form each other’s position or resources in the

network. I examine the potential of mutual advantage in the context of detour

routing and show, perhaps contrary to expectation, that there are not only “haves”

and “have nots” of low-latency connectivity. I show that such a simple, locally-

1.4 Roadmap 12

enforced mechanism is sufficient to provide detours in the Internet.

PeerWise. I design and build PeerWise, the first scalable and fair latency-

reducing routing overlay network. By providing its participants with paths that

are shorter than those offered by ISPs, while protecting them against freeriding

and misbehaving, PeerWise offers a practical and flexible alternative to Internet

routing, and to existing latency-reducing overlays such as Detour [86].

1.4 Roadmap

This dissertation is organized as follows. In Chapter 2, I present details of how

routing is done in the Internet, with emphasis on the mechanisms and policies

that lead to triangle inequality violations and routing overlay networks. Chapter 3

offers new insight into the dynamic properties of triangle inequality violations and

how they affect the design of PeerWise. I study the positive and negative effects

of using triangle inequality violations for latency reduction in Chapter 4. I focus

on how to discover TIVs in Chapter 5, and present a scalable detour discovery

technique based on network coordinates. In Chapter 6, I discuss how to achieve

fairness in PeerWise and introduce mutual advantage as a novel principle for the

construction of overlay networks. I also discuss the the limitations of using mutual

advantage in detour discovery. I present the design of PeerWise in Chapter 7 and

1.4 Roadmap 13

results from its deployment on the PlanetLab testbed in Chapter 8. I conclude

with an overview of future work in Chapter 9.

Chapter 2

Background and Related Work

Two simple concepts are at the foundation of PeerWise: triangle inequality viola-

tions (TIVs) and overlay routing. That TIVs exist in the Internet represents an

excellent opportunity to obtain shorter end-to-end paths. With overlay routing,

users can take advantage of this opportunity by overriding the default Internet

routing and sending traffic along the detours provided by TIVs.

TIVs and overlay routing are both a consequence of Internet routing. TIVs

occur naturally because routing is not based on latency, while routing overlay

networks are an artificial effect of routing not taking into account user performance.

In this section, I present an overview of routing in the Internet, with emphasis

on those policies and mechanisms that lead to TIVs and routing overlays. I then

describe both triangle inequality violations and routing overlays and review related

research.

14

2.1 Routing in the Internet 15

2.1 Routing in the Internet

In this section, I present an overview of routing. This is not an exhaustive pre-

sentation of Internet routing; for treatises on the subject I refer the reader to the

books by Peterson et al . [75] and Ross et al . [39].

The Internet is a large network composed of thousands of smaller networks,

called autonomous systems (AS), operated by Internet Service Providers (ISPs).

ASes compete and cooperate with each other to control routing and ensure connec-

tivity between users in the Internet. ASes enter business relationships with each

other. Some provide Internet service to others in exchange for money: they have a

provider-customer relationship (p2c). Others negotiate to exchange traffic without

exchanging money as a way of avoiding sending traffic through a provider: they

have a peer relationship (p2p) [25,95].

Each AS is composed of tens to thousands of routers. Routers are the devices

that direct traffic between users. Routers build routing tables that contain collected

information on all the best paths to all the destinations they know how to reach.

They use routing protocols to advertise and receive route information to and from

other routers, and to compose paths between users.

The goal of routing is connectivity: find a usable path to the destination. This

path is built with information from routing protocols. The path computation is

next-hop based. If a router does not have direct connection to the destination, it

2.1 Routing in the Internet 16

looks in its routing table, finds another router that is “closer” to that destination,

and forwards traffic to it. Each routing protocol may have a different definition

for “closer”: some may choose the router with the lowest number of hops to the

destination (as in RIP [64]), others the one with the least-cost path based on a

metric defined by the network operator (as in OSPF [66]). Routing protocols allow

operators to express preference for certain paths to shape the flow of traffic. Some

paths may be preferred because they are lightly-used, cheaper or more reliable.

Operators express these policies in the configuration of routing protocols.

I separate the discussion on routing into two parts: inter-domain routing and

intra-domain routing.

2.1.1 Inter-domain routing

Inter-domain routing protocols carry routing information between autonomous sys-

tems. The main inter-domain routing protocol is BGP (Border Gateway Proto-

col) [83].

BGP is a path vector protocol. The term “path vector” comes from the fact

that BGP routing information carries a sequence of AS numbers, which indicates

the path a route has traversed. Each BGP router maintains a table of IP networks,

or prefixes, and the AS path to them. For each prefix, a BGP router receives many

path advertisements. It has to select a single “best” path to advertise further to

2.1 Routing in the Internet 17

its own neighbors—other BGP routers to which it is directly connected.

The local policies for selecting and exporting BGP routes depend on the busi-

ness relationships between ASes. Common practice is for customers to not adver-

tise routes learned from a provider to peers or other providers. This prevents the

customer from being used as transit between two of its providers. Similarly, routes

learned from peers or customers are advertised to other customers and not to

providers or other peers. This order is established by business interests: delivering

packets through customers creates revenue, delivering packets through providers

costs money, while delivering packets through peers typically costs nothing. To

break ties, routes with fewer ASes are chosen. By abiding to these policies, pack-

ets may take a more circuitous policy-compliant path instead of the shorter or less

congested policy-violating path. I present an example of how routing policies can

lead to more circuitous paths in Figure 2.1.

Once the next-hop AS to a destination is chosen, the AS has to decide the

router-level path to that neighboring AS. Commonly, ASes have more than one

peering point to each other. A peering point is a place where routers from many

ASes interconnect to exchange traffic. To which peering point to send traffic then?

The most common practice of choosing the path is called early-exit (or hot-potato

[27]): the AS tries to send traffic to the closest peering point, to minimize the

cost incurred on its own network to route packets. The decision of selecting the

2.1 Routing in the Internet 18

A B

C D

E

A B A and B are peers

A C A is customer of C
C is provider of A

actual data path

impossible data path

Figure 2.1: Policies for selecting and exporting BGP routes can lead to circuitous paths.
A, B, C, D and E are ASes. B has a peer relationship with A and is customer of both
C and D. B does not advertise to D its routes to A or C, therefore D discovers only the
path (D, E, C, A) to A, instead of the more direct, and perhaps shorter or less loaded,
(D, B, A).

peering point depends only on local performance and is oblivious to the latency to

the destination. In Figure 2.2, I show how early-exit routing inflates end-to-end

paths.

2.1.2 Intra-domain routing

Intra-domain routing protocols carry routing information inside autonomous sys-

tems. Intra-domain routing is typically based on finding shortest paths with respect

to configured weights assigned to each link.

The most common intra-domain routing protocols are RIP, OSPF and IS-IS.

RIP is a distance-vector protocol. In distance-vector routing, each link is assigned

a cost, and the path chosen between two nodes has the lowest total cost. Each

2.1 Routing in the Internet 19

San Francisco

Chicago

Los Angeles

AS A

AS B

actual path (early−exit)

shorter path (not chosen)

Washington

Figure 2.2: Early-exit routing leads to inflated paths. Hypothetical ASes A and B peer
in San Francisco and Washington, DC. When a user from Chicago, in AS A, wants
to communicate with a user in Los Angeles, in AS B, the path chosen by AS A goes
through the peering point in Washington (since it is closer to Chicago). A more direct,
and potentially shorter path, between Chicago and Los Angeles, would traverse the San
Francisco peering point.

router computes and stores locally the cost of the best paths to each destination.

It periodically disseminates this information to its neighbors, who can update their

own routes if they are costlier. OSPF and IS-IS are link-state routing protocols.

In link-state routing, nodes exchange partial maps of the network. Each node can

reassemble the fragments into a global picture and choose paths from a complete

topology.

2.2 Triangle inequality violations 20

To set policy, each network operator configures a weight (cost) for each link.

The chosen path between two nodes has the lowest cost. Operators can decrease

or increase the cost of each link to encourage or discourage traffic. For paths to be

shortest in terms of latency, link weights must be consistent with actual delays.

2.2 Triangle inequality violations

In this section, I introduce triangle inequality violations (TIVs) in the Internet.

TIVs are a direct and natural consequence Internet routing not being based on

latency [111].

2.2.1 The triangle inequality

The triangle inequality states that for any triangle ABC, the length of a given side

must be less than or equal to the sum of the other two sides:

d(A,C) ≤ d(A,B) + d(B,C) (2.1)

where d(x, y) is the distance between x and y.

Now consider a space S, formed all nodes in the Internet. I define the distance

between two nodes in S as the round-trip time (or latency) between them (d(x, y) =

rtt(x, y),∀x, y ∈ S). It has been shown [88, 111] that there exist triples of nodes

in the Internet that do not satisfy the triangle inequality:

∃ A,B,C ∈ S s.t. rtt(A,C) > rtt(A,B) + rtt(B,C) (2.2)

2.2 Triangle inequality violations 21

I call a triple of nodes that violates the triangle inequality a bad triangle.

In the bad triangle ABC, AC is the long side while AB and BC are the short

sides. Alternatively, borrowing terminology from Detour [88, 86], I refer to the

path (A,B,C) as the detour path and to the path (A,C) as the direct path. I define

the latency reduction of a detour path as the difference between the latency on the

direct path and the latency on the detour path.

That there exist TIVs in the Internet is an excellent opportunity for improving

end-to-end latency. If three nodes are part of a TIV, the latency between two of

them decreases when traffic is redirected through the third. In Figure 2.3, I show

a real TIV in the Internet formed by nodes in College Park, MD, Seattle, WA,

and New York, NY. Packets take 97 ms on the direct path between College Park,

MD and Seattle, WA. However, the College Park user can reduce her latency to

the Seattle node to 74 ms (by 23 ms) if it redirects all packets through the node

in New York.

2.2.2 Research on TIVs

Savage et al . [88] are among the first to show the existence of triangle inequality

violations in the Internet. They measure a large number of Internet paths between

geographically diverse hosts and show that alternate paths of lower latency exist

between more than 20% of the pairs of nodes in their data sets. The authors study

2.2 Triangle inequality violations 22

College Park, MD

Seattle, WA

7 ms

97 ms

67 ms

New York, NY

Figure 2.3: Example of triangle inequality violation formed by three nodes located in
College Park, MD, New York, NY and Seattle, WA. The latency on the direct path
between College Park and Seattle is 97 ms, using the detour through New York takes
only 74 ms.

2.3 Alternatives to Routing 23

the origins of the TIVs and conclude that the availability of alternate paths does

not depend on a few good or bad ASes.

Zheng et al . [111] use data collected between nodes in the PlanetLab and GREN

research networks to argue that TIVs are not measurement artifacts, but a persis-

tent, widespread and natural consequence of Internet routing policies. We confirm

their findings that TIVs are caused by routing policies. We also study and quan-

tify, using much larger latency and AS path data sets, the different policy decisions

that may affect the formation of TIVs.

Recently, triangle inequality violations have been studied in relationship to

network coordinates [46,102]. I review this research in Chapter 5, when I introduce

network coordinates.

2.3 Alternatives to Routing

ISPs do not guarantee good paths between users. For scalability, BGP does not

maintain performance-based path metrics and exchanges only reachability infor-

mation, in the form of full AS paths to each destination prefix. Therefore, as seen

earlier in the section, it may select paths that are longer or more congested than

necessary [88, 86, 93, 71]. The slow convergence of BGP may lead to packet delay,

reordering, and even loss when failures occur [41].

Several research efforts attempt to improve the BGP end-to-end path selection

2.3 Alternatives to Routing 24

process either by proposing changes to BGP or by offering alternatives such as

source routing and overlay networks.

2.3.1 Changes to BGP

Subramanian et al . propose HLP [96], a hybrid link-state and path-vector protocol,

as an alternative to BGP. HLP achieves better scalability and convergence than

BGP, by exposing common routing policies. The customer-provider relationships—

which can be easily inferred from routing information [25, 23] anyway—are made

public and used to create hierarchies that limit the propagation of routing updates.

HLP uses link-state routing within a given hierarchy of ASes to improve connec-

tivity and uses path-vector routing between hierarchies to preserve scalability.

R-BGP [40] adopts a different approach. Instead of improving path selection

by minimizing the periods without connectivity between two users, Kushman et

al . focus on protecting the data plane by offering the user a backup path. While

waiting for the default routes to recover after failure, R-BGP forwards data on

precomputed fail-over paths advertised by ASes before the fault occurred. R-BGP

guarantees connectivity between two ASes as long as there is a policy compliant

path between them.

Wiser [63] extends BGP with a simple mechanism that coordinates the route

selection of each ISP with those of its neighbors. Each ISP shares information

2.3 Alternatives to Routing 25

by tagging advertised routes with costs derived from internal paths. Routes are

computed based on a combination between local costs and the neighbor’s costs.

When there are several flows between two ISPs, each ISP can trade off a small

increased cost in the path of some flows for a large performance benefit for other

flows [62], resulting in a win-win situation.

MIRO [107] is a multi-path interdomain routing protocol that offers flexibility

in choice of paths to both end-users and transit domains. In MIRO, routers learn

about default routes using BGP but ASes are allowed to negotiate alternate paths

when needed. MIRO retains the simplicity of BGP and improves its connectivity

and failure resiliency by offering path diversity.

2.3.2 Source Routing

Source routing protocols [113, 35, 82, 108, 6] offer greater flexibility and diversity

in path selection. They allow end-hosts to select the path to the destination by

specifying intermediate hops—routers or ASes—to be traversed. However, for

sources to compute efficient paths, knowledge of the network topology and path

performance metrics is necessary, which can lead to scalability problems. Further,

the intermediate hops have little control over the traffic they relay, which limits

wide scale deployment.

For scalability, feedback-based routing [113] and NIRA [108] separate the topol-

2.3 Alternatives to Routing 26

ogy information propagation (i.e., the existence of routes) from the route discovery.

In feedback-based routing, transit routers propagate only structural information,

while route computation is exclusively done at the edge routers based on end-

to-end measurements and reachability information. NIRA propagates structural

information only within provider-rooted addressing hierarchies. Each user dis-

covers topology information on domains that provide transit service to her and

retrieves on demand topology information from the destination’s providers.

BANANAS [35] allows source-based multipath routing where the source needs

not be an end-host, but any AS on the path of a packet. Intermediate ASes can

control the path by announcing only a subset of all available destinations, similarly

to BGP. Platypus [82] achieves policy compliant packet forwarding using network

capabilities to securely verify source routing requests. Argyraki and Cheriton [6]

propose WRAP, a variant of the original Loose Source Record Route Protocol

[79]. WRAP controls the domain-level path of a packet by adding state inside the

packet’s header.

2.3.3 Overlay Networks

Overlay networks are virtual networks of nodes and logical links built on top of

the existing routing infrastructure, with the purpose of adding new functionality.

There are many types of overlays that arise to meet a range of purposes and needs:

2.3 Alternatives to Routing 27

file sharing [26,36,18], content distribution and caching [2,24,37], improved routing

[5, 86, 29], enhanced security and privacy [98, 17, 101], multicast and streaming

[7,8,32,14,13], ordered message delivery [59], implementation and experimentation

of new technologies [74].

A routing overlay is an overlay that controls or modifies the path of data

through the network. Routing overlay networks [5,86,29] improve the performance

and robustness of packet delivery by delegating the task of selecting paths to users,

who can choose among a diversity of routes which are more reliable, less loaded,

shorter, or have higher bandwidth than those selected by the ISPs. Unlike other

path selection methods, overlay networks do not require support from routers.

Although packets still traverse the underlying routing infrastructure, their path is

constrained by the logical edges of the overlay.

Several strategies are used to determine which nodes should peer and what

links should be followed. RON [5] builds a fully connected mesh and monitors

aggressively all existing edges. When the direct path between two nodes fails or has

performance problems, communication is re-established through the other overlay

nodes. Other approaches sacrifice unnecessary edges for scalability to define more

sparse meshes: Nakao et al . [67, 68] employ topology information and geography-

based distance prediction to build a mesh that is representative of the underlying

physical network. Gummadi et al . present SOSR [29], a simple overlay network for

2.3 Alternatives to Routing 28

improving end-to-end path reliability. When failures occur, the source attempts

to reach the destination using a small set of randomly chosen intermediary nodes,

obtaining close to maximum possible benefit.

Many peer-to-peer applications build their own routing overlay networks to

improve connectivity issues. Skype [92] redirects voice packets between two users

that are behind NATs and cannot communicate directly through a third Skype

user with public IP address. BitTorrent [18] creates connections between the users

that have mutual interest in each other’s data.

Chapter 3

Measuring Triangle Inequality Violations

Existing studies on triangle inequality violations show that TIVs are persistent

and widespread [102, 22]. They are not measurement artifacts, but a natural con-

sequence of the Internet routing structure [111]. However, all evidence about TIVs

has been limited to aggregate latency data sets [22,94,109,102,106,111] that com-

bine measurements taken at different times over long periods. These data sets

fail to capture the variations of triangle inequalities and may offer false illusions

to applications that rely on TIVs or the lack thereof. For example, representing

multiple measurements with their median values may reveal TIVs that are short-

lived in reality, and thus not necessarily critical for latency reduction, or may miss

long-lived TIVs that could be exploited by overlay routing.

The limitations of these data sets open crucial questions for the design of sys-

tems that exploit TIVs: Are TIVs stable or transient? Are they real or simply

illusions caused by aggregating measurements taken at different times? Are they

caused by queuing delay or load? And finally, is the performance of these systems

affected by the way data is aggregated?

29

30

time AB BC AC TIV?

t1 78 47 140 yes

(a) (b)

time AB BC AC TIV?

t2 90 26 106 no

t1 103 40 135 no

med 103 26 135 yes

t3 100 50 166 yes

t2 98 15 135 yes

med 98 47 140 no

t3 135 25 139 no

Figure 3.1: Median values can create the illusion of TIVs. Latencies for AB, BC and AC
are measured several times. We show the values at t1, t2 and t3. The final data set is
compiled from the medians: although at no timestep is there a TIV among A, B and C,
with AC as the long side, the medians indicate otherwise (a); alternatively, even if each
measurement indicates the presence of a TIV, the medians do not reflect it in the final
data set (b).

In this chapter, I aim to offer new insight into the properties of triangle in-

equality violations in the Internet and how they affect the design of PeerWise. I

collect new latency data sets of different sizes and at varying time granularities. I

show that TIVs are real and not illusions of measurement. The number of TIVs

varies with time and aggregating multiple measurements using medians underes-

timates the number of TIVs that existed at any point during the measurement.

Aggregating measurements eliminates most of the TIVs that appear sporadically

during the measurement, but it also misses many (≥70%) of the TIVs that last

longer than 5 hours.

3.1 Pitfalls of measuring TIVs 31

3.1 Pitfalls of measuring TIVs

Existing evidence about TIVs is derived from aggregate all-to-all latency data sets

that combine many measurements [102,22,43,111]. The final latency between two

nodes is obtained by taking the median [22] or the minimum [106, 111, 109] of

measurements performed over long periods of time such as days or even weeks.

Although these data sets are meant to reflect the real Internet latency space, they

may fail to accurately depict the characteristics of TIVs. Consider an experiment

that measures the latencies among nodes A, B and C at regular intervals and

computes the final latency value for each pair as the median of the measured

values. In Figure 3.1 we show values of latencies at three intervals, t1, t2, and t3,

as well as the median. Although at no time during the measurement was there a

triangle inequality violation among A, B and C, the medians indicate otherwise

(Figure 3.1(b)). The opposite can also be true: the triple A, B and C violates

the triangle inequality at every time step, but this is not reflected by the medians

(Figure 3.1(c)).

Scenarios such as the ones above, although rare, reveal the potential pitfalls

of reasoning about triangle inequality violations with aggregates of data. Some

triangle inequality violations may appear when computed with median values for

latency but may not be long-lived enough to be significant. Further, aggregates of

data may not capture TIVs that, although do not appear continuously during the

3.2 New measurements 32

data collection, may still be present for enough time to be useful for an overlay

routing network.

3.2 New measurements

In this section, I describe the methodology for collecting latency data sets that are

better suited for studying the properties of triangle inequality violations. I use the

King tool [28] to estimate latencies between arbitrary nodes in the Internet.

3.2.1 King

King uses recursive DNS queries to estimate the latency between two nodes in the

Internet. Given the IP addresses of two nodes, King computes the propagation

delay between them as the delay between authoritative name servers for those

addresses. Figure 3.2 shows an example. A user located at S tries to estimate the

latency between nodes A and B. First, S measures the round-trip time to nsA, the

closest recursive name server of A. Then, S asks nsA to recursively resolve a name

served by a name server of B, nsB. The latency between nsA and nsB is obtained

by subtracting the times taken to perform the two operations and represents an

estimate of the latency between nodes A and B. For more details on the design

and implementation of King, please refer to the paper by Gummadi et al . [28].

Using King to estimate all-to-all round-trip times between nodes in the Internet

3.2 New measurements 33

nsA nsB

S

1

2

rtt(A,B) = rtt(S,A,B)−rtt(S,A)

3

A B

Figure 3.2: How King works: 1) S measures the RTT to the closest recursive name
server of A, nsA, 2) S sends a recursive query through nsA for a domain resolved by a
name server of B, nsB and measures its round-trip time, 3) the latency between A and
B is estimated as the difference between the time taken to perform the previous two
operations.

may introduce errors in the latency prediction:

• First, DNS servers have higher connectivity and may not necessarily be co-

located with the nodes they represent in the measurement process. This

may result in very optimistic predictions. To minimize the potential errors,

I measure latencies only among name servers that are in the same subnet as

their associated nodes.

• Second, heavily-loaded DNS servers may cause King to underestimate laten-

cies between many nodes. In Figure 3.2, if the server nsA is loaded, it may

delay significantly both the DNS reply to S and the recursive query to nsB.

The estimation rtt(A,B) = rtt(S,A,B) − rtt(S,A) may be unusually low,

which can lead to false triangle inequality violations. In my measurements, I

3.2 New measurements 34

limit the number of measurement probes to avoid unnecessarily loading the

DNS servers. I also remove from the final data sets those nodes that expe-

rience very low latency (≤1ms) to most other nodes, as described by Dabek

et al . [22].

• Finally, anecdotal evidence suggests that characteristics of the King measure-

ment process such as the location of the user that performs the measurement

(node S in Figure 3.2), the sampling interval, or the time of the measurement

may also influence the results. In Section 3.3.2.2, I study the impact of these

factors and present evidence to the contrary.

3.2.2 Data Sets

I collect three latency data sets at different time granularities. The IP addresses of

the nodes in my measurements are of participants in the Gnutella network and are

available through the Vivaldi project [22]. The chosen IPs share the same subnet

with their authoritative name servers so that better-connected DNS servers would

not influence the estimates of inter-client latencies.

I describe the properties of the data sets in Table 4.1. My goal is to collect data

sets that are synchronous: all pairs of nodes are measured at least once within a

predefined time interval. The size of the interval determines the granularity of the

data set. I use three sampling intervals: 5 minutes, 1 hour, and 3 hours. At the

3.2 New measurements 35

Data set Nodes (Pairs) Duration Interval

K200-1000pairs-5min 200 (1000) 24h 5min

K200-allpairs-1h 200 (all) 44h 1h

K200-allpairs-3h 200 (all) 30h 3h

Table 3.1: Latency data sets. For each set I show: a) the name, b) the total number of
nodes (and the number of pairs measured), c) the duration of the experiment, and d)
the average interval between consecutive measurements of the same pair. All data sets
were collected in the period March-April 2008.

beginning of each interval, I run King for all pairs of nodes in the data set from

a computer at the University of Maryland. Each individual King measurement

consists of four consecutive probes, out of which I keep the minimum value. Col-

lecting latencies at smaller time granularities provides more accurate snapshots of

the latency space. However, it also limits the number of pairs that I can measure

accurately, without unnecessarily loading the DNS servers or the source computer.

Thus, for the smaller granularities, I limit the scope of the measurement to 200 IP

addresses (1000 pairs chosen at random for the 5 minute interval and all pairs for

the 1 hour and 3 hour intervals). In Chapter 4, I describe the collection of a much

larger data set (1715 IP addresses) with granularity of two days.

3.3 Latency variability 36

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

latency (ms)

K200-allpairs-1h
K200-1000pairs-5min

K200-allpairs-3h

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
D

F

latency (ms)

K200-allpairs-1h
K200-1000pairs-5min

K200-allpairs-3h

(b)

Figure 3.3: Cumulative distributions for a) Standard deviation and b) Interquartile range
for the data sets in Table 4.1

3.3 Latency variability

Latency variation on a path may lead to TIVs; conversely, if one perceives latencies

to be varying (when the underlying path is stable), one may assert the existence of

fake TIVs. In this section, I classify the causes of the recorded latency variations

in my measurements. I show that the chances of inferring fake TIVs is small, and

that most latency variation can be attributed to changes in load or changes in

routing.

I begin with an overview of the measurements (which show that latencies do

vary over time).

3.3 Latency variability 37

3.3.1 Measurements Vary Over Time

I study how end-to-end round-trip time varies for the duration of the measurement.

I use two measures of variability: standard deviation (STD) and interquartile range

(IQR). Standard deviation represents the variability of all data points equally,

while interquartile range—the difference between the 75th and 25th percentiles—

measures the variability of the 50% of points around the median. Figure 3.3 shows

the STD and IQR for the three data sets. I make the following observations:

• All distributions have long tails; each data set has a few pairs of nodes that

exhibit high variations in latency. 5% of the pairs in K200-1000pairs-5min

and K200-allpairs-3h and 12% of the pairs in K200-allpairs-1h have standard

deviations of more than 100ms.

• Second, in all data sets, less than 10% of the pairs have interquartile ranges of

more than 40ms. Combined with the previous observation, this implies that

the variability of the latency comes mainly from the more extreme values,

rather than values closer to the median.

• Finally, the pairs in K200-allpairs-1h have higher standard deviations than

the pairs in K200-allpairs-3h. This suggests that variability decreases with

an increase in sampling interval. I confirm that this is true in Section 3.3.2.2.

3.3 Latency variability 38

3.3.2 Causes of Variations

Determining the exact cause that leads to each latency change is difficult. In-

stead, I classify the possible causes of variation into three categories: load-based,

routing-based and measurement-based. Load-based causes refer to events such as

queuing delay at the routers or transient load at the DNS servers involved in mea-

surements. They are likely to manifest as short-duration spikes or oscillations [72].

The routing-based causes are path changes in the Internet determined by link or

node failures or by routing changes. Although routes can also oscillate, their os-

cillations tend to have longer durations [41]. Thus, path changes are more likely

to trigger longer-term changes in latencies. Measurement-based causes depend on

the parameters of the measurement process. I consider three potential sources of

variation: the sampling interval, the time at which we measure each sample and

the location of the source of the measurement. Since I limited the number of pairs

probed per sampling interval to avoid unnecessarily loading DNS servers, I do not

consider load on name servers a measurement-based cause of variation.

3.3.2.1 Routing-based and Load-based causes

I focus first on the routing-based and load-based causes of variation. I select two

pairs from the K200-1000pairs-5min data set and show their latency distributions

in Figure 3.4. I define the latency from the source of the measurement to the first

3.3 Latency variability 39

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

la
te

n
c
y
 (

m
s
)

time (x 5min)

final latency
 0

 100

 200

 300

 400

 500
la

te
n
c
y
 (

m
s
)

2-hop latency
1-hop latency

(a)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250

la
te

n
c
y
 (

m
s
)

time (x 5min)

final latency
 0

 100

 200

 300

 400

 500

la
te

n
c
y
 (

m
s
)

2-hop latency
1-hop latency

(b)

Figure 3.4: Examples of latency variations between pairs of nodes: a) the latency between
66.189.0.29 and 200.31.70.18 exhibits variations due to load; because both 1-hop and 2-
hop latencies have similar variations, we conclude that it is either network load from
S to A or DNS load on A; b) the latency between 216.61.143.252 and 147.136.250.51
varies during the measurement; besides the occasional spikes given by load, there are
long periods of time (from 1h to 8h) when the latency changes significantly (by 70ms)

DNS server (nsA in Figure 3.2) as the 1-hop latency, and the latency from the

source to nsB through nsA as the 2-hop latency. The final latency is obtained by

subtracting the two values. I show the distributions of 1-hop and 2-hop latencies

in the top Figure 3.4(a) and (b). Every point on the plot is associated with one

measurement. I make the following observations:

• the variation of latency in Figure 3.4(a) exhibits many short-duration oscil-

lations for the first 350 minutes; this is most likely a load-based event. On

the right side of the plot, the latency does not oscillate at all.

• the variation of latency in Figure 3.4(b) shows fewer oscillations and the

3.3 Latency variability 40

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 0 0.2 0.4 0.6 0.8 1

C
D

F

Sample Correlation

all pairs
top 5% IQR

Figure 3.5: Cumulative distribution of sample correlation between 1-hop and 2-hop
latencies for all pairs and only the top 5% of pairs when ordered by the interquartile
range.

latency tends to stabilize around two values (30ms and 100ms) for periods

ranging from 1 hour to 12 hours; this behavior suggests a routing-based event

• in Figure 3.4(a), the variations of the final, 1-hop and 2-hop latencies follow

the same trends; in Figure 3.4(b), the 1-hop latencies remain constant over

the first 200 intervals, while the 2-hop latencies change; this indicates the

location of the event that causes the variation: a spike that appears on the

2-hop latency distribution but not on the 1-hop latency distribution must be

caused by an event that occurred on the path between the two DNS servers

I compute the sample correlation for the 1-hop and 2-hop latencies for each pair

in K200-allpairs-1h. I use this data set because it has the smallest time granularity

of the ones that contain all-pair latencies and because it exhibits the greatest

3.3 Latency variability 41

variability. Figure 3.5 shows that there is less correlation among the pairs with

the top 5% interquartile ranges—these are the more variable pairs. This indicates

that the source of high variance typically lies between the two DNS servers probed

by King. It also suggests that the source of the measurement has less impact on

the variability of the data, as I confirm in Section 3.3.2.2.

I also compute the average absolute difference between consecutive measure-

ments for each pair. This estimates how a prior measurement predicts a future

one. A low average consecutive difference indicates that the data varies with low

frequency (as in Figure 3.4(b)), while a high average consecutive difference indi-

cates that the data varies with high frequency (as in Figure 3.4(a)). Figure 3.6

shows that for the pairs in the top 5% among interquartile ranges, the average

consecutive difference is larger than for pairs in general. Indeed, one would expect

that the more variable pairs have higher average consecutive differences. Less than

20% of those high-variance pairs have at most 30 ms of average consecutive differ-

ences; in those cases the cause of the variance is most likely due to path changes.

For the remaining pairs, the variance changes rapidly; the source of the variance

in those cases is most likely due to loaded DNS servers or high queuing delay at

routers.

3.3 Latency variability 42

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F

Average Consecutive Difference

all pairs
top 5% IQR

Figure 3.6: Cumulative distribution of the average difference between consecutive latency
measurements.

3.3.2.2 Measurement-based causes of variation

Another source of variation may be the process of measurement itself. Next I

verify whether the sampling interval, the time when each sample is measured, or

the location of the measurer affect the variability of the data.

I split the K200-1000pairs-5min data set into k more coarsely grained subsets.

In each subset, measurements for the same pair of nodes are collected at k × 5

minute intervals. For example, when using k = 4 subsets, subset i contains all

measurements taken at sample intervals i, i + 4, i + 8 and so on. Dividing the

original data set in this way allows me to obtain k different measurement sets with

k×5 minute sampling intervals. All subsets appear to start at five minute intervals

over the course of k × 5 minutes.

I compute the standard deviation (STD) and the interquartile range (IQR)

3.3 Latency variability 43

 1

 1.5

 2

 2.5

 3

 3.5

 4
 M

e
d

ia
n

 S
T

D

Subset

K200-1000pairs-5min

4 subsets

16 subsets

64 subsets

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

M
e

d
ia

n
 I

Q
R

Subset

K200-1000pairs-5min
4 subsets

16 subsets
64 subsets

(b)

Figure 3.7: Median a) standard deviation and b) interquartile range among the pairs
in each subset in the K200-1000pairs-5min data set. Each point represents the median
value for one of the subsets. As the sampling interval decreases, so does the median
standard deviation.

for all pairs of nodes in each of the subsets, for k = 1 (the entire data set),

k = 4, k = 16, and k = 64. Figure 3.7 shows the median STD and IQR. While

the median STD decreases when using sparser samples, the median IQR remains

approximately the same. We would expect that by sampling less often we are less

likely to measure unusually high values. However, such values are always above

the 75th percentile of the data, so they do not significantly affect the IQR. Also,

the median STD and IQR do not change significantly between subsets, indicating

that the time at which the measurement starts does not affect latency variance.

This analysis highlights a trade-off between sampling rate and the effect of rare

high-latency measurements when we use a fixed list of the most recent latency

3.3 Latency variability 44

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
D

F

STD

K200-allpairs-3h-UMD
K200-allpairs-3h-MPI

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

C
D

F

IQR

K200-allpairs-3h-UMD
K200-allpairs-3h-MPI

(b)

Figure 3.8: Cumulative distributions for a) standard deviation, and b) interquartile
range for two data sets collected simultaneously with experiments ran from University
of Maryland, USA and Max Planck Institute for Software Systems, Germany.

measurements. A high-frequency sampling rate will observe more high-latency

measurements, but those measurements will pass through the list more quickly.

A low-frequency sampling rate does not observe high-latency measurements very

often, but when it does, they remain in the list for a long period of time. This vari-

ation is typically mitigated through the use of median latency measurements, but

since the IQR remains relatively stable it would also be safe to consider alternative

aggregates (such as the mean) restricted to the middle 50% of the data.

Latencies measured with King may be subject to location bias. Since the source

of the measurement is the same for all probes, it can introduce the same uncertainty

in all measurements. I show next that such uncertainty is small.

3.4 Triangle inequality variations 45

I simultaneously start two King experiments and collect latencies among 200

IP addresses every three hours. Each experiment runs for 30 hours. The first

experiment is run from a computer at University of Maryland and produces the

data set K200-allpairs-3h-UMD, while the second is run from the Max Planck

Institute for Software Systems, Germany and produces K200-allpairs-3h-MPI. For

each pair in each data set, I compute its standard deviation and interquartile range

and plot the cumulative distributions in Figure 3.8. The lines are almost identical

showing that the location from where we run the measurements does not introduce

additional uncertainty in the collected data. To confirm my findings, I again start

simultaneously 10 King experiments measuring the same pair of nodes from 10

PlanetLab nodes distributed around the world. The variability of the data does

not change with the location of the measurement.

3.4 Triangle inequality variations

In this section, I study the variation of triangle inequality violations and examine

how well aggregate data sets that combine measurements taken over long periods

of time capture the TIVs that were present during the measurements.

3.4 Triangle inequality variations 46

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40

%
 o

f
tr

ip
le

s

Time (x 1h)

using medians

using individual latencies

Figure 3.9: Percentage of TIVs of the total number of triangles for the K200-allpairs-1h
data set.

3.4.1 TIVs vary over time

I count the number of triangle inequality violations after each sampling interval in

the K200-allpairs-1h data set. I define a good detour as a detour that provides at

least 10 ms and 10% latency reduction over the direct path. I consider only those

violations that provide good detours. By considering only those violations that are

significant, I protect my results from overstating the number of TIVs because of

measurement error. Furthermore, applications that use triangle inequality viola-

tions to identify detour paths seek significant violations due to the overhead of

relaying along the detour path.

Figure 3.9 shows the number of TIVs at every hour during the measurement.

The vertical axis represents the percentage of bad triangles after each interval, out

of all triples that have been measured during the interval. I define the median TIVs

3.4 Triangle inequality variations 47

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

longevity (x 1h)

1,910,577 TIVs

2,010,840 TIVs

100,391 TIVs

all TIVs
lost TIVs

TIVs using medians

Figure 3.10: Cumulative distribution of the longevity of TIVs in the K200-allpairs-1h
data set.

to be the TIVs computed using the median latency for each pair. The percentage

of median TIVs is represented by the horizontal line at 1.34%. Figure 3.9 indicates

that triangle inequality violations vary in time. However, at no point during the

measurement process is the number of violations lower than what one would obtain

using the medians. Thus, data sets that represent multiple measurements by their

median values are conservative: they reveal fewer triangle inequalities than there

were during the measurement process. Of course, if the lost TIVs are all short-

lived, it may be beneficial not to reveal them; for instance, we only want to use

long-lived TIVs for finding detour paths. I study next the longevity of TIVs.

3.4 Triangle inequality variations 48

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

F
ra

c
ti
o

n
 o

f
T

IV
s
 K

e
p

t

Longevity (x 1h)

all-median
all-min

long-side-min
short-sides-min

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f
T

IV
s
 K

e
p

t

Longevity (x 1h)

all-median
all-min

long-side-min
short-sides-min

Figure 3.11: Probability and cumulative distributions of the fraction of TIVs that appear
during the measurement and are preserved when computed on the aggregate data using
one of the four methods: all-median, all-min, short-sides-min, long-side min.

3.4.2 Longevity

What happens to a TIV seen at one point during the measurement? Does it

appear in the TIVs computed with medians? I expect that, due to extreme values

in latency measurements, many triangles are short-lived—they are the effect of an

unusually high latency.

I define the longevity of a TIV as the number of intervals in which it appears.

I do not require the intervals to be consecutive to avoid bias due to missing or

extreme measurements. I compute the longevity for three categories of TIVs: all

TIVs seen during the measurement, all median TIVs and all TIVs seen during

the measurement but not when using medians (lost TIVs). Figure 3.10 shows the

cumulative distributions of longevities for TIVs in the three categories.

More than 80% of all TIVs have a longevity of less than 5 hours, while almost

3.4 Triangle inequality variations 49

all (≥99%) TIVs computed with medians are seen for more than 5 hours and

more than half of them for more than a day. Thus, using medians eliminates the

short-term TIVs.

Of all TIVs, only 18% have a longevity of more than 5 hours. However, of

these long-lived TIVs, 72% (not shown in the figure) are lost—they do not appear

as median TIVs. Such violations are present long enough to be able to help an

overlay routing application such as PeerWise—by exposing a shorter detour—but

are not captured when the measurements are aggregated.

Scenarios where the medians create a TIV that does not exist, as in Figure 3.1

are extremely infrequent. For example, 128 triangles (0.1%) appear only when

using medians and never during the measurement. Using medians only ignores

1.5% of the TIVs that appear more than half the time using individual latency

measurements.

3.4.3 Alternative ways to compute TIVs

To better understand the effects of latency aggregation on the performance of a

latency-reducing detour routing application, I investigate four different ways to

compute the number of TIVs: all-median, short-sides-min, long-side-min and all-

min. I described all-median in Section 3.4.1. In short-sides-min, when I verify

whether a triple forms a TIV, I consider the minimum latencies for the potential

3.4 Triangle inequality variations 50

Method

Intermediate Intermediate Intermediate Final

TIVs TIVs (long≤5) TIVs (long>5) TIVs

preserved preserved preserved false

all-median 4.9% 0.1% 28.1% 0.006%

all-min 23% 21.6% 30% 6%

short-sides-min 49.1% 46.6% 60.8% 15.3%

long-side-min 1.9% 0.01% 11% < 0.001%

Table 3.2: Percentage of TIVs preserved or added by the various methods out of the total
number of TIVs in the corresponding categories. For instance, out of all intermediate
TIVs, we preserve 49.1% with the short-sides-min method. 15.3% of the TIVs computed
with short-sides-min do not appear at all during the measurement.

short sides and the median latency for the long side. In long-side-min, I use

medians for the short sides and minimum for the long side. In all-min, as in other

previous studies [109,106], I use the minimum latency values for every edge of the

triangle.

All-median is conservative. While it eliminates many short-term TIVs, it also

ignores 72% of the TIVs longer than five hours that appear during the measure-

ment (§ 3.4.2). Intuitively, the long-side-min method decreases the number of

TIVs that are preserved and provides a more conservative data set for evaluat-

ing latency-reducing overlay networks. On the other hand, the short-side-min

approach preserves more TIVs but many of them may be short-lived and thus

3.4 Triangle inequality variations 51

potentially useless for detour routing.

Figure 3.11 shows the probability and cumulative distributions of the fraction

of TIVs that are kept by each of the four methods, based on their longevity. Every

point represents the fraction of TIVs with each longevity that are kept.Table 3.2

summarizes the results.

Short-sides-min loses less long-lived TIVs than all-median but also keeps more

short-lived TIVs. Of all TIVs longer than 5 hours, all-median keeps 28% while

short-sides-min keeps almost 60%. Using either of the two methods will better

reflect the performance of latency-reducing detour routing applications. Short-

sides-min keeps more TIVs but also 15% of the TIVs it computes are false: they

never appear in individual measurements. All-min and long-side-min keep about

as many short-lived TIVs as short-sides-min and all-median. However, neither

all-min nor long-side-min keep as many of the very long-lived TIVs as the other

two methods.

In conclusion, the short-side-min method of computing TIVs is suitable for

applications that require an upper-bound on the number of TIVs. all-min under-

states heavily the number of TIVs (it keeps only 5%) and thus does not provide

an accurate latency snapshot for evaluation. In my evaluations, I use all-median,

because it provides a more conservative estimation, biased towards keeping long-

lived TIVs—which are more useful for latency-reducing detour routing—and losing

3.5 Summary 52

short-lived ones.

3.5 Summary

In this chapter, I showed how to measure triangle inequality violations to bet-

ter assess their utility in building a latency-reducing overlay network. Existing

latency data sets are inadequate for evaluating TIVs because they aggregate mul-

tiple measurements taken at different times over long periods. Using new data

sets, collected with the King measurement tool, I showed that TIVs are not illu-

sions of the measurement process but real properties of Internet latencies and that

the number of TIVs varies with time. Aggregating multiple measurements using

medians provides a conservative estimation of the number of TIVs that existed at

any point during the measurement, and is better suited for assessing the feasibility

of detour routing than latency aggregation methods based on minimum.

Chapter 4

Using Triangle Inequality Violations

In this chapter, I study the effects, both positive and negative, of using triangle

inequality violations for latency reduction.

In the first part, I study whether triangle inequality violations expose significant

shorter detours that could be used by PeerWise. I use real-world latency data sets

to answer several technical questions: how many TIVs are there in the Internet?

how much latency reduction do they provide? how many nodes can take advantage

of them? do the one-hop paths provided by TIVs offer sufficient latency reduction

or are more complex, multi-hop paths necessary? I show that, although there are

few TIVs, many nodes can obtain significant latency improvement by exploiting

them.

In the second part, I examine the interaction between triangle inequality viola-

tions and BGP, the interdomain routing protocol. I use measured and predicted AS

paths to verify whether the detour paths exposed by TIVs violate routing policies

enforced with BGP. Understanding the interaction between TIVs and BGP offers

new insights into how ISPs and users can work together to avoid less-than-optimal

53

4.1 Data sets 54

paths while maintaining their tussle in equilibrium [16].

4.1 Data sets

In Chapter 3, I have shown that aggregating multiple measurements using medians

provides a conservative estimation for the number of triangle inequality violations.

In turn, such an estimation offers a worst-case scenario for the evaluation of a

latency-reducing detour routing system such as PeerWise: the fewer the TIVs,

the fewer the potential detours. Next, I apply the lessons learned in the previous

chapter to collect three larger, more diverse data sets, that are better suited to

assess the feasibility of a latency-reducing overlay network such as PeerWise. I

describe the data sets below and summarize them in Table 4.1 (ignore the last

three columns for now).

4.1.1 Latencies

PeerWise-King contains RTTs between 1,953 DNS servers of hosts in the Gnutella

network. The list of hosts was gathered by Dabek et al . for the Vivaldi [22] project.

I use King [28] to measure all-to-all latencies between the servers. The 1,953 servers

were chosen for being in the same subnet as their hosts so that better-connected

DNS servers would not influence the estimates of inter-client latencies [22]. For

each pair of nodes, I kept the median of all latencies measured at random intervals

4.1 Data sets 55

Data set Size When
TIVs TIVs Latency

(triples) (pairs) Reduction

PeerWise-King 1715 x 1715 2008 2% 51% 77ms

PeerWise-PL 213 x 213 2009 2% 50% 61ms

PeerWise-PL-Dest 325 x 448 2008 2% 21% 63ms

Vivaldi-King 1740 x 1740 2004 2% 91% 47ms

Vivaldi-PL 384 x 384 2004 3% 62% 77ms

Table 4.1: Latency data sets for evaluating TIVs.

for 20 days in February 2008. Of the 1,953 servers, I removed 238 that appeared to

experience high load during the measurement, as described by Dabek et al . [22].

PeerWise-PL contains RTTs between 213 PlanetLab nodes, measured in Jan-

uary 2009. I selected one PlanetLab node per site and measured all-to-all latencies

at random times over a week. The final data set contains the median values of the

measurements.

PeerWise-PL-Dest contains RTTs from 389 PlanetLab nodes to 500 popular

web servers, measured in January 2008. I selected the servers based on a ranking

by the Alexa Internet Company [3] using expected and measured client access. For

faster content delivery, many of the websites have multiple IP addresses; users in

different geographic regions see different IPs for the same server. To gather the IP

4.1 Data sets 56

addresses associated with a website, as visible from PlanetLab, I performed DNS

lookups on each of the 500 names from the 389 PlanetLab nodes. I obtained 2932

distinct IP addresses in 796 /24 prefixes. I probed each prefix and each PlanetLab

node from every PlanetLab node at random times over a week. I used the median

RTT values to represent the link.

The latency collection process can produce incorrect data that may bias the

results. I removed 52 servers from the final data set because we could not measure

any RTT to them. Further, several PlanetLab nodes had very low latencies (< 1

ms) to most destinations. These latencies are likely caused by connection-tracking

firewalls or “transparent” proxies near the PlanetLab nodes that generate spoofed

responses as if from the destination. I removed those nodes from the data set since

they would artificially overstate the potential of PeerWise. The final latency matrix

contains RTT values from 325 PlanetLab nodes to 718 prefixes corresponding to

448 websites.

I also use two data sets, Vivaldi-King and Vivaldi-PL, collected by Dabek et

al . for the Vivaldi project, in 2004. Vivaldi-King was collected between 1740 IP

addresses, in a similar manner as PeerWise-King. Vivaldi-PL captures all-to-all

latencies between 384 PlanetLab nodes, but unlike PeerWise-PL, it contains more

than one node per site.

The five data sets illustrate two scenarios in which PeerWise can be useful. La-

4.1 Data sets 57

tency reduction on the symmetric data sets (PeerWise-King, PeerWise-PL, Vivaldi-

King, Vivaldi-PL) shows the potential benefit to applications a set of peers may

run, such as distributed multi-player network games or VoIP applications. On the

non-symmetric PeerWise-PL-Dest, reduced latency shows benefit for users access-

ing popular servers that would not participate in PeerWise.

For each pair of nodes in the data sets, I find all one-hop detours. I consider

only good detours, as in Section 3.4.1. This cutoff helps avoid impractical or

dubious detours due to measurement error. In the PeerWise-PL-Dest data set, I

find detours by server name: the detour path may end at a different IP address

associated with the same name. I find that out of all triples of nodes in our data

sets, at most 3% violate the triangle inequality: two of the nodes in the triple

benefit from a good detour through the third node. As I will show next, although

small, the number of TIVs accounts for many pairs of nodes that could benefit

from a detour.

4.1.2 AS Paths

Understanding the AS paths beneath TIVs allows me to study their compliance

with known routing policies and thus to assess the negative effects of exploiting

TIVs for latency reduction. I select the PeerWise-King data set, because it is the

largest, and augment it with AS paths between all pairs of nodes. To compute

4.1 Data sets 58

as many AS paths as possible I use several sources: RouteViews, Looking Glass

servers and iPlane [61]. To the best of my knowledge this is the first large latency

data set between Internet hosts augmented with AS path information computed

at the same time.

RouteViews [84] collects and archives BGP routing tables and updates from

commercial ISPs. I gathered AS path information from 44 BGP core routers lo-

cated in 38 ISPs in March 2008. In addition, I used paths obtained by Madhyastha

et al . [61] by probing around 25,000 BGP prefixes from 180 public Looking Glass

servers.

I augment RouteViews and Looking Glass measured paths with paths predicted

by iPlane. iPlane measures paths from 300 PlanetLab sites to more than 140,000

BGP prefixes to predict end-to-end paths between any pair of hosts. The predicted

path combines partial segments of known paths, exploiting the observation that

routes from nearby sources tend to be similar [60].

I found AS paths for the pairs of nodes in the data set, 10.4% from RouteViews

and 13.6% from Looking Glass. The reason for such low completeness is that most

of the Looking Glass servers and RouteViews peers are close to the core of the

Internet and are unlikely to capture paths between two edge ASes. iPlane predicts

AS paths between 71.7% of the pairs. By combining RouteViews, Looking Glass,

and iPlane, I find AS paths for almost 75% of the pairs of nodes in the data set.

4.2 TIVs and latency reduction 59

4.2 TIVs and latency reduction

4.2.1 TIVs are important

Previous research on network coordinates [22] and network location [106] has gen-

erally discarded triangle inequality violations because their number is small com-

pared to the total number of triples that do satisfy the triangle inequality. I confirm

that the number of TIVs is indeed low but I also show that their effect on latency

reduction can be significant.

For each data set, I count the number of triples that form bad triangles and

the number of pairs of nodes that are long sides in bad triangles (i.e., pairs that

have an alternate shorter path). As in Chapter 3, to minimize the effect of the

measurement process, I consider only TIVs that provide good detours (more than

10 ms and 10% latency reduction). I report the results in Table 4.1. Although the

number of bad triangles is relatively low (less than 3%), they account for many

paths not being shortest (at least 50% for the symmetric data sets). These results

agree with those reported by Ledlie et al . [43] and underline the importance of

detecting and exploiting TIVs. Although the percentage of triples is similar to

the other data sets, there are fewer pairs that can use TIVs in the PeerWise-PL-

Dest. This could be explained by the popularity of the web servers: they are

over-provisioned and already have good paths leading to them.

4.2 TIVs and latency reduction 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

latency reduction (ms)

Vivaldi-King
PeerWise-PL

PeerWise-PL-Dest
Vivaldi-PL

PeerWise-King

Figure 4.1: Cumulative distribution of potential latency reduction from TIVs, for the
five data sets in Table 4.1

4.2.1.1 TIVs offer significant latency reduction

The latency reduction of a TIV is the difference between the length of the long side

(the direct path) and the sum of the short sides (the detour path). If the latency

reduction is low, even if many pairs of nodes benefit from TIVs, their benefit would

be small. I show next that this is not the case.

I compute the latency reduction for every TIV in each of our data sets and plot

the cumulative distribution in Figure 4.1. Recall that I have already limited the

number of TIVs to those that offer at least 10ms or 10% reduction. More than 80%

of the TIVs in each data set offer latency reduction of more than 20ms and the

majority of TIVs improve the direct path with at least 50ms. I show the median

latency reductions in Table 4.1.

4.2 TIVs and latency reduction 61

Data set
Improvement over direct path

one-hop (TIVs) multiple hops

PeerWise-King 38% 70%

PeerWise-PL 60% 83%

PeerWise-PL-Dest 34% 73%

Vivaldi-King 61% 72%

Vivaldi-PL 60% 80%

Table 4.2: Latency improvement achieved with one-hop and multiple-hop paths.

4.2.1.2 One hop is enough

In discovering low-latency paths, it is tempting to allow paths of arbitrary length.

However, the cost of optimal latencies is high; finding the paths would require an

expensive routing protocol such as AODV [73], and ensuring cooperation across

multiple hops is difficult [4,47,112]. Gummadi et al . observed that relaying through

a single intermediate hop could escape many network failures [29]. I present a

similar result for reducing latency: that limiting paths to a single hop—exposed

by TIVs—is enough.

I compare, for each pair of nodes, the direct path latency, the latency on the

best one-hop path (the detour path latency of a TIV in which the pair of nodes

is long side) and the shortest path latency (allowing multiple hops, computed

4.3 TIVs and BGP 62

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

RTT(ms)

1 hop (TIVs)
multiple hops

direct

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

RTT(ms)

1 hop (TIVs)
multiple hops

direct

(b)

Figure 4.2: Allowing one-hop detours achieves good latency in a) PeerWise-PL and b)
PeerWise-King.

using Dijkstra’s algorithm). Figure 4.2 presents the latency distributions for the

PeerWise-King and PeerWise-PL data sets. I show relative latency improvements

over the direct path in Table 4.1. Using one-hop detours (TIVs) achieves almost

half of the latency reduction possible over the shortest path.

4.3 TIVs and BGP

In the previous section, I have shown that triangle inequality violations expose

shorter paths that could benefit many nodes in the Internet. In this section, I

will study the negative effects of exploiting TIVs for latency reduction. Sending

traffic along the detour paths, exposed by TIVs, instead of default paths, chosen

by BGP, has the potential to disrupt traffic engineering and policy routing in the

4.3 TIVs and BGP 63

Total Detours 793,693

Impossible AS Paths 460,830 (58%)

Cause
Customer transit 343,381 (75%)

Peer transit 117,449 (25%)

Type

Truly disjoint 302,207 (66%)

Borderline 153,057 (33%)

Undercover 5,503 (1%)

Possible AS Paths 197,453 (25%)

Traffic

Eng.

Relay AS not on direct path 56,813 (29%)
Direct, detour paths

differ
103,215 (52%)

Direct, detour paths

same
37,425 (19%)

Path

length

Shorter than direct 17,770 (9%)

Equal to direct 75,032 (38%)

Longer than direct 104,651 (53%)

Transit

cost

Smaller than direct 35,541 (18%)

Equal to direct 96,751 (49%)

Greater than direct 65,161 (33%)

Unknown 135,410 (17%)

Table 4.3: Detour paths are possible (may be available to the BGP decision process)
or impossible (not advertised by BGP). Percentages inside the tables are relative to the
total possible or impossible paths. Categories separated by horizontal lines overlap.

4.3 TIVs and BGP 64

Internet [81]. For example, in a TIV ABC, the detour path (A, B, C) may violate

the transit agreements between the ISPs of A, B and C (maybe because B’s ISP is

a customer of both A’s and C’s ISPs). Do all shorter detour paths violate policies?

Or are they simply not selected by BGP because of its lack of mechanisms to

minimize delay? Do detour paths traverse a different set of ASes that makes them

more attractive from the users’ perspective, but less attractive from the ISPs’

perspective? Answering such questions is important for understanding the effects

of exploiting TIVs for end-to-end latency reduction.

It is not surprising that the BGP path selection process may prefer longer,

policy-compliant paths to shorter, policy-violating detour paths. I ask the following

question: to what extent are detour AS paths available to BGP?

I separate all AS detour paths in the data sets into two categories: impossible

and possible. A path is impossible when it could not have been advertised by

a neighbor, possibly because it could not have been advertised by a neighbor’s

neighbor and so on. Common inter-domain routing rules [25] state that customers

should not advertise routes learned from a provider to peers or other providers.

This prevents the customer from being used as transit between two of its providers

(customer transit). Similarly, routes learned from peers are advertised to customers

and not to providers or other peers, preventing peer transit. Otherwise, a path

appears possible, though traffic engineering or other rules may have led to the

4.3 TIVs and BGP 65

S
D

DRS

S
R

D

R

undercover

depth = 0, width = 1

borderline

depth = 1, width = 1

truly disjoint

depth = 1, width = 2

Figure 4.3: Examples of impossible detour AS paths.

selection of an alternate.

To assess whether detour paths traverse possible or impossible paths, I use

the AS relationships inferred by CAIDA [12]. Directed AS edges belong to one

of four categories: customer-to-provider, provider-to-customer, peer-to-peer and

sibling-to-sibling. A policy compliant AS path should have zero or more customer-

to-provider edges followed by zero or one peer-to-peer edges, followed by zero or

more provider-to-customer edges. Sibling-to-sibling edges may appear anywhere

on the path.

4.3 TIVs and BGP 66

Table 4.3 classifies the detour paths. The row labeled “Unknown” corresponds

to the AS paths for which we cannot give an indisputable classification using the

AS relationship data set. 58% of the detour paths in the data set are non-compliant

(i.e., include customer or peer transit). This is not surprising, since detour paths

go through end hosts, which are generally customers and may be in stub ASes. I

describe the cells of this table in the following discussion, first for impossible, and

then for possible paths.

4.3.1 How Impossible Are the Impossible Paths?

I ask the following question: How severe are the policy violations of the impossible

paths? For each detour path I define its prefix and its suffix. The prefix is the

longest common subpath to appear at the beginning of both the detour path and

a policy compliant path between the same pair of nodes, while the suffix is the

longest common subpath to appear at their end. Based on the prefix and the

suffix, I define two measures to capture the severity of policy violation of a detour

path: width and depth. The width is the number of valid AS edges that would be

required to connect the suffix and the prefix to obtain a policy compliant path.

The depth is the minimum number of AS edges that have to be traversed from the

relay to the end of the prefix or the beginning of the suffix. Based on the values of

width and depth I classify the impossible detour paths into undercover, borderline,

4.3 TIVs and BGP 67

and truly disjoint. I present an example of each type in Figure 4.3 and describe

them below:

undercover (depth = 0) (1% of impossible detour AS paths)

Because the depth is 0, the relay of the detour lies on a compliant path.

Although both direct and detour traffic enter the AS of the relay, they use

different peering points to exit.

borderline (depth = 1, width ≤ 1) (33%)

Borderline compliant detours diverge from the compliant path only to tra-

verse the relay before returning quickly. These paths might be discovered by

BGP, given enough information about the relay location.

truly disjoint (all other cases) (66%)

These paths are disjoint enough from any compliant path that we do not

believe BGP could find them.

To summarize, approximately a third of the “impossible” paths may in fact be

available to BGP.

4.3.2 Possible Paths

25% of the detours in the data set follow compliant paths. Therefore, they can

be learned by BGP. Only traffic engineering decisions or a lack of configuration

4.3 TIVs and BGP 68

can stop these paths from being advertised and learned. BGP routers select paths

based on cost, performance, length, and even which path is advertised first. Since

I do not know precisely why any path was chosen, I consider here a few possible

explanations.

4.3.2.1 Traffic Engineering

Each AS must pay some cost to carry traffic in its internal network. ISPs engineer

their networks and routing to minimize this cost, while improving performance,

choosing early-exit routes that deliver packets at the nearest exit, or divert traffic

to balance load. Although I do not have explicit information about these choices,

I infer when such traffic engineering occurs. For example, for 41% of the possible

detour paths, the AS of the relay node lies on the direct path, yet the detour and

the direct paths are different. This may occur because traffic, when redirected

through the relay, will traverse a different peering point than the default traffic.

These results suggest that detours may take advantage of shorter paths by

overriding common traffic engineering practice. The number of detours due to

minimizing internal cost may be higher than we have observed; we can only identify

such detours when the relay is on the direct path.

4.3 TIVs and BGP 69

 0

 10

 20

 30

 40

 50

-4 -2 0 2 4

p
e

rc
e

n
ta

g
e

 o
f

p
a

th
s

difference of AS hops

 0

 10

 20

 30

 40

 50

-4 -2 0 2 4

p
e

rc
e

n
ta

g
e

 o
f

p
a

th
s

difference of transit cost (x 1000)

(a) (b)

Figure 4.4: Possible detour AS paths have bigger (a) path length, and (b) transit cost.

4.3.2.2 Path Length

When choosing among otherwise equal paths, BGP selects the one with the fewest

ASes. Because a detour path traverses an additional relay point, we expect it

to use more ASes than the corresponding direct path. For each pair of nodes, I

compute the difference in number of AS hops between the detour path and the

corresponding direct path. Over 80% of the possible detour paths traverse at least

as many ASes as the corresponding direct paths. This suggests that latency is not

reduced by eliminating ASes traversed.

4.3.2.3 Transit Cost

Although not visible in BGP data, the price an ISP pays to its provider may

make a path more or less preferred. Traversing larger networks implies greater

4.4 Summary 70

expense. I define the transit cost of a path as the maximum degree—number of

AS-to-AS peerings—of all ASes on the path. Table 4.3 contains the results of

the comparison between the transit cost of detour paths and corresponding direct

paths. The transit cost of the detour paths is significantly higher than that of

direct paths.

4.4 Summary

In this chapter, I used real world latency and AS path data sets to examine the

positive and negative effects of exploiting triangle inequality violations for latency

reduction. I have shown that TIVs are an important resource for improving end-

to-end latency. Although the number of TIVs in my data sets is relatively small

(< 5% of all triples), more than half of the nodes can exploit them to find shorter

detours.

I also described how the shorter paths provided by TIVs compare with the

default paths offered by BGP. As one might expect, many of these shorter paths

appear impossible to BGP: providers or peers provide transit. Almost one-third

of these paths, however, are compliant: internal traffic engineering decisions and

not BGP may lead to longer paths being chosen as default. This shows that

finding detours routes that abide by routing policies is possible. Further, of the

non-compliant paths, one third could be made compliant: the detour path uses

4.4 Summary 71

a direct customer to transit between two peering ASes that could, if properly

configured, provide the shorter, router-level path.

Chapter 5

Discovering detours with network coordinates

In this chapter, I show how to scalably detect TIVs and predict detours. I have

shown in the previous chapter that TIVs can provide detours for many nodes. One

way to discover these detours is to measure latencies on all possible paths between

a source and a destination. However, this approach would limit the scalability

of a latency-reducing overlay. I use network coordinates to find detours while

significantly decreasing the number of measurements a node must perform.

Network coordinate systems [69,22,65,51,20,89,76,99,110,104,1] are a popular

approach for estimating the latency between two nodes with few measurements.

When run on a set of nodes, they assign each node a position in a finite metric

space (also called the embedding space) and estimate the latency between two nodes

as the distance between their coordinates in the space. The measurement cost is

much reduced because nodes have to collect latencies to only a small set of other

nodes. Further, a node can make instant latency estimations, without waiting for

measurements to finish.

Network coordinates are not perfectly accurate. Triangle inequality violations

72

5.1 Network coordinates 73

are one reason for the inaccuracy. Because TIVs are not allowed in metric spaces by

definition, the latency estimations computed by network coordinates do not always

match the real latencies between nodes. I show that one can use these discrepan-

cies to predict the existence of triangle inequality violations without performing

extensive measurements.

5.1 Network coordinates

Network coordinate systems [69,22,65,51,20,89,76,99] provide a scalable method

to estimate latency between nodes in the Internet without measurement. Their key

insight is to associate nodes with coordinates in a geometric space that characterize

their location in the network, and estimate the latency between two nodes as the

distance between their coordinates. In this section, I review well-known coordinate

systems and discuss their properties and design decisions.

The research on network coordinates is abundant. I enumerate the most estab-

lished systems: GNP [69], Vivaldi [22], IDES [65], ICS [51], PIC [20], BBS [89],

Lighthouses [76], Virtual Landmarks [99], and Pyxida [80]. They all converge in

their desired properties, to scalably and accurately estimate Internet latency, but

diverge in the design decisions that lead to these properties.

The most important properties of any coordinate system are accuracy and

scalability. Accuracy is the property of a system to produce coordinates for its

5.1 Network coordinates 74

nodes such that the difference between the real distance and the estimated distance

between two nodes is minimized. Scalability ensures that the performance of the

system does not degrade when the number of participants increases.

All coordinate systems have three important components to their designs: space

selection, probing and positioning. Space selection involves how to calculate the

distances between points, whether the embedding space is Euclidean, how many

dimensions it has, etc. Probing is the process of measuring latency to a few peers—

other nodes participating in the system—, or landmarks. Positioning is the op-

timization process of using probe results to assign a coordinate to every node in

space.

5.1.1 Internet modelling and space selection

The first stage in the design of a network coordinate system is choosing the geo-

metric space of the embedding. Ideally, one would like to use a space that best

fits the Internet, such that the metric of the space approximates Internet latencies.

GNP, Lighthouses, Virtual Landmarks, ICS, PIC and Vivaldi use an n-dimensional

Euclidean coordinate space, motivated by the fact that latencies in the Internet

are dominated by geographic distance.

Many systems use adjusted Euclidean spaces or non-Euclidean spaces to model

the Internet. Dabek et al . [22] introduce spherical coordinates, motivated by the

5.1 Network coordinates 75

fact that the modeled distances are computed on the spherical surface of the Earth.

However, since paths in the Internet do not wrap around the Earth, the authors

have abandoned the spherical model for a simpler quasi-Euclidean space: the height

model augments n-dimensional Euclidean spaces with a height that captures the

time needed to traverse the access links from a node to the core of the Internet. Lee

et al . [46] add a localized adjustment term to Euclidean coordinates to account for

the non-Euclidean effect of triangle inequality violations. Shavitt and Tenkel [90]

propose Hyperbolic spaces, motivated by the jellyfish structure—a core in the

middle with many tendrils—of the Internet [100].

5.1.2 Probing and data collection

To compute its network coordinate, a node must first measure latencies to a set

of other nodes, which we call landmarks. The landmarks may or may not be

participants to the system. The selection of landmarks and measurement data

collected is very important in allowing nodes to correctly position themselves in

the embedding space.

GNP, Lighthouses, Virtual Landmarks, ICS and IDES use a fixed infrastructure

of landmarks to determine coordinates. GNP uses all known landmarks to infer

coordinates. To mitigate the effect of landmark failures, Lighthouses, ICS and

IDES, allow nodes to probe any subset of landmarks. In particular, IDES offers

5.1 Network coordinates 76

nodes the possibility to measure distances not only to a subset of the predefined

landmarks but also to other nodes that have already computed their coordinates.

PIC, Vivaldi and BBS do not need specialized infrastructure nodes. In PIC, a

new participating node can pick any node, whose coordinates have already been

computed, as a landmark. The authors propose three different strategies: pick

nodes at random, pick the closest nodes, and pick some nodes at random and others

as the closest nodes. Dabek et al . find that, in Vivaldi, the best results are obtained

when choosing preferentially landmarks that are closer but also communicating

with some distant nodes. Vivaldi does not require the selected landmark to have

computed its coordinates, but it requires each node to know the accuracy of its

own coordinate.

Measuring the latency to a node by probing it may be expensive for the node

since others may probe it at the same time. Thus, when possible the probing is

piggybacked on application traffic. This is especially effective in the systems that

do not rely on infrastructure nodes to position themselves.

5.1.3 Positioning

After measuring latencies to the landmarks, each node uses the measurements to

compute its own network coordinate. In GNP, PIC, Vivaldi and BBS, each node

assigns initial values to its coordinate and starts a numerical optimization process

5.1 Network coordinates 77

whose goal is to minimize a predefined error objective function. The error captures

the difference between real latencies and embedded latencies from the node to its

landmarks. In Lighthouses, ICS, Virtual Landmarks and IDES, participants use

the measured latencies to the landmarks as their initial coordinate vector (Lipschitz

embedding). They apply different dimensionality reduction methods to eliminate

the dimensions which have the least impact on the final position.

GNP and PIC use the Simplex Downhill method to minimize the sum of squared

relative errors. Unfortunately, the Simplex Downhill is an algorithm that converges

very slowly and its results vary based on the initial coordinates assigned to the

nodes. Furthermore, the method does not guarantee convergence, risking of getting

stuck in local minimum regions. Other approaches have obtained better conver-

gence by relating to optimization problems in physics. Vivaldi chooses the best

coordinates by simulating a network of springs, with a spring placed between every

pair of nodes in the network. The rest length of the spring is the real distance be-

tween the nodes and the current length is the embedding distance. The algorithm

minimizes the squared-error of the embedding by simulating the movement of each

spring towards the low energy position. I provide more details on Vivaldi in Sec-

tion 5.3.1. BBS [89, 90] simulates a set of particles in a force field, each particle

corresponding to a node. Each pair of particles is affected by a force depending

on the embedding error of the distance between the associated nodes. The goal of

5.2 Network coordinates and TIVs 78

the optimization is to find the position of each particle such that its potential is

minimized.

Lighthouses allows any node to compute its coordinates by probing any sub-

set of the landmark nodes and determining the local base through Gram-Schmidt

orthogonalization. ICS and Virtual Landmarks use Principal Component Anal-

ysis (PCA) to reduce dimensionality. PCA is based on matrix factorization and

transforms a data set that consists of a large number of correlated variables into a

new set of uncorrelated variables, which characterize the network topology. IDES

associates two coordinate vectors to each node, an incoming vector and an out-

going vector. The two vectors are derived after the factorization of the matrix

comprising the distances to landmarks. The estimated distance from a node A to

a node B is the dot product between the outgoing vector of A and the incoming

vector of B.

5.2 Network coordinates and TIVs

In this section, I show why network coordinate systems cannot estimate Internet

latencies perfectly and how I use this inacurracy to scalably discover detours. In

Section 5.3, I present evaluation results that support my claims.

Most network coordinate systems embed Internet nodes into metric spaces. A

metric space is an ordered pair (M,d), where M is a set of points and d a distance

5.2 Network coordinates and TIVs 79

function on M , such that, ∀x, y, z ∈M , the following properties hold:

d(x, y) ≥ 0 (non-negativity) (5.1)

d(x, y) = 0 if and only if x = y (identity of indiscernibles) (5.2)

d(x, y) = d(y, x) (symmetry) (5.3)

d(x, z) ≤ d(x, y) + d(z, y) (triangle inequality) (5.4)

The space formed by all nodes in the Internet, with the latency (or the round-

trip time) as the distance between two nodes, is not a metric space. While it

respects the non-negativity and identity of indiscernibles properties, the Internet

latency space fails to satisfy the symmetry and the triangle inequality properties.

Asymmetric routing [71,42], which occurs when the path from node A to node B is

different from the path from node B to node A, leads to the asymmetry of latency.

In Chapters 2 and 3, I described the causes of triangle inequality violations. Both

asymmetric routing and triangle inequality violations are inconvenient for network

coordinate systems. Because my goal is to detect detours, I focus here only on how

TIVs impact the accuracy of coordinates.

Any three Internet nodes that violate the triangle inequality cannot be em-

bedded accurately into a space that prohibits TIVs, such as any metric space.

Inherently, the more triangle inequality violations there are, the more imprecise

the embedding. Although detrimental to the distance estimation, the inaccuracy

in coordinates introduced by embedding a bad triangle can be helpful in determin-

5.2 Network coordinates and TIVs 80

A

20ms 39ms

B

C A

B

C

38ms 42ms

embedding

62ms 26ms

Figure 5.1: Embedding three points that form a TIV into a metric space introduces
inaccuracies.

ing which nodes and links belong to bad triangles. With this information, nodes

could proactively search for shorter detours or advertise their position as relays in

shorter detours for others.

How can triangle inequality violations impact the embedding? I define the

embedding error (or simply, the error) ε between a pair of nodes A and B as the

difference between the embedding distance and the real distance between A and

B.

ε(A,B) = d(A,B)− rtt(A,B) (5.5)

Embedding a bad triangle ABC into a metric space may cause high errors on the

edges of the triangle (see Figure 5.1). The errors must be significant enough to

reverse the sign of the triangle inequality. Thus,

rtt(A,C) > rtt(A,B) + rtt(B,C) (5.6)

becomes

d(A,C) ≤ d(A,B) + d(B,C) (5.7)

5.3 Evaluation 81

This, in turn, implies one of following three possibilities:

• the error of the long side is negative (d(A,C)− rtt(A,C) < 0)

• the sum of errors of the short sides is positive ((d(A,B) − rtt(A,B)) +

(d(B,C)− rtt(B,C)) > 0)

• both

Consequently, I expect that the more negative the error of an edge, the higher the

probability that the edge is a long side in a triangle inequality violation. Conversely,

the more positive the error, the better the chances for the edge to be a short side

in a TIV. I show this to be true in the next section.

5.3 Evaluation

In this section, I use simulations of the Vivaldi network coordinate system to

evaluate two hypotheses:

• triangle inequality violations impact the accuracy of network coordinates

• the embedding error between two Internet nodes indicates whether the nodes

are more likely to form the long side of a TIV (need a detour) or the short

side of a TIV (provide a detour)

I consider two of the three main data sets described in Chapter 4: PeerWise-

King and PeerWise-PL. I do not experiment with PeerWise-PL-Dest because it is

5.3 Evaluation 82

intended to assess the performance of a system where not all nodes participate in

PeerWise and therefore run a network coordinate system.

5.3.1 Vivaldi

I chose the Vivaldi network coordinate system because it is distributed and adap-

tive, running without global state and accommodating the dynamics of the net-

work. Vivaldi simulates a system of springs where each spring corresponds to a

pair of nodes. The rest length of a spring emulates the real distance between two

nodes while the actual length is the distance computed by the embedding. The

energy of each spring is proportional to its displacement (the difference between

the rest length and the current length). The algorithm runs iteratively at each

node and simulates the progress of the springs toward a state with minimum en-

ergy. At every step, each node will be pushed to a new position that minimizes the

displacement of the springs it is connected to. Two factors affect the position of a

node after each step: the magnitude (M) and the direction (D) of movement. M

is proportional to the displacement of the associated springs and D is the opposite

of the gradient of the energy function with respect to the position of the node.

After computing the magnitude and the direction of movement the following rule

updates the coordinates of a node:

x = x+ δ ×M ×D

5.3 Evaluation 83

where δ is the timestep between two consecutive updates.

I consider an n-dimensional coordinate space. The energy of a spring between

nodes x and y is:

Exy =
1

2
k(rtt(x, y)− d(x, y))2

where rtt(x, y) − d(x, y) is the displacement of the spring and k is the elasticity

constant.

Dabek et al . [22] use coordinates in Euclidean space augmented with a height

value h. The distance between two nodes x and y, with x = (x1, x2, . . . , xn, hx)

and y = (y1, y2, . . . , yn, hy), is:

d(x, y) =

√
n∑

i=1

(xi − yi)
2 + hx + hy

After computing the gradient of the energy function, they obtain the following

expressions for M and D:

M =
rtt(x, y)− d(x, y)√

n∑
i=1

(xi − yi)
2

D = x− y

5.3.2 Methodology

I use the Harvard Vivaldi [43] network simulator. Each node has 32 neighbors: half

selected as the closest nodes in network latency and the rest chosen at random.

Each node starts at the origin of the space, and moves using Vivaldi’s adaptive

5.3 Evaluation 84

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F

embedding error

PeerWise-King
PeerWise-PL

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

C
D

F

relative embedding error

PeerWise-King
PeerWise-PL

(b)

Figure 5.2: Cumulative distributions of a) absolute and b) relative errors for the
PeerWise-King and PeerWise-PL data sets.

timestep to converge quickly. I choose a two-dimensional Euclidean space aug-

mented with heights due to its simplicity and because it was shown to produce good

embeddings [22], better than for other types of spaces such as Hyperbolic [58,90].

In particular, Euclidean spaces have been motivated by the fact that latencies in

the Internet are dominated by geographic distance and that paths generally do not

“wrap around” the Earth [22].

5.3.3 TIVs impact the accuracy

Next, I study the accuracy of the embeddings using error distributions and show

how it depends on the number of TIVs.

I evaluate the accuracy of Euclidean Vivaldi by absolute and relative errors

computed over all pairs of nodes in PeerWise-King and PeerWise-PL. Absolute

5.3 Evaluation 85

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F

embedding error

PeerWise-King-Filt
PeerWise-PL-Filt

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2

C
D

F

relative embedding error

PeerWise-King-Filt
PeerWise-PL-Filt

(b)

Figure 5.3: Cumulative distributions of a) absolute and b) relative errors for the
PeerWise-King-Filt and PeerWise-PL-Filt data sets.

error is the difference between the embedded distance and the real distance (Equa-

tion 5.5); relative error is the absolute error divided by the real distance. Other

accuracy metrics, like relative rank loss [52] better capture the usefulness of the

embedding for applications, but by relying only on the relative distance to nodes

they tend to overstate the importance of small errors.

Figure 5.2(a) presents the distribution of the absolute embedding error for the

data sets. Each point corresponds to one pair of nodes. Vivaldi exhibits similar

distributions for both data sets, with more than 80% of the pairs having an error

within the range [-50,50].

I also plot the distribution of relative errors in Figure 5.2(b). A relative error

of 1 between a pair of nodes means that the embedded distance is twice the real

5.3 Evaluation 86

% of all predicted distances

Data set within 25% of real within 50% of real within 100% of real

PeerWise-King 66% 82% 91%

PeerWise-King-Filt 80% 93% 96%

PeerWise-PL 61% 74% 81%

PeerWise-PL-Filt 86% 95% 98%

Table 5.1: Summary of prediction errors. We show, for each data set, the percentage
of distances estimated to be within 25%, 50% and 100% of the real distances. Higher
values are better.

distance; of -0.5 that the embedded distance is half the real distance. Of the two

data sets, Vivaldi performs worst on PeerWise-PL. For example, almost 20% of

the distances are predicted to be at least four times as large as the real distances

in PeerWise-PL, compared to fewer than 5% in PeerWise-King. I summarize the

error prediction results in Table 5.1.

I now verify whether the accuracy improves when I eliminate triangle inequality

violations. Since most of the nodes participate in at least one TIV, I cannot

eliminate all nodes that create a TIV. Instead, for each node, I count the number

of TIVs that it participates in and eliminate from each data set the 10% of nodes

that participate most TIVs. I obtain two new data sets, PeerWise-King-Filt and

PeerWise-PL-Filt, of 1544 and 192 nodes. By doing the filtering (and removing

5.3 Evaluation 87

10% of the nodes), I am removing 83% of the TIVs in PeerWise-PL and 72% of

the TIVs in PeerWise-King. Figure 5.3 shows the error distributions for new data

sets. Table 5.1 presents the resulting accuracy statistics.

As expected, Vivaldi performs much better on the data sets with fewer triangle

inequality violations. After removing the 10% of the nodes that participate in most

TIVs, more than 80% of the distances are predicted to be within 25% of the real

values. Triangle inequality violations can disrupt the embedding considerably. My

results are similar to those obtained by Wang et al ., who showed that Vivaldi has

improved accuracy when the edges that are part of triangle inequality violations

are removed from the probing process [102].

5.3.4 Embedding errors indicate TIVs

I conjectured that as the error between two nodes decreases towards -∞, the prob-

ability that the two nodes form a long side in a TIV (rather than a short side)

increases. Similarly, as the error increases towards ∞, the two nodes will rather

be the end points of a short side than of a long side in a TIV.

To capture the presence of each pair of nodes in triangle inequality violations, I

define the TIV score. A TIV score is given to each pair of nodes and represents the

percentage of the number of times the nodes form a long side in a TIV out of the

total number of times the two nodes are present in a TIV. A TIV score of 0 means

5.3 Evaluation 88

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

T
IV

 s
c
o

re

embedding error (estimated distance - real distance)

(a)

 0

 20

 40

 60

 80

 100

-100 -50 0 50 100

T
IV

 s
c
o

re

embedding error (estimated distance - real distance)

(b)

Figure 5.4: Average number of TIVs versus estimation error for a) PeerWise-PL and b)
PeerWise-King: as the estimation error decreases, it is more likely that the pair is a long
side in a bad triangle.

that the pair appears only as short side, while a TIV score of 100 indicates that

the two nodes form only long sides in TIVs. Unlike the TIV severity metric [102],

which is computed only for the bad triangles in which an edge is long side, the

TIV score accounts for all bad triangles in which an edge is present.

I compute the embedding error for each pair and plot it against the average TIV

score in Figure 5.4, for the PeerWise-King and PeerWise-PL data sets. To create

the plot, I took all pairs of nodes that had the same estimation error and averaged

their TIV scores. The error bars correspond to one standard deviation in each

direction. The figure shows that as the estimation error of a pair of nodes becomes

more negative, the nodes form more and more long sides. When the estimation

5.4 Summary 89

error becomes larger, the number of short sides that a pair forms increases. Thus,

a pair of nodes with a negative estimation error has a higher chance of needing

a shorter path; when the nodes have a large estimation error between them, they

are more likely to be part of a shorter path for another node.

5.4 Summary

In this chapter, I have shown that triangle inequality violations can be scalably

detected with network coordinates. A network coordinate system associates nodes

with points in a metric space such that the distance between the points estimates

the real latency between nodes. Since TIVs are not allowed in metric spaces by

definition, this embedding may result in high errors on the edges of the triangle.

These errors in Internet coordinates indicate the presence of TIVs and the type of

error shows whether a path is a likely detour to exploit or a pathologically long

link for which a detour can be found. Such a result is of the greatest importance in

designing and building PeerWise. To find the best peers automatically, a PeerWise

node would simply have to compute its network coordinate and use the error in

the embedding (how over- or under-estimated any link latency is) to find Internet

paths to be avoided or preferred.

Chapter 6

Mutual advantage

Triangle inequality violations provide an excellent opportunity for latency-reducing

overlay routing. Participants benefit from detour paths significantly shorter than

the corresponding direct paths and discover these detours with few measurements

using network coordinates.

Such a simple setting is not fair for the intermediate nodes that provide the

detours. The cost of using a detour is not paid by the node who benefits from

it; it accumulates instead at the relay node, who must use its own resources to

forward the detour traffic. The heterogeneity of connectivity of Internet users

means that well-connected nodes are more likely to offer detours, while poorly

connected nodes are more likely to need detours. This asymmetry may discourage

the well-connected nodes from joining—they have little to gain and would pay

highly. The design of a latency-reducing routing overlay should include an incentive

mechanism, a means by which nodes compel each other to provide at least as much

service as they receive.

I propose to introduce mutual advantage as a design principle in PeerWise:

90

6.1 Motivation 91

overlay edges should exist only between nodes that provide detours for each other:

each is an intermediate node in a detour for the other. Nodes negotiate con-

nections based strictly on mutual advantage, and overlay paths follow only these

connections.

In this chapter, I study the feasibility of introducing mutual advantage into the

design of PeerWise. I answer several technical questions: Is there mutual advantage

in the Internet latency space? Will all nodes find mutually advantageous latency

agreements, or are some nodes universally disadvantaged? I show that mutual

advantage exists in the Internet: perhaps contrary to expectations, that there

are not only “haves” and “have nots” of low-latency connectivity. The mutual

advantageous requirement reduces the number of destinations available through

detours to about half, yet even popular websites, using content distribution services

such as Akamai are reachable through detours.

6.1 Motivation

Several distributed protocols and applications use mutual advantage as part of

their design [18,50,91,21]. BitTorrent [18] peers that download the same file trade

blocks the other is missing. In backup systems [21], nodes store replicas of files for

each other. Autonomous systems in the Internet negotiate peer-to-peer agreements

to provide low-cost connectivity to each other’s customers [25].

6.1 Motivation 92

Bringing mutual advantage into the design of routing overlays has several ben-

efits. First, mutual advantage induces better cooperation among nodes. Incentives

to participate become simpler, and long-lived, fair connections appear. Building

systems grounded in incentives for cooperation makes them robust to misbehavior

and selfishness [77, 87]. Second, users could freely discriminate among the con-

nections that they allow and would have the ability to explicitly say how much

service they want to contribute. Third, mutual advantage avoids the tragedy of

the commons [30] in routing overlays, when only a few, well-connected nodes pro-

vide transit. It keeps the trades of connectivity fair, in contrast to file-sharing

where universities are net providers of content [85]. Finally, pairwise, mutually ad-

vantageous peerings provide a powerful, dynamic, fine-grained admission control

mechanism. Connections are not made based on the membership to a group, but

are negotiated individually by each participant with all other participants.

The requirements imposed by the mutual advantage principle on who can con-

nect to whom are reminiscent of the bilateral connection game (BCG) [19], a special

case of network formation game. In BCG, a link between two nodes is established

only with the consent of both nodes. However, nodes construct links that mini-

mize the cost of reaching other participating nodes, whereas my goal is to design

an overlay network where nodes create peerings that offer detours to destinations

that do not necessarily participate.

6.2 Limitations of Mutual Advantage 93

direct paths

detours

peering
A B DC

Figure 6.1: Finding mutually-advantageous detours: A discovers a detour to D through
B; B also finds that it can reach C faster if it traverses A; A and B create a mutually
advantageous peering which they both use to get more quickly to their destinations.

The key idea behind mutual advantage is that two nodes can cooperate to

obtain faster end-to-end paths without either being compelled to offer more service

than they receive. Nodes negotiate and establish pairwise connections to each

other based strictly on mutual advantage. Figure 6.1 shows an example. Node A

discovers a faster path to D via B. However, B will not help A unless A provides

a detour in exchange. Since there is a shorter path from B to C going through A,

A and B can help each other communicate faster with their intended destinations.

Therefore they can establish a pairwise peering.

6.2 Limitations of Mutual Advantage

I assess the potential performance loss when finding detours with mutual advan-

tage. Because I restrict detour paths to mutually advantageous peerings, I would

not expect PeerWise to find the shortest detours or find detours to all destina-

tions. Using simulations on the PeerWise-King and PeerWise-PL-Dest data sets,

6.2 Limitations of Mutual Advantage 94

I show that nodes can find shorter paths to the majority of destinations for which

a shorter detour exists, despite the requirement of mutual advantage. I find that

mutually advantageous detours exist even for popular destinations hosted on many

prefixes.

6.2.1 Methodology

I built a simulation prototype of PeerWise to study how well it finds detours with

mutual advantage and embedding error. To find network coordinates for nodes, I

use Vivaldi [22]. I allow each node to communicate with all other nodes, to better

study mutual advantage in isolation. When requesting detours for its destinations,

a node starts with the neighbor that has the highest embedding error [57]. I

evaluate alternative relay selection methods in Section 7.2.2.

For each pair of nodes in the data sets, I find all one-hop detours. As before,

I consider only good detours (detours that provide at least 10 ms and 10% la-

tency reduction over the direct path). In the PeerWise-PL-Dest data set, I may

find detours by server name: The detour path may end at a different IP address

associated with the same name.

6.2.2 Is There Mutual Advantage in the Internet?

How much mutual advantage exists in the data sets? I define a potential peering

to exist between two nodes that can provide a detour to each other, as between A

6.2 Limitations of Mutual Advantage 95

Data set Median 25th perc 75th perc

PeerWise-PL-Dest 47% 22% 57%

PeerWise-King 75% 50% 87%

Table 6.1: Percentage of potential peerings for each node. Half of the nodes in PeerWise-
PL-Dest have potential peerings with 47% of the other nodes (in PeerWise-King with
75%).

and B in Figure 6.1. The number of potential peerings for a node represents the

number of neighbors with which the node can construct mutually advantageous

peerings. In Table 6.1, I show statistics about potential peerings. 50% of the nodes

in either data set have have potential peerings with 47% of the rest of the nodes in

PeerWise-PL-Dest, and 75% in PeerWise-King. The table also shows that there is

more mutual advantage in the PeerWise-King data set than in PeerWise-PL-Dest.

Next, I show that mutual advantage sacrifices few detours. I study the fraction

of destinations that each node can reach more quickly via mutually advantageous

peerings in Figure 6.2. Each graph considers four cases to isolate the two main

potential performance sacrifices: the requirement of mutual advantage (that could

make detours unavailable) and relay choice by positive embedding error (that might

not find them despite being possible). The solid line represents an unconstrained

detour overlay. Considering mutual advantage eliminates over half of the potential

destinations for many nodes. For some, mutual advantage eliminates all detours;

trivially, these are the nodes that cannot provide service to others. Choosing

6.2 Limitations of Mutual Advantage 96

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

fraction of destinations reachable

mut-adv, emb error
mut-adv, no emb error
emb error, no mut-adv

best detours, no mut-adv

(a)

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

fraction of destinations reachable

mut-adv, emb error
mut-adv, no emb error
emb error, no mut-adv

best detours, no mut-adv

(b)

Figure 6.2: Distribution of the fraction of destinations reachable through mutually ad-
vantageous peerings for PeerWise-PL-Dest data set (a), and PeerWise-King data set
(b). In PL-Dest, few destinations can be reached by detour at all, some sources need
no detours, and approximately half of the detours that could be used are lost by the
mutual advantage restriction. In PeerWise-King, all nodes have many detours available,
and mutual advantage is less costly. In both, embedding error finds nearly all detours.

among either set (constrained to mutual advantage or not) via embedding error

between source and relay sacrifices very few detours (the corresponding lines are

almost indistinguishable from each other in Figure 6.2).

6.2.3 Detours to Nearby Destinations

The destinations in PeerWise-PL-Dest include both regionally and globally popular

websites. I expect that a regional website serves its pages from within the region

of interest, so the direct path latencies to the destination from PeerWise nodes in

that region should be small. Since the PlanetLab nodes are globally diverse, some

6.2 Limitations of Mutual Advantage 97

 0

 5

 10

 15

 20

D
e
to

u
r

R
T

T
 (

m
s
)

 10

 100

 1000

 10 100 1000
 0

 0.01

 0.02

P
D

F

Direct RTT (ms)

Figure 6.3: PeerWise-PL-Dest: When a detour exists, density plot of detour path RTT
versus the direct path RTT (top), and PDF of direct path RTTs (bottom).

“detours” may be for destinations unpopular in that node’s region. For example,

detours to popular websites in China may be less useful for nodes in Europe or

North America. In Figure 6.3, I show that latency reduction is not limited to

distant destinations. Because my rule to define a “good” detour requires at least

10 ms of reduction, few very short paths are featured. However, detours are found

for direct paths too short to cross the Atlantic or Pacific oceans (< 100 ms).

6.2.4 Multiple-IP Websites

PeerWise has the potential to be effective even for websites using content distri-

bution. For faster content delivery, around 20% of the popular websites in the

PeerWise-PL-Dest data set are served from geographically distributed locations.

6.2 Limitations of Mutual Advantage 98

 1

 10

 100

 0 20 40 60 80 100 120 140

n
u
m

b
e
r

o
f
p
re

fi
x
e
s

number of nodes finding detours

Î

Í

Ë Ì

Ê

Ï

Figure 6.4: Detours to mirrored websites: The figure presents number of nodes that find
detours versus number of prefixes for each website. Table 6.4 describes the six regions
in the figure.

User requests are transparently directed to the geographically (or administratively)

nearest IP address.

Using the PeerWise-PL-Dest data set, I compute how many nodes can find

detours to each of the 448 websites and plot it against the total number of /24

prefixes of each website. Figure 6.4 presents the results. Each point in the plot is

associated with one server name. Most websites with IP addresses in at least two

prefixes can be reached faster from at least one PlanetLab node. I divide the plot

into six regions and describe each in the accompanying table.

Figure 6.4 shows that PeerWise has the potential to be effective in reducing

latency to most popular websites, even when they employ other latency-reducing

techniques such as mirroring or DNS redirection.

6.2 Limitations of Mutual Advantage 99

Region Sites Notes

Ê p = 1 239
Under-provisioned, PeerWise expected to be useful.

0 < c ≤ 75 (53%)

Ë 1 < p ≤ 12 95
Have many prefixes, mutually-advantageous detours found.

0 < c ≤ 75 (21%)

Ì 0 < p ≤ 12 29 Regional websites, most from China, many nodes find

detours to them; perhaps not designed for global access.c > 75 (6%)

Í 12 < p ≤ 60 62 All www.google.* websites; which IP address is chosen

depends on the source, not the country suffix.0 < c ≤ 100 (14%)

Î p > 60 21 Akamai-type destinations; finding a detour to any replica

hosting center provides a detour to all sites hosted there.0 < c ≤ 75 (6%)

Ï p ≥ 1 2 PeerWise finds no detours to these multi-prefix sites;

includes www.it168.com and www.sohu.com.c = 0 (0%)

Table 6.2: Detours to mirrored websites: the number of nodes that find detours (c)
versus number of prefixes for each website (p). The table describes the six regions in
Figure 6.4.

www.it168.com
www.sohu.com

6.2 Limitations of Mutual Advantage 100

6.2.5 Simulation Limitations

I discuss here the potential limitations of our simulation.

First, the pairwise peerings are established expecting that each destination will

be accessed as often as any other. Clearly, not all destinations are equally popular,

but we cannot estimate how often peers will use the peering. My evaluation might

favor VoIP applications where the endpoints are well distributed and no endpoint

is orders of magnitude more popular than the others.

Second, as described in Chapter 3, the latencies between DNS servers or Plan-

etLab nodes may underestimate the latencies between end-hosts in the Internet.

Although the latency matrix between DNS servers and PlanetLab hosts may rep-

resent the locations of hosts in the coordinate space, these data sets may not

represent the latencies seen by such hosts.

Third, using PlanetLab nodes to reach popular destinations may raise ques-

tions about the validity of our evaluation. Connecting to a commercial site via a

PlanetLab relay may reveal detours that would not be discovered had the relay

been on the commercial network. However, Abilene and NLR, research networks

that are part of Internet2, use wavelengths on fiber leased from other providers

along rights-of-way shared with commercial networks. I believe that this sharing

prevents research networks from providing an unfair advantage in latency reduc-

tion. I have even observed detours between PlanetLab nodes—routing within the

6.3 Summary 101

academic network is not so latency-optimal as to prevent detours.

Finally, I do not model the bandwidth of the connection. Even though mutual

latency reductions lead to a pairwise peering, limited bandwidth may prevent it

from helping.

6.3 Summary

I this chapter, I introduced mutual advantage as a design principle for routing

overlay networks in general and PeerWise in particular. Mutual advantage restricts

the virtual edges in PeerWise to those pairs of nodes that can provide detours to

each other: each is an intermediate node in a detour for the other. Using real-world

latencies, I show that introducing mutual advantage into detour discovery does not

limit considerably the number of detours that are found. Even popular websites,

using content distribution services are available through mutually-advantageous

detours.

With triangle inequality violations exposing detours, network coordinates scal-

ably predicting TIVs and mutual advantage offering fairness, all the pieces are in

place for the design of PeerWise. In the next chapter, I present the components

that make up PeerWise and the policies of each PeerWise participant for finding

detours.

Chapter 7

Designing a Latency-Reducing Routing Overlay

Network

In this chapter, I describe the design of PeerWise in two main parts: mechanisms

and policies.

The key components of PeerWise are network coordinates, neighbor tracking

and pairwise negotiation. Besides using simple network coordinates, as described

in Chapter 5, I implement a virtual network coordinate approach to find coordi-

nates for the destinations that do not participate directly in the overlay. Neighbor

tracking determines the set of nodes that are more likely to offer detours by re-

membering those neighbors with high embedding error in the coordinate space.

Pairwise negotiation establishes and maintains connections promising mutual ben-

efit.

The second part of the chapter focuses on the policy decisions that each Peer-

Wise node makes. I evaluate neighbor selection and relay selection algorithms. I

show that coordinates can be used to choose among detours. The environment is

quite different from previous work on latency prediction using coordinates [22,69].

102

7.1 Mechanisms 103

Instead on focusing on source-to-destination, PeerWise must choose a source-to-

relay-to-destination path based on a relay coordinate known to have high embed-

ding error and a destination coordinate that may be stale or inaccurate.

7.1 Mechanisms

In this section, I focus on the key mechanisms of PeerWise: detour detection using

network coordinates for scalability, neighbor tracking for improving efficiency, and

pairwise negotiations for fairness.

7.1.1 Network Coordinates

Every PeerWise node must compute its own network coordinate before searching

for detours. I use Vivaldi [22] for network coordinates because it is distributed and

scalable. Every node maintains a set of neighbors that it probes periodically. It

uses the round trip time and the network coordinate of these neighbors to update

its own coordinate. After each probe, the node computes the coordinate that

minimizes the squared estimation error to all of its neighbors. To help the system

converge quickly, nodes with uncertain coordinates can move farther with each

measurement. Figure 7.1(a) shows the coordinate computation process.

A node in PeerWise must learn the coordinates of destinations to discover long

or short sides of a TIV. However, if a destination is not participating in the

7.1 Mechanisms 104

D

3

(b)(a)

8

4

5

6

7
21

A A

Figure 7.1: (a) Computing network coordinates for a PeerWise node: A measures RTT to
its neighbors and asks for their coordinates (1); after it receives the replies (2) it computes
the coordinate that minimizes the squared estimation error (3); (b) Computing network
coordinates for a non-PeerWise node D : A asks each of its neighbors (4) to measure
RTTs to D (5,6); after it receives the replies from the neighbors (7), A runs the network
coordinate algorithm on behalf of D (8).

overlay, it will not provide its own network coordinate. I therefore extend Vivaldi

to allow a node to compute a virtual network coordinate for any non-participating

node. I will often refer to any node that does not participate to PeerWise as a

(non-participating) destination, since it can only be a destination for detours.

To generate virtual network coordinates for non-participating node in Vivaldi, a

participating node chooses to become temporarily responsible for that destination.

The node runs Vivaldi on behalf of the destination with one minor adjustment.

Since the destination is not participating in the system, it cannot manage its own

neighbor set or actively gather the round trip times needed to compute the coor-

7.1 Mechanisms 105

dinate. Instead, the participating node uses its own neighbor set as the neighbor

set for the destination, and requests that those neighbors measure the latency to

the destination. Figure 7.1(b) depicts this method. The extensions are similar to

those described by Ledlie et al . [45].

Requiring all nodes to compute virtual coordinates for all non-participating

destinations would limit the scalability of PeerWise. I include a gossip mechanism

to disseminate the calculated coordinates throughout the system. At fixed intervals

(10 s in my experiments), each node picks one of its neighbors at random, then

selects a random destination and sends to the neighbor the IP address, name and

virtual coordinate of the destination.

A node decides to take responsibility for a destination to which it wants to

find a detour when the destination’s coordinate does not yet exist, becomes too

old (1 day in experiments), or becomes unstable (where stability depends on the

embedding error to other nodes).Any node can generate coordinates independently;

this decentralization may allow simultaneous, redundant work. Rather than try to

enforce a single consistent view of the coordinate, I allow any of these coordinates

to be considered valid estimates. When a node receives a new virtual coordinate

through the gossip protocol, it uses that new coordinate only if it is more stable

and it was updated by the node responsible for it.

Virtual network coordinates are useful if a destination is popular. If the desti-

7.1 Mechanisms 106

nation is not popular, a node trying to discover a detour to it will need to compute

its virtual coordinate. Since this requires that the node’s neighbors measure the

round trip time to the destination, the node would know all three sides of the

triangle, so it would trivially discover TIVs. However, if the node knows the vir-

tual coordinate of a destination already (because the destination is popular and

its coordinate has been gossiped), it will only know the two adjacent sides of the

triangle, and it will be able to make predictions about the third side between the

neighbor and the destination. I evaluate these predictions in Section 7.2.3.

7.1.2 Neighbor Tracking

The success of PeerWise depends on the ability of nodes to find other nodes to

establish pairwise peerings. There are many possible relays for a node, any of

which may have high embedding error with respect to the node. Recall that high

embedding error for a pair of nodes indicates a higher probability that the pair

is part of a detour. I use neighbor tracking to find the nodes that are more

likely to offer detours. With neighbor tracking, a PeerWise node remembers extra

neighbors and learns about good potential relays from its neighbors or from nearby

(in latency) nodes. The neighbors in this section are not relays ; they are only

candidates for becoming so.

When joining PeerWise, a node bootstraps its potential neighbor set from a

7.1 Mechanisms 107

known PeerWise node and uses it to compute its network coordinate. Once the

network coordinate is stable, the node asks its neighbors about their own neighbors,

remembering those nodes with high embedding error. For example, in Figure 7.2,

A asks for the neighbor set of B, formed of B1, B2 and B3. Node A then computes

the embedding error from itself to each of B1, B2 and B3 and adds those nodes

to which the error is most positive to its neighbor list. These nodes are the most

likely to form a short side of a TIV with A.

For scalability, I limit the number of neighbors of each node. Neighbors with

higher potential to offer the best detours replace less-efficient neighbors. I consider

and evaluate different methods for ranking potential neighbors in Section 7.2.1.

Because PeerWise allows a node to exchange information about neighbors with

neighbors, I expect each node to have ample choices.

7.1.3 Pairwise Negotiation and Maintenance

PeerWise nodes negotiate with their neighbors to request or advertise alternate

routes. As discussed in Chapter 5, a detour to a destination is likely to exist if the

estimated distance to the destination is much smaller than the measured latency.

In this case, a node asks its neighbors with high embedding errors whether they can

offer a faster path (Figure 7.3(c)). Nodes are not limited to this simple strategy. In

Section 7.2.2, I evaluate different policies for choosing relays and deciding whether

7.1 Mechanisms 108

B1

B2

B3

(a) (b) (c)

A

B

A

B

A

B

Figure 7.2: Neighbor Tracking. (a) A chooses the neighbor to which it has the highest
embedding error and requests its neighbor set; (b) A measures RTTs to each of the nodes
received from B; (c) A adds to its neighbor set those nodes to which it has a positive
embedding error.

to request detours for a destination.

Actively requesting detours may be inefficient, especially if the connection to

the destination is short-lived. In addition, the time to find a detour may dominate

the latency reduction achieved. To encourage fast detour discovery, PeerWise

nodes also proactively advertise paths to popular destinations. For example, in

Figure 7.3(d), node A observes that the link to node D, which may or may not

be running PeerWise, has a high estimation error. This means that AD may be a

short side in a TIV. A advertises D on all other potential short sides (i.e., to all

neighbors to which it has a high estimation error).

Finding detours is not enough: PeerWise is based on mutual agreements be-

tween nodes. A sender node can use a detour only if the relay that offers it also

7.1 Mechanisms 109

D?

1 2

3

4

5

6

(a) (b) (c) (d)

1 2

3

4

5

6

D 1 2

3

4

5

6

D PeerWise node

Destination

Neighbors(numbered
in decreasing order
of embedding error)

Detour request

Detour req reply

Detour adv reply

Detour

Detour advertisment

1 2

3

4

5

6

D

A AA A

Figure 7.3: Detour Requests and Advertisements. (a) A wants to connect to destination
D; (b) A discovers the network coordinate of D using Vivaldi or Virtual Vivaldi; (c) A
requests a detour to D from the neighbor to which it has the highest embedding error;
(d) A advertises its path to D to all neighbors that have positive embedding error to A.

finds value in the sender. When requesting a detour from a neighbor, a PeerWise

node includes a list of possible destinations to which it has high embedding error.

The path to these destinations is more likely to be part of a detour for another

node, as described in Chapter 5. Requests for detours are accepted only when

both the sender and the receiver find mutual advantage in forwarding each other’s

traffic.

Each PeerWise node maintains two tables: a peering table and a negotiation

table. The peering table tracks established, mutually advantageous peering rela-

tionships. The negotiation table is an antechamber for the peering table and tracks

the nodes with which no peering has been established, but which are candidates

for mutually beneficial peerings. Once a peering is established, the peer moves

from the negotiation table to the peering table. An entry in either table is associ-

ated with a node i in the system and contains i’s IP address, network coordinate,

7.1 Mechanisms 110

and a history of round trip times to i. The peering table adds the SLA and the

utilization of the peering.

A service level agreement (SLA) is a formal contract between two peers that

establishes all aspects of the service that each provides to the other. Nodes in

routing overlays are inherently selfish and SLAs are an efficient method to curtail

the effects of the selfishness. SLAs ensure that each node receives the expected

level of quality-of-service even when the traffic demand in the network varies and

the mutual advantage offered by a peering is time dependent.

I identify four performance metrics to be used as the basis for an SLA between

two PeerWise users:

• detours: the number of detours that a node offers to the other

• latency reduction: the minimum latency reduction that a node offers to

the other to a specific destination

• bandwidth: the average bandwidth at which one node forwards packets for

the other to a specific destination

• burstiness: the maximum bandwidth at which one node forwards packets

for the other to a specific destination

Each SLA is associated with a re-evaluation timeout which triggers a verifica-

tion of the SLA against the traffic exchange since the previous timeout. I assume

7.1 Mechanisms 111

that each PeerWise user has the means to monitor the traffic over all its peerings.

Because IP is best effort and cannot provide measurable service, I do not require

the bounds on the performance metrics defined in the SLA to be strictly enforced;

it is enough if most of the packets sent over the peering satisfy the bounds spec-

ified by the SLA. Furthermore, I enforce frequent re-evaluations (on the order of

minutes or hours rather than days or weeks). In doing so, I seek to protect the

users against long periods when although the SLA is not violated, the peering is

unusable.

I present an example of a simple SLA between two PeerWise users. Assume two

nodes, A and B, discover mutual advantage and decide to form a peering. The SLA

of the peering may state that A and B must offer each other latency reductions of

at least 10ms for 95% of the packets that each send to their destinations C and D.

The re-evaluation timeout is set to 60 seconds. Furthermore, the bandwidth that

each peer uses to forward each other’s packets must not exceed 20kB/s averaged

over the 60 seconds, with its maximum value always below 100kB/s.

PeerWise nodes frequently renegotiate existing peerings to account for latency

changes and to find the best detours available. They do not, however, monitor the

byte-level usage of a peering. In my implementation, as described in Chapter 8, I

establish SLAs based on the number of detours that each node is offering to the

other. Applications built on top of PeerWise could use and combine all other SLA

7.2 Policies 112

metrics.

My SLA design draws from the agreements between autonomous systems in the

Internet. Similarly to AS SLAs, PeerWise SLAs are intended to be maintained over

long periods of time. In this way, long term reputation can motivate cooperation.

However, AS SLAs are defined over much larger time scales. I require SLAs to be

verified more often because traffic fluctuations may have bigger effects on a single

link that connects two users than on a collection of links that interconnects two

autonomous systems.

7.2 Policies

PeerWise is designed to be a scalable overlay for finding low-latency detours. For

scalability, each node must choose which neighbors to maintain peerings with,

choose among neighbors to find a relay, and predict whether to seek a relay for a

destination.

PeerWise nodes must learn. Nodes compute coordinates for new destinations to

help other nodes predict detours. Newly used relay paths can be instrumented so

that they can be dropped if the prediction of their utility was incorrect or preserved

if their utility is clear. Finally, nodes must remember recent destinations so that

a neighbor set can be customized to the likely traffic stream. Learned behavior

will depend on practical deployment: for example, how frequently nodes return to

7.2 Policies 113

the same latency-sensitive destination. In fact, as a destination is contacted again

and again, PeerWise might lower its standards for a “good” detour to provide

improved application performance, or try reaching the destination via relays that

are not obvious candidates. In this section, I make no assumptions about the

utility of learned information, and instead focus on establishing a broad base of

PeerWise connections for reaching all destinations.

To study neighbor and relay selection algorithms, I collected latency measure-

ments and coordinates for 262 PlanetLab nodes and the 448 popular web servers.

I considered only the PlanetLab nodes responsive at the time of the measurement.

To gather this PeerWise-Pyxida data set, I used Pyxida [80], an implementation

of the Vivaldi coordinate system. To compute coordinates for the web servers,

with colleagues, I extended Pyxida with the virtual coordinate algorithm. Every

30 seconds, for 18 hours on January 14, 2008, I took a snapshot containing RTT

measurements and coordinates (virtual and non-virtual). I use only a subset of this

data: median latency over the past 10 measurements, and network coordinates, all

observed after Pyxida ran for two hours (to converge).

7.2.1 Choosing Neighbors

Each PeerWise node must be able to decide whether a new node would offer better

detours than existing neighbors. A new neighbor may provide relays toward a

7.2 Policies 114

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100

F
ra

c
ti
o
n
 o

f
D

e
to

u
re

d
 D

e
s
ti
n
a
ti
o
n
s

Number of Neighbors

Embedding Error
Proximity
Coverage

Angle
Random

Figure 7.4: Neighbor selection algorithms. As the number of legitimate neighbors is re-
stricted, coverage, proximity and embedding error (for 32 or more neighbors) algorithms
preserve the most detours.

region of coordinate space or directly to known destinations. Deciding upon future

mutual advantage is a prediction of future accesses and future performance. In this

section, I evaluate the ability of a PeerWise node to predict, from coordinates and

measurement, whether a neighbor will contribute.

If nodes were to contact only a few, known destinations, choosing neighbors

would be simple: replace a neighbor if the new one provides a better path to an

interesting destination. However, I do not expect access patterns to be nearly so

predictable. Instead, I wish to determine, when a new neighbor arrives, whether

it is likely to provide a shortcut to a useful region in coordinate space.

I consider a few traffic-independent neighbor selection policies, expecting that

a combination of schemes would perform best. I separate them into two classes:

7.2 Policies 115

value schemes are likely to provide the best detours, but may overlap; diversity

schemes prefer relays that are different from those already chosen.

Value schemes include embedding error and proximity. Embedding error prefers

neighbors with the largest positive error in the embedding of the source to potential

neighbor edge: these nodes are likely to traverse the most coordinate distance with

the lowest latency. Proximity prefers neighbors with the smallest absolute latency

between the source and a potential neighbor.

By choosing the best neighbors exclusively, a node may miss diversity. Coverage

uses the relay’s coordinate and latency to determine the region in coordinate space

that that relay covers. We split the space with a 24-tree structure (for scalability)

and prefer neighbors that minimize the expected detour latency to every point

in space. Angle prefers neighbors in different directions in the coordinate space.

For all pairs of potential neighbors, a node computes the angle between the line

segments from itself to the neighbors, and selects the neighbors with the largest

angles. Random chooses neighbors at random to provide a point of comparison.

In Figure 7.4, I compare these neighbor selection algorithms. I vary how many

neighbors a node can have from 1 to 200. At each step, I add a new neighbor

based on one of the five schemes. Proximity and coverage perform the best, but

embedding error also performs well with 32 or more neighbors. I choose proximity

as the primary neighbor selection metric because it performs similarly to coverage

7.2 Policies 116

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.04 0.2 1

C
D

F

Relative Latency Loss

Direct
Conservative
High-Risk
Random

Figure 7.5: Prediction quality among relays. Best detours are found through relays
selected using the direct and conservative algorithms.

and is easier to use.

7.2.2 Choosing Relays

Neighbor selection determines the set of neighbors that may provide a detour path.

With relay selection, a node attempts to discover quickly the neighbor that offers

the best detour to a specific destination. Like server-selection problems solved by

network coordinates, relay selection seeks the shortest combination of the direct

path to the relay and the predicted path between relay and destination. Over time,

this performance can be measured, but to minimize latency, detour performance

should be predicted. At the very least, I hope to reduce the number of relays

that one needs to simultaneously contact to find a good detour when contacting a

7.2 Policies 117

destination for the first time.

I consider the following policies for choosing relays for a destination. Direct

prediction adds the measured source-to-relay latency to the estimated relay-to-

destination distance in coordinate space, then chooses the relay with the lowest

sum. Because latency measurements may be more reliable than coordinates, I

evaluated a conservative prediction, which adds the source-to-relay latency mea-

surement again to increase its influence in the prediction. This is based on the

expectation that coordinates are inaccurate and seeks greater likelihood of a good

detour in preference to the best detour at the top of the list. A high-risk scheme

chooses the neighbor with the highest embedding error. Finally, random provides

a baseline.

I select 32 neighbors for each node using the proximity-based algorithm and

evaluate the four relay-selection algorithms. In Figure 7.5, I show the quality of

predictions made using these algorithms in terms of relative performance lost com-

pared to the best choice. The conservative approach performs best: approximately

80% of the detours chosen are only 20% longer than the best detour between the

same pair of nodes.

7.2 Policies 118

7.2.3 Deciding Whether to Relay

Deciding whether to use a detour depends on a prediction of whether it will improve

application performance. This has two components: whether the traffic is sensitive

to latency and whether a known neighbor is likely to provide a detour path. I

evaluate the latter. Whether traffic is latency sensitive can be crudely inferred by

ports, by commercial packet scheduling products, or by application-based proxies

that can differentiate classes of traffic. In this section, I assume that the traffic is

latency sensitive and attempt to predict whether to relay.

The decision of whether to relay depends first on whether virtual coordinates

for the relay are available and recent. If there are no coordinates available for the

destination, a node may choose to seek a relay by probing. If there are coordinates

for the new destination, it may speculatively use a predicted relay, collect more

information, or go directly to the destination without probing.

7.2.3.1 If the destination has no coordinates

If the destination lacks coordinates, the node should forward the packet directly,

and if the destination is somewhat distant, i.e., latency is long enough that a good

detour is possible, the node may trigger latency probing from neighbors. The

latency measurements by neighbors will, first, allow coordinates to be estimated

and, second, provide direct latency measurements of the potential detour paths.

7.2 Policies 119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000

F
ra

c
ti
o

n
 o

f
S

o
u

rc
e

-D
e

s
ti
n

a
ti
o

n
 P

a
ir
s

Latency (ms)

Ê

Ë
Detour Exists

CDF

Ê

CDF 0.80

Frac 0.50

ms 236

Ë

CDF 0.95

Frac 0.88

ms 474

Figure 7.6: As the latency to a destination increases, so does the probability that there
is a detour.

Conveniently, if a detour path is available, the node may learn about it before the

end of the second round trip (by starting the latency probing as soon as 10 ms

have elapsed in the first contact).

The distance to the destination may be an indicator of whether the destination

has a detour. In Figure 7.6, I show how often a destination has a relay within

the neighbor set, given that the latency to the destination is above some value.

For 95% of the edges, as the latency increases, so does the probability of a detour

for the edge. The plot suggests that, after sending a probe to the destination,

the longer a node waits to receive a response, the more likely it is that a detour

exists for that destination. For 15% of destinations (between 236 ms and 1054 ms

7.2 Policies 120

of latency), there is more than a 50% chance that a detour exists. I expect that

actual node behavior, in terms of when to seek out a detour, will be application

dependent. For instance, a node may always try to find a detour for frequently

contacted destinations.

7.2.3.2 If the destination has coordinates

If the destination has known coordinates that have been gossiped, a node can

decide before sending the first packet: is there likely to be a detour among its

neighbors? Assuming that all coordinates are accurate, except for the measured

latencies to neighbors, the node can find a shortcut without direct contact to the

destination.

For certain uses of PeerWise, getting the relay right before contacting a desti-

nation is useful. If the destination will be reached with a TCP connection, the first

choice can stick: the source address on the SYN packet is fixed, and the connection

cannot be easily migrated to a relay. For interactive applications over long TCP

connections—shell, game, chat, perhaps voice—this decision may be important.

I show that, most of the time, when the coordinates of the destination are

known, a node makes the correct decision on whether to use PeerWise. I define a

correct decision as finding a good relay (within 25% of the best latency reduction)

when a detour exists, or not attempting to find one when a detour does not exist.

All other decisions of a node (i.e., attempting to find a relay when a detour does

7.2 Policies 121

Correct decision Incorrect decision

w/o with w/o with

probing probing probing probing

Detour
7.3% 11.1% 16.6% 12.8%

exists

Detour
55.8% 57.3% 20.3% 18.8%

absent

Total 63.1% 68.4% 36.9% 31.6%

Table 7.1: Using coordinates alone or coordinates with a latency probe to the destination,
nodes can predict whether to use PeerWise. Probing the destination slightly increases
the probability of making a correct decision.

not exist or finding a bad relay) are considered incorrect. I summarize all possible

situations in Table 7.1. I used the proximity policy for neighbor selection and

the conservative policy for relay selection. Using coordinates alone, nodes make a

correct decision 63.1% of the time. The prediction accuracy improves to 68.4% if

the latency to the destination is known. I consider the frequency of correct and

incorrect decisions to be acceptable; a more ambitious node might try to discover

detours more often at the expense of making more mistakes.

7.3 Summary 122

7.3 Summary

In this chapter, I presented the design of PeerWise. First, I discussed its key com-

ponents: network coordinates (including virtual coordinates for non-participating

destinations) for detour detection, neighbor tracking for improved efficiency and

scalability, and pairwise negotiation for fairness. Then, I presented the decision

space of each PeerWise node for choosing the best neighbors (that provide good

detours to many destinations) and relays (that provide good detours to specific

destinations). In the next section, I implement PeerWise and present evaluation

results from a wide-area deployment.

Chapter 8

Implementation and Evaluation

In this chapter, I describe results from the deployment of PeerWise under real

network conditions on the PlanetLab testbed. First, I describe the implementation

and then show that PeerWise can quickly find mutually advantageous detours that

offer significant and continuous latency reduction. Then, I confirm that PeerWise

detours can speed short web transfers in practice.

8.1 Finding Detours

In this section, I study the quality of detours found by PeerWise. I conduct

experiments that support the following hypotheses:

• PeerWise finds mutually-advantageous detours

• The detours discovered by PeerWise offer significant and continuous latency

reductions

123

8.1 Finding Detours 124

8.1.1 Implementation

I divide the functionality of PeerWise into two parts: the network coordinate

system and a stand-alone daemon that includes all other components described in

Section 7.1. I use Pyxida [80] for computing coordinates, since it is the only network

coordinate system implementation I am aware of that is tested extensively under

realistic network conditions [43]. Pyxida is written in Java and uses the Vivaldi

algorithm [22] to compute coordinates for nodes. Each Pyxida node maintains

a variable number of neighbors, updated constantly, and probes them at regular

intervals. I augmented Pyxida to compute virtual coordinates for hosts that do

not participate in PeerWise, as described in Chapter 7.

I wrote the PeerWise daemon in approximately 3,000 lines of Ruby. The dae-

mon listens for connections from other PeerWise nodes, and negotiates, establishes,

and maintains mutually advantageous peerings. It communicates with Pyxida reg-

ularly, using RPC over TCP, to update the measured latencies and coordinates of

the current set of neighbors as well as of the destinations that are currently served.

By relying on the latency measurement and coordinate computation performed

by Pyxida, I minimize the communication overhead. On the average, every node

consumes less than 1KB/s (including Pyxida traffic).

8.1 Finding Detours 125

8.1.2 Deployment

I ran PeerWise on 189 PlanetLab nodes, chosen for their stability, in September

2008. I focus on what detours PeerWise can find, where a detour is determined by

the pings not by actual transfers. I express mutual advantage between two nodes

as the number of detours that each offers the other. I experimented with three

scenarios:

• All-dest: Each node tries to find detours to all 500 popular websites (de-

scribed in Section 6.2) to which it can measure an RTT.

• Rand-dest: Each node tries to find detours to a random subset of the 500

websites.

• Zipf-dest: The popularity of destinations follows a Zipf distribution [11,

105].

The discussion focuses on the All-dest experiment, but I summarize the results

from Rand-dest and Zipf-dest in Tables 8.1 and 8.2. Recall that the destina-

tions are already very popular servers, many of which use content distribution.

Therefore, All-dest is not a best case scenario.

I describe the behavior of each node next. Nodes start looking for detours,

after their network coordinates have stabilized, by successively sending detour

requests to their neighbors. I limit the number of neighbors of each node to 32

8.1 Finding Detours 126

for scalability and use the proximity policy for selecting neighbors. I make sure

that no two detour requests are simultaneous: a new request is sent only when a

reply (either positive or negative) has arrived for a previous one or a timeout has

occurred. Each request tries to find detours to as many destinations as possible.

Requests are sent continuously, even to the nodes with which peerings have been

established or to the nodes that, in the past, could not offer detours. In this way,

nodes are constantly renegotiating the peerings and are always ready to adapt to

changes in latency.

PeerWise relies on the latency measurements and coordinate computations per-

formed by Pyxida. I update both every 10 minutes. To avoid instability due to

varying latencies, the updated values for latencies represent moving medians across

the last 10 samples collected.

I present results for the first 36 hours of the experiment, counting from the

time when nodes start requesting detours. For ease of exposition and to study

startup behavior, all nodes start requesting detours simultaneously. I show that

most nodes find mutually advantageous detours and that these detours lead to

significant and stable latency reduction.

8.1 Finding Detours 127

8.1.3 PeerWise finds detours

For each node, I count the destinations that can be reached using a mutually

advantageous detour for the duration of the experiment. Figure 8.1 shows the

distribution of the fraction of reachable destinations. Focus only on the line labeled

“max” for now. Each point corresponds to a node, and its projection on the

horizontal axis represents the fraction of destinations for which the node finds

detours. Around 25% of the nodes cannot find any detours, while most nodes find

detours to at least 10% of the popular destinations. The results are consistent with

those of the evaluation in Chapter 6.2 (see Figure 6.2). For Rand-dest and Zipf-

dest, fewer nodes (around 50%) are able to find detours at all. This is because

the number of destinations is much smaller than in All-dest.

8.1.4 PeerWise finds detours quickly

How quickly are the detours discovered? I compute the fraction of destinations to

which a detour is discovered by PeerWise within the first 10 minutes, 1 hour and

5 hours. Figure 8.1 shows the results as cumulative distributions. Many detours

are discovered within the first 10 minutes of the experiment and the majority

after less than an hour. Fewer and fewer detours are discovered afterward. These

are mostly the detours that appear due to varying latencies—they are discovered

because PeerWise constantly adapts to new latencies and coordinates.

8.1 Finding Detours 128

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

fraction of destinations reachable

after 10 min

after 1h

after 5h

max

Figure 8.1: Fraction of the popular destinations reachable through mutually advanta-
geous detours from PlanetLab.

8.1.5 PeerWise offers significant latency reduction

The detours discovered by PeerWise would not be very useful if they offered min-

imal latency reductions compared to the direct paths. I show that this is not the

case. Recall that I have set a threshold: I consider only those detours that offer

reduction of more than 10 ms and 10% of the direct-path latency. Here I focus on

the latency reductions negotiated by PeerWise. In Section 8.2, I show how these

reductions hold when user traffic traverses the detour path.

I compute all latency reductions for each (source, destination) pair for which

a detour exists, both as absolute (milliseconds) and relative (fraction of the direct

path latency) values. I show the median, 10th and 90th percentiles in Table 8.1.

The median latency reduction is 29 ms or 26% of the latency of the direct path.

8.1 Finding Detours 129

Latency reduction (§ 8.1.5)

relative (absolute)

median 10 percentile 90 percentile

All-dest 26% (29ms) 12% (12ms) 63% (131ms)

Rand-dest 25% (33ms) 12% (13ms) 60% (115ms)

Zipf-dest 24% (27ms) 12% (13ms) 59% (76ms)

Table 8.1: Characteristics of PeerWise detours: latency reduction.

10% of the pairs have a reduction of more than 131 ms. This is caused by unusually

high direct-path latencies, possibly due to traffic shaping. By circumventing these

slow links, PeerWise can offer significant latency reduction.

8.1.6 Longevity and variability

PeerWise nodes may offer continuous latency reduction to a destination using sev-

eral peerings. For each (source, destination) pair, we evaluate how long PeerWise

offers reduction and with how many different relays. Ideally, every destination will

be reached continuously through the same peering. Long-lived reductions through

the same peering offer nodes more choices in when to use the mutually advanta-

geous connection.

I consider two metrics: longevity and variability. Longevity captures how Peer-

Wise nodes maintain latency reduction once a detour is discovered. I define the

8.1 Finding Detours 130

Longevity (§ 8.1.6) Variability (§ 8.1.6)

% of (src,dest) pairs % of (src,dst) pairs

≥0.9 0.5-0.9 <0.5 1 2-10 >10

All-dest 54% 18% 28% 67% 2% 31%

Rand-dest 36% 19% 45% 51% 23% 26%

Zipf-dest 31% 31% 38% 48% 23% 29%

Table 8.2: Characteristics of PeerWise detours: longevity and variability.

longevity of a destination D from a node S as the fraction of time that PeerWise

offers S a detour to D, after PeerWise first learns about a shorter path from S to

D. A longevity of 1 for the pair (S, D) means that, after PeerWise discovers the

first detour between S and D, it will always offer some detour between S and D.

Variability represents the number of different relays that S uses to obtain contin-

uous reduction to D. The lower the variability, the easier it is to maintain latency

reduction.

Table 8.2 summarizes longevity and variability for all (source, destination) pairs

for which PeerWise offers latency reduction. For All-Dest, more than half of the

pairs have a longevity higher than 0.9. 67% of the pairs use only one relay. When

fewer destinations are selected at random or using a Zipf distribution, the number

of detours, their longevity, and variability are reduced. However, about half of the

(source, destination) pairs still have longevity higher than 0.5 and variability of 1.

8.2 Using Detours 131

8.2 Using Detours

In this section, I show how the detours discovered by PeerWise translate in real life.

Can user-level applications benefit from the network-level detours of PeerWise?

From each PlanetLab node running PeerWise, I download the front page of

each of the 500 popular websites to which a mutually-advantageous detour exists.

I use wget to perform two transfers every time it is called: one using the direct

path and one using the PeerWise detour. To make the web request follow the

detour path, I install the tinyproxy HTTP proxy on every PlanetLab node that

can be used as a relay. I run each transfer 100 times, alternating whether detour

or direct comes first, and record the individual completion times.

I verify whether the detours promised by PeerWise are seen by the web trans-

fers. For each (source, destination) pair with a detour in PeerWise, I compute the

wget reduction ratio—the ratio between the median relay transfer time and the

median direct transfer time—and plot it against the PeerWise reduction ratio—

the latency reduction ratio promised by PeerWise. Figure 8.2 presents the results.

For 58% of the pairs, the wget reduction is less than 1; web transfers take less

time through the relay than through the direct path, as predicted by PeerWise.

However, many PeerWise detours do not materialize for the wget transfers.

I explain the dissonance between the PeerWise view and the application view

next. PeerWise detours are determined by network-level pings. On the other hand,

8.2 Using Detours 132

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

P
e
e
rW

is
e
 r

e
d
u
c
ti
o
n
 r

a
ti
o

wget reduction ratio

wget sees the detour wget does not see the detour

Figure 8.2: Wget latency reduction versus PeerWise latency reduction: 58% of all Peer-
Wise detours achieve latency reduction in real life.

the wget end-to-end latency includes server and proxy wait times and thus may be

larger than network latency. Further, PeerWise detours are based on medians of

latencies gathered over long periods of time. Due to potential latency variations,

these medians may differ from the RTTs at the time of the transfer.

To quantify the factors that inflate the application latency, I instrument the

experiment as follows. During the web transfers, I run tcpdump on every relay node

and log all proxy traffic. Using the packet timestamps, I compute, for each detour

transfer, the network latency (from the TCP connection setup), the time spent at

the relay and the time waiting for the server. Figure 8.3 shows the distributions of

average server time, relay time and of the difference between network latency at

transfer time and latency promised by PeerWise. The time spent at the relay and

8.2 Using Detours 133

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

C
D

F

latency (s)

network RTT diff
server time

relay time

Figure 8.3: Distributions of average server wait times, relay times, and difference between
wget and PeerWise RTTs for all detour transfers. Relay times inflate application latencies
the most.

at the server accounts for most of the inflation in application latency: half of the

relays induce an additional average latency of at least 50 ms. PeerWise predicts

the network part of the wget transfer time well.

All relays are PlanetLab nodes; PlanetLab does not always reflect the realities

of the Internet. I believe that the slowness of PlanetLab is the main factor that

contributes to the unusually high relay time for our transfers. To confirm, I set

up tinyproxy on a computer with minimal load, located at University of Maryland

and run web transfers through it. The average relay time for all transfers through

the UMD proxy is 5ms, less than 95% of all PlanetLab relays. If I consider the

hypothetical situation in which all PlanetLab relay times were replaced by the

average UMD relay time—effectively minimizing the time spent by a transfer at

8.3 Summary 134

the relay node—then 78% of the web transfers would see the detours promised

by PeerWise. I conclude that PeerWise has the potential to improve application

performance.

8.3 Summary

In this chapter, I described the implementation of PeerWise and presented results

from its evaluation on the PlanetLab testbed. I showed that PeerWise nodes find

detours to popular destinations, that the detours are stable, and that they offer

significant latency reductions. Most detours last for a long time and are obtained

using only one mutually advantageous peering. I then showed how PeerWise de-

tours translate into real life and how user applications, such as the wget download

application, can benefit.

Chapter 9

Conclusions and Future Work

9.1 Thesis and contributions

In this dissertation, I support the following thesis: It is possible to make end-to-

end communication between users in the Internet simultaneously faster, scalable

and fair, by relaying solely on inherent properties of the Internet latency space.

The leitmotif of my work is the triangle inequality violation (TIV). The failure

of the Internet latency space to satisfy the triangle inequality provides an oppor-

tunity to improve end-to-end latencies by redirecting traffic between two nodes

through a third node with which the first two form a TIV. That network coor-

dinates do not work well with TIVs is an opportunity to scalably identify TIVs.

Finally, because there are many pairs of nodes in the Internet latency space that

are relays in each other’s detours, I can provide fairness with a simple, locally-

enforced mutual advantage principle: only those nodes that offer detours to each

other are allowed to communicate.

I bring the following contributions. First, I perform a large-scale, extensive

135

9.1 Thesis and contributions 136

study on triangle inequality violations in the Internet and show that they

provide an excellent opportunity for detour routing. Using collected real-world

latencies between nodes in the Internet, I demonstrate that TIVs are real and not

illusions of the latency measurement process. Although the number of TIVs varies

with time, aggregating multiple measurements using medians offers conservative

estimates on the number of TIVs at any point in time. I analyze TIVs quan-

titatively and qualitatively and show that, albeit their low number, TIVs offer

significant latency reduction to many.

Second, I propose and evaluate a scalable technique to discover TIVs with

few measurements. My technique exploits the impossibility of perfectly embedding

a triangle inequality violation in a metric space. I use network coordinates to place

nodes that form TIVs in an Euclidean space and rely on the error in distance

estimation using coordinates to indicate whether a pair of nodes is part of or needs

a detour.

Third, I introduce mutual advantage as a novel principle in the design

of routing overlay networks. Only pairs of nodes that are in a symbiotic

relationship—each is an intermediate relay on a detour of the other—can peer. I

show that mutual advantage does not limit significantly the number or the quality

of detours that can be found, even to very popular destinations.

Finally, inspired by the properties of triangle inequality violations in the In-

9.2 Future work 137

ternet, I design and build PeerWise, the first scalable and fair latency-

reducing routing overlay network. PeerWise is a step towards practical, flex-

ible overlay routing, where participants are guaranteed that their costs to partici-

pate do not outweigh their benefits, and where they can negotiate paths based on

their own performance.

9.2 Future work

I separate future work into two parts: extensions to PeerWise and new directions

originated from the components of PeerWise.

9.2.1 Extensions to PeerWise

PeerWise is a latency-reducing overlay network. Providing detours that maximize

a metric other than latency seems as an obvious next step. Next, I discuss how

I intend to proceed in offering detours that route around failures, have lower-loss,

or higher bandwidth.

Detours around failures

It seems straightforward to apply the latency-optimized overlay toward routing

around failures. Although Gummadi et al . [29] show that a random selection can

often skirt those failures that can be avoided, the peering links chosen by PeerWise

9.2 Future work 138

might be too correlated to maximize resilience. For example, they may all traverse

a usually high-performance but failed link. PeerWise may have an advantage in

that the mutual forwarding relationship cemented over time could be more quickly

applied after failures.

Establishing pairwise agreements for failure recovery is different than for low

latency. Peerings are intended to be used only when failures on the direct paths

occur and thus a node does not know a priori if or how much it will use a peering.

I identify several peering strategies to be used when fast failure recovery is desired:

• random-k peering

Similarly to SOSR [29], each node chooses k other nodes as intermediaries

to carry the traffic in case there are failures on the default paths to desti-

nations. Gummadi et al . showed that a good value for k is 4: when four

other intermediate nodes are used, their system is able to route around 92%

of the failed paths. Oftentimes, the detour paths are not the most efficient:

paths that offer more benefit in terms of end-to-end latency than the default

recovery paths do exist. By selecting the k intermediate nodes among the

ones with the highest embedding error, it may be possible to use network

coordinates to find more efficient routes around failures. It remains to be

seen how much selecting k nodes with high errors instead of k random nodes

affects the recovery rate.

9.2 Future work 139

• history-based peering

There are certain types of failures that tend to occur frequently in the same

places: router misconfigurations, operating system failures, routing loops. If

information about these failures is available, nodes can better devise their

peering strategy to peer with nodes that are more likely to help find alternate

paths. For example, if there is evidence that packets traveling through a

certain AS tend to enter routing loops frequently, it is best to route them

through a node that does not belong to the faulty AS.

• locality peering

In locality peering, pairwise agreements are established between nodes that

are located geographically close but that are part of different IP networks.

The intuition behind this strategy stems from the work of Wang et al . [103].

Large Internet providers cover the same geographical regions and it is not

uncommon that end-users that are geographically close to each other are

clients of different ISPs. When physical-layer errors—such as cable cuts—

occur, they only affect paths through one domain, leaving the paths through

the other domains as a viable alternatives for recovery. Network coordinates

could detect potential peers that are geographically close, but are part of

different domains.

9.2 Future work 140

Lower-loss detours

Can PeerWise provide low-loss paths? First, for fairness to exist, pairwise peerings

must be established, so there has to be a level of symmetry in the space formed

by the loss rates between nodes in the Internet. Pairs of nodes should be able to

help each other in finding low-loss paths to destinations. Second, for scalability,

there must be a way of selecting the good nodes based only on partial information.

I envision a solution that, similarly to latency detours, uses embedding errors in

network coordinates. If an edge is underestimated, it means that its real latency

is higher than the estimated distance. This may happen because the edge is the

long side in a bad triangle or because other measurements done by one of the

endpoints of the edge constrain the coordinates and move the other endpoint closer

than necessary. Intuitively, if the relative error of the edge is also high, then we

can assume that the edge is unusually long because it experiences congestion. A

measurement study of the correlation between loss rates and triangle inequality

violations is necessary and would shed more light on the feasibility of extending

PeerWise to finding low-loss detours.

Higher-bandwidth detours

Application to bandwidth [31] may be more difficult, not because it would be a

challenge to find pairs of nodes connected by high bandwidth, but because finding

9.2 Future work 141

third nodes that have high bandwidth connections to one but not both of the

overlay participants seems difficult. A challenging measurement study would be

required to show the potential of such overlay.

9.2.2 Social map of the Internet

Understanding the structure of the Internet is paramount. With precise network

maps, the effectiveness of many applications and protocols would be easier to

evaluate and the consequences of failures would be easier to predict. Most efforts

in mapping the Internet focus exclusively on physical connectivity: identifying

all nodes (routers) and connections between them. However, physical links are

sometimes insufficient for predicting performance; how nodes interact with each

other is a better predictor than whether they share a wire or not.

A different vision is to study the Internet as a social medium of communica-

tion. I will attempt a new structural decomposition of the network and identify

relationships between nodes that transcend physical connectivity. PeerWise offers

one such type of relationship: symbiosis, the mutual ability of two nodes to benefit

from each other’s position or resources. Such a relationship cannot be captured

with simple topology maps and is of utmost importance for evaluating the feasi-

bility and performance of a fair overlay network such as PeerWise. I believe that

many more such relationships exist, each leading to a different map. For example,

9.2 Future work 142

dependency between nodes occurs when one node’s performance relies exclusively

on the other’s, such as the source node in a detour relying on the relay for transit.

A social map of the network is exciting because it would change the way re-

searchers view the Internet. It would create more complete models that, coupled

with topology maps, would better predict the performance of new protocols. Social

network maps could help overlay network construction, routing protocol design or

measurement techniques by revealing new patterns of dependency or redundancy

between nodes. They would also benefit the day-to-day operation and running

of the network (e.g ., by identifying which links or nodes to overprovision, where

to establish peering agreements). Studying the social structure of the Internet at

the network level requires leveraging existing measurement techniques and studies,

while devising new ones that capture social interplays between nodes.

9.2.3 Node location framework

In PeerWise, I use network coordinates to scalably find nodes under latency con-

straints, specifically those nodes that form TIVs. Many distributed applications in

the Internet require finding nodes that satisfy various location constraints. Content

distribution [24] is more efficient when performed through peers that minimize de-

lay to receivers. In online games, distributed matchmaking algorithms attempt to

select the game server that minimizes the average latency to all players [10,1]. Un-

9.2 Future work 143

M

N

B

B NM

Cost

Euclidean space

dist(M, B) > dist(M, N)

C(B) < C(N)

Figure 9.1: Nearest neighbor is not enough. M is the theoretical lowest cost point, N
and B are nodes in the geometric space. Although N is closer to M than B, the cost of
B is lower, making it more desirable than N.

like PeerWise, where I use the embedding error of network coordinates to identify

nodes in TIVs, general node location queries cannot take advantage of the dis-

agreement between network coordinates and TIVs. They find nodes under latency

constraints by first computing the best coordinate that satisfies the constraints

and then returning its nearest neighbor(s) [78,44].

Finding the nearest neighbor using network coordinates is not always sufficient.

The node closest in coordinate space to a theoretically optimal point may not

be the best node. Consider the problem of computing the centroid of a set of

nodes. Figure 9.1(top) shows the contour plot of a possible cost function. B and

9.2 Future work 144

N represent nodes in the Internet and M is the theoretically optimal centroid for

a set of nodes (not shown on the plot). Although N is closer to M than B, B is in

fact a better choice for the centroid, since it lies on a lower cost contour.

I consider generalizations of node location using network coordinates. Finding

nodes under latency constraints can be naturally expressed as a cost optimization

problem, where the cost of each node is determined by an arbitrary continuous

function over the node coordinates. I sketch the design of Sherpa, an overlay

network that finds the lowest cost node for distributed applications. Sherpa uses

a modified compass routing algorithm [38] on the network coordinate space to

discover the nearest neighbor to a theoretical optimal point and a gradient descent

algorithm based on Voronoi region information to find the lowest cost node. Initial

simulations on two real world latency data sets show that Sherpa finds nodes with

cost that is significantly lower than the nearest neighbor and close to the optimal,

even considering the embedding error of network coordinates.

My general formulation for node location captures a diversity of problems and

extends the applicability of network coordinates beyond nearest neighbor appli-

cations. I intend to show how to effectively find low cost game servers for online

game participants (where both the absolute latency and the relative disparities are

important), relays that leverage split-TCP protocols [34] (to increase throughput

between two nodes), and overlay paths that verifiably avoid nodes or regions in

9.2 Future work 145

the Internet.

Bibliography

[1] Sharad Agarwal and Jacob R. Lorch. Matchmaking for online games and

other latency-sensitive P2P systems. In SIGCOMM, 2009.

[2] Akamai. http://www.akamai.com.

[3] Alexa. http://www.alexa.com/.

[4] Luzi Anderegg and Stephan Eidenbenz. Ad hoc-VCG: A truthful and cost-

efficient routing protocol for mobile ad hoc networks with selfish agents. In

MobiCom, 2003.

[5] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert

Morris. Resilient overlay networks. In SOSP, 2001.

[6] Katerina Argyraki and David R. Cheriton. Loose source routing as a mech-

anism for traffic policies. In Workshop on Future directions in network ar-

chitecture, 2004.

[7] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-

able application layer multicast. In SIGCOMM, 2002.

[8] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind Srini-

vasan. Resilient multicast using overlays. In Sigmetrics, 2003.

[9] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel

Agu, and Mark Claypool. The effects of loss and latency on user performance

in unreal tournament 2003. In NetGames, 2004.

146

http://www.akamai.com
http://www.alexa.com/

BIBLIOGRAPHY 147

[10] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda,

Jeffrey Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: Enabling

large-scale, high-speed, peer-to-peer games. In SIGCOMM, 2008.

[11] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web

caching and zipf-like distributions: Evidence and implications. In INFO-

COM, 1999.

[12] CAIDA AS relationships dataset. http://www.caida.org/data/active/

as-relationships/.

[13] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,

Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth multicast

cooperative environments. In SOSP, 2003.

[14] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Anthony I.T.

Rowstron. Scribe: A large-scale and decentralized application-level multicast

infrastructure. IEEE Journal of Selected Areas in Communication, 2002.

[15] David Clark. The design philosophy of the DARPA internet protocols. In

SIGCOMM, 1988.

[16] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden.

Tussles in cyberspace: Defining tomorrow’s Internet. IEEE/ACM Transac-

tions on Networking, 13(3):462–475, 2005.

[17] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.

Freenet: A distributed anonymous information storage and retrieval system.

In Workshop on Design Issues in Anonymity and Unobservability, pages 46–

66, July 2000.

[18] Bram Cohen. Incentives build robustness in BitTorrent. In P2PEcon, 2003.

[19] Jacomo Corbo and David Parkes. The price of selfish behavior in bilateral

network formation. In PODC, 2005.

[20] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Prac-

tical Internet coordinates for distance estimation. In ICDCS, 2004.

http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/

BIBLIOGRAPHY 148

[21] Landon Cox and Brian Noble. Samsara: Honor among thieves in peer-to-peer

storage. In SOSP, 2003.

[22] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a

decentralized network coordinate system. In SIGCOMM, 2004.

[23] Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia. Com-

puting the types of the relationships between autonomous systems. In IN-

FOCOM, 2003.

[24] Michael J. Freedman, Eric Freudenthal, and David Maziéres. Democratizing

content publication with Coral. In NSDI, 2004.

[25] Lixin Gao. On inferring autonomous system relationships in the Internet.

IEEE/ACM Transactions on Networking, 9(6):733–745, 2001.

[26] Gnutella. http://www.gnutella.com.

[27] Albert Greenberg and Bruce Hajek. Deflection routing in hypercube net-

works. IEE Transactions on Communications, 40(6):1070–1081, 1992.

[28] Krishna Gummadi, Stefan Saroiu, and Steven Gribble. King: Estimating la-

tency between arbitrary Internet end hosts. In Internet Measurement Work-

shop, 2002.

[29] Krishna P. Gummadi, Harsha Madhyastha, Steven D. Gribble, Henry M.

Levy, and David J. Wetherall. Improving the reliability of internet paths

with one-hop source routing. In OSDI, 2004.

[30] Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243–1248,

1968.

[31] Sing Wang Ho, Thom Haddow, Jonathan Ledlie, Moez Draief, and Peter

Pietzuch. Deconstructing Internet paths: An approach for AS-level detour

route discovery. In IPTPS, 2009.

[32] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for

end system multicast. IEEE Journal of Selected Areas in Communication,

20(8), 2002.

http://www.gnutella.com

BIBLIOGRAPHY 149

[33] Internet Growth Statistics. http://www.internetworldstats.com/

emarketing.htm.

[34] Rahul Jan and Teunis J. Ott. Design and implementation of split TCP in

the Linux kernel. In Globecom, 2006.

[35] H. Tahilramani Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and

A. Gandhi. BANANAS: An evolutionary framework for explicit and multi-

path routing in the Internet. In Workshop on Future directions in network

architecture (FDNA), 2003.

[36] Kazaa. http://www.kazaa.com.

[37] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:

High bandwidth data dissemination using an overlay mesh. In SOSP, 2003.

[38] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing

on geometric networks. In CCCG, 1999.

[39] James F. Kurose and Keith W. Ross. Computer Networking: A Top Down

Approach. Addison-Wesley, 2009.

[40] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M. Maggs. R-

BGP: Staying connected in a connected world. In NSDI, 2007.

[41] Craig Labovitz, Abha Ahuja, Abhijit Abose, and Farnam Jahanian. Delayed

Internet routing convergence. In SIGCOMM, 2000.

[42] Karthik Lakshminarayanan and Venkata N. Padmanabhan. Some findings

on the network performance of broadband hosts. In IMC, 2003.

[43] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates in

the wild. In NSDI, 2007.

[44] Jonathan Ledlie, Peter Pietzuch, Michael Mitzenmacher, and Margo Seltzer.

Wired geometric routing. In IPTPS, 2007.

[45] Jonathan Ledlie, Margo Seltzer, and Peter Pietzuch. Proxy network coordi-

nates. Technical report, Imperial College London, 2008.

http://www.internetworldstats.com/emarketing.htm
http://www.internetworldstats.com/emarketing.htm
http://www.kazaa.com

BIBLIOGRAPHY 150

[46] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan Saha. On suit-

ability of euclidean embedding of Internet hosts. In Sigmetrics, 2006.

[47] Dave Levin. Punishment in selfish wireless networks: A game theoretic

analysis. In NetEcon, 2006.

[48] Dave Levin, Randy Baden, Cristian Lumezanu, Neil Spring, and Bobby

Bhattacharjee. Motivating participation in internet routing overlays. In

NetEcon, 2008.

[49] Dave Levin, Adam Bender, Cristian Lumezanu, Neil Spring, and Bobby

Bhattacharjee. Boycotting and extorting nodes in an internetwork. In NetE-

con+IBC, 2007.

[50] Dave Levin, Rob Sherwood, and Bobby Bhattacharjee. Fair file swarming

with FOX. In IPTPS, 2006.

[51] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi. Constructing internet

coordinate system based on delay measurement. In IMC, 2003.

[52] Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng, and Jon

Crowcroft. On the accuracy of the embeddings for Internet coordinate sys-

tems. In IMC, 2005.

[53] Cristian Lumezanu, Randy Baden, Dave Levin, Bobby Bhattacharjee, and

Neil Spring. Symbiotic relationships in Internet routing overlays. In NSDI,

2009.

[54] Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee.

Triangle inequality and routing policy violations in the internet. In PAM,

2009.

[55] Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee.

Triangle inequality variations in the Internet. In IMC, 2009.

[56] Cristian Lumezanu, Sumeer Bhola, and Mark Astley. Online optimization

for latency assignment in distributed real-time systems. In ICDCS, 2008.

BIBLIOGRAPHY 151

[57] Cristian Lumezanu, Dave Levin, and Neil Spring. PeerWise discovery and

negotiation of faster paths. In HotNets, 2007.

[58] Cristian Lumezanu and Neil Spring. Measurement manipulation and space

selection in network coordinates. In ICDCS, 2008.

[59] Cristian Lumezanu, Neil Spring, and Bobby Bhattacharjee. Decentralized

message ordering for publish/subscribe systems. In Middleware, 2006.

[60] Harsha V. Madhyastha, Thomas Anderson, Arvind Krishnamurthy, Neil

Spring, and Arun Venkataramani. A structural approach to latency pre-

diction. In IMC, 2006.

[61] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas

Anderson, Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An

information plane for distributed services. In OSDI, 2006.

[62] Ratul Mahajan, David Wetherall, and Thomas Anderson. Negotiation-based

routing between neighboring ISPs. In NSDI, 2005.

[63] Ratul Mahajan, David Wetherall, and Thomas Anderson. Mutually con-

trolled routing with independent ISPs. In NSDI, 2007.

[64] G. Malkin. RIP Version 2. RFC 2453, IETF, 1998.

[65] Yun Mao and Lawrence K. Saul. Modeling distances in large-scale networks

by matrix factorization. In IMC, 2004.

[66] J. Moy. OSPF Version 2. RFC 2328, IETF, 1998.

[67] Aki Nakao and Larry Peterson. Scalable routing overlay networks. In ACM

SIGOPS Operating Systems Review, 2006.

[68] Akihiro Nakao, Larry Peterson, and Andy Bavier. A routing underlay for

overlay networks. In SIGCOMM, 2003.

[69] T. S. Eugene Ng and Hui Zhang. Predicting Internet network distance with

coordinates-based approaches. In INFOCOM, 2002.

BIBLIOGRAPHY 152

[70] Lothar Pantel and Lars C. Wolf. On the impact of delay on real-time mul-

tiplayer games. In NOSSDAV, 2002.

[71] Vern Paxson. End-to-end routing behavior in the Internet. In SIGCOMM,

1996.

[72] Vern Paxson. End-to-end Internet packet dynamics. In SIGCOMM, 1997.

[73] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector

(AODV) routing. RFC 3561, IETF, 2003.

[74] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A

blueprint for introducing disruptive technology into the internet. SIGCOMM

CCR, 33(1):59–64, 2003.

[75] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems

Approach. Morgan Kaufmann, 2007.

[76] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim Harris, and Saleem Bhatti.

Lighthouses for scalable distributed location. In IPTPS, 2003.

[77] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy,

and Arun Venkataramani. Do incentives build robustness in BitTorrent? In

NSDI, 2007.

[78] Peter Pietzuch, Jonathan Ledlie, Michael Mitzenmacher, and Margo Seltzer.

Network-aware overlays with network coordinates. In IWDDS, 2006.

[79] Internet Protocol. Internet protocol. RFC 791, IETF, 1981.

[80] Pyxida. http://pyxida.sourceforge.net/.

[81] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On selfish

routing in Internet-like environments. In SIGCOMM, 2003.

[82] Barath Raghavan and Alex C. Snoeren. A system for authenticated policy-

compliant routing. In SIGCOMM, 2004.

[83] Yakov Rekhter and Kirk Lougheed. A Border Gateway Protocol 4 (BGP-4).

RFC 1771, IETF, 1994.

http://pyxida.sourceforge.net/

BIBLIOGRAPHY 153

[84] RouteViews. http://www.routeviews.org.

[85] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble,

and Henry M. Levy. An analysis of Internet content delivery systems. In

OSDI, 2002.

[86] Stefan Savage, Tom Anderson, Amit Aggarwal, David Becker, Neal Cardwell,

Andy Collins, Eric Hoffman, John Snell, Amin Vahdat, Geoff Voelker, and

John Zahorjan. Detour: A case for informed Internet routing and transport.

IEEE Micro, 19(1):50–59, 1999.

[87] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP

congestion control with a misbehaving receiver. SIGCOMM CCR, 29(5):71–

78, 1999.

[88] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Thomas An-

derson. The end-to-end effects of Internet path selection. In SIGCOMM,

1999.

[89] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding net-

work distances in euclidean space. In INFOCOM, 2003.

[90] Yuval Shavitt and Tomer Tankel. On the curvature of the Internet and its

usage for overlay construction and distance estimation. In INFOCOM, 2004.

[91] Michael Sirivianos, Jong Han Park, Xiaowei Yang, and Stanislaw Jarecki.

Dandelion: Cooperative content distribution with robust incentives. In

USENIX, 2007.

[92] Skype. http://www.skype.com.

[93] Neil Spring, Ratul Mahajan, and Tom Anderson. Quantifying the causes of

path inflation. In SIGCOMM, 2002.

[94] Jeremy Stribling. Planetlab all pairs ping. http://www.pdos.lcs.mit.edu/

~strib/pl_app/.

http://www.routeviews.org
http://www.skype.com
http://www.pdos.lcs.mit.edu/~strib/pl_app/
http://www.pdos.lcs.mit.edu/~strib/pl_app/

BIBLIOGRAPHY 154

[95] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and

Randy H. Katz. Characterizing the internet hierarchy from multiple vantage

points. In INFOCOM, 2002.

[96] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark

Handley, Morley Mao, Scott Shenker, and Ion Stoica. HLP: A next genera-

tion inter-domain routing protocol. In SIGCOMM, 2005.

[97] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy

Katz. OverQoS: An overlay based architecture for enhancing Internet QoS.

In NSDI, 2004.

[98] Paul Syverson, David Goldschlag, and Michael Reed. Anonymous connec-

tions and onion routing. In Security and Privacy, 1997.

[99] Liying Tang and Mark Crovella. Virtual landmarks for the Internet. In IMC,

2003.

[100] Sudhir Tauro, Christopher Palmer, Georgos Siganos, and Michalis Faloutsos.

A simple conceptual model for the internet topology. In Global Internet, 2001.

[101] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A robust,

tamper-evident, censorship-resistant, web publishing system. In USENIX

Security, 2000.

[102] Guohui Wang, Bo Zhang, and T. S. Eugene Ng. Towards network triangle

inequality violation aware distributed systems. In IMC, 2007.

[103] Hao Wang, Yang Richard Yang, Paul H. Liu, Jia Wang, Alex Gerber, and

Albert Greenberg. Reliability as an interdomain service. In ACM Sigcomm,

2007.

[104] Li wei Lehman and Steven Lerman. PCoord: Network position estimation

using peer-to-peer measurements. In International Symposium on Network

Computing and Applications, 2004.

[105] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell, Anna R.

Karlin, and Henry M. Levy. On the scale and performance of cooperative

web proxy caching. In SOSP, 1999.

BIBLIOGRAPHY 155

[106] Bernard Wong, Aleksandrs Slivkins, and Emin Gn Sirer. Meridian: A

lightweight network location service without virtual coordinates. In SIG-

COMM, 2005.

[107] Wen Xu and Jennifer Rexford. Miro: Multi-path interdomain routing. In

SIGCOMM, 2006.

[108] Xiaowei Yang. NIRA: A new Internet routing architecture. In Workshop on

Future Directions in Network Architecture (FDNA), 2003.

[109] Bo Zhang, T.S. Eugene Ng, Animesh Nandi, Rudolf RIedi, Peter Druschel,

and Guohui Wang. Measurement-based analysis, modeling, and synthesis of

the Internet delay space. In IMC, 2006.

[110] Rongmei Zhang, Y. Charlie Hu, Ziaojun Lin, and Sonia Fahmy. A hierarchi-

cal approach to Internet distance prediction. In ICDCS, 2006.

[111] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy G. Griffin. Internet

routing policies and round-trip times. In PAM, 2005.

[112] Sheng Zhong, Jiang Chen, and Yang Richard Yang. Sprite: A simple, cheat-

proof, credit-based system for mobile ad-hoc networks. In INFOCOM, 2003.

[113] Dapeng Zhu, Mark Gritter, and David R. Cheriton. Feedback based routing.

In HotNets, 2002.

	Acknowledgments
	Contents
	Introduction
	PeerWise Goals and Challenges
	From Internet Geometry to PeerWise
	Thesis and Contributions
	Roadmap

	Background and Related Work
	Routing in the Internet
	Inter-domain routing
	Intra-domain routing

	Triangle inequality violations
	The triangle inequality
	Research on TIVs

	Alternatives to Routing
	Changes to BGP
	Source Routing
	Overlay Networks

	Measuring Triangle Inequality Violations
	Pitfalls of measuring TIVs
	New measurements
	King
	Data Sets

	Latency variability
	Measurements Vary Over Time
	Causes of Variations

	Triangle inequality variations
	TIVs vary over time
	Longevity
	Alternative ways to compute TIVs

	Summary

	Using Triangle Inequality Violations
	Data sets
	Latencies
	AS Paths

	TIVs and latency reduction
	TIVs are important

	TIVs and BGP
	How Impossible Are the Impossible Paths?
	Possible Paths

	Summary

	Discovering detours with network coordinates
	Network coordinates
	Internet modelling and space selection
	Probing and data collection
	Positioning

	Network coordinates and TIVs
	Evaluation
	Vivaldi
	Methodology
	TIVs impact the accuracy
	Embedding errors indicate TIVs

	Summary

	Mutual advantage
	Motivation
	Limitations of Mutual Advantage
	Methodology
	Is There Mutual Advantage in the Internet?
	Detours to Nearby Destinations
	Multiple-IP Websites
	Simulation Limitations

	Summary

	Designing a Latency-Reducing Routing Overlay Network
	Mechanisms
	Network Coordinates
	Neighbor Tracking
	Pairwise Negotiation and Maintenance

	Policies
	Choosing Neighbors
	Choosing Relays
	Deciding Whether to Relay

	Summary

	Implementation and Evaluation
	Finding Detours
	Implementation
	Deployment
	PeerWise finds detours
	PeerWise finds detours quickly
	PeerWise offers significant latency reduction
	Longevity and variability

	Using Detours
	Summary

	Conclusions and Future Work
	Thesis and contributions
	Future work
	Extensions to PeerWise
	Social map of the Internet
	Node location framework

	Bibliography

